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Abstract

A dynamic factor model is proposed in that factor dynamics are driven
by stochastic time trends describing arbitrary persistence levels. The pro-
posed model is essentially a long memory factor model, which nests stan-
dard I(0) and I(1) behavior smoothly in common factors. In the estima-
tion, principal components analysis (PCA) and conditional sum of squares
(CSS) estimations are employed. For the dynamic model parameters, cen-
tered normal asymptotics are established at the usual parametric rates, and
their small-sample properties are explored via Monte-Carlo experiments.
The method is then applied to a panel of U.S. industry realized volatilities.
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1 Introduction

Given the increasing availability of large data sets, factor models are extensively

used as a dimension reduction tool in several applications. For example, Kapetan-

ios (2004) and Cristadoro et al. (2005) build economic indicators while Bernanke

et al. (2005) and Favero et al. (2005) derive policy results employing factor mod-

els. There has also been a keen focus on using factors for forecasting, see, for

recent reviews, Uematsu and Yamagata (2022), Baltagi et al. (2021), Fan et al.

(2021) and Karabiyik and Westerlund (2021). Furthermore, factor models have

been employed in finance to analyze stochastic volatility, Cipollini and Kapetanios

(2008), market liquidity, Hallin et al. (2011), and market volatility, Barigozzi and

Hallin (2016), and in energy economics to analyze electricity prices, Dordonnat

et al. (2012), and Ergemen et al. (2016). On the other hand, the theoretical de-

velopment of static and dynamic factor models has taken place in stationary I(0)

and nonstationary I(1) setups (see e.g. Forni et al. (2000), Stock and Watson

(2002a), Bai and Ng (2002) Bai (2003), Bai and Ng (2004), Forni et al. (2004),

Forni et al. (2005), Bai and Ng (2008), Choi (2012) and Barigozzi et al. (2016,

2021) for a review) as well as under long-memory setups (see e.g. Ray and Tsay

(2000), Chen and Hurvich (2006), Morana (2007), Luciani and Veredas (2015),

Hartl (2020) and Cheung (2021)).

In this paper, we propose a dynamic factor model with arbitrary persistence in

common factors, smoothly nesting the typical I(0) and I(1) cases as well as cases

in which the integration orders are fractional thereby covering also long memory

factor models. This strand of the literature allows for persistence in observed series

to be generated by common latent sources, coupled with the empirical evidence

that several economic and financial indicators exhibit long-range dependence of

fractional orders; see, among others, Gil-Alaña and Robinson (1997), Michelacci

and Zaffaroni (2000), and Bollerslev et al. (2013) as well as the theoretical evidence

that aggregation can lead to long memory; see Robinson (1978), Granger (1980),

Chambers (1998) and Pesaran and Chudik (2014).

In the setup, we allow for varying degrees of persistence in the analyzed se-

ries through common factors using fractionally integrated time series processes

in which persistence levels are effectively unrestricted cf. Hualde and Robinson

(2011) and thus the entire spectrum covering stationary, nonstationary, invertible

and noninvertible cases can be studied, unlike the traditional static and dynamic

factor models. Our approach also sets contrast to the existing long memory models

in that our model has a greater deal of flexibility in the allowed range of memory
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values for factors; memory estimates can be obtained at the standard
√
T rate; and

there is no dependence on a user-chosen bandwidth parameter, unlike the mod-

els employing semiparametric memory estimation, see Hartl and Weigand (2019),

Hartl (2020) and Cheung (2021), thus circumventing the problem of bandwidth

selection to which memory estimates are sensitive.

In the methodology, we first estimate the factor loadings with first-differenced

data, and then project the data in levels onto the space spanned by the esti-

mated loadings to obtain the common factor estimates, which is essentially a least-

squares procedure. The loadings and factor estimates are consistent at the rate

Op

(
max

(
N−1/2, T−1/2

))
. Based on these consistent factor estimates, we obtain

the estimates of factor integration orders employing a CSS criterion. The dynamic

parameter estimates are
√
T consistent and, when TN−2 → 0 as (N, T ) → ∞,

have a centered asymptotic normal distribution, where N is the cross-section size

and T is the time series length. For the asymptotic results, since we require

that both N and T grow, we depart from short panel (fixed T ) and multivariate

time series (fixed N) setups as considered by Robinson and Velasco (2015, 2019).

Further, we discuss the issues of estimation with nonstationary errors of general

form, i.e. beyond the unit-root case we consider in this paper, and estimation of

the number of factors. We explore the small-sample behavior of our estimates by

means of Monte Carlo experiments and show that the estimates behave well even

in small panels.

In the empirical application, we analyze the sources of common persistence in a

panel of U.S. industry realized volatilities (RV’s hereafter). We find cointegrating

relationships between the estimated factor and industry RV’s, and show how the

estimated factor compares to other potential indices in terms of both explanatory

and predictive power. We show that the estimated factor and a proxy obtained by

cross-sectionally averaging the data perform equally well. We also present an out-

of-sample study which shows that our factor estimate and models augmented with

it significantly improve the forecasting performance over typical ARFIMA(1, d, 0)

alternatives.

The remainder of the paper proceeds as follows. Next section presents the

model and the conditions imposed to study it. Section 3 details the estimation

procedures for common factors and dynamic parameters, and contains the main re-

sults. Section 4 presents a finite-sample study based on Monte Carlo experiments.

Section 5 presents the empirical application, and Section 6 concludes.

Throughout the paper, “(N, T ) → ∞” denotes asymptotics in which both N

and T are growing; “ →p ” denotes convergence in probability; “ →d ” denotes
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convergence in distribution; M < ∞ denotes a generic positive number indepen-

dent of T and N, and ‖A‖ = trace(AA′)1/2. All mathematical proofs are collected

in the appendix.

2 The Model

For an observable array {xit, i ≥ 1, t ≥ 1} , we consider

xit = γ′ift + eit (1)

where the common component, γ′ift, consists of the r × 1, with r fixed, vector of

common factors, ft, and the corresponding vector of factor loadings, γi, while the

scalar eit constitutes the idiosyncratic component. Adopting the model considered

by Hualde and Robinson (2011), we assume that the dynamics in the vector of

common factors are governed by

ft = λ−1
t (L; θ0)εt, t = 1, . . . , T, (2)

so that the k-th component of ft satisfies

fkt = λ−1
t (L; θk0)εkt , (3)

for k = 1, . . . , r, where εkt are factor-specific shocks, θk0 ∈ Θk ⊂ Rp+1 is a (p+ 1)×
1 parameter vector, L is the lag operator, and

λt (L; θ) =
t∑

j=0

λj (θ)Lj (4)

for θ ∈ Θ and each t > 0 truncates λ (L; θ) = λ∞ (L; θ). We assume that λ (L; θ)

takes the form

λ (L; θ) = ∆δψ (L; ξ) ,

where δ ≥ 0 is a scalar, ξ is a p × 1 vector, and θ = (δ, ξ′)′. Here, ∆ = 1 − L is

the first-difference operator, so that the fractional filter ∆δ has the expansion

