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Abstract

We provide a general state space framework for estimation of the parameters of continuous-
time linear DSGE models from data that are only available at discrete points in time. Our
approach relies on the exact discrete-time representation of the equilibrium dynamics, which
allows avoiding discretization errors. Using the Kalman filter, we construct the exact likeli-
hood for data sampled either as stocks or flows, and estimate frequency-invariant parameters
by maximum likelihood. We address the aliasing problem arising in multivariate settings and
provide conditions for precluding it,which is required for local identification of the parameters
in the continuous-time economic model. We recover the unobserved structural shocks at mea-
surement times from the reduced-form residuals in the state space representation by exploiting
the underlying causal links imposed by the economic theory and the information content of the
discrete-time observations. We illustrate our approach using an off-the-shelf real business cycle
model. We conduct extensive Monte Carlo experiments to study the finite sample properties
of the estimator based on the exact discrete-time representation, and show they are superior to
those based on a naive Euler-Maruyama discretization of the economic model. Finally, we esti-
mate the model using postwar U.S. macroeconomic data, and offer examples of applications of
our approach, including historical shock decomposition at different frequencies, and estimation
based on mixed-frequency data.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a fundamental tool

for macroeconomic analysis. Furthermore, the use of continuous-time methods has gained

renewed interest, with a large number of models being developed and used to study the trans-

mission mechanisms of monetary and fiscal policies, and to provide a better understanding

of the interactions between the real and financial sides of the economy (see, e.g., Posch, 2011,

Brunnermeier and Sannikov, 2014, Kaplan et al., 2018, Itskhoki and Moll, 2019, Posch, 2020,

Fernández-Villaverde et al., 2020, Liemen and Posch, 2022). This increase in popularity has

led to the development and improvement of numerical methods for approximation of the solu-

tion of both representative and heterogeneous agent continuous-time models (see, e.g., Posch,

2009, Posch and Trimborn, 2013, Parra-Alvarez, 2018, Ahn et al., 2018, Parra-Alvarez et al.,

2021, Achdou et al., 2022). However, considerably less work has been devoted to study how

to take these models to the data. This step requires addressing the issue that the economic

theory is derived under the assumption that time evolves continuously, whereas the data

used to test its validity is measured at discrete points in time. This is a particularly pressing

problem in macroeconomics, where data usually are available only at low frequencies, e.g.,

monthly, quarterly, or annually.

In this paper, we propose and analyze a method for estimation and inference from mul-

tivariate linear continuous-time structural economic models based on discrete-time observa-

tions, with the aim to make comprehensive and systematic use of the macroeconomic data

available. The approach accounts for the discrete nature of the sampling scheme, while

keeping the underlying probabilistic structure unaltered. The discrete-time data generat-

ing process results from a combination of the discrete sampling scheme and the underlying

continuous-time model. As the decision intervals of economic agents are not tied to the

observation intervals of sampled data, the frequency with which data are measured is not

relevant for the parameters of interest, namely, those of the continuous-time model. Upon

estimation, these frequency-invariant structural parameters can, if desired, be mapped to

parameters associated with any frequency, not only the observed data frequency.

We consider a likelihood-based framework, along the lines of Jones (1981), Harvey and

Stock (1985) and Zadrozny (1988). The linearity assumption allows deriving the exact so-

lution at the discrete observation times of the underlying continuous-time model, and the

associated state space representation. Even so, the multivariate nature of the model leads to

identification problems due to aliasing, i.e., that different continuous-time models can share

the same discrete-time representation. We provide sufficient conditions for ruling out alias-

ing, and demonstrate that they are satisfied in the specific models we work out. Further, as
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the residuals from the discrete-time empirical model are composites of underlying structural

shocks from the continuous-time model, reflecting time-aggregation, as well as contempora-

neous and dynamic relations among variables between measurements, we propose a method

to approximately recover the structural shocks at measurement times. In addition, we use

the continuous-time feature of the underlying model to focus on frequency-invariant struc-

tural parameters, and to accommodate either stock or flow variables in the data, as well as

variables of different observation frequencies. We illustrate our approach using an off-the-

shelf real business cycle model. We conduct extensive Monte Carlo experiments to study

the finite sample properties of the estimator based on the exact discrete-time representation,

and show they are superior to those based on a naive Euler-Maruyama discretization of the

economic model. Finally, we estimate the model using postwar U.S. macroeconomic data,

and offer examples of applications of our approach, including historical shock decomposition

at different frequencies, and estimation based on mixed-frequency data.

The starting point of our framework is the system of equations that characterizes the solu-

tion of linear(-ized) continuous-time DSGE models. This type of model is usually represented

by an autonomous system of linear stochastic differential equations (SDEs) describing the

dynamics of the optimal state variables in the economy, together with a set of algebraic equa-

tions representing equilibrium conditions, optimal policy functions, or (static) no-arbitrage

conditions, at any given instant. We express the solution to the system of SDEs as a discrete-

time vector autoregressive (VAR) model of order one (see Bartlett and Rajalakshman, 1953,

Phillips, 1959, Bergstrom, 1966, Phillips, 1973, and Bergstrom, 1984). This VAR(1) repre-

sentation, usually known as the exact discrete model (EDM), delivers the probability distri-

bution of any given sequence of observations sampled from the underlying continuous-time

model, without introducing discretization errors that might otherwise contaminate the es-

timation of the model parameters, and it maintains all cross-equation restrictions implied

by the economic model.1 When combined with the algebraic equations evaluated at the

same discrete points in time, we obtain a standard discrete-time and time-invariant state

space representation that can be used to evaluate the likelihood function for the model using

the Kalman filter, along the lines of Fernández-Villaverde and Rubio-Ramı́rez (2007) and

Fernández-Villaverde et al. (2016). Statistical inference on the unknown value of the pa-

rameters of the continuous-time model is performed via the maximum likelihood estimator

(MLE) on the basis of a sample of discrete-time measurements.

The use of state space models for conducting inference in continuous-time frameworks

1See McCrorie (2009) and Chambers et al. (2018) for a comprehensive review on the exact discrete-time
representation of continuous-time models. Exact discrete-time representations of higher-order systems of
stationary and non-stationary differential equations can be found in Chambers (1999).
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from discrete observations was already acknowledged by Bergstrom (1983). The state space

framework allows for estimation of models with unobserved components, and accommo-

dates errors in measurements of the variables used for estimation, mixed frequencies of the

variables, missing observations, and variables measured at unequally spaced intervals. Alter-

native approaches that do not rely on state space representations have also been proposed,

including Hansen and Scheinkman (1995) for moment-based estimation methods, Bergstrom

(1983), Lo (1988), Aı̈t-Sahalia (2002, 2008), and Aı̈t-Sahalia and Mykland (2003, 2004) for

likelihood-based methods, Bibby and Sørensen (1995) and Sørensen (1997) for estimating

function methods, and Florens-Zmirou (1993), Jiang and Knight (1997), and Fan (2005)

for nonparametric techniques. Phillips and Yu (2009) provide an overview of different ap-

proaches for the estimation of continuous-time models from discrete observations. Recent

applications of these methods to the estimation of DSGE models include Posch (2009),

Christensen et al. (2016), Fernández-Villaverde et al. (2020), and Chambers et al. (2022).

The econometric framework proposed here is simple and convenient for estimation pur-

poses, and the reliance on the EDM ensures that all relevant information in the observed

data regarding the underlying model is retained. Nevertheless, it leads to the two chal-

lenges related to the aliasing problem and the backing out of structural shocks. Both must

be addressed in order for the estimated model to be useful for economic analysis, e.g., to

understand the sources of business cycle fluctuations, the propagation of exogenous shocks

through the economy, or the effects of changes in macroeconomic policies. The alternative

route of bypassing the two challenges by avoiding the EDM implies a loss of information.

Here, we address them both.

Regarding the first challenge, the coefficient matrix of the VAR(1) representation of the

EDM involves a non-linear transformation of the parameters, beyond that implied by the

cross-equation restrictions associated with the rational expectations solution of the model.

This additional transformation, given in terms of a matrix exponential, adds an observational

equivalence problem to the list of potential identification issues that can affect DSGE model,

as discussed in the literature (see, e.g., Canova and Sala, 2009, Iskrev, 2010, Komunjer

and Ng, 2011, and Qu and Tkachenko, 2012, 2017). This is the aliasing problem, and it

is particular to continuous-time models. It arises because the mapping between the coeffi-

cient matrix of the system of SDEs and the coefficient matrix of the VAR(1) is not injective.

Therefore, different values of the parameters in the continuous-time model could generate the

same model for the discrete observations at sampling frequency (the same EDM). Precluding

aliases is necessary for local identification of the parameters in the continuous-time economic

model. To address the aliasing problem, we build on the arguments in Phillips (1973), and

more recently in McCrorie (2003), Kessler and Rahbek (2004), and Blevins (2017), to estab-
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lish a set of sufficient conditions that rule out aliasing in multivariate settings relying on the

EDM and observations in discrete time.

The second challenge is related to the fact that the transition equation in the resulting

state space model implied by the EDM resembles a reduced-form VAR(1) model, with distur-

bances that are composites of the primitive structural shocks in the continuous-time model.

Therefore, the use of the EDM for estimation purposes hinders the structural interpretation

of the shocks that drive the variables in the model. The estimated reduced-form residu-

als reflect not only the effect of potential contemporaneous and dynamic relations among

the variables, but also the effects of time-aggregation over a given interval of fixed length,

i.e., the confounding of shocks that occur between measurement times. To address this is-

sue, we propose a method to approximately recover the unobserved structural shocks of the

continuous-time DSGE model at measurement times from the estimated reduced-form resid-

uals. Our approach exploits the underlying causal links of the continuous-time model through

the EDMmapping and the information contained in the sample of discrete-time observations.

This strategy resembles the use of short- and long-run identifying restrictions on the variance-

covariance matrix that is commonly used in the structural VAR literature, pioneered by Sims

(1986), Bernanke (1986), Shapiro and Watson (1988), and Blanchard and Quah (1989).

We demonstrate how our approach can accommodate the sampling nature of the data.

One of the attractive features of working with continuous-time models is that they provide a

logically consistent basis for jointly accommodating variables that are sampled according to

different schemes, such as stocks and flows. A stock is a variable that is measured at a given

point in time, e.g., the capital stock, or bond holdings measured at the end of the period. A

flow, on the contrary, is a variable whose value measures the accumulated amount over a given

time interval, e.g., consumption or GDP measured from the beginning to the end of a period.

To investigate the properties of our approach, we consider a continuous-time version of

the RBC model with indivisible labor of Hansen (1985), with shocks to total factor produc-

tivity and capital, as a benchmark. We run extensive Monte Carlo simulations to study the

finite sample properties of the MLE, as well as the ability to recover the structural shocks,

when the data used in the estimation process are sampled either as stocks or flows. Our

Monte Carlo experiments shed light on the effects of model misspecification that results

from using a state space model for stock variables when the observed data are in fact sam-

pled as flows. We also show the consequences of using a state space that is derived instead

from a naive discretization based on the Euler-Maruyama (EM) approximation. Our results

suggest that using the EDM for the specification of the discrete-time state space model is

preferred, and that the biases introduced by the alternative method are substantial. The

EM approximation does not suffer from the aliasing problem, but instead from discretization
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error, implying in effect that the estimates are of discrete-time parameters that are only as-

sociated with the continuous-time parameters of interest up to the degree of approximation.

Similarly, discretization error in the variance-covariance structure hampers the identification

and interpretation of structural shocks. While the EM approximation is popular in finance,

in the presence of high-frequency data (e.g., daily, minute, second), the relatively low fre-

quency of macroeconomic data (monthly, quarterly, annual) is particularly damaging to this

method. In contrast, our approach works seamlessly.

We provide an empirical illustration of our proposed framework by estimating the bench-

mark model using quarterly data on macroeconomic aggregates for the U.S economy over

the period from 1959:Q1 through 2019:Q4. We consider the aggregate consumption and

hours worked series as a benchmark case, and compare results to those based on other data

configurations, including aggregate output, and other data frequencies. The results confirm

that our approach is feasible, and estimates are consistent with those in the business cycle

literature. A historical shock decomposition indicates that the U.S. business cycle, as re-

flected in the consumption growth series, has mainly been driven by aggregate supply shocks

over the period studied, whereas deviations in hours worked from the steady state have

mainly been driven by aggregate demand shocks. Finally, we provide an application using

data series of mixed frequencies that illustrates the generality of our approach, exploiting

the frequency-invariance of the parameters of the underlying continuous-time model.

The rest of the paper is organized as follows. Section 2 presents the econometric frame-

work, and the mapping between the continuous-time DSGEmodel and the analogous discrete-

time state space representation. It also discusses the conditions under which the parameters

of the continuous-time model can be identified from discrete-time measurements. Section 3

introduces a method to recover the sequence of the structural shocks at measurement times

from the reduced-form residuals of the discrete-time state space representation. Section 4

provides Monte Carlo evidence on the finite sample properties of the MLE, and studies the

accuracy of the proposed method to recover structural shocks. Section 5 presents the empiri-

cal application to U.S. data, and Section 6 concludes. All proofs of propositions, derivations,

and some additional results, are provided in the Appendix.

2. The econometric framework

2.1 The economic model

Let y(t) ∈ Rny denote a vector of control or jump variables at time t, and x(t) ∈ Rnx

a vector of possibly unobserved state or predetermined variables, with t ∈ R. Further, let
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θ ∈ Θ ⊂ Rdimθ be the vector of structural parameters characterizing preferences, technology,

and/or endowments, with Θ the parameter space of all theoretically admissible values of θ.

In the following, we consider a class of continuous-time linear(ized) DGSE models whose

rational expectations solution can be represented in the form

dx(t) = A(θ)x(t)dt+B(θ)dw(t) , given x(t0) = x0 , (2.1)

y(t) = C(θ)x(t) , (2.2)

where w(t) ∈ Rnw is a vector of independent standard Brownian motions, w(t) ∼ N (0, tI).

By equation (2.1), x(t) is governed by a multivariate Ornstein-Uhlenbeck (OU) diffusion

process that describes the optimal dynamics of the state variables, with local drift A(θ) ∈
Rnx×nx , diffusion matrix B(θ) ∈ Rnx×nw , nx ≥ nw, and positive semi-definite instantaneous

variance-covariance matrix Σ(θ) := B(θ)B(θ)⊤ ∈ Rnx×nx . The interpretation of dw(t) is

that of primitive (structural) shocks driving the economy. Equation (2.2) determines the

optimal value of the control variables at instant t, as a function of the state variables at

that time. The entries of the time-invariant matrices A(θ), B(θ), and C(θ) ∈ Rny×nx cor-

respond to reduced-form parameters that are nonlinear functions of the vector of structural

parameters θ. The map θ 7→ (A(θ),B(θ),C(θ)) embodies the cross-equation restrictions

imposed by the rational expectations solution to the DSGE model. We restrict attention to

stationary models, and thus make the following assumption.

Assumption 1. For all θ ∈ Θ, the system matrix A(θ) is stable, i.e., every eigenvalue of

A(θ) has strictly negative real part.

Remark 2.1. Given that the system matrix A(θ) is stable, by Assumption 1, equations

(2.1)-(2.2) define a stable linear system.

In practice, the econometrician faces two problems when using the continuous-time model

(2.1)-(2.2) for statistical inference. First, the decisions made by economic agents are only

measured at discrete intervals, e.g., annually, quarterly, monthly, etc. Here, it is important

to differentiate between stock variables, which are sampled at a particular point in time

(e.g., wages, prices, interest rates, etc.), and flow variables, which are sampled as aggregates

over an interval of time (e.g., income, consumption, hours worked, etc.). Secondly, not all

the variables in the model are readily available, i.e., some of the variables may be latent or

unobservable. In the following, we illustrate our estimation approach by assuming that all

the variables in x(t) are unobserved stock variables, while y(t) contains observable variables,

all of which are sampled either as stocks or as flows. A setup that simultaneously accom-

modates stock and flow variables in the measurement and/or state equations can be readily
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derived, e.g., following McCrorie (2000).

2.2 State space representation

To match the continuous-time model with the discrete nature of the data available, we in-

troduce an exact discrete-time representation of the rational expectations solution that is

consistent with the observations generated by the system in (2.1) and (2.2). This is achieved

in two steps. First, following Bartlett and Rajalakshman (1953), Phillips (1959), Bergstrom

(1966), Phillips (1973), and Bergstrom (1984), we derive a discrete-time VAR(1) process

for the state vector by computing the exact solution to the differential equation in (2.1) at

measurement times tτ , τ ∈ Z+ (with Z+ := {x ∈ Z : x > 0} the set of positive integers). Sec-

ondly, we evaluate the continuous-time algebraic equation for the control variables in (2.2) at

measurement times. The first step is summarized in the following Proposition. Throughout,

we write I and 0, respectively, for conformable identity and null matrices.

Proposition 1 (Exact discrete model). Let xτ := x(tτ ) denote the τth realization occurring at

time tτ of the continuous-time variables x(t). At measurement times, equation (2.1) satisfies

the VAR(1) model

xτ = Ah(θ)xτ−1 + ηs
τ , (2.3)

where Ah(θ) ∈ Rnx×nx is given by

Ah(θ) = exp (A(θ)h) =
∞∑
i=0

(A(θ)h)i

i!
= I+A(θ)h+ 1

2
A(θ)2h2 + . . . , (2.4)

with h ≥ 0 denoting the fixed sampling interval between measurements, h := (tτ − tτ−1),

and ηs
τ is the nηs = nx ≥ nw vector of Gaussian innovations

ηs
τ =

tτ∫
tτ−1

exp (A(θ)(tτ − s))B(θ)dw(s) , (2.5)

with mean E [ηs
τ ] = 0 and autocovariances E[ηs

τη
s
τ−ℓ

⊤] = Σηs,h(θ) · I{ℓ = 0}, for all τ , ℓ ∈ Z
(I{·} denotes the indicator function), where

Σηs,h(θ) = E[ηs
τη

s
τ
⊤] =

h∫
0

exp (A(θ)(h− s))Σ(θ) exp
(
A(θ)⊤(h− s)

)
ds . (2.6)

Proof. See Appendix D.1. ■
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The discrete-time equation (2.3) is usually referred to as the Exact Discrete Model

(EDM), with associated sampling frequency determined by the spacing between observa-

tions, h. Let the basic unit of time in the continuous-time model be a year. Thus, h = 1

refers to annual observations, h = 1/4 to quarterly observations, h = 1/12 to monthly ob-

servations, etc. Assumption 1 guarantees stationarity of the EDM. In other words, for every

θ ∈ Θ, the characteristic roots of Ah (θ) have modulus less than one. Although the EDM

does not account for the behavior of the state variables between measurements, the repre-

sentation is exact in the sense that there are no discretization errors, and the distributions

of x(t) and xτ coincide at measurement times tτ . Any set of equispaced data generated from

(2.3) satisfies the model in (2.1) with probability one, regardless the sampling frequency.2

The EDM differs from the standard discrete-time VAR(1) model in that the reduced-form

parameters in the transition matrix Ah(θ) are restricted in a nonlinear manner involving the

matrix exponential function, and the variance-covariance matrix Σηs,h(θ) depends both on

A(θ) and B(θ). We show in Appendix A how to compute these matrices using, respectively,

an eigenvalue-eigenvector decomposition of the fundamental matrix A(θ), and the matrix

factorization approach of Van Loan (1978).

A direct consequence of the EDM is that the disturbances in (2.3) no longer represent

structural shocks, but instead reduced-form innovations. By (2.5), the innovation at time

tτ can be regarded as a moving average of structural shocks dw(s) over the time interval of

length h, with time-variation in the weighting scheme, as determined by the autoregressive co-

efficient matrices. Geweke (1978) calls the confounding effects of the latter “contamination”.

2.3 Stock variables

When the variables used as measurements are sampled as stocks, the second step amounts

to evaluating (2.2) at time tτ , i.e.,

yτ = C(θ)xτ , (2.7)

where yτ := y (tτ ) defines the measurement of the control variables at time tτ .
3

Let yT = {y1, . . . ,yT} be the sample of T equidistant discrete measurements of stock

variables which is available to the econometrician, and potentially is subject to iid sampling

or measurement errors (see, e.g., Sargent, 1989). Our empirical model is summarized by the

2For the more general case where the diffusion matrix in (2.1) depends on the state vector, e.g., a square
root process, Nowman (1997) derives a discretization under the assumption that the volatility changes only
at measurement times, then remains constant, B(x(t),θ) ≈ B(x(tτ−1),θ). However, this approach induces
some approximation error (see Yu and Phillips (2001) for a discussion).

