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Abstract

We investigate the relationship between per capita gross domestic product and per capita car-

bon dioxide emissions using national-level panel data for the period 1960-2018. We propose a

novel semiparametric panel data methodology that combines country and time fixed effects with

a nonparametric neural network regression component. Globally and for the regions OECD and

Asia, we find evidence of an inverse U-shaped relationship, often referred to as an environmental

Kuznets curve (EKC). For OECD, the EKC-shape disappears when using consumption-based

emissions data, suggesting the EKC-shape observed for OECD is driven by emissions exports.

For Asia, the EKC-shape becomes even more pronounced when using consumption-based emis-

sions data and exhibits an earlier turning point.
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Aarhus V, Denmark.
†Department of Economics and Business Economics and CREATES, Aarhus University, Fuglesangs Allé 4, 8210
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1 Introduction

Since the pre-industrial era, anthropogenic activity has driven atmospheric concentrations of green-

house gases to reach levels unprecedented at least in the last 800,000 years (IPCC, 2014), and effects

have been detected throughout the climate system. Carbon dioxide (CO2) is the most important

greenhouse gas and the key driver of climate change. It is estimated that CO2 emissions are respon-

sible for around 66% of total human contribution to temperature changes since 1750.1 The observed

increase in CO2 emissions is largely driven by income and population growth (IPCC, 2014), high-

lighting the importance of a sound understanding of the relationship between per capita income

and emissions. A better understanding of the relationship can provide important information to

the public and policy makers alike, as it determines whether economic growth poses a threat to

the environment, or rather presents a tool that can be used to combat climate change.

The aim of this paper is to investigate the shape of the income-emissions relationship, and

to assess whether it varies across regions of the world or changes over time. We are particularly

interested in possible evidence of an inverse U-shaped relationship, often referred to as an environ-

mental Kuznets curve (EKC). This particular shape has played a prominent role in the literature

and is surrounded with controversy. Using national-level panel data for the period 1960-2018, we

estimate the relationship between per capita gross domestic product (GDP) and per capita CO2

emissions. The model employed should be agnostic and able to balance cross-country dependencies

and cross-country heterogeneity in the shape of the income-emissions relationship. We propose a

novel semiparametric panel data methodology that combines parametric fixed effects with a non-

parametric regression component consisting of a feedforward neural network. Some parameters of

the neural network component are shared across all countries and used to learn common input

transformations, while other parameters are specific to regions of homogeneous countries to allow

for cross-region heterogeneity in the shape of the income-emissions relationship.

We propose a modeling framework that contains two distinct model specifications: a static

model and a dynamic model. The static model specification contains both country and time fixed

effects in addition to a neural network component that uses income as its only input variable.

The model is static in the sense that the shape of the income-emissions relationship is assumed

to be fixed over time. In this model, the level of the income-emissions relationship may change

over time through the time fixed effects. The dynamic model, by contrast, uses a time variable

as an additional input into the neural network component. By doing so, the dynamic model

learns how the income-emissions relationship potentially changes its entire shape over time. One

advantage of the dynamic model is also that it is easier to interpret the output of this model

than that of a model with time fixed effects. We demonstrate, in a Monte Carlo experiment, that

our proposed methodology is able to identify various functional forms of different complexity, and

we also demonstrate its ability to account for country-specific stochastic trends. In addition, we

demonstrate that the dynamic model is able to capture time-varying income-emissions relationships

that cannot be captured using time fixed effects. When applying our methodology to empirical,

1Percentage is calculated based on Table 2 of NOAA (2020) and reflects concentration-based, anthropogenic

radiative forcing for 2019 relative to 1750s. Radiative forcing measures the amount by which the Earth’s energy

budget is out of balance due to human activities.
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territorial emissions data, we find evidence of an EKC-relationship globally and for the regions

OECD and Asia. The dynamic model reveals that the global relationship is rather stable over

time. On the other hand, it seems the EKC-shape does not appear until late in the sample period

for OECD and Asia.

We also study the importance of international trade patterns for explaining the observed

income-emissions relationships. We use two distinct types of CO2 emissions estimates: territorial

emissions (based on production) and consumption-based emissions. The latter accounts for cross-

country emissions transfers through international trade. Comparing the relationships observed for

these distinct types of emissions estimates allows us to asses the importance of international trade

patterns. Using consumption-based emissions in our analysis instead of territorial emissions, the

evidence of an EKC-relationship for OECD disappears. For Asia, the EKC-relationship becomes

even more pronounced and with an earlier turning point. These findings suggest that the EKC-

relationship observed for OECD when using territorial emissions is driven by emissions exports to

other countries. The EKC-relationship observed for Asia when using territorial emissions is driven

by local consumption and accounting for emissions imports results in an earlier turning point of

the EKC.

The structure of this paper is as follows. In Section 2, we present the fundamental idea of the

EKC and discuss econometric issues involved with its estimation. Section 3 summarizes the data

set used in this paper. In Section 4, we present our proposed, neural network-based panel data

methodology for analyzing the EKC for CO2 emissions. Section 5 demonstrates the finite sample

properties of our proposed methodology through a Monte Carlo experiment, and Section 6 presents

the empirical analysis. Section 7 briefly summarizes and concludes.

2 The Environmental Kuznets Curve and its Econometric Issues

The literature on reduced-form modeling of the relationship between income and air pollution

dates back to the seminal contribution by Grossman and Krueger (1991), who find evidence of an

inverse U-shaped relationship between income and various air pollutants. The inverse U-shaped

relationship between income and air pollution, sketched in Figure 1, is often referred to as the

environmental Kuznets curve (EKC). Kuznets (1955) postulates a similar relationship between

income and inequality. The EKC is consistent with the idea that, in early stages of economic

development, air pollution grows rapidly as production expands (scale effect); however, as income

grows, air pollution eventually reaches a turning point after which structural changes (composition

effect) and technological improvements (technique effect) lead to a decline. The composition and

technique effects may be driven by underlying factors such as increased environmental concerns and

environmental policies, which in turn may be driven by even more fundamental factors. Empirically,

support of the EKC hypothesis has been mixed. For instance, Selden and Song (1994), Schmalensee

et al. (1998), Millimet et al. (2003), Costantini and Martini (2006), and Dutt (2009) find evidence

in favor of the EKC hypothesis,2 while, for example, Shafik (1994), Arrow et al. (1995), Holtz-Eakin

2We understand evidence of the EKC hypothesis to be evidence of an in-sample turning point in the estimated

relationship between income and air pollution.
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Figure 1: Illustrative environmental Kuznets curve

and Selden (1995), Wagner (2008), and Stern (2010) find evidence against it. For a recent survey

of the EKC literature, see Stern (2017).

Since Grossman and Krueger (1991), the most commonly adopted modeling approach within

the EKC literature has been to specify a panel data model consisting of country and time fixed

effects in addition to some ad hoc polynomial specification (typically quadratic) of the functional

relationship between income and air pollutant. However, this approach likely suffers from a va-

riety of econometric issues (Stern, 2004; Müller-Fürstenberger and Wagner, 2007; Wagner, 2008;

Aslanidis, 2009). Of these issues, the most critical seem to pertain to functional misspecification,

cross-sectional heterogeneity, structural changes, non-identifiable time effects, integrated variables,

and omitted variable bias. In this paper, we mainly focus on the issues of functional misspecifi-

cation, cross-sectional heterogeneity, structural changes, and non-identifiable time effects, but also

briefly address the issues of integrated variables and omitted variable bias.

Reliance on ad hoc parametric specifications of the functional relationship between income

and air pollutant is problematic, as different parametric specifications can lead to significantly

different conclusions, and functional misspecification is likely to occur (Harbaugh et al., 2002;

Galeotti et al., 2006; Tsurumi and Managi, 2015). A strand of the EKC literature has therefore

focused on semiparametric panel data models that combine use of parametric fixed effects with a

nonparametric regression component. This strand has focused mainly on spline-based approaches

(Schmalensee et al., 1998; Harbaugh et al., 2002; Dijkgraaf and Vollebergh, 2005; Auffhammer and

Steinhauser, 2012) and kernel-based approaches (Taskin and Zaim, 2000; Millimet et al., 2003;

Bertinelli and Strobl, 2005; Azomahou et al., 2006). Our work contributes to this discussion by

suggesting a semiparametric panel data methodology where the nonparametric component consists

of a feedforward neural network, one of the most popular machine learning algorithms. To the best

of our knowledge, this is the first time machine learning methods have been applied to study the

income-emissions relationship.

Assuming the true functional relationship between income and air pollution is of the EKC type,
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the idea behind relying on national-level panel data is to use information from developing countries

to provide information about the positively-sloped part of the EKC, and use information from

developed countries to provide information about the negatively-sloped part of the EKC. However,

some studies have challenged the assumption that all countries of the world would adhere to a

single, global EKC, and advocate allowing for cross-country heterogeneity (de Bruyn et al., 1998;

List and Gallet, 1999; Dijkgraaf and Vollebergh, 2005). Some studies also advocate the need to

take into account structural changes over time (Halkos and Tsionas, 2001; Romero-Ávila, 2008;

Hendry, 2018). We consider two distinct model specifications, distinguished by whether or not

they can accommodate changes in the shape of the income-emissions relationship over time. We

consider a static model specification, consisting of country and time fixed effects in addition to a

neural network component that uses income as its only input variable. The static model imposes

the assumption that the shape of the income-emissions relationship is fixed over time, although

it does allow for level-shifts over time through the time fixed effects. We also consider a dynamic

model specification. Instead of using time fixed effects to only allow for level-shifts in the income-

emission relationship over time, it uses a time variable as an additional input into the neural

network component. The dynamic model is able to learn how the income-emissions relationship

potentially changes its entire shape over time. In both model specifications, we consider allowing

for cross-sectional heterogeneity by letting a subset of parameters vary across regions of the world.

In the EKC literature, country and time fixed effects are usually treated as nuisance parameters,

motivating either the random effects or the fixed effects transformation to remove them. However,

such an approach might be problematic. The transformations remove only stochastic trends from

the data that are common to all countries (Stern and Common, 2001). They cannot remove

country-specific stochastic trends. In the presence of country-specific stochastic trends, methods

relying on the random effects or the fixed effects transformation will be inconsistent. This situation

is likely relevant, since country-specific stochastic trends are often encountered in practice (Perman

and Stern, 1999). The importance of being able to properly account for stochastic trends is also

emphasized by, for example, Perman and Stern (2003), Wagner (2008, 2015), and Lee and Lee

(2009). Instead of treating country and time fixed effects as nuisance parameters and trying to

remove them, we estimate fixed effects explicitly using a dummy variable approach. An extensive

Monte Carlo experiment indicates that our proposed methodology is able to account for country-

specific stochastic trends.

There is some evidence that the traditional EKC model omits important explanatory variables

even after controlling for country and time-specific effects (Stern and Common, 2001; Magnani,

2001). To alleviate the problem of omitted variables, it has been suggested to extend the traditional

EKC model with additional explanatory variables reflecting factors such as policies, governance,

and institutions (Panayotou, 1997; Torras and Boyce, 1998; Dasgupta et al., 2006); education,

urbanization, and inequality (Hill and Magnani, 2002; Barros et al., 2002; Borghesi, 2006); energy

prices and fuel mix (Agras and Chapman, 1999; Richmond and Kaufmann, 2006), and international

trade patterns (Suri and Chapman, 1998; Cole, 2003, 2004; Kearsley and Riddel, 2010). But,

no canonical variables have been agreed upon in the literature thus far, and it is outside the

scope of this paper to try to identify which variables to include to alleviate problems of omitted
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variable bias. However, since international trade patterns are often considered one of the most

important factors that can potentially explain the EKC (Dinda, 2004), we exploit the fact that we

have available both territorial and consumption-based CO2 emissions estimates, and compare the

income-emissions relationship obtained using these distinct types of emissions estimates to asses

the importance of international trade patterns. We are particularly interested in whether we find

evidence of the much debated pollution haven hypothesis (PHH; Stern et al., 1996; Dinda, 2004):

if changes in the structure of production experienced by developed countries are not met by similar

changes in the structure of consumption, the EKC might just reflect displacement of emissions

from developed countries with strong environmental regulation to less developed countries with

weaker environmental regulation.

