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Betting on mean reversion in the VIX?
Evidence from ETP flows

Abstract

We investigate flows of VIX ETPs with long volatility exposure. We find an inverse
relation between flows and the level of the VIX, implying that investors sell VIX ETPs
when the VIX is at elevated levels, consistent with investors incorporating the typical
mean reverting behavior of volatility. We find no evidence supporting that investors
consider exposure to risk factors when they evaluate VIX ETP performance. Finally,
our results suggest that large outflows following increases in the VIX may be a partial
explanation of the “low premium response puzzle” in the VIX premium.
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I. Introduction

Since January 2009, volatility as an asset class has been available to all types of investors via

VIX exchange traded products (ETPs). These are complex and risky products designed to

provide either long or inverse exposure to market volatility. Since their launch, VIX ETPs

have gained much traction. Figure I depicts the price and cumulative net flows of the iPath

S&P VIX Short Term Future ETN (VXX), one of the largest and most liquid ETPs. As of

February 2019, the cumulative net flow of VXX amounts to approximately $8 bn. Despite

the complex structure, requiring a certain level of sophistication to comprehend, VIX ETPs

have reeled in a lot of interest from retail investors. Having access to holdings data, Todorov

(2020) reports that the fraction of institutional holdings is less than 24%, on average, for the

period 2009-2018.

In this paper, we are interested in ETPs with long volatility exposure. In the remainder

of the paper, the term “VIX ETPs” simply refers to these. VIX ETPs are often promoted

as tools for portfolio diversification, as they offer protection against down markets when

volatility is high. However, insurance comes at a cost. The cost is realized through losses

of the constant maturity strategy in VIX futures, which the products are tracking (see the

left-hand axis of Figure I).1

The main contribution of this paper is to provide the first investigation of flows into VIX

ETPs. Given the special characteristics and large popularity of VIX ETPs, we investigate

how investors apply these products. Our study provides three main insights. First, by

examining the relation between flows and the VIX, we find that increases in the VIX are

typically accompanied by large outflows, which is consistent with investors incorporating the

typical mean reversion of volatility in how they trade VIX ETPs. Second, by applying a

revealed preferences approach as in Berk and van Binsbergen (2016), Barber et al. (2016),

and Agarwal et al. (2018) we find no evidence of investors adjusting for exposure to risk
1See, e.g., Christensen et al. (2020) on the structure of VIX ETPs.
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Figure I: Price development and cumulative net inflow of VXX

Figure I shows the price and cumulative net flow of VXX, from inception to February 2019. Over the lifetime
of the product, the value of VXX has been severely eroded, and the issuer has made five 1-for-4 reverse splits.
The depicted price development has been adjusted for these hence, the magnitude of the left-hand y-axis.
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factors when they evaluate the performance of these products. Finally, we document that

the low VIX premium response puzzle discovered by Cheng (2019) is likely related to price

impact caused by the flow pattern of VIX ETPs.

VIX ETPs are closely linked to the VIX, which is known to be mean reverting by nature.

Our starting hypothesis is that investors incorporate this mean reversion in how they trade

VIX ETPs. Hence, following a VIX increase, we would expect to see outflows. Indeed,

this is also the case. First, by regressing dollar flows, summed across ETPs, on the VIX

and its lags, we obtain negative coefficients for the initial lags and positive but smaller in

magnitude coefficients for longer lags. An event study of flows confirms this effect, as the

largest increases in the VIX tend to be followed by very large outflows. We also find that

the inverse relation between flows and the VIX varies with the level of persistence, defined

by the speed-of-mean-reversion, in the VIX. When persistence is low, the inverse relation

between flows and the VIX is slightly enhanced.

For our second finding, we consider the framework of Berk and van Binsbergen (2016),

Barber et al. (2016), and Agarwal et al. (2018). These papers study the relation between flows

and performance of mutual- and hedge funds, where performance is measured by abnormal

returns (alpha) implied by different asset pricing models. Along with raw returns, we consider
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five different asset pricing models. The alphas for the different models are individually applied

as explanatory variables in regressions that have the flows or the sign of the flows as the

dependent variable. We hypothesize, that for holding VIX ETPs and thereby incurring

negative expected returns, investors must price the systematic risk of VIX ETPs with some

asset pricing model. The idea behind our hypothesis is that positive updates of alpha are

followed by positive updates of flows. A positive model alpha will imply that VIX ETPs are

cheap relative to their risk exposure, and investors will be inclined to buy the products. By

comparing the ability of different models to predict flows, we can infer which type of risk, if

any, is of concern to investors in VIX ETPs. From all the models we consider, raw returns

are the only measure that significantly explains the flows of VIX ETPs. Thus we find no

evidence of investors pricing any systematic risk in VIX ETPs. Put in another way, investors

do not evaluate whether the insurance that VIX ETPs provide is considered expensive or

cheap by the asset pricing models considered in our study.

To obtain our last finding, we estimate the VIX premium at different horizons. Given the

flow pattern documented in our previous analyzes, we hypothesize that investor behavior

causes issuers of the ETPs to reduce positions in VIX futures when the VIX increases.

Consequently, this will put downward price pressure on VIX futures, contributing to the low

VIX premium response puzzle documented in Cheng (2019). The relation between flows and

VIX premiums is first studied via a simple OLS regression where we regress changes in the

VIX premium on changes in aggregated dollar-flows. We find a positive relation between the

flows of short-term products and VIX premiums, and the relation is decreasing on the horizon

of the VIX premium. We investigate this positive relation further by means of a quantile

regression. We find that the correlation between flows and VIX premiums is particularly high

when the VIX premium is large in absolute terms. Finally, we consider bivariate dynamics

using a vector autoregression of flows and the VIX premium. The impulse response functions

show that a shock to flows impacts the VIX premium. All in all, our results indicate that the

flow pattern in VIX ETPs may provide a partial explanation of the low premium response
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puzzle.

The prior literature on volatility assets can be divided into three different categories. The

first category includes papers that examine the diversification benefits of volatility assets in

broad investment portfolios. Recent studies such as Bordonado et al. (2017) and Berkowitz

and DeLisle (2018) all reject the existence of any potential diversification benefits of VIX

ETPs. Christensen et al. (2020), however, find that including VIX ETPs in a dynamic asset

allocation strategy can have substantial economic value. The second category is concerned

with the causality and price discovery between different markets of volatility assets. In

particular, between the VIX futures market and the spot VIX (e.g., Shu and Zhang (2012),

Bollen et al. (2017), and Fernandez-Perez et al. (2019)). The final category is concerned with

the pricing of volatility assets (e.g., Zhang and Zhu (2006), Zhang and Huang (2010), and

Gehricke and Zhang (2018)). To the best of our knowledge, none of the previous studies

investigate how investors use volatility assets as investments. We do this by analyzing the

flows of VIX ETPs.

This paper is also related to the literature on variance- and VIX premia. Bollerslev et al.

(2009) and Bekaert and Hoerova (2014) calculate the variance risk premium as the risk-neutral

minus physical expectation of the 30-day variance of S&P 500 returns. Both papers find

that the variance risk premium positively predicts stock returns. Closer related to our work,

Cheng (2019) defines the VIX premium as the risk-neutral minus the physical expectation

of the future value of the VIX. Interestingly, both the variance- and VIX premia tend to

become negative during periods of elevated market risk. Negative risk premia suggest that the

demand for insurance decreases around periods of elevated market risk, which seems illogical.

The findings in our study add support to the argument that this puzzle exists because of the

systematic pricing impact of market participants and are not just due to measurement error.