3In the presence of deterministic or stochastic trends, Equation (2.7) can alternatively be written as

∆yτ = yτ − yτ−1 = C̃(θ)x̃τ , where x̃τ =
[
x⊤
τ ,y

⊤
τ−1

]⊤
is an extended state vector, and C̃(θ) = [C(θ),−I]

(see Pfeifer, 2020).
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discrete-time linear time-invariant state space system

xτ = Ah(θ)xτ−1 + ηs
τ , (2.8)

yτ = C(θ)xτ + ετ , (2.9)

where (2.8) defines the transition equation for the latent state variables, with ηs
τ from (2.5),

and (2.9) the measurement equation, with ετ an ny × 1 vector of serially uncorrelated Gaus-

sian measurement errors satisfying, for all τ and ℓ, E [ετ ] = 0, E
[
ετε

⊤
τ−ℓ

]
= R · I{ℓ = 0},

and E
[
ηs
τε

⊤
τ−ℓ

]
= 0.4 In the following, we refer to the Gaussian state space representation

in (2.8)-(2.9) as the S-SSR model.5

2.4 Flow variables

When the variables used as measurements are sampled instead as flows, the second step of

our procedure is more involved. While stocks are measured as the value of the variables at

a particular point in time, flow variables such as consumption or income are defined over

a particular interval of time. To accommodate the flow nature of the measurements in the

state space representation, recall that, according to (2.2), the optimal values of the control

variables, y(t), are determined in equilibrium by the state of the economy, x(t). Following

Harvey (1990), we exploit this relation and introduce the time tτ cumulator variable yf (tτ ) =∫ tτ
tτ−1

y(s)ds, measuring the cumulated values of the control variables over the time interval

[tτ−1, tτ ]. Here and in the following, we use the superscript f to denote the flow nature of the

variables under consideration. Substituting in the optimal policy function from the model

yields

yf (tτ ) =

tτ∫
tτ−1

C(θ)x(s)ds = C(θ)

h∫
0

x(tτ−1 + s)ds ,

where the dynamics of the state vector are given in (2.1). Let yf
τ := yf (tτ ), for all τ . Under

the maintained assumption that the state variables are measured as stocks, the state vector

has the EDM representation in Proposition 1, and the cumulator variable at measurement

times can be written as

yf
τ = C(θ)

 h∫
0

exp(A(θ)s)ds

xτ−1 + ηf
τ , (2.10)

4The empirical model can be augmented to accommodate serially correlated measurement errors with
VAR(1) dynamics, following Ireland (2004).

5In our empirical work, we test the Gaussianity assumption. If necessary, the approach can be adapted
as QML.
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where ηf
τ is an ny × 1 vector of normally distributed reduced-form disturbances, with mean

E
[
ηf
τ

]
= 0, and variance-covariance matrix E

[
ηf
τη

f,⊤
τ

]
= Σηf ,h(θ). Using (2.5) and the

fact that, by Assumption 1, the matrix A(θ) is nonsingular, so that
∫ h

0
exp(A(θ)s)ds =

A(θ)−1(Ah(θ)− I), it follows that

ηf
τ = C(θ)

tτ∫
tτ−1

A(θ)−1 (exp (A(θ)(tτ − s))− I)B(θ)dw(s) . (2.11)

The complete derivation of (2.11) is reported in Appendix D.2.

For a sample of T equidistant discrete measurements of flow variables, yT = {y1, . . . ,yT},
the continuous-time model (2.1)-(2.2) has a linear discrete-time time-invariant Gaussian state

space representation given by[
xτ

yf
τ

]
=

[
Ah(θ) 0

C(θ)A(θ)−1(Ah(θ)− I) 0

][
xτ−1

yf
τ−1

]
+ ητ , (2.12)

yτ =
[
0 I

] [ xτ

yf
τ

]
+ ετ . (2.13)

Equation (2.12) defines the augmented transition equation for the latent state variables[
x⊤
τ ,y

f⊤
τ

]⊤
. Moreover, ητ =

[
ηs
τ
⊤,ηf

τ
⊤
]⊤

is an nη = nx + ny dimensional vector of reduced-

form disturbances, with mean E [ητ ] = 0, variance-covariance matrix

Ση,h(θ) = E
[
ητη

⊤
τ

]
=

[
Σηs,h(θ) Σηsηf ,h(θ)

Σηsηf ,h(θ)
⊤ Σηf ,h(θ)

]
,

with Σηs,h(θ) given in (2.6),

Σηsηf ,h(θ) =

 h∫
0

s∫
0

exp(A(θ)(s− r))Σ(θ) exp(A(θ)⊤r)drds

C(θ)⊤ , (2.14)

Σηf ,h(θ) = C(θ)

 h∫
0

s∫
0

exp(A(θ)r)Σ(θ) exp(A(θ)⊤r)drds

C(θ)⊤ , (2.15)

and autocovariance matrix E
[
ητη

⊤
τ−ℓ

]
= 0, for all τ and ℓ ̸= 0. Equation (2.13) defines

the measurement equation augmented with normally distributed and serially uncorrelated

measurement errors, ετ , satisfying additionally E
[
ηf
τ ε

⊤
τ−ℓ

]
= 0, for all τ, ℓ. It states that the

observed flows are given by the latent cumulator variables plus measurement error. Similarly

11



to the case of stock variables, the computation of (2.14) and (2.15) is carried out via the

matrix factorization approach of Van Loan (1978), described in Appendix A. Below, we refer

to the state space representation (2.12)-(2.13) as the F-SSR model. Relative to the S-SSR,

(2.8)-(2.9), the presence of flow variables increases the number of unobserved states in the

transition equation from nx to nx + ny.
6

Because of the different state space representations for stock and flow variables, we now

introduce an alternative representation that encompasses both the S-SSR and F-SSR models.

Definition 1 (ABCD representation). The state space systems (2.8)-(2.9) and (2.12)-(2.13)

admit the representation (see Fernández-Villaverde et al., 2007)

xτ+1 = A(θ)xτ + B(θ)ϵτ+1 , (2.16)

yτ+1 = C(θ)xτ + D(θ)ϵτ+1 . (2.17)

for conformable matrices (A(θ), B(θ), C(θ), D(θ)), where ϵτ is the vector of errors of the

systems, which include stacked reduced-form innovations, ηs
τ and ηf

τ , and iid measurement

errors, ετ . From the definition of the η’s and ε’s, it follows that ϵτ is white noise, i.e., for

all τ, ℓ, E[ϵτ ] = 0, and E[ϵτϵ⊤τ−ℓ] = Σϵ(θ) · I{ℓ = 0}. The dimension of ϵτ depends on the

features of the system. The entries of the matrices of the system (2.16)-(2.17) can be found

in Appendix B.1.

Lemma 1. Under Assumption 1, for every θ ∈ Θ, and z ∈ C, det(I − A(θ)z) = 0 implies

|z| > 1.

Proof. See Appendix D.3. ■

The lemma implies that if the stability condition for the continuous-time system (As-

sumption 1) holds, then the ABCD system (2.16)-(2.17) is stable, regardless whether the

measurements are sampled as stocks or flows.

2.5 Likelihood evaluation

To estimate the unknown parameters θ ∈ Θ of the continuous-time model in (2.1)-(2.2)

based on a random sample of discrete measurements yT using the discrete-time state space

representation in (2.8)-(2.9) or in (2.12)-(2.13), we use the method of maximum likelihood

(ML). Under the maintained assumption that the state variables are unobserved, and that

6Alternative state space representations that accommodate the presence of flow variables have been
proposed in the literature (see, e.g., Harvey, 1990). A study of their computational differences relative to
the approach suggested here is left for future research.
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the econometrician only has access to a sample of discrete-time observations of the control

variables, possibly contaminated by measurement error, the exact likelihood function for the

data implied by the economic model can be constructed and evaluated using the Kalman

filter algorithm (see, e.g., Harvey, 1990, Hamilton, 1994, or Durbin and Koopman, 2012).

To ensure that the Kalman gain exists, and that the Kalman filter recursion converges, we

make the following additional assumption.

Assumption 2. For every θ ∈ Θ, D(θ)Σϵ(θ)D(θ)
⊤ is nonsingular.

Assumption 2 rules out the possibility that the state space representation is stochasti-

cally singular (see Ingram et al., 1994, Ruge-Murcia, 2007, and Fernández-Villaverde et al.,

2016). It is equivalent to assuming the existence of a unique solution to the discrete algebraic

Riccati equation in the Kalman filter recursion. The issue of singularity emerges in DSGE

models whenever the number of observable variables exceeds the number of disturbances in

the discrete-time state space representation, ny > rank(Ση,h(θ)) + rank(R).

Using the Kalman filter recursion, the conditional log-likelihood function, given y0, can

be constructed recursively via the prediction error decomposition as

L
(
θ|yT

)
=

T∑
τ=1

ln f (yτ |yτ−1;θ) , (2.18)

where f (yτ |yτ−1;θ) is the density function of the discrete measurements at time tτ condi-

tional on the information set at time tτ−1. Given the linear structure of the Gaussian state

space model, f (yτ |yτ−1;θ) is multivariate normal with first- and second-order moments de-

termined by the one-step-ahead forecast errors for the measurements, and their associated

variance-covariance matrix. The MLE of θ is then given by

θ̂ = argmax
θ∈Θ

L
(
θ|yT

)
,

which, under regularity conditions, delivers consistent and asymptotically normal estimates

of the parameters of the model.7 Given θ̂, it is possible to use the information content of

the entire sample to predict the unobserved states, {xτ}Tτ=1, and disturbances, {ητ}Tτ=1. A

detailed derivation of the Kalman filter state and disturbance-smoothing recursions, and the

likelihood function is given in Appendix B.

It is convenient to introduce the (time-invariant) innovations representation of the state

space model (see Anderson and Moore, 2012). The importance of this alternative repre-

7The regularity conditions include i) stability of the EDM (see Assumption 1), and ii) θ0 ∈ IntΘ (see
Newey and McFadden, 1994).
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sentation of the empirical model becomes clear below, when we establish conditions for the

local identification of the model parameters. The next proposition shows how to obtain the

innovations representation from the ABCD representation in (2.16)-(2.17).

Proposition 2. Under Assumptions 1 and 2, and for all τ = 1, .., T − 1, the system (2.16)-

(2.17) admits the (time-invariant) innovations representation

xτ+1|τ+1 = A(θ)xτ |τ +K(θ)ωτ+1|τ , (2.19)

yτ+1 = C(θ)xτ |τ + ωτ+1|τ , (2.20)

where K(θ) is the (time-invariant) Kalman gain, xτ |τ is the contemporaneous prediction

of the state vector, and ωτ+1|τ the one-step-ahead forecast error for the control variables,

each conditional on the information available at time tτ , and with (time-invariant) forecast

error covariance matrix Ω(θ). All these quantities are obtained through the Kalman filter

recursion, as detailed in Appendix B.

2.6 Identification of structural parameters

The consistency of the MLE relies on the ability to identify the true parameters, θ0, given

the distribution of the data, yT . In general, (globally) identification requires that if θ ̸= θ0,

then L
(
θ|yT

)
̸= L

(
θ0|yT

)
, for all θ ∈ Θ. In this case, the objective function L

(
θ|yT

)
reaches a unique maximum at θ0 in large samples (see Rothenberg, 1971 and Newey and

McFadden, 1994). Lack of identification is therefore directly linked to the shape and curva-

ture of the probability distribution implied by the model. This is illustrated in Canova and

Sala (2009), where different types of identification problems are put forward in the case of

linearized DSGE models.

Since the probability distribution in linear Gaussian models is completely characterized

by its first two moments, the problem of identification can be analyzed through the mapping

between the parameters of the economic model and the reduced-form parameters of the

corresponding empirical state space representation, i.e.,

θ 7→ (Ah(θ),Ση,h(θ),C(θ)) .

Using this relation, Komunjer and Ng (2011) provide necessary and sufficient conditions for

local (i.e., in an open neighborhood of θ0) identification of parameters in linearized DSGE

models from the first and second moments of the data. Alternative local identification

conditions have been studied by Iskrev (2010) and Qu and Tkachenko (2012), whereas Qu

and Tkachenko (2017) derive necessary and sufficient conditions for global identification.

14



However, the validity of these conditions for the identification analysis in continuous-time

DSGE models estimated from discrete-time measurements becomes blurred, because of the

aliasing problem. This represents an additional identification failure, different in nature from

those discussed in Canova and Sala (2009). The aliasing problem is specific to the analysis

of multivariate continuous-time models based on discrete-time data, and applies regardless

the choice of estimator. It results from the nonlinear mapping between the reduced-form

parameters in the solution to the model and the reduced-form parameters in the EDM. That

is, for a given θ and sampling frequency h, the focus is on the mapping

(A(θ),Σ(θ)) 7→ (Ah(θ),Ση,h(θ)) ,

defined by equations (2.4) and (2.6). Hence, a precondition to achieve (local) identification

of θ based on a sample of discrete measurements is to rule out observational equivalence due

to aliasing.

2.6.1 The aliasing problem

Let us first consider the identification of the coefficient matrix A(θ) in isolation. By Propo-

sition 1, the matrix of reduced-form parameters in the transition equation (2.1) and the

matrix of coefficients in the EDM in (2.8) are linked through the exponential mapping

Ah(θ) = exp(A(θ)h) (see equation 2.4), which is non-injective in multivariate settings.

Hence, the inverse mapping is not uniquely defined. In general, a countably infinite number

of continuous-time matrices A(θ) lead to the same discrete-time matrix Ah(θ). Therefore,

given B(θ) and C(θ), aliases of A(θ0) may lead to the same probability distribution for

the data, f(yT |θ), and hence lack of identification. Thus, it is the non-uniqueness of the

logarithm of a matrix that leads to the aliasing phenomenon. The problem is absent in the

univariate case (see Remark 2.3 below).

To provide some intuition, Figure 1 illustrates the aliasing problem for the case of a

bivariate deterministic continuous-time model, sampled at discrete intervals of length h = 1.

The plot shows three time series of the two variables, x1(t) and x2(t), for three different

models that are characterized by different matrices Ai, i = 0, 1, 2, but are observationally

equivalent at measurement times tτ = 0, 1, . . . , 4. Thus, in the presence of aliasing identifi-

cation problems, the entries of the matrix A(θ), and hence the parameters of the economy,

will not be uniquely identified from a sample of discrete-time observations.

The identification problem associated with aliasing was formally introduced in economics

by Phillips (1973), and we proceed in the same way, by making the following assumption.
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Figure 1. Aliasing phenomenon. The figure plots simulated paths for two variables, X = [x1, x2]
⊤,

with dynamics dX = AiXdt, along t ∈ [0, 4], with fixed initial values X(0) = X0, for different
coefficient matrices Ai, i = 0, 1, 2. The black dots indicate discrete-time measurements generated
at integer times tτ = 0, 1, . . . , 4 from the EDM Xτ = exp(Aih)Xτ−1, with h = 1. The details
behind this example can be found in Appendix A.3.

Assumption 3. (i) The matrix A(θ0) is real, with real eigenvalues, and (ii) no Jordan block

belonging to any eigenvalue appears more than once.

Proposition 3. Under Assumptions 1 and 3, the mapping Ah(θ0) = exp(A(θ0)h) is injective,

and hence the entries of A(θ0) are identified from Ah(θ0).

Proof. See Culver (1966, Theorem 2). ■

Remark 2.2. Let λi, i = 1, . . . , nx be the eigenvalues of A(θ0), i.e., λi ∈ λ(A(θ0)) = {λ :

det(λI−A(θ0)) = 0}. Some of the eigenvalues may not be distinct, i.e., an eigenvalue may

occur with multiplicity greater than one. Let the Jordan block associated with the eigen-

value λi be denoted as Ji. It is related to the Jordan canonical form of A(θ0) = SJS−1,

with J = diag(J1, ...,Jk). Here, k ≤ nx is the number of Jordan blocks of A(θ0), which may

differ from the number of distinct eigenvalues. The ith Jordan block exhibits λi on the main

diagonal, has 1’s along the first superdiagonal, and 0’s everywhere else.8 Further, S is an nx-

dimensional nonsingular matrix that transforms A(θ0) into J (see, e.g., Gantmacher (1959)

for details). The identity matrix is an example of a matrix with repeated Jordan blocks, and

is therefore not identifiable from its exponential. For example, the two-dimensional identity

matrix has eigenvalues λ1 = λ2 = 1, and two repeated Jordan blocks, JI
1 and JI

2, of order 1.

Let us now consider the identification of Σ(θ0). Without any further assumptions on the

system matrices, we have the following result.

Proposition 4. Under Assumptions 1 and 3, the entries of Σ(θ0) are identified from Ση,h(θ0).

8The first superdiagonal refers to the entries just above the main diagonal of a matrix.
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Proof. See Appendix D.4. ■

Assumptions 1 and 3 define a set of sufficient conditions for the sequential identification

of (A(θ0),Σ(θ0)) from discrete-time measurements. However, as pointed out by McCrorie

(2009), there may be circumstances under which the first part of Assumption 3 is too re-

strictive, e.g., in models with periodic or cyclical behavior of macroeconomic variables that

imply complex eigenvalues. In such cases, additional restrictions, beyond those implied by

Assumptions 1 and 3, must be imposed a priori, to rule out aliasing identification problems.

Two kinds of restrictions have been discussed in the literature. The first is based on the

use of homogeneous linear restrictions, similar to the exclusion restrictions or linear within-

equation restrictions used in the simultaneous equations models of the Cowles Comission

for Economic Research. Phillips (1973) introduced these additional restrictions, and argued

that at least ⌊nx/2⌋ restrictions are necessary to rule out the aliasing identification problem,

where ⌊·⌋ indicates the largest integer smaller than the argument. This condition was later

extended by Blevins (2017) to include the case of inhomogeneous linear restrictions.9 The

second type relies on the non-linear cross-equation restrictions imposed by the assumption

of rational expectations on the mapping θ 7→ (A(θ),Σ(θ),C(θ)), which Hansen and Sargent

(1991) argue may provide a sufficient number of conditions to limit the number of admissi-

ble perturbations that generate the aliases of (A(θ0),Σ(θ0)) .
10 These assumptions have also

been challenged, in Hansen and Sargent (1983, Theorem 3), as they may not lead to Σ(θ)

being positive semi-definite, an assumption we maintain throughout (cf. Section 2.1). To

ensure the latter in the presence of complex eigenvalues, Hansen and Sargent (1983) propose

exploiting the information content in the discrete-time variance-covariance matrix Ση,h(θ),

to further restrict the number of potential aliases.

Remark 2.3. In the absence of aliasing, it follows from (2.4) that, given the basic unit

of time in the economic model, the entries of the matrix A(θ) in the continuous-time

model are invariant to the sampling frequency h, as they should be. This implies that

one can study the properties of a time series at any frequency h̃, using the matrix A(θ)

estimated from data at any other frequency h ̸= h̃ (e.g., through the computation of

conditional and unconditional moments, impulse-response functions, shock decompositions,

9A supplementary computational toolbox that adapts the identification framework of Blevins (2017) is
available from the authors’ webpage. The code allows testing whether the restrictions from the macroeco-
nomic model are sufficient to rule out aliases and jointly identify the reduced-form entries of A(θ) and Σ(θ)
from the discrete-time measurements.

10An alternative source of identification, advocated in Hamerle et al. (1991), relies on the ability to sample
the continuous-time model more frequently. In fact, Hansen and Sargent (1983, Theorem 5) show that, under
certain conditions, there exists an h⋆, such that for h ≤ h⋆, the matrices of coefficients (A(θ0),Σ(θ0)) are
identified from (Ah(θ0),Ση,h(θ0)). However, this approach is of limited use here, due to the low-frequency
sampling that characterizes macroeconomic time series.
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etc.). For example, consider the univariate Ornstein-Uhlenbeck process {Z(t)}t≥0, with

drift and diffusion parameters θ = (ρz, σz)
⊤. In this case, a(θ) := A(θ) = −ρz ∈ R,

and b(θ) := B(θ) = σz ∈ R. By Proposition 1, the associated EDM is the AR(1) process

Zτ = ah(θ)Zτ−1+ητ , with h = (tτ−tτ−1) ∀τ, (⋆) ah(θ) = exp(−ρzh), ητ ∼ N (0, σ2
η,h(θ)), and

(⋆⋆) ση,h(θ) = b(θ)
√

(1− exp(−2a(θ)h))/(2a(θ)). For (ah(θ), ση,h(θ))
⊤ estimated from a

sample of discrete measurements {Zτ}Tτ=0 with uniform time step h, we recover from the inter-

mediate steps (⋆) and (⋆⋆) the continuous-time parameters as a(θ) = −ρz = log(ah(θ))/h,

and b(θ) = σz = ση,h(θ) ((1− exp(−2ρzh))/(2ρz))
−1/2. The transformations ah̃(θ̂) and

ση,h̃(θ̂) are then valid for any new system at arbitrary frequency h̃ ̸= h.