In summary, we propose a novel neural network-based panel data methodology for analyzing the

EKC. To balance cross-country dependencies and cross-country heterogeneity in the shape of the

income-emissions relationship, some parameters of the neural network are shared across all countries

while other parameters are specific to regions of homogeneous countries. Our dynamic model

specification presents a fundamentally new approach to dealing with the issue of non-identifiable

separate income and time effects in a reduced form panel data model of the income-emissions

relationship by using a time variable as an additional input into the neural network, instead of

assuming separable income and time effects.

3 Data

To model the relationship between income and, respectively, territorial CO2 emissions and consump-

tion-based CO2 emissions, we consider distinct, unbalanced panels of data. The specifications of

the panels are reported in Table 1.

Territorial CO2 emissions estimates are from the Global Carbon Project (2019). Estimates

include emissions from fossil fuel combustion, oxidation, and cement production, and exclude emis-

sions from bunker fuels, as the latter cannot be allocated unambiguously to particular countries.

For the year 2018 (and for some countries 2016-2018), estimates are preliminary and made by the

Global Carbon Project (GCP) based on energy statistics published by British Petroleum. For the

first sample year 1960, the CO2 panel covers 86 countries and accounts for 79.0% of the world’s

total population and 65.9% of the world’s total CO2 emissions. For the period 1990 onward, it

covers more than 160 countries each year and accounts for more than 95.0% of the world’s total

population and CO2 emissions.

Use of consumption-based CO2 emissions in climate analysis has been advocated by Peters

and Hertwich (2008a,b). To account for emissions transfers via international trade, consumption-

based CO2 emissions adjust territorial CO2 emissions by adding emissions embedded in imports

and subtracting emissions embedded in exports (Peters et al., 2011). Consumption-based CO2

emissions estimates are also from the Global Carbon Project (2019). Throughout the sample

period, which does not begin until 1990, the CO2
C panel accounts for more than 90.3% of the

world’s total population and 93.5% of the world’s total CO2 emissions.
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Table 1: Panel specifications

CO2 panel CO2
C panel CO2

? panel

• CO2 emissions, • CO2
C emissions, • CO2 emissions,

Mt CO2 Mt CO2 Mt CO2

• GDP, • GDP, • GDP,

billion 2005 USD (PPP) billion 2005 USD (PPP) billion 2005 USD (PPP)

• Population, • Population, • Population,

millions millions millions

• 1960-2018 • 1990-2017 • 1990-2017

• 186 (81) countries • 117 (106) countries • 117 (106) countries

• 8,641 observations • 3,232 observations • 3,232 observations

Note: The CO2 panel contains data on territorial CO2 emissions (CO2 emissions) and is used in the territorial

emissions analysis of Section 6.1; the CO2
C panel contains data on consumption-based CO2 emissions (CO2

C

emissions) and is used in the consumption-based emissions analysis of Section 6.2; and the CO2
? panel is

based on data from the CO2 panel, restricted to the same sample period as the CO2
C panel, and is used as

reference in the consumption-based emissions analysis of Section 6.2. Emissions are measured in megatonnes

(Mt; i.e. 106 tonnes). Each panel also contains data on GDP measured in United States dollars (USD),

adjusted using purchasing power parities (PPP), and population sizes measured in millions. Row four of

the table reports sample lengths for each panel. Row five reports the number of countries in each panel,

where numbers inside parentheses denote the number of countries with complete data, i.e. countries without

“missing data” entries. The final row reports the total number of observations in each panel.

Data on population3 and GDP are from the World Development Indicators database of the

World Bank.4 The GDP series that we consider is constructed from the separate series GDP5

(current local currency units), the GDP deflator,6 and a purchasing power parity (PPP) conversion

factor.7

Besides estimating a global income-emissions relationship, we consider allowing for region-

specific relationships. We specify regions in accordance with the macro-regions defined for the

Shared Socioeconomic Pathways (SSPs) and related integrated assessment scenarios of the future

(Riahi et al., 2017), used for example by the Coupled Model Intercomparison Project Phase 6

(CMIP6) of the World Climate Research Programme. The regions are defined as follows:

• OECD: 41 OECD90 and EU member states and candidates.

3The series “SP.POP.TOTL” was downloaded on December 12, 2019.
4Accessible at databank.worldbank.org/source/world-development-indicators, last accessed on December

12, 2019.
5The series “NY.GDP.MKTP.CN” was downloaded on December 12, 2019.
6The series “NY.GDP.DEFL.ZS” was downloaded on December 12, 2019.
7The series “PA.NUS.PPP” was downloaded on December 12, 2019.
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• REF: 13 reforming economies of Eastern Europe and the former Soviet Union.

• Asia: 35 Asian countries excluding the Middle East, Japan and former Soviet Union states.

• MAF: 63 countries of the Middle East and Africa.

• LAM: 34 countries of Latin America and the Caribbean.

Table A.1 of the appendix maps each country to one of the five regions. Tables A.2 and A.3 of the

appendix report descriptive statistics for the five regions. Table A.2 contains mean values for the

data set. By some margin, OECD has been the richest region throughout the sample period. By

contrast, Asia and MAF have been the poorest. In general, per capita emissions are the highest

for the richest regions. Table A.3 contains standard deviations for the data set. OECD is the

most heterogeneous region, followed by MAF. These two regions are also composed of the highest

number of individual countries.

Table A.2 also indicates whether a region is net exporter or net importer of CO2 emissions:

if the level of consumption-based emissions is higher than for territorial emissions, it suggests the

region is a net exporter of CO2 emissions (and vice versa). By relying only on observations for which

we have available both consumption-based and territorial emissions (compare means for CO2
? and

for CO2
C in Table A.2), we aim to control for compositional differences in the CO2 panel and the

CO2
C panel. Throughout the sample period, OECD is a net exporter of CO2 emissions, while the

regions REF, MAF, and Asia are net importers of CO2 emissions. LAM goes from having a very

balanced import and export of CO2 emissions in the beginning of the sample period, to being a

net importer of CO2 emissions, to finally being a net exporter of CO2 emissions. In the empirical

analysis in Section 6, we discuss whether being a net exporter or net importer of CO2 emissions

can help explain some of the observed income-emissions relationships.

4 Methodology

The reduced-form relationship between income and greenhouse gas emissions can be mathemati-

cally represented in a panel data framework as

yit = f (xit, i, t) + uit, i = 1, . . . , Nt, t = 1, . . . , T, (4.1)

where yit is a measure of emissions, xit is a measure of income, and uit is an error term. Here,

i indexes countries (or some other cross-sectional units) and t indexes time periods. Equation

(4.1) allows for an unbalanced panel of data by letting Nt ≤ N denote the number of countries

observed in time period t of the total number of countries N . The function f characterizes the

functional relationship between income and emissions and is the main object of interest to us.

Without imposing further restrictions, the function f cannot be identified from equation (4.1) as

only one observation pair (yit, xit) is available for each combination of country and time period

(i, t). Unfortunately, it is not clear which identifying restrictions are appropriate. As noted by

Vollebergh et al. (2009), different ex-ante restrictions might be driving the non-robustness that

plagues the literature on reduced-form estimation of the income-emissions relationship using panel
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data, causing mixed empirical evidence of the EKC hypothesis. As discussed by Vollebergh et al.

(2009), a particularly important but often overlooked issue relates to the fact that income and

emissions are both time dependent. As both variables depend on time, separation of the effect of

income from the effect of time hinges crucially on the restrictions used for identification. On the

one hand, if one allows fully flexible time effects that are also cross-sectional specific, all variation

in the data will be explained by these control variables. On the other hand, if one overly restricts

time and cross-sectional effects, too much of the observed variation will be attributed to the income

effect.

In the EKC literature, it is common to identify the function f in (4.1) by imposing the restriction

that it is quadratic and common to all cross-sectional units and time periods, f(xit, i, t) = f(xit),

and that uit is a composite error term consisting of additively separable cross-section and time

effects in addition to an idiosyncratic and purely stochastic effect. In this case, equation (4.1)

reduces to a model of the form

yit = αi + βt + δ1xit + δ2x
2
it + νit, (Traditional EKC model)

where αi and βt are treated either as random or fixed effects, and νit is a remainder stochastic error

term. For now, we can think of νit as having a constant variance. Later, we loosen this assumption

in Section 4.5. If αi and βt are correlated with income, a random effects model cannot be estimated

consistently (Mundlak, 1978). Therefore, a fixed effects treatment is often preferred. The time

and cross-section effects are supposed to control for omitted variables that are not endogenous

consequences of income changes. The country fixed effects αi are supposed to capture exogenous

and persistent cross-sectional differences in features such as fossil fuel availabilities and prices,

output mixes, regulatory structures, policies, and tastes. The time fixed effects βt are supposed

to capture time-varying omitted variables and shocks that are common to all countries (Stern,

2017). They capture effects on emissions over time in absence of changes in income, and we mainly

interpret them as effects of common technology shocks that are not captured by income changes.

If omitted variables are correlated with income and not properly controlled for by the country and

time fixed effects, then the slope coefficients δ1 and δ2 will capture both direct and indirect effects of

changes in income on emissions. In a typical EKC study, yit is log-transformed per capita emissions

of a greenhouse gas like CO2 and xit is log-transformed per capita GDP. The focus on per capita

quantities reflects the hypothesis that population sizes do not affect average behavior. The log-

linear specification is typically preferred over a linear specification as multiplicative cross-sectional

and time specific effects are deemed more plausible than additive effects given the heterogeneity

of cross-sectional units in a typical study (Schmalensee et al., 1998). Linear specifications have

also been considered in the literature, but no large differences between the two specifications are

typically observed (Holtz-Eakin and Selden, 1995).

Although the traditional EKC model has been extensively applied within the literature, the

appropriateness of it has been heavily debated (Stern, 2004, 2017; Müller-Fürstenberger and Wag-

ner, 2007; Wagner, 2008). Rather than pre-imposing the restrictions that f is necessarily quadratic

and common to all cross-sectional units and time periods, and that uit is a composite error term

consisting of additively separable cross-section, time, and idiosyncratic effects, we consider a num-

ber of different identifying restrictions and their implications for the estimated income-emissions
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relationship. Throughout, we drop the parametric restriction that f is necessarily quadratic. Our

goal is to represent f using a feedforward neural network, imposing as few parametric restrictions

as possible on equation (4.1).

In the next sections, we present our proposed methodology. In Section 4.1, we propose a static

neural network model of the form

yit = αi + βt(r) + fNN(xit, r) + νit, (Static neural network model)

where the superscript on f highlights that we use a neural network to model f nonparametrically,

and r is a regional indicator. A function r : {1, . . . , N} → {1, . . . , R}, 1 ≤ R ≤ N , is initially used

to map each country to a macro-region within which countries are assumed to admit the same

time effects and functional relationship f (up to country-specific intercept shifts). This model

specification retains the restriction that uit is a composite error term consisting of additively

separable country and time effects in addition to an idiosyncratic effect, but drops the restriction

that f is necessarily quadratic and common to all countries. The term static used in the name of

this model specification refers to the fact that the unknown function of interest f is assumed to be

time-invariant in line with the traditional approach of the literature.

In Section 4.2, we propose a dynamic neural network model of the form

yit = αi + fNN(xit, t, r) + νit, (Dynamic neural network model)

which drops the restriction of additively separable time effects. Instead, f is allowed to depend

explicitly on t. In this way, we leave it up to the neural network to learn how income and time

together affect emissions, and the entire shape of f is allowed to change over time. This is the

sense in which this model specification is dynamic.

