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Abstract

We consider truncated (or conditional) sum-of-squares estimation of a parametric
fractional time series model with an additive deterministic structure. The latter con-
sists of both a drift term and a generalized power law trend. The memory parameter of
the stochastic component and the power parameter of the deterministic trend compo-
nent are both considered unknown real numbers to be estimated and belonging to arbi-
trarily large compact sets. Thus, our model captures different forms of nonstationarity
and noninvertibility as well as a very flexible deterministic specification. As in related
settings, the proof of consistency (which is a prerequisite for proving asymptotic nor-
mality) is challenging due to non-uniform convergence of the objective function over a
large admissible parameter space and due to the competition between stochastic and
deterministic components. As expected, parameter estimates related to the determin-
istic component are shown to be consistent and asymptotically normal only for parts
of the parameter space depending on the relative strength of the stochastic and deter-
ministic components. In contrast, we establish consistency and asymptotic normality
of parameter estimates related to the stochastic component for the entire parameter
space. Furthermore, the asymptotic distribution of the latter estimates is unaffected
by the presence of the deterministic component, even when this is not consistently es-
timable. We also include a small Monte Carlo simulation to illustrate our results.
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1 Introduction

A common approach to time series modeling is to assume an additive structure, where the
observed process is a sum of latent stochastic and deterministic components. Regarding
the former, the autoregressive moving average (ARMA) class, possibly including unit root
nonstationary and noninvertible processes, is dominant. A general model that includes these
processes as special cases, and also bridges the gap between stationary and invertible ARMA
models and the unit root nonstationary or noninvertible models, is the fractionally integrated
time series model. Specifically, a zero-mean fractional model for zt is given by

∆δ
+zt = ut, t ∈ Z, (1)

ut = ω(L;ϕ)εt, t ∈ Z, (2)

where εt is a zero-mean and serially uncorrelated sequence, L is the lag operator, and, for any
process ξt, ∆ζ

+ξt = ∆ζξtI(t ≥ 1) =
∑t−1

i=0 πi (−ζ) ξt−iI(t ≥ 1) with I(·) denoting the indicator
function, πi(v) = 0 for i < 0, π0(v) = 1, and

πi (v) =
Γ (v + i)

Γ (v) Γ (1 + i)
=
v(v + 1) . . . (v + i− 1)

i!
, i ≥ 1, (3)

denoting the coefficients in the binomial expansion of (1 − z)−v. The parameter δ is the
“memory” of the process, which satisfies δ = 0 for stationary and invertible ARMA models,
δ = 1 for unit root nonstationary models, and δ = −1 for unit root noninvertible models.

The process zt generated by (1) has been termed by the literature as a Type II fractionally
integrated process of order δ. The Type II specification (1) assumes that the process is
initialized at t = 1, but at the cost of more complicated proofs we conjecture that this could
be generalized to any initialization under suitable conditions on the initial values. Johansen
and Nielsen (2010, 2012a, 2016) developed maximum likelihood-based inference theory for
fractional processes under more general assumptions on the initialization, where the inference
is conditional on a finite number of initial values. Of course, finite sample behavior may
depend on the initialization as investigated by Johansen and Nielsen (2016) using higher-
order asymptotic expansions and numerical methods. To avoid further complications of the
theory, we maintain the simpler Type II initialization in (1).

The function ω in (2) characterizes parametrically the short memory dependence present
in ut, and hence in zt. It is given as

ω(L;ϕ) =
∞∑
j=0

ωj(ϕ)Lj, (4)

where ϕ is an unknown p× 1 vector collecting the short-memory parameters. For example,
we could have

ω(L;ϕ) =
αMA(L;ϕ)

αAR(L;ϕ)
, (5)

where αAR and αMA are polynomials of orders p1 and p2, respectively, with no common ze-
ros and all roots outside the unit circle. Then (1),(2),(5) constitutes the fractionally inte-
grated ARMA, or FARIMA(p1, δ, p2), model, where ϕ collects the AR and MA parameters.
However, we will maintain the more general short-memory specification (4) instead of (5),
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so that, under our conditions, zt will not be restricted to belong to the FARIMA class. More
precise conditions will be imposed on ω below.

An important implication of model (1),(2) is that E (zt) = 0, so therefore, even if this
setting has been employed in theoretical work (e.g., Hualde and Robinson, 2011 or Nielsen,
2015), it has limited empirical relevance. In practice, it would be natural to extend (1),(2)
to allow for some deterministic structure such as, for example, a non-zero mean or drift. A
very simple possibility would be to consider the observable process xt generated as

∆δ
+ (xt − µ) = ut, t ∈ Z, , (6)

which implies that

xt = µI (t ≥ 1) + zt = µπt−1 (1) + zt, t ∈ Z, , (7)

so xt is a fractionally integrated process with drift if µ 6= 0. This is a particular case of
previous proposals in the literature, like Robinson (1994, 2005) or Robinson and Iacone
(2005). An alternative specification for the deterministic component could be

∆δ
+xt = β + ut or xt = ∆−δ+ β + ∆−δ+ ut = βπt−1 (δ + 1) + zt, (8)

see also Robinson (1994). By Stirling’s approximation, πt−1(1 + c) behaves like tc, apart
from a constant factor, and πt−1(1 + c) is therefore denoted a generalized power law trend of
order c or a generalized polynomial trend of order c. Thus, the presence of a non-zero β in
(8) generates a deterministic trend component for xt.

Several ideas arise from the previous discussion. First, the specification in (8) shows that,
when dealing with fractional time series, the fractional coefficients πt−1 appear to be a more
natural and elegant representation of deterministic terms compared with the usual powers
of t. Of course, for the commonly applied cases c = 0, 1, πt−1(1+ c) equals tc for t ≥ 1. More
generally, considering πt−1 appears to be a natural approach to introducing a deterministic
term that complements the Type II process zt, due to the properties

∆d
+πt−1(c) = πt−1(c− d) and

t−1∑
j=0

πj (c) = πt−1 (1 + c) . (9)

Second, in view of (1), restricting the fractional order of the stochastic and deterministic
components to be identical in (8) seems arbitrary. This motivates the more general model

xt = βπt−1(γ) + zt, (10)

where β and γ are both unknown real-valued parameters and zt is generated by (1),(2),
so, in particular, it can be either short or long memory. Under the model (1),(2),(10), the
fractional order of the stochastic term is δ and that of the deterministic term is γ, thus
allowing these orders to be modeled by two different parameters. In related work, Hualde
and Nielsen (2020) analyze the model

xt = βtγ−1
+ + zt, (11)

where tγ−1
+ = tγ−1I(t ≥ 1) (strictly speaking, they considered the power tγ+, but this makes no

difference with the obvious re-labeling). Of course, since πt−1(γ) = tγ−1I(t ≥ 1) for γ = 1, 2,
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(10) and (11) are identical specifications for γ = 1, 2. Model (11) is a particular case of
those of Robinson (2005) or Robinson and Iacone (2005), where more deterministic terms are
included, but the power law parameters were assumed to be known. Also, (11) is embedded in
Robinson’s (2012) spatial model, where the power law parameters were unknown, but which
required a short memory stochastic component. As will be seen below, apart from being
more natural in a fractional setting, the specification (10) offers several crucial advantages
over (11). Therefore, (11) is more accurately described as an approximation to (10) in a
fractional setting with γ 6= 1, 2.

Third, the model (10) (or (11)) is, undoubtedly, quite restrictive. For example, it cannot
accommodate the commonly applied constant plus linear trend specification. To illustrate
the restrictive nature of (10) or (11), note that for both models x1 = β + z1, which implies
that the β parameter is intimately linked to the initial observation. Thus, in practice, a
large value of x1 will lead to a large value of the estimated β, even in cases where the true
slope of the deterministic component is small. This discussion just indicates that models
(10) or (11) might be misspecified in most cases due to the omission of a drift component
that determines the level of the observable time series. Thus, inspired by (7) and (10), we
consider instead of (10) the more general structure

xt = µπt−1(1) + βπt−1(γ) + zt, (12)

where for identification γ 6= 1. The deterministic specification in (12) covers the standard
case of constant plus linear trend (when γ = 2). However, since γ is allowed to take any
real value, (12) characterizes a wide range of deterministic behaviors. Compared to (10) (or
(11)), the generalization in (12) appears to be particularly relevant for γ < 1, because in this
case the deterministic structure would approach smoothly the drift µ as time increases. One
interpretation of this case, which appears to be both realistic and coherent with e.g. economic
time series, is that of a series moving around a deterministic structure that approaches
an equilibrium value (given by µ). Furthermore, the parameter µ is the so-called “level
parameter” in the terminology of Johansen and Nielsen (2016), the inclusion of which they
argue can alleviate bias issues arising from non-zero initial conditions in the Type II context.

Fourth, model (12) is closed under fractional differencing in the sense that, for any d ∈ R,

∆d
+xt = µπt−1 (1− d) + βπt−1(γ − d) + ∆d−δ

+ ut (13)

has the exact same structure as (12). This property is an important advantage, because, as
will be seen below, our proposed estimators depend crucially on fractional differences of the
observables, and (13) will simplify the estimation procedure by avoiding the presence of “ap-
proximation errors” which routinely appear when taking fractional differences of polynomi-
als of t. It is desirable, both from a mathematical and from a practical point of view, that
fractional differences of a process belonging to a class of fractional time series belong to the
same class of fractional time series. In other words, it would seem strange if fractional dif-
ferences of a fractional time series process generated processes that were outside the class.

Unlike (10) and (12), the alternative model (11) given with tγ−1
+ instead of πt−1(γ) is not

closed under fractional differencing. Thus, modeling trends by means of πt−1 seems both more
natural and more elegant than a power of t, and leads to several advantages, which are even
more relevant because of the extra flexibility introduced by the drift term µ. In particular, we
note that the properties (9) are only shared approximately by tc+, in the sense that ∆d

+t
c
+ is
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only asymptotically equal to a constant times tc−d+ , and only for some values of c and d. From
a technical viewpoint, the “closedness” leads to simpler and more elegant proof arguments.
From a practical viewpoint, for the model (11) discussed in Hualde and Nielsen (2020), only
the case γ > 0 could be considered. Nicely, considering generalized trends (πt−1) instead of
powers of t permits consideration of any value of γ in an arbitrarily large compact set.

In our model (1),(2),(12), we allow both the stochastic and deterministic components to
be of a fractional order, thereby placing them on an equal footing. Specifically, δ (which we
permit to lie in an arbitrarily large compact interval) characterizes the behavior of V ar (xt)
and Cov (xt, xt−j) and γ characterizes the behaviour of E (xt). Thus, borrowing White
and Granger’s (2011) terminology, when δ > 1/2, xt has an increasing “stochastic trend in
variance” because V ar (xt) grows at rate t2δ−1. Similarly, xt has a “stochastic trend in mean”
because E (xt) grows at rate tγ−1. In this sense, letting γ be real-valued appears as natural
as letting δ be real-valued. Moreover, in the context of fractional models, letting γ be real-
valued seems to be a natural alternative to the more standard linear trend model, which
might suffer from severe specification problems with important implications for inference.

We note that if γ were known in (12), the estimation problem is simplified greatly. This
case has been studied by Robinson (2005) who considered M -estimation of a model like (11)
(although involving more deterministic terms) with known γ and allowing for fractional zt.
Other works that have considered a similar problem to ours, but assuming that zt is at most
a weakly dependent process, include Wu (1981), Phillips (2007), and Robinson (2012). The
latter analyzes a more general spatial setting with more deterministic terms, but where the
weakly dependent stochastic component is dominated by the deterministic structure. Related
to the implications of the relative strength of deterministic and stochastic components for
estimation, Johansen and Nielsen (2016) proved consistency and asymptotic normality of a
truncated/conditional sum-of-squares estimator that ignores the deterministic components,
whenever this component is dominated by the stochastic one. Other contributions that
include power law trends, although in slightly different contexts, are Robinson and Marinucci
(2000) and Robinson and Iacone (2005). Finally, as mentioned above, Hualde and Nielsen
(2020) analyze the model given by (1),(2),(11), using the approximation given by the simple
power tγ−1

+ instead of the fractional coefficients πt−1(γ). Their work has two very important
limitations with respect to our contribution in the present paper. First, they have no drift
term, which, as justified before, limits substantially the empirical relevance of their model.
Second, as a consequence of applying the approximation tγ−1

+ , they require a strong condition
on the power law parameter, namely γ > 0, so cases where the deterministic structure tends
very quickly to an equilibrium value (known to be 0 in their model) are not covered.

In the present paper we derive the limiting properties of a truncated/conditional sum-
of-squares estimator of parameters in model (1),(2),(12). As in Hualde and Nielsen (2020),
our setting is substantially more involved than in the related analysis of Hualde and Robin-
son (2011) (or Nielsen, 2015), which discussed parametric estimation in model (12) taking
µ = β = 0 as known. This avoids the huge complication of dealing with the competition
between stochastic and deterministic components, especially related to the proof of consis-
tency (prerequisite for proving limiting normality), which is very delicate because the loss
function does not converge uniformly over a large admissible parameter space, even when
knowledge of µ = β = 0 is imposed. Additionally, the presence of a second deterministic
term (the drift) over the simpler setting of Hualde and Nielsen (2020) introduces very sub-
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stantial technical challenges.
As in Hualde and Nielsen (2020), we establish the limiting properties of our estimators,

noting that results depend on the relative strength of the deterministic and stochastic compo-
nents. We distinguish different cases depending on the true values of the parameters, which
are denoted by subscript zero. When γ0 − 1/2 > δ0 and δ0 < 1/2, we find that the estima-
tors of all parameters are consistent and asymptotically normal. Next, when γ0 − 1/2 > δ0

but δ0 > 1/2, consistency and asymptotic normality hold for all estimators except that of
µ0. Alternatively, when γ0 − 1/2 < δ0, only the estimators of the parameters related to the
stochastic component (δ0,ϕ0) are consistent and asymptotically normal. In this case, the
joint limiting distribution of the estimators of δ0 and ϕ0 is unaffected by the presence of de-
terministic components that cannot be consistently estimated; a phenomenon that has been
noted previously in, e.g., Heyde and Dai (1996), Abadir, Distaso, and Giraitis (2007), Ia-
cone (2010), and Hualde and Nielsen (2020). If, in this case, δ0 < 1/2, we also provide a
convergence rate for the estimator of µ0.

The rest of the paper is organized as follows. First, in Section 2 we discuss the estimation
problem in model (12) and compare with several alternatives. In Section 3 we present the
main theoretical results of the paper. Next, a Monte Carlo experiment of finite sample
performance is presented in Section 4, and we give some concluding remarks in Section 5.
Finally, Section 6 collects the proofs of our main results, while all lemmas are stated in
Sections 7 and 8. The proofs of all lemmas can be found in Sections 9 and 10.

2 The estimation problem

We introduce the following notation. Let prime denote transposition. The parameter for
the stochastic component is τ = (δ,ϕ′)′ with true value τ 0 = (δ0,ϕ

′
0)′. We also define the

parameters ϑ = (τ ′, γ)′ and φ = (µ, β)′ with true values ϑ0 = (τ ′0, γ0)′ and φ0 = (µ0, β0)′.
Thus, the model is given by (12), which we repeat here for convenience,

xt = µπt−1(1) + βπt−1(γ) + zt,

where zt is a stochastic term modeled by (1),(2). The data generating process (DGP) is
given by (1),(2),(12) with parameters ϑ0 and φ0.

To illustrate the estimation problem, suppose for now that ω(L;ϕ) = 1, and hence
ut = εt, and ignore ϕ, so that the parameters to be estimated are δ, γ, µ, β. Hualde and
Nielsen’s (2020) proof methods and results make evident the significant technical difficulties
of enlarging their relatively restrictive model (11) with additional deterministic terms to
capture a richer structure (e.g., including a drift). Thus, an interesting and tempting proposal
is the “differencing and adding back” procedure, where the idea is to eliminate the drift
by differencing to simplify the estimation problem. A similar idea has been considered for
estimation of nonstationary processes by Velasco (1999a, 1999b) and Chen and Hurvich
(2003) in combination with tapering of the periodogram in frequency domain methods.
Specifically, consider yt = ∆+xt in (12); that is

yt = ∆+xt = µπt−1(0) + βπt−1(γ − 1) + ∆1−δ
+ εt, (14)

so that the observable process is yt = β0πt−1(γ0−1)+∆1−δ0
+ εt for t ≥ 2 and y1 = µ0 +β0 +ε1.

We notice that µ0 only affects one observation, y1, so an apparently sensible approach could
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be to “forget” about this effect and act as if the influence of µ0 had been completely removed
by differencing. In this setting, we will discuss several variations of differencing and adding
back, and argue why these all fail for this model.

Supposed we observed

ỹt = β0πt−1(γ0 − 1) + ∆1−δ0
+ εt, t = 1, ..., T.

Then we could consider the loss function

Q̃T (δ, γ, β) = T−1

T∑
t=1

(∆δ−1
+ ỹt − βπt−1(γ − δ))2 (15)

and derive the corresponding estimators. This approach would eliminate the drift parameter
µ, and thus simplify the estimation problem. In particular, it would be relatively similar to
that in Hualde and Nielsen (2020), with the only relevant difference of dealing with πt−1(γ−δ)
instead of ∆δ

+t
γ−1 in the loss function. However, in practice we observe xt, or equivalently

yt, for t = 1, . . . , T , so that Q̃T is infeasible because ỹ1 is unobserved. Specifically, ỹt = yt for
t ≥ 2 but ỹ1 = β0+ε1 6= µ0+β0+ε1 = y1 if µ0 6= 0. We now discuss three feasible alternatives.

First, inspired by Q̃T in (15), we could ignore the presence of µ0 in the single observation
y1 and set the loss function as

Q1T (δ, γ, β) = T−1

T∑
t=1

(∆δ−1
+ yt − βπt−1(γ − δ))2.

We note from (14) that ∆δ−1
+ yt = µ0πt−1(1− δ) +β0πt−1(γ0− δ) + ∆δ−δ0

+ εt. Thus, comparing

with the infeasible Q̃T , we find

Q1T (δ, γ, β) = T−1

T∑
t=1

(∆δ−1
+ ỹt − βπt−1(γ − δ) + µ0πt−1(1− δ))2,

and the presence of the additional term µ0πt−1(1− δ) in Q1T (compared with Q̃T ) is unde-
sirable. For example, evaluated at the true values we find

Q1T (δ0, γ0, β0) = T−1

T∑
t=1

(εt + µ0πt−1(1− δ0))2,

where the contribution of the term µ0πt−1(1− δ0) is non-negligible, and in fact is dominant
for δ0 < 0 if µ0 6= 0.

Second, to eliminate the influence of the first observation, suppose we force a zero initial
condition and consider

y∗1 = 0 and y∗t = ∆xt = β0πt−1(γ0 − 1) + ∆1−δ0
+ εt for t ≥ 2.

We could then use the observed values y∗t , t = 1, . . . , T , in the estimation; that is, work with
the loss function

Q2T (δ, γ, β) = T−1

T∑
t=1

(∆δ−1
+ y∗t − βπt−1(γ − δ))2.
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Comparing again with the infeasible Q̃T , we find that

Q2T (δ, γ, β) = T−1

T∑
t=1

(∆δ−1
+ ỹt − βπt−1(γ − δ)− (β0 + ε1)πt−1(1− δ))2,

where the additional term (β0 + ε1)πt−1(1− δ) in Q2T causes difficulties similar to the addi-
tional term in Q1T . Furthermore, simply omitting the first observation and defining Q2T by
a summation over t = 2, . . . , T causes identical problems.

Third, instead of yt in (14), suppose we consider the forward difference. That is, consider
the observable

y†t = xt+1 − xt = β0πt(γ0 − 1) + ∆1−δ0
+ εt+1 for t = 1, . . . , T − 1

and the corresponding loss function

Q3T (δ, γ, β) = (T − 1)−1

T−1∑
t=1

(∆δ−1
+ y†t − β∆δ−1

+ πt(γ − 1))2.

This would appear to eliminate the influence of the first observation and µ0. However,
because ∆δ−1

+ y†t = β0∆δ−1
+ πt(γ0−1)+∆δ−δ0

+ εt+1−πt(1− δ)ε1, the additional term πt(1− δ)ε1

again causes difficulties similar to the additional terms in Q1T and Q2T . Unreported Monte
Carlo simulations confirm that estimators based onQiT , i = 1, 2, 3, are inconsistent for δ0 < 0.

The above discussion makes it clear that the “differencing and adding back” procedure
cannot be used to simplify the estimation problem in our context. We therefore focus on the
observed xt for t = 1, . . . , T . Motivated by the Gaussian log-likelihood and dealing with the
general specification for ω given in (4), we consider the sum-of-squares loss function

LT (ϑ,φ) =
1

T

T∑
t=1

(ρ(L;ϕ)xt(δ)− φ′ct−1(1− δ, γ − δ,ϕ))
2
. (16)

Here we have defined ρ(s;ϕ) = ω−1(s;ϕ), see the discussion following Assumption A1,
ξt(d) = ∆d

+ξt for an arbitrary process ξt, and

ct−1(1− δ, γ − δ,ϕ) = (ct−1(1− δ,ϕ), ct−1(γ − δ,ϕ))′

with the convolution coefficient

ct−1(d,ϕ) = ρ(L;ϕ)πt−1(d) =
t−1∑
j=0

ρj(ϕ)πt−j−1(d). (17)

Clearly, for a given ϑ, we can concentrate the loss function (16) with respect to φ, to obtain
the concentrated loss function

RT (ϑ) =
1

T

T∑
t=1

(
ρ(L;ϕ)xt(δ)− φ̂

′
(ϑ)ct−1(1− δ, γ − δ,ϕ)

)2

,

where

φ̂(ϑ) =

(
T∑
t=1

ct−1(1− δ, γ − δ,ϕ)c′t−1(1− δ, γ − δ,ϕ)

)−1 T∑
t=1

ct−1(1−δ, γ−δ,ϕ)ρ(L;ϕ)xt(δ).

(18)
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Thus, letting the parameter space for ϑ be denoted Ξ, which will be fully specified in
Assumption A3 below, we propose the estimator

ϑ̂ = arg min
ϑ∈Ξ

RT (ϑ), (19)

along with φ̂ = φ̂(ϑ̂) and σ̂2 = LT (ϑ̂, φ̂).
As proposed by Hualde and Robinson (2011), we call (19) the truncated sum-of-squares

estimator, though it is also often called the nonlinear least squares or conditional sum-of-
squares estimator. Because it is based on the Gaussian likelihood, it is expected to be
asymptotically efficient under Gaussianity. For nonfractional ARMA models with a known
integer-valued memory parameter, (19) was advocated by, e.g., Box and Jenkins (1971). For
fractional time series, the estimator was suggested by Li and McLeod (1986) in stationary
FARIMA models. The first rigorous asymptotic analyses of (19) with the memory parameter
lying in an arbitrarily large compact interval were given by Hualde and Robinson (2011) and
Nielsen (2015).

3 Main results

We first provide the assumptions needed for consistency of the estimator. Our conditions
for the asymptotic analysis are nearly identical to those in Hualde and Robinson (2011) and
Hualde and Nielsen (2020), with the only difference being in Assumption A3 below.

A1. (i) for all ϕ ∈ Ψ\{ϕ0}, |ω(s;ϕ)| 6= |ω(s;ϕ0)| on a set S ⊂ {s : |s| = 1} of positive
Lebesgue measure;

(ii) for all ϕ ∈ Ψ, ω(eiλ;ϕ) is differentiable in λ with derivative in Lip(ς) for 1/2 <
ς ≤ 1;

(iii) for all λ, ω(eiλ;ϕ) is continuous in ϕ;

(iv) for all ϕ ∈ Ψ, ω0(ϕ) = 1 and |ω(s;ϕ)| 6= 0, |s| ≤ 1.

A2. The εt in (2) are stationary and ergodic with finite fourth moment, E(εt| Ft−1) = 0,
E(ε2

t | Ft−1) = σ2
0, a.s., where Ft is the σ-field of events generated by εs, s ≤ t, and

conditional (on Ft−1) third and fourth moments of εt are equal to the corresponding
unconditional moments a.s.

A3. The parameter space for ϑ is given by Ξ = [51,52] × Ψ × � and ϑ0 ∈ Ξ. Here, 51,
52 are arbitrary real numbers such that 51 < 52, Ψ ⊆ Rp is compact and convex,
and � = [�1, 1− κ]∪ [1 + κ,�2] for arbitrary real numbers �1, �2, and an arbitrarily
small real number κ > 0 such that �1 < 1− κ and �2 > 1 + κ. For φ the parameter
space is R2. Finally, if γ0 − 1/2 > δ0, we also assume that β0 6= 0.

For a detailed discussion of A1 and A2 we refer to Hualde and Robinson (2011) and Hualde
and Nielsen (2020). Note that writing ω−1(s;ϕ) = ρ(s;ϕ) =

∑∞
j=0 ρj(ϕ)sj, Assumption A1

implies that ρ0(ϕ) = 1 for all ϕ and

sup
ϕ∈Ψ
|ωj(ϕ)| = O(j−1−ς) as j →∞, (20)

sup
ϕ∈Ψ
|ρj(ϕ)| = O(j−1−ς) as j →∞, (21)

inf
|s|=1,ϕ∈Ψ

|ρ(s;ϕ)| > 0, (22)
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where ς > 1/2 is given in A1(ii). A1 is easily satisfied for stationary and invertible ARMA
models and for the exponential spectrum model of Bloomfield (1973). It is very similar to
other conditions employed in asymptotic theory for the estimate τ̂ , see Hualde and Robinson
(2011) and Nielsen (2015), as well as Whittle estimators that restrict to stationarity, e.g.
Fox and Taqqu (1986), Dahlhaus (1989), and Giraitis and Surgailis (1990). Assumption A1
can be readily verified because ω is a known parametric function. In fact ω satisfying A1
are invariably employed by practitioners.

Assumption A2 does not impose independence or identical distribution of εt, but re-
quires conditional homoskedasticity. It is standard in the time series literature since Han-
nan (1973), although it may be quite strong for some empirical applications. We conjecture
that this assumption could be relaxed to allow for both conditional and unconditional het-
eroskedasticiy following recent work by Cavaliere, Nielsen, and Taylor (2015, 2017, 2022).
This would require replacing A2 by more complicated summability conditions on the cumu-
lants of εt and would substantially complicate our proofs. Consequently, this seems beyond
the scope of this paper.

Assumption A3 is very similar to A3 in Hualde and Nielsen (2020), but with two im-
portant differences. First, due to the inclusion of the extra drift term, we need γ0 6= 1 to
guarantee identification of µ0 and β0 (see also Section 4.2). This condition, along with the
need of dealing with compact parameter spaces in the consistency proof, leads to setting the
parameter space for γ as [�1, 1 − κ] ∪ [1 + κ,�2]. A similar requirement is imposed in the
related setting of Robinson (2012). Second, translated to our notation, Hualde and Nielsen
(2020) impose the condition that �1 > 0, which implies that just cases where γ0 > 0 can
be considered. This is due to the approximate nature of their model. Specifically, this ad-
ditional condition helps to guarantee that their model is approximately closed under frac-
tional differencing, i.e. to obtain that ∆d

+t
c
+ is approximately equal to a constant times tc−d+ .

In contrast, apart from the exclusion of the arbitrarily small open interval (1− κ, 1 + κ), we
permit γ0 to lie in an arbitrarily large set. Also, similarly to Hualde and Nielsen (2020), the
parameter space for φ is basically unrestricted, although we need the condition β0 6= 0 to
guarantee the identification of γ0 whenever this parameter can be consistently estimated.

As will be seen, when δ0 is large, the stochastic signal dominates the deterministic trend.
In particular, whenever δ0 > γ0 − 1/2, γ0 and β0 cannot be consistently estimated, and if
δ0 > 1/2 this problem also affects the estimation of the drift µ0. On the other hand, when
δ0 < γ0−1/2 and/or δ0 < 1/2, at least part of the deterministic structure can be consistently
estimated. Interestingly, for small values of δ0 even very small and vanishing generalized
trends (with small or negative γ0) can be consistently estimated. In this sense, the value of
δ0 helps the identification of the deterministic trend.

Theorem 1. Let xt be generated by (1), (2), and (12) with true values ϑ0 and φ0, and let
Assumptions A1–A3 hold.

(i) If γ0 − 1/2 > δ0, then ϑ̂→p ϑ0 as T →∞.

(ii) If γ0 − 1/2 < δ0, then τ̂ →p τ 0 as T →∞.