2.6.2 (Local) Identification of θ0

In the absence of aliasing problems, it is possible to assess the local identification of θ0

through the identification tools for DSGE models developed by Komunjer and Ng (2011).

In particular, we want to investigate whether changes in some of the model parameters lead

to indistinguishable outcomes, i.e., if the model is subject to observational equivalence. To

proceed, we make the following assumption.

Assumption 4. The innovations representation (2.19)-(2.20) is minimal. That is, the matrices

[K(θ),A(θ)K(θ), ...,Anx−1(θ)K(θ)] and [C(θ)⊤,A(θ)⊤C(θ)⊤, ...,Anx−1(θ)⊤C(θ)⊤]

have full column rank.

Assumption 4 implies that the dimension of the state equation is the smallest possible,

which is necessary for formalizing the notion of observational equivalence of θ0 and θ1 in the

discrete-time state space system. The two matrices defined by this additional assumption are

usually referred to as the reachability and observability matrices, respectively (see Hannan

and Deistler, 2012).

Following Komunjer and Ng (2011), we investigate the (local) identification of parameters

in continuous-time linear DSGE models with data sampled at discrete points in time by first

defining the mapping

δ(θ,T) :=
[
vec(TA(θ)T−1)⊤, vec(TK(θ))⊤, vec(C(θ)T−1)⊤, vech(Ω(θ))⊤

]⊤
, (2.21)

where T is any conformable square matrix of full rank, and vec and vech are the vec-

torization and half-vectorization operators, respectively. Under Assumptions 1, 2, 3, and

4, the parameter vector θ is locally identified from the autocovariances of yτ at a point

θ0 ∈ Θ if the system of equations δ(θ0, I) = δ(θ1,T) has a locally unique solution given
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by (θ1,T) = (θ0, I). Assumption 3 is imposed to rule out the presence of aliases. While

T can be used to control for observational equivalence between θ0 and θ1 in the mini-

mal ABCD representation, it is not sufficient to rule out aliases. If the mapping θ 7→
[vec(A(θ))⊤, vec(K(θ))⊤, vec(C(θ))⊤, vech(Ω(θ))⊤]⊤ is assumed to be continuously differen-

tiable inΘ, Komunjer and Ng (2011, Proposition 2-NS) provide necessary and sufficient rank

and order conditions to locally identify θ0 from the matrix of partial derivatives of δ(θ,T)

evaluated at (θ0, I). Furthermore, the results in Komunjer and Ng (2011, Proposition 3)

provide a necessary and sufficient rank condition for local identification when a subset of

the model parameters is estimated conditionally on the calibrated values of the remaining

ones. Without Assumption 3, these identification conditions are necessary, but not sufficient

in our case, i.e., identification of the parameters of the underlying continuous-time model

based on discrete-time observations. The uniqueness of the solution may be compromised,

due to aliasing problems, and hence our focus on this issue.

3. Recovering structural shocks

Recall that ητ in (2.8) for the S-SSR model, or in (2.12) for the F-SSR model, does not

represent structural shocks hitting the economy at observation τ . Instead, it represents a

vector of reduced-form innovations, where each of its elements is potentially a composite of

the true underlying structural shocks w(t) occurring continuously within the time interval

(tτ−1, tτ ]. While predicting the latter is not possible from a discrete set of observations

sampled at regular intervals of length h, we introduce a simple approach that uses the

reduced-form disturbances, {ητ}τ∈Z+ , to recover a sequence of structural shocks at the same

discrete points in time, {uτ}τ∈Z+ , where

uτ := h−1/2(w(tτ )−w(tτ−1)) (3.1)

is an nw-dimensional vector of Gaussian random variables, with E [uτ ] = 0, and E
[
uτu

⊤
τ

]
=

I.

Conceptually, the proposed strategy considers partitioning the time interval [tτ−1, tτ ] into

n ≥ 1 sub-intervals, tτ−1 = tτ0 < tτ1 < · · · < tτn−1 < tτn = tτ , each of length hn := h/n. This

partition, which is depicted in Figure 2, has two important implications. First, for any

given partition, integrated structural shocks are given by the Riemann sum,
∑n

i=1∆w(tτi ) =

w(tτ )−w(tτ−1) =
∫ tτ
tτ−1

dw(s). Second, for given θ ∈ Θ, the relation between the reduced-
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observation frequency
t1 t2 t3

. . .
tτ−1 tτ

. . .
T

T = tT

n sub-intervals
tτ0 tτ1 tτ2 tτ3 tτ4

...
tτn−1 tτn

h

hn = h/n

Figure 2. Partition of sampling interval. The figure illustrates the observation points in the sample,
as well as the assumed subsampling scheme within each observation interval.

form innovations and the structural shocks can be written as

ητ =

∫ tτ

tτ−1

H(θ; tτ − s)dw(s) = lim
n→∞

n∑
i=1

H(θ; tτ − tτi−1)∆w(tτi ) , (3.2)

whereH(θ; ·) is a deterministic and square integrable function over the time interval [tτ−1, tτ ].

For the S-SSR model, this function is given by the nx × nw matrix

H(θ; tτ − s) = exp (A(θ)(tτ − s))B(θ) , (3.3)

while for the the F-SSR model, it is given by the (nx + ny)× nw matrix

H(θ; tτ − s) =

[
exp (A(θ)(tτ − s))B(θ)

C(θ)A(θ)−1 (exp (A(θ)(tτ − s))− I)B(θ)

]
. (3.4)

The relation in (3.2) forms the basis of our framework for recovering the structural shocks

at measurement times from a sample of discrete observations, building on the following

proposition.

Proposition 5. Given the definition of structural shocks at measurement times in (3.1), it

follows that, for any given partition tτ−1 = tτ0 < tτ1 < · · · < tτn−1 < tτn = tτ of the time

interval [tτ−1, tτ ], the mapping in (3.2) can be written as

ητ = h1/2H(θ;h)uτ +Rτ , (3.5)

where h is the fixed length of the time interval. Moreover, the remainder term, Rτ , which

captures the effects of primitive shocks occurring between measurement times, is stochasti-
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cally bounded by the sampling frequency, such that

Rτ = OP (h
3/2) , as h→ 0 . (3.6)

Proof. See Appendix D.5 ■

Remark 3.1. Using the relation between h, hn, and n, Appendix D.5 provides alternative

characterizations of the remainder in Proposition 5, in terms of the number of sub-intervals

for a given partition, n, or the length of each of these sub-intervals, hn.

The remainder Rτ in (3.6) provides a measure of the approximation error incurred when

using the approximate linear relation

ητ ≈ h1/2H(θ;h)uτ (3.7)

to back out the structural shocks at measurement times from the reduced-form innovations.

This relation, which is equivalent to setting n = 1 in (3.2), so that hn = h, indicates that

the vector of structural shocks is approximately spanned by the vector of reduced-form in-

novations.11 The following two examples illustrate the relation between the approximated

structural shocks, uτ , and the reduced-form residuals, ητ , at measurement times.

Example 1 (State vector in S-SSR model). Consider a bivariate state vector [x1(t), x2(t)]
⊤,

with dynamics governed by[
dx1(t)

dx2(t)

]
=

[
a11 a12

0 a22

][
x1(t)

x2(t)

]
dt+

[
b1 0

0 b2

][
dw1(t)

dw2(t)

]
,

where the coefficients (a11, a12, a22, b1, b2) may be nonlinear functions of an underlying set

of parameters θ. From (2.5) and (3.7), it follows that the innovations of the corresponding

EDM at measurement time τ are given approximately as[
ηs1,τ

ηs2,τ

]
≈ h1/2

[
u1,τb1

(exp(a11h)−1)
a11

− u2,τa12b2
a11(exp(a22h)−1)−a22(exp(a11h)−1)

a11a22(a11−a22)

u2,τb2
(exp(a22h)−1)

a22

]
.

Thus, the disturbances ητ =
[
ηs1,τ , η

s
2,τ

]⊤
are combinations of the true underlying structural

shocks uτ = [u1,τ , u2,τ ]
⊤. The realization of u2,τ leads to movements in ηs1,τ and ηs2,τ , creating

contemporaneous movements in both state variables. ■
11Since exp(A(θ)h) is linear in h for small h, we use instead the midpoint exp(A(θ)h/2) when computing

H(θ;h) and building the approximation in (3.7) below (see Nowman, 1993).
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Example 2 (State vector in F-SSR model). Let the state variables be as described in Exam-

ple 1. If the measurements correspond to flow variables, such that

yfτ =

∫ tτ

tτ−1

y(s)ds =

∫ tτ

tτ−1

[
c1 c2

] [ x1(s)

x2(s)

]
ds ,

then the transition equation of the corresponding state space system must be extended as in

(2.12), so that the vector of reduced-form residuals is now given by ητ =
[
ηs1,τ , η

s
2,τ , η

f
3,τ

]⊤
,

with ηs1,τ and ηs2,τ as in Example 1, and

ηf3,τ ≈ −h1/2c1

{
u1,τb1

a11h− (exp(a11h)− 1)

a211

+ u2,τ
a12b2[a

2
11(exp(a22h)− 1)− a222(exp(a11h)− 1)]

a211a
2
22(a11 − a22)

+ u2,τ
a12b2(a11 + a22)h

a11a22(a11 − a22)

}
− h1/2c2u2,τ

b2(a22h− (exp(a22h)− 1))

a222
.

■

Remark 3.2. The dimension of ητ in Examples 1 and 2 is equal to that of the state vector,

even if b1 = 0, i.e., when the endogenous state variables are not subject to idiosyncratic

structural shocks. Hence, the number of reduced-form residuals does not need to match the

number of structural shocks, when using the EDM to estimate continuous-time models. This

is particularly relevant when assessing the validity of Assumption 2, and thus whether the

empirical model is subject to stochastic singularity. ■

Since the econometrician rarely has control over hn or n, the next proposition shows that

the error committed by using the approximation in (3.7) is bounded in probability. To ease

notation, write H(θ) := h1/2H(θ;h). The structural shocks at measurement times can then

be recovered from the reduced-form innovations as the solution to (3.7), i.e.,

ũτ = H(θ)†ητ , (3.8)

where superscript † denotes a generalized inverse. The approximation implied by (3.8)

resembles the identification mechanisms commonly used in the structural VAR literature.

Theoretical restrictions are imposed, here through H(θ), to uncover the structural shocks

that are otherwise hidden in the correlated reduced-form residuals ητ .

Proposition 6. For all θ ∈ Θ, and in the absence of additional information between mea-

surement times, the error in the approximation of the structural shocks is stochastically
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bounded, i.e.,

ũτ − uτ = OP (1) .

Proof. See Appendix D.6. ■

Example 3 (Recovering structural shocks). Consider again the model in Example 1. Accord-

ing to (3.7), the relation between the reduced-form innovations and the structural shocks is

characterized by the approximate system of equations[
ηs1,τ

ηs2,τ

]
≈ h1/2

[
exp(a11h)

(
a12 exp(a11h)−a12 exp(a22h)

a11−a22

)
0 exp(a22h)

][
b1 0

0 b2

][
u1,τ

u2,τ

]
.

Solving the system allows us to recover the structural shocks as

ũ2,τ = h−1/2 exp(−a22h)b−1
2 η2,τ ,

ũ1,τ = h−1/2 exp(−a11h)b−1
1 η1,τ − h−1/2a12 exp(−(a11 + a22)h)(exp(a11h)− exp(a22h))

b1(a11 − a22)
η2,τ .

Hence, while ũ2,τ is proportional to the estimated residual η2,τ , ũ1,τ is given by a linear

combination of η1,τ and η2,τ . ■

4. Monte Carlo evidence

4.1 The artificial economy

To illustrate and assess the procedures introduced in Sections 2 and 3, we use a continuous-

time version of the RBC model with indivisible labor of Hansen (1985), with shocks to total

factor productivity and capital accumulation. In the following, we present some of the main

elements of the model. A complete derivation is relegated to Appendix E.

Preferences. Consider an economy where time evolves continuously, t ∈ R+. A represen-

tative agent maximizes her expected discounted lifetime utility from consumption C(t) and

is leisure L(t),

E0

[∫ ∞

0

e−ρt (lnC(t) + ψL(t)) dt

]
, (4.1)

where ρ > 0 is the subjective discount rate, ψ the weight of leisure in the instantaneous utility

function, and E0 [·] the expectation operator conditional on the information available at time

t = 0. There is no population growth, and both the population size and the endowment of

available time are normalized to one. Hence, the fraction of hours worked per unit of time,
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N(t), is

N(t) = 1− L(t) . (4.2)

The agent’s income consists of wages and rents, received from selling labor and renting

capital to firms, and it is allocated between consumption and investment,

C(t) + I(t) = W (t)N(t) + r(t)K(t) , (4.3)

where I(t) is investment, W (t) the real wage, r(t) the real interest rate, and K(t) the capital

stock. The latter increases whenever gross investment, I(t), exceeds any capital depreciation,

dK(t) = (I(t)− δK(t)) dt+ σkK(t)dwk(t), K (0) = K0 , (4.4)

where δ ≥ 0 is the depreciation rate, and wk(t) a standard Brownian motion, representing

shocks to the marginal efficiency of investment and/or the future productivity of the capital

stock (cf. Furlanetto and Seneca, 2014 and Brunnermeier and Sannikov, 2014). The diffusion

parameter σk > 0 regulates the variance of these shocks.

Technology. The one good in this economy is produced by a large number of perfectly

competitive firms. The representative firm rents labor and capital from the representative

agent, and combines them according to

Y (t) = exp (Z(t))K(t)α (exp (ηt)N(t))1−α , α ∈ (0, 1) , (4.5)

where Y (t) is aggregate output, η > 1 the constant growth rate of labor-augmenting tech-

nological progress, and Z(t) a zero-mean measure of total factor productivity (TFP). The

latter is assumed to evolve according to the Ornstein-Uhlenbeck process

dZ(t) = −ρzZ(t)dt+ σzdwz(t) , Z (0) = Z0 , (4.6)

with mean-reversion parameter ρz > 0, diffusion parameter σz > 0, and wz(t) a standard

Brownian motion, independent of wk(t).

Equilibrium. Both welfare theorems hold in this economy. Hence, it is possible to solve

the social planner’s problem directly. For K (0) = K0 and Z (0) = Z0 given, the planner

chooses paths for consumption and the fraction of hours worked that maximize the expected

lifetime utility (4.1), subject to the law of motion for the capital stock (4.4), the production

function (4.5), and the evolution of TFP (4.6). In addition, the aggregate resource constraint

Y (t) = C(t) + I(t) (4.7)
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must hold, at all points in time. The resulting system of nonlinear equations determines the

equilibrium paths of C(t), K(t), N(t), I(t), and Y (t).

Transformed (stationary) equilibrium. A solution to the planner’s problem is not available

in closed form. Therefore, we approximate its behavior around the economy’s determinis-

tic steady state. However, since the model exhibits balanced growth, we de-trend all non-

stationary variables before computing the approximation. For this purpose, we define y(t) :=

Y (t)/ exp (ηt), c(t) := C(t)/ exp (ηt), i(t) := I(t)/ exp (ηt), and k(t) := K(t)/ exp (ηt) to

be the de-trended versions of the model’s variables. For notational consistency we define

n(t) := N(t) and z(t) := Z(t), although these variables are stationary by construction.

The problem faced by the social planner can be summarized as the stochastic optimal

control problem

J(k0, z0) = max
{c(t),n(t)}∞t=0

E0

[∫ ∞

0

e−ρt (ln c(t) + ψ (1− n(t))) dt

]
s.t.

dk(t) =
(
exp (z(t)) k(t)αn(t)1−α − c(t)− (δ + η) k(t)

)
dt+ σkk(t)dwk(t) , k (0) = k0 ,

dz(t) = −ρzz(t)dt+ σzdwz(t) , z (0) = z0 ,

in which c(t) ∈ R+ and n(t) ∈ [0, 1] denote the control variables at instant t > 0, k(t) ∈ R+

and z(t) ∈ R the state variables at instant t > 0, and J (k0, z0) the value of the optimal

program (value function), given the initial conditions k (0) and z (0).

By an application of Bellman’s principle of optimality, it is shown in Appendix E that the

sequence of equilibrium allocations in this economy, {c(t), n(t), k(t)}t≥0, satisfy the nonlinear

system

0 = ψc(t)n(t)− (1− α) exp(z(t))k(t)αn(t)1−α (4.8)

Et [dc(t)] =

[ (
α exp (z(t)) k(t)α−1n(t)1−α − ρ− δ − η

)
− σ2

k

k(t)ck (k(t), z(t))

c(t)

+
1

2

(
σ2
k

(
k(t)ck (k(t), z(t))

c(t)

)2

+ σ2
z

(
cz (k(t), z(t))

c(t)

)2
)]

c(t)dt (4.9)

dk(t) =
(
exp (z(t)) k(t)αn(t)1−α − c(t)− (δ + η) k(t)

)
dt+ σkk(t)dwk(t) , (4.10)

where z(t) is governed by (4.6). Equation (4.8) is the intratemporal labor supply equation,

and (4.9) the Euler equation for consumption. Here, ck (k(t), z(t)) and cz (k(t), z(t)) denote

the marginal responses of optimal consumption to changes in the capital stock and TFP.

Approximate solution. We approximate the solution of the model by first linearizing the
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equilibrium conditions in (4.8)-(4.10) and the dynamics in (4.6) around the model’s deter-

ministic steady state. Next, we compute the rational expectations solution to the resulting

linear system, using the approach in Sims (2002).12

Let circumflex on a variable denote its log-deviation from its steady state value. The

log-linearized equilibrium can then be compactly written as

Et

 dĉ(t)

dk̂(t)

dẑ(t)

 =

 ξcnξnc 0 ξcz + ξcnξnz

ξkc + ξknξnc ξkk + ξknξnk ξkz + ξknξnz

0 0 −ρz


︸ ︷︷ ︸

:=Γ

 ĉ(t)

k̂(t)

ẑ(t)

 dt , (4.11)

where we have reduced the system of equilibrium conditions from four to three variables

by substituting out the linearized version of condition (4.8), n̂ = ξncĉ + ξnkk̂ + ξnz ẑ. The

elements of the matrix Γ depend on the steady state of the model, and their values can be

found in Appendix E.

Next, the rational expectations solution to the system (4.11) is built by applying the QZ

(generalized Schur) decomposition to the matrix Γ, to identify the number of stable and

unstable roots of the system. If the Blanchard and Kahn (1980) conditions are satisfied,

i.e., the number of stable roots equals the number of state variables, then the rational

expectations solution has the continuous state space representation given in (2.1)-(2.2), with

x(t) = (k̂(t), ẑ(t))⊤ the 2 × 1 vector of state variables, y(t) = (ĉ(t), n̂(t))⊤ the 2 × 1 vector

of control variables, and w(t) = (wk(t), wz(t))
⊤ the 2 × 1 vector of structural shocks. The

matrices A(θ), B(θ), and C(θ) are given by

A(θ) =

[
ϕkk ϕkz

0 −ρz

]
, B(θ) =

[
σk 0

0 σz

]
, C(θ) =

[
ϕck ϕcz

ϕnk ϕnz

]
. (4.12)

As shown in Appendix E, the reduced-form parameters ϕck, ϕcz, ϕnk, ϕnz, ϕyk, ϕyz, ϕkk,

and ϕkz are combinations of the eigenvalues and eigenvectors of the matrix Γ, which depend

nonlinearly on the structural parameters of the model. The latter are collected in the vector

θ = (ρ, ψ, α, δ, η, ρz, σz, σk)
⊤.

Lemma 2. If (1− α)(δ + η + ρ) ̸= αρz, with ρz > 0, and α ∈ (0, 1), then the matrix A(θ) is

not subject to aliases, and the entries of (A(θ),Σ(θ)) are identified from (Ah(θ),Ση,h(θ)).