The paper is organized into five additional sections. Section II briefly describes our data.

Section III contains our first empirical results, where we investigate how flows relate to the

VIX. Section IV examines the impact of risk factors, and Section V links flows to the VIX
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premium. Finally, Section VI contains the conclusions.

II. Data

The dependent variable of main interest is the daily net flows of VIX ETPs. We follow prior

literature on fund flows (cf. Barber et al. (2016)) and define this as:

Fit = AUMit

AUMit−1
− (1 +Rit). (1)

Hence, it is the growth in assets under management (AUM) adjusted for the total return

(Rit), assuming that all flows take place at the end of the day. Flows in dollar terms are

defined as:

DFit = AUMit − (1 +Rit)× AUMit−1. (2)

We obtain daily prices and AUM on all VIX ETPs from Bloomberg and daily close levels

of the VIX from the Chicago Board Options Exchange (Cboe). Even though the first VIX

ETPs were issued already in 2009, AUM is not available at a daily frequency before October

2012. As a consequence, the sample period spans from October 2012 to February 2019.

In this study, we are interested in the flow patterns of ETPs with a long exposure towards

volatility. We consider both short-term (e.g., VXX) and mid-term products (e.g., VXZ) and

also include products that use leverage (e.g., TVIX). Products with an inverse exposure

towards volatility (e.g., XIV) or an average AUM of less than $ 15 million are excluded from

the sample.2

The final sample includes six different VIX ETPs. Table I, presents summary statistics of

the ETPs in our sample. The average daily flow equals 0.49%, with a median of 0.11%. The

median ETP has $179.65 million (mm) in AUM, while the average is approximately twice as
2See Appendix A for a list of the VIX ETPs that we include in our sample.
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large ($354.24 mm). This suggests that there is a positive skew in product size. The average

age is 5.45 years (median 5.45 years), and the average expense ratio is 1.08%. Finally, the

average spread is 1.22 basis points (bp), with a median of only 0.12 bp. This indicates that

there are large differences in liquidity across products.

Table I: VIX ETP summary statistics

This table presents summary statistics of characteristics for the six ETPs in our sample across 8001 ETP-day
observations in the period October 2012 to February 2019. The data include only VIX ETPs with direct
exposure to the VIX futures. Daily flow is calculated by Equation (1).

Mean Std. Dev Median

Daily Flow 0.49% 6.26% 0.11%
Size ($mil) 354.24 405.08 179.65
Age (years) 5.45 2.09 5.45
Yearly Expense Ratio 1.08% 0.33% 0.89%
Spread (bp) 1.22 5.92 0.12

III. Flows and the VIX

VIX ETPs are by construction closely linked to the VIX, incurring high positive returns

when the VIX increases against negative returns when the VIX is low. As other volatility

measures, the VIX is characterized by occasional swings from low to high levels, as depicted

in Figure II. Despite varying degrees of persistence, the VIX eventually declines from the

high levels, and the process appears to be mean reverting over the long run.3

Our first analysis investigates how the flows of VIX ETPs relate to the VIX. We make

the empirical prediction that investors in VIX ETPs incorporate the mean reverting nature

of the VIX in how they trade the products. At an increase in volatility, an investor who

expects a reversal to the long term mean will also expect lower future returns of VIX ETPs

and reduce her position in the instrument. Hence, following an increase in the VIX, we would

expect to see net outflows.

Denote, AggDFt = ∑N
i=1 DFit, as the dollar flows aggregated across the different ETPs in

3See also Whaley (2009) for a description of the mean reverting nature of the VIX.
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Figure II: The VIX

Figure II shows the level of the VIX during our sample period.
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our study, at time t. We investigate our hypothesis by regressing the aggregated dollar flows

on the VIX, lagged values of the VIX, and lagged flows:4

AggDFt = a+
7∑
j=0

bj+1 × V IXt−j +
6∑
i=1

ci × AggDFt−i + ut. (3)

Table II reports the estimated regression coefficients of the model in Equation (3). First,

we note that the regression coefficient for the VIX at time t is positive, implying that an

increase in the VIX tends to be accompanied by net inflows to VIX ETPs on the same day.

Given the insurance-like characteristics of VIX ETPs, this is consistent with the flight-to-

safety behavior that is typically seen in other markets at the signs of stress. For example,

investors buy outright protection such as put options, causing the VIX to increase, or they

buy safe-haven assets like treasuries and money-market instruments (cf. Longstaff (2004),

Baele et al. (2019), and Adrian et al. (2019)). For the one to three days lag, the coefficients

are all negative but only statistically significant at the one-day lag. A one-unit (one volatility

point) increase in the VIX is associated with a net outflow of 24.49 mm at t− 1. For longer

lags (four to six days), the coefficient becomes positive again but much smaller in magnitude
4By means of an augmented Dickey-Fuller test of the VIX during our sample period, we reject the null

hypothesis of a unit root at a 95% confidence level.
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(12.81 mm at t− 4 and 3.67 mm at t− 6). In summary, the coefficients suggest that investors

buy VIX ETPs on the day of an increase. In the few days following an increase, they sell

before they again start to buy at longer horizons. This pattern seems consistent with investors

expecting volatility to decrease after an initial increase. Then, as time has passed, volatility

is likely to have declined and investors start to buy again as further decreases are less likely.

Overall, the pattern that we observe in the regression coefficients of lagged VIX is in the

direction we would expect if investors incorporate the typical VIX behavior in how they trade

VIX ETPs.

Finally, we note that the coefficients for the lagged values of aggregated flows are statisti-

cally insignificant at all lags.

III.A. Flow pattern around the largest increases of the VIX

The above results suggest that investors sell VIX ETPs on the days following right after an

increase in the VIX. To further illuminate this inverse relation, we now examine the flow

pattern around the largest increases in the VIX by conducting an event study. Specifically,

we define an event as a relative change of the VIX above its 95th percentile over the entire

sample period. This gives us 78 event days in the sample. We consider an event window of

-21 to +21 days relative to the VIX increase at day 0 (event day). Again, our variable of

interest is the aggregated dollar flows. For each day t in the event window, we sum the flows

over all previous days to obtain the cumulative flows as:

CumAggDFt =
t∑

τ=1
AggDFτ . (4)

Figure III plots the average of CumAggDF and the average level of the VIX across the

78 different events. From day -21 until day -11, there is a small upward trend in cumulative

flows, where the level of the VIX is low. From day -10 until the event day, the VIX is slightly

8



Table II: AggDF and the VIX

This table presents the results for the regression as in Equation (3). The dependent variable is aggregated
dollar flows, calculated as, AggDFt =

∑N
i=1 DFit. Explanatory variables are the VIX and lagged values of

the VIX and aggregated dollar flows. T-statistics in parenthesis are calculated with Newey-West standard
errors. ***, and ** represent significance at 1% and 5% respectively.

Intercept 63.30***
(4.87)

VIXt
12.49**
(2.19)

VIXt−1
-24.49***
(-6.50)

VIXt−2
-4.18
(-0.98)

VIXt−3
-6.07
(-1.05)

VIXt−4
12.81**
(2.19)

VIXt−5
1.92
(0.84)

VIXt−6
3.67**
(2.04)

AggDFt−1
-0.03
(-0.94)

AggDFt−2
-0.05
(-1.20)

AggDFt−3
-0.03
(-0.71)

AggDFt−4
0.04
(1.26)

AggDFt−5
0.01
(0.23)

AggDFt−6
-0.03
(-1.04)

Observations 1525
R2(%) 20.04
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increasing, and the cumulative flows fluctuate around a fixed level. This indicates that the

direction of cumulative investor flows becomes ambiguous as uncertainty increases. Then,

after day 0, the event day, following a large decline, the cumulative flows become negative.