Because φ̂ = (µ̂, β̂)′ has an explicit form, a prior consistency proof is not required,

and therefore φ̂ is not included in Theorem 1. When applicable, we present directly the
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asymptotic distribution of φ̂ in Theorem 2(i) below. Specifically, it follows straightforwardly

from Theorem 2 that µ̂ is consistent if δ0 < 1/2 and β̂ is consistent when γ0 − 1/2 > δ0.

Theorem 1(i) shows consistency of ϑ̂ when γ0− 1/2 > δ0, which we refer to as the strong
deterministic trend case. On the other hand, Theorem 1(ii) shows consistency only of τ̂
when γ0 − 1/2 < δ0, which is the weak deterministic trend case. In the latter case, γ0 (and
β0) cannot possibly be consistently estimated. This is easily seen by considering for example
δ0 = 1 (a random walk) in which case the parameters γ0 and β0 cannot be consistently
estimated when γ0 < 3/2 because the deterministic signal is drowned by the stochastic noise.
This generalizes the well-known result that a level (γ0 = 1) cannot be estimated consistently
for a random walk, whereas a linear trend (γ0 = 2) can be consistently estimated. Similarly,
we note that, as will be discussed in the context of Theorem 2(i) below, the drift parameter µ0

can be consistently estimated whenever δ0 < 1/2, i.e. when zt is (asymptotically) stationary.
More generally, Theorem 1(ii) shows that, even in cases where the deterministic signal

is not strong enough for consistent estimation of the deterministic structure, the parameter
characterizing the stochastic component, τ 0, can nonetheless still be consistently estimated.

The proof of Theorem 1 is very challenging due to the non-uniform behaviour of the loss
function over a large admissible parameter set. In a much simpler setting with absence of any
deterministic component, this problem was acknowledged and solved by Hualde and Robin-
son (2011) and Nielsen (2015), where the difficulty arose due to the nonstationary/stationary
behaviour of fractional differences of the observed process. Our proof strategy is similar to
that in Hualde and Nielsen (2020) in that it takes advantage of the competition between the
deterministic and stochastic components, although this is now more challenging because of
the arbitrarily large parameter space for γ, and in particular because of the presence of a sec-
ond deterministic term. Specifically, the latter complicates matters substantially due to the
difficulties outlined in Section 2 and because dealing with the relative strengths of stochas-
tic and deterministic terms is now more involved.

For the asymptotic distribution theory we define bj(ϕ0) =
∑j−1

k=0 ωk(ϕ0)∂ρj−k(ϕ0)/∂ϕ
and the matrix

A =

(
π2/6 −

∑∞
j=1 b

′
j (ϕ0) /j

−
∑∞

j=1 bj (ϕ0) /j
∑∞

j=1 bj (ϕ0) b′j (ϕ0)

)
,

which is the Fisher information for the parameter τ under Gaussianity; see Dahlhaus (1989)
and Hualde and Robinson (2011). Also, we require an additional regularity condition.

A4. (i) ϑ0 ∈ int(Ξ);

(ii) for all λ, ω(eiλ;ϕ) is thrice continuously differentiable in ϕ on a closed neighbour-
hood Nε(ϕ0) of radius ε ∈ (0, 1/2) about ϕ0, and for all ϕ ∈ Nε(ϕ0) these partial
derivatives with respect to ϕ are themselves differentiable in λ with derivative in
Lip(ς) for 1/2 < ς ≤ 1;

(iii) the matrix A is nonsingular.

Assumption A4 is identical to A4 in Hualde and Nielsen (2020). It is slightly stronger than
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A3 in Hualde and Robinson (2011). This strengthening seems necessary to obtain the bounds

sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂ρj(ϕ)

∂ϕi

∣∣∣∣ = O(j−1−ς), sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂2ρj(ϕ)

∂ϕi∂ϕl

∣∣∣∣ = O(j−1−ς),

sup
ϕ∈Nε(ϕ0)

∣∣∣∣ ∂3ρj(ϕ)

∂ϕi∂ϕl∂ϕk

∣∣∣∣ = O(j−1−ς), (23)

where ς > 1/2 is given in A4(ii) and ϕi denotes the i-th element of ϕ; see Hualde and
Nielsen (2020) for details. Again A4 is easily satisfied for ARMA models or the Bloomfield
(1973) spectral model. For the latter model, the analytical formulas for A, and hence for
the asymptotic variance matrix, simplify neatly; see Robinson (1994). In practical imple-
mentations, though, numerical derivatives of the objective function will typically be used.

To describe the asymptotic distribution, we introduce additional notation. Let Iq and
0q denote the q-dimensional identity matrix and a q-vector of zeros, respectively, and define

P µ,β,T = diag(Ip+1, T
δ0−γ0+1, T δ0 , T δ0−γ0+1 log T ) and W µ,β =

 σ2
0A 0p+1 0p+1

0′p+1

0′p+1

V µ,β

 ,

(24)

P β,T = diag(Ip+1, T
δ0−γ0+1, T δ0−γ0+1 log T ) and W β =

(
σ2

0A 0p+1

0′p+1 vβ

)
, (25)

where

V µ,β =

(
(γ0−1)2

(γ0−2δ0)2vβ 0

0 ρ2(1;ϕ0)(γ0−1)2

Γ2(1−δ0)(1−2δ0)(γ0−2δ0)2

)
and vβ =

β2
0ρ

2(1;ϕ0)

Γ2(γ0 − δ0)(2(γ0 − δ0)− 1)3
.

Theorem 2. Let xt be generated by (1), (2), and (12) with true values ϑ0 and φ0, and let
Assumptions A1–A4 hold. Then, as T →∞:

(i.a) If γ0 − 1/2 > δ0 and δ0 < 1/2,

T 1/2P−1
µ,β,T

 ϑ̂− ϑ0

µ̂− µ0

β̂ − β0

→d

 Ip+2 0p+2

0′p+2 1
0′p+1 −β0 0

Nµ,β, (26)

where Nµ,β is a random variable distributed as N(0p+3, σ
2
0W

−1
µ,β).

(i.b) If γ0 − 1/2 > δ0 and δ0 > 1/2,

T 1/2P−1
β,T

(
ϑ̂− ϑ0

β̂ − β0

)
→d

(
Ip+2

0′p+1 −β0

)
Nβ, (27)

where Nβ is a random variable distributed as N(0p+2, σ
2
0W

−1
β ).

(ii) If γ0 − 1/2 < δ0,
T 1/2(τ̂ − τ 0)→d N(0p+1,A

−1). (28)

If, in addition, δ0 < 1/2, then for any ε > 0,

µ̂− µ0 = op
(
T δ0−1/2+ε

)
. (29)
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The asymptotic distribution results in Theorem 2 are divided into two main cases. In
Theorem 2(i) we first present the result for the strong deterministic trend case, γ0 − 1/2 >
δ0. Here, the deterministic signal is sufficiently strong, relative to that of the stochastic
component, that we can prove joint asymptotic normality for the estimators ϑ̂ and β̂. Within
this case, we distinguish between δ0 < 1/2, where we can also include µ̂, and δ0 > 1/2 where

we cannot include µ̂. Whether µ̂ can be included or not, ϑ̂ and β̂ retain identical properties.
In Theorem 2(ii) we present the result for the weak deterministic trend case, γ0−1/2 < δ0.

In this case, we can obtain the asymptotic distribution for the estimator of the stochastic
component τ 0 only, but when δ0 < 1/2 we also prove consistency of µ̂ with rate T 1/2−δ0+ε for
any arbitrarily small ε > 0. However, the estimator µ̂ is a complicated function of γ̂, whose
behavior is unknown in this case and indeed is not even consistent; see the discussion after
Theorem 1. Thus, deriving an asymptotic distribution result for µ̂ in case (ii) with δ0 < 1/2
does not seem to be possible.

Theorem 2(ii) shows that, even in cases where the deterministic signal is not strong
enough for consistent estimation of γ0 and β0 (and possibly also µ0), the estimator of the
parameter characterizing the stochastic component, τ̂ , has exactly the same limiting prop-
erties as in the strong deterministic trend case in Theorem 2(i.a). That is, the asymptotic
distribution result for τ̂ in Theorem 2 is unaffected by the relative strengths of the stochas-
tic and deterministic components. In particular, even when γ0, β0, and µ0 cannot be consis-
tently estimated, the asymptotic distribution of τ̂ is unaffected by their presence.

It is noteworthy that the asymptotic distribution of τ̂ is unaffected by the presence of
the deterministic component in (12), and τ̂ has the same asymptotic distribution as in, e.g.,
Theorem 2.2 of Hualde and Robinson (2011). Specifically, the varianceA−1 in the asymptotic
distribution of τ̂ in (26), (27), and (28) is equal to the inverse Fisher information under
Gaussianity; see Dahlhaus (1989). Because the estimate τ̂ is also asymptotically independent
of the remaining parameter estimates, it therefore follows that τ̂ is asymptotically efficient
under the additional assumption of Gaussianity, and this occurs regardless of the relative
strength of the deterministic and stochastic components.

More generally, Theorem 2 makes it possible to conduct inference on the model param-
eters, with the caveat that the joint asymptotic distribution of ϑ̂, µ̂, and β̂ given in (26)

as well as that of ϑ̂ and β̂ given in (27) are both singular, which makes testing of joint
hypotheses on ϑ0 and β0 impossible. However, separate inference can straightforwardly be
conducted on ϑ0 and β0. For example, it is straightforward given (26) or (27) to construct
confidence intervals and/or to test hypotheses such as γ0 = 2 (deterministic trend in xt is
linear) or δ0 = 1 (stochastic component is of the random walk-type).

To conduct inference on the model parameters using Theorem 2 a consistent estimate
of σ2

0 is needed. To this end, consistency of the estimator σ̂2 = LT (ϑ̂, φ̂), see (16), is
straightforwardly obtained using the methods in the proofs of Theorems 1 and 2.

Specifically, in view of the above comments, inference on the parameter τ 0 characterizing
the stochastic component can be conducted by means of likelihood ratio tests or Wald/t tests.
The former do not require estimation of the variance, whereas for the latter a consistent
estimate of the variance of τ̂ can be obtained by numerical evaluation of the Hessian matrix.
Because the (marginal) asymptotic distribution of τ̂ is the same across the different cases in
Theorem 2, and because the Hessian matrix is asymptotically block-diagonal in each case, it
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is a straightforward consequence of Theorem 2 that such likelihood ratio or Wald tests are
asymptotically χ2-distributed and t-tests are asymptotically standard normally distributed.
Nonetheless, it may sometimes be of interest to determine which of the cases in Theorem 2 is
relevant in a given situation. Of course there are many ways of doing so, and in Section 4.2
we consider a stepwise testing procedure.

We notice from (26) and (27) in Theorem 2(i) that γ̂ is T γ0−δ0−1/2-consistent whereas β̂
is only T γ0−δ0−1/2/ log T -consistent. In fact, it can be shown that if γ0 were known, then the
least squares regression estimator of β0 would also be T γ0−δ0−1/2-consistent. Thus, there is a
(small) rate-of-convergence loss from having to estimate the power law parameter γ0.

Finally, we also notice from (26) that, in the case where they are both consistently

estimable, β̂ and µ̂ are asymptotically independent. This seemingly contradicts Robinson
(2012), who considers the weakly dependent case (δ0 = 0 known) with unknown power law
parameters. In contrast, we consider the power law parameter corresponding to β to be
unknown (γ0), while the power law parameter corresponding to µ is known (and equal to
one). This fundamental difference ensures that, compared with a situation in which the
power law parameter corresponding to µ were unknown, µ̂ converges at a rate log T faster,
and this in turn guarantees asymptotic independence from the coefficient estimate β̂. The
technical justification for this asymptotic independence result is given in (138).

4 Monte Carlo simulations

4.1 Parameter estimation

We investigate the finite-sample performance of our estimators of γ0 and δ0 by means of a
simple Monte Carlo experiment. We generate the observable series xt, t = 1, ..., T , from (12)
with ut = εt being an independent N(0, 1) sequence and T = 64, 128, 256. We fix µ0 = 1
(results are virtually unaffected by the value of µ0, so there is no loss of generality here)
and consider δ0 = 0, 1, 2, β0 = −5, 1, 10, and 14 different values for γ0 given by γ0 − δ0 =
1.2, 1.1, . . . , such that γ0 6= 1. Based on (12) and (13), it is tempting to think that results
should be invariant to δ0 as long as γ0 − δ0 is kept fixed, but that is not the case. In fact,
for fixed γ0 − δ0, results depend on δ0 in a subtle way, because whenever γ0 is close to 1,
results are worse due to near-multicollinearity of πt(1) and πt(γ0); see (12). We computed

δ̂, γ̂ using the optimizing intervals δ ∈ [δ0 − 5, δ0 + 5] and γ ∈ [−4, 0.99] ∪ [1.01, 6], and we
report Monte Carlo bias and standard deviation (SD) across 10,000 replications.

Results for Monte Carlo bias of δ̂ are presented in Table 1. Here, the performance of δ̂
reflects the asymptotic theory in Theorems 1 and 2. First, for all (δ0, γ0, β0, T ) combinations
the bias is negative and it clearly decreases in absolute value as T increases, even for the
boundary case γ0 − δ0 = 1/2, which is not covered by our theory. Second, when the deter-
ministic signal gets stronger (so γ0 − δ0 is higher) results are slightly worse. Third, for fixed
γ0 − δ0, results are better for larger δ0 because then γ0 is further away from 1, so that the
asymptotic multicollinearity problem is less noticeable. Finally, the results in this table are
basically unaffected by the value of β0.

Monte Carlo SD results for δ̂ are given in Table 2. These again reflect the asymptotic
theory and complement nicely the results in Table 1. As expected, the SD results improve
as T increases and are largely unaffected by the values of γ0, δ0, and β0.

Next, results for Monte Carlo bias of γ̂ are presented in Table 3. As expected from the
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Table 1: Monte Carlo bias of δ̂
β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 −0.159 −0.076 −0.039 −0.149 −0.076 −0.039 −0.160 −0.076 −0.039
1.1 −0.150 −0.073 −0.038 −0.129 −0.066 −0.035 −0.154 −0.074 −0.038
0.9 −0.151 −0.071 −0.037 −0.152 −0.073 −0.031 −0.151 −0.070 −0.036
0.8 −0.143 −0.068 −0.035 −0.147 −0.072 −0.037 −0.144 −0.068 −0.035
0.7 −0.143 −0.066 −0.025 −0.145 −0.070 −0.036 −0.138 −0.065 −0.029
0.6 −0.134 −0.063 −0.032 −0.142 −0.069 −0.035 −0.132 −0.063 −0.032

0.5 −0.128 −0.060 −0.031 −0.140 −0.068 −0.035 −0.127 −0.060 −0.031

0.4 −0.122 −0.057 −0.030 −0.138 −0.067 −0.034 −0.123 −0.057 −0.029
0.3 −0.116 −0.054 −0.028 −0.136 −0.066 −0.034 −0.115 −0.055 −0.028
0.2 −0.110 −0.052 −0.026 −0.134 −0.065 −0.034 −0.110 −0.052 −0.026
0.1 −0.104 −0.049 −0.025 −0.132 −0.064 −0.033 −0.104 −0.049 −0.024
0.0 −0.098 −0.046 −0.024 −0.131 −0.063 −0.033 −0.098 −0.046 −0.023
−0.1 −0.093 −0.044 −0.023 −0.129 −0.062 −0.032 −0.092 −0.043 −0.022
−0.2 −0.087 −0.042 −0.022 −0.128 −0.063 −0.032 −0.087 −0.041 −0.021

Panel B: δ0 = 1

1.2 −0.129 −0.061 −0.032 −0.128 −0.062 −0.031 −0.130 −0.061 −0.031
1.1 −0.127 −0.060 −0.031 −0.125 −0.061 −0.031 −0.127 −0.060 −0.031
1.0 −0.124 −0.059 −0.030 −0.122 −0.060 −0.031 −0.125 −0.059 −0.030
0.9 −0.120 −0.057 −0.030 −0.116 −0.058 −0.029 −0.122 −0.057 −0.029
0.8 −0.117 −0.055 −0.029 −0.110 −0.055 −0.028 −0.118 −0.056 −0.028
0.7 −0.113 −0.053 −0.027 −0.101 −0.050 −0.026 −0.114 −0.053 −0.027
0.6 −0.108 −0.051 −0.026 −0.092 −0.046 −0.023 −0.110 −0.051 −0.026

0.5 −0.088 −0.042 −0.022 −0.098 −0.047 −0.021 −0.049 −0.036 −0.022

0.4 −0.087 −0.038 −0.018 −0.097 −0.047 −0.019 −0.055 −0.028 −0.015
0.3 −0.085 −0.039 −0.020 −0.075 −0.036 −0.018 −0.093 −0.043 −0.021
0.2 −0.074 −0.035 −0.017 −0.072 −0.034 −0.017 −0.083 −0.038 −0.019
0.1 −0.068 −0.032 −0.016 −0.068 −0.032 −0.016 −0.072 −0.033 −0.016
−0.1 −0.095 −0.046 −0.023 −0.097 −0.047 −0.025 −0.091 −0.042 −0.021
−0.2 −0.089 −0.042 −0.022 −0.096 −0.047 −0.024 −0.076 −0.034 −0.017

Panel C: δ0 = 2

1.2 −0.114 −0.056 −0.030 −0.115 −0.057 −0.030 −0.115 −0.056 −0.030
1.1 −0.111 −0.056 −0.029 −0.112 −0.056 −0.029 −0.112 −0.055 −0.029
1.0 −0.108 −0.054 −0.028 −0.109 −0.054 −0.028 −0.109 −0.053 −0.028
0.9 −0.104 −0.052 −0.027 −0.103 −0.052 −0.027 −0.105 −0.051 −0.027
0.8 −0.099 −0.049 −0.026 −0.095 −0.049 −0.026 −0.100 −0.049 −0.026
0.7 −0.097 −0.046 −0.024 −0.087 −0.044 −0.023 −0.095 −0.047 −0.024
0.6 −0.091 −0.043 −0.023 −0.080 −0.039 −0.020 −0.089 −0.044 −0.023

0.5 −0.085 −0.040 −0.021 −0.076 −0.037 −0.018 −0.083 −0.041 −0.021

0.4 −0.079 −0.032 −0.015 −0.074 −0.036 −0.016 −0.078 −0.037 −0.019
0.3 −0.069 −0.033 −0.017 −0.060 −0.029 −0.014 −0.063 −0.034 −0.017
0.2 −0.063 −0.029 −0.015 −0.054 −0.026 −0.013 −0.066 −0.032 −0.015
0.1 −0.056 −0.025 −0.013 −0.049 −0.023 −0.012 −0.058 −0.028 −0.013
0.0 −0.050 −0.022 −0.011 −0.044 −0.021 −0.011 −0.051 −0.025 −0.011
−0.1 −0.044 −0.020 −0.010 −0.040 −0.019 −0.010 −0.045 −0.022 −0.010

Note: Based on 10,000 Monte Carlo replications.
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Table 2: Monte Carlo standard deviation of δ̂
β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.158 0.092 0.059 0.162 0.092 0.059 0.158 0.092 0.058
1.1 0.157 0.091 0.059 0.160 0.094 0.060 0.158 0.092 0.058
0.9 0.157 0.091 0.059 0.153 0.091 0.059 0.156 0.092 0.058
0.8 0.157 0.091 0.058 0.156 0.091 0.059 0.158 0.091 0.058
0.7 0.157 0.090 0.059 0.156 0.092 0.059 0.155 0.090 0.061
0.6 0.154 0.089 0.058 0.156 0.092 0.059 0.154 0.090 0.058

0.5 0.153 0.089 0.058 0.156 0.092 0.059 0.153 0.090 0.057

0.4 0.152 0.088 0.058 0.156 0.092 0.059 0.150 0.090 0.057
0.3 0.150 0.088 0.057 0.156 0.091 0.059 0.150 0.088 0.057
0.2 0.149 0.087 0.057 0.156 0.092 0.059 0.149 0.088 0.056
0.1 0.148 0.087 0.056 0.156 0.092 0.059 0.147 0.087 0.056
0.0 0.146 0.086 0.056 0.157 0.092 0.059 0.145 0.086 0.056
−0.1 0.144 0.086 0.056 0.157 0.092 0.059 0.143 0.085 0.055
−0.2 0.142 0.085 0.055 0.157 0.092 0.059 0.140 0.085 0.055

Panel B: δ0 = 1

1.2 0.149 0.089 0.058 0.151 0.088 0.057 0.150 0.089 0.057
1.1 0.149 0.088 0.058 0.151 0.088 0.057 0.150 0.089 0.057
1.0 0.149 0.088 0.058 0.153 0.088 0.056 0.149 0.089 0.057
0.9 0.150 0.089 0.057 0.156 0.089 0.057 0.149 0.089 0.057
0.8 0.147 0.088 0.057 0.159 0.091 0.057 0.148 0.089 0.057
0.7 0.147 0.088 0.057 0.160 0.092 0.058 0.147 0.089 0.057
0.6 0.147 0.088 0.057 0.158 0.091 0.059 0.147 0.088 0.057

0.5 0.175 0.099 0.061 0.157 0.091 0.058 0.215 0.113 0.061

0.4 0.157 0.093 0.060 0.149 0.088 0.058 0.183 0.107 0.066
0.3 0.149 0.089 0.057 0.153 0.089 0.057 0.146 0.088 0.056
0.2 0.149 0.088 0.057 0.153 0.089 0.057 0.146 0.088 0.056
0.1 0.150 0.089 0.057 0.151 0.088 0.057 0.147 0.089 0.056
−0.1 0.146 0.088 0.057 0.149 0.088 0.057 0.147 0.088 0.057
−0.2 0.145 0.088 0.057 0.149 0.088 0.057 0.143 0.086 0.055

Panel C: δ0 = 2

1.2 0.142 0.088 0.056 0.144 0.088 0.056 0.144 0.088 0.057
1.1 0.143 0.088 0.057 0.145 0.088 0.056 0.145 0.088 0.056
1.0 0.142 0.088 0.057 0.147 0.088 0.057 0.145 0.088 0.056
0.9 0.142 0.088 0.057 0.149 0.089 0.057 0.145 0.088 0.056
0.8 0.142 0.087 0.056 0.152 0.089 0.057 0.145 0.087 0.057
0.7 0.144 0.087 0.056 0.153 0.092 0.058 0.144 0.086 0.056
0.6 0.143 0.087 0.056 0.150 0.092 0.058 0.143 0.085 0.056

0.5 0.142 0.086 0.056 0.146 0.090 0.057 0.141 0.085 0.056

0.4 0.140 0.092 0.060 0.144 0.089 0.057 0.140 0.084 0.056
0.3 0.138 0.084 0.055 0.146 0.088 0.056 0.152 0.084 0.055
0.2 0.138 0.083 0.055 0.141 0.087 0.056 0.137 0.083 0.055
0.1 0.135 0.082 0.054 0.139 0.085 0.055 0.134 0.082 0.054
0.0 0.133 0.081 0.054 0.139 0.084 0.055 0.131 0.081 0.054
−0.1 0.131 0.080 0.053 0.133 0.083 0.054 0.128 0.080 0.053

Note: Based on 10,000 Monte Carlo replications.
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Table 3: Monte Carlo bias of γ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.007 0.003 0.001 0.237 0.125 0.039 0.002 0.001 0.000
1.1 0.083 0.033 0.011 0.065 0.104 0.204 0.020 0.005 0.003
0.9 0.239 0.176 0.116 0.194 0.011 −0.065 0.075 0.053 0.042
0.8 0.069 0.026 0.011 0.280 0.078 0.082 0.010 0.006 0.002
0.7 0.031 0.013 0.087 0.340 0.161 0.138 0.005 0.003 0.016
0.6 0.022 0.008 0.005 0.398 0.211 0.157 0.003 0.002 0.001

0.5 0.016 0.005 0.002 0.454 0.311 0.178 0.002 0.001 0.000

0.4 0.011 0.001 0.001 0.533 0.358 0.225 0.002 0.001 0.000
0.3 0.005 −0.003 −0.004 0.608 0.409 0.300 0.000 0.000 −0.002
0.2 0.001 −0.007 −0.009 0.652 0.473 0.360 −0.001 −0.001 −0.003
0.1 −0.003 −0.009 −0.013 0.742 0.560 0.460 −0.002 −0.002 −0.004
0.0 −0.006 −0.011 −0.015 0.833 0.628 0.560 −0.003 −0.003 −0.005
−0.1 −0.008 −0.011 −0.014 0.904 0.731 0.630 −0.003 −0.003 −0.005
−0.2 −0.009 −0.012 −0.013 0.941 0.787 0.689 −0.004 −0.003 −0.005

Panel B: δ0 = 1

1.2 0.000 0.000 0.000 0.005 0.001 0.001 0.000 0.000 0.000
1.1 0.000 0.000 0.000 0.006 0.003 0.001 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.001 0.006 0.005 0.000 0.000 0.000
0.9 0.000 0.000 0.000 −0.023 0.005 0.007 0.000 0.000 0.000
0.8 −0.001 0.000 0.001 −0.067 0.011 0.019 0.000 0.000 0.000
0.7 −0.014 0.001 0.002 −0.171 −0.079 0.008 −0.001 0.000 0.001
0.6 −0.051 −0.009 0.001 −0.263 −0.268 −0.196 −0.107 −0.012 0.001

0.5 −0.132 −0.056 −0.029 −0.294 −0.354 −0.370 −0.145 −0.041 −0.009

0.4 −0.213 −0.187 −0.168 −0.229 −0.334 −0.373 −0.185 −0.109 −0.060
0.3 −0.255 −0.276 −0.303 −0.134 −0.239 −0.316 −0.249 −0.201 −0.181
0.2 −0.136 −0.186 −0.272 −0.030 −0.139 −0.190 −0.328 −0.291 −0.283
0.1 0.031 −0.028 −0.113 0.094 −0.038 −0.099 −0.143 −0.167 −0.194
−0.1 0.196 0.146 0.036 0.280 0.123 0.119 0.067 −0.028 −0.027
−0.2 0.173 0.130 0.040 0.361 0.221 0.203 −0.097 −0.143 −0.109

Panel C: δ0 = 2

1.2 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.000 0.000
1.1 0.001 0.000 0.000 0.002 0.004 0.001 0.000 0.000 0.000
1.0 0.001 0.000 0.000 −0.005 0.008 0.003 0.000 0.000 0.000
0.9 0.001 0.001 0.000 −0.032 0.009 0.008 0.000 0.000 0.000
0.8 0.002 0.001 0.000 −0.107 −0.015 0.010 0.001 0.000 0.000
0.7 0.002 0.001 0.001 −0.288 −0.138 −0.049 0.001 0.000 0.000
0.6 0.002 0.001 0.001 −0.510 −0.438 −0.324 0.001 0.000 0.000

0.5 0.000 0.000 0.000 −0.641 −0.692 −0.643 0.001 0.000 0.000

0.4 −0.006 −0.043 −0.054 −0.728 −0.802 −0.794 0.000 −0.001 −0.002
0.3 −0.024 −0.021 −0.019 −0.704 −0.811 −0.833 −0.034 −0.002 −0.002
0.2 −0.048 −0.046 −0.046 −0.667 −0.760 −0.792 −0.004 −0.006 −0.004
0.1 −0.087 −0.086 −0.080 −0.594 −0.695 −0.709 −0.007 −0.011 −0.008
0.0 −0.133 −0.141 −0.137 −0.506 −0.605 −0.614 −0.011 −0.016 −0.013
−0.1 −0.181 −0.195 −0.199 −0.403 −0.519 −0.528 −0.017 −0.022 −0.018

Note: Based on 10,000 Monte Carlo replications.
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Table 4: Monte Carlo standard deviation of γ̂

β0 = −5 β0 = 1 β0 = 10

γ0 − δ0\T 64 128 256 64 128 256 64 128 256

Panel A: δ0 = 0

1.2 0.121 0.069 0.041 1.528 0.640 0.235 0.060 0.034 0.020
1.1 0.458 0.183 0.107 2.765 2.403 1.789 0.147 0.087 0.055
0.9 1.399 0.793 0.373 2.989 2.927 2.798 0.281 0.145 0.101
0.8 0.463 0.242 0.138 2.852 2.732 2.601 0.130 0.087 0.063
0.7 0.258 0.168 0.184 2.793 2.696 2.602 0.099 0.070 0.084
0.6 0.228 0.146 0.117 2.778 2.713 2.689 0.087 0.065 0.051

0.5 0.225 0.147 0.109 2.795 2.788 2.769 0.082 0.064 0.052

0.4 0.209 0.156 0.129 2.817 2.821 2.822 0.080 0.065 0.055
0.3 0.218 0.173 0.155 2.837 2.818 2.859 0.081 0.069 0.060
0.2 0.220 0.189 0.163 2.847 2.855 2.853 0.084 0.074 0.068
0.1 0.225 0.213 0.185 2.839 2.848 2.848 0.089 0.081 0.076
0.0 0.251 0.242 0.209 2.837 2.821 2.826 0.094 0.088 0.085
−0.1 0.270 0.262 0.227 2.832 2.807 2.802 0.100 0.095 0.093
−0.2 0.277 0.261 0.249 2.816 2.788 2.777 0.105 0.101 0.100

Panel B: δ0 = 1

1.2 0.018 0.011 0.006 0.096 0.054 0.032 0.009 0.005 0.003
1.1 0.023 0.015 0.009 0.179 0.075 0.047 0.012 0.007 0.005
1.0 0.030 0.020 0.013 0.317 0.107 0.069 0.015 0.010 0.007
0.9 0.039 0.027 0.019 0.563 0.254 0.101 0.020 0.014 0.010
0.8 0.107 0.038 0.028 1.145 0.676 0.327 0.026 0.018 0.014
0.7 0.294 0.055 0.040 1.826 1.514 1.140 0.070 0.064 0.020
0.6 0.552 0.254 0.115 2.362 2.310 2.161 0.555 0.183 0.030

0.5 0.925 0.682 0.515 2.757 2.756 2.738 0.674 0.360 0.182

0.3 2.025 2.020 2.035 3.037 3.052 3.053 1.164 1.038 0.976
0.2 2.602 2.625 2.689 3.083 3.097 3.087 1.770 1.753 1.788
0.1 2.984 2.993 3.042 3.097 3.111 3.108 2.672 2.695 2.721
−0.1 3.002 3.017 3.050 3.098 3.112 3.118 2.725 2.753 2.745
−0.2 2.756 2.771 2.803 3.085 3.106 3.103 1.950 1.946 1.932

Panel C: δ0 = 2

1.2 0.017 0.010 0.006 0.123 0.052 0.032 0.008 0.005 0.003
1.1 0.021 0.014 0.009 0.231 0.070 0.046 0.011 0.007 0.005
1.0 0.027 0.019 0.013 0.363 0.097 0.065 0.013 0.009 0.006
0.9 0.032 0.024 0.017 0.596 0.241 0.093 0.016 0.012 0.009
0.8 0.039 0.030 0.023 1.037 0.568 0.237 0.019 0.015 0.012
0.7 0.048 0.037 0.030 1.607 1.226 0.889 0.023 0.019 0.015
0.6 0.059 0.047 0.039 2.167 2.033 1.877 0.028 0.023 0.019

0.5 0.092 0.077 0.055 2.568 2.577 2.546 0.035 0.030 0.026

0.4 0.149 0.325 0.329 2.804 2.866 2.866 0.045 0.040 0.062
0.3 0.247 0.226 0.169 2.916 2.981 3.002 0.216 0.054 0.051
0.2 0.376 0.350 0.303 2.984 3.028 3.062 0.083 0.076 0.073
0.1 0.527 0.507 0.451 3.025 3.063 3.077 0.111 0.105 0.102
0.0 0.675 0.695 0.643 3.053 3.072 3.093 0.145 0.140 0.137
−0.1 0.806 0.842 0.822 3.060 3.084 3.096 0.186 0.185 0.181

Note: Based on 10,000 Monte Carlo replications.
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asymptotic theory in Theorems 1 and 2, the behaviour of γ̂ is qualitatively different from
that of δ̂. When γ0 − δ0 ≤ 1/2, γ̂ is not consistent, and the bias is generally large (in
absolute value) and does not decrease as T increases. This is, to some extent, mitigated for
β0 = −5 and β0 = 10, where the coefficient on the deterministic trend is so large that the
theoretically dominant stochastic component appears to be hidden in finite samples. On the
other hand, when γ0 − δ0 > 1/2 the bias is generally very small and decreases as γ0 − δ0

increases, reflecting the fast convergence rates in those cases implied by Theorem 2. This
effect is weaker when δ0 = 0, where γ0− δ0 > 1/2 implies that γ0 is relatively close to 1, and
the asymptotic multicollinearity clearly worsens the bias of the γ̂ estimates.