Proof. See Appendix E.6. ■

12We use the gensysct routine, available at http://sims.princeton.edu/yftp/gensys/. Alternative
approaches include the continuous-time version of the Blanchard and Kahn method described in Buiter
(1984), the continuous-time version of the Anderson-Moore AIM algorithm in Anderson (1997), or the
perturbation method in Parra-Alvarez et al. (2021).
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Remark 4.1. The entries of the matrices A(θ), B(θ), and C(θ), and thus the likelihood

function, do not depend on the parameter ψ, which is therefore unidentified. It vanishes

from the rational expectations solution of the model (see Canova and Sala, 2009). ■

4.2 Finite sample properties of the MLE

In this section, we investigate the finite sample properties of the MLE by running extensive

Monte Carlo experiments. In particular, we study the ability of the method to estimate

the parameters θ of the underlying continuous-time model from Section 4.1, using measure-

ments that are only available at a discrete frequency. We generate M = 500 samples for

consumption, C, labor, N , and output, Y , from the linearized version of the RBC model,

the data generating process (DGP), using the parameter values in Table 1. These values

are standard in the literature, in that they match long-run values of U.S. macroeconomic

aggregates observed over the postwar period.

The model is calibrated to an annual frequency, and all parameter values should be in-

terpreted accordingly. We set α = 0.30 to match an average labor income to GDP ratio of

70%. The values of the subjective discount rate and the depreciation rate are set to ρ = 0.03

and δ = 0.06. These are consistent with steady-state values for the net return on capital

and the investment to GDP ratio of 4% and 20%, respectively. The weight of leisure in

the instantaneous utility function is fixed at ψ = 2.686, so that, in the steady state, agents

spend 1/3 of their time working. The long-run growth of the economy is assumed to be

η = 2%. The parameters describing the dynamics of the total factor productivity are set to

ρz = 0.2052 and σz = 0.0140, in line with standard estimates of the quarterly Solow residual

for the U.S. economy (see e.g., Hansen, 1985, Hansen and Prescott, 1995, and Hansen, 1997).

Finally, we fix the volatility of the capital stock at σk = 0.0104, based on the calibration in

Ambler and Paquet (1994).

Each Monte Carlo sample contains 240 quarterly observations, corresponding to 60 years

of data. The simulated observations do not include any measurement errors. While allowing

for some form of measurement error may be desirable in empirical applications, we leave it

out of the Monte Carlo experiments. Using the simulated samples, we estimate the model

parameters using the approach described in Section 2, under the assumption that the model

is correctly specified. To avoid stochastic singularity, we include only two observables in the

ML estimation, namely, consumption and the fraction of hours worked, so yτ = [Cτ , Nτ ]
⊤.

We compare the ML estimates from the S-SSR and F-SSR models to those obtained

instead from the misspecified state space representation that results from a naive Euler-

Maruyama (EM) discretization of the continuous-time state-transition equation (2.1). The
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Table 1. Parameter values. The parameters of the RBC model are calibrated to an annual fre-
quency, and their values should be interpreted accordingly.

Parameter Value Source / Target

Subjective discount rate, ρ 0.0300 Long-run (net) return on capital of 4%

Leisure weight, ψ, 2.6860 Average fraction of hours worked of 1/3

Capital share in output, α 0.3000 Average WN/Y of 0.7

Depreciation rate, δ 0.0600 Average I/Y of 0.2 and K/Y of 2.5

Labor-augmenting growth, η 0.0200 Average GDP growth

Mean-reversion of TFP, ρz 0.2052 Persistence of Solow residual

Volatility of TFP, σz 0.0140 Volatility of Solow residual

Volatility of depreciation, σk 0.0104 Ambler and Paquet (1994)

transition equation under this approximation is given by

xτ = (I+A(θ)h)xτ−1 +
√
hB(θ)uτ , (4.13)

where uτ is defined in (3.1). The state space model that results from combining (4.13) with

the measurement equation in (2.9) is referred to below as the EM-SSR model. The EM-SSR

model differs from the S-SSR and F-SSR models in that (i) the transition matrix is truncated

to first order, and therefore ignores all the terms of order smaller than h in (2.4), (ii) the

disturbances ignore the temporal aggregation of structural shocks through the system be-

tween the discrete observations, and (iii) the likelihood function is no longer exact, since the

dynamics between observation points is ignored.

Similarly to Del Negro and Schorfheide (2008), we group the model parameters in two

categories, θss = [ψ, α, δ, ρ, η]⊤ and θexo = [ρz, σz, σk]
⊤. The first includes parameters that

can be readily identified from the model’s steady state and the available measurements. The

second consists of the parameters that characterize the dynamics of the exogenous processes

driving the economy. For the Monte Carlo experiments, we focus on estimation of the latter,

θexo, while the parameters in θss are held fixed at their population values from Table 1.

Remark 4.2. As indicated in Lemma 2, the model does not suffer from aliasing identifica-

tion problems. Using the accompanying identification toolbox (see footnote 9), we numeri-

cally verify that the necessary and sufficient rank conditions from Komunjer and Ng (2011,

Proposition 3) are satisfied, and conclude that, conditional on the calibrated values θss,0, the

parameter vector θexo is locally identified around θexo,0. ■
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Table 2. Finite sample properties. The table reports statistics for finite sample estimates of θexo
from M = 500 samples of quarterly (h = 1/4) consumption (C) and hours worked (N), generated
over a period of 60 years (T = 240 observations in each sample). Simulated measurements in
Panel A are sampled as stocks, and those in Panel B as flows. The parameters in θss are fixed
at their population values in Table 1. With θ̂exo,m denoting the estimates from the mth sample,

the table displays the Bias = M−1
∑M

m=1(θ̂exo,m − θexo,0) and root mean squared error (RMSE =

(M−1
∑M

m=1(θ̂exo,m − θexo,0)
2)1/2) across repetitions for the F-SSR, S-SSR, and EM-SSR models.

Panel A: Data is sampled as stocks

F-SSR S-SSR EM-SSR

θexo Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 - - 0.0024 0.0188 -0.0291 0.0328
σz 0.014 - - -0.0001 0.0006 -0.0001 0.0007
σk 0.0104 - - -4.49e-5 0.0004 -0.0003 0.0006

Panel B: Data is sampled as flows

F-SSR S-SSR EM-SSR

θexo Bias RMSE Bias RMSE Bias RMSE

ρz 0.2052 0.0030 0.0194 -0.0023 0.0190 -0.0317 0.0353
σz 0.014 -0.0001 0.0007 -0.0026 0.0027 -0.0026 0.0027
σk 0.0104 -0.0001 0.0005 -0.0020 0.0020 -0.0022 0.0022

4.2.1 Stock data

Our first Monte Carlo experiment assumes that all observables are sampled at discrete points

in time as stocks. Hence, we use the S-SSR model from (2.8)-(2.9) for the ML estimation

of the parameters, with A(θ), B(θ), and C(θ) given in (4.12) and Appendix E. The results

are summarized in Panel A of Table 2. The table reports the bias of θ̂exo across repetitions,

and the root mean squared error (RMSE) of the estimates.

The Monte Carlo experiment reveals some important features that should be addressed.

First, the MLE delivers small sample biases that are within a reasonable range when using

the S-SSR model, and thus exact ML estimation. In particular, ρz is above its value in the

population, by 1.17% on average. This positive bias in the estimation of the speed of mean

reversion is consistent with the observations made by Merton (1980), and later verified in

Tang and Chen (2009) and Yu (2012) for the univariate OU case. On the other hand, σz

exhibits a downward bias, of around -0.7%, on average, whereas σk exhibits virtually no

bias. Since there is no discretization error in the derivation of the state space model used to

compute the likelihood function, these values reflect pure estimation bias. In contrast, the
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EM-SSR model produces biases in ρz and σk that are about one order of magnitude larger.

More precisely, based on the EM-SSR model, the resulting ML estimates of ρz and σk are,

on average, around 14% and 3% below their true values, respectively. Interestingly, the bias

in σz remains the same.

Previous work on the estimation of observed univariate and multivariate diffusions from

discrete measurements (see, e.g., Phillips and Yu, 2005, Tang and Chen, 2009, Wang et al.,

2011) has concluded that using the EM approximation inevitably induces a discretization

bias, on top of the pure estimation bias. As shown by Lo (1988) for the univariate case, the

discretization bias in turn implies misspecification of the likelihood function, leading to in-

consistent estimates of the parameters of the continuous-time model (see also, Phillips, 1973

and Thornton and Chambers, 2016). Further, it has been shown that the discretization bias

affects the estimation of the speed of mean reversion, ρz, more severely than the estimation of

the diffusion parameter, σz. Naturally, the discretization bias could be reduced by sampling

at a higher frequency, i.e., let h→ 0, if feasible. Moreover, Wang et al. (2011) show that in

systems of linear SDEs, the discretization and estimation bias are of opposite sign, with the

latter being larger in magnitude in financial applications, where data can be recorded at a

higher frequency (see also Phillips and Yu, 2005), something that is typically not feasible in

macroeconomic applications. Finally, the same authors also show that the pure estimation

bias in persistence parameters is a function of the time span (Th) of the sample, i.e., the

length of the time period over which the discrete observations are recorded, and, thus, cannot

be reduced in large samples that result exclusively from sampling at higher frequency.

In light of the preceding evidence, we conjecture that the modest performance of the

EM-SSR model, relative to the S-SSR model, can be explained by the additional misspec-

ification bias induced by the EM approximation of the continuous-time transition. This is

evident for ρz, where the negative discretization bias dominates the positive estimation bias

when using macroeconomic data sampled at low frequency. Our results are consistent with

the notion that the positive estimation bias in the rate of mean reversion (corresponding

to downward bias in estimated persistence, or autocorrelation) and the opposite sign of the

discretization bias carries over from the univariate and purely observed multivariate models

from the literature to the state space models considered here. On the other hand, there is no

evidence that the EM approximation induces any discretization bias in σz, so the bias stems

exclusively from the ML estimation. Finally, σk also exhibits a negative discretization bias,

which adds to the small downward estimation bias. Figure F.1 in Appendix F illustrates the

effects of the discretization bias by plotting the log-likelihood profile for each of the three

parameters, using one of the simulated samples. The figure reveals that using the EM-SSR

model results in a likelihood function with a maximum that is located to the left of the true
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Figure 3. Finite sample distribution of parameter estimates. The graph plots the distribution
of estimated parameters, θ̂exo, across M = 500 random samples of consumption (C) and hours
worked (N) using different state space representations. Each sample includes T = 240 quarterly
observations (h = 1/4) generated from the true data generation process. The observables in
Panel A are sampled as stocks, and those in Panel B as flows. Each plot reports the density of
parameter estimates obtained under the state space representation for stock variables (S-SSR),
flow variables (F-SSR), or that obtained under the naive Euler-Maruyama discretization of the
transition equation (EM-SSR).

parameter value. This downward bias is more pronounced for the speed of mean reversion

of TFP, although it also affects the diffusion coefficients.

Further, the EM-SSR model produces RMSEs that are larger than those from the S-SSR

model. This is most evident for ρz, where the dispersion of the estimates around the true

value almost doubles, compared to the S-SSR case. However, the absolute variability of the

estimates, as measured by the standard deviation of point estimates across the Monte Carlo

samples, is higher in the S-SSR case (0.0187) than in the EM-SSR case (0.0153). This result

is in line with those reported in Wang et al. (2011) for the case of univariate diffusions. With

respect to σz and σk, the standard deviations are very low, and although always smaller in
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the EM-SSR model, the difference across model specifications is negligible. These results

are confirmed in Panel A of Figure 3, where we plot the finite sample distributions of the

parameter estimates for both the exact and the approximate ML estimation. From the fig-

ure, the models seem to compete against a bias-variance trade-off. For ρz, the S-SSR model

exhibits little bias, but a larger standard deviation, compared to the EM-SSR model.

Our conclusions are robust to the set of observables used in the estimation. In the ab-

sence of measurement errors, the information content in the fraction of hours worked and

output, yτ = [Nτ , Yτ ]
⊤, or consumption and output, yτ = [Cτ , Yτ ]

⊤, is the same as that in

consumption and the fraction of hours worked, yτ = [Cτ , Nτ ]
⊤. Hence, all sets consisting of

two variables are equally informative about the set of parameters under consideration. The

Monte Carlo results show that the point estimates of the parameters are not affected by the

set of observables used in the estimation, so the bias, standard deviation, and RMSE under

both model specifications are identical to those reported in Table 2, and available upon re-

quest. This contrasts with the results in Ruge-Murcia (2007), where the accuracy with which

the subjective discount rate and the persistence of TFP can be estimated depends on the

observables used. Moreover, our findings are also robust to estimation of a larger group of

parameters. In Appendix F, we report the results from a Monte Carlo experiment where we

also estimate the subjective discount rate, ρ, and the long-run growth rate of the economy,

η, besides θexo. The inclusion of these additional parameters was made after verifying the

rank and order conditions for local identification (see Remark 4.2).

4.2.2 Flow data

The second Monte Carlo experiment assumes instead that all the discrete observations are

sampled as flows. Therefore, we conduct ML estimation of θexo using the exact likelihood

function derived under the F-SSR model in (2.12)-(2.13). The results are summarized in

Panel B of Table 2, where we also report the ML estimation results from two misspecified

state space models, namely, the S-SSR and EM-SSR models, which are both intended to

accommodate stock variables, and therefore do not take into account the integral nature of

the observations between measurement times. This type of misspecification is referred to

as temporal aggregation bias, since it reflects the problem of assuming that economic agents

make decisions at time intervals coinciding with the sampling interval (see Christiano and

Eichenbaum, 1987). For the EM-SSR model, the temporal aggregation bias adds to the

discretization bias resulting from the EM approximation of the transition equation.

The distribution of the parameter estimates under the three alternative models is dis-

played in Panel B of Figure 3. The bias-variance trade-off appears also in the case of flow

measurements, and in this case it is present for all the estimated parameters.
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Our results suggest that using the correct specification of the state space model is critical

for the MLE to deliver accurate parameter estimates in finite samples. Using the F-SSR

model produces ML estimates that, on average, are close to their true value in the popula-

tion. The magnitude and direction of the biases are similar to those discussed in the previous

section, for stock data. Thus, the bias for ρz is positive, and just below 1.5% in magnitude,

while the biases for σz and σk are negative and below 1%. These conclusions hold across

different subsets of observables (the results are available upon request).

In contrast, using a misspecified state space model introduces substantial biases in the

ML estimation of the volatility parameters, with a simultaneous increase in RMSEs. The

downward bias in σk increases to values between 22% and 29%, depending on the model

used, and the bias in σz increases to almost 19%. Using the S-SSR model when data are

sampled as flows introduces a bias in σz beyond the pure estimation bias that cannot be

attributed to discretization errors. In this case, the additional bias emerges due to time

aggregation. On the other hand, the bias in ρz is negative for both the EM-SSR and S-SSR

models. While the bias induced by former is considerably larger (15.5%) than that of the

latter (1.1%), both values reflect an otherwise strong dominance of the misspecification bias

over the pure ML estimation bias. Regarding the RMSE, we find that the variability of the

ML estimates under the S-SSR model is similar to that under the F-SSR model. However,

the RMSE for the EM-SSR model nearly doubles, compared to that for the F-SSR model.

The downward bias induced by the model misspecification is evident from the log-likelihood

profiles in Figure F.1 in Appendix F. For flow variables, the bias is noticeable, not only for

the speed of mean reversion, but also for the diffusion parameters.

In summary, our Monte Carlo results suggest that ignoring the state space representation

that accommodates the flow nature of the measurements comes at a cost in terms of larger

estimation bias and RMSE. Although the derivation of the exact state space model is slightly

more complicated for flow variables than for stock variables, or for the simple EM approxima-

tion, the benefits of pursuing it seem worthwhile in the context of estimation of DSGEmodels.

4.3 Structural shocks

We now proceed to evaluate the accuracy of the approach introduced in Section 3 to ap-

proximately recover the model’s underlying structural shocks at measurement times, using

(3.8). To control for the variability from the ML estimation, and to separate effects, we

refrain from using the ML estimates at this stage, and instead compute our approximations

conditional on the true DGP. That is, we fix all the parameter values at those in Table 1. In

our experiments, we employ the same simulated data sets on consumption and the fraction
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Figure 4. Structural shocks. The graph plots the time series of structural shocks to TFP, ũz,
and capital stock, ũk, recovered from one sample of simulated data on consumption, C, and hours
worked, N . Simulated measurements are sampled as stocks in Exhibit (a), and as flows in Exhibit
(b).

of hours worked that were used in the Monte Carlo exercises, both for the stock and flow

data. For each sampling scheme, we compare the structural shocks recovered from the al-

ternative state space representations, i.e., the S-SSR, F-SSR, and EM-SSR models. In (3.8),

the matrix H(θ) is defined as h1/2H(θ, h), with H(θ, h) given by (3.3) for the S-SSR model,

(3.4) for the F-SSR model, and simply by B(θ) for the EM-SSR model. Recall that for stock

data, the S-SSR model is an exact representation of the DGP at measurement times, while

the EM-SSR model is an approximation that induces a misspecification error associated with

temporal aggregation. For flow data, the F-SSR model is the exact discrete representation,

and the other two misspecified.

To gain some intuition on the mechanics of our approach, Figure 4 displays the time

series of structural shocks to the capital stock, ũk,τ (top exhibits), and to TFP, ũz,τ (bottom

exhibits), for the first eight years of a given simulated sample. Left exhibits (labeled (a))

show the time series recovered using the S-SSR and EM-SSR models, together with the true

underlying structural shocks, denoted with a ♢, for the case when data are simulated as

stocks. Right exhibits (labeled (b)) present the time series recovered using the F-SSR, S-

SSR, and EM-SSR models for the case when data are simulated as flows. For the particular

sample used, we observe that the method performs remarkably well in the case of stock data,

conditional on correct state space representation. Thus, the plots in exhibits (a) reveal that

by using the S-SSR model we are able to recover the structural shocks at measurement times
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(a) Stock variables (b) Flow variables

Figure 5. Approximation errors in estimated structural shocks. The graph shows the distribution of
the mean squared error (MSE) between the true (simulated) structural shocks and their estimated
(smoothed) counterparts. Each boxplot represents the distribution of MSE across Monte Carlo
simulations. Results are shown for simulated data sampled as stocks in Exhibit (a), and as flows
in Exhibit (b).

with great precision, while using the EM-SSR model misses the task in many of the periods

under consideration. The poor performance of the latter model is driven by the misspeci-

fication induced by the EM approximation that disregards all the model-based information

between measurements when computing the variance-covariance matrix of the shocks. For

the case of flow data, the conclusions are less evident. Although it is clear that using the

EM-SSR model produces the worst of the three approximations to the structural shocks, it

is not obvious whether the F-SSR model produces a more accurate approximation than the

misspecified S-SSR model.

Our approximation drops the remainder term, Rτ , in both the stock and flow cases. The

results suggest that the remainder is small, particularly in the stock case, at least for the

particular sample considered. To better understand the quality of the approximations, we

repeat the exercise on all the M = 500 samples. The results are summarized in Figure 5,

where we plot the mean squared errors (MSE) and their dispersion across simulations. Sev-

eral conclusions emerge. First, using the exact discrete representation always outperforms

the EM-SSR model. The S-SSR and F-SSR models produce lower MSEs in general. Sec-

ond, for variables sampled as stocks, not only is the MSE for both capital and technology

shocks obtained from the S-SSR model low on average, it also displays minimal dispersion.

By contrast, the MSE obtained from the EM-SSR model exhibits both a large mean and

high variability, with some notable outliers. Third, when the observables are sampled as

flows, the MSEs are, on average, larger than those obtained for the stock case. However, the
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resulting MSEs from the F-SSR and S-SSR models exhibit lower mean and variability than

those produced by the EM-SSR model. Fourth, despite being the exact discrete represen-

tation for flow data, the F-SSR model does not produce (approximately) zero MSEs, as the

S-SSR model does for stock variables. To understand why this is the case, recall that the

approach requires solving the system of equations in (3.7). For the RBC model in Section

4.1, this requires solving a square system when data are sampled as stocks, and a rectangular

system for flows. Thus, there are more equations than unknowns in the flow case, and some

equations are inevitably solved with error.13

5. Empirical illustration

This section provides an illustration of the maximum likelihood estimation method of Sec-

tion 2, and of the structural shock identification of Section 3, using U.S. data. In the first

exercise, we estimate a subset of the parameters of the RBC model of Section 4, using quar-

terly data on aggregate consumption and the fraction of hours worked for the period 1959

to 2019.14 Both variables are obtained from the Federal Reserve Economic Data database,

FRED. Aggregate consumption is measured by the monthly nominal personal consumption

expenditures (PCE), deflated by the corresponding monthly price index (PCEPI), both from

the NIPA tables. Aggregate consumption at quarterly frequency is computed by aggregat-

ing monthly real expenditures over the quarter. Quarterly hours worked correspond to the

number of hours from wage and salary workers on nonfarm payrolls (TOTLQ). All variables

are transformed into per-capita values using the civilian, non-institutional population, aged

16 and over (CNP16OV) from the U.S. Bureau of Labor Statistics. With the exception of

population, all variables are seasonally adjusted. We assume that the observed variables

are trending exponentially at a constant growth rate of 2% per year that captures the long-

run economic growth rate in the model. Figure 6 shows the time series used in the ML

estimation. The gray areas represent recession periods, as dated by the NBER.