∆δ =
∞∑
j=0

πj(δ)L
j , πj(δ) =

Γ(j − δ)
Γ(j + 1)Γ(−δ)

,
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and we denote the truncated version as ∆δ
t =

∑t−1
j=0 πj(δ)L

j, with Γ (−δ) =

(−1)δ∞ for δ = 0, 1, . . . , Γ (0) /Γ (0) = 1. Further, ψ (L; ξ) is a known function,

such that for complex-valued z, |ψ (z; ξ)| 6= 0, for |z| ≤ 1, and in the expansion

ψ (L; ξ) =
∞∑
j=0

ψj (ξ)Lj ,

the coefficients ψj (ξ) satisfy

ψ0 (ξ) = 1 , |ψj (ξ)|+
∥∥∥ψ̇j(ξ)∥∥∥ = O (exp (−c (ξ) j)) , (5)

for ξ ∈ Ξ ⊂ Rp, where ψ̇j(ξ) = (d/dξ′)ψj(ξ), and c (ξ) is a positive-valued function

of ξ. Note that

λj (θ) =

j∑
k=0

πj−k (δ)ψk (ξ) , j ≥ 0 , (6)

behaves asymptotically as πj(δ),

λj (θ) = ψ (1; ξ) πj(δ) +O
(
j−δ−2

)
, as j →∞ ,

where

πj(δ) =
1

Γ(−δ)
j−δ−1(1 +O(j−1)) , as j →∞ ,

see Robinson and Velasco (2015). Thus, fkt is integrated of order δk0, indicated

as fkt ∼ I(δk0), with the value of δk0 determining whether it is asymptotically

stationary (δk0 < 1/2) or nonstationary (δk0 ≥ 1/2) , and ψ(L; ξk0) describes the

short memory dynamics of stable ARMA type. Important special cases included

in the specification are stationary ARMA factors (δk0 = 0), and factors of unit

root type (δk0 = 1). For example, if factors are truly AR(1), this will be picked up

by the data, with the autocorrelation coefficient estimated as part of ξk0, jointly

with the persistence δk0.

Temporarily suppressing the short-memory dynamics in (3) (so that ξk0 = 0),

we can write

fkt =
t∑

s=0

πs(−δk0)εkt−s, (7)
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and when δk0 = 1,

fkt =
t∑

s=0

εkt−s.

The latter results also by taking ρ = 1 in the autoregressive scheme popular in

the dynamic factor model literature:

fkt =
t∑

s=0

ρsεkt−s. (8)

The typical alternatives to ρ = 1 covered by (8) are the stationary ones ρ ∈ (−1, 1)

or the explosive ones ρ > 1. These and other related versions of the dynamic

(autoregressive) factor models are available in the literature, see e.g. Barigozzi

et al. (2016). In contrast, note that in the fractional specification in (7), the

weights πs(−δk0) have decay or growth that is, unlike in (8), not exponential but

hyperbolic, since, for any δ,

πs(δ) =
1

Γ(−δ)
s−δ−1(1 +O(s−1)) as s→∞,

see Robinson and Velasco (2015). Additionally, the fractional class described by

πs(−δk0) has a smoothness at δk0 = 1 and elsewhere, thus the dynamic parameter

estimates and the related test statistics have standard asymptotic distributions

with the usual parametric rates, see also Robinson and Velasco (2015).

We impose the following conditions to study the model in (1).

Assumption A

A.1. The idiosyncratic errors eit are governed by (1 − ρiL)eit = ai(L)uit for

all i, where ai(L) =
∑∞

k=0 aikL
k with

∑∞
k=0 k |aik| ≤ M, and |ρi| ≤ 1. The vec-

tor of innovations, ut = (u1t, . . . , uNt)
′, satisfy ut ∼ iid (0,Ωu) , Ωu > 0, with

E ‖ut‖4 <∞, and E (uitujt) = τij with
∑N

j=1 |τij| ≤M uniformly in i. The factor-

specific idiosyncratic shocks vector, εt ∼ iid(0,Ωε), Ωε > 0, with E ‖εt‖4 < ∞,

rank
(
E
[
∆δ0
t ft∆

δ0
t f
′
t

])
= r, with r fixed, and E

[(
∆δk0
t fkt

)2
]
> E

[(
∆δl0
t flt

)2
]

> 0 for all k, l = 1, . . . , r with k < l. Also, for all i and t ≤ 0, uit = 0 and εt = 0.

A.2. The innovations uit and εks, and loadings γi are mutually independent

groups, for i = 1, . . . , N , k = 1, . . . , r, and s, t = 1, . . . , T.

6



A.3. Factor loadings γi are either nonrandom and satisfy ‖γi‖ ≤ M, or random

and satisfy E ‖γi‖4 ≤M, and as N →∞, N−1
∑N

i=1 γiγ
′
i →p Ir.

A.4. Let the parameter space for ξk be a compact subset Ξk of Rp . For ξk ∈ Ξk,

ψ (z; ξk) is twice continuously differentiable in ξk. For all ξk 6= ξi0, |ψ (z; ξk)| 6=
|ψ (z; ξk0)| on a subset of {z : |z| = 1} of positive Lebesgue measure, and (5) holds,

for all ξk ∈ Ξk, with ck (ξk) satisfying

inf
Ξk

ck (ξk) = c∗k > 0 ,

for k = 1, . . . , r.

Assumption A.1 allows for I(1) idiosyncratic components in (1) requiring only

fourth-order moments as in Barigozzi et al. (2021), and unlike Bai and Ng (2004)

and Cheung (2021) who require eighth-order moments. Further, the idiosyncratic

errors are allowed to have weak cross correlation in the sense that even as T and N

increase, the column sum of the error covariance matrix remains bounded, which

makes (1) an approximate factor model in the sense of Chamberlain and Rothschild

(1983). Also unlike Cheung (2021) and Ergemen and Velasco (2017), there is no re-

striction on the allowed range of memory values, cf. Hualde and Robinson (2011),

for the common factors. The condition E

[(
∆δk0
t fkt

)2
]
> E

[(
∆δl0
t flt

)2
]
> 0 for

all k, l = 1, . . . , r with k < l, implies that I(0) versions of all r factors contribute

to the variance of xit in a decreasing order of importance, and is a common iden-

tifying assumption in factor models, see Barigozzi et al. (2021) and Bai and Ng

(2013) for analogous versions of this condition on the factors and loadings, re-

spectively. The assumption on the initial conditions is common in nonstationary

analysis, see also Barigozzi et al. (2021). Although, among others, Robinson and

Velasco (2015, 2019) study the consequences of initial conditions under long mem-

ory setups, (1) is essentially a heterogeneous panel data model and Ergemen and

Velasco (2017) show that the initial condition bias is asymptotically negligible for

this class of models with N and T jointly growing. Assumption A.2 is a standard

assumption in the common factor literature to allow for common and idiosyn-

cratic components to be independent sources of variation. Assumption A.3 allows

for cases of both random and nonrandom γi, and implies that the r factors are

not redundant. The condition N−1
∑N

i=1 γiγ
′
i →p Ir together with the identifying

condition in Assumption A.1 are common identifying assumptions, see also Stock

and Watson (2002b) and Barigozzi et al. (2021). Finally, Assumption A.4 ensures

smoothness of the lag polynomials with the given parameters and the weights lead
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to short-memory dynamics, as also assumed by Robinson and Velasco (2015). The

parameter spaces can involve stationarity and invertibility restrictions on the lag

polynomials.