4.1 Static neural network model

The static neural network model imposes the restrictions that the shape of the functional relation-

ship between income and emissions f is time-invariant, and that the error term uit is a composite

error term consisting of additively separable country and time fixed effects in addition to an id-

iosyncratic and purely stochastic effect. However, we impose no parametric restrictions on the

functional form of f . Instead, we learn f directly from the data using a feedforward neural net-

work. We allow for cross-sectional heterogeneity by initially mapping each country to a region of

comparable countries according to r : {1, . . . , N} → {1, . . . , R}, 1 ≤ R ≤ N , then allow a subset of

model parameters to vary across regions. The model can be mathematically represented as

yit = αi + βt(r) + φ(r)>z
(h)
it + νit, i = 1, . . . , Nt, t = 1, . . . , T, r = r(i), (4.2)

z
(h)
it = g

(
κ(h) + Γ(h)z

(h−1)
it

)
, (4.3)

z
(h−1)
it = g

(
κ(h−1) + Γ(h−1)z

(h−2)
it

)
, (4.4)

...

z
(1)
it = g

(
κ(1) + Γ(1)xit

)
, (4.5)
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Figure 2: Static neural network model
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Note: The notation z
(`)
it,j refers to the j-th element of the vector of derived variables in the `-th layer for

country i at time t. Dashed edges in the the graph represent region-specific connections.

where xit, yit ∈ R are the natural logarithm of, respectively, per capita GDP and per capita

emissions of country i in year t. The vector φ(r) ∈ Rqh is a column vector of region-specific

slope coefficients, and z
(`)
it ∈ Rq` , ` = 1, . . . , h, is a column vector of variables derived by the neural

network. Equation (4.2), which we will refer to as the output layer of the model, is a linear regression

model in derived variables z
(h)
it augmented by country fixed effects αi and region-specific time fixed

effects βt(r). The derived variables constitute nonlinear transformations of the input variable xit,

learned through so-called hidden layers of the neural network given by (4.3)–(4.5). Instead of

yit depending linearly on xit and x2it as in the traditional EKC model, we learn optimal input

transformations directly from the data. Note that parameters of the hidden layers are common to

all countries. The neural network exploits cross-country dependencies by using the entire panel of

data to learn optimal input transformations. Nevertheless, we let slope coefficients of the output

layer φ(r) be region-specific to allow the shape of the income-emissions relationship to vary across

regions. Different choices for the number of regions R provide different bias-variance tradeoffs by

relying on different degrees of parameter sharing across countries. At the one extreme, R = 1

results in a global model with one, global income-emissions relationship (shape) and only level

shifts across countries (country fixed effects). At the other extreme, R = N results in a national

model where each country has its own income-emissions relationship. In between those extremes,
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1 < R < N , we have a regional model with R region-specific income-emissions relationships. In

the empirical analysis of Section 6, we consider R = 1, R = N , and R = 5, where the five regions

considered are OECD, REF, Asia, MAF, and LAM, defined in Section 3. In equations (4.2) and

(4.3), h ≥ 1 denotes the number of hidden layers used to learn the derived variables and is said

to determine the depth of the neural network; q` denotes dimensionality of the `-th hidden layer

and is referred to as width. This implies that z
(`)
it is a q`-dimensional column vector of derived

variables, κ(`) is a q`-dimensional column vector of unknown intercepts8 to be estimated from data,

and Γ(`) is a q`×q`−1 coefficient matrix9 to be estimated from data. We follow the convention to set

q0 ≡ 1, implying that Γ(1) is a q1-dimensional column vector. The non-linear function g is referred

to as an activation function. The nonlinearity of g is what allows the network to learn nonlinear

relationships. We rely on the Swish activation function of Ramachandran et al. (2017), which is

found to outperform the standard rectified linear unit (ReLU) activation function (Glorot et al.,

2011) on a number of different tasks (Ramachandran et al., 2017). The Swish function is defined

as g(z) = z (1 + exp(−z))−1 for z ∈ R, and can be considered a smoothed version of the ReLU

function defined as g(z) = max(z, 0). We prefer the Swish function as it provides a smoother f in

the static model where only one input variable is passed through the hidden layers of the neural

network.

The choices of overall network depth and width of each hidden layer constitute important

architectural considerations with implications for the representation capabilities of the network. It

can be shown that even a shallow feedforward network with just one hidden layer can approximate

any Borel-measurable function from one finite-dimensional space to another to any desired degree

of accuracy provided the network is wide enough (Hornik et al., 1989; Cybenko, 1989; Leshno

et al., 1993). However, adding depth to a network allows it to learn increasingly more abstract

representations of the input data, and, typically, less wide networks with fewer parameters overall

are required for a given level of accuracy when compared to a shallow network. On the other hand,

deeper networks are typically more difficult to optimize than shallow ones, and require more input

data to avoid overfitting to in-sample noise (Goodfellow et al., 2016). In Section 4.4, we discuss

how we decide on an optimal architecture.

The static model is visually represented in Figure 2 by means of a directed acyclic graph (DAG).

The upper part of the graph illustrates the neural network component. The bottom part of the

graph illustrates the parametric component. Edges represent how information travels through the

model. The neural network is feedforward as information only travels forward through the network

without any feeedback loops. Vertices of the input layer reflect information that is presented to

the model. Vertices of the hidden layers reflect elements of the sequentially derived z-variables.

Remaining vertices represent elements of the error term and the output.

4.2 Dynamic neural network model

For the dynamic neural network model, we drop the restriction of a time-invariant functional

relationship f , and instead let the neural network learn how the functional relationship depends

8Typically referred to as biases in the neural network literature.
9Typically referred to as weights in the neural network literature.
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on time. We do so by dropping the assumption of time fixed effects and instead pass a time

variable through the hidden layers of the neural network together with income. Again, we allow for

cross-sectional heterogeneity by initially mapping each country to a region of comparable countries

according to r : {1, . . . , N} → {1, . . . , R}, 1 ≤ R ≤ N , then allow a subset of model parameters to

vary across regions. The model can be mathematically represented as

yit = αi + φ(r)>z
(h)
it + νit, i = 1, . . . , Nt, t = 1, . . . , T, r = r(i), (4.6)

z
(h)
it = g

(
κ(h) + Γ(h)z

(h−1)
it

)
, (4.7)

z
(h−1)
it = g

(
κ(h−1) + Γ(h−1)z

(h−2)
it

)
, (4.8)

...

z
(1)
it = g

(
κ(1) + Γ(1,1)xit + Γ(1,2)t

)
, (4.9)

with xit, yit, z
(`)
it , φ, κ

(`),Γ(`) as above, and Γ(1,1), Γ(1,2) being q`-dimensional column vectors of

unknown slope coefficients. Once again, (4.6) is a linear regression model in derived variables z
(h)
it ,

learned through hidden layers of a neural network, augmented by country fixed effects αi. What

is new is that z
(h)
it is derived from both income and time. In the static model formulation, z

(h)
it

is derived from income only. We note that, because there is only one observation pair (xit, yit)

available for each country at each point in time, we cannot sensibly consider a national formulation

Figure 3: Dynamic neural network model
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it,j refers to the j-th element of the vector of derived variables in the `-th layer for

country i at time t. Dashed edges in the upper part of the graph represent region-specific connections.
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(R = N) of the dynamic model as this would result in a perfect fit. The DAG associated with the

dynamic model is shown in Figure 3. By passing a time variable through the hidden layers of the

neural network together with income, the network is able to learn how the two variables interact,

and hence how the functional relationship between income and emissions potentially changes shape

over time.

4.3 Estimation

For both the static and dynamic model, we estimate10 all free parameters simultaneously by min-

imizing the sum of region-specific mean squared errors:

J(φ, κ,Γ, α, β) =

R∑
r=1

T∑
t=1

∑
i∈Ir

1

nr
(yit − ŷit(xit, i, t))2 , (4.10)

where nr is the number of observations for region r, and Ir ⊆ {1, 2, . . . , N} is the set of indices of

countries belonging to region r. Note the model output ŷ is dependent on the estimated parameter

vectors φ̂, κ̂, Γ̂, α̂, and possibly β̂, which are understood to contain model parameters of all relevant

layers and regions. A possible alternative to the loss function in (4.10) would be to minimize global

mean squared errors where each contribution to the loss function is weighted by 1/n instead of

1/nr. However, by specifying the loss function as a sum of region-specific mean squared errors,

we incorporate a tradeoff between the fits on each region. We ensure the estimated model has an

accurate fit for each region separately and that the model is not biased toward regions with more

observations than others. Note that the weights have no effect on parameter estimates in the global

(R = 1) formulation of the models.

Before discussing practical details concerning minimization of J , we briefly elaborate on a

subtlety regarding identification of fixed effects. The flexibility of the neural network causes it to

automatically adapt its predictions to the level of the dependent variable in the estimation sample.

From a purely illustrative point of view, we can think of the neural network as implicitly identifying

an overall intercept even if not specified explicitly. This is true even if imposing restrictions such

as f(0) = 0. For this reason, we can only identify country fixed effects for all but one country and

time fixed effects for all but one time period. In all applications of this paper, we use the U.S. as

a reference when estimating a global model formulation (R = 1), then include dummies for the

remaining countries. Hence, estimated income-emissions relationship will be normalized for the

U.S., and estimated country fixed effects should be interpreted as intercept shifts relative to the

U.S. When estimating a regional model formulation (R = 5), we must account for the fact that

we are in a sense estimating five neural networks simultaneously. Therefore, we must normalize

the income-emissions relationships for each region separately. We use the U.S. as reference for

OECD, Russia as reference for REF, China as reference for Asia, South Africa as reference for

MAF, and Mexico as reference for LAM. When estimating a national formulation (R = N) of

the static model, we cannot identify any country fixed effects. When estimating the static model,

we also use the initial time period t = 1 as reference, then include dummies for the remaining

10Often referred to as training in the neural networks literature.
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time periods t = 2, . . . , T . Hence, estimated time fixed effects should be interpreted as intercept

shifts relative to the initial time period. When estimating a regional formulation (R = 5) of the

static model, we allow region-specific time fixed effects. When estimating a national formulation

(R = N) of the static model, we exclude time fixed effects: since there is only one observation pair

(xit, yit) available for each country at each point in time, including (country-specific) time fixed

effects would result in a perfect fit.

We follow the standard in the neural networks literature and minimize J using gradient descent.

Since the optimization problem is high-dimensional and nonconvex, the loss function most likely

features numerous critical points. Whereas most second-order methods would get stuck in any

critical point, gradient descent is often able to escape critical points associated with a high loss

(Goodfellow et al., 2016). However, naive gradient descent performs poorly whenever the Hessian

matrix has a poor condition number. Without modification, gradient descent does not know to

prefer directions of parameter space where the slope of the loss function remains negative for

longer. Poor conditioning of the Hessian matrix also makes it difficult to determine a good step

size for the gradient descent algorithm.11 One must balance the goals of avoiding to overshoot the

minimum and being able to make significant progress in directions with little curvature. We use

the popular Adam (ADAptive Moment estimation) variant of gradient descent. It seeks to mitigate

these issues through the use of momentum and a separate learning rate for each parameter that

is automatically adapted at each iteration of the algorithm (Kingma and Ba, 2014). The Adam

algorithm is illustrated in Table A.5 of the appendix. For each iteration12 of the Adam algorithm,

we use the entire data set when evaluating the gradient.13 We use suggested defaults for the

hyperparameters of the Adam algorithm (Kingma and Ba, 2014). We find they work well in all

applications. We stop the Adam algorithm when we have observed no significant decrease in the

loss function over 100 consecutive iterations, using a tolerance level of 10−6, then restore parameter

estimates associated with the lowest loss across all iterations (not necessarily the last iteration).

Since Adam is based on local moves, it works well only if initialized within a well-behaved

region of parameter space that is connected to a satisfactory solution by a path the algorithm

can follow. It is therefore important to use appropriate initial values for α, β, φ, κ, and γ. We

initialize all slope coefficients randomly from a truncated normal distribution as suggested by He

et al. (2015). This is the suggested way to break symmetry (Goodfellow et al., 2016), motivate each

hidden unit to learn a different function, and avoid problems of vanishing and exploding gradients

when using ReLU-type activation functions. We use multiple different initializations to ensure the

minimization routine has arrived at a satisfactory minimum. All intercepts (including fixed effects)

are initialized from zero as is standard in the neural networks literature (Goodfellow et al., 2016).