In a second exercise, we use the estimated residuals to recover the structural shocks at

measurement times, conditional on the ML estimates. We then use the estimated sequence

of structural shocks to build a historical shock decomposition of the observed variables.

This exercise is usually employed in economic policy circles to build narratives around the

sources of past economic fluctuations. Other potential applications include impulse-response

analysis, and forecast error variance decompositions (see, e.g., Lütkepohl, 2005, Canova 2007,

13Dropping the remainder term in our approximation means that there is some error in all cases, but the
results show that this is small for stock sampling, particularly under correct specification.

14Estimation results using alternative subsets of observables are available in Appendix F.
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Figure 6. Measurements. The figure shows the annualized growth rates of the real aggregate
consumption per capita series in the upper panel (400 · (log(Cτ/Cτ−1) − ηh)), and in the lower
panel the logarithm of hours worked, expressed in percentage deviation from the steady state
(100 · (log(Nτ )− n⋆)). The sample spans the period from 1959:Q1 to 2019:Q4.

and Fernández-Villaverde et al., 2016).

The final exercise reports ML estimation results from a state space representation that

accommodates observations at mixed frequencies. In particular, we estimate the model pa-

rameters using monthly (rather than quarterly) data on aggregate real consumption, together

with quarterly data on hours worked. The time series for monthly aggregate consumption

is shown in Appendix F.

5.1 ML estimation

Analogously to the Monte Carlo experiments in Section 4, we report ML estimates for θexo,

while fixing θss at the values in Table 1. We estimate the model parameters with and without

allowance for (uncorrelated) measurement errors in the observables. For each case, we report

parameter estimates from the three different state space representations analyzed earlier, i.e.,

the F-SSR, the S-SSR, and EM-SSR models. This allows us to remain agnostic about the way

in which the data are sampled. The state vector in each model is initialized at the uncondi-

tional mean and the unconditional covariance matrix. Table 3 summarizes the results for the

case in which the observables are aggregate consumption, C, and hours worked, N . Besides

the point estimates, the table reports estimated standard errors (in parentheses), computed
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Table 3. ML estimates. The table reports the ML estimates of θexo = [ρz, σz, σk]
⊤ for the model in

Section 4, using quarterly data on aggregate consumption, C, and hours worked, N , for the U.S.,
over the period from 1959:Q1 to 2019:Q4. The remaining parameters of the model, θss, are fixed
at the values in Table 1. Wild bootstrap standard errors computed from B = 499 samples are
reported in parentheses.

without measurement error with measurement error

θexo F-SSR S-SSR EM-SSR F-SSR S-SSR EM-SSR

ρz 0.0345 0.0421 0.0356 0.0258 0.0370 0.0303
(0.0175) (0.0213) (0.0183) (0.0144) (0.0169) (0.0167)

σz 0.0125 0.0109 0.0110 0.0127 0.0110 0.0111
(0.0013) (0.0010) (0.0011) (0.0012) (0.0010) (0.0011)

σk 0.0170 0.0149 0.0147 0.0169 0.0147 0.0145
(0.0014) (0.0012) (0.0012) (0.0014) (0.0012) (0.0012)

using the wild bootstrap algorithm, with B = 499 samples (see Angelini et al., 2021).15 We

choose random sampling methods for the computation of the standard errors, instead of the

asymptotic formulas, since they better accommodate the finite-sample nature of the data. In

particular, they allow for heteroscedasticity in the forecast errors, which is a desirable feature

when conducting empirical analysis. Moreover, the bootstrap procedure is well suited for sit-

uations in which a parameter estimate is close to the boundary of its domain, thus leaving the

computation of numerical derivatives of the maximized log-likelihood function challenging .

In general, our results show that the point estimates of the parameters representing the

driving forces behind the real business cycle model are similar across the various specifi-

cations, and quite reasonable. In the absence of measurement errors, the speed of mean

reversion of TFP is estimated at ρz = 0.0345 in the F-SSR model, 0.0421 in the S-SSR

model, and 0.0356 in the EM-SSR model. Given the sampling frequency of the data, these

estimates imply a first order autocorrelation coefficient for quarterly TFP between 0.9895 and

0.9914 (= exp(−ρz/4)). Our results are close to the quarterly estimates reported in Ireland

(2001, 2004) and Malley and Woitek (2010) for the U.S. economy, and thus consistent with

the arguments in King et al. (1988a,b) and Hansen (1997), according to which the shocks

to TFP should be highly persistent for the RBC model to match key features of the U.S.

data.16 Further, the point estimates of the instantaneous volatility of TFP shocks, σz, imply

a quarterly conditional volatility between 0.54% and 0.62% (see Remark 2.3), values that are

15Assumptions 1–3,A4′, and 5 in Angelini et al. (2021) are verified prior to the implementation of the
boostrapping procedure.

16The persistence of TFP in Table 1 is based on quarterly autoregressions for the Solow residual, with
coefficients estimated at around 0.95, whereas we use state space methods (as in Ireland (2001, 2004) and
Malley and Woitek (2010)) to estimate the speed of mean reversion of TFP directly.
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again close to those reported by the same authors, and of the same order of magnitude as the

those commonly used in the RBC literature. Moreover, our estimates suggest that the vari-

ability of the shocks to the capital stock is greater than that in Ambler and Paquet (1994),

and greater than that to TFP.17 In particular, the estimates of σk imply a volatility between

0.74% and 0.86% per quarter (≈
√

(1/4)σk). When comparing across model specifications,

however, the F-SSR model usually produces larger estimates of the instantaneous volatilities,

σz and σk, than the S-SSR and EM-SSR models, in line with the Monte Carlo evidence pro-

vided earlier (see Panel B of Table 2, and Panel B of Figure 3). Finally, Figure 7 shows the

filtered time series of unobserved aggregate capital stock and TFP from the F-SSR model at

quarterly frequency, in percentage deviations from their corresponding steady-state values.18

In order to assess the effects of allowing for iid measurement errors in the ML estimation,

we fix their standard deviations to the quarterly estimates reported in Ireland (2004, Table

6), namely, σεC = 0.0098 for aggregate consumption, and σεN = 0.0020 for hours worked.

Our results (right side of Table 3) suggest that allowing for measurement error does not

have sizable effects on the structural parameter estimates. Overall, the ML estimates imply

persistence levels of quarterly TFP that are of the same order as those without measurement

errors, across model specifications. The quarterly volatility of the the capital stock is esti-

mated at about 1% below the no-measurement error case, and the difference is small relative

to the standard errors.

5.2 Historical shock decomposition

Using the ML estimates, we employ the approach of Section 3 to recover the time series

of structural shocks at measurement times. Given these, we next investigate the historical

contribution over time of the structural shocks to aggregate consumption and hours worked

in the U.S., through the lens of the continuous-time RBC model. The results from this

exercise are displayed in Figure 8, based on the historical shock decomposition

HSD(yτ , i) = C(θ)A(θ)τ−1x0 + D(θ)H(θ)Siũτ + C(θ)
τ−2∑
s=0

A(θ)sB(θ)H(θ)Siũτ−1−s , (5.1)

for i = {k, z} computed from the ABCD representation (2.16)-(2.17) associated with the

F-SSR model. Here, Si is a selection matrix picking out shocks to the capital stock or TFP,

17In contrast, for the parameter values in Table 1, the variability of the shocks to TFP is greater than
that of the shocks to the aggregate capital stock.

18Table F.3 in Appendix F reports the results from a battery of tests assessing the univariate and multi-
variate normality of the one-step ahead prediction errors of the measurements, ωτ+1|τ , in the F-SSR model
across different subsets of the data used in the estimation. The results are generally consistent with Gaus-
sianity.
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Figure 7. Latent states. Filtered quarterly series of the aggregate capital stock and TFP (%
deviation from their corresponding steady-state values). Sample spans from 1960:Q1 to 2019:Q4.
The series are obtained from the F-SSR model after parameter estimation and filtering using as
measurements quarterly real PCE and quarterly hours worked.

and x0 contains the initial values. The derivation of (5.1) is given in Appendix D.7.

The top panel of Figure 8 displays the contributions from shocks to TFP, ũz, and to the

capital stock, ũk, to annual consumption growth, and the bottom panel their contributions

to quarterly deviations of hours worked from their steady state value. Any discrepancies

between the sum of the bars and the observed series at a particular point in time can be at-

tributed to the OP (h
3/2) term in Proposition 6. The structural shocks represent the driving

forces behind the dynamics of the aggregate capital stock and TFP in Figure 7. Historical

decompositions using the S-SSR and the EM-SSR models can be found in Appendix F. Note

that for the case of aggregate consumption, we report the historical decomposition of the

annual growth rates, although the model is estimated using quarterly data. As indicated in

Remark 2.3, this shift is achieved seamlessly, due to the frequency invariance of the structural

parameters in the continuous-time model. Once the model parameters have been estimated

using quarterly data, it is straightforward to recalibrate the ABCD representation to the

frequency of interest, in this case annual.

If shocks to TFP are interpreted as “aggregate supply shocks”, and shocks to the capital

stock as “aggregate demand shocks”, the decomposition in Figure 8 suggests that the U.S.

business cycle over the period 1962:Q1 through 2019:Q4 mainly has been driven by aggregate

supply shocks. Consumption growth is explained by shocks to firm productivity, both during
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Figure 8. Historical shock decomposition (F-SSR model). The plot shows the historical contribu-
tion of each of the structural shocks recovered from the estimated F-SSR model on the observed
measurements over the period 1962:Q1-2019:Q4, expressed in percent. The black solid line in the
upper panel represents annual consumption growth rates. The black solid line in the lower panel
represents quarterly percentage deviations of hours worked from its steady state (n⋆ = 33%). The
light gray vertical bands indicate NBER recessions.

expansions and contractions. In contrast, with only a few exceptions, the short-run variabil-

ity of hours worked, relative to their long-run value, has mostly been driven by shocks to cap-

ital accumulation, i.e., aggregate demand shocks. This is consistent with the evidence on the

limited power of TFP shocks to explain the behavior of hours worked in RBC models, in par-

ticular their unconditional variance (see, e.g., Cooley and Prescott, 1995 and Ireland, 2004).
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Table 4. Mixed-frequency estimates. The table reports the ML estimates of θexo = [ρz, σz, σk]
⊤

for the model in Section 4, using monthly data on real PCE (per capita), and quarterly non-farm
hours worked. The sample spans the period from March 1959 ,to December 2019. The remaining
parameters of the model, θss, are fixed at the values in Table 1. Wild bootstrap standard errors
computed from B = 499 samples are reported in parentheses.

Mixed Frequency
without measurement error

θexo MXF-SSR MXS-SSR MXEM-SSR

ρz 2.97E-06 0.0044 0.0031
(0.0496) (0.0093) (0.0083)

σz 0.0118 0.0133 0.0133
(0.0007) (0.0009) (0.0009)

σk 0.0277 0.0179 0.0178
(0.0021) (0.0012) (0.0012)

5.3 Mixed-frequency estimation

In our final exercise, we estimate the same subset of parameters, θexo, using monthly (rather

than quarterly) data on aggregate real consumption per capita, together with quarterly ob-

servations on the fraction of hours worked. In this case of mixed frequencies, the state

space representation must be adjusted accordingly. If observations are sampled as stocks,

we simply write the S-SSR and EM-SSR models in (2.8)-(2.9) and (4.13)-(2.9), respectively,

in terms of the variable(s) observed at the highest frequency, then modify the filtering al-

gorithm to accommodate the corresponding missing observations of the variable(s) observed

at any other lower frequencies (see Durbin and Koopman, 2012, Sec. 4.10).19 A similar

treatment is applied when data are sampled as flows. However, in this case, we extend the

state vector of the F-SSR model in (2.12)-(2.13) with additional deterministic variables that

allow keeping track of the time aggregation at high frequencies of the variable(s) that are

sampled at lower frequencies. We refer to the mixed-frequency state space representations

as the MXF-SSR, MXS-SSR, and MXEM-SSR models. The details of the derivations of the

state space representations in the case of mixed frequencies are given in Appendix C.

Table 4 displays the mixed-frequency ML estimates of θexo from the MXF-SSR, MXS-

SSR, and MXEM-SSR models without measurement errors. Standard errors (in parenthe-

ses) are computed using the wild bootstrap algorithm with B = 499 samples. Although

not directly comparable, the results do not differ considerably from those obtained under a

19The case of mixed-frequency sampling frequency has been addressed in the context of state space models
by Harvey and Pierse (1984), Zadrozny (1988), Harvey (1990), Zadrozny (1990), Mariano and Murasawa
(2003), Aruoba et al. (2009), Ghysels and Wright (2009), Kuzin et al. (2011), and Bai et al. (2013), among
others.
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Figure 9. Filtered series of hours worked. The figure shows the time series of filtered values of the
annualized fraction of hours worked, as percentage deviation from its steady-state value. Black dots
represent quarterly values generated from the F-SSR model. The continuous blue line represents
monthly values generated from the MXF-SSR model. Light blue bands indicate uncertainty about
the monthly state estimates. The sample spans the period from January 1960 to December 2019.

common quarterly sampling frequency, as reported in Table 3. This holds particularly for

the point estimates of the volatility parameters, σz and σk, and their associated standard

errors. The implied estimates of the quarterly conditional volatilities of TFP and the capital

stock oscillate between 0.59% and 0.67%, and between 0.89% and 1.35%, respectively.

The conclusions are less clear for the speed of mean reversion, ρz. The point estimates

under mixed-frequency sampling are closer to zero across the different model specifications

than in the case of a common frequency sampling. Our estimates imply a first order auto-

correlation coefficient for quarterly TFP of 0.999. This confirms the (near) unit root, and

thus highly persistent, behavior of TFP that is necessary in RBC models in order to match

the time-series properties of macroeconomic data. On the other hand, the standard errors

increase in the MXF-SSR model, and decrease in the MXS-SSR and MXEM-SSR models,

relative those obtained under common frequency sampling.

Despite the small differences in some of the estimated parameters, the models produce

similar estimates of the state variables. As an example, Figure 9 plots the time series of

annualized values of the fraction of hours worked in the U.S. (as percentage deviation from

its steady-state value) predicted by the model when using a state space representation for

flow data. The black dots represent the quarterly filtered values recovered from the F-SSR
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model using the parameter estimates in Table 3, and the continuous blue line shows the

monthly filtered series from the MXF-SSR model using the parameter estimates in Table

4. From the figure, we conclude that the model produces similar predicted values of hours

worked when using different state space representations, with different (estimated) param-

eter values. Similar conclusions are obtained for the unobserved states (capital stock and

TFP) by comparing the time series of filtered states from the F-SSR model in Figure 7 to the

filtered states from the MXF-SSR model in Appendix F Figure F.5. This exercise highlights

the potentials of using a mixed-frequency approach in continuous-time linear models, viz.,

estimating time series for the variables in the model at a sampling frequencies that differ

from that of the data, while simultaneously obtaining ML estimates of the model parameters

that are invariant to any frequency.

6. Conclusions

We introduce a state space framework to conduct maximum likelihood (ML) inference on

continuous-time linear(-ized) DSGE models from a sample of regularly spaced macroeco-

nomic data observed at discrete points in time, i.e., not observed continuously. The approach

uses the exact discrete representation of the equilibrium transition dynamics to derive a

reduced-form discrete-time state space representation that does not involve discretization

errors. Using the Kalman filter, it is possible to compute the exact likelihood function of the

data by taking into account the sampling nature of the data, i.e., stock versus flow sampling.

Using a continuous-time version of an otherwise standard RBC model, Monte Carlo exper-

iments show that our approach delivers accurate estimates under the null of correct model

specification. Indeed, using a state space representation that correctly accommodates the

sampling nature of the data is important for the ML estimator to deliver accurate estimates

in finite samples. The results obtained from using the exact state space model outperform

those from a state space representation based on a naive Euler-Maruyama discretization

of the equilibrium transition dynamics. This is particularly true in our setup, since the

macroeconomic data usually employed in the estimation of DSGE models is only sampled at

low frequencies (e.g., monthly, quarterly, annually). Our state space based results confirm

previous evidence on the direction of the observed biases in finite samples.

We provide a detailed discussion of the aliasing identification problem that emerges when

using the discrete-time representation of a continuous-time model in multivariate settings.

We provide necessary and sufficient conditions for ruling out the existence of aliases, and

argue why this is a precondition for achieving local identification of the model parameters

along the lines of Komunjer and Ng (2011). Obtaining necessary and sufficient conditions
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for local identification that simultaneously rule out aliases is left for future research.

Further, we introduce a method to approximately recover the underlying structural shocks

of the continuous-time model at measurement times from the reduced-form residuals of the

state space representation. The method is analogous to the use of short- and long-run

identifying restrictions common in the structural VAR literature. Our Monte Carlo results

suggest that the method recovers the unobserved realizations of the structural shocks with

great precision when using the exact discrete-time state space representation under correct

model specification. Under these circumstances, our approach is successful at incorporating

sufficient instantaneous causal links from the economic theory so as to identify independent

structural shocks. In contrast, the poor performance of the alternative naive discretization is

explained by its inability to account for the information from model between measurements

when computing the variance-covariance matrix of the structural shocks.

We apply our approach to the same RBC model, using quarterly U.S. data from 1959:Q1

through 2019:Q4. We consider the aggregate consumption and hours worked series as a

benchmark case, and compare results to those based on other data configurations, including

aggregate output, and other data frequencies. The results confirm that our approach is

feasible, and estimates make sense. Estimates of the rate of mean reversion of TFP, as

well as the volatilities of shocks to TFP and the aggregate capital stock, both treated as

latent state variables, are consistent with those in related literature. Based on the structural

shocks recovered from the observed series, a historical decomposition indicates that the

U.S. business cycle has mainly been driven by aggregate supply shocks over the period

analyzed, as indicated by the dominant contribution of TFP shocks to consumption growth.

At the same time, deviations in hours worked from the steady state have mainly been driven

by aggregate demand shocks, as identified with the recovered shocks to capital. Finally,

an application using data series of mixed frequencies, monthly consumption and quarterly

hours worked, illustrates the generality of the approach, with the empirical methods all

based on the underlying continuous-time model, and thus frequency-invariant parameters,

hence facilitating consistent analysis across all desired frequencies in data, predictions, and

so forth.
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Appendix

A. Matrix computations in the exact discrete model

A.1 Computation of Ah

From Proposition 1, the nx × nx matrix Ah(θ) is defined as

Ah(θ) = exp (A(θ)h) = I+A(θ)h+ 1
2
A2(θ)h2 + 1

3!
A3(θ)h3 + . . . ,

where Aj(θ) indicates right multiplication of j copies of the nx × nx matrix A(θ).

Assume A(θ) is diagonalizable.20 Then, A(θ) can be factorized as

A(θ) = VΛV−1,

where V is a square matrix whose columns correspond to the eigenvectors of A(θ) and Λ is

a diagonal matrix whose elements are the corresponding eigenvalues,

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λnx

 .

Therefore, the exponential matrix exp(A(θ)h) can be computed as

exp(A(θ)h) = V exp(Λh)V−1 = V


eλ1h 0 . . . 0

0 eλ2h . . . 0
...

...
. . .

...

0 0 . . . eλnxh

V−1.

A.2 Computation of Ση,h(θ)

Here, we show how to implement the matrix decomposition method in Van Loan (1978, The-

orem 1) to compute the variance-covariance matrix of the reduced-form innovation Σηs,h(θ)

in the S-SSR model (2.8)-(2.9), and Ση,h(θ) in the F-SSR model (2.12)-(2.13). Jewitt and

20The matrix A(θ) is diagonalizable if: i) it has nx distinct eigenvalues; or ii) the sum of the geometric
multiplicities of its eigenvalues is equal to nx; or iii) the sum of the algebraic multiplicities of its eigenvalues
is equal to nx, and for each eigenvalue, the geometric multiplicity equals the algebraic multiplicity.
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McCrorie (2005) provide a comparison of different computational methods to implement this

decomposition.