3 Estimation

The main interest in this paper is in the estimation of persistence induced by the

common factors while the dynamics in idiosyncratic components are treated as

nuisance. For each k = 1, . . . , r, the parameter vector θk0 in (3) bestows long-

and short-memory dynamics on xit through the common factor structure since for

i = 1, . . . , N, and t = 1, . . . , T,

xit =
r∑

k=1

γikλ
−1
t (L; θk0)εkt + eit. (9)

However, the common factor structure in (9) is not observable and needs to

be extracted so that the dynamic parameter vector θk0 can be estimated. In

the factor estimation literature, PCA is the usual choice. Since we allow eit to

be nonstationary under Assumption A.1, we follow the approach by Barigozzi

et al. (2021) to ensure the consistency of PCA. After extracting the common

factors, we estimate their stochastic dynamics parametrically based on (2) without

restricting persistence levels. Like us, Hartl and Weigand (2019), Hartl (2020) and

Cheung (2021) consider factor memory estimation but unlike ours, their methods

are based on local Whittle approaches using which the convergence rate is slower

and depends on the bandwidth choice. In contrast, our estimates enjoy a faster,√
T , convergence rate and is free of bandwidth choice.

We describe the estimation steps in turn, and also discuss the estimation of

the number of factors.

Estimating the factor structure. For PCA, we follow Barigozzi et al. (2021)

in that we estimate the factor loadings with first-differenced data, and then project

the data in levels onto the space spanned by the estimated loadings to obtain the

common factor estimates.

We can write down the first-differenced N -dimensional version of (1) as

∆xt = Γ∆ft + ∆et, t = 2, . . . , T,

where Γ is N × r, and ∆et is N × 1. Defining the N × T1, with T1 = T − 1, first-
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differenced data matrix ∆X = (∆X2, . . . ,∆XT ), the estimated loadings matrix,

Γ̂, is obtained by
√
N -times the first r normalized eigenvectors of the N ×N sam-

ple covariance matrix T−1
1 ∆X∆X′. This choice of the sample covariance matrix is

motivated by the fact that N < T in many macroeconomic and financial applica-

tions. Then, the common factors are estimated by projecting the data vector in

levels, xt, onto the space spanned by the estimated loadings, at any given point

in time t = 1, . . . , T,

f̂t = N−1Γ̂′xt =
1

N

N∑
i=1

γ̂ixit (10)

under the normalization N−1Γ̂′Γ̂ = Ir.

For any r × r invertible matrix H, it is possible to write the N -dimensional

version of (1) as

xt =
(
ΓH−1

)
(H ′ft) + et = Γ∗f ∗t + et, t = 1, . . . , T,

from which it is clear that Γft = Γ∗f ∗t , but the factors and loadings are not

separately identified. However, imposing the conditions N−1
∑N

i=1 γiγ
′
i →p Ir in

Assumption A.3 and E

[(
∆δk0
t fkt

)2
]
> E

[(
∆δl0
t flt

)2
]
> 0 for all k, l = 1, . . . , r

with k < l in Assumption A.1, the factors and loadings are identified up to a

sign. These conditions are common identifying assumptions in the literature, see

e.g. Barigozzi et al. (2021), and the theory presented in what follows can be

adapted to different identifying conditions, such as those proposed by Bai and Ng

(2013) and Fan et al. (2013). For the purpose of estimating factor dynamics, these

assumptions are innocuous.

Since the main interest of this paper is in estimating the factor dynamics, only

the convergence rates at which the factors and loadings are consistent are required

for the subsequent analysis. In the next lemma, we collect these consistency results

for the factors and loadings.

Lemma 1. Let J be an r × r diagonal matrix with entries ±1 depending on N

and T. Then, under Assumption A and as (N, T )→∞,

(i) for all i, ‖γ̂′i − γ′iJ‖ = Op

(
max

(
N−1/2, T−1/2

))
,

(ii) for fixed t, T−1/2
∥∥∥f̂t − Jft∥∥∥ = Op

(
max

(
N−1/2, T−1/2

))
.

These results are readily established in Lemma 1 of Barigozzi et al. (2021).

The result for the loadings in (i) is uniform in i, using which the convergence rate
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in (ii) is established cf. (10). For the purpose of this paper, the consistency result

for the factors in (ii) is sufficient. Finally, the dependence on matrix J and the

resulting sign indeterminacy do not pose any problem for the estimation of factor

dynamics in what follows.

Estimating the factor dynamics. For a given parameter vector θk = (δk, ξ
′
k)
′,

we can write (3) based on the estimated factors as

f̂kt = λ−1
t (L; θk)ε̂kt, (11)

for k = 1, . . . , r, from which the factor-specific-error estimates can be represented

as

ε̂kt(θk) = λt(L; θk)f̂kt. (12)

Denoting by θ̂k the estimate of the unknown true parameter vector θk0,

θ̂k = arg min
θk∈Θk

Lk,T (θk), (13)

where the feasible CSS criterion to be minimized, based on (12), is

Lk,T (θk) =
1

T
ε̂k(θk)ε̂k(θk)

′, (14)

where ε̂k = (ε̂k1, . . . , ε̂kT ) , and the dependence on f̂kt cf. (12) is suppressed.

The estimator θ̂k in (13) is implicitly defined and entails optimization over the

compact set Θk = Dk × Ξk, where Dk= [δk, δk] for suitable δk and δk such that

δk < δk and θk0 ∈ Θk for k = 1, . . . , r. The set of admissible values of δk0 ∈ Dk
is effectively unrestricted cf. Hualde and Robinson (2011), covering stationary,

non-stationary, invertible, and non-invertible cases, without requiring knowledge

on the whereabouts of δk0. This is particularly useful since fkt are unobservable.

The optimization in (14) can be conducted based on an appropriate numerical

optimizer in practice. For the typical case in which the factors are assumed to

have AR(1) short-memory dynamics, ε̂kt(θ) takes the simple form ε̂kt(θ) = ∆δ
t f̂kt−

ξ∆δ
t f̂kt−1.

We define

χ (L; ξ) =
∂

∂θ
log λ (L; θ) = (log ∆, (∂/∂ξ′) logψ (L; ξ))

′
=
∞∑
j=1

χj (ξ)Lj , (15)
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and introduce the (p+ 1)× (p+ 1) matrix

B (ξ) =
∞∑
j=1

χj (ξ)χ′j (ξ) =

[
π2/6 −

∑∞
j=1 χ

′
2j (ξ) /j

−
∑∞

j=1 χ2j (ξ) /j
∑∞

j=1 χ2j (ξ)χ′2j (ξ)

]
,

assuming that B (ξ0) is non-singular. The following result establishes the asymp-

totic behavior of the CSS estimates.