The Monte Carlo SD results for γ̂ are presented in Table 4. Again, these results are
clearly in line with the predictions from asymptotic theory, and are qualitatively different
from the SD results for δ̂ in Table 2. For γ0− δ0 ≤ 1/2, the SD is large and does not seem to
decrease for larger values of T . The latter is seen regardless of the value of β0. On the other
hand, for γ0 − δ0 > 1/2, the SD clearly decreases as either T or γ0 − δ0 increases, although
the results are relatively poor for β0 = 1, δ0 = 0, due to the asymptotic multicollinearity
problem. As was the case with the bias in Table 3, the SD is clearly smaller for β0 = −5 or
β0 = 10 compared with β0 = 1, reflecting the fact that the deterministic trend is easier to
detect when its coefficient is larger in magnitude.

4.2 Testing procedure

Although parameter estimation and inference is straightforward using the results in Theo-
rem 2, and for the parameters of the stochastic component it is not necessary to know which
of the cases covered by Theorem 2 applies in any given situation. Nonetheless, it may some-
times be of interest to discern which case applies and, additionally, given that γ0 = 1 leads
to an identification problem, check whether the data support this possibility. Clearly, there
are many possible ways of doing so, and we propose here a stepwise testing procedure. We
do not pursue a formal analysis, which would involve very lengthy repetitions of techniques
already developed in the proofs of Theorems 1 and 2, but instead illustrate the finite sam-
ple behavior by means of a small Monte Carlo simulation experiment. Our proposed testing
procedure is as follows.

Step 1. Test H1
0 : δ0 = 1/2 against H1

1 : δ0 < 1/2 in model (12). Rejection of H1
0 favors the

possibility that µ0 can be consistently estimated. This test is simple to implement because
we conjecture that our proposed estimator δ̂ derived from (19) has property (28) even in
the case where γ0 = 1. Assuming this conjecture is true, testing H1

0 by means of a t-test is
immediate. If H1

0 is rejected, we proceed to Step 2, and if it is not then we proceed to Step 3.
Step 2. Test H2

0 : β0 = 0 against H2
1 : β0 6= 0 in model (12). The result from Step 1

suggests that µ0 can be consistently estimated, so, noting (12), it is crucial to determine
whether γ0 = 1 or γ0 6= 1. Nicely, the null γ0 = 1 is equivalent to β0 = 0 because both
conditions lead to models that are observationally equivalent. Testing H2

0 : β0 = 0 against
H2

1 : β0 6= 0 is possible although γ0 is not identified under the null. This is a classical problem
in the hypothesis testing literature and several solutions have been provided (e.g. Hansen,
1996). We follow an LM approach. Let (τ̃ , µ̃) denote the restricted estimator that imposes
H2

0 , and let γF ∈ [�1, 1− κ] ∪ [1 + κ,�2] be a fixed number. Define the LM statistic

LM(γF ) =
T

2σ̃2

∂LT (τ̃ , γF , µ̃, 0)

∂(τ ′, µ, β)′

(
∂2LT (τ̃ , γF , µ̃, 0)

∂(τ ′, µ, β)∂(τ ′, µ, β)′

)−1
∂LT (τ̃ , γF , µ̃, 0)

∂(τ ′, µ, β)
,



Estimation of fractional time series with generalized trend 20

where σ̃2 = LT (τ̃ , γF , µ̃, 0). We conjecture that, as T →∞,

LM(γF )→d χ
2
1 under H2

0 . (30)

Another possibility is to consider the supremum over γ instead of a fixed γF , which would
imply a nonstandard null limit distribution (e.g. Hansen, 1996). Our small Monte Carlo
experiment will rely on (30) for a fixed γF . Additional, unreported Monte Carlo simulations
suggest that results are relatively invariant to the choice of γF and also that LM(γF ) only
has power if γ0 − 1/2 > δ0. This makes sense because if if γ0 − 1/2 < δ0 then the second
term on the right-hand side of (12) is drowned by the stochastic component so it would be
irrelevant whether β0 = 0 or β0 6= 0. This is useful because rejection using LM(γF ) then
favors the possibility that the generalized trend can be estimated consistently, whereas non-
rejection suggests that the generalized trend is irrelevant (either because β0 = 0 or because
the trend is weak).

Step 3. Test H3
0 : γ0 − 1/2 = δ0 against H3

1 : γ0 − 1/2 > δ0 in model (12) under the
restriction that µ = 0. Because Step 1 suggests that µ0 cannot be consistently estimated,
we omit the drift from the analysis and in this step we check whether the generalized trend
is strong. The test can be implemented as described in Hualde and Nielsen (2020).

Step 4. The outcomes of the tests in Steps 2 and 3 have the following implications.

M1: If H2
0 is rejected then all model parameters can be estimated by (19) and φ̂.

M2: If H2
0 is not rejected then we either employ (19) and φ̂ (ignoring the estimates of β0

and γ0), or we may use a simplified model that imposes β = 0.

M3: If H3
0 is rejected then β0, γ0, and τ 0 can be consistently estimated. We either employ

(19) and φ̂ (ignoring the estimate of µ0), or we may use a simplified model that
imposes µ = 0.

M4: If H3
0 is not rejected then only τ 0 can be consistently estimated. We either employ

(19) and φ̂ (ignoring the estimates of µ0, β0, and γ0), or we may use simplified versions
of it in which we remove one or both deterministic components (and possibly ignoring
estimates of the deterministic structure).

Summarizing, the outcome of the test procedure is one of M1,. . . ,M4. As usual in model
specification, we note that wrongly removing a component from the model renders all re-
maining estimates inconsistent. In the present context, Theorem 2 shows that retaining all
deterministic components has no adverse effect asymptotically, in terms of efficiency or oth-
erwise, on the estimation of the parameters associated with the stochastic component. This
suggests that a conservative approach of always estimating the full model (12), including all
deterministic components, is appropriate in most circumstances, while being careful in the
interpretation of the parameters associated with the deterministic components. Nonetheless,
we consider next the finite-sample properties of the above testing procedure.

Table 5 presents the proportion of cases (out of 10,000 replications) in which the stepwise
testing procedure selects the different situations characterized by M1,. . . ,M4. As before, the
observable series xt, t = 1, . . . , T , was generated from (12) with ut = εt being an independent
N(0, 1) sequence, and we present results for T = 64, 256, µ0 = β0 = 1, δ0 = 0, 0.4, 0.6, 1,
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Table 5: Monte Carlo selection frequencies of testing procedure

δ0 = 0 δ0 = 0.4 δ0 = 0.6 δ0 = 1.0

γ0 − δ0 Model \T 64 256 64 256 64 256 64 256

1.6 M1 0.999 1.000 0.468 0.526 0.090 0.002 0.000 0.000
1.6 M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.6 M3 0.001 0.000 0.503 0.474 0.862 0.998 0.942 1.000
1.6 M4 0.000 0.000 0.029 0.000 0.048 0.000 0.058 0.000

1.4 M1 0.998 1.000 0.454 0.528 0.091 0.001 0.000 0.000
1.4 M2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.4 M3 0.001 0.000 0.480 0.472 0.804 0.999 0.863 1.000
1.4 M4 0.001 0.000 0.066 0.000 0.105 0.000 0.137 0.000

1.2 M1 0.737 1.000 0.439 0.519 0.085 0.001 0.000 0.000
1.2 M2 0.256 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.2 M3 0.003 0.000 0.418 0.481 0.695 0.999 0.702 1.000
1.2 M4 0.004 0.000 0.143 0.000 0.220 0.000 0.298 0.000

1.0 M1 0.104 0.077 0.409 0.508 0.080 0.001 0.000 0.000
1.0 M2 0.893 0.923 0.002 0.000 0.000 0.000 0.000 0.000
1.0 M3 0.000 0.000 0.283 0.486 0.457 0.984 0.422 0.973
1.0 M4 0.003 0.000 0.306 0.006 0.463 0.015 0.578 0.027

0.8 M1 0.180 0.221 0.171 0.296 0.067 0.001 0.000 0.000
0.8 M2 0.816 0.779 0.197 0.182 0.005 0.000 0.000 0.000
0.8 M3 0.000 0.000 0.105 0.287 0.177 0.534 0.151 0.428
0.8 M4 0.004 0.000 0.527 0.235 0.751 0.465 0.849 0.572

0.6 M1 0.183 0.161 0.076 0.055 0.033 0.001 0.000 0.000
0.6 M2 0.813 0.839 0.274 0.406 0.028 0.000 0.000 0.000
0.6 M3 0.000 0.000 0.028 0.036 0.045 0.054 0.039 0.029
0.6 M4 0.004 0.000 0.622 0.503 0.894 0.945 0.961 0.971

0.4 M1 0.147 0.100 0.086 0.066 0.026 0.000 0.000 0.000
0.4 M2 0.850 0.900 0.273 0.392 0.039 0.001 0.000 0.000
0.4 M3 0.000 0.000 0.010 0.008 0.015 0.025 0.030 0.056
0.4 M4 0.003 0.000 0.631 0.534 0.920 0.974 0.970 0.944

0.0 M1 0.107 0.076 0.081 0.059 0.029 0.000 0.000 0.000
0.0 M2 0.888 0.924 0.271 0.397 0.033 0.001 0.000 0.000
0.0 M3 0.000 0.000 0.002 0.003 0.023 0.051 0.050 0.098
0.0 M4 0.005 0.000 0.646 0.541 0.915 0.948 0.950 0.902

−0.4 M1 0.110 0.077 0.074 0.054 0.029 0.000 0.000 0.000
−0.4 M2 0.887 0.923 0.261 0.400 0.029 0.001 0.000 0.000
−0.4 M3 0.000 0.000 0.002 0.002 0.017 0.043 0.038 0.067
−0.4 M4 0.003 0.000 0.663 0.544 0.925 0.956 0.962 0.933

Note: Based on 10,000 Monte Carlo replications. Bold entries denote proportions of correct selections.

and 9 different values for γ0 given by γ0 − δ0 = 1.6, 1.4, 1.2, . . . , 0.4, 0.0,−0.4. Numbers
reported in bold correspond to proportions of correct choices. All tests were implemented
with nominal size 0.05 and we fix γF = 2 in Step 2.

Overall, the behaviour of the testing procedure seems satisfactory. The results generally
improve as T increases and correspond to what theory predicts. As expected, the correct
identification of a strong trend (when γ0 − δ0 > 1/2) is easier for larger values of γ0 − δ0



Estimation of fractional time series with generalized trend 22

and worsens substantially when γ0− δ0 ≤ 1. This has to do with the relatively low power of
Hualde and Nielsen’s (2020) one-sided LM testing procedure for H3

0 against H3
1 when γ0− δ0

is close to 1/2, and our results here are in line with theirs. Additionally, the test of H1
0

against H1
1 shows low power when δ0 = 0.4, which is certainly an adverse situation, though

results improve as T increases.

5 Concluding remarks

We have proposed a parametric time series model that includes both a fractional stochastic
component as well as a fractional deterministic component. The stochastic component is
a fractionally integrated process driven by a memory parameter, δ, combined with a linear
short-memory process. The deterministic component consists of the sum of a constant term
and a flexible deterministic trend. The latter is fractional in the sense that it is defined
using the same fractional coefficients as the fractional integration operator in the stochastic
component, and similarly to the memory parameter δ, the deterministic trend is characterized
by a power law parameter γ. Both the memory and power law parameters are assumed
to lie in sets which can be arbitrarily large. Thus, our model may display many different
behaviours, including various types of dependence (antipersistency, weak dependence, long
memory) and very flexible deterministic trend functions.

Compared with our earlier work in Hualde and Nielsen (2020), there are three main
differences in this paper. First, in this paper we apply the fractional coefficients directly to
model the deterministic component instead of the approximation given by powers of t. As
argued in the Introduction, the former are much more natural in a fractional context. Second,
as a consequence of using the fractional coefficients to model the deterministic trend, we are
able to relax the assumption γ > 0 on the power law parameter required by Hualde and
Nielsen (2020). Instead, we allow the power law parameter to lie in any (arbitrarily large)
compact interval. Third, we include an additional deterministic term such that we have
both a constant/level and a trend. This complicates our analysis substantially, but clearly
makes the model much more applicable in practice and also has the potential to alleviate bias
arising from non-zero initial conditions in the Type II context (Johansen and Nielsen, 2016).

Our asymptotic results depend crucially on the relative strengths of the stochastic and de-
terministic components, as measured by the memory and power law parameters. Specifically,
when the deterministic signal is sufficiently strong, that is if γ0 − δ0 > 1/2 (δ0 < 1/2), the
trend parameters γ0 and β0 (and level parameter µ0) can be consistently estimated and their
estimators are asymptotically normal. When the deterministic signal is weak, the parameters
corresponding to the deterministic components (except µ0 if δ0 < 1/2) cannot be consistently
estimated. Remarkably, the asymptotic results for estimator corresponding to the stochastic
part of the model (i.e., τ̂ ) are identical to those achieved in the simpler, purely stochastic,
setting of Hualde and Robinson (2011), and are unaffected by the presence of the determin-
istic component, whether the parameters of the latter can be consistently estimated or not.

There are several interesting issues which have not been addressed in the present paper,
but which will the object of future research. First, a semiparametric approach which focuses
on estimating γ0 and δ0 (and possibly µ0) without making parametric assumptions about
the short-memory structure of zt seems possible. Second, the fractional process which char-
acterizes our model is Type II, and it would be of interest to determine whether our theory
could also be developed for a Type I fractional process.
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6 Proofs of theorems

Throughout, ε will denote a generic arbitrarily small positive constant, and K a generic
arbitrarily large positive constant.

We note from the outset that many steps of the proofs are affected by the asymptotic
behaviour of

φ′0ct−1(1− δ, γ0 − δ,ϕ) = µ0ct−1(1− δ,ϕ) + β0ct−1(γ0 − δ,ϕ), (31)

which, depending on the values of γ0 and µ0, is dominated by either the first or the second
term on the right hand side of (31). Recalling that γ0 ∈ [�1, 1 − κ] ∪ [1 + κ,�2] and also
that if γ0 − 1/2 > δ0 then β0 6= 0 (see Assumption A3), there are two cases. When µ0 = 0
or µ0 6= 0, γ0 ≥ 1 + κ, the second term dominates, whereas if µ0 6= 0, γ0 ≤ 1 − κ, the first
term dominates. We will give the proof for the former case. The proof for the latter case
(µ0 6= 0, γ0 ≤ 1− κ) is very similar, just adapting many of the steps in the proof below and
also some of the lemmas to the case where the first term in (31) is the dominant one, which
mainly implies that “1” takes the role of “γ0” in many parts of the proof.

6.1 Proof of Theorem 1(i): the γ0 − 1/2 > δ0 case

Fix ε > 0 and let Mε = {ϑ ∈ Ξ : ‖τ − τ 0‖ < ε}, M ε = {ϑ ∈ Ξ : ‖τ − τ 0‖ ≥ ε}, Nε =

{ϑ ∈ Ξ : |γ − γ0| < ε} and N ε = {ϑ ∈ Ξ : |γ − γ0| ≥ ε}. Then Pr(||ϑ̂ − ϑ0|| ≥ ε) → 0 as
T →∞ is implied by

Pr(ϑ̂ ∈M ε)→ 0 as T →∞, (32)

Pr(ϑ̂ ∈ N ε ∩Mε)→ 0 as T →∞. (33)

Strictly, ε should be ε/
√

2 in (32) and (33), but since ε is arbitrary this is irrelevant and
we continue without the

√
2 factor. In (32) we prove consistency of τ̂ , uniformly in γ. In

(33) we prove consistency of γ̂, given that τ̂ is consistent and hence that τ lies in a small
neighborhood of τ 0.

Noting that from (13),

ρ(L;ϕ)xt(δ) = φ′0ct−1(1− δ, γ0 − δ,ϕ) + ρ(L;ϕ)ut(δ − δ0), (34)

we decompose the objective function as RT (ϑ) = T−1
∑T

t=1(dt(ϑ) + st(ϑ))2 with

dt(ϑ) = φ′0ct−1(1− δ, γ0 − δ,ϕ)

− h′t−1,T (1− δ, γ − δ,ϕ)
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)φ′0cj−1(1− δ, γ0 − δ,ϕ), (35)

st(ϑ) = ρ(L;ϕ)ut(δ − δ0)− h′t−1,T (1− δ, γ − δ,ϕ)
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)ρ(L;ϕ)uj(δ − δ0),

(36)

defining also the coefficient

ht,T (d1, d2,ϕ) =

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1/2

ct(d1, d2,ϕ), (37)
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which clearly satisfies
∑T

t=1 ht−1,T (d1, d2,ϕ)h′t−1,T (d1, d2,ϕ) = I2.
As in Hualde and Nielsen (2020) the strategy of proof exploits the different orders of

magnitude of the stochastic term st(ϑ) and deterministic term dt(ϑ) in RT (ϑ) in different
parts of the parameter space. Dealing with (32) and (33) allows us to consider separately
the case where τ is “far” from τ 0 (that is, M ε) and the case where γ is “far” from γ0 (that
is, N ε). Two important technical problems are that (a) when γ = γ0 then dt(ϑ) = 0 and (b)
when δ is “far” from δ0 then ut(δ − δ0) may change from stationary to nonstationary. Both
these features complicate greatly the treatment of (32) where γ = γ0 is admissible. In (33)
neither of these problems appear, and in that sense the proof of (33) is simpler than that of
(32). Hence, we first give the proof of (33).

6.1.1 Proof of (33)

Let RT (τ , γ) = RT (ϑ), dt(τ , γ) = dt(ϑ), and st(τ , γ) = st(ϑ) = s1t(τ ) − s2t(ϑ) with
s1t(τ ) = ρ(L;ϕ)ut(δ − δ0) and

s2t(τ , γ) = s2t(ϑ) = h′t−1,T (1− δ, γ − δ,ϕ)
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)s1j(τ ); (38)

see (36). Thus, because
∑T

t=1 ht−1,T (1− δ, γ − δ,ϕ)h′t−1,T (1− δ, γ − δ,ϕ) = I2 by (37),

T∑
t=1

s2
2t(ϑ) =

T∑
t=1

s1t(τ )s2t(ϑ) =

∥∥∥∥∥
T∑
j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

.

Because
∑T

t=1 dt(ϑ)ct−1(1− δ, γ − δ,ϕ) = 0, it holds that

T∑
t=1

dt(ϑ)st(ϑ) =
T∑
t=1

dt(ϑ)ρ(L;ϕ)ut(δ − δ0), (39)

where ρ(L;ϕ)ut(δ − δ0) =
∑t−1

j=0 cj(δ0 − δ,ϕ)ut−j. Therefore,

RT (ϑ) =
1

T

T∑
t=1

d2
t (ϑ) +

1

T

T∑
t=1

s2
1t(τ )

− 1

T

∥∥∥∥∥
T∑
j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

+
2

T

T∑
t=1

dt(ϑ)s1t(τ ). (40)

Clearly, in view of (32) and for T sufficiently large, ϑ̂ ∈ N ε ∩ Mε is equivalent to
infϑ∈Nε∩Mε

RT (ϑ) ≤ infϑ∈Nε∩Mε RT (ϑ). Because RT (ϑ) is continuous in τ and Mε is com-

pact, the infimum over N ε ∩ Mε is attained for τ and denoted τ̂ , and it follows that
infϑ∈Nε∩Mε

RT (ϑ) = infγ∈Nε
RT (τ̂ , γ). Furthermore, it clearly holds that infϑ∈Nε∩Mε RT (ϑ) ≤

infγ∈Nε RT (τ̂ , γ) ≤ RT (τ̂ , γ0). Combining these inequalities we find that

Pr(ϑ̂ ∈ N ε ∩Mε) = Pr

(
inf

ϑ∈Nε∩Mε

RT (ϑ)− inf
ϑ∈Nε∩Mε

RT (ϑ) ≤ 0

)
≤ Pr

(
inf
γ∈Nε

RT (τ̂ , γ)−RT (τ̂ , γ0) ≤ 0

)
. (41)
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Recalling that dt(τ , γ0) = 0, we obtain a useful cancellation of terms and find

RT (τ̂ , γ)−RT (τ̂ , γ0) =
1

T

T∑
t=1

d2
t (τ̂ , γ) +

2

T

T∑
t=1

dt(τ̂ , γ)s1t(τ̂ )

− 1

T

∥∥∥∥∥
T∑
j=1

s1j(τ̂ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

+
1

T

∥∥∥∥∥
T∑
j=1

s1j(τ̂ )hj−1,T (1− δ, γ0 − δ,ϕ)

∥∥∥∥∥
2

.

Thus, (33) holds if

lim
T→∞

inf
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε, (42)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

∣∣∣∣∣
T∑
t=1

dt(ϑ)s1t(τ )

∣∣∣∣∣ = op(1), (43)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)−1

∥∥∥∥∥
T∑
j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1), (44)

noting the change in the normalization compared with (41) (T 2(γ0−δ0)−1 instead of T ), which
is justified because the right-hand side of the inequality inside the probability in (41) is 0,
so multiplying the left- and right-hand sides of the inequality by a positive number does not
alter the probability.

First, (42) follows from Lemma 2, noting that in N ε∩Mε, γ0−δ ≥ γ0−δ0−ε > 1/2 setting
ε small enough. Next, letting both ε and θ be sufficiently small and noting that in N ε ∩Mε,
δ0 − δ ≥ −ε, the left-hand side of (43) is Op(T

1/2+δ0−γ0+5θ+ε) = op(1) by (150) of Lemma 4.
Finally, by (187) of Lemma 18 the left-hand side of (44) is Op(T

−2(γ0−δ0−1/2−θ−ε)) = op(1),
to conclude the proof of (33).

6.1.2 Proof of (32)

To prove (32) we use

Pr(ϑ̂ ∈M ε) = Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
≤ Pr

(
inf
ϑ∈Mε

ST (ϑ) ≤ 0

)
, (45)

where ST (ϑ) = RT (ϑ)−RT (ϑ0). Fix an arbitrarily small η > 0 such that η < (γ0−δ0−1/2)/2
and suppose that51 < δ0−1/2−η and52 > γ0−1−η. Our proof will cover trivially the sit-
uation where any of these conditions does not hold, in which case some of the steps below are
superfluous. Let I1 = {δ : 51 ≤ δ ≤ δ0 − 1/2− η}, I2 = {δ : δ0 − 1/2− η ≤ δ ≤ δ0 − 1/2},
I3 = {δ : δ0 − 1/2 ≤ δ ≤ δ0 − 1/2 + η}, I4 = {δ : δ0 − 1/2 + η ≤ δ ≤ γ0 − 1− η}, and I5 =
{δ : γ0 − 1− η ≤ δ ≤ 52}, noting that the upper bound for η guarantees that I4 is non-
empty, and correspondingly define Ti = Ii × Ψ. Furthermore, fixing ξ > 0 and % > 0
such that % < min{η/2, κ}, also define Hi = {ϑ ∈ M ε : τ ∈ Ti, |γ − γ0| < ξT−κi},
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Hi = {ϑ ∈ M ε : τ ∈ Ti, ξT−κi ≤ |γ − γ0| ≤ %}, and Hi = {ϑ ∈ M ε : τ ∈ Ti, |γ − γ0| ≥ %}
for i = 1, . . . , 5, where κi > 0 will be defined subsequently, noting that Hi is non-empty for
any ξ, %, for T large enough.

Now, by (45), (32) is justified by showing

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5, (46)

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5, (47)

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5. (48)

The partitioning of the parameter space into Hi, Hi, and Hi for i = 1, . . . , 5 is useful
because of the different behavior (orders of magnitude) of the stochastic term st(ϑ) and the
deterministic term dt(ϑ) on these sets. This motivates a separate analysis of (46), (47), and
(48), at least for i = 1, . . . , 4. We first give the main ideas and motivation for separate
treatment of each of these sets, and then we give below the details of the proofs for each of
these sets in separate subsections.

For i = 5 the stochastic term st(ϑ) dominates the deterministic term dt(ϑ) in ST (ϑ),
and the contribution of dt(ϑ) to ST (ϑ) is negligible. Furthermore, because ut(δ − δ0) is
asymptotically stationary for i = 5, the proof for this case can be based on arguments from
Hualde and Robinson (2011) for the purely stochastic term, ρ(L;ϕ)ut(δ − δ0).

For i ≤ 4 the deterministic term dt(ϑ) dominates the stochastic term st(ϑ) in ST (ϑ), but
only if γ 6= γ0. Recall that dt(ϑ) = 0 when γ = γ0, which necessitates separate consideration

of Hi, Hi, and Hi, at least for some i.