A.2.1 The S-SSR model: measurements are stock variables

Consider the continuous-time model for the state vector x(t) in (2.1) where A(θ) is the

stable nx×nx drift matrix, and B(θ) is the nx×nw diffusion matrix with associated nx×nx

instantaneous variance-covariance matrix Σ(θ) = B(θ)B(θ)⊤. Then, when the observables

are sampled as stocks, we define the 2nx × 2nx block triangular matrix

Ξ(θ) =

[
A(θ) Σ(θ)

0 −A(θ)⊤

]
,

with exponential

exp(Ξ(θ)h) =

[
Ah(θ) Mh(θ)

0 (Ah(θ)
−1)⊤

]
,

where Ah(θ) = exp(A(θ)h) and Mh(θ) =
(∫ h

0
As(θ)Σ(θ)As(θ)

⊤ds
)
exp

(
−A(θ)⊤h

)
, and

where we used the fact that Ah(θ)
⊤ = exp(A(θ)⊤h). Then, the nx ×nx variance-covariance

matrix of the reduced-form innovations in the transition equation (2.8) is obtained as

Σηs,h(θ) = Mh(θ)Ah(θ)
⊤, (A.1)

which can be alternatively written as

vech(Σηs,h(θ)) = (Ah(θ)⊗ I)vech
(
Mh(θ)

)
= (Ah(θ)⊗ I)(Ah(θ)

−1 ⊗ I)vech

[(∫ h

0

As(θ)Σ(θ)As(θ)
⊤ds

)]
=

[(∫ h

0

As(θ)⊗As(θ)ds

)]
vech(Σ(θ))

=

(
A(θ)⊗ I+ I⊗A(θ)

)−1(
Ah(θ)⊗Ah(θ)− I

)
vech

(
Σ(θ)

)
, (A.2)

where vech is the half-vectorization operator, and ⊗ denotes the right-hand Kronecker prod-

uct. The second equality uses exp(−A(θ)h) = Ah(θ)
−1, the third equality uses the fact that

(Ah(θ)
−1 ⊗ I) = (Ah(θ)⊗ I)−1, whereas the last equality computes

(∫ h

0
As(θ)⊗As(θ)ds

)
in closed form as a linear function of A(θ) and Ah(θ). Notice that Ah(θ) ⊗ Ah(θ) =

exp ((A(θ)⊕A(θ))h).
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A.2.2 The F-SSR model: measurements are flow variables

A similar approach can be used to compute Σηsηf ,h(θ) in (2.14) and Σηf ,h(θ) in (2.15) when

the observables are measured as flows. In particular, define the augmented upper-triangular

matrix

Ξf (θ) =


−A(θ) I 0 0

0 −A(θ) Σ(θ) 0

0 0 A(θ)⊤ I

0 0 0 0

 ,
with exponential

exp(Ξf (θ)h) =


F1,h(θ) G1,h(θ) H1,h(θ) K1,,h(θ)

0 F2,h(θ) G2,h(θ) H2,h(θ)

0 0 F3,h(θ) G3,h(θ)

0 0 0 F4,h(θ)

 ,

where every block is nx-by-nx. Then,

Σηsηf ,h(θ) =
{
F3,h(θ)

⊤H2,h(θ)
}
C(θ)⊤,

Σηf ,h(θ) = C(θ)
{[

F3,h(θ)
⊤K1,h(θ)

]
+
[
F3,h(θ)

⊤K1,h(θ)
]⊤}

C(θ)⊤,

and A(θ)−1(Ah(θ)− I) =
∫ h

0
exp(A(θ)s)ds = G3,h(θ)

⊤.

A.3 An example with aliases of a matrix A

The example illustrated in Figure 1 assumes that the dynamics of the vector X(t) =

[x1(t), x2(t)]
⊤ is given by

dX(0)(t) = A0X
(0)(t)dt, with A0 =

[
−0.4 16

−0.4 −0.4

]
.

There are two Jordan blocks that are scalars and the solution to the mapping Ah(θ0) =

exp(A(θ0)h) is therefore not uniquely defined. The Jordan blocks of A0 coincide with its

eigenvalues, i.e.,

Λ = J =

[
−0.4 + 2.5298i 0

0 −0.4− 2.5298i

]
=

[
λ1 0

0 λ2

]
=

[
J1 0

0 J2

]
,
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where i =
√
−1. The Jordan blocks J1 = −0.4 + 2.5298i and J2 = −0.4 − 2.5298i are

associated with the eigenvalues λ1 = −0.4 + 2.5298i and λ2 = −0.4 − 2.5298i, and have

algebraic and geometric multiplicity 1. The matrix of eigenvectors is given by

V =

[
0.9877 0.9877

0.0000 + 0.1562i 0.0000− 0.1562i

]
,

and the transformation matrix of the Jordan canonical form is given by

S =

[
0.0000− 6.3246i 0.0000 + 6.3246i

1.0000 1.0000

]
.

Matrices A1 and A2 (aliases of A0) are constructed using

A1 = A0 + 2πi ·V

[
1 0

0 −1

]
V−1,

A2 = A0 + 2πi ·V

[
2 0

0 −2

]
V−1.

Then, Figure 1 plots the simulated values for x1 and x2 with dynamics

A0 : dX(0)(t) = A0X
(0)(t)dt,

A1 : dX(1)(t) = A1X
(1)(t)dt,

A2 : dX(2)(t) = A2X
(2)(t)dt.
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B. Kalman Recursions and the Likelihood Function

B.1 The ABCD representation

It is convenient to work with a state space which does not make any explicit assumption on

the nature of the measurements. Namely, the ABCD representation of (2.16)-(2.17), restated

here for completeness,

xτ+1 = A(θ)xτ + B(θ)ϵτ+1

yτ+1 = C(θ)xτ + D(θ)ϵτ+1.

According to whether the measurements are either stocks or flows or else whether the EM

approximation is used instead of the EDM, the entries of the matrices change. Suppose

nε = {0, ny} where nε defines the number of measurement errors associate to the vector of

measurements yτ . For clarity, let us be explicit on the dimensions of matrices I and 0, such

that In and 0n×m indicate the n-dimensional identity matrix and the n-by-m null matrix,

respectively. Let us describe the different elements of the system matrices according to the

type of data (stock or flow) and/or the discretization scheme (EDM or EM):

The S-SSR case.

A(θ) := Ah(θ), B(θ) := [Inx ,0nx×nε ], C̃(θ) := C(θ),

Σϵ(θ) :=

[
Σηs,h(θ) 0⊤

ny×nx

0ny×nx R

]
, C(θ) := C̃(θ)A(θ), D(θ) := [C̃(θ), Inε ];

The F-SSR case.

A(θ) :=

[
Ah(θ) 0nx×ny

C(θ)A(θ)−1(Ah(θ)− Inx) 0ny×ny

]
,

B(θ) := [I(nx+ny),0(nx+ny)×nε ],

C̃(θ) := [0ny×nx , Iny ],

Σϵ(θ) :=

[
Ση,h(θ) 0⊤

ny×(nx+ny)

0ny×(nx+ny) R

]
, C(θ) := C̃(θ)A(θ), D(θ) := [C̃(θ), Inε ];

The EM-SSR case.

A(θ) := Inx +A(θ)h, B(θ) := [Inx ,0nx×nε ], C̃(θ) := C(θ),
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Σϵ(θ) :=

[
hB(θ)B(θ)⊤ 0⊤

ny×nx

0ny×nx R

]
, C(θ) := C̃(θ)A(θ), D(θ) := [C̃(θ), Inε ].

B.2 Kalman filter

Let yτ−1 = {y1, . . . ,yτ−1} denote the history of measurements up to time tτ−1. Additionally,

let xτ |τ−1 = E [xτ |yτ−1] denote the forecast of the state vector conditional on the information

available at the time tτ−1, and Pτ |τ−1 = E
[(
xτ − xτ |τ−1

) (
xτ − xτ |τ−1

)⊤]
the corresponding

forecast error covariance matrix.21 Similarly, let yτ |τ−1 = E [yτ |yτ−1] denote the forecast of

the control variables conditional on past information, and

Ωτ |τ−1 = E
[(
yτ − yτ |τ−1

) (
yτ − yτ |τ−1

)⊤]
its associated forecast error covariance matrix. By exploiting the linearity of (2.16)-(2.17),

the forecast of the state variables, and their associated variance-covariance, are

xτ |τ−1 = A(θ)xτ−1|τ−1, (B.4)

Pτ |τ−1 = A(θ)Pτ−1|τ−1A(θ)
⊤ + B(θ)Σϵ(θ)B(θ)

⊤, (B.5)

given some initial conditions x0 and P0. Since the state vector is stationary, we use as initial

values its unconditional mean x0 = x1|0 = E [x1] = 0, and its unconditional covariance matrix

vec (P0) = vec
(
P1|0

)
= vec

(
E
[
x1x

⊤
1

])
=
[
In2

x
− (A(θ)⊗ A(θ))

]−1
[B(θ)⊗B(θ)]vec (Σϵ(θ)) ,

where vec is the vectorization operator. Given the predictions for the state variables, the

Kalman filter recursively computes the one-step-ahead forecast error of the control variables

and associated variance-covariance matrix

ωτ |τ−1 = yτ − yτ |τ−1 = yτ − C(θ)xτ−1|τ−1 (B.6)

Ωτ |τ−1 = C̃(θ)Pτ |τ−1C̃(θ)⊤ + D(θ)Σϵ(θ)D(θ)
⊤. (B.7)

Using the information above, we update the state variables according to

xτ |τ = xτ |τ−1 +Kτ |τ−1ωτ |τ−1 (B.8)

Pτ |τ = Pτ |τ−1 −Kτ |τ−1Ωτ |τ−1K
⊤
τ |τ−1, (B.9)

21Here, xτ refers to the nx dimensional state vector in (2.8) for the S-SSR model or in (4.13) for the
EM-SSR model, or the (nx + ny) dimensional vector in (2.12) for the F-SSR model.
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where

Kτ |τ−1 = Pτ |τ−1C̃(θ)⊤Ω−1
τ |τ−1 (B.10)

is referred to as the Kalman gain. Equations (B.4)-(B.10) together with initial conditions

x0 and P0 define the Kalman filter recursion for τ = 1, 2, . . . , T . If convergence occurs at

a given point tτ−1, then K = Ks+1|s = Ks|s−1 and Ω = Ωs+1|s = Ωs|s−1 for all s ≥ τ ∈ N.
Namely, K = K(θ) and Ω = Ω(θ) are the two (time-variant) matrices, after convergence.

B.3 Likelihood function

Given the linear structure of the Gaussian state-space model (2.8)-(2.9), it follows that the

(joint) probability density function of the discrete measurements can be written as

f(yT ;θ) = f(y1, . . . ,yT ;θ) = f(y1;θ)
T∏

τ=2

f(yτ |yτ−1;θ),

where f (yτ |yτ−1;θ) = N
(
C(θ)xτ−1|τ−1,Ωτ |τ−1

)
. Then, using the Kalman filter recursion,

the log-likelihood function can be constructed recursively via the prediction error decompo-

sition as (see Harvey, 1990)

L
(
θ|yT

)
=

T∑
τ=1

ln f (yτ |yτ−1;θ)

= −nyT

2
ln (2π)− 1

2

T∑
τ=1

ln |Ωτ |τ−1| −
1

2

T∑
τ=1

ω⊤
τ |τ−1Ω

−1
τ |τ−1ωτ |τ−1,

with f(y1|y0) = f(y1), and the maximum-likelihood (ML) estimator of θ by

θ̂ = argmax
θ∈Θ

L
(
θ|yT

)
.

B.4 State smoothing

For τ = T, ..., 1, we smooth states xτ , given observations {y1, ...,yT} using the fast state-

smoothing recursion in Durbin and Koopman (2012, Chapter 4). The first part of the

procedure consists of running a backward disturbance smoother algorithm. In particular, let
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rT = 0. Then compute

d̂τ = D(θ)Σϵ(θ)D(θ)
⊤vτ

n̂τ = B(θ)Σϵ(θ)B(θ)
⊤rτ

vτ = Ω−1
τ |τ−1ωτ |τ−1 −K⊤

τ |τ−1rτ

rτ−1 = C̃(θ)⊤vτ + A(θ)⊤rτ ,

where disturbances dτ and nτ are used for diagnostics, (cf. Durbin and Koopman 2012,

Chapter 7) and have variance-covariance matrices

Var(dτ |yT ) = D(θ)Σϵ(θ)D(θ)
⊤ − D(θ)Σϵ(θ)D(θ)

⊤DτD(θ)Σϵ(θ)D(θ)
⊤,

Var(nτ |yT ) = B(θ)Σϵ(θ)B(θ)
⊤ − B(θ)Σϵ(θ)B(θ)

⊤NτB(θ)Σϵ(θ)B(θ)
⊤,

with

Dτ = Ωτ |τ−1 +K⊤
τ |τ−1NτKτ |τ−1,

and

Nτ−1 = C̃(θ)⊤DτC̃(θ) + A(θ)⊤NτA(θ) + C̃(θ)⊤K⊤
τ |τ−1NτA(θ)− A(θ)⊤NτKτ |τ−1C̃(θ).

Initialize the state vector by x̂1 = a1 + P1r0. Then, for τ = 1, ..., T , the second part of

the procedure consists of computing the recursion

η̂τ+1 = B(θ)Σϵ(θ)B(θ)
⊤rτ ,

x̂τ+1 = A(θ)x̂τ + η̂τ+1.
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C. State-space representation for mixed-frequency data

Consider the case where measurements are sampled at two different frequencies, i.e., a high

frequency h̄, and a low frequency h, with h > h̄. The associated state-space representation

in the case of mixed-frequency observations depends on the sampling nature of the data:

Stock data. Rewrite the transition equation (2.3) for the S-SSR model, or in (4.13) for the

EM-SSR model, in terms of the time step associated with the highest frequency available,

i.e., h̄. On the other hand, rewrite the measurement equation in (2.7) as yτ = WτC(θ),

where Wτ is a known time-varying matrix whose rows at a given point in time are a subset

of the rows of Iny . More specifically, the number of rows at time tτ is determined by the

number of variables for which observations are available in tτ .

For instance, consider the estimation of the RBC model discussed in the main text using

as observables monthly data (h̄ = 1/12) on aggregate consumption, cτ , and quarterly data

(h = 1/4) on the fraction of hours worked, nτ . Further assume that there is no measurement

error, i.e., ετ = 0 for all τ . Then, the S-SSR model for mixed-frequency data sampling is

given by [
kτ

zτ

]
= Ah̄(θ)

[
kτ−1

zτ−1

]
+ ηs

τ (C.1)[
cτ

nτ

]
= WτC(θ)

[
kτ

zτ

]
(C.2)

with Wτ = [ 1 0 ] when τ coincides with observations recorder at points in time within a

quarter (so only cτ is available), and Wτ = Iny when τ coincides with observations recorded

at the end of a quarter (so both cτ and nτ are available). The Kalman filter recursions

proceeds accordingly by accommodating the missing values of the variables sampled at low

frequencies as shown in Durbin and Koopman (2012, Chp. 4.10).

Notice that the state-space representation formed by (C.1)-(C.2) is the same as that in

(2.3)-(2.7) for the S-SSR model, or in (4.13)-(2.7) for the EM-SSR model, with Wτ = Iny

for all τ in the case of a common sampling frequency among observables. Despite their sim-

ilarity, we refer to this new state-space representations as the MXS-SSR and MXEM-SSR

models to emphasize their application to mixed-frequency sampling.

Flow data. The state-space representation for flow variables is more involved than that for

stock data because we need to keep track of the unobserved time aggregation occurring at

“high” frequencies of the variables sampled at lower frequencies. This can be achieved by
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introducing a number of additional deterministic states that measure the unobserved behav-

ior of the flow variables within the time intervals for which observations are not available.

As for the stock case, the state-space representation is also written in terms of the time step

associated with the highest frequency, h̄.

So if we consider again the estimation of the RBC model using as observables monthly

data (h̄ = 1/12) on aggregate consumption, cτ , and quarterly data (h = 1/4) on the fraction

of hours worked, nτ . Further assume that there is no measurement error, i.e., ετ = 0 for all

τ . Then, the F-SSR model for mixed-frequency sampling is given by

kτ

zτ

cfτ

nf
τ

nf
τ−1

nf
τ−2


=


Ah̄(θ) 04×4C(θ)A(θ)−1(Ah̄(θ)− I)

02×2
0 1 0 0

0 0 1 0





kτ−1

zτ−1

cfτ−1

nf
τ−1

nf
τ−2

nf
τ−3


+


ηs
τ

ηf
τ

0

0

 (C.3)

[
cτ

nτ

]
= Wτ

[
02×2 I2

0 0

1 1

]


kτ

zτ

cfτ

nf
τ

nf
τ−1

nf
τ−2


, (C.4)

where Wτ is defined as before. Following the arguments in Section 2.4, notice that any point

in time, tτ , the observed fraction of hours worked in (C.4), sampled at a lower frequency h,

nτ , is related to the higher frequency state equations according to

nτ = nf (tτ ) =

∫ tτ

tτ−h

n(s)ds

=

∫ tτ

tτ−h

n(s)ds+

∫ tτ−h

tτ−2h

n(s)ds+

∫ tτ−2h

tτ−h

n(s)ds

= nf
τ + nf

τ−1 + nf
τ−2,

where nf
τ :=

∫ tτ
tτ−h

n(s)ds, nf
τ−1 :=

∫ tτ−h

tτ−2h
n(s)ds, and nf

τ−2 :=
∫ tτ−2h

tτ−h
n(s)ds. In the main

text, we refer to this extended state-space representation for flow data in the case of mixed-

frequency data as the MXF-SSR model.

Remark C.1. Notice that the transition equations for the additional deterministic state vari-

ables in (C.3), i.e., those associated with nf
τ−2 and nf

τ−3, do not depend on the vector of
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unknown parameters. Then, it is possible to use θ estimated from observations sampled a

low frequency h to recover state estimates at a higher frequency h by simply using the state-

space representation in (C.1)-(C.2) or (C.3)-(C.4) together with any filtering algorithm that

handles missing observations. This means that the model does not need to be re-estimated

if the analysis entails the same variables observed at different frequencies.
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D. Proofs and derivations

D.1 Proof of Proposition 1

The exact discrete model (EDM) corresponds to the solution, in the narrow-sense, of the

linear SDE in (2.1)

dx(t) = A(θ)x(t)dt+B(θ)dw(t),

with fixed initial condition x(t0) = x0, and whereA(θ) andB(θ) are time-invariant matrices.

In particular, consider the solution to the associated vector-valued homogeneous ordinary

differential equation

dx(t) = A(θ)x(t)dt, x (t0) = x0,

which is given by

xt = exp

(∫ t

t0

A(θ)dτ

)
x0 = exp(A(θ)h)x0 = Φ (t, t0)x0,

where we have defined h = t− t0, and where Φ (t0, t0) = I. An application of Itô’s formula

to the transformation Φ (t, t0)
−1 x yields

d
(
Φ (t, t0)

−1 xt

)
=

(
∂Φ (t, t0)

−1

∂t
xt +Φ (t, t0)

−1A(θ)xt

)
dt+Φ (t, t0)

−1B(θ)dw(t)

= Φ (t, t0)
−1B(θ)dw(t), (D.1)

where Φ (t, t0)
−1, is called the integrating factor. Integrating both sides of (D.1) we obtain

the solution to (2.1) as

x(t) = Φ (t, t0)

(
x0 +

∫ t

t0

Φ (s, t0)
−1B(θ)dw(s)

)
.