4.4 Model selection

The choice of neural network architecture is a standard model selection task: there is a tradeoff

between choosing large values for the depth and width parameters to reduce bias, and choosing

11Often referred to as the learning rate in the neural networks literature.
12Often referred to as an epoch in the neural networks literature.
13Often referred to as batch learning in the neural networks literature.
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small values to ensure smoothness. Within the neural networks literature, hypothesis tests, cross-

validation, Bayesian regularization, dropout, and information criteria have been proposed for model

selection (Anders and Korn, 1999). We use the Bayesian information criterion (BIC). In the Monte

Carlo experiments of Section 5, we show the BIC identifies a close approximation to all functions

we consider. The BIC takes the form

BIC = log J(φ̂, κ̂, Γ̂, α̂, β̂) +
p log n

n
, (4.11)

where J(φ̂, κ̂, Γ̂, α̂, β̂) is the objective function in (4.10) evaluated in parameters estimates, n is

total number of observations, and p is total number of model parameters excluding fixed effects.

As discussed by Gu et al. (2020), it is not necessary to search over unreasonably many network

architectures. We fix a reasonable number of architectures of varying complexity ex ante. We

focus on rectangular and pyramid-shaped architectures as proposed by Masters (1993), which are

useful for learning gradually more abstract transformations of the input variable and for keeping

the number of free parameters at a reasonable level. The full list of candidate architectures is

presented in Table A.4 of the appendix together with the number of free model parameters.

4.5 Prediction intervals

Quantifying the uncertainty associated with neural network predictions is often neglected as it is

generally a very challenging task. Zapranis and Livanis (2005) reviews attempts based on either

bootstrapping and other ensemble techniques, analytical approaches based on nonlinear regression

theory in a nonparametric setting, or maximum likelihood techniques. More recently, a promising

strand of the literature has evolved that considers the use of approximate Bayesian inference

techniques based on Markov Chain Monte Carlo (MCMC) or variational inference (e.g. Blundell

et al., 2015). In this paper, we propose quantifying the uncertainty stemming from noise in the

estimation data following the maximum likelihood approach of Nix and Weigend (1994b,a).

The methodology presented above can be understood as estimating the expected value of a

conditional target distribution. One could also try to estimate higher-order information about the

conditional target distribution. In the empirical analysis of Section 6, we assume the conditional

target distribution is Gaussian, then seek to obtain an additional estimate of the variance, as

suggested by Nix and Weigend (1994b,a). Specifically, we consider a model of the form

yit = m(xit, i, t) + s(xit, i)νit, νit ∼ N (0, 1).

The function m(xit, i, t) captures the expected value of the conditional target distribution and is the

function of inherent interest. The term s(xit, i)νit captures noise around the expected value with

standard deviation s(xit, i) that allows for heteroskedasticity. With estimates available for both

the expected value and the standard deviation of the conditional target distribution, we construct

(conditional) 95% pointwise prediction intervals (PIs) as m̂(xit, i, t)±1.96ŝ(xit, i). These prediction

intervals are conditional in the sense that they ignore model uncertainty.

In the empirical analysis of Section 6, we consider both a static model specification form(xit, i, t),

m(xit, i, t) = αi + βt(r) + fNN
m (xit, r),
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and a dynamic model specification for m(xit, i, t),

m(xit, i, t) = αi + fNN
m (xit, t, r),

but retain a static model specification for s(xit, i) with fixed effects replaced by a region-specific

intercept,

s(xit, i) = g̃
(
κ(r) + fNN

s (xit, r)
)
,

where g̃ is a numerically stable activation function used to ensure nonnegativity of s(xit, i), imple-

mented using g̃(z) = 10−6 + log(exp(0.001z) + 1) for z ∈ R. The neural networks fNN
m and fNN

s

are specified separately with no shared connectivity as suggested by Nix and Weigend (1994b). As

discussed by Nix and Weigend (1994a), one could alternatively connect some of the hidden units

across fNN
m and fNN

s if there is an expected overlap in the mappings from inputs to respectively

the expected value and the standard deviation of the conditional target distribution. As presented

above, we use the BIC to select the architecture of the network fNN
m . For the network fNN

s , we

specify a simple one-hidden-layer architecture with two hidden units.

To estimate the parameters of m(xit, i, t) and s(xit, i), we use a two-step procedure as suggested

by Zapranis and Livanis (2005). In the first step, the parameters of m(xit, i, t) are estimated by

minimizing the cost function in (4.10). In the second step, the parameters of s(xit, i) are estimated

by minimizing a similar cost function based on the squared residuals from the first step:

Js(φs, κs,Γs, αs, βs) =
R∑
r=1

T∑
t=1

∑
i∈Ir

1

nr

[
(yit − ŷit(xit, i, t))2 − ŝ2(xit, i)

]2
,

where ŷit(xit, i, t) = m̂(xit, i, t) is estimated in the first step.

5 Monte Carlo Experiment

In this section, we demonstrate finite-sample properties of our proposed methodology in a controlled

setup that closely resembles the situation in the empirical analysis of Section 6. We demonstrate

that our proposed methodology is able to identify various functional forms and account for country-

specific stochastic trends. We also demonstrate that it is important to use the dynamic model in

situations where the true relationship of interest is time-varying.

5.1 Static neural network model

To investigate finite-sample properties of the static neural network model, we simulate data from

the following data-generating process:

yit = f (xit, r) + uit, i = 1, . . . , Nt, t = 1, . . . , T, r = r(i),

uit = αi + β(r) log t+ νit, νit
iid∼ N (0, σ2ν),

where r : {1, . . . , N} → {1, . . . , R} is a function mapping each country to one of the R regions.

To obtain as realistic a setup as possible, where the input variables are characterized by multiple
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Table 2: Optimal neural network architectures for the static model in the Monte Carlo experiment

Function

Linear Quadratic Cubic

Global model formulation

Neural network architecture (2) (4) (4)

# parameters (excl. fixed effects) 4 12 12

Regional model formulation

Neural network architecture (2) (4) (4)

# parameters (excl. fixed effects) 14 28 28

Note: “(a)” indicates a neural network architecture with one hidden layer containing a units.

country-specific stochastic trends, xit is taken to be the natural logarithm of per capita GDP from

the CO2 emissions panel discussed in Section 3. We consider a global model formulation (R = 1)

and a regional model formulation with R = 5. In line with the discussion of Section 3, we consider

the five regions OECD, REF, Asia, MAF, and LAM. We focus on these model formulations as they

are the main focus in Section 6. We consider the following different specifications of f :

f(xit, r) = δ1(r)xit, (Linear function)

f(xit, r) = δ1(r)xit + δ2(r)x
2
it, (Quadratic function)

f(xit, r) = δ1(r)xit + δ2(r)x
2
it + δ3(r)x

3
it, (Cubic function)

where δ1(r), δ2(r), δ3(r) ∈ R are region-specific, constant parameters. To obtain realistic parameter

values, we use estimates from simple regressions based on the function under consideration (linear,

quadratic or cubic) and the data discussed in Section 3. We use the natural logarithm of per capita

CO2 emissions from the CO2 panel of Section 3 as dependent variable and the natural logarithm of

per capita GDP from the CO2 emissions panel and appropriate transformations (square and cube)

as input variables. We include dummy variables for each country and a logarithmic time trend.

Note that time fixed effects can be backed out from the estimated time trend. For the regional

model formulation, we interact input variables and the time trend with a regional indicator to

allow region-specific slope coefficients and time effects. Finally, we scale some estimated slope

coefficients to achieve a desired amount of variation in f . We set σ2ν ≡ 0.35, which is the empirical

standard deviation of the residuals from the simple regression using the natural logarithm of per

capita GDP and its square as input variables, without any interactions. For simplicity, we use this

value throughout all experiments in the section.

In order to demonstrate the finite sample properties of the proposed estimation procedure,

we simulate 100 Monte Carlo samples for each model formulation, global and regional, and the

three functions. To keep runtime at a reasonable level, we also construct an initial Monte Carlo

sample that is used to determine the optimal network architecture. This architecture, chosen on
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Figure 4: Monte Carlo results for the global formulation of the static model

Note: In the plots in columns 1 and 3, the true values are covered by the average estimates throughout

most of the input region. In the plots in column 4, gray error bars indicate 95% confidence intervals.

the initial sample, is then kept for the remaining 100 samples. In this way, the results presented

here can be seen as a lower bound on the performance of the estimators, since their properties

would likely improve if the optimal architecture was allowed to be chosen separately for each

individual Monte Carlo sample. In Table 2, we report optimal network architectures for both the

global and the regional model formulation, determined by minimizing the BIC (4.11) on an initial

Monte Carlo sample. As discussed in the previous section, we search over the set of architectures

presented in Table A.4 of the appendix. For both model formulations, global and regional, and

all functions, the optimal neural network architecture is a simple one-hidden-layer architecture.

For the linear function, two hidden units are optimal for both the global and regional model

formulation. However, since the regional model formulation has region-specific slope coefficients

in the output layer, it has more free parameters to estimate than the global model formulation

for a given network architecture, even without considering the added number of time fixed effects

associated with the regional formulation. For the quadratic and cubic function, four hidden units

are optimal for both model formulations. Note that it is optimal to slightly increase the complexity

of the network architecture, and so the approximation capabilities of the model, as we increase

the complexity of the function to approximate. Note also that the models contain a large number

of free parameters. For instance, we see from Table 2 that the regional formulation of the static

model with only a single hidden layer containing four hidden units contains 28 free parameters

excluding fixed effects.

For the global model formulation, average estimates across Monte Carlo samples are reported
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Figure 5: Monte Carlo results for the regional formulation of the static model: linear function

Note: In the plots in columns 1 and 3, the true values are covered by the average estimates throughout

most of the input region. In the plots in column 4, gray error bars indicate 95% confidence intervals.

in Figure 4. The first column of Figure 4 contains the true functional relationships and average

estimate across Monte Carlo samples, plotted over the entire input region used for estimation. We

also plot 95% confidence bands obtained from the quantiles of the estimates across Monte Carlo

samples. We note that the model is able to capture all three functions to a high degree of accuracy

with narrow confidence bands. In the second column of Figure 4, we plot function bias, i.e. the

difference between the curves shown in the first column. We initially note the bias is around zero

for all three functions throughout most of the input region. We also note the model displays largest

discrepancies toward the boundaries of the input region used for estimation. This is likely related
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Figure 6: Monte Carlo results for the regional formulation of the static model: quadratic function

Note: In the plots in columns 1 and 3, the true values are covered by the average estimates throughout

most of the input region. In the plots in column 4, gray error bars indicate 95% confidence intervals.

to the sparsity of observations toward the boundaries of the input region used for estimations and

the so-called boundary issues well known from the literature on nonparametric regression using

kernel-based techniques (Malec and Schienle, 2014). Although a correction mechanism is outside

the scope of this paper, it suggests that one should be careful when interpreting model output

based on input values close to or beyond the boundary of the input region used for estimation.

The third and fourth columns of Figure 4 contain true values and average estimates for the time

and country fixed effects, respectively. Again, we note the model is able to capture the true values

with a high degree of accuracy for all three functions.
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Figure 7: Monte Carlo results for the regional formulation of the static model: cubic function

Note: In the plots in columns 1 and 3, the true values are covered by the average estimates throughout

most of the input region. In column 4, gray error bars indicate 95% confidence intervals.

Figures 5, 6, and 7 summarize average estimates across Monte Carlo samples for the regional

model formulation and the linear, quadratic, and cubic function, respectively. Although the learn-

ing task faced by the regional model formulation seems more complex than that faced by the

global model formulation, as the regional model formulation is faced with the task of learning

region-specific functions and time effects, the accuracy of the regional model formulation seems on

par with that of the global model formulation in Figure 4 for each region separately. It is also

encouraging that the model seems to perform about equally well for all regions despite large degree

of variation in the number of observations available for each region. For instance, the model has
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available as little as 373 observation for the region REF and as many as 3008 observations for the

region MAF.

5.2 Dynamic neural network model

To investigate finite sample properties of the dynamic neural network model, we simulate data

from the following data-generating process:

yit = f (xit, t, r) + uit, i = 1, . . . , Nt, t = 1, . . . , T, r = r(i),

uit = αi + νit, νit
iid∼ N (0, σ2ν),

with notation as above. We again consider R = 1 (global model) and R = 5 (regional model).