The downward trend for flows is strongest for the first four days after the event and diminishes

at day +8. In the remaining days of our event study, cumulative flows trend upwards. This

aggregate trading pattern suggests that investors sell at elevated levels of the VIX. Then as

the VIX stabilizes at lower levels, investors start to buy VIX ETPs again, which is consistent

with the regression output in our previous analysis.

Figure III: Event study

Figure III depicts the average cumulative flows (left-hand y-axis) and the average level of the VIX index
(right-hand y-axis) over the event window.

-20 -15 -10 -5 0 5 10 15 20

Event Time

-200

-150

-100

-50

0

50

100

m
m

14

15

16

17

18

19

20

V
IX

 le
ve

l

VIX ETP flows VIX level

Table III reports the cumulative flows from Equation (4) with corresponding t-statistics .

For the days -20 to -11, most of the cumulative flows are significantly positive. As we get

closer to the event day, the VIX increases, and the cumulative flows become statistically
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insignificant from zero. After the event day, cumulative flows are, on average, negative. From

day +3 to +9, the cumulative flows are significantly negative, which implies that there are

large outflows in the days following a spike in the VIX. From day +10 and onward, the

cumulative flows are no longer significantly below zero, which indicates that investors start

to buy the VIX ETPs again as the VIX stabilizes at lower levels. Thus, outflows of VIX

ETPs appear in large chunks after increases in the VIX. Inflows, on the other hand, occur

continuously in lower magnitudes at low levels of the VIX.

We also perform separate event studies for each of the following product types: short-term,

mid-term, leveraged, and un-leveraged. First, Figure IVa depicts the event study for short-

term products. Our sample contains two leveraged products, and as both are short-term, we

exclude them from the short-term group. We see that the pattern in flows is similar to the one

in our initial event study, although there is no clear upward trend prior to the spike. After

the event day, there are massive outflows, which decrease in magnitude as the VIX stabilizes

at a lower plateau. After the stabilization of the VIX, outflows are eventually replaced by

inflows. Second, Figure IVb focuses on mid-term products. For mid-term products, we

see a noisy pattern in flows across our event window. In the days leading up to the spike,

there is an upward trend in flows, although small in magnitude in terms of dollars. After

the spike, we see further inflows, which are then followed by outflows. The event study for

the mid-term products is the only case where cumulative flows are higher in the days right

after the spike than the days just before the spike. However, if we look at the magnitude

of cumulative dollar-flows, we see that they are much more modest for mid-term products

than for short-term products. Third, Figure IVc depicts the evolution of flows for leveraged

products. There is a positive trend in flows prior to the spike, whereas subsequent to the spike,

there are large outflows for the first three days. The outflows then decrease in magnitude,

and from day +7, there is a strong upward trend in cumulative flows. The reversal in flows,

as the VIX stabilizes at lower levels, is also present for un-leveraged products, as seen in

Figure IVd, although the reversal effect is much larger for leveraged products.
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Table III: Event study

This table provides the results of the event study. The first column represents each day, t, in the event
window. The second column shows the average cumulative flows. The third column shows the t-statistics of
the cumulative flows. The fourth column shows the average value of the VIX on each day in the event
window.

t CumAggDF t-stat VIX level

-21 5.60 0.651 14.21
-20 28.04 2.076 14.30
-19 28.93 1.770 14.31
-18 42.06 2.081 14.28
-17 50.85 2.127 14.50
-16 49.10 1.775 14.51
-15 69.77 2.262 14.69
-14 72.45 2.348 14.62
-13 66.15 2.159 14.78
-12 59.13 1.755 14.91
-11 65.38 1.843 14.74
-10 60.65 1.555 14.92
-9 46.31 1.083 14.90
-8 53.57 1.192 14.81
-7 63.97 1.440 14.73
-6 71.30 1.548 14.99
-5 47.32 0.970 14.96
-4 54.88 1.107 15.08
-3 76.45 1.459 15.48
-2 67.66 1.267 15.81
-1 49.57 0.912 15.86
0 64.09 1.095 19.59
1 21.23 0.358 19.30
2 -53.92 -0.912 18.89
3 -125.66 -2.105 18.57
4 -159.50 -2.658 18.16
5 -160.35 -2.598 17.92
6 -177.15 -2.762 17.70
7 -189.35 -2.872 17.24
8 -197.00 -2.841 16.83
9 -183.11 -2.493 16.56
10 -148.01 -1.921 16.48
11 -142.00 -1.867 16.49
12 -128.26 -1.668 16.22
13 -127.22 -1.677 16.23
14 -96.53 -1.213 16.46
15 -101.57 -1.279 16.09
16 -99.72 -1.268 16.05
17 -97.11 -1.196 16.34
18 -77.63 -0.946 16.29
19 -68.36 -0.819 16.25
20 -61.15 -0.710 16.26
21 -55.31 -0.637 16.03
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Figure IV: Event study - split on different products

-20 -10 0 10 20

Event Time

-200

-100

0

100

m
m

14

16

18

20

V
IX

 le
ve

l

VIX ETP flows VIX level

(a) Short-term products
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(b) Mid-term products
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(c) Leveraged products
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(d) Unleveraged products
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Overall the event study shows a clear inverse relation between flows and the level of the

VIX. Peak values in the VIX are followed by large outflows, suggesting that investors expect

a decrease in volatility and the future returns of the VIX ETPs. Interestingly, the large

outflows occur while the assets generate positive returns. VIX ETPs typically have their

largest appreciation on the day of the increase in the VIX (the event day), but returns tend

to stay positive for several days due to persistent backwardation in the VIX futures term

structure. As an example, consider the VIX increase on August 24, 2015 (“Black Monday”

on the Chinese stock market). On this day, VXX, the largest product, had a return of 17.7%.

Over the following six days, the total outflows amounted to $719 mm, despite an average

daily return of 4.2%.

III.B. Speed of mean reversion

Persistence in the VIX varies through time. From Figure II, we see that there are periods

where the reversion towards lower levels after spikes happens fast and periods where high

levels are more persistent. We now examine whether the level of persistence in the VIX

impacts how investors trade VIX ETPs. It is likely that during periods where reversals from

high levels happen at a faster pace, investors will sell more following an increase in the VIX.

Vice versa, in periods where volatility is more persistent, investors are more uncertain about

the direction of future volatility and will be less inclined to sell following an increase in the

VIX. We hypothesize that in periods with low persistence, defined by the high speed of mean

reversion, the negative relation between flows and lagged VIX is amplified.

We quantify the speed of mean reversion in the VIX by its half-life. Specifically, we

define the half-life of the VIX as the expected number of days it takes for the VIX to reduce

half of the distance to its long-run mean. In order to quantify the speed of mean reversion,

we assume that the stochastic process of the level of the VIX follows a mean reverting

Ornstein-Uhlenbeck (OU) process:
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dVIXt = κ(VIXLR − VIXt)dt+ σdWt. (5)

Here, κ > 0 is the speed of reversion for the OU process, VIXLR is the long-run mean of

the VIX, VIXt is the current value of the VIX, σ > 0 is the instantaneous volatility, and Wt is

a Brownian motion. The process in Equation (5) is mean reverting since negative deviations

((VIXLR − VIXt) > 0) from the long-run mean, on average, lead to upward revisions in the

VIX, and vice versa.