By setting t0 = tτ−1 and t = tτ , the solution can be written as

x(tτ ) = exp(A(θ)h)x(tτ−1) + exp(A(θ)h)

∫ tτ

tτ−1

exp(A(θ)(tτ−1 − s))B(θ)dw(s)

= exp(A(θ)h)x(tτ−1) + exp(A(θ)tτ )

∫ tτ

tτ−1

exp(−A(θ)s)B(θ)dw(s)

= exp(A(θ)h)x(tτ−1) +

∫ tτ

tτ−1

exp (A(θ)(tτ − s))B(θ)dw(s)

= Ah(θ)x(tτ−1) + ηs(tτ ).
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Let η(tτ ) = ητ . The error term is a flow variable and, from the definition of Brownian

increment, it has mean E[ηs(tτ )] = 0. The covariance matrix of the error term (2.6) is proved

by first applying the Itô isometry property,

E[ηs
τη

s⊤
τ ] = E

[(∫ tτ

tτ−1

exp (A(θ)(tτ − s))B(θ)dw(s)

)
×
(∫ tτ

tτ−1

exp (A(θ)(tτ − s))B(θ)dw(s)

)⊤
]

=

∫ tτ

tτ−1

exp (A(θ)(tτ − s))B(θ)B(θ)⊤ exp
(
A(θ)⊤(tτ − s)

)
ds. (D.2)

The equation is time-invariant. It only depends on the fixed time interval between measure-

ments, h = tτ − tτ−1. Therefore, a change of variable leads to

Σηs,h(θ) = E[ηs
τη

s⊤
τ ] =

h∫
0

exp (A(θ)(h− s))B(θ)B(θ)⊤ exp
(
A(θ)⊤(h− s)

)
ds

=

h∫
0

exp (A(θ)(h− s))Σ(θ) exp
(
A(θ)⊤(h− s)

)
ds.

Moreover, notice that the errors are serially uncorrelated at all leads and lags,

E[ηs
τη

s⊤
τ−ℓ] = 0, for all ℓ ̸= 0.

■

D.2 Derivation of Equation (2.11)

Equation (2.11) characterizes the form of reduced-form residuals, ηf
τ , in

yf
τ = C(θ)A(θ)−1(exp(A(θ)h)− I)xτ−1 + ηf

τ .

The cumulator operator within the interval [tτ−1, tτ ] leads to

ηf
τ = C(θ)

h∫
0

tτ−1+s∫
tτ−1

exp(A(θ)(tτ−1 + s− r))B(θ)dw(r) ds
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by redefining the bounds of the inner stochastic integral, and then exchanging the order of

integration,

ηf
τ = C(θ)

h∫
0

s∫
0

exp(A(θ)(s− r))B(θ)dw(tτ−1 + r) ds

= C(θ)

h∫
0

h∫
r

exp(A(θ)(s− r))B(θ)ds dw(tτ−1 + r). (D.3)

At this point, we notice that the definite integral

h∫
r

exp(A(θ)(s− r))B(θ)ds = A(θ)−1(exp(A(θ)(h− r))− I)B(θ).

By substituting the solution of the definite integral into the stochastic integral, setting

s = tτ−1 + r, and using the fact that the uniform time-step h = tτ − tτ−1, we conclude

ηf
τ = C(θ)

tτ∫
tτ−1

A(θ)−1(exp(A(θ)(tτ − s))− I)B(θ)dw(s).

The quadrants of the covariance matrix of ητ =
[
ηs⊤
τ ,ηf⊤

τ

]⊤
in the F-SSR model apply

the Itô Isometry property similarly to (D.2) to the expected values E[ηs
τη

f⊤
τ ] and E[ηf

τη
f⊤
τ ],

where ηs
τ and ηf

τ come from (2.5) and (D.3), respectively.

D.3 Proof of Lemma 1

The proof of the Lemma requires that we show that the eigenvalues of A(θ) lie within the

unit circle for all the considered models.

The S-SSR case. From Assumption 1 we know that the eigenvalues of A(θ) have negative

real part. Therefore, the elements of Λ in section A.1 have all negative real part. Since

A(θ) := exp(A(θ)h) = V exp(Λh)V−1,

with h ≥ 0, and elements on the diagonal of exp(Λh) = diag(eλ1h, ..., eλnxh) are the eigen-

values of A(θ), with λi < 0 for all i = 1, ..., nx. It follows that every diagonal element of

exp(Λh) lies within the unit circle.
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The F-SSR case. We just proved that the upper-left block of (2.12), exp(A(θ)h), has

eigenvalues within the unit circle. From (2.12), using decoupling arguments, is evident that,

for σ ∈ C, the nonzero roots from the characteristic equation det(σI−A(θ)) are the same as

those of det(σI−exp(A(θ)h)) (see e.g. Golub and Van Loan, 2013, Lemma 7.1.1). In fact, let

σ(A) = {σ : det(σI−A) = 0} and partition the discrete-time drift matrix of (2.12) as follows

A(θ) =

[
A11(θ) 0

A21(θ) A22(θ)

]
,

then σ(A(θ)) = σ(A11(θ))∪ σ(A22(θ)), where however A22(θ) := 0 and σ(0) = diag(0, ..., 0).

It follows that A(θ) has nx eigenvalues given by 0 ≤ eλih < 1 for i = 1, ..., nx, and ny eigen-

values that are exactly zero. Therefore, all the eigenvalues are within the unit circle also for

the F-SSR model.

The EM-SSR case. From Assumption 1 we know that the eigenvalues ofA(θ) have negative

real part. Additionally, A(θ) = Inx +A(θ)h. The eigenvalues of A(θ) are of the type 1+λih,

i = 1, ..., nx, which lie within the unit circle if and only if λih > −2 for all i = 1, ..., nx. ■

D.4 Proof of Proposition 4

If Assumptions 1 and 3 hold, it follows from Proposition 3 that A(θ) is identified from

Ah(θ). Then, if
∫ h

0
As(θ)⊗As(θ)ds is invertible, Σ(θ) is the solution of (A.2). Notice that∫ h

0
As(θ)⊗A(θ)ds := (A(θ)⊗ Inx + Inx ⊗A(θ))−1(Ah(θ)⊗Ah(θ)− In2

x
) and (A(θ)⊗ Inx +

Inx ⊗A(θ))−1 exists with negative eigenvalues of the type 1/λi + 1/λj for all i, j = 1, ..., nx.

The proof of proposition 4 requires to prove (i) nonsingularity of Ah = (Ah(θ)⊗Ah(θ)−
In2

x
) (all the eigenvalues of Ah are different from zero) and that (ii) Σ(θ) is a positive semi-

definite matrix; that is Σ(θ) is an admissible instantaneous covariance matrix.

(i) Nonsingularity of Ah follows from Assumption 1. In fact, notice that eigenvalues

of (A(θ) ⊗ A(θ)), are given by the pairwise multiplications of the eigenvalues in λ(A(θ))

of A(θ). Namely, the n2
x eigenvalues of (A(θ) ⊗ A(θ)), are formed as λiλj > 0 for all

i, j = 1, ..., nx. Then the eigenvalues of Ah are of the form exp((λi + λj)h − 1), which is

negative, therefore different from zero, for all i, j = 1, ..., nx by Assumption 1.

Finally (ii) the solution of (A.2) is a positive semi-definite matrix. In fact Σηs,h(θ) is

positive semi-definite, the eigenvalues of (A(θ)⊗ Inx + Inx ⊗A(θ)) are negative and of the

type (λi + λj), and the eigenvalues of A−1
h are also negative. Hence, all the eigenvalues of

Σ(θ) are non-negative. ■

Remark D.1 (Joint identification). While Propositions 3 and 4 achieve identification ofA(θ0)
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and Σ(θ0) sequentially, it is also possible to derive conditions for their joint identification. In

particular, a sufficient condition for the identification of (A(θ0),Σ(θ0)) from discrete-time

measurements can be derived by constructing the augmented matrix (see Van Loan, 1978)

Ξ(θ0) =

[
A(θ0) Σ(θ0)

0 −A(θ0)
⊤

]
.

Then, we have the following result.

Proposition 7 (McCrorie, 2003). If the eigenvalues of the augmented matrix Ξ(θ0) are strictly

real and no redundant Jordan block occurs more than once, then (A(θ0),Σ(θ0)) is identified

from (Ah(θ0),Ση,h(θ0)).

The proof of Proposition 7 uses the results in Culver (1966, Theorem 2) for the uniqueness

of the matrix logarithm on the extended matrix Ξ(θ0). ■

D.5 Proof of Proposition 5

For possibly large but finite n, the proof is constructed in three steps. First, we show that

the proposition holds for ηs, which it is the case for the S-SSR model. Then, we do the same

for ηf in isolation. Finally, the proof of the proposition for the F-SSR model follows from

stacking the previous two cases.

The S-SSR case. Consider n ∈ Z+ such that the Riemann–Stieltjes sum

ηs
τ =

n∑
i=1

exp(A(θ)(tτ − tτi−1))B(θ)∆w(tτi ) + oP (1).

Expanding the sum on the right-hand side yields

ηs
τ = exp(A(θ)h)B(θ)∆w(tτ1) + exp(A(θ)(h− hn))B(θ)∆w(tτ2) . . .

+ exp(A(θ)(h− (n− 2)hn))B(θ)∆w(tτn−1) . . .

+ exp(A(θ)(h− (n− 1)hn))B(θ)∆w(tτn) + oP (1),
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which can be rewritten as

ηs
τ = (I+A(θ)h+A(θ)2h2/2 + . . . )B(θ)∆w(tτ1) . . .

+ (I+A(θ)(h− hn) +A(θ)2(h− hn)
2/2 + . . . )B(θ)∆w(tτ2) . . .

+ (I+A(θ)(h− (n− 2)hn) +A(θ)2(h− (n− 2)hn)
2/2 + . . . )B(θ)∆w(tτn−1) . . .

+ (I+A(θ)(h− (n− 1)hn) +A(θ)2(h− (n− 1)hn)
2/2 + . . . )B(θ)∆w(tτn) + oP (1).

Collecting terms with same coefficients yields

ηs
τ =

(
I+A(θ)h+A(θ)2(h2/2) + . . .

)
B(θ)

n∑
i=1

∆w(tτi ) . . .

+
[
A(θ)2h2n/2−A(θ)hn −A(θ)2hhn − . . .

]
B(θ)∆w(tτ2) . . .

+
[
(n− 2)2A(θ)2h2n/2−A(θ)(n− 2)hn − (n− 2)A(θ)2hhn + . . .

]
B(θ)∆w(tτn−1) . . .

+
[
(n− 1)2A(θ)2h2n/2−A(θ)(n− 1)hn − (n− 1)A(θ)2hhn + . . .

]
B(θ)∆w(tτn) + oP (1)

= h1/2 exp(A(θ)h)B(θ)uτ +Rτ ,

where we have used the definitions of the matrix exponential in (2.4), of uτ in (3.1), and the

fact that tτ0 = tτ−1 and tτn = tτ .

The term Rτ denotes the remainder of the approximation h1/2H(θ, h)uτ for ηs
τ where

H(θ, h) = exp(A(θ)h)B(θ). By recalling that hn = h/n, the properties of Rτ can be char-

acterized according to the following three limiting behaviors: (i) one for increasing number

of sub-intervals n → ∞, while keeping h constant; (ii) one for decreasing length between

sub-intervals, hn → 0; (iii) and, analogously, one for increasing frequency of data h → 0.

Note that shrinking hn or h describes a similar behavior, that is, increasing data availability.

(i) As n → ∞, it follows that A(θ)hn = O(n−1), and the term A(θ)(n− 1)hn → A(θ)h.

Similarly, the term ∆w(tτi ) = OP (n
−1/2) for all 1 < i ≤ n. Then, the remainder

Rτ = OP (n
−1/2),

i.e., it is bounded in probability by n−1/2, a scalar that decreases with increasing

number of sub-intervals.

(ii) As hn → 0, it follows that A(θ)hn = O(hn), A(θ)(n − 1)hn = O(hn), and ∆w(tτi ) =

OP (h
1/2
n ). Then,

Rτ = OP (h
3/2
n ).

72



(iii) For h → 0, it follows that A(θ)hn = O(h), A(θ)(n − 1)hn = O(h), and ∆w(tτi ) =

OP (h
1/2), for all 1 < i ≤ n. Then,

Rτ = OP (h
3/2).

The F-SSR case. Let us first consider the case of ηf
τ in isolation. In particular, consider

an n such that the Reimann-Stieltjes sum

ηf
τ = C(θ)A(θ)−1

n∑
i=1

[exp(A(θ)(tτ − tτi−1))− I]B(θ)∆w(tτi ) + oP (1).

Similar to the case of the S-SSR model, we arrive to

ηf
τ = h1/2C(θ)A(θ)−1 [exp(A(θ)h)− I]B(θ)uτ +Rτ

as h→ 0. Finally, recall that ητ =
[
ηs,⊤
τ ,ηf,⊤

τ

]⊤
. Thus, it follows that

ητ = h1/2

[
exp(A(θ)h)B(θ)

C(θ)A(θ)−1 [exp(A(θ)h)− I]B(θ)

]
uτ +Rτ .

The properties of the remainder term in the expansion of ηf
τ can be shown are the same

as those for the expansion ηs
τ in the S-SSR model. The proof is analogous to that above.

Now, since ητ =
[
ηs,⊤
τ ,ηf,⊤

τ

]⊤
in the F-SSR model it must follow that

(i) Rτ = OP (n
−1/2) as n→ ∞

(ii) Rτ = OP (h
3/2
n ) as hn → 0

(iii) Rτ = OP (h
3/2) as h→ 0. ■

D.6 Proof of Proposition 6

Using Proposition 5 and given that H(θ) is O(h3/2), it follows that H(θ)−1Rτ = OP (1). ■

D.7 Derivation of the historical shock decomposition in Equation (5.1)

The historical shock decomposition links the structural shocks of the system to the ob-

servables. Given Assumption 1 and Proposition 6, let ϵ := η in the ABCD representation

(2.16)-(2.17) such that there is no measurement error wlog. Then the transition equation
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can be written as

xτ = (Inx − A(θ)L)−1H(θ)uτ +OP (h
3/2)

=
∞∑
s=0

A(θ)sH(θ)uτ−s +OP (h
3/2).

We disregard the OP (h
3/2) terms and substitute the definition of xτ in the measurement

equation to obtain

yτ+1 = C(θ)(Inx − A(θ)L)−1H(θ)uτ + D(θ)H(θ)uτ+1

= C(θ)
∞∑
s=0

A(θ)sH(θ)uτ−s + D(θ)H(θ)uτ+1.

Conditioning on the beginning of the sample, the transition equation can be alternatively

written as

xτ = A(θ)τx0 +
τ−1∑
s=0

A(θ)sH(θ)uτ−s,

so the structural shocks are related to the measurements through

yτ+1 = A(θ)τx0 + C(θ)(Inx − A(θ)L)−1H(θ)uτ + D(θ)H(θ)uτ+1

= C(θ)A(θ)τx0 + D(θ)H(θ)uτ+1 + C(θ)
τ−1∑
s=0

A(θ)sB(θ)H(θ)uτ−s.

The historical contributions of the individual structural shock ui, i = 1, ..., nq to the mea-

surements at the τth observation are then given by selecting and propagating the individual

shocks one at a time. In practice, we use ML estimates θ̂ of the structural parameters.

Additionally, we replace the unobserved x0 and u with their smoothed estimates using ap-

proximations ũ instead of u.
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E. Stochastic optimal control problem

E.1 The HJB equation and the first-order conditions

The social planner chooses paths for consumption and the fraction of hours worked in order

to maximize the expected lifetime utility

J(K0, Z0) = max
{C(t),N(t)}∞t=0

E0

[∫ ∞

0

e−ρt (lnC(t) + ψ (1−N(t))) dt

]
subject to

dK(t) =
(
exp (Z(t))K(t)α (exp (ηt)N(t))1−α − C(t)− δK(t)

)
dt+ σkK(t)dwk(t),

dZ(t) = −ρzZ(t)dt+ σzdwz(t),

in which C(t) ∈ R+ and N(t) ∈ [0, 1] are the control variables at instant t > 0, K(t) ∈ R+

and Z(t) ∈ R are the state variables at instant t, and J (K,Z) is the value of the optimal

program (value function) given the initial conditions K (0) = K0 and Z (0) = Z0.

The economy exhibits balanced growth path, i.e., over the long run the variables in the

economy, with the exception of hours worked and TFP, will grow at the gross rate η > 1. A

stationary version of the model can be obtained by defining y(t) := Y (t)/ exp (ηt), c(t) :=

C(t)/ exp (ηt), k(t) := K(t)/ exp (ηt) to be the de-trended values of the macroeconomic

variables. For notation consistency, we also define n(t) := N(t) and z(t) := Z(t). Using

these definitions, the planner’s optimal control problem can be rewritten as22

J(k0, z0) = max
{c(t),n(t)}∞t=0

E0

[∫ ∞

0

e−ρt (ln c(t) + ψ (1− n(t))) dt

]
subject to

dk(t) =
(
exp (z(t)) k(t)αn1−α

t − c(t)− (δ + η) k(t)
)
dt+ σkk(t)dwk(t), k (0) = k0

dz(t) = −ρzz(t)dt+ σzdwz(t), z (0) = z0.

A recursive representation of the planner’s problem is given by the Hamilton-Jacobi-

22We use the fact that
∫∞
t=0

e−ρtηtdt = η
ρ2 for ρ > 0, and hence it is just a constant that we omit without

affecting the optimization problem. In discrete-time this is equivalent to omitting
∑∞

t=0 β
tηt = ηβ

(β−1)2
as

long as β ∈ (0, 1).
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Bellman (HJB) equation,23

ρJ (k, z) = max
c,n

{
(ln c+ ψ (1− n)) +

(
exp(z)kαn1−α − c− (δ + η) k

)
Jk (k, z)

− ρzzJz (k, z) +
1

2
σ2
kk

2Jkk (k, z) +
1

2
σ2
zJzz (k, z)

}
, (E.1)

where subscripts denote partial derivatives. The first order conditions for an interior solution

are given by

c = (Jk (k, z))
−1 ,

ψ = (1− α) exp(z)kαn−αJk (k, z) ,

which implicitly define optimal consumption and hours worked as functions of the state

variables of the economy, c = c (k, z) and n = n (k, z).

The maximized HJB equation reads

ρJ (k, z) = ln c (k, z) + ψ (1− n (k, z))

+
(
exp(z)kαn (k, z)1−α − c (k, z)− (δ + η) k

)
Jk (k, z)

− ρzzJz (k, z) +
1

2
σ2
kk

2Jkk (k, z) +
1

2
σ2
zJzz (k, z) ,

from which it is follows that the co-state variable associated with the capital stock must

satisfy (using the envelope condition)

ρJk (k, z) =
(
α exp (z) kα−1n (k, z)1−α − (δ + η)

)
Jk (k, z)

+
(
exp(z)kαn (k, z)1−α − c (k, z)− (δ + η) k

)
Jkk (k, z)

− ρzzJkz (k, z) + σ2
zkJkk (k, z) +

1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z) .

Collecting terms yields

(
ρ− α exp (z) kα−1n (k, z)1−α + δ + η

)
Jk (k, z) =

(
exp(z)kαn (k, z)1−α

− c (k, z)− (δ + η) k
)
Jkk (k, z)− ρzzJkz (k, z)

+ σ2
kkJkk (k, z) +

1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z) . (E.2)

23See Chang (2009) for a formal derivation of the HJB equation.
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Using Ito’s formula, the co-state variable evolves according to

dJk (k, z) =

[ (
exp(z)kαn1−α − c− (δ + η) k

)
Jkk (k, z)

− ρzzJkz (k, z) +
1

2
σ2
kk

2Jkkk (k, z) +
1

2
σ2
zJkkz (k, z)

]
dt

+ σkkJkk (k, z) dwk + σzJkz (k, z) dwz,

where substituting for the optimal costate in (E.2), we obtain the equilibrium dynamics of

the marginal utility of consumption

dJk (k, z) =

[ (
ρ− α exp (z) kα−1n1−α + δ + η

)
Jk (k, z)− σ2

kkJkk (k, z)

]
dt

+ σkkJkk (k, z) dwk + σzJkz (k, z) dwz. (E.3)

After some algebra, one obtains the Euler equation for consumption:

dc

c
=

[ (
α exp (z) kα−1n1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2

(
σ2
k

(
kck (k, z)

c

)2

+ σ2
z

(
cz (k, z)

c

)2
)]

dt

+ σk
kck (k, z)

c
dwk + σz

cz (k, z)

c
dwz. (E.4)

Given the properties of stochastic integrals for Brownian motions, the Euler equation for

consumption can be alternatively written in expected terms as

1

dt
Et

[
dc

c

]
=
(
α exp (z) kα−1n (k, z)1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2
σ2
k

(
kck (k, z)

c

)2

+
1

2
σ2
z

(
cz (k, z)

c

)2

. (E.5)
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E.2 Equilibrium

The general equilibrium in this economy can be characterized in the time-domain by the

following system of nonlinear stochastic differential equations:

Et

[
dc

c

]
=

[ (
α exp (z) kα−1n1−α − ρ− δ − η

)
− σ2

k

kck (k, z)

c

+
1

2

(
σ2
k

(
kck (k, z)

c

)2

+ σ2
z

(
cz (k, z)

c

)2
)]

dt,

(E.6)

dk =
(
exp (z) kαn1−α − c− (δ + η) k

)
dt+ σkkdwk, k (0) = k0, (E.7)

dz = −ρzzdt+ σzdwz, z (0) = z0, (E.8)

together with the algebraic (static) equation for the optimal fraction of hours worked,

ψcn = (1− α) exp(z)kαn1−α. (E.9)

Collecting the model variables in the vector x̌ = [c, k, z, n]⊤, and using the properties of

stochastic integrals for Brownian motions, we compactly write the nonlinear equilibrium as

dx̌(t) = G0 (x̌(t)) dt+G1 (x̌(t)) dw(t) + Π̃dε(t), (E.10)

where w(t) = [wk(t), wz(t)]
⊤ is the vector of structural shocks, ε(t) is an expectation error

defined as the difference between the actual and unexpected change in consumption, i.e.,

dε(t) = Et [dc(t)]− dc(t), satisfying Et [dε(t)] = 0, and Π̃ is a selection matrix.