In contrast to the static model, the effect of time is not modeled by a logarithmic time trend.

Instead, f now changes its entire shape over time. Specifically, we consider the following different

specifications of f :

f(xit, t, r) = δ1(r)xit, (Linear function)

f(xit, t, r) =
T − t+ 1

T
δ1(r)xit +

t− 1

T
δ2(r)x

2
it, (Linear-quadratic function)

f(xit, t, r) =
T − t+ 1

T
δ1(r)xit +

t− 1

T
δ2(r)x

2
it +

t− 1

T
δ3(r)x

3
it, (Linear-cubic function)

where δ1(r), δ2(r), δ3(r) ∈ R are region-specific, constant parameters. To obtain realistic parameter

values, we once again resort to estimates from simple regressions based on the function under con-

sideration (linear, linear-quadratic or linear-cubic). Using the linear-cubic function as an example,

we run a regression using the natural logarithm of per capita CO2 emissions from the CO2 panel

of Section 3 as dependent variable and the natural logarithm of per capita GDP from the CO2

Table 3: Optimal neural network architectures for the dynamic model in the Monte Carlo experi-

ment

Function

Linear Linear-quadratic Linear-cubic

Global model formulation

Neural network architecture (2) (4,4) (4,2,2)

# parameters (excl. fixed effects) 8 36 30

Regional model formulation

Neural network architecture (2) (4,4) (4,4)

# parameters (excl. fixed effects) 16 52 52

Note: “(a,b,c)” indicates a neural network architecture with three hidden layers containing a units in the

first layer, b in the second, and c in the third.
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Figure 8: Monte Carlo results for the global formulation of the dynamic model

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.

emissions panel and its square and cube as input variables to obtain realistic values for the constant

parameters δ1(r), δ2(r) and δ3(r). We scale some estimated slope coefficients to achieve a sufficient

amount of variation in f . For the regional model formulation, we interact input variables with a

regional indicator to allow region-specific slope coefficients. We also include dummy variables for

each country in the regression to obtain realistic values for αi.

Table 3 contains optimal network architectures for both the global and regional formulation

of the dynamic model obtained by minimizing the BIC (4.11) on an initial Monte Carlo sample

as discussed above. For the simple linear function, both model formulations require only a single-

hidden-layer architecture with two hidden units, the simplest architecture in the set of candidates.

Not counting the number of fixed effects, the dynamic model contains more free parameters than

its static counterpart for a given formulation and network architecture because both time and

income are passed through the hidden layers of the neural network. The learning task faced by

the dynamic model seems in many ways more complex than that of its static counterpart. The

dynamic model is required to learn how the functional relationship of interest changes its entire

shape over time, whereas the static model allows only for intercept shifts over time. From Table

3, we see that increased complexity of the learning task prompts an increase in optimal model

complexity. In particular, it is optimal to add depth to the network architecture when turning

from the linear function to the more complex and time-varying linear-quadratic and linear-cubic

functions.
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Figure 9: Monte Carlo results for the regional formulation of the dynamic model: linear function

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.

Figure 8 shows the finite sample properties of the global formulation of the dynamic model by

summarizing average estimates across 100 Monte Carlo samples. The first column of plots shows

true and estimated country fixed effects together with 95% confidence intervals obtained from the

quantiles of the estimates across Monte Carlo samples. For all three functions, the model is able

to accurately estimate the country fixed effects. The second and third columns of plots show,

respectively, true and estimated surfaces, plotted over the entire input region used for estimation.

The fourth column of plots displays heat maps of function bias obtained by subtracting the surfaces

in the second and third columns. Initially, we note the bias is around zero throughout most of

the input region used for estimation. However, similar to the static model, it is more difficult

for the model to accurately estimate the true surface toward the boundaries of the input region.

24



Figure 10: Monte Carlo results for the regional formulation of the dynamic model: linear-quadratic

function

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.

Indeed, the worst performance of the model occurs toward the four corners of the input region.

The boundary issues seem most severe for the linear-cubic function, likely because most of the

cubic curvature becomes the most pronounced toward the boundaries of the input region.

Figures 9–11 summarize average estimates across Monte Carlo samples for the regional formu-

lation of the dynamic model for the linear, linear-quadratic, and linear-cubic function, respectively.

Despite large variations in the number of observations available for each region, the model performs

well for each region and for every function considered.
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Figure 11: Monte Carlo results for the regional formulation of the dynamic model: linear-cubic

function

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.

5.3 Misspecification

In this section, we investigate effects of model misspecification on our estimator of the parameters

in the static model. We are interested in the performance of the static model in cases where the

true income-emissions relationship is time varying. We simulate observations using the “linear-

quadratic” and “linear-cubic” dynamic specifications presented above, then estimate a global (R =

1) and regional (R = 5) formulation of the static model. The underlying simulations are thus the

same as those used in Section 5.2, but we now apply the estimation method used in Section 5.1.

For ease of presentation, we focus on results for the global model formulation. We report optimal
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Figure 12: Monte Carlo misspecification results for the global formulation of the static model

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.

network architectures based on an initial Monte Carlo sample in Table A.6 of the appendix.

Note that while the static model estimates a one-dimensional income-emissions relationship, we

can construct an implied, two-dimensional, estimated income-emissions surface by adding estimated

time fixed effects to the estimated income-emissions function. Figure 12 shows estimation results

for the global model formulation. Results for the regional model formulation are similar and are

reported in Figures A.1 and A.2 of the appendix. The first column in Figure 12 shows true and

estimated country fixed effects; the second column shows the true income-emissions surfaces; the

third column shows the estimated income-emissions surfaces (estimated functions plus estimated

time fixed effects); and the fourth column shows function bias obtained as the difference between

the surfaces in the second and third column. The results in Figure 12 can be compared to Figure

8, which contains estimation results from the same simulated data, but where we estimate the

income-emissions relationship using the correct dynamic model.

Comparing Figures 8 and 12, it is clear the static model is not able to capture the time-varying

income-emissions relationships. The implied, estimated surfaces from the static model (Figure

12) have a much higher bias than those of the dynamic model (Figure 8). This shows that if

the income-emissions relationship is sufficiently varying in time, the static model with time fixed

effects is not able to capture this. Neither would be popular alternatives such as the quadratic

EKC model (Holtz-Eakin and Selden, 1995), the cubic EKC model (Grossman and Krueger, 1991),

or the spline-based EKC model (Schmalensee et al., 1998), which also rely on time fixed effects. In

case the income-emissions relationship is sufficiently varying in time, it is important to use a more

flexible model such as the dynamic model proposed above.

27



5.4 Spuriousness

Figure 13: Monte Carlo spuriousness results for the global formulation of the static model

Note: In the country fixed effects plot, gray error bars indicate 95% confidence intervals.

In this section, we investigate whether our estimator of the parameters in the static and the dynamic

model suffers from spuriousness in a setting with independent but stochastically trending variables.

Specifically, we simulate independent random walks to be used as the dependent variable in the

models:

yit = yit−1 + νit, i = 1, . . . , Nt, t = 1, . . . , T, (5.1)

where yi0
iid∼ N (0, 1) and νit

iid∼ N (0, σ2ν). We then estimate a global (R = 1) and a regional

(R = 5) formulation of both the static and the dynamic model using the methodology proposed

above. That is, we estimate models where the dependent variable yit is simulated from (5.1),

and the input variable xit is the natural logarithm of per capita GDP from the CO2 emissions

panel discussed in Section 3. Clearly, yit and xit are independent and characterized by country-

specific stochastic trends. For ease of presentation, we again focus on results for the global model

formulation. We report optimal network architectures based on an initial Monte Carlo sample in

Table A.7 of the appendix.

Figure 14: Monte Carlo spuriousness results for the global formulation of the dynamic model

Note: In the country fixed effects plot, gray error bars indicate 95% confidence intervals.
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Figures 13 and 14 show estimation results for the global formulation of the static and the

dynamic model, respectively. For both models, the average estimate of the income-emissions rela-

tionship is around zero throughout the input region used for estimation, as it should be since the

dependent variable and the input variable are completely unrelated. Similarly, average estimates

of all fixed effects are around zero, as they should be. Results for the regional model formulation

are similar. They are reported in Figures A.3 and A.4 of the appendix for the static and the

dynamic model, respectively. The results of this section suggest our estimator does not suffer from

spuriousness and can be reliably used in practice. The results are perhaps not surprising, as it is

well-known that spuriousness is less problematic in panel data whenever the time dimension grows

faster than the cross-sectional dimension (Levin et al., 2002).

6 Empirical Analysis

This section presents the results of our empirical analysis on the data introduced in Section 3. In

Section 6.1, we use traditional territorial emissions, while Section 6.2 employs consumption-based

emissions as the dependent variable.

6.1 Territorial emissions

To investigate the income-emissions relationship, we estimate a global and a regional formulation

of both the static and the dynamic neural network model, as well as a national formulation of the

static model. Optimal network architectures for each model, obtained by minimizing the BIC in

(4.11), are presented in Table 4. As previously discussed, the learning task faced by the regional

model formulation is more complex than that faced by its global counterpart, and similarly, the

learning task faced by the national model formulation can be considered more complex than that

faced by its regional counterpart. Likewise, the learning task faced by the dynamic model is in

many ways more complex than that faced by its static counterpart. From Table 4, we see a clear

tendency that increased complexity of the learning task prompts increased complexity of the neural

network architecture. In particular, depth in the network architecture appears to be important for

the dynamic model specification. The network architecture used for the regional formulation of the

Table 4: Optimal neural network architectures for territorial emissions

Static model Dynamic model

Global Regional National Global Regional

Network architecture (2, 2) (8) (2, 2, 2) (4, 4, 2) (8, 8, 8)

# parameters (excl. 12 56 388 44 208

fixed effects)

Note: “(a,b,c)” indicates a neural network architecture with three hidden layers containing a units in the

first layer, b in the second, and c in the third.
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Table 5: Fractions of variance explained for territorial emissions

Global OECD REF Asia MAF LAM

Country effects only 0.92 0.79 0.86 0.81 0.91 0.85

Time effects only

Global 0.04 -6.63 -0.52 -0.03 -0.23 0.05

Regional 0.38 0.04 0.07 0.11 0.05 0.10

Full static model

Global 0.96 0.87 0.86 0.95 0.95 0.93

Regional 0.97 0.90 0.96 0.96 0.96 0.94

National 0.98 0.96 0.92 0.98 0.97 0.96

Full dynamic model

Global 0.97 0.89 0.86 0.96 0.96 0.93

Regional 0.98 0.94 0.97 0.97 0.97 0.95

Note: Numbers in the table are R2 statistics calculated using observations belonging to a given region.

Global R2 statistics are calculated using all observations. Row one is obtained by a regression using only

country dummies. Row two is obtained by a regression using only time dummies. Row three is obtained

by a regression in which time dummies have been interacted with a regional indicator. The last rows follow

from estimation of the full models including income effects, country fixed effects, and potentially time fixed

effects. We have highlighted the globally preferred formulation of each model.

dynamic model is the most complex. The national formulation of the static model may be regarded

as the least parsimonious of the models considered, as it contains the largest number of parameters

excluding fixed effects. However, simply comparing the number of parameters excluding fixed effects

across the static and the dynamic model specification and across the three model formulations

(global, regional and national) is misleading. For instance, the static model specification requires

estimation of time fixed effects, while the dynamic model specification does not. Also, the national

formulation of the static model contains many country-specific slope coefficients in the output

layer, but does not require estimation of any fixed effects. Taking into account fixed effects, the

regional formulation of the static model contains the most parameters, a total of 500. Likewise,

when taking into account fixed effects, the global and the regional formulations of the static model

contain more free parameters than their dynamic counterparts.

Table 5 provides information on how much sample variance is explained by the different model

components, see the caption of the table for details. The first column of Table 5 shows how much

of the global sample variance is explained, remaining columns show how much of the region-specific

sample variance is explained by the respective models. We find that country fixed effects alone

explain as much as 92% of the global sample variance, and that global time fixed effects explain

only 4% of the global sample variance. So even though our data set spans six decades, cross-country
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differences are more important than within-country differences. Similar conclusions were reached

in Schmalensee et al. (1998). Note also that the fraction of variance explained varies across regions.