Theorem 1. Under Assumption A, θk0 ∈ Θk, and as (N, T )→∞,

θ̂k →p θk0

for k = 1, . . . , r. If, further, θk0 ∈ Int(Θk), and
√
T/N → 0 as (N, T )→∞,

√
T
(
θ̂k − θk0

)
→d N

(
0, B (ξk0)−1) .

This result is akin to those obtained by Hualde and Robinson (2011) and Nielsen

(2015) for fractional time series models but unlike their setups, estimation herein

is carried out on the estimated factors instead of observed series. Asymptotic

elimination of the estimation effect requires N to grow for consistency and grow

faster than
√
T for asymptotic normality. This rate requirement is also common

in slope estimation of heterogeneous panel data models, see, for example, Erge-

men and Velasco (2017) and Pesaran (2006). The result in Theorem 1 contrasts

to those in the long memory factor literature, see e.g. Cheung (2021), in that

inference herein is parametric with a faster (
√
T ) convergence rate, and there is

no dependence on a user-chosen bandwidth parameter. Further, the requirement

on the relative growth rates of N and T is standard and does not depend on the

unknown memory parameters.

In practice, we may simplify the standard errors on δ̂k to (T−1(π2/6)−1)1/2,

and retrieve those on ξ̂′k from estimation of an ARMA model for ∆δ̂k
t f̂kt, although

the long- and short-memory parameters are not asymptotically independent, as

seen from the variance-covariance matrix, B (ξk0)−1 , in Theorem 1.

Estimation under general idiosyncratic error dynamics. Alternative to

the specification for idiosyncratic errors in Assumption A.1, eit can be allowed to

have pure fractional, short memory only or both long and short memory dynamics

if we write eit = ϕ−1
t (L; ζi0)εit with εit ∼ iid(0, σ2

ε ) and ζi0 = (ϑi0, ς
′
i0)′ containing

the long-memory parameters ϑi0 and the vector of short-memory parameters ςi0.
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Cheung (2021) considers semiparametric estimation of ϑi0 while being agnostic

about ςi0 cf. Abadir et al. (2007). In our parametric setup, both ϑi0 and ςi0 can be

inferred from the CSS estimation based on some consistent estimate ẽit, in a sim-

ilar fashion to estimating the factor dynamics. While in practice, our method can

be readily applied after estimating idiosyncratic error dynamics and then trans-

forming the observed series to obtain iid residuals for PCA estimation, establishing

asymptotic results in this case is made more difficult due to the convolution of

two dynamic filters, in particular ϕt(L; ζi)λ
−1
t (L; θ), on the factor errors and is

therefore left for future research.

Estimating the number of factors. Under the dynamic specification in (2),

we have so far assumed the number of factors, r, to be known. In practice, r is un-

known and needs to be estimated. In the time domain, Onatski (2010) develops an

estimation strategy for the number of factors, in which idiosyncratic and system-

atic eigenvalues of the sample covariance matrix are distinguished. This approach

also handles substantial serial correlation in the idiosyncratic terms, which could

arise due to model misspecifications. The required rmax value for the test can be

determined following Ahn and Horenstein (2013)’s eigenvalue and growth ratio

statistics. In Section 5, we employ these criteria since they are suitable under our

setup, particularly allowing for strong dependence in the idiosyncratic errors.

4 Simulations

In this section we carry out Monte Carlo experiments to study the small-sample

performance of the factor and memory estimates in the general case in which

short and long memory dynamics are allowed in the factors, and cross-sectional

and time dependence are allowed in the idiosyncratic errors. In particular, we

generate the idiosyncratic errors eit = ρieit−1 + uit, where uit ∼ iidN(0, 1) over t

and fix Corr(uitujt) = 0.5, while considering ρi ∈ {0.5, 1} . We draw the factor

loadings γi as standard normals not to restrict the sign. We then generate the

serially correlated common factors, ft = ξ0ft−1 + ∆−δ0t εt, based on the iid shocks

εt drawn as standard normals and then fractionally integrated to the order δ0. We

focus on different cross-section sizes and time-series lengths, N and T, as well as

different values of δ0 and ξ0. Simulations are based on 5,000 replications.

We investigate the finite-sample properties of our estimate of δ0 based on

both the factor estimates f̂t, i.e. δ̂f̂ , and the true factors ft, i.e. δ̂f , as well

as the consistency of factor estimates based on average R2 measures. We set

12



N = 50, 100, 250, 400 and T = 50, 100, 250, 400 for values of δ0 = 0, 0.3, 0.6, 1 thus

covering the stationary I(0) case, a stationary long memory case, a slightly non-

stationary case and the I(1) (unit-root) case, respectively. Further, we consider

ξ0 = 0, 0.5 (as known) to cover pure fractional and serially correlated factor cases,

and r = 2 to study the performance in the more challenging two-factor case: the

performance in the r = 1 case is slightly better, especially when ρi = 1.

Tables 1 - 4 collect the simulation results. In all cases, an increasing N and T

reduces the amount of bias in memory estimation, with T playing a more important

role in bias reduction as expected. Factor serial correlation leads to slightly more

biased estimates δ̂f̂ , which is more pronounced for stationary values of δ0. This

is expected since short and long memory parameters are not independent of each

other cf. Theorem 1. When ρi = 1 resembling the I(1) errors case, the memory

estimates δ̂f̂ suffer from some bias when δ0 < 0.6 but when factor serial correlation

is additionally introduced, there is some bias cancellation. Also, a comparison of

the two memory estimates δ̂f̂ and δ̂f reveals that δ̂f̂ typically requires a larger

(N, T ), especially when ρi = 1 and δ0 < 0.6. Figure 1 plots the histogram of the

memory estimates based on estimated factors, δ̂f̂ , for the empirically relevant case

of ρi = 1 and ξ0 = 0.5, and demonstrates a good approximation to the normal

distribution for δ0 = 1 with N = 400 and T = 400.

In terms of consistency of the factor estimates, the factors are approximated

well in all cases, and R̄2 increases in N and typically in δ0 as a result of the

increased signal strength.

0.85 0.9 0.95 1 1.05 1.1
0

50

100

150

200
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Figure 1: Histogram of estimated factor memories vs. the normal curve
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5 Empirical Application

The study of financial volatility and its impact on economic activity and uncer-

tainty has found considerable interest in the literature, see for example Chauvet

et al. (2015) for a review. As an illustrative example of our methodology, we

analyze the common persistence sources of U.S. industry RV’s in relation to the

market RV. Earlier, Ergemen and Velasco (2017) have disclosed cointegrating re-

lationships between industry RV’s and the market RV for 30 U.S. industries after

projecting out the latent factor structure based on cross-sectionally averaged data.

In this application, we estimate the common factors of industry RV’s and their

dynamics in order to conclude whether there is a significant difference between

these two approaches in practice. Further in a predictive regression setup, we

study how the industry RV common factors fare to the market RV and cross-

sectionally averaged industry RV’s as well as the news-based U.S. economic policy

uncertainty (EPU) index due to Baker et al. (2016) for predicting industry RV’s

one-step ahead. Finally, we compare the out-of-sample forecasting performance

of our factor model against ARFIMA(1, d, 0) specifications as in Luciani and

Veredas (2015).