Specifically, onHi we have |γ−γ0| ≥ %, so that we can take advantage of dt(ϑ) dominating
st(ϑ) by an order of magnitude, so that the contribution of st(ϑ) to ST (ϑ) is negligible.

Thus, Hi can be dealt with for i = 1, . . . , 4 with one proof that applies a uniform lower
bound on, suitably normalized,

∑T
t=1 d

2
t (ϑ).

On Hi we have |γ − γ0| < ξT−κi , so that γ = γ0 is admissible. Because dt(ϑ) = 0 when
γ = γ0, we cannot exploit the lower bound on

∑T
t=1 d

2
t (ϑ). Thus, on Hi we need to deal

carefully with the stochastic term st(ϑ) and we divide the parameter space and separately
consider i = 1, . . . , 4 as in Hualde and Robinson (2011), Johansen and Nielsen (2012a), and
subsequent works. For i = 4, ut(δ − δ0) is asymptotically stationary and we can apply the
same proof as for i = 5 using the mean value theorem to show that the contribution of dt(ϑ)
is negligible. The cases i = 2, 3 deal with the discontinuity of the objective function, because
ut(δ − δ0) is near the border between stationarity and nonstationarity. The proof here uses
the result of Hualde and Robinson (2011) that the contribution from the purely stochastic
term, ρ(L;ϕ)ut(δ−δ0), can be made arbitrarily large, and we then show that the contribution
from the deterministic term is bounded. Finally, for i = 1, ut(δ − δ0) is nonstationary and
we can use the method of Johansen and Nielsen (2019) and Hualde and Nielsen (2020), that
avoids the strong moment condition (see Johansen and Nielsen, 2012b). The reason is that
ut(δ−δ0) has memory δ0−δ ≥ 1/2+η for an arbitrarily small η > 0, and the most direct proof
for i = 1 would involve justifying the weak convergence of the appropriately normalized sum
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of squares of ut(δ− δ0). The difficulty here is that for fixed δ convergence can be established
under the condition that ut has q finite moments, where q ≥ 2 and q > (δ0 − δ − 1/2)−1.
Thus, if δ0− δ is close to 1/2, the condition q > (δ0− δ− 1/2)−1 is very strong, and, in fact,
this is a serious technical problem because Johansen and Nielsen (2012b) showed that this
moment condition is necessary and, moreover, in earlier parts of the proof η is required to
be arbitrarily small. However, by using the lower bound in Lemma 22, we instead need to
show the weak convergence of the appropriately normalized sum of squares of ut(δ− δ0− 1).
This process has memory δ0− δ+ 1, so this convergence does not require the strong moment
condition because for i = 1, δ0−δ+1 ≥ 3/2+η. In addition, note that Johansen and Nielsen
(2019) require 8 moments, but this is not used to establish the bounds that we require. The
cases Hi for i = 1, . . . , 4 also require joint treatment of the deterministic and stochastic
terms in ST (ϑ). In these case we show that, after suitable normalization, the contribution
from the deterministic term dt(ϑ) is “large” compared to that of the stochastic term st(ϑ).
In that sense, the proofs here are opposite those of Hi for i = 2, 3. Because of the different
behavior and normalization of ut(δ− δ0), and hence of st(ϑ), for each of i = 1, . . . , 4, slightly
different proofs are needed for Hi in each of these cases.

6.1.3 Proof of (46), (47), and (48) for i = 5

In this case, we give just one proof that covers the whole set H5 ∪H5 ∪H5, where δ0 − δ ≤
1 + δ0 − γ0 + η < 1/2, so ut(δ − δ0) is asymptotically stationary. Let

ST (ϑ) = U(τ )− rT (ϑ), (49)

where U(τ ) = E((ρ(L;ϕ)∆δ−δ0ut)
2)− σ2

0 and, recalling dt(ϑ0) = 0,

rT (ϑ) =
1

T

T∑
t=1

(ρ(L;ϕ0)(utI(t > 0)))2 − σ2
0

− 1

T

T∑
t=1

(
(ρ(L;ϕ)ut(δ − δ0))2 − E((ρ(L;ϕ)∆δ−δ0ut)

2)
)

− 1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ0)(utI(t > 0))ht−1,T (1− δ0, γ0 − δ0,ϕ0)

∥∥∥∥∥
2

+
1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

− 2

T

T∑
t=1

dt(ϑ)st(ϑ)− 1

T

T∑
t=1

d2
t (ϑ).
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It follows that (46), (47), and (48) for i = 5 hold if we show that

inf
‖τ−τ0‖≥ε,τ∈T5

U(τ ) > ε, (50)

1

T

T∑
t=1

(ρ(L;ϕ0)(utI(t > 0)))2 − σ2
0 = op(1), (51)

sup
‖τ−τ0‖≥ε,τ∈T5

1

T

T∑
t=1

(
(ρ(L;ϕ)ut(δ − δ0))2 − E((ρ(L;ϕ)∆δ−δ0ut)

2)
)

= op(1), (52)

sup
H5∪H5∪H5

1

T

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1), (53)

sup
H5∪H5∪H5

1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (54)

First, (50), (51), and (52) follow by identical arguments to those in the proofs of (2.8) and
(2.9) in Hualde and Robinson (2011). Next, for any θ > 0, by (148) of Lemma 4 with γ0−δ ≤
1 + η and δ0− δ ≤ δ0− γ0 + 1 + η, the left-hand side of (53) is Op(T

max{θ,1+δ0−γ0+η}+4θ−1/2+η)
which is op(1) for θ and η sufficiently small. In the same way, the left-hand side of (54)
is Op(T

2 max{θ,1+δ0−γ0+η}−1) by (185) of Lemma 18, which is again op(1) for θ and η small
enough. This concludes the proof of (46), (47), and (48) for i = 5.

6.1.4 Proof of (46) for i = 1, . . . , 4

In view of Lemma 1 and that dt(ϑ0) = 0, the result holds if, for i = 1, . . . , 4,

Pr

(
inf
Hi

1

T

T∑
t=1

(dt(ϑ) + st(ϑ))2 ≤ σ2
0 + ε

)
→ 0 as T →∞.

For δ ∈ ∪4
i=1Ii it holds that γ0 − δ ≥ 1 + η, so the probability above is bounded by

Pr

(
inf
Hi

T 2(γ0−δ)−1

T
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

(dt(ϑ) + st(ϑ))2 ≤ σ2
0 + ε

)

= Pr

(
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

(dt(ϑ) + st(ϑ))2 ≤ σ2
0 + ε

T 2η

)

≤ Pr

(
inf
Hi

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)− sup

Hi

2

T 2(γ0−δ)−1

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ ≤ σ2
0 + ε

T 2η

)
.

When δ ∈ ∪4
i=1Ii we have δ0−δ ≥ δ0−γ0 +1+η, so by (150) of Lemma 4, for θ small enough,

sup
Hi

2

T 2(γ0−δ)−1

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1),

and the proof follows by Lemma 2.
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6.1.5 Proof of (47) and (48) for i = 4

Fix ζ such that 0 < ζ < η and let κ4 = γ0 − δ − 1 − ζ, noting that κ4 ≥ η − ζ > 0 when
δ ∈ I4. Then, because dt(ϑ0) = 0, (47) holds if

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

(
T∑
t=1

d2
t (ϑ)− 2

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣−
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (55)

as T → ∞, noting the change in the normalization from (47) to (55), which is justified
because the right-hand side of the inequality inside the probability in (47) is 0, so multiplying
the left- and right-hand sides of the inequality by the same positive number does not alter the
probability. By the Cauchy-Schwarz inequality and (39), the probability in (55) is bounded
by

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

(
T∑
t=1

d2
t (ϑ)(1− 2vT (ϑ))−

T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
, (56)

where vT (ϑ) = (
∑T

t=1(ρ(L;ϕ)ut(δ − δ0))2/
∑T

t=1 d
2
t (ϑ))1/2. Then (55) holds if

sup
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

s2
t (ϑ0) = op(1), (57)

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)(1− 2vT (ϑ)) ≤ ε

)
→ 0 as T →∞. (58)

First, because T 2κ4−2(γ0−δ)+1 = T−1−2ζ , (57) follows immediately by Lemma 1. Next,
fixing c such that 0 < c < 1/2, the probability in (58) equals

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)(1− 2vT (ϑ)) ≤ ε, sup

H4

vT (ϑ) ≤ c

)

+ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)(1− 2vT (ϑ)) ≤ ε, sup

H4

vT (ϑ) > c

)

≤ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)(1− 2c) ≤ ε

)
+ Pr

(
sup
H4

vT (ϑ) > c

)
, (59)

so (58) holds on showing that

lim
T→∞

inf
H4

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε, (60)

sup
H4

vT (ϑ) = op(1). (61)

We first justify (60). Choose an arbitrarily small α > 0. Then we initially show that

lim
T→∞

inf
H4,1−δ≤1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε. (62)
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By the Cauchy-Schwarz inequality,
∑T

t=1 d
2
t (ϑ) ≥ T−1d

2

T (ϑ), where dt(ϑ) =
∑t

s=1 ds(ϑ), so
that (62) holds by (146) of Lemma 3. Next we show

lim
T→∞

inf
H4,1−δ≥1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε. (63)

By very similar arguments to those given in the proof of Lemma 2, using also Lemma 11, as
well as very similar steps to those in the proof of Lemma 13, approximating sums by integrals
(Lemma 10) and noting that the second term in (31) dominates because γ0 ≥ 1 + κ, it can
be shown that

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) =

T 2κ4β2
0ρ

2(1;ϕ0)

Γ2(γ0 − δ)

(
1

2(γ0 − δ)− 1
−
(

1
γ0−2δ

1
γ0+γ−2δ−1

)
×

(
1

2(1−δ)−1
1

γ−2δ
1

γ−2δ
1

2(γ−δ)−1

)−1( 1
γ0−2δ

1
γ0+γ−2δ−1

)
+ r4T (ϑ), (64)

where supH4,1−δ≥1/2+α |r4T (ϑ)| = o (1). It can be shown that the first term on the right-hand
side of (64) equals

T 2κ4β2
0ρ

2(1;ϕ0)(γ0 − 1)2(γ0 − γ)2

Γ2(γ0 − δ)(2(γ0 − δ)− 1)(γ0 − 2δ)2(γ0 + γ − 2δ − 1)2
, (65)

so by (22), (64), and (65)

inf
H4,1−δ≥1/2+α

T 2κ4

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) ≥ κ2ε

K
inf
H4

T 2κ4(γ0 − γ)2 =
κ2ε

K
ξ2 > ε,

to conclude the proof of (60).
To show (61), note that

sup
H4

vT (ϑ) ≤

(
supH4

T−1−2ζ
∑T

t=1(ρ(L;ϕ)ut(δ − δ0))2

infH4
T 2κ4−(2(γ0−δ)−1)

∑T
t=1 d

2
t (ϑ)

)1/2

, (66)

recalling κ4 = γ0 − δ − 1 − ζ. Here, supH4
T−1−2ζ

∑T
t=1(ρ(L;ϕ)ut(δ − δ0))2 = op(1) by

Lemma 17 because δ0 − δ ≤ 1/2− η. Then (66) is op(1) by (60), which concludes the proof
of (47) for i = 4.

Next we show (48) for i = 4. A potential problem here is that γ = γ0 is admissible, so
we cannot directly exploit the lower bound for the normalized

∑T
t=1 d

2
t (ϑ) as in (60) because

dt(ϑ) = 0 when γ = γ0. However, we can instead take advantage of |γ − γ0| ≤ ξT−κ4 in H4

and apply the mean value theorem. First note that δ ∈ I4 implies that δ0 − δ ≤ 1/2 − η
and γ0 − δ ≥ 1 + η, so that ut(δ − δ0) is asymptotically stationary as in the proof for i = 5.
Then, given (49), the result follows by (50), (51), (52) (whose proofs apply also for δ ∈ I4),
and showing also that

sup
H4

1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1), (67)

sup
H4

1

T

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1). (68)
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From (185) of Lemma 18, the left-hand side of (67) is Op(T
−2η) = op(1) by choosing θ <

1/2−η. Next, because |γ−γ0| < ξT−κ4 in H4, by (147) and (149) of Lemma 4 the left-hand
side of (68) is Op(T

ζ−η+4θ) = op(1) for θ small enough because ζ < η.

6.1.6 Proof of (47) for i = 1, 2, 3

The proofs of (47) for i = 1, 2, 3 are nearly identical, but with different normalizations given
by q1 = q2 = 2(δ0 − δ) and q3 = 1. Fix χ1 = χ2 = γ0 − δ0 − 1/2 > 0 and κ3 = γ0 − δ − 1, so
that κ3 ≥ γ0− δ0− 1/2− η > 0 because δ ∈ I3, and finally let α > 0 be an arbitrarily small
number. To justify (47) for i = 1, 2, 3, we prove that

Pr

(
inf

Hi,1−δ≤1/2+α
ST (ϑ) ≤ 0

)
→ 0 as T →∞, (69)

Pr

(
inf

Hi,1−δ≥1/2+α
ST (ϑ) ≤ 0

)
→ 0 as T →∞. (70)

First, changing the normalization (T qi instead of T ) and applying the Cauchy-Schwarz
inequality, the probability in (69) is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
(dT (ϑ) + sT (ϑ))2 − 1

T qi

T∑
t=1

s2
t (ϑ0) ≤ 0

)
, (71)

where st(ϑ) =
∑t

j=1 sj(ϑ), so that

sT (ϑ) =
T∑
t=1

st(ϑ) = ρ(L;ϕ)uT (δ − δ0 − 1)

−
T∑
t=1

h′t−1,T (1− δ, γ − δ,ϕ)
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)ρ(L;ϕ)uj(δ − δ0). (72)

The probability in (71) is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d

2

T (ϑ)(1− 2|vT (ϑ)|)− 1

T qi

T∑
t=1

s2
t (ϑ0) ≤ 0

)
, (73)

where vT (ϑ) = sT (ϑ)/dT (ϑ). Applying Lemma 1, (69) for i = 1, 2, 3 then holds if

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d

2

T (ϑ)(1− 2|vT (ϑ)|) ≤ K

)
→ 0 as T →∞, (74)

for an arbitrarily large K. As in (59), fixing c such that 0 < c < 1/2, the probability in (74)
is bounded by

Pr

(
inf

Hi,1−δ≤1/2+α

1

T qi+1
d

2

T (ϑ)(1− 2c) ≤ K

)
+ Pr

(
sup

Hi,1−δ≤1/2+α

|vT (ϑ)| > c

)
, (75)

so, as in (66), (74) holds if

sup
Hi,1−δ≤1/2+α

1

T qi/2+1/2
|sT (ϑ)| = Op(1), (76)

lim
T→∞

inf
Hi,1−δ≤1/2+α

1

T qi+1
d

2

T (ϑ) > K. (77)
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For δ ∈ I3 it holds that δ0− δ ≤ 1/2, so in view of (72) the proof of (76) is immediate using
(177) in Lemma 16 together with Lemmas 17 and 18 with θ < 1/2. For δ ∈ I1 ∪ I2 it holds
that δ0 − δ ≥ 1/2, so with the different normalization, (76) again follows by application of
Lemmas 16, 17 and 18. Finally, because T−(qi+1) = T 2κi−2(γ0−δ), (77) follows by (146) of
Lemma 3, to conclude the proof of (69) for i = 1, 2, 3.

Next, (70) holds if, for i = 1, 2, 3,

Pr

(
inf

Hi,1−δ≥1/2+α

1

T qi

(
T∑
t=1

(dt(ϑ) + st(ϑ))2 −
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (78)

as T →∞. Using Lemma 22 and proceeding as in the proof of (47) for i = 4, the probability
in (78) is bounded by

Pr

(
inf

Hi,1−δ≥1/2+α

1

T qi

(
π2

4T 2

T∑
t=1

d
2

t (ϑ)(1− wT (ϑ))−
T∑
t=1

s2
t (ϑ0)

)
≤ ε

)
,

where

wT (ϑ) =

(∑T
t=1 s

2
t (ϑ)∑T

t=1 d
2

t (ϑ)

)1/2

.

Then, because T 2κi−(2(γ0−δ)+1) = T−qi−2 for i = 1, 2, 3, by Lemma 1, (78) holds if

lim
T→∞

inf
Hi,1−δ≥1/2+α

T 2κi

T 2(γ0−δ)+1

T∑
t=1

d
2

t (ϑ) > K, (79)

sup
Hi,1−δ≥1/2+α

1

T qi+2

T∑
t=1

s2
t (ϑ) = Op(1). (80)

Again, by similar arguments to those given in the proofs of Lemmas 2 and 13, and using
Lemmas 10 and 11 to approximate sums by integrals, it can be shown that

1

T 2(γ0−δ)+1

T∑
t=1

d
2

t (ϑ) =
β2

0ρ
2(1;ϕ0)

Γ2(γ0 − δ + 1)
Λ(γ, δ) + pT (ϑ),

where supHi,1−δ≥1/2+α |pT (ϑ)| = o(1) for i = 1, 2, 3 and

Λ(γ, δ) =
1

2(γ0 − δ) + 1
+
(

(γ0−δ)2

γ0−2δ
(γ0−δ)2

γ0+γ−2δ−1

)( 1
2(1−δ)−1

1
γ−2δ

1
γ−2δ

1
2(γ−δ)−1

)−1

×

(
1

(2(1−δ)+1)(1−δ)2
1

(γ−2δ+2)(1−δ)(γ−δ)
1

(γ−2δ+2)(1−δ)(γ−δ)
1

(2(γ−δ)+1)(γ−δ)2

)(
1

2(1−δ)−1
1

γ−2δ
1

γ−2δ
1

2(γ−δ)−1

)−1( 1
γ0−2δ

1
γ0+γ−2δ−1

)

− 2
(

γ0−δ
γ0−2δ

γ0−δ
γ0+γ−2δ−1

)( 1
2(1−δ)−1

1
γ−2δ

1
γ−2δ

1
2(γ−δ)−1

)−1( 1
(γ0−2δ+2)(1−δ)

1
(γ0+γ−2δ+1)(γ−δ)

)
.

By simple but very cumbersome calculations, it can be shown that

Λ(γ, δ) =
(γ0 − 1)2(γ0 − γ)2ΛN(γ, δ)

ΛD(γ, δ)
,
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where

ΛD(γ, δ) = (1− δ)2(γ − δ)2(2(γ0 − δ) + 1)(2(1− δ) + 1)(2(γ − δ) + 1)(γ0 − 2δ)2

× (γ0 − 2δ + 2)(γ0 + γ − 2δ − 1)2(γ0 + γ − 2δ + 1)(γ − 2δ + 2),

and ΛN(γ, δ) is a complicated function. Then, noting that γ0 6= 1 by Assumption A3 and
that |γ0 − γ| ≥ ξT−κi , setting ξ large enough, (79) holds by showing that

inf
Hi,1−δ≥1/2+α

ΛN(γ, δ) > ε. (81)

First, given that |γ0 − γ| ≤ %, it can be shown that

inf
Hi,1−δ≥1/2+α

ΛN(γ, δ) ≥ inf
Hi,1−δ≥1/2+α

ΛN(γ0, δ)−K%, (82)

where the second term on the right-hand side of (82) can be made arbitrarily small by setting
% small enough. Also, it can be shown that

ΛN(γ0, δ) = (γ0 − δ)
6∑

k=0

(γ0 − δ − 1)kgk(δ) + (2(1− δ) + 1)((1− δ)2 − 1)2,

where gk(δ) are relatively complicated polynomials of δ, for which it can be shown that

inf
Hi,1−δ≥1/2+α

gk(δ) > ε

for i = 1, 2, 3, to justify (81) and conclude the proof of (79).
Next we show (80). Clearly,

1

T qi+2

T∑
t=1

s2
t (ϑ)

≤ 2

T qi+2

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0 − 1))2

+
2

T qi+2

T∑
t=1

(
t∑

s=1

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)h′j−1,T (1− δ, γ − δ,ϕ)hs−1,T (1− δ, γ − δ,ϕ)

)2

.

(83)

First, we note that δ0 − δ + 1 ≤ 3/2 for i = 3 and δ0 − δ + 1 ≥ 3/2 for i = 1, 2. Then, by
(183) and (184) of Lemma 17,

sup
Hi,1−δ≥1/2+α

2

T qi+2

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0 − 1))2 = Op

(
1

T 3

T∑
t=1

t2

)
= Op(1)

for i = 1, 2, 3. Similarly, by (176) of Lemma 16 and (185),(187) of Lemma 18,

sup
Hi,1−δ≥1/2+α

2

T qi+2

T∑
t=1

(
t∑

s=1

T∑
j=1

ρ(L;ϕ)uj(δ − δ0)h′j−1,T (1− δ, γ − δ,ϕ)hs−1,T (1− δ, γ − δ,ϕ)

)2

= Op

 1

T 3

T∑
t=1

(
T 1/2

t∑
s=1

s−1/2−θT θ

)2
 = Op(1)

for i = 1, 2, 3, to conclude the proof of (80), and therefore that of (70) and (47) for i = 1, 2, 3.
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6.1.7 Proof of (48) for i = 2, 3

As with (47) for i = 1, 2, 3, the proofs of (48) for i = 2, 3 are nearly identical, but with
different normalizations. Recall q2 = 2(δ0 − δ) and q3 = 1. Then (48) for i = 2, 3 holds if

Pr

(
inf
Hi

1

T qi

(
T∑
t=1

s2
t (ϑ)− 2

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣−
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 as T →∞, (84)

where

T∑
t=1

s2
t (ϑ) =

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))2

−

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

. (85)

In the proof of their (2.7) for i = 2, 3, Hualde and Robinson (2011) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈Ti

1

T qi

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))2 > K

)
→ 1 as T →∞ (86)

for any arbitrarily large fixed constant K (for small enough η). Thus, in view of (85), (48) for
i = 2, 3 holds by (86) and Lemma 1 (noting that for i = 2, 3 we have T−qi ≤ T−1) on showing

sup
Hi

1

T qi/2

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = Op(1), (87)

sup
Hi

1

T qi

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = ξOp(1). (88)

We note here that, even if ξ had to be set large enough in the proof of (77) (see the proof
of Lemma 3), this can be dominated by the constant K fixed in (86), which can be chosen
arbitrarily large by setting η small enough.

By (185) of Lemma 18, (87) holds for i = 3 because δ0 − δ ≤ 1/2 when δ ∈ I3. Further-
more, noting that supH3

|γ−γ0| ≤ ξT−κ3 and that δ ∈ I3 implies γ0−δ ≥ γ0−δ0+1/2−η > 1
and δ0 − δ ≤ 1/2, it follows by (147) and (151) of Lemma 4 that the left-hand side of (88)
with i = 3 is ξOp(1) by choosing θ < 1/2.

Next, (87) with i = 2 follows by (187) of Lemma 18 choosing θ < 1/2, and noting that
supH2

|γ − γ0| ≤ ξT−κ2 = ξT−(γ0−δ0−1/2) and that δ ∈ I2 implies γ0 − δ ≥ γ0 − δ0 + 1/2 > 1
and δ0 − δ ≥ 1/2. Finally, (88) with i = 2 follows from (147) and (152) of Lemma 4 setting
θ < 1/2, to conclude the proof of (48) for i = 2, 3.

6.1.8 Proof of (48) for i = 1

Finally we show (48) for i = 1, which holds if

Pr

(
inf
H1

1

T 2(δ0−δ)

(
T∑
t=1

(dt(ϑ) + st(ϑ))2 −
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (89)
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as T → ∞. By Lemma 1 (noting that for i = 1 we have 2(δ0 − δ) ≤ −1 − 2η < −1) and
Lemma 22 with Zt = dt(ϑ) + st(ϑ), (89) follows if there exists an ε > 0 such that

Pr

(
inf
H1

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1 (90)

as T →∞. Note that in H1, γ0− δ ≥ 1 + η and |γ − γ0| < ξT−κ1 , so there exists α > 0 such
that for T sufficiently large it holds that γ − δ ≥ 1 + α. Defining the sets G1 = {ϑ : τ ∈
T1, γ− δ ≥ 1 +α, 1− δ ≤ 1/2 +α, γ ∈ [�1,�2]} and G2 = {ϑ : τ ∈ T1, γ− δ ≥ 1 +α, 1− δ ≥
1/2 + α, γ ∈ [�1,�2]}, (90) is justified by showing

Pr

(
inf
G1

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1, (91)

Pr

(
inf
G2

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt(ϑ) +

1

T δ0−δ+1/2
st(ϑ)

)2

> ε

)
→ 1, (92)

as T →∞.
First we show (91). Initially we justify that

1

T δ0−δ+1/2
st(ϑ) =

1

T δ0−δ+1/2
(a1t(ϑ) + a2t(ϑ)), (93)

where

a1t(ϑ) = ρ(L;ϕ)ut(δ−δ0−1)−
ct−1(γ − δ + 1,ϕ)

∑T
j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)∑T
j=1 c

2
j−1(γ − δ,ϕ)

(94)

and a2t(ϑ) is a remainder term such that for any arbitrarily small ε1 > 0, ε2 > 0, and for T
sufficiently large,

Pr

(
sup
G1,t

1

T δ0−δ+1/2
|a2t,T (ϑ)| > ε1

)
< ε2. (95)

As in (72),

st(ϑ) = ρ(L;ϕ)ut(δ − δ0 − 1)−
T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ, γ − δ,ϕ)

×

(
T∑
k=1

ck−1(1− δ, γ − δ,ϕ)c′k−1(1− δ, γ − δ,ϕ)

)−1

ct−1(2− δ, γ − δ + 1,ϕ)

= ρ(L;ϕ)ut(δ − δ0 − 1)

− a11t(ϑ) + a12t(ϑ) + a13t(ϑ) + a14t(ϑ)∑T
j=1 c

2
j−1(1− δ,ϕ)

∑T
j=1 c

2
j−1(γ − δ,ϕ)−

(∑T
j=1 cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

)2 ,
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where

a11t(ϑ) = ct−1(2− δ,ϕ)
T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)
T∑
k=1

c2
k−1(γ − δ,ϕ),

a12t(ϑ) = −ct−1(γ − δ + 1,ϕ)
T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)
T∑
k=1

ck−1(1− δ,ϕ)ck−1(γ − δ,ϕ),

a13t(ϑ) = ct−1(γ − δ + 1,ϕ)
T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)
T∑
k=1

c2
k−1(1− δ,ϕ),

a14t(ϑ) = −ct−1(2− δ,ϕ)
T∑
j=1

ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)
T∑
k=1

ck−1(1− δ,ϕ)ck−1(γ − δ,ϕ).

Then, it can be straightforwardly shown that (93)-(95) follow by (159), (160), (162), (163),
(164), (166), (170), (195), and (196). Next, let [·] denote the integer part of the argument
and consider S1T (r,ϑ) = T δ−δ0−1/2a1[Tr](ϑ) a process indexed by (r,ϑ) that is càdlàg in r
and continuous in ϑ. By almost identical techniques to those of Hualde and Nielsen (2020)
it can be shown that

S1T (r,ϑ)⇒ S1(r,ϑ), (96)

where

S1(r,ϑ) = ρ(1;ϕ)ω(1;ϕ0)W (r; 1 + δ0 − δ)

− ρ(1;ϕ)ω(1;ϕ0)(2(γ − δ)− 1)

γ − δ
rγ−δW (1; 1 + δ0 − δ)

+
ρ(1;ϕ)ω(1;ϕ0)(2(γ − δ)− 1)(γ − δ − 1)

γ − δ
rγ−δ

∫ 1

0

uγ−δ−2W (u; 1 + δ0 − δ)du

and⇒ means weak convergence in the product space of functions that are càdlàg in r ∈ [0, 1]
and continuous in ϑ ∈ G1 endowed with the Skorokhod topology in r and the uniform
topology in ϑ, and where W (r; d) = Γ(d)−1

∫ r
0

(1 − s)d−1dB(s) and B(s) denote fractional
(Type II) and regular scalar Brownian motions, respectively, both with variance σ2

0. Because
dt(ϑ) is deterministic and st(ϑ) is stochastic, and in view of the square in (91) and (93)–(95),
(91) follows from (96) (also note Assumption A1(iv) and (22)). Note that the application
of Lemma 22 going from (89) to (90) is essential to avoid a very strong necessary moment
condition (Johansen and Nielsen, 2012b).