In order to operationalize the process in Equation(5), we discretize it to an AR(1) process.

VIXt = c+ φVIXt−1 + bεt, |φ| < 1. (6)

For c = κVIXLR∆t, φ = (1 − κ∆t), b = σ
√

∆t, and ε ∼ N (0, 1), we get the Euler-

Maruyama discretization of the OU process in Equation (6). Weak stationarity implies that

E[VIXt] = µ = c/(1 − φ) for all values of t. This allows us to define deviations from the

stationary mean as:

V̂IXt = φV̂IXt−1 + ut, (7)

where V̂IXt = VIXt − µ is the deviation from the long-run mean of the VIX. In order to

calculate the expected number of days it takes for the VIX to reduce half of the distance to

its long-run mean, we solve for k in the following expectation:
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E[V̂IXt+k] = 0.5V̂IXt,

⇔ φkV̂IXt = 0.5V̂IXt,

⇔ k = − log(2)
log|φ| . (8)

Here, the expectation, E[V̂IXt+k], is obtained via recursive substitution. To estimate the

half-life, k, we use a rolling window of data comprising the latest two years of data (2*252

days). Further, we use an log-transformation of the VIX. The time-series dynamics of the

half-life of the VIX is presented in Figure V.

Figure V: Half-life of the VIX

Figure V shows the expected number of days, k, it takes for the VIX to reduce half of the distance to its
long-run mean as defined in Equation (8). Grey areas correspond to the upper (lower) decile of days where
the speed of mean reversion (half-life) is high (low).
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We re-run the regression in Equation (3) for days where the half-life of the VIX is below

its 10th percentile. The output is reported in Table IV. As the negative coefficients for lags

larger than one day were (and still is) insignificant, we only report the coefficient estimate

for VIXt−1. Comparing the results in Panel A and B, we find that when the speed of mean

reversion is high, a one unit increase in the VIX leads to an aggregated dollar outflow of

25.21 mm on the following day. In periods with higher persistence in the VIX (lower speed of

mean reversion), the outflows following a VIX increase are marginally lower (23.46 mm). In

Panel C, we test whether this difference is significant by augmenting the regression with an

interaction term between VIXt−1 and a dummy that takes on the value 1 for dates where the

half-life is below its 10th percentile. Although it is statistically significant, the size of the

coefficient suggests that outflows following an increase in the VIX at t − 1 are marginally

increased by only 1.14 mm in periods of high speed of mean reversion. Hence, we do detect

some evidence that the level of persistence in the VIX impact how investors trade VIX ETPs,

but the effect is rather small in economic terms.

IV. Do risk factors matter?

All VIX ETPs in our study produce long-term returns that are very negative. But despite

negative returns, the products may still be attractive when adjusting for their systematic

risk exposure. For instance, from a CAPM perspective, we would intuitively expect very low

returns, given the very negative correlation that the assets have with the market portfolio.

The negative returns may thus be regarded as an insurance premium. If so, a positive

risk-adjusted return (alpha) would imply that the insurance embedded in the VIX ETP is

cheap through the lenses of the CAPM model. In the previous section, we document an

inverse relation between the VIX level and flows, suggesting that investors incorporate the

typical mean reverting behavior of the VIX in their trading strategy. But it may also be the

case that changes in alphas are the driver of flows, meaning that investors buy (sell) when

the ETPs are cheap (expensive) relative to their embedded systematic risk exposure. In this
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Table IV: Speed of mean reversion

This table shows the results from the panel regression as in Equation (3), where we have divided the sample
into periods with high and low speeds of mean reversion, respectively. We define periods of high mean
reversion as days where the VIX half-life is in the lower 10 percentile. Panel A presents the results for the
period where the speed of mean reversion is high, and Panel B shows the results for the period where the
speed of mean reversion is low. Panel C shows the results, where we have augmented the regression with an
interaction term between the VIX at t− 1 and a dummy, which is one if the speed of mean reversion is high.
T-statistics in parenthesis are calculated with Newey-West standard errors. ***, and ** represent significance
at 1% and 5% respectively.

Panel A: High speed of mean reversion

VIXt−1
-25.21***
(-3.57)

Observations 152
R2(%) 30.55

Panel B: Low speed of mean reversion

VIXt−1
-23.46***
(-4.58)

Observations 1373
R2(%) 17.90

Panel C: Entire period

VIXt−1
-23.77***
(-6.10)

VIXt−1× Speed of mean reversion -1.14**
(-2.41)

Observations 1525
R2(%) 17.94

section, we examine that hypothesis by taking a revealed preferences approach as in Berk

and van Binsbergen (2016) (BvB), Barber et al. (2016) (BHO), and Agarwal et al. (2018)

(AGR). That is, we compare the ability of different asset pricing models to explain the flows

and thereby try to ascertain which risks factors, if any, are of concern to VIX ETP investors.

The studies by BvB, BHO, and AGR suggest that mutual fund- and hedge fund investors are

mainly concerned with market risk. If this is also the case for VIX ETP investors, we would

expect that flows will react more strongly to CAPM alphas than to the alphas implied by

more elaborate models.
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IV.A. Asset pricing models

In this section, we are interested in the relation between VIX ETP flows and performance

implied by different asset pricing models. By examining a set of candidate models, we

can infer the risk model, which is closest to the model that investors use in making their

investment decision. In addition to raw returns, we estimate alphas for five different asset

pricing models. We consider the CAPM (Sharpe (1964) and Lintner (1965)), the downside

CAPM (Hogan and Warren (1974) and Bawa and Lindenberg (1977)), the coskewness CAPM

(Harvey and Siddique (2000), Mitton and Vorkink (2007), and Christoffersen et al. (2019))

and the four-factor (4F) model (Carhart (1997)). For the fifth model, we augment the CAPM

model with the returns of a (long) straddle. The idea of including this additional factor is

to capture a premium for a long volatility exposure. We estimate beta from the downside

CAPM only for observations where the excess market return is below zero. Further, we follow

Harvey and Siddique (2000), Mitton and Vorkink (2007), and Christoffersen et al. (2019) and

measure coskewness beta with respect to squared market excess returns. We estimate alphas

over the most recent 11 days (half a month) by subtracting the benchmark adjusted returns

from the excess returns of the ETPs:

α̂M,it = 1
11

t∑
j=t−10

(rij −
N∑
n=1

β̂M,n,it × fn,j). (9)

Here M is the asset pricing model, N is the number of factors, rij is the return of ETP

i on day j in excess of the daily 1-month T-bill rate, fn,j is a risk factor, and β̂M,n,it is an

estimated beta for a risk factor in model M . We obtain daily factor returns from Kenneth

French’s webpage.5 For the straddle returns, we use the series made publicly available by

Travis L. Johnson.6 For all asset pricing models, we estimate betas using a rolling window of

60 days. Finally, for the raw return measure (rraw), we calculate the 11-days average of the
5https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
6https://www.travislakejohnson.com/data.html
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returns, not subtracting the risk-free rate.

In Panel A of Table V, we present summary statistics of the estimated VIX ETP betas.

For the CAPM, the betas (β̂) are, on average, negative, -4.60. This illustrates the very

negative correlation that VIX ETPs have with equities. Given the negative CAPM betas, we

expect the VIX ETPs to have negative returns. The estimated downside betas (β̂−) are, on

average, even more negative, -5.51. This implies that the negative correlation becomes even

stronger in down markets. For the 4F model, we find that the VIX ETPs on average load

negatively, -0.40, on the momentum factor (β̂mom). Notably, we find that the load on the

size factor (β̂smb) is, on average positive, 0.35. Harvey and Siddique (2000) find that the size

factor, to some extent, proxies for conditional skewness which could explain the positive load,

as the returns of VIX ETPs are, in general, positively skewed (e.g., Christensen et al. (2020)).