In order to calculate the monthly RV measures, we use daily average-value-

weighted returns data for the time period January 3, 2000 – September 30, 2021

(T=261 months) from Kenneth French’s Data Library for 49 industries in the

U.S. economy. As for the composite market returns, we use a weighted average of

daily returns of NYSE, NASDAQ and AMEX since the companies considered in

industry returns trade in one of these markets. Using the composite index returns

of NYSE, NASDAQ and AMEX, i.e. rm,t, we calculate

RVMt =

(
Nt∑
s∈t

r2
m,s

)1/2

, t = 1, 2, . . . , T,

where Nt is the number of trading (typically 22) days in a month. Next, for each

industry i = 1, . . . , 49, we calculate

RV Ii,t =

(
Nt∑
s∈t

e2
i,s

)1/2

, t = 1, 2, . . . , T,

where ei,s = ri,s − rm,s, cf. Chauvet et al. (2015). While we choose these RV

measures due to their simplicity, we note that several other RV measures are

readily available in the literature and they could also be employed instead.
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In Figure 2, we plot the estimated integration orders of industry RV’s based

on the CSS estimation. The estimated values are in the 0.5143-0.7124 range while

the integration orders of the market RV, cross-sectionally averaged industry RV’s

and U.S. EPU index are 0.6264, 0.6458 and 0.6444, respectively, with the standard

deviation of 0.0482.

Next, we estimate the latent common factors based on

RV Ii,t = γ′if̂t + ei,t, t = 1, 2, . . . , T.

We note that a drift term in (1), which is generally included to study level series

in practice, can also be included here simply by augmenting f̂t with a constant.

Alternatively, it would also be possible to perform the estimation on the demeaned

series.

To determine the number of factors, we employ the test proposed by Onatski

(2010) and determine the required rmax value based on Ahn and Horenstein (2013),

which suggests r = 1. We then perform diagnostic checks on the regression resid-

uals. The estimated integration orders of the regression residuals are not signifi-

cantly different from zero at the 5% significance level (with the highest estimated

value of 0.0885) and an autoregressive fitting to the residuals yields an average

AR(1) parameter of 0.41, which is suitable given the conditions under Assumption

A.1. Since the regression residuals are I(0) in this application, it is more efficient

to estimate the parameters based on level data instead of taking differences so we

carry out the estimation steps in Section 3 in levels.

In Figure 3, we plot the PCA estimate of industry RV common factor whose

integration order estimate, δ̂f̂ , equals 0.6450 and the AR(1) parameter estimate,

ξ̂, is 0.02 thus suggesting predominant long-range dependence characteristics. The

estimated common factor and other indices all show similar long-memory dynam-

ics based on their integration orders. Given the estimated integration orders of

industry RV’s in Figure 2 and the I(0) regression residuals, the regressions of the

industry RV’s on the estimated factor as well as other indices are cointegrating

regressions (with slope parameters positive and significantly different from zero).

In Figure 4, we plot the explained variation in each industry RV based on the es-

timated common factor, cross-sectionally averaged industry RV’s, the market RV

and U.S. EPU index. The estimated common factor and cross-sectionally aver-

aged industry RV’s are comparable in terms of the R2 measures while the market

RV and EPU index have lower explanatory power on average.
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Figure 2: CSS estimates of industry RV integration orders. Standard error of these estimates is 0.0482.
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Figure 3: PCA estimate of industry RV common factor (f̂t).

Figure 4: Explained variation in industry RV’s across different indices.

Predicting industry RV’s. We study the ability of the estimated factor for

predicting industry RV’s in comparison to the other indices based on the following

regression:

RV Ii,t = βif̂t−1 + vi,t, t = 2, . . . , T, (16)

where vi,t are assumed to satisfy the conditions in Assumption A.1. The estimates

of βi obtained from (16) are all positive and significantly different from zero at

the 5% significance level, and the R2 measures are reported together with the

predictive performances of other indices in Figure 5. According to these results,

the estimated factor, cross-sectionally averaged data and the market RV all show

comparable predictive ability with the average R2 measures of 0.3787, 0.3715 and

0.3356, respectively, while the EPU index performs significantly worse with an

average R2 measure of 0.1212.
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Figure 5: Predictive ability for industry RV’s across different indices.

Overall, the estimated factor and its proxy based on the cross-section average

of data, as used, among others, by Pesaran (2006) and Ergemen and Velasco

(2017), show equal performance in terms of explaining the industry RV’s as well

as predicting them in sample.

Out-of-sample forecasts for industry RV’s. Given the outstanding in-sample

predictive ability of the estimated factor and its proxy based on the cross-section

average of data, we analyze the out-of-sample forecasting performance for differ-

ent specifications and forecast horizons. We consider forecasts based on autore-

gressive fractionally integrated moving average (ARFIMA(1, d, 0)) specifications

as in Luciani and Veredas (2015), the estimated factor (f̂t), f̂t augmented with

ARFIMA(1, d, 0), cross-sectionally averaged data (C-S avg), and C-S avg aug-

mented with ARFIMA(1, d, 0). The forecasts are obtained for one- and four-

month horizons in an expanding window scheme. The models are then evaluated

in terms of their forecast performance based on the model confidence set (MCS)

approach by Hansen et al. (2011).

We consider the January 2000 - April 2017 in-sample period, corresponding to

80% of the data, and obtain forecasts for the May 2017 - September 2021 out-of-

sample period, to stress-test the method by also including the abrupt RV changes

in the recent COVID-19 period. We collect the 95% MCS, M̂0.95, p-values over

different horizons in Table 5. The results show that in one-month-ahead forecasts,

ARFIMA(1, d, 0) is outperformed for all industries, and the models including

f̂t and C-S avg are consistently contained in M̂0.95. Further, the specifications

including f̂t outperform those only with the C-S avg for most industries. For the

four-month horizon, models including f̂t are still dominating although the results

are heterogeneous: ARFIMA(1, d, 0) is outperformed for 40 out of 49 industries

mainly by the specifications including f̂t, which perform the best for 24 out of 49
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industries. Models based on C-S avg performs the best for 16 out of 49 industries.

Overall, we can conclude that the estimated factor f̂t and its augmented speci-

fications can be used as benchmarks for forecasting industry RV’s while in several

cases, also a measure as simple as C-S avg can be a powerful forecasting tool.