Next we show (92), which is similar to that of (91). Defining S2T (r,ϑ) = T δ−δ0−1/2s[Tr](ϑ),
we show

S2T (r,ϑ)⇒ S2(r,ϑ), (97)

where

S2(r,ϑ) = ρ(1;ϕ)ω(1;ϕ0)W (r; 1 + δ0 − δ)− ρ(1;ϕ)ω(1;ϕ0)

×
(

(1, 1)W (1; 1 + δ0 − δ)−
∫ 1

0

(−δs−1−δ, (γ − δ − 1)sγ−δ−2)W (s; 1 + δ0 − δ)ds
)

×

(
1

2(1−δ)−1
1

γ−2δ
1

γ−2δ
1

2(γ−δ)−1

)−1(
r1−δ

1−δ
rγ−δ

γ−δ

)
,
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and⇒ now means weak convergence in the product space of functions that are càdlàg in r ∈
[0, 1] and continuous in ϑ ∈ G2 endowed with the Skorokhod topology in r and the uniform
topology in ϑ. The proof of (97) is almost identical to that of (96), noting that in G2, 1−δ ≥
1/2 + α. Also, for ϑ ∈ G2 it holds that

∫ 1

0
s−1−δW (s; 1 + δ0 − δ)ds is a well-defined random

variable with zero mean and finite variance (e.g., for δ = δ0 this variance is 2σ2
0((1− δ)(2(1−

δ)−1))−1). As in the proof of (91), (97) justifies (92), which completes the proof of (90), and
hence that of (89). Thus the proof of (48) for i = 1 is completed and therefore that of (32).

6.2 Proof of Theorem 1(ii): the γ0 − 1/2 < δ0 case

Clearly

Pr (‖τ̂ − τ 0‖ ≥ ε) = Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
, (98)

so, as in the proof of part (i), the result follows by showing that the right-hand side of (45)
is o(1), which, in view of Lemma 1, holds if

Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T →∞. (99)

Recall the intervals Ii and define Wi = {ϑ ∈ M ε : δ ∈ Ii} for i = 1, 2, 3 and W4 = {ϑ ∈
M ε : δ ∈ I4 ∪ I5}. Then (99) follows on showing that

Pr

(
inf
Wi

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T →∞ for i = 1, . . . , 4. (100)

The proofs of (100) for each of i = 1, . . . , 4 follows in the next subsections. Each proof
proceeds by showing that, because γ0 − 1/2 < δ0, the deterministic term dt(ϑ) in RT (ϑ)
is negligible with the appropriate normalization. We can therefore take advantage of lower
bounds on the stochastic terms in RT (ϑ) established in Hualde and Robinson (2011), Jo-
hansen and Nielsen (2019), and Hualde and Nielsen (2020). Note again that Johansen and
Nielsen (2019) require 8 moments, but this is not used to establish the bounds that we require.

6.2.1 Proof of (100) for i = 4

We first note that

RT (ϑ) =
1

T

T∑
t=1

(ρ(L;ϕ)xt(δ))
2 − 1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

≥ 1

T

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))2 − 2 ‖φ0‖
T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∥∥∥∥∥
− 1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

, (101)

where the inequality follows from (34). Because δ0− δ ≤ 1/2−η when δ ∈ I4∪I5, ut(δ− δ0)
is asymptotically stationary. In view of (101), the proof of (100) for i = 4 then follows by
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Hualde and Robinson (2011) (see the proof of their (2.7) for i = 4) by showing

sup
W4

1

T

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∣∣∣∣∣ = op(1), (102)

sup
W4

1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (103)

First, because δ ∈ I4 ∪ I5 implies δ0 − δ ≤ 1/2− η and γ0 − δ ≤ 1/2 + γ0 − δ0 − η, (193) of
Lemma 20 implies that the left-hand side of (102) is Op(T

γ0−δ0−1/2−2η+T−ς−η+T−1 log T ) =
op(1).

Next, using (34) and noting that the second term in (31) dominates because γ0 ≥ 1 + κ,
(103) follows by showing

sup
W4

T−1/2

T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ) = op(1), (104)

sup
W4

T−1/2

T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ) = o(1). (105)

Here, (185) of Lemma 18 shows that the left-hand side of (104) is Op(T
θ−1/2 + T−η) = op(1)

by choosing θ < 1/2, while (191) of Lemma 19 shows that the left-hand side of (105)
O(T θ−1/2 + T γ0−1/2−δ0−η) = o(1), to conclude the proof of (100) for i = 4.

6.2.2 Proof of (100) for i = 2, 3

Recall the different normalizations given by q3 = 1 and q2 = 2(δ0 − δ). Clearly,

Pr

(
inf
Wi

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
Wi

T qi

T
inf
Wi

T

T qi
RT (ϑ) ≤ σ2

0 + ε

)
= Pr

(
inf
Wi

T

T qi
RT (ϑ) ≤ σ2

0 + ε

)
. (106)

Thus, in view of (86) and (101), the proof of (100) for i = 2, 3 follows on showing

sup
Wi

1

T qi

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(1− δ, γ0 − δ,ϕ)

∣∣∣∣∣ = Op(1), (107)

sup
Wi

1

T qi

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)xt(δ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= Op(1). (108)

For i = 3, both (107) and (108) follow straightforwardly by identical steps as those given in
the proofs of (102) and (103) just replacing η by 0. For i = 2, we need to take into account
the different normalization, which implies using (192) instead of (191) in Lemma 19, (194)
instead of (193) in Lemma 20, and (187) instead of (185) in Lemma 18.

6.2.3 Proof of (100) for i = 1

Following identical steps to those given in (106),

Pr

(
inf
W1

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
W1

T

T 2(δ0−δ)
RT (ϑ) ≤ σ2

0 + ε

T 2η

)
,
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so the required result follows on showing

Pr

(
inf
W1

T

T 2(δ0−δ)
RT (ϑ) > ε

)
→ 1 as T →∞. (109)

First we show that

T

T 2(δ0−δ)
RT (ϑ) ≥ 1

T 2(δ0−δ)

T∑
t=1

s2
t (ϑ) + q1T (ϑ), (110)

where supW1
|q1T (ϑ)| = op(1). Noting (35) and (39), the proof of (110) follows by showing

sup
W1

1

T 2(δ0−δ)

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∥∥∥∥∥ = op(1)

and

sup
W1

1

T 2(δ0−δ)

∥∥∥∥∥
T∑
j=1

cj−1(γ0 − δ,ϕ)h′j−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
×

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = op(1).

Because δ0 − δ ≥ 1/2 + η and γ0 − δ ≥ 1/2 + η + γ0 − δ0 on W1, these results follow
straightforwardly by (187), (192), and (194), noting that also γ0 − 1/2− δ0 < 0.

Next, let α > 0 be arbitrarily small (in particular α < (ς − 1/2)/3) and define the sets
Φ1, . . . ,Φ9 as in the proof of Lemma 2. Then, in view of (110), (109) follows on showing

Pr

(
inf
W1∩Φj

1

T 2(δ0−δ)

T∑
t=1

s2
t (ϑ) > ε

)
→ 1 as T →∞ (111)

for j = 1, ..., 9.
First we prove (111) for j = 1, 2, 4, 5. In their eqn. (S.126), Hualde and Nielsen (2020)

showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈T1

1

T 2(δ0−δ)

T∑
t=1

(ρ(L;ϕ)ut(δ − δ0))2 > ε

)
→ 1 as T →∞. (112)

Then, in view of (85) and (112), (111) for j = 1, 2, 4, 5 holds if we show that

sup
W1∩Φj

1

T 2(δ0−δ)

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= op(1). (113)

We cannot apply Lemma 18 to (113) because it only shows Op(1). Instead, we decompose as

1

T 2(δ0−δ)

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= B1T +B2T +B3T ,
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where

B1T =

(∑T
j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

)2∑T
j=1 c

2
j−1(1− δ,ϕ)∑T

j=1 c
2
j−1(1− δ,ϕ)

∑T
j=1 c

2
j−1(γ − δ,ϕ)−

(∑T
j=1 cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

)2 ,

(114)

B2T =

(∑T
j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)

)2∑T
j=1 c

2
j−1(γ − δ,ϕ)∑T

j=1 c
2
j−1(1− δ,ϕ)

∑T
j=1 c

2
j−1(γ − δ,ϕ)−

(∑T
j=1 cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

)2 ,

(115)

B3T =
−2
∑T

j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(1− δ,ϕ)
∑T

j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)∑T
j=1 c

2
j−1(1− δ,ϕ)

∑T
j=1 c

2
j−1(γ − δ,ϕ)−

(∑T
j=1 cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ)

)2

×
T∑
j=1

cj−1(1− δ,ϕ)cj−1(γ − δ,ϕ), (116)

so (113) holds for j = 1, 2, 4, 5 if

sup
W1∩Φj

|BiT | = op(1) for i = 1, 2, 3 and j = 1, 2, 4, 5.

The proof of (113) for j = 1 follows straightforwardly by (165), (171), and (195). Next,
we show (113) for j = 2. By (173) the normalized denominator can be made arbitrarily
large by setting K large enough, so the result follows on showing that the supremum of the
numerators in (114)–(116) is Op(1). This result in turn follows by (165) and (196) for B1T ,
(168) and (195) for B2T , and (167), (195), and (196) for B3T . The proof of (113) for j = 4 is
identical to that for j = 2 using symmetry of Φ2 and Φ4, and is therefore omitted. Regarding
(113) for j = 5, we re-normalize as

B1T =
T 1−2(γ−δ)

(∑T
j=1 ρ(L;ϕ)uj(δ − δ0)cj−1(γ − δ,ϕ)

)2

T 1−2(γ−δ)
(∑T

j=1 c
2
j−1(γ − δ,ϕ)− (

∑T
j=1 cj−1(1−δ,ϕ)cj−1(γ−δ,ϕ))

2∑T
j=1 c

2
j−1(1−δ,ϕ)

) . (117)

By (174) the infimum of the denominator of (117) can be made arbitrarily large, whereas
by (196) the supremum of the numerator is Op(1), so that supW1∩Φ5

|B1T | = op(1). The
proof of supW1∩Φ5

|B2T | = op(1) is essentially identical and thus omitted, whereas that of
supW1∩Φ4

|B3T | = op(1) uses (170) along with (174) and (196).
Finally, the proof of (111) for j = 3, 6, 7, 8, 9 is essentially identical to that of (90) with

dt(ϑ) = 0. The only relevant difference is that we now need to establish a convergence result
on a larger set where γ − δ ≥ 1/2 + α (instead of γ − δ ≥ 1 + α). However, this does not
lead to any relevant changes in the proof because for fixed ϑ such that γ − δ ≥ 1/2 + α and

1+δ0−δ ≥ 3/2+η with α > 0, η > 0, the integral
∫ 1

0
uγ−δ−2W (u; 1+δ0−δ)du is well defined.

This completes the proof of (111) for j = 3, 6, 7, 8, 9, and therefore that of (100) for i = 1.
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6.3 Proof of Theorem 2(i.a): the γ0 − 1/2 > δ0 case with δ0 < 1/2

Defining MT = diag(Ip+1, T
δ0−γ0+1) we initially show that

T 1/2M−1
T (ϑ̂− ϑ0)→d N(0p+2, σ

2
0V
−1
ϑ ) with V ϑ =

(
σ2

0A 0p+1

0′p+1
(γ0−1)2

(γ0−2δ0)2vβ

)
. (118)

By the mean value theorem,

ϑ̂− ϑ0 = −
(
∂2RT (ϑ)

∂ϑ∂ϑ′

)−1
∂RT (ϑ0)

∂ϑ
, (119)

where ϑ represents an intermediate point which is allowed to vary across the different rows
of ∂2RT (·)/∂ϑ∂ϑ′. We first analyze the score in (119). It can be straightforwardly seen that
∂dt(ϑ0)/∂τ = 0 and ∂s1t(τ )/∂γ = 0, so, recalling that dt(ϑ0) = 0 and the decomposition
(40),

∂RT (ϑ0)

∂ϑ
=

2

T

T∑
t=1

st(ϑ0)

((
∂s1t(τ0)
∂τ

∂dt(ϑ0)
∂γ

)
− ∂s2t(ϑ0)

∂ϑ

)
.

Then, by Lemma 5(a) it holds that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

(
T−1/2Ip+1 0

0 T 1/2−(γ0−δ0)

) T∑
t=1

εt

(
∂s1t(τ0)
∂τ

∂dt(ϑ0)
∂γ

)
+ op(1). (120)

As in (2.54) of Hualde and Robinson (2011),

1

T 1/2

T∑
t=1

εt
∂s1t(τ 0)

∂τ
=

1

T 1/2

T∑
t=2

εt

∞∑
j=1

mj(ϕ0)εt−j + op(1),

where mj(ϕ0) = (−j−1, b′j(ϕ0))′. Next,

∂dt(ϑ0)

∂γ
= −β0c

(1)
t−1(γ0 − δ0,ϕ0)

+ β0h
′
t−1,T (1− δ0, γ0 − δ0,ϕ0)

T∑
j=1

ht−1,T (1− δ0, γ0 − δ0,ϕ0)c
(1)
j−1(γ0 − δ0,ϕ0),

where c
(1)
t (·, ·) is the derivative of ct(·, ·) with respect to the first argument, so that

1

T γ0−δ0−1/2

T∑
t=1

εt
∂dt(ϑ0)

∂γ
=

β0

T γ0−δ0−1/2

T∑
t=1

εth
′
t−1,T (1− δ0, γ0 − δ0,ϕ0)

×
T∑
j=1

ht−1,T (1− δ0, γ0 − δ0,ϕ0)c
(1)
j−1(γ0 − δ0,ϕ0)

− β0

T γ0−δ0−1/2

T∑
t=1

εtc
(1)
t−1(γ0 − δ0,ϕ0). (121)
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By (17), c
(1)
t−1(d,ϕ) =

∑t−1
j=0 ρj(ϕ)π

(1)
t−j−1(d), where π

(1)
j (·) is the first derivative of πj(·) given

by
π

(1)
j (d) = (ψ(d+ j)− ψ(d))πj(d), (122)

with ψ(·) denoting the digamma function. Then, noting that 1−δ0 > 1/2 and γ0−δ0 > 1/2,
by a similar analysis to that in the proof of Lemma 13, the right-hand side of (121) equals

β0ρ(1;ϕ0)

T γ0−δ0−1/2

T∑
t=1

εt
(
πt−1(1− δ0) πt−1(γ0 − δ0)

)
×
( ∑T

t=1 π
2
t−1(1− δ0)

∑T
t=1 πt−1(1− δ0)πt−1(γ0 − δ0)∑T

t=1 πt−1(1− δ0)πt−1(γ0 − δ0)
∑T

t=1 π
2
t−1(γ0 − δ0)

)−1

×
T∑
j=2

(
πj−1(1− δ0)
πj−1(γ0 − δ0)

)
π

(1)
j−1(γ0 − δ0)− β0ρ(1;ϕ0)

T γ0−δ0−1/2

T∑
t=2

εtπ
(1)
t−1(γ0 − δ0) + op(1). (123)

Using (122) and the approximation ψ(z) = log(z) + O(z−1), see Abramowitz and Stegun
(1970, p. 259, eqn. 6.3.18), as well as careful cancellation of terms, it can be shown that the
first two terms of (123) equal β0ρ(1;ϕ0)T 1/2+δ0−γ0

∑T
t=2 εtgt,T (1− δ0, γ0 − δ0) + op(1), where

gt,T (d1, d2) =
(
πt−1(d1) πt−1(d2)

)( ∑T
t=1 π

2
t−1(d1)

∑T
t=1 πt−1(d1)πt−1(d2)∑T

t=1 πt−1(d1)πt−1(d2)
∑T

t=1 π
2
t−1(d2)

)−1

×
T∑
j=2

log

(
d2 + j − 1

T

)(
πj−1(d1)
πj−1(d2)

)
πj−1(d2)− log

(
d2 + t− 1

T

)
πt−1(d2).

Collecting these terms shows that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

T∑
t=2

εtηt,T + op(1), (124)

where

ηt,T =

(
T−1/2

∑∞
j=1mj(ϕ0)εt−j

T 1/2−(γ0−δ0)β0ρ(1;ϕ0)gt,T (1− δ0, γ0 − δ0)

)
.

Since εtηt,T is a martingale difference sequence, we can apply the martingale central limit
theorem (e.g., Corollary 3.1 of Hall and Heyde, 1980) to show that

T∑
t=2

εtηt,T →d N(0p+2, σ
2
0V ϑ). (125)

To prove (125) we note in particular that
∑∞

j=1mj(ϕ0)mj(ϕ0)′ = A by definition, see
Assumption A4(iii), and from Lemma 10 and (158) of Lemma 11, we find that, as T →∞,

1

T 2(γ0−δ0)−1

T∑
t=2

g2
t,T (1− δ0, γ0 − δ0)→ 1

Γ2(γ0 − δ0)

(
2

(2(γ0 − δ0)− 1)3
−
(

1
(γ0−2δ0)2

1
(2(γ0−δ0)−1)2

)

×

(
1

1−2δ0
1

γ0−2δ0
1

γ0−2δ0
1

2(γ0−δ0)−1

)−1( 1
(γ0−2δ0)2

1
(2(γ0−δ0)−1)2

)
=

(γ0 − 1)2

Γ2(γ0 − δ0)(γ0 − 2δ0)2(2(γ0 − δ0)− 1)3
. (126)
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In addition,

1

T γ0−δ0

T∑
t=2

gt,T (1− δ0, γ0 − δ0)
∞∑
j=1

mj(ϕ0)εt−j = op(1), (127)

which, noting that
t∑

k=1

∞∑
j=1

mj(ϕ0)εk−j = Op(t
1/2), (128)

follows by summation by parts using Lemmas 10 and 11, and shows block-diagonality of
the variance matrix, V ϑ. Thus,

∑T
t=2 ηt,Tη

′
t,T →p V ϑ as required in (125). Because the

fourth moment of εt is finite, the (conditional) Lindeberg condition holds if, for example,∑T
t=2(ξ′ηt,Tη

′
t,Tξ)2 →p 0 for an arbitrary conforming vector ξ, which follows straightfor-

wardly by previous arguments.
In view of (119), (124), and (125), the proof of (118) is completed by showing that

MT

(
∂2RT (ϑ)

∂ϑ∂ϑ′
− ∂2RT (ϑ0)

∂ϑ∂ϑ′

)
MT = op(1) and

1

2
MT

∂2RT (ϑ0)

∂ϑ∂ϑ′
MT →p V ϑ. (129)

The first result in (129) is relatively straightforward due to Lemma 6. It is proven by a
mean value expansion, noting that the derivatives add at most a multiplicative logarithmic
factor, see Lemma 11, but that is more than compensated by the factor ϑ̂−ϑ0 = Op(T

−χ),
χ > 0, from Lemma 6. The second result in (129) can be proven by identical methods to the
corresponding proof in Hualde and Nielsen (2020, online supplement p. 16), and specifically
follows by application of Lemma 5(b) and the same methods as applied in (126)–(127).

Given (118), the remaining part of (26) is justified as follows. From (18) and (34) we
find that

φ̂ = φ̂(ϑ̂) =
T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)c′t−1(1− δ̂, γ0 − δ̂, ϕ̂)φ0

+
T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)ρ(L; ϕ̂)ut(δ̂ − δ0), (130)

where

kt,T (d1, d2,ϕ) =

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

ct(d1, d2,ϕ).

By the mean value theorem,

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂) = kt−1,T (1− δ̂, γ0 − δ̂, ϕ̂) + k
(2)
t−1,T (1− δ̂, γ − δ̂, ϕ̂)(γ̂ − γ0),

where k
(2)
t,T (·, ·, ·) is the derivative of kt,T (·, ·, ·) with respect to the second argument and

|γ − γ0| ≤ |γ̂ − γ0|. Thus, defining NT = diag(T 1/2−δ0 , T γ0−δ0−1/2/ log T ),

NT (φ̂− φ0) = (γ̂ − γ0)NT

T∑
t=1

k
(2)
t−1,T (1− δ̂, γ − δ̂, ϕ̂)c′t−1(1− δ̂, γ0 − δ̂, ϕ̂)φ0

+NT

T∑
t=1

kt−1,T (1− δ̂, γ̂ − δ̂, ϕ̂)ρ(L; ϕ̂)ut(δ̂ − δ0). (131)
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First, by application of Lemmas 6 and 7 it follows straightforwardly that the first term
on the right-hand side of (131) equals

(γ̂ − γ0)NT

T∑
t=1

k
(2)
t−1,T (1− δ0, γ0 − δ0,ϕ0)c′t−1(1− δ0, γ0 − δ0,ϕ0)φ0 + op(1). (132)

Then, noting that

∂kt,T (d1, d2,ϕ)

∂d2

= −

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1(
∂

∂d2

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)

×

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

ct(d1, d2,ϕ)

+

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1(
0

c
(1)
t (d2,ϕ)

)
,

(132) is

− (γ̂ − γ0)NT

(
T∑
j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)c′j−1(1− δ0, γ0 − δ0,ϕ0)

)−1

×
T∑
j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)
(

0 c
(1)
t (γ0 − δ0,ϕ0)

)
φ0 + op(1)

= −(γ̂ − γ0)NT

(
T∑
j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)c′j−1(1− δ0, γ0 − δ0,ϕ0)

)−1

×
T∑
j=1

cj−1(1− δ0, γ0 − δ0,ϕ0)
(
cj−1(1− δ0,ϕ0) c

(1)
j−1(γ0 − δ0,ϕ0)

)( 0 0
0 1

)
φ0 + op(1).

(133)

Now we note that by (122) it can be straightforwardly shown that c
(1)
j−1(d,ϕ) = cj−1(d,ϕ)(log j)(1+

o(1)) and apply summation by parts,

T∑
j=1

cj−1(d1,ϕ)c
(1)
j−1(d2,ϕ) =

T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(log j)(1 + o(1))

= (log T )
T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(1 + o(1))

−
T−1∑
k=1

(log(k + 1)− log k)
k∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)(1 + o(1)).

Because log(k+1)− log k = log(1+k−1) = k−1 +O(k−2), see Abramowitz and Stegun (1970,

p. 68, eqn. 4.1.24), we find that
∑T

j=1 cj−1(d1,ϕ)c
(1)
j−1(d2,ϕ) = (log T )

∑T
j=1 cj−1(d1,ϕ)cj−1(d2,ϕ)(1+
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o(1)), see also Lemma 13. Inserting this result into (133), we find that (133) is

−(γ̂−γ0)

(
T 1/2−δ0 0

0 T γ0−δ0−1/2

)(
0 0
0 1

)
φ0+op(1) = −

(
0

T γ0−δ0−1/2(γ̂ − γ0)β0

)
+op(1).

(134)
Next, proceeding as in the proof of (123), using Lemmas 6, 7, 10, 11, and 13, it can be
straightforwardly shown that the second term on the right-hand side of (131) is(

1 0
0 1

log T

) T∑
t=1

εtθt,T + op (1) =

(
1 0
0 0

) T∑
t=1

εtθt,T + op (1) , (135)

where

θt,T =
1

ρ(1;ϕ0)

(
1

Γ2(1−δ0)(1−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)
1

Γ2(γ0−δ0)(2(γ0−δ0)−1)

)−1(
πt−1(1−δ0)

T 1/2−δ0
πt−1(γ0−δ0)

T γ0−δ0−1/2

)
.

Therefore, collecting (131)–(135),

NT (φ̂− φ0) =

( (
1 0

)∑T
t=1 εtθt,T

−T γ0−δ0−1/2(γ̂ − γ0)β0

)
+ op(1). (136)

Using summation by parts and (128) it can be shown that

1

T 1/2

T∑
t=1

(
1 0

)
θt,T

∞∑
j=1

mj(ϕ0)εt−j = op(1). (137)

Additionally, as in the proof of (126), and noting that the two main terms corresponding to
the two terms in gt,T (1− δ0, γ0 − δ0) cancel, it can be shown that

1

T γ0−δ0−1/2

T∑
t=1

(
1 0

)
θt,Tgt,T (1− δ0, γ0 − δ0) = o(1), (138)

and

(
1 0

) T∑
t=1

θt,Tθ
′
t,T

(
1
0

)

=
1

ρ2(1;ϕ0)

(
1 0

)( 1
Γ2(1−δ0)(1−2δ0)

1
Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)

1
Γ(1−δ0)Γ(γ0−δ0)(γ0−2δ0)

1
Γ2(γ0−δ0)(2(γ0−δ0)−1)

)−1(
1
0

)
+ o(1)

=
Γ2(1− δ0)(1− 2δ0)(γ0 − 2δ0)2

ρ2(1;ϕ0)(γ0 − 1)2
+ o(1). (139)

Then (26) holds by (136)–(139) using the Cramér-Wold device.

6.4 Proof of Theorem 2(i.b): the γ0 − 1/2 > δ0 case with δ0 > 1/2

The proof for this case (with δ0 > 1/2) is almost identical to that for case (i.a), but simpler.
The main difference is that now, by (169) of Lemma 14, it can be straightforwardly shown
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that

1

T γ0−δ0−1/2

T∑
t=1

ct−1(1− δ0,ϕ0)c
(1)
t−1(γ0 − δ0,ϕ0) = o(1),

1

T γ0−δ0−1/2

T∑
t=1

ct−1(1− δ0,ϕ0)εt = op(1). (140)

Using also (162), the consequence is that first term on the right-hand side of (121) is

β0

T γ0−δ0−1/2

T∑
t=1

εtct−1(γ0 − δ0,ϕ0)

∑T
j=1 cj−1(γ0 − δ0,ϕ0)c

(1)
j−1(γ0 − δ0,ϕ0)∑T

j=1 c
2
j−1(γ0 − δ0,ϕ0)

+ op(1),

while the second term on the right-hand side of (121) is unchanged. Therefore, instead of
gt,T (1− δ0, γ0 − δ0) we now have gt,T (γ0 − δ0) with

gt,T (d) =
πt−1(d)

∑T
j=1 log

(
d+j−1
T

)
π2
j−1(d)∑T

j=1 π
2
j−1(d)

− log

(
d+ t− 1

T

)
πt−1(d),

which satisfies

1

T 2(γ0−δ0)−1

T∑
t=1

g2
t,T (γ0 − δ0)→ 1

Γ2(γ0 − δ0)(2(γ0 − δ0)− 1)3
.

Hence, T 1−2(γ0−δ0)β2
0ρ

2(1;ϕ0)
∑T

t=1 g
2
t,T (γ0 − δ0) → vβ, which proves the required result for

ϑ̂ − ϑ0 by an identical proof to that of (118), see also (125) and (129). To complete the
proof we note that (134) still holds for (the second element of) the first term on the right-
hand side of (131), whereas (the second element of) the second term on the right-hand side
of (131) is now op(1) using Lemmas 6, 7, 10, and 11 together with (140) and (162).

6.5 Proof of Theorem 2(ii): the γ0 − 1/2 < δ0 case

Similarly to (40), we decompose the loss function RT (ϑ) into the sum of two terms, RT (ϑ) =
QT (τ )+JT (ϑ), where QT (τ ) = T−1

∑T
t=1 s

2
1t(τ ) is the loss function in Hualde and Robinson

(2011) and

JT (ϑ) =
1

T

T∑
t=1

(dt(ϑ)− s2t(ϑ))2 +
2

T

T∑
t=1

s1t(τ )(dt(ϑ)− s2t(ϑ)). (141)

Then
∂RT (ϑ̂)

∂τ
= 0p+1 =

∂QT (τ̂ )

∂τ
+
∂JT (ϑ̂)

∂τ
, (142)

and by the mean value theorem

∂QT (τ̂ )

∂τ
=
∂QT (τ 0)

∂τ
+
∂2QT (τ )

∂τ∂τ ′
(τ̂ − τ 0) , (143)

where τ is an intermediate point between τ̂ and τ 0 which is allowed to vary in different rows
of ∂2QT (·)/∂τ∂τ ′. Inserting (143) into (142) we then find

T 1/2(τ̂ − τ 0) = −
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2∂QT (τ 0)

∂τ
−
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2∂JT (ϑ̂)

∂τ
. (144)
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From the proof of Hualde and Robinson (2011, Theorem 2.2), the first term on the right-
hand side of (144) has a N

(
0p+1,A

−1
)

limiting distribution and ∂2QT (τ )/∂τ∂τ ′ converges
in probability to a nonsingular matrix. Thus, in view of (144), the required result follows

because T 1/2∂JT (ϑ̂)/∂τ = op(1) by Lemma 8.
Finally we prove (29). By (130), noting (28) and using Lemma 7 repeatedly, we find that

T 1/2−δ0(µ̂− µ0) =
a1T + a2T + a3T + a4T

bT
+ op(1),

where

a1T =
1

T 1/2−δ0
β0

T∑
j=1

cj−1(1− δ0,ϕ0)cj−1(γ0 − δ0,ϕ0),

a2T = − 1

T 1/2−δ0
β0

T∑
j=1

cj−1(1− δ0,ϕ0)hj−1,T (γ̂ − δ0,ϕ0)
T∑
k=1

hk−1,T (γ̂ − δ0,ϕ0)ck−1(γ0 − δ0,ϕ0),

a3T =
1

T 1/2−δ0

T∑
j=1

cj−1(1− δ0,ϕ0)εj,

a4T = − 1

T 1/2−δ0

T∑
j=1

cj−1(1− δ0,ϕ0)hj−1,T (γ̂ − δ0,ϕ0)
T∑
k=1

hk−1,T (γ̂ − δ0,ϕ0)εk,

bT =
1

T 1−2δ0

 T∑
j=1

c2
j−1(1− δ0,ϕ0)−

(∑T
j=1 cj−1(1− δ0,ϕ0)cj−1(γ̂ − δ0,ϕ0)

)2

∑T
j=1 c

2
j−1(γ̂ − δ0,ϕ0)

 ,

and ht,T (d,ϕ) = ct(d,ϕ)(
∑T

j=1 c
2
j−1(d,ϕ))−1/2. For T sufficiently large, bT is bounded away

from zero almost surely by (172) of Lemma 15. Moreover, by direct application of (159),
(176), and (185) (noting that the latter two also hold for ht,T (d,ϕ), see (253)), it holds
that a1T = o(1), a2T = op(1), and a4T = Op(T

θ), while Lemmas 11 and 13 imply that
a3T →d N(0, ρ2(1;ϕ0)/((1− 2δ0)Γ2(1− δ0))) by the martingale central limit theorem. This
proves (29) by choosing θ < ε.