A positive coskewness is also confirmed via the coskewness CAPM, where the load on squared

excess market returns (βcosk) on average equals 53.71. Not surprisingly, the loading on the

straddle factor is positive, 0.22.

Panel B of Table V provides summary statistics for the performance of the VIX ETPs.

The average daily raw return measure is -0.21%, while the median return is -0.29%. This

reflects the positive skewness in the return distribution of these products. Similarly, the

average daily alpha for the coskewness CAPM is negative, -0.31%. For the CAPM and 4F

model, the average daily alpha is much less negative, although still significant, -0.01%, and

-0.02%, respectively. For the downside CAPM, the daily alpha becomes positive, 0.05%, and

for the straddle model, alpha is zero on average.

Table VI presents a correlation matrix between return measures from our different asset

pricing models. We find that raw returns are modestly correlated with alphas from the five

asset pricing models. The two lowest correlation coefficients are between raw returns and

downside alpha (0.24) and raw returns and coskewness alpha (0.32). We find the largest

correlation coefficient between the CAPM and the 4F alphas and the lowest correlations

between raw returns and downside CAPM, coskewness, and straddle alphas.
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Table V: Summary Statistics

This table presents summary statistics of characteristics, betas, and performance for the six ETPs in our
sample across 8001 ETP-day observations in the period October 2012 to February 2019. The data include
only VIX ETPs with direct exposure to the VIX futures. β̂ is CAPM beta and β̂− is downside CAPM beta.
β̂mkt, β̂mom, β̂smb, and β̂hml are factor betas from the Fama-French-Carhart 4F model. β̂cosk is the load on
the second factor from the coskewness CAPM model. β̂straddle is the load on straddle returns from the
straddle model. Note that beta and performance estimates are stated using daily values.

Panel A: VIX ETP betas
Mean Std. Dev Median

β̂ -4.60 2.99 -3.85
β̂− -5.51 4.04 -4.48
β̂mkt -4.67 3.08 -3.81
β̂mom -0.40 0.76 -0.29
β̂smb 0.35 0.81 0.22
β̂hml -0.22 1.17 -0.19
β̂cosk 53.71 94.82 29.93
β̂straddle 0.11 0.08 0.10

Panel B: VIX ETP performance measures

Mean Std. Dev Median
rraw -0.21% 1.46% -0.29%
α̂capm -0.01% 0.80% -0.05%
α̂downside 0.05% 0.90% 0.00%
α̂4F -0.02% 0.77% -0.05%
α̂cosk -0.31% 0.78% -0.22%
α̂straddle 0.00% 0.01% 0.00%

IV.B. Estimation of the flow-alpha relation

We examine the relationship between performance and flows by estimating the model:

Fit = a+ b× α̂M,it−1 + c×Xit−1 + uit, (10)

where Fit is the daily ETP flow estimated via Equation (1), α̂M,it−1 is the alpha estimated

from model M by Equation (9), and Xit−1 is a vector of control variables. As controls, we

include the lagged ETP flow from day t-1, the day t-1 ETP bid-ask spread in basis points,

and the t-1 ratio of price to net-asset-value (NAV). We calculate t-statistics using robust

standard errors by double clustering by ETP and day.

Table VII reports the results of the panel regression from Equation (10). Columns (1)-
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Table VI: Correlations of Performance measures

This table shows the correlation coefficients between performance measures from raw returns, CAPM,
downside CAPM, Fama-French-Carhart 4F model, coskewness CAPM, and straddle model.

rraw α̂capm α̂downside α̂4F α̂cosk α̂straddle

rraw 1.00 0.52 0.24 0.56 0.32 0.41
α̂capm 1.00 0.86 0.95 0.79 0.84
α̂downside 1.00 0.86 0.75 0.86
α̂4F 1.00 0.75 0.78
α̂cosk 1.00 0.76
α̂straddle 1.00

(6) present results for the raw return measure, the CAPM, downside CAPM, 4F model,

coskewness CAPM, and the straddle model, respectively. We only find a significant flow-

performance relation for the raw return measure and the downside CAPM, with the downside

CAPM estimate being significant only at the 10% level. For the raw return measure, we find

that a one percentage point increase in a VIX ETP’s raw returns is associated with a 0.72

percentage point decrease in flows on the following day. In Section III, we have documented

that a rise in the VIX is followed by a decrease in aggregated dollar flows. Since increases in

the VIX are associated with positive returns of VIX ETPs, the inverse relation between raw

returns and flows comes as no surprise. For the downside CAPM, a one percentage point

increase in alpha leads to a 0.49 percentage point increase in future flows. The intuition of

the downside CAPM model is that investors are concerned about how an asset correlates with

the market during downturns. The positive coefficient then implies that investors increase

(decrease) their positions when the VIX ETPs offer cheap (expensive) protection against

market downturns, as implied by a positive (negative) alpha. Given the insurance-like payoff

of the products, this result is intuitively appealing.

For the included control variables, we interestingly find that the coefficient of Price-to-NAV

is positive. In principle, this implies that investors tend to buy (sell) the ETPs when they

are expensive (cheap) relative to the value of the underlying assets. However, in economic

terms the size of the coefficient is very small.
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Table VII: Product flow-performance regression

This table presents the results for the panel regression as in Equation (10). The dependent variable is daily
percentage VIX ETP flow. Performance measures are the average daily raw return or risk-adjusted returns
from the CAPM, downside CAPM, 4F model, coskewness CAPM, and straddle model over the last 11 days
calculated as in Equation (9). Control variables are the lagged ETP flow, the ETP spread measured in basis
points, and the price-to-NAV ratio. T-statistics in parenthesis are calculated with double clustered standard
errors by product and day. ***, **, and * represent significance at 1%, 5%, and 10% respectively.

(1) (2) (3) (4) (5) (6)

rraw
-0.732***
(-4.403)

α̂capm
-0.163
(-0.713)

α̂Downside
0.212*
(1.837)

α̂4F -0.250
(-1.049)

α̂cosk
-0.228
(-0.297)

α̂straddle
-0.042
(-0.189)

Lagged flow 0.056
(1.367)

0.084*
(1.773)

0.084*
(1.837)

0.084*
(1.753)

0.084*
(1.790)

0.085*
(1.799)

Spread -0.002***
(-3.224)

-0.002***
(-2.784)

-0.002***
(-2.848)

-0.002***
(-2.760)

-0.002**
(-2.500)

-0.002***
(2.864)

Price-to-NAV 0.004***
(2.811)

0.005***
(3.263)

0.005***
(3.387)

0.005***
(3.247)

0.005***
(2.660)

0.005***
(3.472)

Observations 8001 8001 8001 8001 8001 8001

IV.C. Are the results unique to the chosen performance horizon?

In Table VIII, we report the results of the panel regression from Equation (10) for the raw

returns and downside CAPM model using performance horizons of 20, 40 days, and 60

days. Changing the performance horizon does not alter the results. Also for the other asset

pricing models in our study (CAPM, 4F, coskewness CAPM, and straddle), we obtain almost

identical results to those reported previously.
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Table VIII: Robustness check - performance horizon

This table presents the results for the panel regression as in Equation (10). Dependent variable is daily
percentage VIX ETP flow. Performance measures are the average daily raw return or risk- adjusted returns
from the downside CAPM model calculated as in Equation (9) but with different performance horizons (20
days, 40 days, and 60 days). Control variables are the lagged ETP flow, the ETP spread measured in basis
points, and the price-to-NAV ratio. T-statistics in parenthesis are calculated with double clustered standard
errors by product and day. ***, and * represent significance at 1% and 10%, respectively.