6 Final Remarks

We have considered a dynamic factor model with arbitrary persistence in the

common factors. Under a large N, T setup, we estimate the common factors based

on PCA and employ a CSS criterion to estimate factor memories, in both of which

cases the estimates are consistent at the standard parametric rates and the factor

memory estimates have centered normal asymptotics. Simulations based on Monte

Carlo experiments indicate that the method works even in small panels, and then

we apply it to a panel of U.S. industry realized volatilities. While the setup allows

for general dynamics in the factors, it can be extended nontrivially in the following

directions: 1) asymptotic results can be established under more general stochastic

dynamics in the idiosyncratic errors, eit; 2) time-varying loadings, γi,t, can be

introduced; 3) general factor dynamics under nonlinear setups can be investigated;

4) spatial dependence can be incorporated into the model for more robust insights

in empirical applications; 5) in a frequency-domain approach, singularity in the

spectrum taking place at a frequency away from zero or at seasonal frequencies

can be considered.
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7 Appendix

7.1 Proof of Lemma 1

For the proof, we only show that our assumptions match those imposed by Barigozzi

et al. (2021) for proving their Lemma 1 although in (1) we do not consider deter-

ministic components, so the proof under our setup follows easier steps. Under our

Assumption A.1, εt ∼ iid(0,Ωε), Ωε > 0, with E ‖εt‖4 <∞,

rank
(
E
[
∆δ0
t ft∆

δ0
t f
′
t

])
= r, with r fixed, and E

[(
∆δk0
t fkt

)2
]
> E

[(
∆δl0
t flt

)2
]

> 0 for all k, l = 1, . . . , r with k < l. These conditions match their Assumption 1,

except our factor DGP is assumed to be given by (2). However, we can write cf.

(3),

∆δk0
t fkt = ψ(L; ξk0)−1εkt, t = 1, . . . , T,

and under Assumption A.4, the RHS induces short-memory dynamics resembling

the conditions in Barigozzi et al. (2021)’s Assumption 1(b). The assumptions

regarding loadings given in our Assumption A.3 match their Assumption 2.

The conditions (1 − ρiL)eit = ai(L)uit for all i, where ai(L) =
∑∞

k=0 aikL
k

with
∑∞

k=0 k |aik| ≤ M, and |ρi| ≤ 1; ut = (u1t, . . . , uNt)
′, satisfy ut ∼ iid (0,Ωu) ,

Ωu > 0, with E ‖ut‖4 <∞, and E (uitujt) = τij with
∑N

j=1 |τij| ≤M uniformly in i

in Assumption A.1, together with our Assumption A.2 match those in Assumption

3 of Barigozzi et al. (2021). Finally, their Assumption 4 is stated within our

Assumption A.1 as for all i and t ≤ 0, uit = 0 and εt = 0.

Therefore, the uniform result on the loadings readily applies in our case. For

obtaining the convergence rates of the factor estimates, our setup is not affected

by the estimation of deterministic components, which is why the rate N−(1−η),

η < 1, in Lemma 1 of Barigozzi et al. (2021) is not required here. �
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7.2 Proof of Theorem 1

We begin by writing from (12)

ε̂kt(θk) =λt(L; θk)fkt + λt(L; θk)
(
f̂kt − fkt

)
,

=εkt(θk) + λt(L; θk)
(
f̂kt − fkt

)
suppressing dependence on the matrix J in Lemma 1 since the factor dynamics

are not affected by the signs of the factors. Then, making the dependence on the

estimation effect f̂kt − fkt explicit in (14),

Lk,T (θk; f̂kt) =
1

T

T∑
t=1

ε̂kt(θk)
2,

=
1

T

T∑
t=1

[
εkt(θk) + λt(L; θk)

(
f̂kt − fkt

)]2

,

=:LT (θk; ft) +Op

(
T−1 + (NT )−1/2 +N−1

)
by the result in Lemma 1. Then, as (N, T ) → ∞, Lk,T (θk; f̂kt) = Lk,T (θk; fk,t) +

op(1), and
√
T ∂
∂θk
Lk,T (θk; f̂kt) =

√
T ∂
∂θk
Lk,T (θk; fkt)+Op

(
T 1/2N−1

)
, which is why√

T/N → 0 is required for asymptotic normality in Theorem 1. Given these, for

the rest of the proof, we show the results based on Lk,T (θk; fkt) and suppress the

dependence on fkt to write Lk,T (θk).

7.2.1 Proof of Consistency

As (N, T )→∞, the CSS criterion can be written as

Lk,T (θk) =
1

T

T∑
t=1

(
λ0
t (L; θk) εkt

)2
(17)

where

λ0
t (L; θk) = λt (L; θk)λ

−1
t (L; θk0) =

t∑
j=0

λ0
j (θk)L

j.

Following Hualde and Robinson (2011), we give the proof for the most general case

where possibly δk ≤ δk0− 1/2. While δk may take arbitrary values from [δk, δk] for

given δk < δk, ensuring uniform convergence of Lk,T (θk) requires the study of cases

depending on δk0−δk, noting that under Assumption A.4 short memory dynamics

are dominated by long memory properties, see Robinson and Velasco (2015). We
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analyze each case separately in the following.

In the proof, we adopt the arguments in Hualde and Robinson (2011). For

εk > 0, define Qkε = {θk : |δk − δk0| < εk} , Qkε = {θk : θk /∈ Qkε, δk ∈ Dk} . For

small enough εk,

P r(θ̂k ∈ Qkε) ≤ Pr

(
inf

Θk∈Qkε
Sk,T (θk) ≤ 0

)
where Sk,T (θk) = Lk,T (θk) − Lk,T (θk0). In the rest of the proof, we will show

that Lk,T (θk), and thus Sk,T (θk), converges in probability to a well-behaved func-

tion when δk0 − δk < 1/2 and diverges when δk0 − δk ≥ 1/2. In order to ana-

lyze the asymptotic behavior of Sk,T (δk) in a neighborhood of δk = δk0 − 1/2,

a special treatment is required. For arbitrarily small ζk > 0, such that ζk <

δk0−1/2−δk, define the disjoint sets Θk1 = {θk : δk ≤ δk ≤ δk0 − 1/2− ζk} , Θk2 =

{θk : δk0 − 1/2− ζk < δk < δk0 − 1/2} ,Θk3 = {θk : δk0 − 1/2 ≤ δk ≤ δk0 − 1/2 + ζk},
and Θk4 =

{
θk : δk0 − 1/2 + ζk < δk ≤ δk

}
, so that Θk = ∪4

l=1Θkl. We will show

Pr

(
inf

θk∈Qkε∩Θkl

Sk,T (δk) ≤ 0

)
→ 0 as T →∞, l = 1, . . . , 4. (18)

Proof of (18) for l = 4. We denote by σ2
k the k-th diagonal element of Ωε, i.e.

E(ε2
kt) = σ2

k, and show that

sup
θk∈Θk4

∣∣∣∣∣ 1

T

T∑
t=1

[
(λ0

t (L; θk) εkt)
2 − σ2

k

∞∑
j=0

λ0
j (θk)

2

]∣∣∣∣∣ = op(1). (19)

We first show, following Hualde and Robinson (2011), that

1

T

T∑
t=1

(λ0
t (L; θk) εkt)

2 =
1

T

T∑
t=1

(
t∑

j=0

λ0
j (θk) εkt−j

)2

→p σ2
k

∞∑
j=0

λ0
j (θk)

2 ,

uniformly in δk by Assumption A.1 as T →∞ since −1/2 + ζk < δk− δk0 for some

ζk > 0. Since the limit is uniquely minimized at θk = θk0, as it is positive for all

θk 6= θk0, (18) holds for l = 4 if (19) holds.
To check (19), we show

sup
θk∈Θk4

∣∣∣∣∣∣ 1

T

T∑
t=1

 t∑
j=0

λ0
j (θk) εkt−j

2

− E

 t∑
j=0

λ0
j (θk) εkt−j

2∣∣∣∣∣∣ = op(1),
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where the term in absolute value is

1

T

T∑
j=0

λ0
j (θk)

2
T−j∑
l=1

(εkl − σ2
k)

+
2

T

T∑
j=0

λ0
j (θk)

2
T−j∑

l=s−j+1

εklεkl−(s−j) = (a) + (b). (20)

We have

E sup
Θk4

|(a)| ≤

(
1

T

T∑
j=0

sup
Θk4

λ0
j (θk)

2 E

∣∣∣∣∣
T−j∑
l=1

(ε2
kl − σ2

k)

∣∣∣∣∣
)
.