In particular, we note a negative R2 in the second row of Table 5 for the regions OECD, REF, Asia,

and MAF, suggesting global time fixed effects fit these regions worse than a region-specific sample

average. From the third row of Table 5, we see that allowing for region-specific time fixed effects

helps increase the fraction of variance explained. This is true for all regions as well as globally.

This is not surprising given that we found cross-country differences to be important. The last five

rows of Table 5 show we can improve the fraction of variance explained by country fixed effects by

between 6 and 17 percentage points, depending on the region, by specifying one of our proposed

models. For both the static and the dynamic model specification, we note that a regional model

formulation improves the fraction of variance explained by a global model formulation. This is

true globally as well as for each region separately. Similarly, for the static model specification, we

note that the national model formulation improves upon the fraction of variance explained by the

regional model formulation, globally, as well as for each region separately except REF. We also note

that for a given formulation (global or regional), the dynamic model never performs worse than the

static model. Comparing the best performing formulations of the static and the dynamic model

specifications, the national formulation of the static model and the regional formulation of the

dynamic model appear to perform on par. Indeed, they explain the same amount of global sample

variance to two decimals, and they explain the same amount of region-specific sample variance for

the region MAF. The national formulation of the static model explains most region-specific sample

variance for three out of the remaining four regions, and the regional formulation of the dynamic

model explains most sample variance for the fourth region.

We show estimation results for the global and the regional formulation of the static neural

network model in Figure 15. From the discussion in Section 5, recall that we are most confident

about the model output within the interior of the input region used for estimation not too close

to the boundaries. In Figure 15, we therefore shade the area between the .05 and the .95 income

quantiles when we plot the estimated income-emissions relationship to indicate the area of highest

confidence. The first row of plots in Figure 15 shows estimation results from the global model

formulation. For reference, we also include estimation results from popular models within the

EKC literature: a quadratic EKC model (Holtz-Eakin and Selden, 1995), a cubic EKC model

(Grossman and Krueger, 1991), and a spline-based EKC model (Schmalensee et al., 1998). The

benchmark models include country and time fixed effects like the static neural network model

but employ different specifications of the emissions function. Remaining rows in Figure 15 show

estimation results for the regional formulation of the static neural network model. For reference,

we include results from region-wise estimation of the benchmark models. Note that region-wise

estimation of the benchmark models ignores cross-region dependencies. By contrast, the regional

formulation of the neural network models proposed in this paper uses information across regions

to learn common input transformations.
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Figure 15: Estimation results for the static model and territorial emissions

Note: Estimation results in the first row of plots are based on the global formulation of the static neural

network model. Remaining rows are based on the regional formulation of the static neural network model.

Benchmark models from the EKC literature are included in gray for reference.
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Figure 16: Estimated income-emissions relationship for the world’s nine largest CO2 emitters based

on territorial emissions

Note: Estimated income-emissions relationships are based on the national formulation of the static neural

network model. Benchmark models from the EKC literature are included in gray for reference.

Inspecting Figure 15, we initially see evidence of a global EKC relationship for territorial CO2

emissions. Indeed, for the global model formulation in the first row of the figure, we see evidence of

an EKC-shape in both the estimated income-emissions relationship and in the estimated time fixed

effects. From the regional model formulation, we also note evidence of an EKC-shape for OECD

and Asia. For OECD, the static model shows a clear EKC-shape in both the estimated income-

emissions relationship as well as in the estimated time fixed effects. For Asia, the static model

again shows an EKC-shape in the estimated income-emissions relationship. For Asia, however, the

EKC-shape is less clear in the estimated time fixed effects. It is interesting that we observe an

EKC-shape for both OECD and Asia. Recall from the discussion in Section 3 that OECD is the

richest of the five regions considered, while Asia is one of the poorest. Therefore, one could have

expected that only countries within OECD would have become rich enough to reach a turning

point. This does not seem to be the case. For the remaining regions REF, MAF, and LAM, the
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Table 6: Country-specific shapes of the income-emissions relationship within each region for terri-

torial emissions

OECD REF Asia MAF LAM Total

EKC 25 4 5 4 3 41

Increasing 10 6 29 53 28 126

Decreasing 6 3 1 5 3 18

Other 0 0 0 1 0 1

Note: The first row of the table reports the number of estimated EKC relationships within each region,

defined as an inverse U-shaped relationship with an in-sample turning point, based on the national for-

mulation of the static neural network model. The second and third rows of the table report the number

of strictly increasing and decreasing estimated income-emissions relationship within each region, respec-

tively. The fourth row of the table (“Other”) represents Mozambique, which has an estimated U-shaped

income-emissions relationship.

static model shows a monotonically increasing income-emissions relationship. The estimated time

fixed effects display some concavity for these regions, and even a downward trend for the region

REF. However, there is no evidence of an EKC-shape for these regions. Note the sample period

does not start until 1990 for the region REF, and so the downward trending time fixed effects

observed for this region in fact correspond to the period for which we also observe a downward

trend in the time fixed effects for the regions OECD and MAF as well as for the global time

fixed effects. Generally, results from the benchmark models appear in line with our static neural

network model. But, globally and for the regions OECD and Asia, our static neural network model

identifies a more pronounced EKC-shape and an earlier turning point.

We use the national formulation of the static model to estimate country-specific income-

emissions relationships. Figure 16 shows estimates of the country-specific income-emissions re-

lationships for the world’s nine largest CO2 emitting countries. For reference, we also include

results from country-wise estimation of the benchmark models. By using cross-country informa-

tion to learn common input transformations, it seems our static neural network model is generally

able to learn more stable income-emissions relationships that are easier to interpret than the bench-

mark models. In Table 6, we report the number of estimated, country-specific EKCs within each

region using our static neural network model, defined as an inverse U-shaped relationship with an

in-sample turning point, as well as the number of strictly increasing, strictly decreasing, and other

shapes of the income-emissions relationship. From Table 6, we see the most common shape across

regions is the strictly increasing and the second most common shape is the EKC. We observe the

most EKCs among OECD, which also has the largest ratio of EKCs to non-EKC-shapes. For Asia,

the ratio of EKCs to non-EKC-shapes is considerably lower than for OECD. Yet, we observe a

region-specific EKC for both of these regions when estimating a regional model formulation. Thus,

it seems the regional EKC observed for Asia might be driven only by few wealthy countries such

as Japan and South Korea, cf. Figure 16. Interestingly, the ratio of EKCs to non-EKC-shapes is
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Figure 17: Estimation results for the dynamic model and territorial emissions

Note: Black coloring indicates area between the .05 and .95 income quantiles. Dark gray coloring indicates

area with data support. Light gray coloring indicates area with no data support. The estimated surface in

the top left panel is based on the global formulation of the dynamic neural network model. Remaining

surfaces are based on the regional formulation of the dynamic neural network model.

also quite large for REF. However, this does not result in a region-specific EKC for REF when

estimating a regional model formulation. This may be because the country-specific EKCs among

REF are much less distinct than those among the OECD and Asia. The EKC for Russia in Figure

16 is representative of the EKCs among REF.

The dynamic neural network model allows us to take the analysis one step further. It allows
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Figure 18: Time-varying environmental Kuznets curve for OECD based on territorial emissions

Note: Estimated income emissions relationships are based on the regional formulation of the dynamic

neural network model.

us to investigate how the income-emissions relationships potentially change shape over time. We

show estimation results for the dynamic neural network model in Figure 17. In the top left panel

of the figure, we show the estimated surface from the global model formulation. Remaining panels

show estimated surfaces from the regional model formulation. We indicate the area between the

.05 and the .95 income quantiles by coloring the estimated surface black. Note that this area is
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now varying with time. We also indicate the area outside of this time-varying quantile range but

within the minimum and maximum income value observed for a given time period by coloring the

estimated surface dark gray. The estimated surface is colored light gray over areas of the input

space where the model has no data support.

Similar to the static model, the global formulation of the dynamic model shows evidence of a

global EKC in the top left panel of Figure 17. Note it is straightforward to interpret the output

of the dynamic model. There are no time fixed effects to take into account. We also note from

Figure 17 that the global EKC-shape appears rather stable throughout the sample period. By

contrast, it appears from the estimated surfaces using the regional formulation of the dynamic

model that the EKC-shapes observed for OECD and Asia do not appear in the data until late

in the sample period. Like the static model, the dynamic model also suggests a monotonically

increasing income-emissions relationship for the regions REF, MAF, and LAM. The surface plot

for the region REF is somewhat noisy, but, overall, there seems to be a monotonically increasing

income-emissions relationship. The monotonically increasing relationships observed for the regions

MAF and LAM appear rather stable over time.

In Figure 18, we illustrate how the income-emissions relationship for OECD changes shape over

time by “slicing” the estimated surface for OECD every five years. We note from Figure 18 that

the EKC-shape does not appear in the data for OECD until the early to mid 1990s. The turning

point for OECD occurs around a value of log per capita GDP equal to 3, which is similar to what

we find globally and for Asia in Figure 15, and it is supported by the benchmark models. However,

it is interesting to note from Figure 18 that OECD reaches levels of log per capita GDP above 3

already in the 1960s, and log per capita GDP values above 3 is within the area between the .05

and .95 quantiles since the 1970s. Therefore, it seems a structural shift might occur around the

early to mid 1990s that allows countries with high incomes to emit less CO2. This shift could

be the result of increased environmental concerns, climate change mitigation policies, exports, or

other factors unrelated to income. For instance, the Montreal Protocol of the United Nations was

adopted in 1987 with the goal of protecting the stratospheric ozone layer by phasing out production

and consumption of ozone-depleting substances, and the United Nations Framework Convention

on Climate Change (UNFCCC) was established in 1994. The shift could also reflect the pollution

haven hypothesis that we discuss below.

6.2 Consumption-based emissions

We now investigate to what extend the income-emissions relationships, documented in the previous

section, are driven, or affected, by international trade patterns. We do so by reestimating the

global and the regional formulation of the static and the dynamic neural network model using

consumption-based emissions for the dependent variable as opposed to territorial emissions; see

Section 3 for the definition of consumption-based emissions. Since consumption-based emissions are

available only from year 1990 onward, leaving the time series available for each country rather short,

we do not estimate a national formulation of the static model. To facilitate comparison of the results

obtained from using territorial and consumption-based emissions, we also reestimate all models for

territorial emissions restricting the sample to coincide with the sample for consumption-based
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Table 7: Optimal neural network architectures for consumption-based emissions

Static model Dynamic model

Global Regional Global Regional

CO2
C

Neural network architecture (2, 2) (4) (4, 2) (8, 4)

# parameters (excl. fixed effects) 12 28 24 80

CO2
?

Neural network architecture (2, 2) (4) (4, 2, 2) (8, 8, 8)

# parameters (excl. fixed effects) 12 28 30 208

Note: “CO2
C” are consumption-based CO2 emissions; “CO2

?” are territorial CO2 emissions based on a

restricted sample that coincides with the one for consumption-based emissions; “(a,b,c)” indicates a neural

network architecture with three hidden layers containing a units in the first layer, b in the second, and c in

the third.

emissions, i.e. beginning in 1990. This shows whether observed changes in the income-emissions

relationships can plausibly be attributed to the switch from territorial emission to consumption-

based emissions, or whether changes are simply an effect of the restricted data set.

In the first row of Table 7, we report optimal neural network architectures for consumption-

based emissions, obtained by minimizing the BIC (4.11). In the third row of Table 7, we report

optimal neural network architectures for territorial emissions using the restricted sample. Overall,

Table 7 is broadly comparable to Table 4 of the previous section. Namely, a more complex network

architecture is required for the dynamic model than for the static model, and a more complex

network architecture is required for a regional model formulation than for a global model formula-

tion. Comparing the first and the third row of Table 7, we also note that, for the dynamic model,

a higher degree of model complexity is required for territorial emissions on the restricted sample

than for consumption-based emissions.