20 days horizon 40 days horizon 60 days horizon

rraw
-0.704***
(-4.189)

-0.660***
(-4.424)

-0.587***
(-4.178)

α̂Downside
0.148*
(1.817)

0.217*
(1.814)

0.266*
(1.814)

Controls Yes Yes Yes Yes Yes Yes
Observations 8001 8001 8001 8001 8001 8001

IV.D. Sign-test

We also investigate the alpha-flow relation via the methodology of BvB who develop a

sign-test to explain flows of mutual funds. The test relates the sign of a flow to the sign of

performance, given as alpha, implied by an asset pricing model. If investors consider exposure

to risk factors then intuitively positive updates of alpha lead to positive flows, and vice versa.

The frequency with which positive (negative) alphas generate inflows (outflows) provides

a ranking of competing asset pricing models. The model with the highest frequency is the

model that best explains flows. Below we provide a description of our implementation of the

test.

Let φ(·) be a function that returns the sign of a real number, taking the value 1 for a

positive number, -1 for a negative number, and 0 for zero. For every asset pricing model, we

regress the signs of ETP flows on the signs of alpha from an asset pricing model and obtain

the coefficient BFα, given by:

BFα = cov(φ(Fit), φ(α̂M,it−1))
var(φ(α̂M,it−1)) , (11)
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where M refers to the asset pricing model. To avoid look-ahead bias, we use lagged alphas

and contemporary flows as in AGR. From Equation (11), we calculate the average probability

of future flows being positive (negative) conditional on past alphas being positive (negative)

as (1+BFα)/2. An average probability above (below) 50% indicates that positive updates of

performance predicts positive updates of flows. If future flows and past alphas are unrelated,

then BFα = 0, and the average probability becomes 50%.

In order to compare models M and K, we use the following regression:

φ(Fit) = γ0 + γ1 ×
(

φ(α̂M,it−1)
var(φ(α̂M,it−1)) −

φ(α̂K,it−1)
var(φ(α̂K,it−1))

)
+ ζit. (12)

If γ1 is positive, it implies that model M better explains subsequent flows than model K.

This statement is conditional on the hypothesis that there is a positive relation between flows

and alpha. For the regressions in Equation (11) and Equation (12), we calculate t-statistics

with robust standard errors by double clustering by ETP and day.

Table IX presents results from Equations (11) and (12). The first column presents

estimates of BFα. For all models, the coefficient is negative. That is, negative performance

predicts inflows across all models and vice versa. The second column presents the average

probability of the flows being positive (negative) conditional on past performance being

positive (negative) for each asset pricing model. We find that the raw return measure has the

lowest average probability, 43.93%, to predict future positive flows conditional on positive

past returns. This is equivalent to an average probability of 56.07% to predict positive flows

conditional on negative past returns. For the downside CAPM, the coskewness CAPM, and

the straddle model we cannot reject that (1 +BFα)/2 is different from 50%, which suggests

that these models have no predictive power.

If VIX ETP investors consider exposure to risk factors, then we would expect a significant

positive relation between alpha and flows, which we do not find. Hence, these results do not
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Table IX: Sign-test

This table provides the results of the sign-test as in Berk and van Binsbergen (2016). B̂Fα is the coefficient
estimate from regressing the signs of daily flows on the signs of daily performance as in Equation (11). The
percentage of signed flows explained by signed performance is obtained as (1+B̂Fα)/2. Tests for pairwise
comparisons of models as in Equation (12) are provided in the last five columns. T-statistics given in
parenthesis are calculated with double-clustered standard errors by product and day. *** and ** represent
significance levels of 1% and 5%, respectively.

Model B̂Fα % Flow explained CAPM Downside CAPM 4F Coskewness Straddle

Raw return -0.122***
(-2.919) 43.93% -0.065**

(-2.066)
-0.074**
(-2.608)

-0.075**
(-2.380)

-0.062**
(-2.474)

-0.072**
(-2.536)

CAPM -0.038***
(-2.974) 48.08% -0.087***

(-4.008)
-0.021
(-0.947)

-0.021
(-0.972)

-0.039
(-2.450)

Downside CAPM -0.007
(-0.489) 49.64% 0.043

(1.948)
0.018
(0.768)

0.006
(0.347)

4F -0.031**
(-2.433) 48.45% -0.009

(-0.552)
-0.023
(-1.497)

Coskewness -0.023
(-1.362) 48.84% -0.012**

(-0.652)

Straddle -0.012
(-0.743) 49.41%

support that hypothesis. In the last five columns, we provide pairwise comparisons of the

asset pricing models with estimates of γ1 from Equation (12). Comparing raw returns against

the other models, we see that γ1 is estimated to be significantly below 0. Given the negative

relation that we have estimated between flows and alpha, this result is of minor interest as it

only suggest that negative raw returns is best at explaining subsequent positive flows.

V. Flows and the VIX premium puzzle

In this final empirical section, we link our findings to the study by Cheng (2019) (IHC). IHC

defines the VIX premium at time t with horizon T − t as:

V IXP T
t ≡ EQ

t [V IXT ]− EP
t [V IXT ], (13)
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where the physical expectation is given by the estimate from some statistical model, and the

risk neutral expectation is the VIX futures price with maturity T .7 This premium can be

interpreted as the expected dollar loss for a long VIX futures position with $1 notional value

held through maturity. Interestingly, there is a negative or flat relation between changes in

the VIX premium and changes in various risk measures (e.g., realized volatility, the VIX,

and SPX Skew). Hence, when risk increases, the VIX premium tends to decrease or stay flat

before increasing at a later point in time. This empirical pattern is in IHC labeled as the

“low premium response” puzzle. Apparently, the low premium response is tradable. A short

investor who sees her estimated premiums falling can close her position and sidestep ex-post

low-profit high-risk situations.

We hypothesize that the low premium response puzzle can, at least partially, be explained

by the large VIX ETP outflows that we have documented tend to follow after an increase

in the VIX. Brøgger (2019) and Todorov (2020) show how the hedge demand of issuers

of futures-based ETPs is increasing (decreasing) in inflows (outflows). Thus, large capital

outflows decrease the hedging requirement for the issuer of the ETP, who will reduce the

position in VIX futures. This reduction in the issuer’s position will, all else equal, put

downward pressure on the futures prices. Consider an example for illustration: Due to some

perception of increased risk in the equity markets, the VIX increases. Following this increase,

investors on a large scale reduce their positions in VIX ETPs. Consequently, the issuers of

VIX ETPs reduce their inventory in VIX futures, which puts downward pressure on prices.

The expected future VIX then increases less under the risk-neutral measure than under the

physical measure, making the VIX premium, as defined by Equation (13), negative.

To explore our hypothesis, we first estimate VIX premiums at different horizons (one-

month to seven-month). We follow the same procedure as IHC and estimate EP
t [V IXT ] with

an ARMA(2,2) model, and we obtain EQ
t [V IXT ] as the price of a futures contract, which

7IHC use an ARMA(2,2) model for the physical expectation but makes a robustness check with several
other models.
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is rolled over on the last trading day of a month.8 For our time T forecast of EP
t [V IXT ],

we estimate the ARMA(2,2) model using all data (daily VIX close from 1990) through

date t. Figure VI plots our estimates of the one-month, four-month, and seven-month VIX

premium. For all horizons, the premiums are mainly positive. However, large downward

movements occur at the end of August 2015 (China’s renminbi devaluation), the end of

June 2016 (Brexit referendum), and the beginning of February 2018 (“Volmageddon”). The

downward movements are especially large for the one-month premium. The premiums are

highly correlated but smaller in absolute value for larger horizons.