7 Auxiliary lemmas

Lemma 1. Under Assumptions A1–A3, T−1
∑T

t=1 s
2
t (ϑ0)→p σ

2
0.

Lemma 2. Under Assumptions A1 and A3, for any g > 0 and any κ > 0, β0 6= 0, and
either µ0 = 0 or µ0 6= 0, γ0 ≥ 1 + κ,

lim
T→∞

inf
γ0−δ≥1/2+g,|γ−γ0|≥g,ϕ∈Ψ

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε.

Lemma 3. Under Assumptions A1 and A3, for any κ > 0, β0 6= 0, and either µ0 = 0 or
µ0 6= 0, γ0 ≥ 1 + κ,

1

T γ0−δ
∂dT (ϑ)

∂γ
=
β0ρ(1;ϕ)

Γ(γ0 − δ)
2(γ − δ)2 − 2(γ − δ) + 1− (γ0 − δ)

(γ − δ)2(γ0 + γ − 2δ − 1)2
+ gT (ϑ), (145)
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where for any arbitrarily small α > 0, supHi,1−δ≤1/2+α |gT (ϑ)| = o(1). Additionally, for some
fixed ε > 0, which does not depend on ξ or T ,

lim
T→∞

inf
Hi,1−δ≤1/2+α

T 2κi

T 2(γ0−δ)
d

2

T (ϑ) > εξ2 for i = 1, . . . , 4. (146)

Lemma 4. Under Assumptions A1–A3, for any α > 0, κ > 0, and θ such that 0 < θ <
min{ς − 1/2, α}, for β0 6= 0, and for either µ0 = 0 or µ0 6= 0, γ0 ≥ 1 + κ,∣∣∣∣∣

T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ ≤ |γ − γ0||MT (ϑ)|, (147)

where, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≤g,γ0−δ≤1/2+α

|MT (ϑ)| = Op(T
max{θ,g}+4θ+α), (148)

sup
δ0−δ≤g,γ0−δ≥1/2+α

T δ−γ0|MT (ϑ)| = Op(T
max{θ,g}+4θ−1/2), (149)

sup
δ0−δ≥g,γ0−δ≥1/2+α

T 2δ−δ0−γ0|MT (ϑ)| = Op(T
max{θ,g}+4θ−g−1/2), (150)

sup
δ0−δ≤g,γ0−δ≥1/2+α,γ−δ≥1/2+θ

T δ−γ0|MT (ϑ)| = Op(T
max{θ,g}−1/2), (151)

sup
δ0−δ≥g,γ0−δ≥1/2+α,γ−δ≥1/2+θ

T 2δ−δ0−γ0|MT (ϑ)| = Op(T
max{θ,g}−g−1/2). (152)

Lemma 5. Under the conditions of Theorem 2(i) it holds that:
(a) The first-order derivatives satisfy

1

T 1/2

T∑
t=1

(st(ϑ0)− εt)
∂s1t(τ 0)

∂τ
= op(1),

1

T γ0−δ0−1/2

T∑
t=1

(st(ϑ0)− εt)
∂dt(ϑ0)

∂γ
= op(1), (153)

1

T 1/2

T∑
t=1

st(ϑ0)
∂s2t(ϑ0)

∂τ
= op(1),

1

T γ0−δ0−1/2

T∑
t=1

st(ϑ0)
∂s2t(ϑ0)

∂γ
= op(1). (154)
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(b) The second-order derivatives satisfy

1

T

T∑
t=1

∂s1t(τ 0)

∂τ

∂s2t(ϑ0)

∂τ ′
= op(1),

1

T γ0−δ0

T∑
t=1

∂s1t(τ 0)

∂τ

∂s2t(ϑ0)

∂γ
= op(1),

1

T γ0−δ0

T∑
t=1

∂s1t(τ 0)

∂τ

∂dt(ϑ0)

∂γ
= op(1),

1

T

T∑
t=1

∂s2t(ϑ0)

∂τ

∂s2t(ϑ0)

∂τ ′
= op(1),

1

T γ0−δ0

T∑
t=1

∂s2t(ϑ0)

∂τ

∂s2t(ϑ0)

∂γ
= op(1),

1

T γ0−δ0

T∑
t=1

∂s2t(ϑ0)

∂τ

∂dt(ϑ0)

∂γ
= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

(
∂s2t(ϑ0)

∂γ

)2

= op(1),
1

T 2(γ0−δ0)−1

T∑
t=1

∂s2t(ϑ0)

∂γ

∂dt(ϑ0)

∂γ
= op(1),

1

T

T∑
t=1

st(ϑ0)
∂2st(ϑ0)

∂τ∂τ ′
= op(1),

1

T γ0−δ0

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂τ∂γ
= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂γ2
= op(1),

1

T γ0−δ0

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂τ∂γ
= op(1),

1

T 2(γ0−δ0)−1

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂γ2
= op(1).

Lemma 6. Under the conditions of Theorem 2(i), for some fixed κ > 0, T κ(ϑ̂− ϑ0)→p 0.

Lemma 7. Let τ̂ − τ 0 = Op(T
−κ) for some κ > 0. Then, under Assumptions A1–A4,

ct(δ̂, ϕ̂) = ct(δ0,ϕ0) +Op(T
−κtmax{δ0−1,−1−ς}(log t)2), (155)

c
(1)
t (δ̂, ϕ̂) = c

(1)
t (δ0,ϕ0) +Op(T

−κtmax{δ0−1,−1−ς}(log t)3), (156)

and, uniformly in t = 1, ..., T ,

ρ(L; ϕ̂)ut(δ̂ − δ0) =
t−1∑
j=0

ρj(ϕ̂)ut−j(δ̂ − δ0) =
t−1∑
j=0

ρj(ϕ0)ut−j +Op(T
−κ). (157)

Lemma 8. Under the conditions of Theorem 2(ii), T 1/2∂JT (ϑ̂)/∂τ = op(1).

8 Technical lemmas

Lemma 9. Uniformly for max{|α|, |β|} ≤ a0,
∑t−1

j=1 j
α−1(t−j)β−1 ≤ K(log t)tmax{α+β−1,α−1,β−1}.

Lemma 10. For any d > 0 and any fixed a ≥ 0, as T →∞,

1

T d

T∑
t=1

td−1 → 1

d
,

1

T d

T∑
t=1

log

(
t+ a

T

)
td−1 → − 1

d2
,

1

T d

T∑
t=1

log2

(
t+ a

T

)
td−1 → 2

d3
.

Lemma 11. Let j ≥ 1 and K denote any compact subset of R\N0. Then

πj(−v) =
1

Γ(−v)
j−v−1(1 + εj(v)), (158)

where maxv∈K |εj(v)| → 0 as j →∞. Thus, uniformly in j ≥ 1,m ≥ 0,
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(i) πj(−v) ≥ Kj−v−1 uniformly in v ∈ K,

(ii) | ∂m
∂um

πj(u)| ≤ K(1 + log j)mju−1 uniformly in |u| ≤ u0,

(iii) | ∂m
∂um

T−uπj(u)| ≤ KT−u(1 + | log(j/T )|)mju−1 uniformly in |u| ≤ u0.

Lemma 12. Under Assumptions A1 and A3, uniformly in t = 1, . . . , T and T ≥ 1, for
m ≥ 0,

sup
d≤g,ϕ∈Ψ

∣∣∣∣∂mct(d,ϕ)

∂dm

∣∣∣∣ = O(tmax{g−1,−1−ς}(log t)m), (159)

sup
d≥g,ϕ∈Ψ

∣∣∣∣ ∂m∂dmT−dct(d,ϕ)

∣∣∣∣ = O(T−gtmax{g−1,−1−ς}(1 + | log(t/T )|)m). (160)

Lemma 13. Under Assumptions A1 and A3,

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) =

ρ2(1;ϕ)

T 2d−1

T∑
t=1

π2
t−1(d) + |rT (d,ϕ)|, (161)

where, for any η > 0, supd≥1/2+η,ϕ∈Ψ |rT (d,ϕ)| = o(1).

Lemma 14. Under Assumptions A1 and A3, for any d ≤ d and α such that 0 < α <
(ς − 1/2)/3,

inf
d≤d≤d,ϕ∈Ψ

T∑
t=1

c2
t−1(d,ϕ) ≥ 1, (162)

inf
1/2−α≤d≤1/2+α,ϕ∈Ψ

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) ≥ ε

α
+ o(1), (163)

inf
1/2+α≤d≤d,ϕ∈Ψ

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) ≥ ε+ o(1), (164)

for some fixed ε > 0, which does not depend on α or T .
Additionally, for any α > 0 and g > α, and for m = 0, 1,

sup
d1≤1/2−α,d2≤1/2−α,ϕ∈Ψ

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(1), (165)

sup
d1≥1/2+g,d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

∂m

∂dm1
ct−1(d1,ϕ)ct−1(d2,ϕ) = O(T−α(log T )m), (166)

sup
d1≥1/2−α,d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(Tα), (167)

sup
d1≥1/2−α,ϕ∈Ψ

1

T 2d1−1

T∑
t=1

c2
t−1(d1,ϕ) = O(T 2α), (168)

sup
d1≥1/2+α,d2≤1/2−α,ϕ∈Ψ

1

T d1−1/2

T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ) = O(T−α log T ). (169)
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Finally, for any η > 0 and θ ≥ −1/2− %, and for m = 0, 1,

sup
d1≥1/2+θ,d2≥1/2+θ
d1+d2≥1+η,ϕ∈Ψ

1

T d1+d2−1

T∑
t=1

∂m

∂dm1
ct−1(d1,ϕ)ct−1(d2,ϕ) = O((log T )m). (170)

Lemma 15. Under Assumptions A1 and A3, for any α > 0 and κ > 2α, there exists a fixed
ε > 0, which does not depend on α or T , such that, uniformly in |d1 − d2| ≥ κ,

inf
d1≤ 1

2
−α

d2≤ 1
2
−α

 T∑
t=1

c2
t−1(d1,ϕ)

T∑
j=1

c2
j−1(d2,ϕ)−

(
T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2
 ≥ κ2,

(171)

inf
1
2

+α≤d1

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

 ≥ ε,

(172)

inf
1
2
−α≤d1≤ 1

2
+α

d2≤ 1
2
−α

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)

T∑
j=1

c2
j−1(d2,ϕ)−

(
T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2
 ≥ ε

α
+ o(1),

(173)

inf
1
2
−α≤d1≤ 1

2
+α

1
2
−α≤d2≤ 1

2
+α

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

 ≥ ε

α
+O(1),

(174)

inf
1
2
−α≤d1≤ 1

2
+α

1
2
−α≤d2≤ 1

2
+α

1

T 2d1+2d2−2

 T∑
t=1

c2
t−1(d1,ϕ)

T∑
j=1

c2
j−1(d2,ϕ)−

(
T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2
 ≥ ε

α
+O(1).

(175)

Lemma 16. Let θ and κ be arbitrary positive numbers such that 0 < θ < min{ς−1/2, κ/2}.
Then, under Assumptions A1 and A3, for any real numbers d1, d2 ≤ 1/2 − θ and d1, d2 ≥
1/2 + θ, uniformly in |d1 − d2| ≥ κ and in t, k = 1, . . . , T and T ≥ 1,

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

‖ht−1,T (d1, d2,ϕ)‖ = O(t−1/2−θT θ), (176)

sup
d1∈[d1,d1],,ϕ∈Ψ

∣∣∣∣∣
T∑
t=1

ht−1,T (d1,ϕ)

∣∣∣∣∣ = O(T 1/2), (177)

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

‖ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ)‖ = O(t−3/2−θT θ), (178)

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

∣∣∣∣ ∂∂d2

(
h′t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

)∣∣∣∣ = O(t−1/2−θk−1/2−θT 5θ), (179)
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sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

∣∣∣∣ ∂∂d2

((ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ))′hk−1,T (d1, d2,ϕ))

∣∣∣∣
= O(t−3/2−θk−1/2−θT 5θ), (180)

Additionally, for any α such that 0 < α < θ,

sup
d1∈[d1,d1],d2∈[1/2+θ,d2],ϕ∈Ψ

∣∣∣∣ ∂∂d2

(
h′t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

)∣∣∣∣ = O(t−1/2−αk−1/2−αT 2α),

(181)

sup
d1∈[d1,d1],d2∈[1/2+θ,d2],ϕ∈Ψ

∣∣∣∣ ∂∂d2

((ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ))′hk−1,T (d1, d2,ϕ))

∣∣∣∣
= O(t−3/2−αk−1/2−αT 2α), (182)

Lemma 17. Under Assumptions A1–A3, uniformly in t = 1, . . . , T , T ≥ 1, and ϕ ∈ Ψ,

sup
d≤g
|ρ(L;ϕ)ut(−d)| = Op(t

g−1/2 + log tI(g = 1/2) + I(g < 1/2)), (183)

sup
d≥g
|T−dρ(L;ϕ)ut(−d)| = Op(T

−g(tg−1/2 + log tI(g = 1/2) + I(g < 1/2))). (184)

Lemma 18. Let θ and κ be arbitrary positive numbers such that 0 < θ < min{ς−1/2, κ/2}.
Then, under Assumptions A1–A3, uniformly in ϑ ∈ Ξ and in t, k = 1, . . . , T and T ≥ 1,

sup
δ0−δ≤g

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = Op(T
max{θ,g}), (185)

sup
δ0−δ≤g

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ)

)∣∣∣∣∣
= Op(k

−1/2−θTmax{θ,g}+5θ), (186)

sup
δ0−δ≥g

1

T δ0−δ

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = Op(T
max{θ,g}−g), (187)

sup
δ0−δ≥g

1

T δ0−δ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ)

)∣∣∣∣∣
= Op(k

−1/2−θTmax{θ,g}−g+5θ), (188)

sup
δ0−δ≤g,γ−δ≥1/2+θ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ)

)∣∣∣∣∣
= Op(k

−1/2−θTmax{θα,g}+θ), (189)

sup
δ0−δ≥g,γ−δ≥1/2+θ

1

T δ0−δ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ

(
h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ)

)∣∣∣∣∣
= Op(k

−1/2−θTmax{θ,g}+θ−g). (190)
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Lemma 19. Let θ > 0 be an arbitrary number. Then, under Assumptions A1 and A3,
uniformly in ϑ ∈ Ξ,

sup
γ0−δ≤g

∥∥∥∥∥
T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = O(Tmax{θ,g−1/2}), (191)

sup
γ0−δ≥g

1

T γ0−δ

∥∥∥∥∥
T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥ = O(Tmax{θ,g−1/2}−g). (192)

Lemma 20. Under Assumptions A1–A3, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≤g1,γ0−δ≤g2

1

T

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∣∣∣∣∣
= Op(T

g1+g2−3/2 + T−1(log T ) + T g1−1/2−ς + Tmax{g2−2,0}(log T )2I(g1 ≤ −1/2)), (193)

sup
δ0−δ≥g1,γ0−δ≥g2

1

T γ0+δ0−2δ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∣∣∣∣∣
= Op(T

−1/2 + T 1/2−g2−ς + T−g1−g2(log T ) + T−g1−1(log T )2I(g1 ≤ −1/2)). (194)

Lemma 21. Let η, α be arbitrary positive numbers such that α < η + 1/2. Then, under
Assumptions A1–A3, uniformly in ϑ ∈ Ξ,

sup
δ0−δ≥1/2+η,d≤1/2−α

1

T δ0−δ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(d,ϕ)

∣∣∣∣∣ = Op(T
−α), (195)

sup
δ0−δ≥1/2+η,d≥1/2−α

1

T δ0−δ+d−1/2

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(d,ϕ)

∣∣∣∣∣ = Op(1). (196)

Lemma 22. Let Zt, t = 1, . . . , T, be arbitrary. Then

T∑
t=1

Z2
t ≥

(
π2

4
T−2 +O(T−3)

) T∑
t=1

(∆−1
+ Zt)

2, (197)

where the O(T−3) term does not depend on any parameters.

9 Proofs of auxiliary lemmas

9.1 Proof of Lemma 1

We first find that

1

T

T∑
t=1

s2
t (ϑ0) =

1

T

T∑
t=1

(ρ(L;ϕ0)(utI(t > 0)))2

− 1

T

∥∥∥∥∥
T∑
t=1

ρ(L;ϕ0)(utI(t > 0))ht−1,T (1− δ0, γ0 − δ0,ϕ0)

∥∥∥∥∥
2

, (198)
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where

ρ(L;ϕ0)(utI(t > 0)) = εt −
∞∑
j=t

ρj(ϕ0)ut−j.

It can be straightforwardly shown that

∞∑
j=t

ρj(ϕ0)ut−j = Op(t
−1/2−ς)

by Assumptions A1 and A2. By simple application of Lemma 16, the second term on the
right-hand side of (198) is Op

(
T 2θ−1

)
= op (1) by choosing θ < 1/2. Then the required result

holds because T−1
∑T

t=1 ε
2
t →p σ

2
0 by a law of large numbers.

9.2 Proof of Lemma 2

Letting α > 0 be arbitrarily small (in particular α < min{(ς− 1/2)/3, g, κ/2}, which implies
α < 1/2) and defining the sets

Φ1 = {ϑ ∈ Ξ : 1− δ ≤ 1/2− α, γ − δ ≤ 1/2− α} ,

Φ2 = {ϑ ∈ Ξ : 1− δ ≤ 1/2− α, 1/2− α ≤ γ − δ ≤ 1/2 + α} ,
Φ3 = {ϑ ∈ Ξ : 1− δ ≤ 1/2− α, γ − δ ≥ 1/2 + α} ,
Φ4 = {ϑ ∈ Ξ : 1/2− α ≤ 1− δ ≤ 1/2 + α, γ − δ ≤ 1/2− α} ,
Φ5 = {ϑ ∈ Ξ : 1/2− α ≤ 1− δ ≤ 1/2 + α, 1/2− α ≤ γ − δ ≤ 1/2 + α} ,
Φ6 = {ϑ ∈ Ξ : 1/2− α ≤ 1− δ ≤ 1/2 + α, γ − δ ≥ 1/2 + α} ,
Φ7 = {ϑ ∈ Ξ : 1− δ ≥ 1/2 + α, γ − δ ≤ 1/2− α} ,
Φ8 = {ϑ ∈ Ξ : 1− δ ≥ 1/2 + α, 1/2− α ≤ γ − δ ≤ 1/2 + α} ,
Φ9 = {ϑ ∈ Ξ : 1− δ ≥ 1/2 + α, γ − δ ≥ 1/2 + α} ,

the result holds on showing that

lim
T→∞

inf
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φj

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε (199)

for j = 1, ..., 9. Clearly,

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) =

1

T 2(γ0−δ)−1
φ′0

T∑
t=1

ct−1(1− δ, γ0 − δ,ϕ)c′t−1(1− δ, γ0 − δ,ϕ)φ0

− 1

T 2(γ0−δ)−1
φ′0

T∑
t=1

ct−1(1− δ, γ0 − δ,ϕ)h′t−1(1− δ, γ − δ,ϕ)

×
T∑
j=1

hj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ0 − δ,ϕ)φ0. (200)

The first term on the right-hand side of (200) is

1

T 2(γ0−δ)−1

T∑
t=1

(µ0ct−1(1− δ,ϕ) + β0ct−1(γ0 − δ,ϕ))2, (201)
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so, noting that β0 6= 0 and either µ0 = 0 or µ0 6= 0, γ0 ≥ 1+κ, and also γ0−δ ≥ 1/2+g > 1/2,
the second term within the parenthesis in (201) dominates. As will be seen, the proof of (199)
changes substantially depending on whether none of 1− δ and γ − δ are larger than 1/2 +α
or not. We deal first with the former situation, which corresponds to cases j = 1, 2, 4, 5.

Specifically, noting (200), (201), and β0 6= 0, |γ − γ0| ≥ g, by application of Lemma 13,
(199) for j = 1, 2, 4, 5 holds on showing that

lim
T→∞

inf
γ0−δ≥1/2+g

1

T 2(γ0−δ)−1

T∑
t=1

π2
t−1(γ0 − δ) > ε, (202)

sup
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φj

1

T 2(γ0−δ)−1

∥∥∥∥∥
T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= o(1). (203)

First, we show (202). By Lemma 10 and (158) in Lemma 11,

inf
γ0−δ≥1/2+g

1

T 2(γ0−δ)−1

T∑
t=1

π2
t−1(γ0−δ) ≥ ε inf

γ0−δ≥1/2+g

1

T

T∑
t=1

(
t

T

)2(γ0−δ)−2

= ε
1

2g
+o(1), (204)

so that (202) holds by taking limits as T →∞.
Next, we show (203) for j = 1. Clearly,

1

T 2(γ0−δ)−1

∥∥∥∥∥
T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

=
N1T +N2T +N3T

T 2(γ0−δ)−1DT

, (205)

where

N1T =

(
T∑
t=1

ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)

)2 T∑
t=1

c2
t−1(γ − δ,ϕ),

N2T =

(
T∑
t=1

ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

)2 T∑
t=1

c2
t−1(1− δ,ϕ),

N3T = −2
T∑
t=1

ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)
T∑
t=1

ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

×
T∑
t=1

ct−1(1− δ,ϕ)ct−1(γ − δ,ϕ),

DT =
T∑
t=1

c2
t−1(1− δ,ϕ)

T∑
t=1

c2
t−1(γ − δ,ϕ)−

(
T∑
t=1

ct−1(1− δ,ϕ)ct−1(γ − δ,ϕ)

)2

.

Thus, (203) for j = 1 follows by (165), (166) of Lemma 14 and (171) of Lemma 15. Next
we show (203) for j = 2. Noting (205), the proof consists on showing that the infimum of
T 1−2(γ−δ)DT can be made arbitrarily large by setting α sufficiently close to zero, and also
that the supremum of T 2−2(γ−δ)−2(γ0−δ)(N1T + N2T + N3T ) = O(1). These results follow by
(173) of Lemma 15 and (165), (166), (170), (167), (168) of Lemma 14, respectively. Next,
the proof of (203) for j = 4 is basically identical to that for j = 2, so it is omitted.
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To prove (203) for j = 5 we now write

1

T 2(γ0−δ)−1

∥∥∥∥∥
T∑
t=1

ct−1(γ0 − δ,ϕ)ht−1,T (1− δ, γ − δ,ϕ)

∥∥∥∥∥
2

= A1T + A2T + A3T ,

where

A1T =

1
T 2(γ0−δ)+2(1−δ)−2

(∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)

)2

1
T 2(1−δ)−1

(∑T
t=1 c

2
t−1(1− δ,ϕ)− (

∑T
t=1 ct−1(1−δ,ϕ)ct−1(γ−δ,ϕ))

2∑T
t=1 c

2
t−1(γ−δ,ϕ)

) ,

A2T =

1
T 2(γ0−δ)+2(γ−δ)−2

(∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

)2

1
T 2(γ−δ)−1

(∑T
t=1 c

2
t−1(γ − δ,ϕ)− (

∑T
t=1 ct−1(1−δ,ϕ)ct−1(γ−δ,ϕ))

2∑T
t=1 c

2
t−1(1−δ,ϕ)

) ,
A3T = −2

1
T 2(γ0−δ)+2(γ−δ)+2(1−δ)−3

∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)(∑T

t=1 c
2
t−1(1− δ,ϕ)

∑T
t=1 c

2
t−1(γ − δ,ϕ)−

(∑T
t=1 ct−1(1− δ,ϕ)ct−1(γ − δ,ϕ)

)2
)

×
∑T

t=1 ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)
∑T

t=1 ct−1(1− δ,ϕ)ct−1(γ − δ,ϕ)
1

T 2(γ−δ)+2(1−δ)−2

.

The proof now follows straightforwardly by application of (170) of Lemma 14 to the numer-
ators and (174), (175) of Lemma 15 to the denominators.

Next we show (199) for j = 3. We use the decomposition (205), and first note that, by
(162), (164), (166), and (169),

sup
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3

T 1−2(γ0−δ)N1T/DT = o(1).

Similarly, by (162) and (169),

N2T

T 2(γ0−δ)−1DT

=
1

T 2(γ0−δ)−1

(∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

)2

∑T
t=1 c

2
t−1(γ − δ,ϕ)

+ q1T (ϑ),

where sup{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3
|q1T (ϑ)| = o(1). Additionally, by (162), (164), (166), (170),

and (169),
sup

{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3

T 1−2(γ0−δ)N3T/DT = o(1).