Figure 19 shows estimation results for the static neural network model for consumption-based

emissions as well as territorial emissions based on the restricted sample. The first row of plots in

the figure shows estimation results for the global formulation of the static model. Remaining rows

show estimation results for the regional formulation of the static model. In plots of the estimated

income-emissions relationship (second column) and time fixed effects (third column), a solid line

indicates results for consumption-based emissions, and a dashed line indicates results for territorial

emissions based on the restricted sample. Estimation results for the quadratic, the cubic, and the

spline-based benchmark models using consumption-based emissions for the dependent variable can

be found in Figure A.5 of the appendix. They are generally in line with the results from the static

neural network model in Figure 19.

Inspecting the results from the global formulation of the static model in the first row of Figure

19, we note a downward trend in the estimated time fixed effects for territorial emissions. However,

recall the sample does not start until year 1990. This implies that the downward trend in the esti-
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Figure 19: Estimation results for the static model and consumption-based emissions

Note: “CO2
C” are consumption-based CO2 emissions and “CO2

?” are territorial CO2 emissions based on a

restricted sample that coincides with the one for consumption-based emissions. Estimation results in the

first row of plots are based on the global formulation of the static neural network model. Remaining rows

are based on the regional formulation of the static neural network model.
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mated time fixed effects for territorial emissions in the top right panel of Figure 19 corresponds

to the downward trend in estimated time fixed effects for that same period in the top right panel

of Figure 15. Conversely, estimated time fixed effects for consumption-based emissions are trend-

ing upwards in the top right panel of Figure 19. But, we also note that the magnitude of the

estimated time fixed effects over this period is small, suggesting the effect of time on the global

income-emission relationship is rather minimal over this sample period. In the top middle panel of

Figure 19, we note the estimated income-emissions relationship from the global model formulation

exhibits concavity for both types of emissions in line with the EKC hypothesis. However, the

global EKC-shape is not quite as pronounced as in Figure 15. We conclude that when controlling

for international trade flows, we still observe concavity in the global income-emissions relationship,

i.e. the EKC relationship appears intact.

Inspecting the results from the regional formulation of the static model in the remaining rows

of Figure 19, we immediately note the previously observed EKC-shape for OECD when using

territorial emissions disappears when using consumption-based emissions. The income-emissions

relationship appears to be strictly increasing for OECD when using consumption-based emissions

and thus not reaching a turning point or even flattening out. Although the EKC-shape for OECD

is not quite as pronounced for territorial emissions based on the restricted sample as it was for the

full sample in Figure 15, there still is concavity for territorial emissions based on the restricted sam-

ple. Recall from the discussion in Section 3 that OECD is the only region that is a net-exporter of

CO2 emissions to other countries throughout the restricted sample period from year 1990 onward.

Together with the fact that the EKC-shape disappears for OECD when using consumption-based

emissions, this suggests that the apparent EKC relationship we found when using territorial emis-

sions can be plausibly explained by the pollution haven hypothesis. Recall the pollution haven

hypothesis suggests that rich countries, in this case belonging to the OECD region, export their

emissions to other countries, often developing countries subject to weak environmental regulation,

through international trade. For Asia, we note, by contrast, that the EKC-shape becomes even

crisper and with an earlier turning point when using consumption-based emissions than when us-

ing territorial emissions. We interpret this as the mirror image of the result for OECD and as

further support for the pollution haven hypothesis; recall also from the discussion in Section 3 that

Asia is a net importer of CO2 emissions throughout the restricted sample period. For most of

the remaining regions, the shape of the estimated income-emissions relationship does not change

substantially when moving from territorial emissions to consumption-based emissions. For REF,

there is a substantial level shift in the income-emissions relationship estimated by the static model

when moving from territorial emissions to consumption-based emissions. However, we observe a

similar level shift in the estimated time fixed effects, and so this level shift is most likely the result

of an identification issue stemming from the small number of observations available for this region.

We show estimation results from the global and the regional formulation of the dynamic neural

network model when using consumption-based emission for the dependent variable in Figure 20.

Estimation results from the dynamic model when using territorial emissions based on the restricted

sample for the dependent variable can be found in Figure A.6 of the appendix; they look similar

to the results from the dynamic model when using territorial emissions based on the unrestricted
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Figure 20: Estimation results for the dynamic model and consumption-based emissions

Black coloring indicates area between the .05 and .95 income quantiles. Dark gray coloring indicates area

with data support. Light gray coloring indicates area with no data support. The estimated surface in the

top left panel is based on the global formulation of the dynamic neural network model. Remaining surfaces

are based on the regional formulation of the dynamic neural network model.

sample for the dependent variable in Figure 17. Inspecting the estimated surface in the top left

panel of Figure 20 obtained from the global model formulation, it shows concavity in the income

dimension, and it seems stable in the time dimension. As such, the conclusion from the global

formulation of the static model of a global EKC also for consumption-based emissions seems stable

over the restricted sample. Inspecting the estimated surfaces from the regional model formulation
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in the remaining panels of Figure 20, we note also the conclusions from the regional formulation

of the static model appear stable over the restricted sample. In particular, the strictly increasing

income-emissions relationship observed for OECD when using consumption-based emissions for

the dependent variable appear stable over the restricted sample, and the EKC-shape observed for

Asia when using consumption-based emissions for the dependent variable appear stable over the

restricted sample.

7 Conclusion

We propose a novel neural network-based panel data methodology for analyzing the environmen-

tal Kuznets curve (EKC) for carbon dioxide (CO2) emissions. We consider two distinct model

specifications within this overall framework: a static model specification and a dynamic model

specification. The static model consists of both country and time fixed effects in addition to a

feedforward neural network component with income as the only input variable. This model is

static in the sense that the shape of the income-emissions relationship is assumed to be fixed over

time. The dynamic model uses a time variable as an additional input into the neural network com-

ponent in place of time fixed effects. By using both income and a time variable as inputs into the

neural network component, the dynamic model is able to learn how time and income interact, and

how the income-emissions relationship potentially changes its entire shape over time. Both model

specifications use cross-country dependencies to learn common input transformations by having

some model parameters be shared across all countries, and simultaneously allow for cross-country

heterogeneity in the shape of the income-emissions relationship by having other parameters be

specific to regions of homogeneous countries. In a Monte Carlo study, we demonstrate that our

proposed methodology is able to identify various functional forms of different complexity, and

we also demonstrate its ability to account for country-specific stochastic trends. Furthermore, we

demonstrate that the dynamic model is able to capture time-varying income-emissions relationships

that cannot be captured using time fixed effects.

We investigate the relationship between per capita GDP and CO2 emissions, using national-

level panel data for the period 1960-2018. When using territorial emissions data that measures

emissions based on production, we find that globally as well as for the regions OECD and Asia,

there is evidence of an inverse U-shaped income-emissions relationship, often referred to as an

EKC. The dynamic model suggests the global relationship is rather stable over time. However,

for both OECD and Asia, it seems the EKC-shape does not appear until late in the sample

period. Conversely, when using consumption-based emissions data that accounts for cross-country

emissions transfers through international trade, the evidence of an EKC relationship for OECD

disappears, while, for Asia, the EKC-relationship becomes clearer and with an earlier turning

point. This suggests the apparent EKC-relationship observed for OECD when using territorial

emissions is driven by emissions exports to other countries. It also suggests that, for Asia, there

are EKC-effects in emissions due to local consumption that are not seen in territorial emissions

due to imported emissions.
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Appendix

A.1 Figures

Figure A.1: Monte Carlo misspecification results for the regional formulation of the static model:

linear-quadratic function

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.
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Figure A.2: Monte Carlo misspecification results for the regional formulation of the static model:

linear-cubic function

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.
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Figure A.3: Monte Carlo spuriousness results for the regional formulation of the static model

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.
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Figure A.4: Monte Carlo spuriousness results for the regional formulation of the dynamic model

Note: In the country fixed effects plots, gray error bars indicate 95% confidence intervals.
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Figure A.5: Estimation results for the benchmark models and consumption-based emissions

Note: Estimation results in the first row of plots are based on global model formulations where every

country is used for estimation. Remaining rows show estimation results from region-wise estimation of the

benchmark models.
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Figure A.6: Estimation results for the dynamic model and territorial emissions based on a restricted

sample that coincides with the one for consumption-based emissions

Note: Black coloring indicates area between the .05 and .95 income quantiles. Dark gray coloring indicates

area with data support. Light gray coloring indicates area with no data support. The estimated surface in

the top left panel is based on the global formulation of the dynamic neural network model. Remaining

surfaces are based on the regional formulation of the dynamic neural network model.
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A.2 Tables

Table A.1: Macro-region definitions

OECD

Albania1,2 Australia1,2 Austria1,2

Belgium1,2 Bosnia and Herzegovina1 Bulgaria1,2

Canada1,2 Croatia1,2 Cyprus1,2

Czech Republic1,2 Denmark1,2 Estonia1,2

Finland1,2 France1,2 Germany1,2

Greece1,2 Hungary1,2 Iceland1

Ireland1,2 Italy1,2 Japan1,2

Latvia1,2 Lithuania1,2 Luxembourg1,2

Malta1,2 Montenegro1 Netherlands1,2

New Zealand1,2 Norway1,2 Poland1,2

Portugal1,2 Puerto Rico Romania1,2

Serbia Slovakia1,2 Slovenia1,2

Spain1,2 Sweden1,2 Switzerland1,2

North Macedonia1 Turkey1,2 United Kingdom1,2

United States1,2

REF

Armenia1,2 Azerbaijan1,2 Belarus1,2

Georgia1,2 Kazakhstan1,2 Kyrgyzstan1,2

Moldova1 Russia1,2 Tajikistan1

Turkmenistan1 Ukraine1,2 Uzbekistan1

Kosovo1

Asia

Afghanistan1 Bangladesh1,2 Bhutan1

Brunei Darussalam1,2 Cambodia1,2 China1,2

South Korea1,2 Fiji1 French Polynesia

India1,2 Indonesia1,2 Laos1,2

Malaysia1,2 Maldives1 Micronesia1

Mongolia1,2 Myanmar1 Nepal1,2

New Caledonia Pakistan1,2 Papua New Guinea1

Philippines1,2 Samoa1 Singapore1,2

Solomon Islands1 Sri Lanka1,2 Taiwan

Thailand1,2 Timor-Leste1 Vanuatu1

Vietnam1,2 Tuvalu1 Macao1

Marshall Islands1 Palau1 Hong Kong1,2

Tonga1 Kiribati1

MAF

Algeria1 Angola1 Bahrain1,2

Benin1,2 Botswana1,2 Burkina Faso1,2

Burundi1 Cameroon1,2 Cabo Verde1

Central African Republic1 Chad1 Comoros1
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Congo (DRC)1 Congo (RDC)1 Côte d’Ivoire1,2

Djibouti Egypt1,2 Equatorial Guinea1

Eritrea1 Ethiopia1,2 Gabon1

Gambia1 Ghana1,2 Guinea1,2

Guinea-Bissau1 Iran1,2 Iraq1

Israel1,2 Jordan1,2 Kenya1,2

Kuwait1,2 Lebanon1 Lesotho1

Liberia1 Libya1 Madagascar

Malawi1,2 Mali1,2 Mauritania1

Mauritius1,2 Morocco1,2 Mozambique1,2

Namibia1,2 Niger1 Nigeria1,2

Palestine1 Oman1,2 Qatar1,2

Rwanda1,2 Saudi Arabia1,2 Senegal1,2

Sierra Leone1 Somalia South Africa1,2

Sudan1 Eswatini1 Syria

Togo1,2 Tunisia1,2 Uganda1,2

United Arab Emirates1,2 Tanzania1,2 Yemen1

Zambia1,2 Zimbabwe1,2 Seychelles1

Sao Tome and Principe1

LAM

Argentina1,2 Aruba1 Bahamas1

Barbados1 Belize1 Bolivia1,2

Brazil1,2 Chile1,2 Colombia1,2

Costa Rica1,2 Cuba Dominican Republic1,2

Ecudaor1,2 El Salvador1,2 Grenada1

Guatemala1,2 Guyana1 Haiti1

Honduras1,2 Jamaica1,2 Mexico1,2

Nicaragua1,2 Panama1,2 Paraguay1,2

Peru1,2 Suriname1 Trinidad and Tobago1,2

Uruguay1,2 Venezuela1,2 Saint Vincent1

Curaçao1 Saint Lucia1 Antigua and Barbuda1

Dominica1 Bermuda1

Note: 1Country is in the CO2 panel. 2Country is in the CO2
C and CO2

? panel. Region definitions are

from the Shared Socioeconomic Pathways (SSPs; Riahi et al., 2017): “OECD” is OECD90 and EU member

states and candidates; “REF” is reforming economies Eastern Europe and the former Soviet Union; “Asia”

is Asian countries excluding the Middle East, Japan and former Soviet Union states; “MAF” is the Middle