Figure VI: VIX Premiums

Figure VI shows our estimated VIX premiums defined as the difference between the expected future value of
the VIX under the risk-neutral and physical measure, respectively. For estimating these, we follow Cheng
(2019). That is, the expected value under the risk-neutral measure is estimated as the price of a futures
contract, which is rolled on the last trading day of a month. The expected value under the physical measure
is estimated via an ARMA (2,2) model, where we use all data (daily VIX close from 1990) through date t.
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8The one-month premiums estimated by IHC along with a description of the estimation procedure are
made available at: http://www.dartmouth.edu/~icheng/
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V.A. Simple regression

As an initial examination of the relation between premiums and flows, we estimate the simple

model of Equation (14):

∆V IXP h
t = a+ b×∆AggDFt + c×∆Xt + ut. (14)

Here, V IXP h
t is the estimated horizon-h VIX premium at time t, AggDFt is the aggregate

dollar-flow for all products in our sample as defined in Equation (2), and Xt is a vector of

control variables. As controls, we include the default spread (between Moody’s BAA and

AAA corporate bond yields) and the term spread (between the ten-year T-bond and the

three-month T-bill yields), both obtained from the website of the Federal Reserve Bank of

St. Louis. We also include the P/E ratio for the S&P 500 index, the WTI-crude oil price,

the gold price, and the USD/JPY FX rate, all obtained via Bloomberg. For several of our

control variables, we fail to reject the null hypothesis of a unit root, which is why we apply

the first difference transform in Equation (14).

The event study in Section III.A shows that flows in short-term products follow a different

pattern than flows in mid-term products. Hence, if our hypothesis is true, we expect the

relationship between the VIX premium and flows to be different for short-term and mid-term

VIX ETPs. Therefore, we estimate Equation (14) for short-term and long-term products

separately. For ease of interpretation, we standardize all variables to have zero mean and

unit standard deviation.

Panel A in Table X shows the regression output for short-term products. The regression

coefficients for the changes in flows are displayed along the columns for the different VIX

premium horizons. T-statistics (reported in parenthesis) are calculated with Newey-West

standard errors. We see that there is a positive relation between changes in flows in short-term

products and changes in VIX premiums. For example, a one standard deviation increase

in ∆AggDF leads to a 0.331 standard deviation increase in ∆V IXP . The coefficients are
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highly significant at all horizons. However, we also see that the relationship is strongest for

the first two VIX premiums and decreases for longer horizons. This is the pattern we expect

to see if hedging activity of short-term products impacts VIX premiums. This is the case

since hedging activity of short-term products occurs from trades in the futures contracts at

the short end of the term structure. Hence, short-dated futures contracts are exposed to the

largest pricing impact. Most of the VIX products in our sample are ETN’s, which are not

required to hold the underlying assets. This means that they are free to hedge their exposure

as they desire (or not hedge at all). It is possible that ETN issuers are hedging some of the

exposure using futures further out on the term structure, which could explain the positive

relation between short-term product flows and longer horizon VIX premiums.

Panel B shows the regression output for mid-term products. The regression coefficients of

∆AggDF are insignificant at all horizons. This implies that the hedging activity of mid-term

products cannot explain the low premium-response puzzle. This fits well with the findings

in our event study in Section III.A that investors in mid-term products are less prone to

sell during high levels of the VIX. Hence, the issuers will be less likely to reduce their hedge

position in VIX futures when market risk is elevated.

V.B. Relation in the quantiles

From IHC, we know that the VIX premium is lowest when risk is high, which is also when

large outflows tend to occur. Then, if the low premium response puzzle is explained by the

large outflows following increases in the VIX, we would expect the regression coefficient of

aggregated flows in Equation (14) to be higher at the lowest quantiles of the distribution of

VIX premiums. We explore whether this is the case via a quantile regression (see Koenker

and Bassett (1978)), with the criterion function to minimize given by:

QT (βq) =
T∑

t:yt≥x′
tβ

q|yt − x′tβq|+
T∑

t:yt<x′
tβ

(1− q)|yt − x′tβq|. (15)
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Table X: VIX Premium puzzle

This table shows the results of the regression in Equation (14). The dependent variable is changes in the
horizon-h VIX premium. The explanatory variable of interest is changes in dollar-flow aggregated across
products. Panel A contains the results where we only include flows from short-term products. Panel B
contains results where we only include mid-term products. In both cases, control variables are the default
spread(between Moody’s BAA and AAA corporate bond yields), the term spread (between the ten-year
T-bond and the three-month T-bill yields), the S&P 500 P/E ratio, the WTI-crude oil price, the gold price,
and the USD/JPY FX rate, all in terms of differences. T-statistics given in parenthesis are calculated with
Newey-West standard errors. *** represents significance at 1%.

Panel A: Short-term products

∆V IXP 1
t ∆V IXP 2

t ∆V IXP 3
t ∆V IXP 4

t ∆V IXP 5
t ∆V IXP 6

t ∆V IXP 7
t

∆AggDFt
0.331***
(5.161)

0.338***
(4.973)

0.310***
(5.271)

0.279***
(4.850)

0.273***
(4.905)

0.296***
(4.894)

0.254***
(4.978)

Controls Yes Yes Yes Yes Yes Yes Yes
Observations 1352 1352 1352 1352 1352 1352 1350
R2(%) 29.64 29.54 27.15 25.37 26.49 29.01 28.60

Panel B: Mid-term products

∆V IXP 1
t ∆V IXP 2

t ∆V IXP 3
t ∆V IXP 4

t ∆V IXP 5
t ∆V IXP 6

t ∆V IXP 7
t

∆AggDFt
-0.000
(-0.014)

0.016
(0.255)

0.012
(0.232)

0.006
(0.129)

0.018
(0.428)

0.032
(0.663)

0.002
(0.267)

Controls Yes Yes Yes Yes Yes Yes Yes
Observation 1352 1352 1352 1352 1352 1352 1352
R2(%) 18.73 18.15 17.59 17.63 19.11 20.37 22.19

Here, we define y = ∆V IXP h
t and x′tβ = a+ b×∆AggDFt + c×∆Xt, which is similar

to Equation (14). In Figure VII, we plot the slope estimate for ∆AggDF for quantiles in

the range q ∈ (0.01 : 0.01 : 0.99) with corresponding bootstrapped 95% confidence bands in

grey. We obtain slope estimates using one-month VIX premiums and aggregate flows for

short-term products. For comparison, we also plot the OLS slope estimate from Equation

(14) with 95% confidence bands. From Figure VII, we first note that there is a significant

and positive regression coefficient across all quantiles. Secondly, we see a prominent U-shape

in the relation between VIX premiums and short-term product flows. That is, the relation

between flows and the VIX premium is strongest at extreme quantiles, particularly the lower

quantiles which we know coincide with high levels of risk and large outflows.
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Figure VII:
Quantile regression: One-month VIX premium and short-term VIX ETP flows