E.3 Deterministic steady state

In the absence of uncertainty, the (de-trended) economy converges over time to a fixed

point, or steady-state equilibrium, in which all variables are idle. We denote such point

by x̌⋆ = (c⋆, n⋆, k⋆, z⋆)⊤. Therefore, imposing σk = σz = 0 together with the no-growth

condition dx̌(t)/dt = 0 to the system (E.10) yields

z⋆ = 0, n⋆ = (1− α)
(
ψ
(
1− α(δ+η)

ρ+δ+η

))−1

,

k⋆ =

(
α

ρ+ δ + η

) 1
1−α

n⋆, and c⋆ = (k⋆)α (n⋆)1−α − (δ + η) k⋆.
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E.4 Log-linearized equilibrium

The nonlinear system formed by (E.6)-(E.9) can be linearized in order to study the dynamic

behavior of the stationary variables as they fluctuate in close proximity of their deterministic

steady-state values. Let ĉ = ln c−ln c⋆, n̂ = lnn−lnn⋆, k̂ = ln k−ln k⋆ and ẑ = z−z⋆ denote
log-deviations of the variables with respect to their steady-state values. Then, a first-order

Taylor expansion of (E.10) yields
dĉ

dk̂

dẑ

0

 =


0 ξck ξcz ξcn

ξkc ξkk ξkz ξkn

0 0 −ρz 0

ξnc ξnk ξnz −1


︸ ︷︷ ︸

≡Γ̃


ĉ

k̂

ẑ

n̂

 dt+


0 0

σk 0

0 σz

0 0


︸ ︷︷ ︸

≡Ψ̃

[
dwk

dwz

]
+


−1

0

0

0


︸ ︷︷ ︸

≡Π̃

dε

where Γ̃ is the Jacobian matrix of the log-transformed equilibrium evaluated at the deter-

ministic steady state, and Ψ̃ is the corresponding diffusion matrix. The log-transformation

is obtained via an application of Itô’s formula to (E.10). The coefficients in Γ̃ are given by

ξck = (α−1)(ρ+δ+η), ξcz = (ρ+δ+η), ξcn = (1−α)(ρ+δ+η), ξkc = −(ρ+(1−α)(δ+η))/α,
ξkk = ρ, ξkz = (ρ+ δ+ η)/α, ξkn = (1−α)(ρ+ δ+ η)/α, ξnc = −1/α, ξnk = 1 and ξnz = 1/α.

Next, we substitute out the intratemporal labor supply condition n̂ = ξncĉ+ξnkk̂+ξnz ẑ, to

obtained a linearized equilibrium consisting of the 3×3 system of linear stochastic differential

equations

 dĉ

dk̂

dẑ

 =

 ξcnξnc 0 ξcz + ξcnξnz

ξkc + ξknξnc ξkk + ξknξnk ξkz + ξknξnz

0 0 −ρz


︸ ︷︷ ︸

≡Γ

 ĉ

k̂

ẑ

 dt

+

 0 0

σk 0

0 σz


︸ ︷︷ ︸

≡Ψ

[
dwk

dwz

]
+

 −1

0

0


︸ ︷︷ ︸

≡Π

dε,

which can be compactly written as

d˜̂x(t) = Γ˜̂x(t)dt+Ψdw(t) +Πdε(t), (E.11)

where ˜̂x = [ĉ, k̂, ẑ]⊤ denotes the vector of variables in deviations from their deterministic

steady state, and where Γ, Ψ, and Π are the adjusted versions of Γ̃, Ψ̃, and Π̃. Note that
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the volatility parameters σk and σz do not affect the matrix Γ that characterizes the en-

dogenous persistence in the linearized equilibrium system. Therefore, they will not have any

effects on the implied optimal decision rules, and hence our approximated solution exhibits

certainty equivalent in the sense of Simon (1956) and Theil (1957) (see Ahn et al., 2018;

Parra-Alvarez et al., 2021).

E.5 Rational expectation solution

Following Sims (2002), let us assume that the matrix Γ can be diagonalized according to

Γ = TΥT−1, (E.12)

where T is a 3 × 3 matrix of right-eigenvectors of Γ, and Υ is a diagonal matrix whose

diagonal elements are the eigenvalues of Γ. Premultiplying (E.11) by T−1 and defining

z(t) = T−1 ˜̂x(t) yields

dz(t) = Υz(t)dt+T−1Ψdw(t) +T−1Πdε(t). (E.13)

The eigenvalues of the matrix Γ solve the characteristic equation |Γ− υI3| = 0. Thus,

it follows that the eigenvalues of Γ are given by υ1 = −ρz and the roots of the quadratic

equation

a0υ
2 + a1υ + a2 = 0,

with a0 = 1, a1 = − (ξcnξnc + ξkk + ξknξnk), and

a2 = (ξcnξncξkk + ξcnξncξknξnk) .

After some algebra, it is possible to show that

a1 = −ρ < 0, and a2 = −(1− α) (ρ+ δ + η)

α

(
ρ+ (1− α) (δ + η)

α

)
< 0.

Since a22 − 4a0a1 > 0 (the discriminant of the quadratic equation) and a2 < 0, the quadratic

equation has two distinct real roots of opposite sign given by

υ2 = −(1− α)(δ + η + ρ)

α
< 0 and υ3 =

(1− α)(δ + η) + ρ

α
> 0.

Hence, the linearized system has two stable roots (non-positive eigenvalues, υ1 and υ2) and

one unstable root (positive eigenvalue, υ3). Since the reduced model in (E.11) has two state
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variables and one control/jump variable, the Blanchard and Kahn conditions are satisfied,

and the model has a unique rational expectation solution (see Buiter, 1984). The eigenvectors

of Γ associated to each of its eigenvalues are given by multiples of the following vectors

T1 =
1

ι

 −(δ + η + ρ)

− (δ+η+ρ)((1−α)(δ+η)+ρ+ρz)
(1−α)(δ+η)+ρ+αρz

ι

 , T2 =


α(2(1−α)(δ+η)+(2−α)ρ)
(1−α2)(δ+η)+ρ

1

0

 , and T3 =
 0

1

0

 ,
where ι = (α− 1)(δ + η + ρ) + αρz.

Let M+ be a 1× 3 vector that selects the rows of T−1 corresponding to eigenvalues with

positive real parts, and M− a 2 × 3 matrix that selects the rows of T−1 corresponding to

eigenvalues with non-positive real parts. It follows that
(
M⊤

+M+ +M⊤
−M−

)
= I3. Then

M+dz(t) = M+Υz(t)dt+M+T
−1Ψdw(t) +M+T

−1Πdε(t), (E.14)

defines the equation associated with the unstable eigenvalue. To rule out explosive paths, i.e.,

to ensure that lims→∞ Et [z(s)] <∞ for s > t, and thus to satisfy the model’s transversality

conditions, we impose

M+z(t) = 0, ∀t, (E.15)

implying that

dε(t) = −
[
M+T

−1Π
]−1

M+T
−1Ψdw(t). (E.16)

In other words, the stability condition imposes an exact relationship between the vector of

structural shocks and the expectation error, such that the system does not exhibit explosive

paths.

Once we impose the stability conditions (E.15) and (E.16), it is possible to compute the

solution associated with the stable eigenvalues by computing

M−dz(t) = M−Υz(t)dt+M−T
−1Ψdw(t) +M−T

−1Πdε(t),

which in turn implies that

dz(t) = Υ⋆z(t)dt+Ψ⋆dw(t), (E.17)

where Υ⋆ = M⊤
−M−ΥM⊤

−M− is the 3 × 3 matrix of eigenvalues with zeros in the position

of the explosive paths, and

Ψ⋆ = M⊤
−M−T

−1
[
I3 −Π

[
M+T

−1Π
]−1

M+T
−1
]
Ψ
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is a 3× 2 matrix. Finally, we use the definition z(t) = T−1 ˜̂x(t) to recover the autoregressive

representation of the rational expectation solution in the original variables

d˜̂x(t) = Ã˜̂x(t)dt+ B̃dw(t) (E.18)

where Ã = TΥ⋆T−1 and B̃ = TΨ⋆.

From the stability condition (E.15) and the definition of the transformed variable z(t),

we recover the optimal policy for consumption as

ĉ(t) = ϕckk̂(t) + ϕcz ẑ(t), (E.19)

where ϕck = −(T21/T11) and ϕcz = −(T31/T11), with Tij the (i, j)-th element of the matrix of

T−1. Using the linearized condition for hours worked, the optimal policy for labor is given by

n̂(t) = ϕnkk̂(t) + ϕnz ẑ(t), (E.20)

where ϕnk =
(
ξnk − ξnc

T21

T11

)
and ϕnz =

(
ξnz − ξnc

T31

T11

)
.

As a final step, we eliminate the dependence of the system in (E.18) on the control

variables to obtain and system of SDEs that only describes the optimal dynamics of the

state variables. After some algebra we obtain[
dk̂(t)

dẑ(t)

]
=

[
ϕkk ϕkz

0 −ρz

][
k̂(t)

ẑ(t)

]
dt+

[
σk 0

0 σz

][
dwk(t)

dwz(t)

]
, (E.21)

with

ϕkk = −(ã21T12)/T11 + ã22 = −(1− α)(δ + η + ρ)

α
< 0,

ϕkz = −(ã21T13)/T11 + ã23 =
(δ + η + ρ)((1− α)(δ + η) + ρ+ ρz)

α((1− α)(δ + η) + ρ+ αρz)
> 0,

where ãij is the (i, j)-th element of the matrix of Ã.

Let ŷt = [ĉt, n̂t]
⊤ and x̂t = [k̂t, ẑt]

⊤ denote, respectively, the vector of control and state

variables in log-deviations from their steady state values. Then (E.21), together with (E.19)

and (E.20), have the continuous-time state space representation in (2.1) and (2.2), i.e.,

dx̂(t) = Ax̂(t)dt+Bdw(t),

ŷ(t) = Cx̂(t).
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E.6 Proof of Lemma 2

Let the economy follow dynamics of the state-space system (4.12), where the transition

equation is given by (E.21). The state-space system results from the rational expectation

solution of the equilibrium (4.8), (4.9), (4.10), and (4.6). Then, Assumption 1 implies that

the eigenvalues of A(θ) have strictly negative real part. For every θ ∈ Θ, A(θ) is a real

matrix. Then, in order to rule out aliases of A(θ), it is left to verify that no Jordan

block of A(θ) occur more than once and that the eigenvalues are strictly real. Notice that

A(θ), the drift matrix of (E.21), is a 2-by-2 matrix, and let {λ1, λ2} := λ(A(θ)) = {λ :

det(λInx −A(θ) = 0}. A sufficient and necessary condition for the eigenvalues λ1 and λ2 to

have imaginary part different from zero is that

trace(A(θ))2 < 4 · det(A(θ)).

In the specific problem, λ1 = ϕkk and λ2 = −ρz, are both real and negative, λ1, λ2 < 0. In

general, however, given the triangular structure of A(θ) and the analytical form of (E.21),

complex eigenvalues require that (ϕkk + ρz)
2 < 0, which is impossible. Additionally, the

assumption that (1− α)(δ + η + ρ) ̸= αρz, ensures that the eigenvalues are distinct, and no

Jordan block is therefore repeated.

Assumptions 1 and 3 are satisfied. Namely, the eigenvalues of A(θ) are distinct (no Jor-

dan blocks occur more than once), real, and negative. Finally, the matrixA(θ) does not have

any aliases, so the entries of A(θ) are identified from Ah(θ). Further,
(∫ h

0
As(θ)⊗As(θ)ds

)
is nonsingular, and identification of A(θ) implies identification of Σ(θ). ■

Remark E.1. The assumption (1 − α)(δ + η + ρ) ̸= αρz implies Assumption 3, but it is

used only for simplifying the proof. In fact, it is stronger than what is necessary for the

assumption to hold. To see this, let λ1 = λ2 = ϕkk < 0, such that ϕkk = −ρz and therefore

(1−α)(δ+ η+ ρ) = αρz. Then, given A(θ) in (4.12), (A(θ)−ϕkkInx) ̸= 0, whereas (A(θ)−
ϕkkInx)

2 = 0, indicating that the block related to eigenvalue ϕkk is 2-by-2. Hence, there is

only one individual 2-by-2 Jordan block associated to ϕkk and Assumption 3 is satisfied.
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F. Additional tables and figures

Table F.1. Finite sample properties for extended vector of parameters. The table reports finite
sample estimates of θ = [ρ, η, ρz, σz, σk]

⊤ fromM = 500 samples of quarterly (h = 1/4) observations
on aggregate consumption (C) and hours worked (N), generated over a period of 60 years (T = 240
observations in each sample). Simulated measurements in Panel A are sampled as stocks, and those
in Panel B as flows. The share of capital in output, α, and the depreciation rate, δ, are calibrated
to their population values in Table 1. Let θ̂m denote the estimates from the m−th sample. The
table displays mean bias (Bias = M−1

∑M
m=1(θ̂m − θ0)) and root mean squared errors (RMSE =

(M−1
∑M

m=1(θ̂m − θ0)
2)1/2) across repetitions for the F-SSR, S-SSR, and EM-SSR models.

Panel A: Data is sampled as stock

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρ 0.03 - - 0.0002 0.0015 0.0001 0.0015
η 0.02 - - 0.0003 0.0021 0.0001 0.0021
ρz 0.2052 - - 0.0044 0.0196 -0.0282 0.0322
σz 0.014 - - -0.0001 0.0007 -0.0001 0.0007
σk 0.0104 - - -0.0001 0.0005 -0.0004 0.0006

Panel B: Data is sampled as flows

F-SSR S-SSR EM-SSR

θ Bias RMSE Bias RMSE Bias RMSE

ρ 0.03 0.0002 0.0015 1.91E-05 0.0015 -0.0001 0.0015
η 0.02 0.0003 0.0021 1.15E-05 0.0021 -0.0002 0.0021
ρz 0.2052 0.0051 0.0206 -0.0008 0.0195 -0.0314 0.0352
σz 0.014 -0.0001 0.0007 -0.0026 0.0027 -0.0026 0.0027
σk 0.0104 -0.0001 0.0005 -0.0020 0.0020 -0.0022 0.0023
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Figure F.1. Log-likelihood profile. The graph shows the log-likelihood function L(θ|yT ) for selected
parameters (σk, ρz, σz)

⊤ ∈ Θ, while keeping the remaining parameters at their population values
in Table 1. The plots are generated using a single simulated sample of quarterly observations for
a period of 60 years. Different samples provide the same conclusions. Panel A corresponds to
simulated measurements that have been sampled as stocks, and those in Panel B as flows. The
vertical black solid line denotes the true population value of the parameter.
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Table F.2. ML estimates. The table reports the ML estimates of θexo = [ρz, σz, σk]
⊤ for the model

in Section 4 using two additional sets of measurements for the U.S. from 1959:Q1 to 2019:Q4:
quarterly data on hours worked, N , and aggregate output, Y ; and aggregate consumption, C, and
aggregate output, Y . The remaining parameters of the model θss are fixed to the values in Table
1. Bootstrap standard errors computed from B = 499 samples are reported in parentheses.

N and Y C and Y

θexo F-SSR S-SSR EM-SSR F-SSR S-SSR EM-SSR

ρz 0.0194 4.87E-08 8.44E-07 0.0633 0.0607 0.0565
(0.0744) (0.0071) (0.0079) (0.0508) (0.0383) (0.0342)

σz 0.0133 0.0104 0.0104 0.0107 0.0089 0.0089
(0.0016) (0.0011) (0.0010) (0.0011) (0.0010) (0.0009)

σk 0.0318 0.0221 0.0217 0.0263 0.0177 0.0174
(0.0065) (0.0019) (0.0019) (0.0020) (0.0013) (0.0012)
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Figure F.2. Historical shock decomposition (S-SSR model). The plot shows the historical contri-
bution of each of the structural shocks recovered from the estimated S-SSR model on the observed
measurements over the period 1975:Q1-2019:Q4 (expressed in percentages). The black solid line
in the upper panel represents annual consumption growth rates. The black solid line in the lower
panel represents quarterly percentage deviations of hours worked from its steady state (n⋆ = 33%).
NBER recession are reported with the light gray vertical bands.
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Figure F.3. Historical shock decomposition (EM-SSR model). The plot shows the historical con-
tribution of each of the structural shocks recovered from the estimated EM-SSR model on the
observed measurements over the period 1948:Q1-2019:Q4 (expressed in percentages). The black
solid line in the upper panel represents annual consumption growth rates. The black solid line in
the lower panel represents quarterly percentage deviations of hours worked from its steady state
(n⋆ = 33%). NBER recession are reported with the light gray vertical bands.
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Figure F.4. Aggregate real consumption per capita. The figure plots the annualized growth rate
of aggregate real consumption per capita, 100/h · (log(Cτ/Cτ−1) − ηh), where h is the sampling
frequency. The top panel samples the measurement at a quarterly frequency, h = 1/4, while the
bottom panel samples at a monthly frequency, h = 1/12. In both cases, the sample spans from
1959:M1 to 2019:M12.

Figure F.5. Latent states, monthly. Filtered monthly series of aggregate capital stock and TFP
(as % deviations from their corresponding steady-state values). Sample spans from January 1960
to December 2019. The series are obtained from the MXF-SSR model (C.3)-(C.4) after parameter
estimation and filtering using as measurements monthly real PCE and quarterly hours worked.
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Table F.3. Normality tests. Battery of normality tests for the estimated F-SSR model without
measurement error (see Table 3, first column). The table reports the values of the test statistics
and their associated p-values (in parenthesis) for three tests that assess the normality of the pre-
diction errors, ωτ |τ−1. The tests are performed over different subsamples of the sample used in the
estimation, as indicated in the first column. The second and third columns report the results from
a Shapiro-Wilk test (SW, Shapiro and Wilk, 1965) on the univariate normality of the prediction
errors associated with consumption, ωC , and hours worked, ωN . The fourth column reports the
results from the omnibus asymptotic multivariate normality test in (BS, Bowman and Shenton,
1975). The last column reports the results from the omnibus approximate normality test in (DH,
Doornik and Hansen, 2008). All the tests evaluate the null hypothesis that the underlying data is
normally distributed with a given mean and variance. P -values larger than 0.05 indicate that the
test fails to reject the null hypothesis at the 5% level of significance.

Period SW, ωC SW, ωN BS DH

01-Jun-1960 - 01-Dec-1966 0.97 0.94 1.79 2.77
(0.51) (0.15) (0.77) (0.60)

01-Dec-1966 - 01-Jun-1973 0.92 0.93 5.30 9.37
(0.04) (0.08) (0.26) (0.05)

01-Jun-1973 - 01-Mar-1980 0.99 0.87 16.96 17.20
(0.95) (0.00) (0.00) (0.00)

01-Mar-1980 - 01-Sep-1986 0.94 0.94 4.44 6.69
(0.11) (0.16) (0.35) (0.15)

01-Sep-1986 - 01-Jun-1993 0.96 0.94 1.68 4.78
(0.34) (0.14) (0.79) (0.31)

01-Jun-1993 - 01-Dec-1999 0.93 0.96 2.89 4.49
(0.07) (0.43) (0.58) (0.34)

01-Dec-1999 - 01-Sep-2006 0.95 0.95 13.17 11.00
(0.22) (0.19) (0.01) (0.03)

01-Sep-2006 - 01-Mar-2013 0.97 0.93 1.95 3.88
(0.52) (0.07) (0.74) (0.42)

01-Mar-2013 - 01-Dec-2019 0.96 0.98 1.72 3.18
(0.40) (0.81) (0.79) (0.53)
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