Collecting all these results, by very similar steps to those in the proof of Lemma 13, noting
that γ0 − δ ≥ 1/2 + g, it is straightforward to show that

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) =

β2
0ρ

2(1;ϕ)

T 2(γ0−δ)−1

 T∑
t=1

π2
t−1(γ0 − δ)−

(∑T
t=1 πt−1(γ0 − δ)πt−1(γ − δ)

)2

∑T
t=1 π

2
t−1(γ − δ)


+ q2T (ϑ), (206)
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where sup{γ0−δ≥1/2+g}∩Φ3
|q2T (ϑ)| = o(1). Next, using (158) of Lemma 11 and approximating

sums by integrals, see Lemma 10,

inf
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3

1

T 2(γ0−δ)−1

 T∑
t=1

π2
t−1(γ0 − δ)−

(∑T
t=1 πt−1(γ0 − δ)πt−1(γ − δ)

)2

∑T
t=1 π

2
t−1(γ − δ)


≥ ε inf

{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3

1

Γ2(γ0 − δ)

 1

T 2(γ0−δ)−1

T∑
t=1

t2(γ0−δ−1) −

(
1

T γ0+γ−2δ−1

∑T
t=1 t

γ0+γ−2δ−2
)2

1
T 2(γ−δ)−1

∑T
t=1 t

2(γ−δ−1)


= ε inf

{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ3

(γ0 − γ)2

Γ2(γ0 − δ)(2(γ0 − δ)− 1)(γ0 + γ − 2δ − 1)2
− o(1)

≥ ε inf
γ0−δ≥1/2+g

g2

Γ2(γ0 − δ)2g(α + g)2
− o(1),

which is positive and bounded away from zero, to complete the proof of (199) for j = 3.
Next we show (203) for j = 6. Similar to above,

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) = β2

0

(
1

T 2(γ0−δ)−1

T∑
t=1

c2
t−1(γ0 − δ,ϕ)− N1T +N2T +N3T

T 2(γ0−δ)−1DT

)
+ q3T (ϑ),

where sup{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ6
|q3T (ϑ)| = o(1). Noting that

N1T

T 2(γ0−δ)−1DT

=

(
1

T γ0−δ+1−δ−1

∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)

)2

1
T 2(γ−δ)−1

∑T
t=1 c

2
t−1(γ − δ,ϕ)− ( 1

Tγ−δ+1−δ−1

∑T
t=1 ct−1(1−δ,ϕ)ct−1(γ−δ,ϕ))

2

1

T2(1−δ)−1

∑T
t=1 c

2
t−1(1−δ,ϕ)

×
1

T 2(γ−δ)−1

∑T
t=1 c

2
t−1(γ − δ,ϕ)

1
T 2(1−δ)−1

∑T
t=1 c

2
t−1(1− δ,ϕ)

,

N2T

T 2(γ0−δ)−1DT

=

(
1

T γ0−δ+γ−δ−1

∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

)2

1
T 2(γ−δ)−1

∑T
t=1 c

2
t−1(γ − δ,ϕ)− ( 1

Tγ−δ+1−δ−1

∑T
t=1 ct−1(1−δ,ϕ)ct−1(γ−δ,ϕ))

2

1

T2(1−δ)−1

∑T
t=1 c

2
t−1(1−δ,ϕ)

,

N3T

T 2(γ0−δ)−1DT

=
−2 1

T γ0−δ+1−δ−1

∑T
t=1 ct−1(γ0 − δ,ϕ)ct−1(1− δ,ϕ)

1
T 2(γ−δ)−1

∑T
t=1 c

2
t−1(γ − δ,ϕ)− ( 1

Tγ−δ+1−δ−1

∑T
t=1 ct−1(1−δ,ϕ)ct−1(γ−δ,ϕ))

2

1

T2(1−δ)−1

∑T
t=1 c

2
t−1(1−δ,ϕ)

× 1

T γ0−δ+γ−δ−1

T∑
t=1

ct−1(γ0 − δ,ϕ)ct−1(γ − δ,ϕ)

×
1

T 1−δ+γ−δ−1

∑T
t=1 ct−1(1− δ,ϕ)ct−1(γ − δ,ϕ)

1
T 2(1−δ)−1

∑T
t=1 c

2
t−1(1− δ,ϕ)

,

and using (163) and (170), the proof follows by identical steps as those given in the treatment
of (206). Next, the proofs of (203) for j = 7, 8 are omitted because they is identical to those
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for j = 3, 6, respectively. Finally, we show (203) for j = 9. The proof is relatively similar to
that for j = 3. In particular, by the same methods as applied in the proof for j = 3, it can
be shown that

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) = β2

0ρ
2(1;ϕ)

1

T 2(γ0−δ)−1

T∑
t=1

t2(γ0−δ−1) − β2
0ρ

2(1;ϕ)

×
(

1
T γ0+1−2δ−1

∑T
t=1 t

γ0+1−2δ−2 1
T γ0+γ−2δ−1

∑T
t=1 t

γ0+γ−2δ−2
)

×
(

1
T 2(1−δ)−1

∑T
t=1 t

2(1−δ−1) 1
T 1+γ−2δ−1

∑T
t=1 t

1+γ−2δ−2

1
T 1+γ−2δ−1

∑T
t=1 t

1+γ−2δ−2 1
T 2(γ−δ)−1

∑T
t=1 t

2(γ−δ−1)

)−1

×
(

1
T γ0+1−2δ−1

∑T
t=1 t

γ0+1−2δ−2

1
T γ0+γ−2δ−1

∑T
t=1 t

γ0+γ−2δ−2

)
+ q3T (ϑ),

where sup{γ0−δ≥1/2+g}∩Φ9
|q3T (ϑ)| = o(1). Then, using (158) of Lemma 11 and approximating

sums by integrals, see Lemma 10,

inf
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ9

1

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ)

≥ ε inf
{γ0−δ≥1/2+g,|γ−γ0|≥g}∩Φ9

(γ0 − 1)2.(γ0 − γ)2

Γ2(γ0 − δ)(2(γ0 − δ)− 1)(γ0 − 2δ)2(γ0 + γ − 2δ − 1)2

≥ ε
κ2g2

2g(α + g)4
,

which is positive and bounded away from zero, to complete the proof (203) for j = 9, and
hence that of Lemma 2.
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9.3 Proof of Lemma 3

To prove (145), first note that ∂dT (ϑ)/∂γ equals

− φ′0
T∑
t=1

ct−1(1− δ, γ0 − δ,ϕ)

(
∂

∂γ
c′t−1(1− δ, γ − δ,ϕ)

)

×

(
T∑
j=1

cj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ − δ,ϕ)

)−1 T∑
s=1

cs−1(1− δ, γ − δ,ϕ)

− φ′0
T∑
t=1

ct−1(1− δ, γ0 − δ,ϕ)c′t−1(1− δ, γ − δ,ϕ)

×

(
T∑
j=1

cj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ − δ,ϕ)

)−1 T∑
s=1

∂

∂γ
cs−1(1− δ, γ − δ,ϕ)

+ φ′0

T∑
t=1

ct−1(1− δ, γ0 − δ,ϕ)c′t−1(1− δ, γ − δ,ϕ)

×

(
T∑
j=1

cj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ − δ,ϕ)

)−1

×

(
∂

∂γ

T∑
j=1

cj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ − δ,ϕ)

)

×

(
T∑
j=1

cj−1(1− δ, γ − δ,ϕ)c′j−1(1− δ, γ − δ,ϕ)

)−1 T∑
s=1

cs−1(1− δ, γ − δ,ϕ).

Note that in ∪4
i=1Hi we have γ0 − δ ≥ 1 + η and γ − δ ≥ 1 + η − %. Setting Υ1 =

{ϑ ∈ Ξ : 1− δ ≤ 1/2− α} and Υ2 = {ϑ ∈ Ξ : 1/2− α ≤ 1− δ ≤ 1/2 + α}, we show (145)
with

sup
Hi,Υj

|gT (ϑ)| = o(1) for j = 1, 2.

We first give the proof for j = 1. By (159), (160) of Lemma 12 it follows immediately that

supHi,Υ1

∣∣∣∑T
t=1 ct−1(1− δ,ϕ)

∣∣∣ = O(T 1/2−α) and supHi,Υ1
T δ−γ

∣∣∣∑T
t=1 ct−1(γ − δ,ϕ)

∣∣∣ = O(1).

Using Lemma 13 and (165), (166), (170) of Lemma 14, it can then straightforwardly be
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shown that

1

T γ0−δ
∂dT (ϑ)

∂γ
=

− β0ρ(1;ϕ)

T γ0−δ

(∑T
j=1 π

(1)
j−1(γ − δ)

∑T
j=1 πj−1(γ0 − δ)πj−1(γ − δ)∑T

j=1 π
2
j−1(γ − δ)

−
2
∑T

j=1 πj−1(γ − δ)
∑T

j=1 πj−1(γ0 − δ)πj−1(γ − δ)
∑T

j=1 πj−1(γ − δ)π(1)
j−1(γ − δ)

(
∑T

j=1 π
2
j−1(γ − δ))2

+

∑T
j=1 πj−1(γ − δ)

∑T
j=1 πj−1(γ0 − δ)π(1)

j−1(γ − δ)∑T
j=1 π

2
j−1(γ − δ)

)
+ g1,T (ϑ), (207)

where supHi,Υ1
|g1,T (ϑ)| = o(1). Now, substituting (122) into (207) (noting that the con-

tribution of ψ(d) cancels), approximating ψ(d+ j) by log j, introducing log T terms (which
cancel) and using (158) in Lemma 11, it can be shown that

1

T γ0−δ
∂dT (ϑ)

∂γ
=− β0ρ(1;ϕ)

Γ(γ0 − δ)T γ0−δ

(∑T
j=1 log(j/T )jγ−δ−1

∑T
j=1 j

γ0+γ−2δ−2∑T
j=1 j

2γ−2δ−2

−
2
∑T

j=1 j
γ−δ−1

∑T
j=1 j

γ0+γ−2δ−2
∑T

j=1 log(j/T )j2γ−2δ−2

(
∑T

j=1 j
2γ−2δ−2)2

+

∑T
j=1 j

γ−δ−1
∑T

j=1 log(j/T )jγ0+γ−2δ−2∑T
j=1 j

2γ−2δ−2

)
+ g2,T (ϑ), (208)

where supHi,Υ1
|g2,T (ϑ)| = o(1). Finally, (145) then follows by approximating sums by inte-

grals, see Lemma 10. The proof for j = 2 is almost identical to that for j = 1, just not-

ing that, by (160) of Lemma 12, supHi,Υ2
T δ−1

∣∣∣∑T
t=1 ct−1(1− δ,ϕ)

∣∣∣ = O(1), and also using

(163) (for α small enough) and (170) of Lemma 14.
Next we show (146). Define dT (τ , γ) = dT (ϑ). Because dT (τ , γ0) = 0, the mean value

theorem yields dT (τ , γ) = (γ − γ0)∂dT (τ , γ)/∂γ, where |γ − γ0| ≤ |γ − γ0|, so the left-hand
side of (146) can be bounded from below by

lim
T→∞

inf
Hi,1−δ≤ 1

2
+α
T 2κi(γ− γ0)2

(
1

T γ0−δ
∂dT (τ , γ)

∂γ

)2

≥ ξ2 lim
T→∞

inf
Hi,1−δ≤ 1

2
+α

(
1

T γ0−δ
∂dT (τ , γ)

∂γ

)2

.

Thus, (146) follows if

lim
T→∞

inf
Hi,1−δ≤ 1

2
+α

(
1

T γ0−δ
∂dT (τ , γ)

∂γ

)2

> ε, (209)

which, noting that γ0 − δ ≥ 1 + η and γ − δ ≥ 1 + η − %, is a consequence of (22) and (145)
because

inf
Hi

(
2(γ − δ)2 − 2(γ − δ) + 1− (γ0 − δ)

)
= inf
Hi

(
2(γ − δ)2 − 3(γ − δ) + 1− (γ0 − γ)

)
≥ 2(η − %)2 + η − 2% > 0.
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9.4 Proof of Lemma 4

Letting dt(τ , γ) = dt(ϑ), noting (39) and that dt(τ , γ0) = 0, by the mean value theorem,∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ ≤ |γ − γ0| |MT (ϑ)||γ=γ ,

where |γ − γ0| ≤ |γ − γ0| and

MT (ϑ) =
∂

∂γ

T∑
t=1

ρ(L;ϕ)ut(δ − δ0)h′t−1,T (1− δ, γ − δ,ϕ)

×
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)c′j−1(1− δ, γ0 − δ,ϕ)φ0.

Thus,

|MT (ϑ)| ≤ K
T∑
j=1

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ
(h′t−1,T (1− δ, γ − δ,ϕ)hj−1,T (1− δ, γ − δ,ϕ))

∣∣∣∣∣
× ‖cj−1(1− δ, γ0 − δ,ϕ)‖ .

Then (148) follows by (159) of Lemma 12, noting that for γ0 ≥ 1+κ the second component of
cj−1(1−δ, γ0−δ,ϕ) dominates, and (186) of Lemma 18. Similarly, (149)–(152) all follow using
(160) of Lemma 12 together with (186), (188), (189), and (190) of Lemma 18, respectively.

9.5 Proof of Lemma 5

The proof is omitted as it is very similar to that of Lemma S.5 of Hualde and Nielsen (2020).

9.6 Proof of Lemma 6

As in the proof of Theorem 1(i), noting (32), (33), (41), (45), the result holds on establishing
that

Pr

(
inf
ϑ∈M∗ε

ST (ϑ) ≤ 0

)
→ 0 as T →∞, (210)

Pr

(
ϑ̂ ∈ N∗ε ∩M∗

ε , inf
N
∗
ε∩M∗ε

RT (τ̂ , γ)−RT (τ̂ , γ0) ≤ 0

)
→ 0 as T →∞, (211)

where

M∗
ε =

{
ϑ ∈ Ξ : ‖τ − τ 0‖ < εT−κ

}
, M

∗
ε = {ϑ ∈ Ξ : εT−κ ≤ ‖τ − τ 0‖ < ε},

N∗ε =
{
ϑ ∈ Ξ : |γ − γ0| < εT−κ

}
, N

∗
ε = {ϑ ∈ Ξ : εT−κ ≤ |γ − γ0| < ε}.

We first prove (210), which, defining Ji = {ϑ ∈M∗
ε : δ ∈ Ii} for i = 4, 5, holds if

Pr

(
inf
Ji
ST (ϑ) ≤ 0

)
→ 0 as T →∞ (212)

for i = 4, 5. Note here that ϑ ∈ M∗
ε implies ‖τ − τ 0‖ < ε, so necessarily δ ∈ I4 ∪ I5 and

there is no need to consider the intervals I1, I2, I3. Clearly, (212) for i = 5 would hold if

Pr

(
inf
J5

T 2κST (ϑ) ≤ 0

)
→ 0 as T →∞. (213)
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Proceeding as in the proof of (46)–(48) for i = 5, (213) holds if

inf
J5

T 2κU(τ ) > ε, (214)

1

T 1−2κ

T∑
t=1

(
(ρ(L;ϕ0)(utI(t > 0)))2 − σ2

0

)
= op(1), (215)

sup
J5

1

T 1−2κ

T∑
t=1

(
(ρ(L;ϕ)ut(δ − δ0))2 − E((ρ(L;ϕ)∆δ−δ0ut)

2)
)

= op(1), (216)

sup
J5

1

T 1−2κ

∣∣∣∣∣
T∑
t=1

dt(ϑ)st(ϑ)

∣∣∣∣∣ = op(1), (217)

sup
J5

1

T 1−2κ

(
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

)2

= op(1). (218)

Clearly (214)-(216) hold as in (S.152)-(S.154) of Hualde and Nielsen (2020) and the proofs
of (217), (218) are omitted as, for small enough κ, they follow by almost identical arguments
to those of (53), (54), respectively.

Next, the proof of (212) for i = 4 is omitted because it is implied by almost identical
results to (46)–(48) for i = 4. The only difference is that now εT−κ ≤ ‖τ − τ 0‖ ≤ ε instead
of ‖τ − τ 0‖ ≥ ε, but this does not make any difference. This completes the justification of
(210).

Finally, we prove (211). For the same reason as in the proof of (41), we need to prove that

inf
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)−1

T∑
t=1

d2
t (ϑ) > ε, (219)

sup
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)−1

∣∣∣∣∣
T∑
t=1

dt(ϑ)s1t(τ )

∣∣∣∣∣ = op(1), (220)

sup
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)−1

(
T∑
j=1

s1j(τ )hj−1,T (1− δ, γ − δ,ϕ)

)2

= op(1). (221)

As in (60), the proof of (219) follows by Lemma 3, whereas the proofs of (220) and (221)
hold as in (43) and (44) for κ > 0 sufficiently small.

9.7 Proof of Lemma 7

First we show (155). Clearly,

ct(δ̂, ϕ̂)− ct(δ0,ϕ0) =
t∑

j=0

(ρj(ϕ̂)− ρj(ϕ0))πt−j(δ0) +
t∑

j=0

(πt−j(δ̂)− πt−j(δ0))ρj(ϕ0)

+
t∑

j=0

(ρj(ϕ̂)− ρj(ϕ0))(πt−j(δ̂)− πt−j(δ0)). (222)

Fix ε < 1/2. Then

ρj(ϕ̂)− ρj(ϕ0) = (ρj(ϕ̂)− ρj(ϕ0))(I(‖ϕ̂−ϕ0‖ < ε) + I(‖ϕ̂−ϕ0‖ ≥ ε)), (223)
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so by the mean value theorem the left-hand side of (223) is bounded by

sup
‖ϕ−ϕ0‖<ε

∥∥∥∥∂ρj(ϕ)

∂ϕ

∥∥∥∥ ‖ϕ̂−ϕ0‖+K sup
ϕ∈Ψ
|ρj (ϕ)| ‖ϕ̂−ϕ0‖

N

εN
, (224)

for any arbitrarily large fixed number N . By (21) and the T−κ-consistency of τ̂ , the second
term in (224) is of smaller order, whereas by (23) the first term is Op(T

−κj−1−ς). This
implies that the first term on the right-hand side of (222) is Op(T

−κtmax{δ0−1,−1−ς} log t) by
Lemmas 9 and 11. Next, by straightforward application of Lemma 11 and a second-order
Taylor expansion, πt−j(δ̂) − πt−j(δ0) = Op((t − j)δ0−1(log t)T−κ), so by (21) and Lemma 9
the second term on the right-hand side of (222) is Op(T

−κtmax{δ0−1,−1−ς}(log t)2). Finally,
combining the arguments for the first two terms, the third term on the right-hand side of
(222) is of smaller order, to conclude the proof of (155).

The proof of (156) is omitted because it is almost identical to that of (155) with the only

difference that the coefficients π
(1)
t−j(·) instead of πt−j(·) lead to an extra (log t)-factor; see

Lemma 11. Finally, we show (157). Clearly, the left-hand side of (157) is

t−1∑
j=0

ρj(ϕ0)ut−j +
t−1∑
j=0

(ρj(ϕ̂)− ρj(ϕ0))ut−j +
t−1∑
j=0

ρj(ϕ̂)(ut−j(δ̂ − δ0)− ut−j). (225)

Using the mean value theorem as in (223) and (224) and summation by parts, it can be shown
that the second term in (225) is Op(T

−κ). Similarly, by Lemma C.5 of Robinson and Hualde
(2003) and (21), the third term in (225) is also Op(T

−κ), to conclude the proof of (157).

9.8 Proof of Lemma 8

First, for any ε > 0, clearly

Pr
(∥∥∥T 1/2∂JT (ϑ̂)/∂τ

∥∥∥ ≥ ε
)

= Pr
(∥∥∥T 1/2∂JT (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ < ε
)

+ Pr
(∥∥∥T 1/2∂JT (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ ≥ ε
)

≤ Pr
(∥∥∥T 1/2∂JT (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ < ε
)

+ Pr (‖τ̂ − τ 0‖ ≥ ε) .

Then, in view of Theorem 1(ii) and (141), the result holds on showing

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

(dt(ϑ)− s2t(ϑ))

(
∂dt(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

)
= op(1), (226)

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

s1t(τ )

(
∂dt(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

)
= op(1), (227)

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

∂s1t(τ )

∂τ
(dt(ϑ)− s2t(ϑ)) = op(1), (228)

recalling Mε = {ϑ ∈ Ξ : ‖τ − τ 0‖ < ε}.



Estimation of fractional time series with generalized trend 64

The proof of (226) follows upon showing that, for any θ > 0 and ε such that 0 < ε < θ,

sup
ϑ∈Mε

|dt(ϑ)| = O(tmax{γ0−δ0+ε−1,−1−ς} + T 2θt−1/2−θ), (229)

sup
ϑ∈Mε

|s2t(ϑ)| = Op(T
2θt−1/2−θ), (230)

sup
ϑ∈Mε

∥∥∥∥∂dt(ϑ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε−1,−1−ς} log t+ T 5θt−1/2−θ), (231)

sup
ϑ∈Mε

∥∥∥∥∂s2t(ϑ)

∂τ

∥∥∥∥ = Op(T
6θt−1/2−θ), (232)

and then letting θ be sufficiently small. We only show (231) and (232) because the proofs
for (229) and (230) are very similar but simpler. First, by (159) of Lemma 12,

sup
ϑ∈Mε

|ct(γ0 − δ,ϕ)| = O(tmax{γ0−δ0+ε−1,−1−ς}), (233)

and by a simple modification of that result,

sup
ϑ∈Mε

∥∥∥∥∂ct(γ0 − δ,ϕ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε−1,−1−ς} log t). (234)

Then (231) follows by direct application of (179) of Lemma 16, (233) and (234), noting that
the bound in (179) also applies if the derivative is taken with respect to d1 or ϕ.

To prove (232), note from (38) that

∂s2t(ϑ)

∂τ
=

∂

∂τ

(
h′t−1,T (1− δ, γ − δ,ϕ)

T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)

)
s1j(τ )

+ h′t−1,T (1− δ, γ − δ,ϕ)
T∑
j=1

hj−1,T (1− δ, γ − δ,ϕ)
∂s1j(τ )

∂τ
. (235)

First, the supϑ∈Mε
of the absolute values of the first term on the right-hand side of (235)

is Op(T
6θt−1/2−θ) by (186) of Lemma 18, noting that δ0 − δ ≤ ε and that this bound also

applies if the derivatives are taken with respect to τ . For the second term on the right-hand
side of (235), noting that

∑t
l=1 s1l(τ ) =

∑t−1
j=0 cj(δ0 − δ,ϕ)

∑t−j
l=1 ul, it is straightforward to

show that, by (159) of Lemma 12,

sup
ϑ∈Mε

∥∥∥∥∥
t∑

j=1

∂s1j(τ )

∂τ

∥∥∥∥∥ = Op(t
1/2+ε log t). (236)

Therefore, using summation by parts as in the proof of Lemma 18 and by (176) of Lemma
16, the supϑ∈Mε

of the absolute value of the second term on the right-hand side of (235) is
Op(T

2θt−1/2−θ), to justify (232) and hence (226).
Finally, (227) and (228) can be established by using summation by parts followed by

direct application of the results in (229), (231), (236), and Lemma 17, noting also that by
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previous arguments it can be straightforwardly shown that

sup
ϑ∈Mε

|dt+1(ϑ)− dt(ϑ)| = O(tmax{γ0−δ0+ε−2,−1−ς} + T 2θt−3/2−θ),

sup
ϑ∈Mε

∥∥∥∥∂dt+1(ϑ)

∂τ
− ∂dt(ϑ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε−2,−1−ς} log t+ T 5θt−3/2−θ),

sup
ϑ∈Mε

|s2t+1(ϑ)− s2t(ϑ)| = Op(T
2θt−3/2−θ),

sup
ϑ∈Mε

∥∥∥∥∂s2t+1(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

∥∥∥∥ = Op(T
6θt−3/2−θ).

10 Proofs of technical lemmas

10.1 Proof of Lemma 9

The proof of Lemma 9 is given in Lemma B.4 of Johansen and Nielsen (2010).

10.2 Proof of Lemma 10

The proof of Lemma 10 is given in Lemma S.10 of Hualde and Nielsen (2020).

10.3 Proof of Lemma 11

The proof of Lemma 11 is given in Lemma B.3 of Johansen and Nielsen (2010) and Lemma A.5
of Johansen and Nielsen (2012a).

10.4 Proof of Lemma 12

The proof of Lemma 12 is almost identical to that of Lemma 1 of Hualde and Robinson
(2011) and is therefore omitted.

10.5 Proof of Lemma 13

First we show that

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) ≥ ρ2(1;ϕ)

T 2d−1

T∑
t=1

π2
t−1(d)− |r1,T (d,ϕ)|. (237)

By (17),

T∑
t=1

c2
t−1(d,ϕ) ≥ ρ2(1;ϕ)

T∑
t=1

π2
t−1(d)− 2ρ(1;ϕ)

T∑
t=1

π2
t−1(d)

∞∑
k=t

ρk(ϕ)

− 2ρ(1;ϕ)
T∑
t=2

πt−1(d)
t−2∑
k=0

πk+1(d− 1)
k∑
l=0

ρt−1−l(ϕ)

+ 2
T∑
t=1

πt−1(d)
∞∑
j=t

ρj(ϕ)
t−2∑
k=0

πk+1(d− 1)
k∑
l=0

ρt−1−l(ϕ). (238)
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Because of (21), the fourth term on the right-hand side of (238) is of smaller order than the
third term. Then the proof of (237) follows on showing

sup
d≥1/2+η,ϕ∈Ψ

1

T 2d−1

∣∣∣∣∣
T∑
t=1

π2
t−1(d)

∞∑
k=t

ρk(ϕ)

∣∣∣∣∣ = o(1), (239)

sup
d≥1/2+η,ϕ∈Ψ

1

T 2d−1

∣∣∣∣∣
T∑
t=2

πt−1(d)
t−2∑
k=0

πk+1(d− 1)
k∑
l=0

ρt−1−l(ϕ)

∣∣∣∣∣ = o(1). (240)

First, by (21) and Lemma 11, the left-hand side of (239) is bounded by

K sup
d≥1/2+η

T
T∑
t=1

(
t

T

)2d

t−2−ς ≤ KT
T∑
t=1

(
t

T

)1+2η

t−2−ς

≤ KT−2η

T∑
t=1

t−1+2η−ς = o(1),

so (239) holds. Similarly, the left-hand side of (240) is bounded by

K sup
d≥1/2+η

T
T∑
t=1

(
t

T

)d
t−1

t−1∑
k=1

(
k

T

)d
k−2(t− k)−ς

≤ KT−2η

T∑
t=1

t−1/2+η

t−1∑
k=1

k−3/2+η(t− k)−ς

≤ KT−2η

T∑
t=1

t−1/2+η+max{η−3/2,−ς,η−ς−1/2}(1 + log t) = o (1)

for any η > 0 because ς > 1/2, where the second inequality is due to Lemma 9. This
concludes the proof of (237). Next, we show that

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) ≤ ρ2(1;ϕ)

T 2d−1

T∑
t=1

π2
t−1(d) + |r2,T (d,ϕ)|, (241)

which combined with (237) is sufficient to prove (161). In view of (17), the proof of (241)
follows by (239), (240) and

sup
d≥1/2+η,ϕ∈Ψ

1

T 2d−1

T∑
t=1

π2
t−1(d)

(
∞∑
k=t

ρk(ϕ)

)2

= o(1),

sup
d≥1/2+η,ϕ∈Ψ

1

T 2d−1

T∑
t=2

(
t−2∑
k=0

πk+1(d− 1)
k∑
l=0

ρt−1−l(ϕ)

)2

= o(1),

which follow by straightforward arguments using (21) and Lemma 9.

10.6 Proof of Lemma 14

The proof of (162) is immediate because

inf
d≤d≤d,ϕ∈Ψ

T∑
t=1

c2
t−1(d,ϕ) ≥ inf

d≤d≤d,ϕ∈Ψ
c2

0(d,ϕ) = 1.
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For the proof of (163), we first truncate the summation,

inf
1/2−α≤d≤1/2+α,ϕ∈Ψ

T 1−2d

T∑
t=1

c2
t−1(d,ϕ) ≥ inf

1/2−α≤d≤1/2+α,ϕ∈Ψ
T 1−2d

T∑
t=[T 1/2]

c2
t−1(d,ϕ). (242)

Then, noting (238), the right-hand side of (242) is bounded from below by

ε inf
1/2−α≤d≤1/2+α

1

T 2d−1

T∑
t=[T 1/2]

π2
t−1(d) (243)

− sup
1/2−α≤d≤1/2+α,ϕ∈Ψ

K

T 2d−1

∣∣∣∣∣∣
T∑

t=[T 1/2]

π2
t−1(d)

∞∑
l=t

ρl(ϕ)

∣∣∣∣∣∣ (244)

− sup
1/2−α≤d≤1/2+α,ϕ∈Ψ

K

T 2d−1

∣∣∣∣∣∣
T∑

t=[T 1/2]

πt−1(d)
t−2∑
k=0

πk+1(d− 1)
k∑
l=0

ρt−1−l(ϕ)

∣∣∣∣∣∣ . (245)

First, noting that supd≥1/2−α(t/T )2d = (t/T )1−2α, by (21) and Lemma 11, it can be readily

shown that (244) is O(Tα−ς/2) = o(1) because α < (ς − 1/2)/3 < ς/2. Similarly, by identical
arguments, (245) is bounded by

KT 2α

T∑
t=[T 1/2]

t−1/2−α
t−1∑
k=1

k−3/2−α(t− k)−ς ≤ KT 2α log T
T∑

t=[T 1/2]

t−1/2−αt−ς

≤ KT 3α/2+1/4−ς/2 log T

by Lemma 9. Then (245) is o(1) because α < (ς − 1/2)/3. Finally, by (158) in Lemma 11,
(243) is bounded from below by

ε inf
1/2−α≤d≤1/2+α

1

T 2d−1

T∑
t=[T 1/2]

t2d−2 ≥ ε
1

T

T∑
t=[T 1/2]

(
t

T

)2α−1

≥ ε

1∫
[T 1/2]/T

x2α−1dx

= ε
1− ([T 1/2]/T )2α

2α
=

ε

2α
−O

(
T−α

)
.

In view of (242), (244), and (245), this proves (163).
Next, we show (164). By (161),

inf
1/2+α≤d≤d,ϕ∈Ψ

1

T 2d−1

T∑
t=1

c2
t−1(d,ϕ) ≥ inf

1/2+α≤d≤d,ϕ∈Ψ

ρ2(1;ϕ)

T 2d−1

T∑
t=1

π2
t−1(d)− o(1),

so that (164) follows by (158) and approximating sums by integrals (Lemma 10), noting that
d ≤ d.