East and Africa; and “LAM” is Latin America and the Caribbean. Countries in red are in the SSP database

but not in our data set. Countries in green are in our data set but not in the SSP database.
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Table A.2: Descriptive statistics: mean

Mean

1960 1970 1980 1990 2000 2010 2017

Global

GDP 3.70 5.49 6.78 7.69 9.01 11.46 13.50

CO2 2.51 3.51 3.68 4.19 4.01 4.66 4.64

CO2
? 2.58 3.62 3.80 4.34 4.17 4.90 4.90

CO2
C NA NA NA 4.35 4.19 4.89 4.89

OECD

GDP 10.84 16.09 20.47 24.76 29.45 32.62 35.99

CO2 8.22 12.08 12.38 12.24 12.31 11.22 10.18

CO2
? 8.22 12.08 12.39 12.25 12.36 11.25 10.21

CO2
C NA NA NA 13.02 13.52 12.69 11.51

REF

GDP NA NA NA 10.29 6.52 11.16 12.30

CO2 NA NA NA 14.06 7.69 8.62 8.44

CO2
? NA NA NA 15.09 8.26 9.57 9.51

CO2
C NA NA NA 12.59 6.60 7.87 8.29

Asia

GDP 0.78 1.00 1.37 2.14 3.52 6.54 9.51

CO2 0.68 0.65 1.00 1.39 1.79 3.37 3.82

CO2
? 0.69 0.66 1.02 1.41 1.82 3.45 3.91

CO2
C NA NA NA 1.44 1.74 3.13 3.59

MAF

GDP 3.23 5.61 6.84 5.06 5.55 6.86 7.21

CO2 0.89 1.44 2.09 1.69 2.11 2.46 2.46

CO2
? 1.10 1.71 2.41 1.91 2.45 2.88 2.87

CO2
C NA NA NA 1.68 1.90 2.72 2.73

LAM

GDP 5.03 6.54 9.13 8.53 9.84 11.86 12.44

CO2 1.32 1.76 2.40 2.24 2.58 2.88 2.73

CO2
? 1.34 1.78 2.42 2.27 2.60 2.92 2.76

CO2
C NA NA NA 2.26 2.49 3.05 3.00

Note: “CO2
C” are consumption-based CO2 emissions; “CO2

?” are CO2 emissions based on a restricted

sample that coincides with the one for consumption-based emissions; and GDP is from the CO2 panel. For

given region r and time period t, mean values are calculated as the per capita values for that region: Mean ≡∑
i∈Ir

xit

POPit

POPit

POP r
t

=
∑

i∈Ir
xit

POP r
t

, where Ir ⊆ {1, 2, . . . , N} is the set of indices of countries belonging to

region r, N is the total number of countries, POPit is the population size, POP r
t ≡

∑
i∈Ir

POPit, and

xit ∈
{

GDPit,CO2it,CO2
?
it,CO2

C
it

}
.
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Table A.3: Descriptive statistics: standard deviation

Standard deviation

1960 1970 1980 1990 2000 2010 2017

Global

GDP 4.71 7.24 9.43 9.79 11.35 11.67 12.39

CO2 4.37 5.81 5.58 5.65 5.20 4.75 4.42

CO2
? 4.43 5.89 5.66 5.74 5.29 4.80 4.45

CO2
C NA NA NA 5.72 5.55 5.00 4.59

OECD

GDP 4.16 4.09 5.33 7.88 10.21 10.03 10.51

CO2 6.13 6.60 6.22 5.79 6.23 5.29 4.63

CO2
? 6.13 6.60 6.22 5.80 6.22 5.28 4.63

CO2
C NA NA NA 5.30 6.13 5.19 4.62

REF

GDP NA NA NA 3.26 2.62 4.62 5.14

CO2 NA NA NA 4.36 2.93 3.86 4.30

CO2
? NA NA NA 3.26 2.61 3.26 3.70

CO2
C NA NA NA 4.92 2.24 2.29 2.64

Asia

GDP 0.51 0.78 1.74 2.28 3.25 4.78 6.11

CO2 0.46 0.45 0.82 1.08 1.41 2.69 2.85

CO2
? 0.46 0.45 0.82 1.07 1.40 2.68 2.83

CO2
C NA NA NA 1.37 1.80 2.47 2.64

MAF

GDP 2.23 9.60 14.06 7.95 9.16 9.77 10.25

CO2 1.55 2.55 3.63 2.98 4.08 4.48 4.53

CO2
? 1.71 2.87 4.07 3.31 4.58 5.04 5.11

CO2
C NA NA NA 2.84 3.27 4.65 4.79

LAM

GDP 2.46 2.89 2.90 2.55 2.99 3.36 3.27

CO2 1.33 1.44 1.82 1.56 1.75 2.21 1.85

CO2
? 1.33 1.39 1.58 1.54 1.62 2.15 1.77

CO2
C NA NA NA 1.22 1.20 1.45 1.58

Note: “CO2
C” are consumption-based CO2 emissions; “CO2

?” are CO2 emissions based on a restricted

sample that coincides with the one for consumption-based emissions; and GDP is from the CO2 panel.

For given region r and time period t, standard deviations are calculated using the following relation:

Standard deviation ≡
√∑

i∈Ir

(
xit

POPit
−Mean

)2
POPit

POP r
t

, where Mean is from Table A.2, Ir ⊆ {1, 2, . . . , N}
is the set of indices of countries belonging to region r, N is the total number of countries, POPit is the

population size, POP r
t ≡

∑
i∈Ir

POPit, and xit ∈
{

GDPit,CO2it,CO2
?
it,CO2

C
it

}
.
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Table A.4: Neural network architectures

# parameters in static model # parameters in dynamic model

Network Global Regional National Global Regional National

architecture (R = 1) (R = 5) (R = 186) (R = 1) (R = 5) (R = 186)

(2) 6 14 376 8 16 378

(4) 12 28 752 16 32 756

(8) 24 56 1504 32 64 1512

(16) 48 112 3008 64 128 3024

(32) 96 224 6016 128 256 6048

(2,2) 12 20 382 14 22 384

(4,2) 20 28 390 24 32 394

(4,4) 32 48 772 36 52 776

(8,2) 36 44 406 44 52 414

(8,4) 56 72 796 64 80 804

(8,8) 96 128 1576 104 136 1584

(16,2) 68 76 438 84 92 454

(16,4) 104 120 844 120 136 860

(16,8) 176 208 1656 192 224 1672

(16,16) 320 384 3280 336 400 3296

(32,2) 132 140 502 164 172 534

(32,4) 200 216 940 232 248 972

(32,8) 336 368 1816 368 400 1848

(32,16) 608 672 3568 640 704 3600

(32,32) 1152 1280 7072 1184 1312 7104

(2,2,2) 18 26 388 20 28 390

(4,2,2) 26 34 396 30 38 400

(4,4,2) 40 48 410 44 52 414

(4,4,4) 52 68 792 56 72 796

(8,2,2) 42 50 412 50 58 420

(8,4,2) 64 72 434 72 80 442

(8,4,4) 76 92 816 84 100 824

(8,8,2) 108 116 478 116 124 486

(8,8,4) 128 144 868 136 152 876

(8,8,8) 168 200 1648 176 208 1656

(16,2,2) 74 82 444 90 98 460

(16,4,2) 112 120 482 128 136 498

(16,4,4) 124 140 864 140 156 880

(16,8,2) 188 196 558 204 212 574

(16,8,4) 208 224 948 224 240 964

(16,8,8) 248 280 1728 264 296 1744

(16,16,2) 340 348 710 356 364 726

(16,16,4) 376 392 1116 392 408 1132

(16,16,8) 448 480 1928 464 496 1944

(16,16,16) 592 656 3552 608 672 3568

(32,2,2) 138 146 508 170 178 540
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(32,4,2) 208 216 578 240 248 610

(32,4,4) 220 236 960 252 268 992

(32,8,2) 348 356 718 380 388 750

(32,8,4) 368 384 1108 400 416 1140

(32,8,8) 408 440 1888 440 472 1920

(32,16,2) 628 636 998 660 668 1030

(32,16,4) 664 680 1404 696 712 1436

(32,16,8) 736 768 2216 768 800 2248

(32,16,16) 880 944 3840 912 976 3872

(32,32,2) 1188 1196 1558 1220 1228 1590

(32,32,4) 1256 1272 1996 1288 1304 2028

(32,32,8) 1392 1424 2872 1424 1456 2904

(32,32,16) 1664 1728 4624 1696 1760 4656

(32,32,32) 2208 2336 8128 2240 2368 8160

Note: “(a,b,c)” indicates a neural network architecture with three hidden layers containing a units in the

first layer, b in the second, and c in the third; “# parameters” is the number of free model parameters

excluding fixed effects.
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Table A.5: Adam algorithm

Require: Learning rate ε (0.001)

Require: Exponential decay rates ρ1, ρ2 ∈ [0, 1) for moment estimates (0.9, 0.999)

Require: Small constant δ used for numerical stabilization (10−8)

Require: Initial parameters θ

Initialize first moment vector: m = 0

Initialize second moment vector: v = 0

Initialize time step: t = 0

while stopping criterion not met do

t← t+ 1

Compute gradient: g ← ∇θJ(θ)

Update biased first moment estimate: m← ρ1m+ (1− ρ1)g
Update biased second moment estimate: v ← ρ2v + (1− ρ2)g � g
Correct bias in first moment: m̂← m/(1− ρt1)
Correct bias in second moment: v̂ ← v/(1− ρt2)
compute update: ∆θ = −ε · m̂/(

√
v + δ)

Apply update: θ ← θ + ∆θ

end while

Source: Adapted from Kingma and Ba (2014). Numbers in parentheses are suggested defaults.

The Adam algorithm is an extension to gradient descent that individually adapts the learning

rate for all parameters in two ways. First, the algorithm scales the learning rate inversely propor-

tional to the square root of an exponentially decaying average of past squared values of the gradient

(second moment estimate). In this way, the learning rate for parameters with small partial deriva-

tives of the loss function decreases less rapidly than for parameters with large partial derivatives.

This implies greater progress in more gently sloped regions of the parameter space. Second, to

speed up optimization, especially in face of pathological curvature, Adam incorporates so-called

momentum by also scaling the learning rate proportionally to an exponentially decaying average

of past values of the gradient (first moment estimate). Finally, Adam includes bias corrections of

the moment estimates to account for initialization at the origin.
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Table A.6: Optimal neural network architectures for the static model in the Monte Carlo misspec-

ification experiment

Function

Linear-quadratic Linear-cubic

Global model formulation

Neural network architecture (2,2) (2,2,2)

# parameters (excl. fixed effects) 12 18

Regional model formulation

Neural network architecture (4,4,4) (4,4)

# parameters (excl. fixed effects) 52 32

Note: “(a,b,c)” indicates a neural network architecture with three hidden layers containing a units in the

first layer, b in the second, and c in the third.

63



Table A.7: Optimal neural network architectures for the Monte Carlo spuriousness experiment

Formulation

Global Regional

Static model specification

Neural network architecture (4,2) (4,4)

# parameters (excl. fixed effects) 20 48

Dynamic model specification

Neural network architecture (4,2) (16,8)

# parameters (excl. fixed effects) 24 224

Note: “(a,b,c)” indicates a neural network architecture with three hidden layers containing a units in the

first layer, b in the second, and c in the third.
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