Further, Var(
∑T−j

l=1 ε
2
kl) = O(T ), uniformly in j, so using −1/2 + ζk < δk − δk0,

sup
Θk4

|(a)| = Op

(
T−1/2

∞∑
j=1

j−2ζk−1

)
= Op(T

−1/2).

By summation by parts, the term (b) in (20) is

2λ0
T (θk)

T

T−1∑
j=0

T−1∑
s=j+1

T−j−1∑
l=s−j+1

λ0
j (θk)

′ εklεkl−(s−j)

− 2

T

T−1∑
j=0

λ0
j (θk)

T−1∑
s=j+1

[
λ0
s+1 (θk)− λ0

s (θk)
] s∑
r=j+1

T−j−1∑
l=r−j+1

εklεkl−(r−j)

= (b1) + (b2) .

Then, using that Var
(∑T−2

s=j+1

∑T−j−1
l=k−j+1

{
εklεkl−(s−j)

})
= O (T 2) uniformly in j,

E sup
Θk4

|(b1)| ≤ T−ζk−3/2

T∑
j=1

j−ζk−1/2Var

(
T−2∑
s=j+1

T−j−1∑
l=s−j+1

{
εklεkl−(s−j)

})1/2

≤ T−2ζk ,

while

E sup
Θk4

|(b2)| ≤ T−1

T∑
j=1

j−ζk−1/2

T−1∑
s=j+1

s−ζk−3/2Var

(
s∑

r=j+1

T−j∑
l=r−j+1

{
εklεkl−(r−j)

})1/2

≤ T−1/2

T∑
j=1

j−ζk−1/2

T−1∑
s=j+1

s−ζk−3/2 (s− j)1/2 ≤ KT−2ζk ,

and therefore (b) = Op(T
−2ζk) = op(1). This proves (19) and thus (18) for l = 4.
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Proof of (18) for l = 3, 2. The uniform convergence of the idiosyncratic com-

ponent in the proof of (18) follows the same steps as for l = 4, based on the

arguments in Hualde and Robinson (2011).

Proof of (18) for l = 1. Noting that

Lk,T (θk) =
1

T

T∑
t=1

(
λ0
t (L; θk) εkt

)2 ≥ 1

T 2

(
T∑
t=1

λ0
t (L; θk) εkt

)2

,

we write

Pr

(
inf
Θk1

LT (θk) > K

)
≥ Pr

T 2ζk inf
Θk1

(
1

T δk0−δk+1/2

T∑
t=1

λ0
t (L; θk) εkt−j

)2

> K



since δk − δk0 ≤ −1/2− ζk. For arbitrarily small εk > 0, we show

Pr

T 2ζk inf
Θk1

(
1

T δk0−δk+1/2

T∑
t=1

λ0
t (L; θk) εkt−j

)2

> K


≥ Pr

inf
Θk1

(
1

T δk0−δk+1/2

T∑
t=1

λ0
t (L; θk) εkt−j

)2

> εk

→ 1

as T →∞.Define hkT (δk) = T−δk0+δk−1/2λ0
t (L; θk) εkt−j = T−1/2

∑T
j=0

λ0
j (θk)

T δk0−δk εkt−j.

By the weak convergence results in Marinucci and Robinson (2000),

hkT (δk)⇒ λ0
∞ (1; θk)

∫ 1

0

(1− s)δk0−δk

Γ(δk0 − δk + 1)
δkBk(s)

as T →∞, where Bk(s) is a scalar Brownian motion, and by ⇒ we mean conver-

gence in the space of continuous functions in Θk1 with uniform metric. Tightness

and finite dimensional convergence follows from the fractional invariance property

presented in Theorem 1 in Hosoya (2005) as well as supT E [hkT (δk)
2] <∞. Then,

as T →∞,

(
1

T δk0−δk+1/2

T∑
t=1

λ0
t (L; θk) εkt−j

)2

→p λ0
∞ (1; θk)

2 Var

(∫ 1

0

(1− s)δk0−δk

Γ(δk0 − δk + 1)
δkBk(s)

)
=

σ2
kλ

0
∞ (1; θk)

2

(2(δk0 − δk) + 1) Γ2(δk0 − δk + 1)
,
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uniformly in θk ∈ Θk1, where

inf
Θk1

λ0
∞ (1; θ)2 Var

(∫ 1

0

(1− s)δk0−δk

Γ(δk0 − δk + 1)
δkBk(s)

)
=

σ2
k

(2(δk0 − δk) + 1) Γ2(δk0 − δk + 1)
> 0,

so that

Pr

inf
Θk1

(
1

T δk0−δk+1/2

T∑
t=1

λ0
t (L; θk) εkt−j

)2

> εk

→ 1 as T →∞

and (18) follows for l = 1 as εk is arbitrarily small. �

7.2.2 Proof of Asymptotic Normality

We first analyze the
√
T -normalized first derivative of Lk,T (θk) evaluated at θk =

θk0,

√
T
∂

∂θk
Lk,T (θk)

∣∣∣∣
θk=θk0

=
2√
T

T∑
t=1

εkt (χt (L; ξk0) εkt) (21)

where χt (L; ξk0) is the truncated version of (15) evaluated at ξk = ξk0.

Then, applying Proposition 2 in Robinson and Velasco (2015), we have as

T →∞,

2√
T

T∑
t=1

εkt (χt (L; ξk0) εkt)→d N
(
0, 4σ4

kB (ξk0)
)

under Assumptions A.1 and A.4.

Finally, we analyze the second derivative of Lk,T (θk) evaluated at θk = θk0,

(∂2/∂θk∂θ
′
k)Lk,T (θk)|θk=θk0

, which equals

2

T

T∑
t=1

(χt (L; ξk0) εkt) (χt (L; ξk0) εkt)
′ +

2

T

T∑
t=1

εkt
(
b0
t (L)εkt

)
where b0

t (L) = χ̇t (L; ξk0)+χt (L; ξk0)χt (L; ξk0)′ and χ̇t (L; ξk) = (∂/∂θ′)χt (L; ξk) .