Regarding the rest of the results, we omit the proofs of (165), (166), (167), (168), and
(169) because they follow almost immediately from (159) and (160) of Lemma 12. Next, by
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Lemma 1 of Hualde and Robinson (2011), see also (160) and Lemma 11, for T sufficiently
large the left-hand side of (170) is bounded by

sup
d1≥1/2+θ,d2≥1/2+θ

d1+d2≥1+η

K

T d1+d2−1

T∑
t=1

tmax{d1−1,−1−%}tmax{d2−1,−1−%}(1 + log t)m

≤ sup
d1≥1/2+θ,d2≥1/2+θ

d1+d2≥1+η

K(log T )m

T d1+d2−1

T∑
t=1

td1+d2−2 ≤ K(log T )m,

noting that the supremum occurs at d1 + d2 = 1 + η > 1 and applying Lemma 10.

10.7 Proof of Lemma 15

First, we show (171). It holds that

T∑
t=1

c2
t−1(d1,ϕ)

T∑
t=1

c2
t−1(d2,ϕ)−

(
T∑
t=1

ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

=
T−1∑
t=1

T∑
j=1,j 6=t

(ct−1(d1,ϕ)cj−1(d2,ϕ)− ct−1(d2,ϕ)cj−1(d1,ϕ))2 , (246)

so the left-hand side of (171) is bounded from below by

inf
d1≤ 1

2
−α,d2≤ 1

2
−α,|d1−d2|≥κ

(c1(d1,ϕ)− c1(d2,ϕ))2 = inf
d1≤ 1

2
−α,d2≤ 1

2
−α,|d1−d2|≥κ

(π1(d1)− π1(d2))2

= inf
d1≤ 1

2
−α,d2≤ 1

2
−α,|d1−d2|≥κ

(d1 − d2)2 = κ2.

Next, (172) follows by showing that, uniformly in |d1 − d2| ≥ κ,

inf
1
2

+α≤d1,d2≤ 1
2
−α

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

 ≥ ε, (247)

inf
1
2

+α≤d1,
1
2
−α≤d2≤ 1

2
+α

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

 ≥ ε, (248)

inf
1
2

+α≤d1,
1
2

+α≤d2

1

T 2d1−1

 T∑
t=1

c2
t−1(d1,ϕ)−

(∑T
t=1 ct−1(d1,ϕ)ct−1(d2,ϕ)

)2

∑T
t=1 c

2
t−1(d2,ϕ)

 ≥ ε. (249)

First, (247) follows by (162), (164), and (166) (noting that replacing α by g in (166) just
adds a log T factor to the bound). Next, (248) holds by (163), (164) and (170). Finally,
(249) follows by very similar arguments to those in (199) for j = 3 in the proof of Lemma 2
and approximating sums by integrals (Lemma 10).
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To prove (173), we note that the left-hand side is bounded from below, using (246), by

inf
1
2
−α≤d1≤ 1

2
+α,d2≤ 1

2
−α,|d1−d2|≥κ

1

T 2d1−1

T∑
t=1

(ct−1(d1,ϕ)− ct−1(d2,ϕ))2

≥ inf
1
2
−α≤d1≤ 1

2
+α,d2≤ 1

2
−α,|d1−d2|≥κ

1

T 2d1−1

T∑
t=[T 1/2]

(ct−1(d1,ϕ)− ct−1(d2,ϕ))2

≥ inf
1
2
−α≤d1≤ 1

2
+α

1

T 2d1−1

T∑
t=[T 1/2]

c2
t−1(d1,ϕ)

− sup
1
2
−α≤d1≤ 1

2
+α,d2≤ 1

2
−α,|d1−d2|≥κ

2

T 2d1−1

T∑
t=[T 1/2]

ct−1(d1,ϕ)ct−1(d2,ϕ). (250)

The first term on the right-hand side of (250) is bounded from below by ε/α+ o(1) as in the
proof of (163) of Lemma 14. Using (159) and taking into account the range of values that
d1 and d2 could take, the second term on the right-hand side of (250) is bounded by

sup
1
2
−α≤d1≤ 1

2
+α,d2≤ 1

2
−α,|d1−d2|≥κ

KT
T∑

t=[T 1/2]

1

T d1

(
t

T

)d1

td2−2. (251)

Clearly the supremum is attained at the minimum value that d1 could take and at the
maximum value that d2 could take. Noting that |d1 − d2| ≥ κ, this necessarily occurs at
d1 = 1/2−α+θκ, d2 = 1/2−α−(1− θ)κ for some θ ∈ [0, 2α/κ]. Thus, (251) is bounded by

KT
T∑

t=[T 1/2]

1

T 1/2−α+θκ

(
t

T

)1/2−α+θκ

t1/2−α−(1−θ)κ−2 = O
(
Tα−θκ−κ/2 + T−κ log T

)
= o(1),

to conclude the proof of (173). Finally, the proofs of (174) and (175) follow straightforwardly
by (163) and (170).

10.8 Proof of Lemma 16

Without loss of generality we assume that d1 > d2 in the proofs of (176)–(180). Letting

ht,T (d,ϕ) =
ct(d,ϕ)(∑T

j=1 c
2
j−1(d,ϕ)

)1/2
, (252)

we initially show that

sup
d∈[d1,d1],ϕ∈Ψ

|ht−1,T (d1,ϕ)| = O(t−1/2−θT θ). (253)

The left-hand side of (253) is bounded by

sup
d1≤d1≤1/2−θ,ϕ∈Ψ

|ht−1,T (d1,ϕ)|+ sup
1/2−θ≤d1≤d1,ϕ∈Ψ

|ht−1,T (d1,ϕ)| . (254)
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Using the definition (252) and applying (159) of Lemma 12 and (162) of Lemma 14, the first
term of (254) is bounded by

sup
d1≤d1≤1/2−θ,ϕ∈Ψ

|ht−1,T (d1,ϕ)| ≤
supd1≤d1≤1/2−θ,ϕ∈Ψ |ct−1(d1,ϕ)|

infd1≤d1≤1/2−θ,ϕ∈Ψ

(∑T
j=1 c

2
j−1(d1,ϕ)

)1/2

≤ sup
d1≤d1≤1/2−θ,ϕ∈Ψ

|ct−1(d1,ϕ)| = O(t−1/2−θ), (255)

so the bound in (253) applies to the first term of (254) (although it is not tight). Next, the
second term of (254) is bounded by

sup1/2−θ≤d1≤d1,ϕ∈Ψ T
−d1 |ct−1(d1,ϕ)|

inf1/2−θ≤d1≤d1,ϕ∈Ψ

(∑T
j=1 T

−2d1c2
j−1(d1,ϕ)

)1/2
.

By (160) of Lemma 12 the numerator is O(t−1(t/T )1/2−θ) and by Lemma 13 the denominator
is bounded from below by εθ−1/2T−1/2. Thus (253) follows.

We now prove (176). Clearly,

‖ht−1,T (d1, d2,ϕ)‖2 =
N1t +N2t +N3t

DT

where

N1t = c2
t−1(d1,ϕ)

T∑
j=1

c2
j−1(d2,ϕ),

N2t = c2
t−1(d2,ϕ)

T∑
j=1

c2
j−1(d1,ϕ),

N3t = −2ct−1(d1,ϕ)ct−1(d2,ϕ)
T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ),

DT =
T∑
j=1

c2
j−1(d1,ϕ)

T∑
j=1

c2
j−1(d2,ϕ)−

(
T∑
j=1

cj−1(d1,ϕ)cj−1(d2,ϕ)

)2

. (256)

By application of the Cauchy-Schwarz inequality to the numerator and (246) to the denom-
inator,

‖ht−1,T (d1, d2,ϕ)‖2 ≤ 2(N1t +N2t)

DT

(257)

=
2(N1t +N2t)∑T−1

k=1

∑T
j=1,j 6=k (ck−1(d1,ϕ)cj−1(d2,ϕ)− ck−1(d2,ϕ)cj−1(d1,ϕ))2

=
2(h2

t−1,T (d1,ϕ) + h2
t−1,T (d2,ϕ))∑T−1

k=1

∑T
j 6=t=1 (hk−1,T (d1,ϕ)hj−1,T (d2,ϕ)− hk−1,T (d2,ϕ)hj−1,T (d1,ϕ))2

.

(258)
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We will prove (176) by considering several parts of the parameter space in turn. First,
we show that

sup
d1≤d1≤1/2−θ,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

‖ht−1,T (d1, d2,ϕ)‖2 = O(t−1−2θT 2θ), (259)

noting that in this region necessarily d2 ≤ 1/2 − θ − κ. Using the bounds (253) and (258),
(259) follows by showing that

inf
d1≤d1≤1/2−θ,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

T−1∑
k=1

T∑
j 6=t=1

(hk−1,T (d1,ϕ)hj−1,T (d2,ϕ)− hk−1,T (d2,ϕ)hj−1,T (d1,ϕ))2

= inf
d1≤d1≤1/2−θ,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

∑T−1
k=1

∑T
j 6=t=1 (ck−1(d1,ϕ)cj−1(d2,ϕ)− ck−1(d2,ϕ)cj−1(d1,ϕ))2∑T

t=1 c
2
t−1(d1,ϕ)

∑T
j=1 c

2
j−1(d2,ϕ)

> ε.

(260)

The supremum of the denominator in (260) is O(1) by (165), while the numerator is bounded
from below by

inf
d1≤d1≤1/2−θ,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

T−1∑
k=1

T∑
j 6=t=1

(ck−1(d1,ϕ)cj−1(d2,ϕ)− ck−1(d2,ϕ)cj−1(d1,ϕ))2

≥ inf
d1≤d1≤1/2−θ,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

(c1(d1,ϕ)− c1(d2,ϕ))2 = inf
|d1−d2|≥κ

(d1 − d2)2 = κ2

as in the proof of (171).
We next show that

sup
1/2−θ≤d1≤1/2+θ,ϕ∈Ψ,|d1−d2|≥κ

‖ht−1,T (d1, d2,ϕ)‖2 = O(t−1−2θT 2θ), (261)

noting that in this region necessarily d2 ≤ 1/2 + θ − κ < 1/2. By (246), (252), and (258),
the left-hand side of (261) is bounded by

sup
1/2−θ≤d1≤1/2+θ
ϕ∈Ψ,|d1−d2|≥κ

2
T 1−2d1c2

t−1(d1,ϕ)
∑T

j=1 c
2
j−1(d2,ϕ) + c2

t−1(d2,ϕ)T 1−2d1
∑T

j=1 c
2
j−1(d2,ϕ)

T 1−2d1
∑T

k=[T 1/2] (ck−1(d1,ϕ)− ck−1(d2,ϕ))2
.

By simple application of (160) of Lemma 12 and (165) of Lemma 14,

sup
1/2−θ≤d1≤1/2+θ,ϕ∈Ψ,|d1−d2|≥κ

1

T 2d1−1
c2
t−1 (d1,ϕ)

T∑
j=1

c2
j−1 (d2,ϕ) = O

(
t−1−2θT 2θ

)
. (262)

Furthermore,

sup
1/2−θ≤d1≤1/2+θ
ϕ∈Ψ,|d1−d2|≥κ

c2
t−1(d2,ϕ)

1

T 2d1−1

T∑
j=1

c2
j−1(d1,ϕ) = O(t−1+2θ−2κT 2θ) = O(t−1−2θT 2θ), (263)
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where the first equality in (263) follows by (159) of Lemma 12 and (168) of Lemma 14,
whereas the second holds because θ ≤ κ/2. Then, in view of (262) and (263), the proof of
(261) follows by showing that

inf
1/2−θ≤d1≤1/2+θ,ϕ∈Ψ

1

T 2d1−1

T∑
k=[T 1/2]

c2
k−1(d1,ϕ) > ε, (264)

sup
1/2−θ≤d1≤1/2+θ,ϕ∈Ψ,|d1−d2|≥κ

1

T 2d1−1

T∑
k=[T 1/2]

ck−1(d1,ϕ)ck−1(d2,ϕ) = o(1). (265)

First, (264) follows as in the proof of (163). Noting (159) and (160), the supremum in (265)
occurs at the smallest possible value for d1 and the largest one for d2, which is d2 ≤ d1 − κ.
Thus, by (159) and (160), the left-hand side of (265) is bounded by

KT
T∑

k=[T 1/2]

(
k

T

)d1

k−1

(
k

T

)d1

k−κ−1 ≤ KT 2θ

T∑
k=[T 1/2]

k−1−2θ−κ = O
(
T θ−κ/2

)
,

so that (265) is justified and the proof of (261) concluded.
Next, we show that

sup
1/2+θ≤d1≤d1,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

‖ht−1,T (d1, d2,ϕ)‖2 = O(t−1−2θT 2θ), (266)

noting that in this region d2 ≤ min{1/2 − θ, d1 − κ} < 1/2. The proof of (266) is nearly
identical to that of (259). We normalize by T 2d1−1 in both the numerator and denominator
of (260), and the denominator is then O(1) by application of (165) and (170) of Lemma 14.
The (normalized) numerator of (260) is bounded from below by

inf
1/2+θ≤d1≤d1,d2≤d2≤1/2−θ

ϕ∈Ψ,|d1−d2|≥κ

T 2d1−1

T∑
k=1

(ck−1(d1,ϕ)− ck−1(d2,ϕ))2 > ε

by application of (162) and (164) of Lemma 14.
Next, we show that

sup
1/2+θ≤d1≤d1,1/2−θ≤d2≤1/2+θ

ϕ∈Ψ,|d1−d2|≥κ

‖ht−1,T (d1, d2,ϕ)‖2 = O(t−1−2θT 2θ). (267)

In view of (257), (267) follows by showing that

sup
1/2+θ≤d1≤d1

1/2−θ≤d2≤1/2+θ
ϕ∈Ψ,|d1−d2|≥κ

T 2d1−1c2
t−1(d1,ϕ) + h2

t−1,T (d2,ϕ)T 2d1−1
∑T

j=1 c
2
j−1(d1,ϕ)

T 2d1−1

(∑T
j=1 c

2
j−1(d1,ϕ)− (

∑T
j=1 cj−1(d1,ϕ)cj−1(d2,ϕ))

2∑T
j=1 c

2
j−1(d2,ϕ)

) = O(t−1−2θT 2θ),

and this holds by (170), (172), and (253), noting also that by (160),

sup
1/2+θ≤d1≤d1,ϕ∈Ψ

T 2d1−1c2
t−1(d1,ϕ) = O(t−1+2θT−2θ) = O(t−1−2θT 2θ)
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because t ≤ T .
Finally, we show that

sup
1/2+θ≤d1≤d1,1/2+θ≤d2≤d2

ϕ∈Ψ,|d1−d2|≥κ

‖ht−1,T (d1, d2,ϕ)‖2 = O(t−1−2θT 2θ). (268)

In view of (258), (268) holds by (253) and

inf
1/2+θ≤d1≤d1,1/2+θ≤d2≤d2

ϕ∈Ψ,|d1−d2|≥κ

T−1∑
k=1

T∑
j 6=t=1

(hk−1,T (d1,ϕ)hj−1,T (d2,ϕ)− hk−1,T (d2,ϕ)hj−1,T (d1,ϕ))2 > ε.

(269)
By very similar steps to those in the proof of Lemma 13, it can be shown that

T−1∑
k=1

T∑
j 6=t=1

(hk−1,T (d1,ϕ)hj−1,T (d2,ϕ)− hk−1,T (d2,ϕ)hj−1,T (d1,ϕ))2

=

∑T−1
k=1

∑T
j 6=t=1

(
T 1/2−d1πk−1(d1)T 1/2−d2πj−1(d2)− T 1/2−d2πk−1(d2)T 1/2−d1πj−1(d1)

)2

T 1−2d1
∑T

j=1 π
2
j−1(d1)T 1−2d2

∑T
k=1 π

2
k−1(d2)

+ g(d1, d2,ϕ),

where sup
1/2+θ≤d1≤d1,1/2+θ≤d2≤d2,ϕ∈Ψ

|g(d1, d2,ϕ)| = o(1). Next, using this result together with

Lemma 11 and approximating sums by integrals, see Lemma 10, the left-hand side of (269)
is bounded from below by

ε
inf

1/2+θ≤d1≤d1,1/2+θ≤d2≤d2

(∫ 1

0

∫ 1

0
(xd1−1yd2−1 − xd2−1yd1−1)2dxdy

)
sup1/2+θ≤d1≤d1,1/2+θ≤d2≤d2

(2d1 − 1)−1(2d2 − 1)−1
− o (1) > ε,

so (268) is justified, to conclude the proof of (176).
Next, (177) follows trivially from (176), while the proof of (178) is omitted because it is

basically identical to that of (176). We only need to note that instead of (253) we have

sup
d1∈[d1,d1],ϕ∈Ψ

|ht,T (d1,ϕ)− ht−1,T (d1,ϕ)| = O(t−3/2−θT θ),

which can be justified exactly like (253) because

ht,T (d,ϕ)− ht−1,T (d,ϕ) =
ct(d− 1,ϕ)(∑T
j=1 c

2
j−1(d,ϕ)

)1/2
. (270)

We next show (179), for which we first present a preliminary result. By the same proof
as that of (253), taking into account the extra log-term arising from (159) and (160) of
Lemma 12, it holds that

sup
d1∈[d1,d1],ϕ∈Ψ

∣∣∣∣∣∣∣
∂
∂d1
ct−1(d1,ϕ)(∑T

j=1 c
2
j−1(d1,ϕ)

)1/2

∣∣∣∣∣∣∣ = O(t−1/2−θT θ log T ). (271)



Estimation of fractional time series with generalized trend 74

Clearly,

h′t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

= c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

ck−1(d1, d2,ϕ),

so that
∂

∂d2

(
h′t−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)

)
= A1tk + A2tk + A3tk, (272)

where

A1tk =

(
∂

∂d2

c′t−1(d1, d2,ϕ)

)( T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

ck−1(d1, d2,ϕ),

A2tk = c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1(
∂

∂d2

ck−1(d1, d2,ϕ)

)
,

A3tk = −c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

×

(
∂

∂d2

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

× ck−1(d1, d2,ϕ).

Clearly, recalling the definition of DT in (256),

A1tk =

(
∂ct−1(d2,ϕ)

∂d2

)
ck−1(d2,ϕ)

∑T
j=1 c

2
j−1(d1,ϕ)

DT

−
(
∂ct−1(d2,ϕ)

∂d2

)
ck−1(d1,ϕ)

∑T
j=1 cj−1(d1,ϕ)cj−1(d2,ϕ)

DT

.

Then, proceeding as in the proof of (176), it can be straightforwardly shown that

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

|A1tk| = O(t−1/2−θk−1/2−θT 3θ), (273)

where the extra T θ-factor (compared with (176)) captures a (log T )-factor due to having
∂ct−1(d2,ϕ)/∂d2 instead of ct−1(d2,ϕ); see Lemma 12. Similarly, noting the symmetry of
A1tk and A2tk,

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

|A2tk| = O(t−1/2−θk−1/2−θT 3θ). (274)
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Finally,

A3tk = −
T∑
l=1

c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1(
0

∂cl−1(d2,ϕ)

∂d2

)

× c′l−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1 (d1, d2,ϕ)

)−1

ck−1(d1, d2,ϕ)

−
T∑
l=1

c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

cl−1(d1, d2,ϕ)

×
(

0 ∂cl−1(d2,ϕ)

∂d2

)( T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

ck−1(d1, d2,ϕ).

By (176) it follows straightforwardly that

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

∣∣∣∣∣∣c′t−1(d1, d2,ϕ)

(
T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)

)−1

cl−1(d1, d2,ϕ)

∣∣∣∣∣∣
= sup

d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

∣∣h′t−1,T (d1, d2,ϕ)hl−1,T (d1, d2,ϕ)
∣∣

≤ sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

‖ht−1,T (d1, d2,ϕ)‖ sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

‖hl−1,T (d1, d2,ϕ)‖

= O(t−1/2−θl−1/2−θT 2θ), (275)

so by (273)–(275),

sup
d1∈[d1,d1],d2∈[d2,d2],ϕ∈Ψ

|A3tk| = O(t−1/2−θk−1/2−θT 5θ),

to conclude the proof of (179).
Next, the proof of (180) is omitted as it is almost identical to that of (179) in view of (178).
Before proving (181), we first note that, for m = 0, 1,

sup
d≥1/2+θ,ϕ∈Ψ

∣∣∣∣∣∣∣
∂m

∂dm

(
T−dct−1(d,ϕ)

)(∑T
j=1 T

−2dc2
j−1(d,ϕ)

)1/2

∣∣∣∣∣∣∣ ≤
supd≥1/2+θ,ϕ∈Ψ

∣∣ ∂m
∂dm

(
T−dct−1(d,ϕ)

)∣∣(
infd≥1/2+θ,ϕ∈Ψ

∑T
j=1 T

−2dc2
j−1(d,ϕ)

)1/2

= O
(
t−1/2(t/T )θ(1 + | log(t/T )|)m

)
, (276)

which is a better bound than (253) and (271), but on a smaller set. The bound (276) holds
by (160) of Lemma 12 and (164) of Lemma 14.
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To show (181) we define ΥT = diag(1, T−d2) and note from (272) that

A1tk =
∂

∂d2

(c′t−1(d1, d2,ϕ)ΥT )

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1

ΥTck−1(d1, d2,ϕ)

=

∂T−d2ct−1(d2,ϕ)/∂d2

(
∑T
j=1 T

−2d2c2j−1(d2,ϕ))
1/2

(
hk−1,T (d2,ϕ)− hk−1,T (d1,ϕ)

∑T
j=1 hj−1,T (d1,ϕ)hj−1,T (d2,ϕ)

)
1−

(∑T
j=1 hj−1,T (d1,ϕ)hj−1,T (d2,ϕ)

)2 ,

(277)

A2tk = c′t−1(d1, d2,ϕ)ΥT

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1

∂

∂d2

(ΥTck−1(d1, d2,ϕ)),

=

∂T−d2ck−1(d2,ϕ)/∂d2

(
∑T
j=1 T

−2d2c2j−1(d2,ϕ))
1/2

(
ht−1,T (d2,ϕ)− ht−1,T (d1,ϕ)

∑T
j=1 hj−1,T (d1,ϕ)hj−1,T (d2,ϕ)

)
1−

(∑T
j=1 hj−1,T (d1,ϕ)hj−1,T (d2,ϕ)

)2 ,

(278)

and

A3tk = −c′t−1(d1, d2,ϕ)ΥT

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1

×
T∑
l=1

∂

∂d2

(ΥTcl−1(d1, d2,ϕ))c
′
l−1(d1, d2,ϕ)ΥT

×

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1

ΥTck−1(d1, d2,ϕ)

− c′t−1(d1, d2,ϕ)ΥT

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1 T∑
l=1

ΥTcl−1(d1, d2,ϕ)

× ∂

∂d2

(c′l−1(d1, d2,ϕ)ΥT )

(
ΥT

T∑
j=1

cj−1(d1, d2,ϕ)c′j−1(d1, d2,ϕ)ΥT

)−1

ΥTck−1(d1, d2,ϕ).

For A1tk, we multiply by T 1−2d2
∑T

j=1 c
2
j−1(d2,ϕ) in the numerator and denominator. Ap-

plication of (172) then shows that the resulting denominator is bounded from below by ε > 0,
while (170) shows that the order of magnitude of the numerator is unaffected. For the numer-

ator of A1tk we apply the Cauchy-Schwarz inequality,
∣∣∣∑T

j=1 hj−1,T (d1,ϕ)hj−1,T (d2,ϕ)
∣∣∣ ≤ 1,

which together with (253), with α instead of θ, and (276) shows that

sup
d2∈[1/2+θ,d2]
ϕ∈Ψ,|d1−d2|≥κ

|A1tk| = O
(
t−1/2+θT−θ(1 + | log(t/T )|)k−1/2−αTα

)
. (279)

Similarly, noting the symmetry of A1tk and A2tk,

sup
d2∈[1/2+θ,d2]
ϕ∈Ψ,|d1−d2|≥κ

|A2tk| = O
(
k−1/2+θT−θ(1 + | log(k/T )|)t−1/2−αTα

)
. (280)
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Next, by (176) with α instead of θ, it holds that

sup
d1∈[d1,d1],d2∈[d2,d2]
ϕ∈Ψ,|d1−d2|≥κ

∣∣h′j−1,T (d1, d2,ϕ)hk−1,T (d1, d2,ϕ)
∣∣ = O(j−1/2−αk−1/2−αT 2α). (281)

It then follows straightforwardly by (279), (280), and (281) that

sup
d2∈[1/2+θ,d2]
ϕ∈Ψ,|d1−d2|≥κ

|A3tk| = O

(
t−1/2−αk−1/2−αT 3α−θ

T∑
l=1

l−1+θ−α(1 + | log(l/T )|)

)

= O(t−1/2−αk−1/2−αT 2α)

because θ > α. Then (181) holds because, for any s ≤ T , we have | log(s/T )| ≤ K(T/s)α and

s−1/2+θT−θ(1 + | log(s/T )|) = s−1/2−αTα(s/T )α+θ(1 + | log(s/T )|)
≤ Ks−1/2−αTα(s/T )α+θ(T/s)α ≤ Ks−1/2−αTα.

Finally, the proof of (182) is omitted because it follows by identical arguments to that of
(181) since it can be straightforwardly shown that

sup
d≥1/2+θ,ϕ∈Ψ

∣∣∣∣ ∂∂d (ht,T (d,ϕ)− ht−1,T (d,ϕ))

∣∣∣∣ = O(t−3/2+θT−θ(1 + | log(t/T )|)),

see (253) and (270).

10.9 Proof of Lemma 17

The proof of Lemma 17 is given in Lemma S.17 of Hualde and Nielsen (2020).

10.10 Proof of Lemma 18

By summation by parts we find∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ht−1,T (1− δ, γ − δ,ϕ)

∣∣∣∣∣
≤ |hT−1,T (1− δ, γ − δ,ϕ)| |ρ(L;ϕ)uT (δ − δ0 − 1)|

+
T−1∑
t=1

|ht,T (1− δ, γ − δ,ϕ)− ht−1,T (1− δ, γ − δ,ϕ)| |ρ(L;ϕ)ut(δ − δ0 − 1)| .

Then (185) follows straightforwardly by (176), (178) of Lemma 16 and (183) of Lemma 17.
Next, again by summation by parts,∣∣∣∣∣

T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ
(h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ))

∣∣∣∣∣
≤
∣∣∣∣ ∂∂γ (h′T−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ))

∣∣∣∣ |ρ(L;ϕ)uT (δ − δ0 − 1)|

+
T−1∑
t=1

∣∣∣∣ ∂∂γ ((h′t,T (1− δ, γ − δ,ϕ)− h′t−1,T (1− δ, γ − δ,ϕ))hk−1,T (1− δ, γ − δ,ϕ))

∣∣∣∣
× |ρ(L;ϕ)ut(δ − δ0 − 1)| , (282)
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so (186) follows directly from (179), (180) of Lemma 16 and (183) of Lemma 17.
The proofs of (187) and (188) are nearly identical to those of (185) and (186), but using

(184) instead of (183) of Lemma 17.
Next, by application of (181), (182), and (183) to (282), it is straightforward to show

that, choosing any α such that 0 < α < θ,

sup
δ0−δ≤g,γ−δ≥1/2+θ

∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)
∂

∂γ
(h′t−1,T (1− δ, γ − δ,ϕ)hk−1,T (1− δ, γ − δ,ϕ))

∣∣∣∣∣
=Op(k

−1/2−αTα−1/2(T g+1/2 + (log T )I(g ≤ −1/2)))

+Op(k
−1/2−αT 2α(T g−αI(g > α) + (log T )I(g ≤ α)),

which proves (189).
Finally, the proof of (190) is almost identical to that of (189) but using (184) instead of

(183).

10.11 Proof of Lemma 19

The results follow by direct application of (159), (160) of Lemma 12 and (176) of Lemma 16.

10.12 Proof of Lemma 20

By summation by parts we find∣∣∣∣∣
T∑
t=1

ρ(L;ϕ)ut(δ − δ0)ct−1(γ0 − δ,ϕ)

∣∣∣∣∣
≤ ‖cT−1(γ0 − δ,ϕ)‖ |ρ(L;ϕ)uT (δ − δ0 − 1)|

+

∥∥∥∥∥
T−1∑
t=1

ct−1(γ0 − δ − 1,ϕ)ρ(L;ϕ)ut(δ − δ0 − 1)

∥∥∥∥∥ . (283)

The result (193) then follows by application of (159) of Lemma 12 and (183) of Lemma 17,
while the result (194) follows by application of (160) of Lemma 12 and (184) of Lemma 17.

10.13 Proof of Lemma 21

These results are direct consequences of (159) and (160) of Lemma 12 and (184) of Lemma 17.

10.14 Proof of Lemma 22

The proof of Lemma 22 is given in Lemma S.12 of Hualde and Nielsen (2020); see also
Lemma 2 of Johansen and Nielsen (2019).
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