Figure VII shows slope estimates for ∆AggDF from Equation (15) for quantiles in the range
q ∈ (0.01 : 0.01 : 0.99) with corresponding bootstrapped 95% confidence bands in grey. We use 1,000
bootstrap resamples to obtain confidence bands. Slope estimates are obtained using one-month VIX
premiums and aggregate flows for short-term VIX products. For comparison, we also plot the OLS slope
estimate from Equation (14) with 95% confidence bands in pink.
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V.C. Bivariate dynamics

The estimates in Table X do not allow for the dynamics of premiums to feedback into

flows. We allow for this by estimating a three-lag vector autoregression (VAR) system of

aggregated flows and the one-month VIX premium, both in levels.9 Both variables are again

standardized and we order flows first to assess the contemporaneous impact of flows on the

VIX premium. Figure VIII depicts the impulse response functions of the VAR system along

with the bootstrapped 95% confidence bands. The shocks are orthogonalized, and the time

horizon is days after a shock. The VIX premium increases on the impact of a shock to the

aggregated flows. Despite a small increase at day 3 following the shock, the effect decreases

monotonically and is practically negligible after 10 days. A shock to the VIX premium has no

significant impact on flows at any horizon. In Appendix B, we provide plots of the impulse

response functions where we have included the VIX in the VAR system and also where we

have applied the reverse ordering. In both cases, we find that a shock to aggregated flows

impacts the one-month VIX premium.

In sum, the empirical results of this section suggest that the flow pattern in VIX ETPs,

at least to some degree, may explain why the VIX premium tend to become negative when

risk is elevated.

A final note; a negative VIX premium positively predicts VIX futures returns. Hence, an

implication of our hypothesis being true is also that VIX ETP investors predict the VIX to

revert faster than it does ex-post. Put another way, when the VIX increases, it is much more

persistent than investors expect, and they end up selling volatility too cheap. This also fits

well with Fernandez-Perez et al. (2019), who find that the hedging demand by VIX ETPs

increases deviations in the actual futures prices from the efficient futures prices.
9See Appendix B for details on lag order selection.
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Figure VIII: AggDF and VIXP impulse responses

Figure VIII shows the responses down the rows to the shocks of AggDF and the one-month VIX premium.
Both series are standardized to have zero mean and a unit standard deviation. The shocks are
orthogonalized with AggDF ordered first. The dashed lines are 95% confidence bands based on bootstrapped
standard errors with 1,000 bootstrap resamples.
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VI. Conclusion

VIX ETPs with long volatility exposure have become very popular. The main purpose of

this paper is to examine how these products are applied by investors.

From a regression of aggregated dollar flows on the VIX and its lags, we find that an

increase in the VIX is followed by outflows. This inverse relation is further examined in an

event study of flows around the largest VIX increases, which shows very large outflows at

elevated VIX levels. The documented flow pattern is consistent with investors incorporating

the typical mean reversion of volatility in how they trade VIX ETPs. We estimate the speed

of mean reversion as the half-life of the distance to a long-run level of the VIX, and we find

that the inverse relation between flows and the VIX is slightly amplified in periods with a

high speed of mean reversion.

Using the framework of Barber et al. (2016), Berk and van Binsbergen (2016), and Agarwal

et al. (2018), we investigate whether investors adjust for exposure to risk factors when they

invest in VIX ETPs. Across the different asset pricing models that we consider, none of the

models explain flows better than the simple raw returns. Hence, we do not find clear evidence

of investors adjusting for risk factors.

Finally, we provide a possible explanation for the low premium response puzzle documented

in Cheng (2019). By regressing the changes of VIX premiums on changes in flows, we find a

significant and positive relation. In line with our prediction, this only holds for short-term

products, and the effect is decreasing for VIX premiums at longer horizons. From a quantile

regression, we show that the positive relation between flows and the VIX premium increases

at the extreme levels of the premium. We examine the bivariate dynamics by a vector

autoregression of the aggregated dollar flows and the VIX premium. From the impulse

response functions, a shock to the aggregated flows increases the VIX premium, but a shock

to the VIX premium has no effect on flows. In sum, these results indicate that the flow

pattern in VIX ETPS, at least to some degree, may explain why the VIX premium tends to
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become negative when risk is elevated.
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A. VIX ETPs

Table XI: VIX ETP overview

This table provides an overview of the VIX ETPs (inverse products not included) that have been active
during our sample period. The Average AUM is the average calculated over our sample period. All products,
except EVIX, track either the S&P 500 VIX short- or mid-term futures indexes, indicated by either ST or
MT. EVIX tracks VSTOXX Short-Term Futures Investable Index. The notation TR and ER denotes the
total return and the excess return version of the indexes. The leverage factor of the ETP is applied to the
daily return of the index that it tracks. A leverage ratio of 1 means that the ETP promises the daily rate of
return on the underlying index. A leverage factor of 2 means that the ETP promises twice the return of the
index. The expense ratio is an annual management fee and is charged on a daily basis. The last column
indicates whether we have included the ETP in our sample.

Synbol Name Date of inception Average AUM
(million $) ST/MT Leverage

factor
Expense
ratio Included

VXX iPath S&P 500 VIX Short-Term Futures ETN 01/29/2009 1103.10 ST 1 0.89 Yes
VXZ iPath S&P 500 VIX Mid-Term Futures ETN 01/29/2009 48.35 MT 1 0.89 Yes
VIXM ProShares VIX Mid-Term Futures ETF 01/03/2011 41.72 MT 1 0.85 Yes
VIIZ VelocityShares VIX Medium-Term ETN 11/29/2010 1.11 MT 1 0.89 No
EVIX VelocityShares 1x Long VSTOXX Futures ETN 05/02/2017 10.23 ST 1 1.35 No
VMAX REX VolMAXX Long VIX Futures Strategy ETF 05/03/2016 2.79 ST 1 1.25 No
VIXY Proshares VIX Short-Term Futures ETF 01/03/2011 153.65 ST 1 0.85 Yes
VIIX VelocityShares VIX Short-Term ETN 11/29/2010 11.94 ST 1 0.89 No
TVIX VelocityShares Daily 2x VIX Short-Tern ETN 11/29/2010 340.88 ST 2 1.65 Yes
UVXY ProShares Ultra VIX Short-Term Futures ETF 10/04/2011 421.03 ST 1.5 1.65 Yes
TVIZ VelocityShares Daily 2x VIX Mid-Term ETN 11/29/2010 2.56 MT 2 1.65 No
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B. Flows and the VIX Premium

Table XII: VAR order selection

This table reports the log-likelihood (Log LH), the Bayesian information criterion (BIC), and Akaike’s
information criterion (AIC) for VAR models of AggDF and the one-month VIX premium, of lag order 1-5.

VAR(1) VAR(2) VAR(3) VAR(4) VAR(5)

Log LH -3808.91 -3764.19 -3715.09 -3730.29 -3706.05
BIC 7661.51 7601.21 7561.24 7562.52 7572.28
AIC 7629.81 7548.38 7466.18 7488.57 7456.10

Figure IX: VIX Premiums

Figure IX shows the responses down the rows to the shocks of the VIX, AggDF, and the one-month VIX
premium. All series are standardized to have zero mean and a unit standard deviation. The shocks are
orthogonalized, with the VIX ordered first. The dashed lines are 95% confidence bands based on
bootstrapped standard errors with 1,000 bootstrap resamples.
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Figure X: VIXP and AggDF impulse responses

Figure X shows the responses down the rows to the shocks of AggDF and the one-month VIX premium.
Both series are standardized to have zero mean and a unit standard deviation. The shocks are
orthogonalized, with the VIX premium ordered first. The dashed lines are 95% confidence bands based on
bootstrapped standard errors with 1,000 bootstrap resamples.
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