Therefore, as T →∞,

∂2

∂θk∂θ′k
Lk,T (θk)|θk=θk0

→p 2σ2
kB (ξk0) .
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The convergence of the Hessian of Lk,T (θk),

L̈k,T (θk)→p L̈k,T (θk0)

can be shown as in Theorem 2 of Hualde and Robinson (2011) under Assumptions

A.1 and A.4 since θ̂k →p θk0. The proof is then complete. �
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Table 5: MCS p-values for May 2017 - September 2021 out-of-sample period using the January 2000 - April 2017 in-sample period.
Bold indicates the models included in M̂0.95, and h indicates the forecast horizon.

Agric Food Soda Beer Smoke Toys Fun Books Hshld Clths Hlth MedEq Drugs Chems

h=1:

ARFIMA(1,d,0) 0.217 0.202 0.871 0.177 0.041 1.000 0.307 0.208 0.254 0.012 0.232 0.333 0.051 0.078

f̂t 0.217 1.000 1.000 1.000 1.000 0.037 0.567 0.562 1.000 1.000 0.539 0.986 1.000 0.678

f̂t + ARFIMA(1,d,0) 1.000 0.567 0.518 0.431 0.364 0.037 1.000 0.383 0.340 0.878 1.000 0.876 0.179 0.930

C-S avg. 0.217 0.567 0.518 0.431 0.155 0.037 0.492 0.546 0.340 0.113 0.539 0.876 0.179 0.713

C-S avg. + ARFIMA(1,d,0) 0.169 0.566 0.136 0.373 0.786 0.037 0.246 1.000 0.323 0.180 0.539 1.000 0.159 1.000

h=4:

ARFIMA(1,d,0) 0.146 0.408 0.150 0.117 0.185 0.134 0.092 0.233 0.280 0.183 0.424 0.124 1.000 0.183

f̂t 0.149 0.408 0.129 0.117 1.000 0.134 0.092 0.159 0.280 1.000 0.424 1.000 0.138 1.000

f̂t + ARFIMA(1,d,0) 0.149 0.408 0.150 1.000 0.185 1.000 1.000 0.233 0.280 0.133 0.424 0.124 0.046 0.170

C-S avg. 1.000 1.000 1.000 0.117 0.185 0.134 0.092 1.000 1.000 0.143 1.000 0.124 0.138 0.183

C-S avg. + ARFIMA(1,d,0) 0.128 0.408 0.129 0.117 0.185 0.134 0.092 0.150 0.280 0.121 0.424 0.124 0.032 0.170

Rubbr Txtls BldMt Cnstr Steel FabPr Mach ElcEq Autos Aero Ships Guns Gold Mines

h=1:

ARFIMA(1,d,0) 0.093 0.088 0.082 0.528 0.761 0.422 1.000 0.036 0.693 0.235 0.225 0.215 0.445 0.100

f̂t 0.413 0.857 1.000 1.000 1.000 0.208 0.893 1.000 0.262 0.235 1.000 1.000 0.000 0.279

f̂t + ARFIMA(1,d,0) 0.397 1.000 0.153 0.763 0.650 0.080 0.658 0.162 0.693 0.299 0.643 0.417 0.000 0.613

C-S avg. 0.081 0.138 0.880 0.763 0.761 1.000 0.590 0.274 1.000 0.304 0.643 0.329 1.000 0.279

C-S avg. + ARFIMA(1,d,0) 1.000 0.138 0.105 0.627 0.229 0.422 0.590 0.070 0.135 1.000 0.599 0.303 0.035 1.000

h=4:

ARFIMA(1,d,0) 0.188 1.000 0.177 0.426 0.223 0.198 0.111 0.297 1.000 0.277 0.467 0.192 0.200 0.220

f̂t 0.188 0.367 0.177 0.426 1.000 0.198 0.111 1.000 0.176 1.000 1.000 0.192 0.047 1.000

f̂t + ARFIMA(1,d,0) 0.188 0.401 1.000 0.426 0.223 1.000 0.111 0.297 0.176 0.206 0.467 0.192 1.000 0.220

C-S avg. 1.000 0.245 0.177 1.000 0.223 0.198 1.000 0.297 0.176 0.277 0.467 1.000 0.200 0.220

C-S avg. + ARFIMA(1,d,0) 0.188 0.145 0.162 0.426 0.107 0.164 0.092 0.297 0.143 0.194 0.467 0.192 0.025 0.213
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Table 5 continued from previous page

Coal Oil Util Telcm PerSv BusSv Hardw Softw Chips LabEq Paper Boxes Trans Whlsl

h=1:

ARFIMA(1,d,0) 0.844 0.096 0.241 0.331 0.602 0.234 0.614 0.069 0.272 0.074 0.461 0.113 0.033 0.092

f̂t 0.306 0.151 1.000 0.128 1.000 1.000 0.569 0.511 0.387 0.754 0.791 0.494 1.000 0.493

f̂t + ARFIMA(1,d,0) 0.045 0.096 0.273 0.128 0.999 0.787 0.492 0.468 0.272 0.372 1.000 0.295 0.393 1.000

C-S avg. 0.326 1.000 0.273 0.128 0.999 0.603 0.613 0.468 0.272 0.754 0.704 1.000 0.860 0.396

C-S avg. + ARFIMA(1,d,0) 1.000 0.151 0.273 1.000 0.989 0.562 1.000 1.000 1.000 1.000 0.700 0.471 0.324 0.395

h=4:

ARFIMA(1,d,0) 0.240 1.000 0.206 0.053 0.276 0.110 0.128 1.000 1.000 1.000 0.065 0.192 0.244 0.250

f̂t 1.000 0.108 0.206 0.161 0.276 0.142 0.128 0.279 0.177 0.185 0.241 0.192 0.244 0.250

f̂t + ARFIMA(1,d,0) 0.240 0.141 0.206 0.084 0.276 0.142 1.000 0.279 0.177 0.185 0.241 0.192 1.000 1.000

C-S avg. 0.240 0.108 1.000 1.000 1.000 1.000 0.128 0.279 0.177 0.185 1.000 1.000 0.244 0.250

C-S avg. + ARFIMA(1,d,0) 0.224 0.108 0.206 0.050 0.276 0.110 0.128 0.279 0.177 0.185 0.061 0.192 0.244 0.250

Rtail Meals Banks Insur RlEst Fin Other

h=1:

ARFIMA(1,d,0) 0.079 0.111 0.472 0.091 0.152 0.101 0.425

f̂t 0.677 1.000 0.584 0.104 1.000 0.441 1.000

f̂t + ARFIMA(1,d,0) 0.381 0.113 0.584 0.091 0.320 1.000 0.420

C-S avg. 0.566 0.113 1.000 0.104 0.272 0.441 0.420

C-S avg. + ARFIMA(1,d,0) 1.000 0.113 0.452 1.000 0.272 0.083 0.272

h=4:

ARFIMA(1,d,0) 0.141 1.000 0.108 0.078 0.232 0.066 1.000

f̂t 1.000 0.123 1.000 0.080 1.000 0.163 0.076

f̂t + ARFIMA(1,d,0) 0.141 0.123 0.108 1.000 0.232 0.163 0.076

C-S avg. 0.141 0.123 0.108 0.080 0.232 1.000 0.076

C-S avg. + ARFIMA(1,d,0) 0.141 0.123 0.108 0.078 0.232 0.066 0.069
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