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Abstract

This paper develops and presents the prior adaptive group lasso (pag-lasso) for generalized
linear models. The pag-lasso is an extension of the prior lasso, which allows for the use of
existing information in the lasso estimation. We show that the estimator exhibits properties
similar to the adaptive group lasso. The performance of the pag-lasso estimator is illustrated
in a Monte Carlo study. The estimator is used to select the set of relevant risk factors in asset
pricing models while requiring that the chosen factors must be able to price the test assets
as well as the unselected factors. The study shows that the pag-lasso yields a set of factors
that explain the time variation in the returns while delivering estimated pricing errors close to
zero. We find that canonical low-dimensional factor models from the asset pricing literature
are insufficient to price the cross section of the test assets together with the remaining traded
factors. The required number of pricing factors to include at any given time is closer to 20.
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1 Introduction

This paper develops and presents the prior adaptive group lasso (pag-lasso), which combines the

prior lasso of Jiang, He, and Zhang (2016) with the adaptive group lasso (aglasso) of Wang and

Leng (2008), allowing the researcher to perform simultaneous variable selection and parameter

estimation on sets of variables with a natural groupingwhile taking previously obtained information

into account. In line with Jiang et al. (2016) developing the prior lasso, we refer to this previously

obtained information on the model specification as the "prior information".1 We demonstrate a way

to utilize this prior information that is also flexible enough to not throw away potentially relevant

information in the current data set. We prove that the pag-lasso features the same consistency

rates as the adaptive group lasso in a generalized linear model as seen in Wang and Tian (2019).

The performance of the pag-lasso is illustrated in a Monte Carlo study and, depending on the

quality of the prior information, we show that there are substantial gains to be made by taking

this information into account for the variable selection. The estimator even copes when the prior

information only includes a few of the relevant variables. The simulation study illustrates the

sensitivity of the pag-lasso to the weight placed on the prior information relative to the current set

of observations. Unsurprisingly, placing more weight on the prior information is beneficial when

the prior information is accurate.

The lasso (Tibshirani, 1996) was first introduced as a special case of the more general bridge

estimator (Frank and Friedman, 1993). The lasso had some appealing properties in its ability to

simultaneously select variables and estimate coefficients. The lasso is, however, consistent only

under rather restrictive conditions (Knight and Fu, 2000; Meinshausen and Bühlmann, 2006).

Many adaptations have been developed to improve on the properties of the lasso, including the

smoothly clipped absolute deviation penalty (SCAD) (Fan and Li, 2001), the elastic net (Zou

and Hastie, 2005), and the adaptive lasso (Zou, 2006). Subsequent studies have established the

statistical properties of the various estimators in different settings. Zou (2006) proves the oracle

property for the adaptive lasso with a fixed number of parameters, and Huang, Ma, and Zhang

1Although one might be able to link this prior information to a "prior" as understood in a Bayesian setting, the analysis
in the present paper is distinctly non-Bayesian.
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(2008) expand this to a parameter space that grows with the sample size and they are able to

accommodate more variables than observations under some conditions. Nardi and Rinaldo (2008)

show selection and estimation consistency for the group lasso in similar low and high-dimensional

settings. Wang, You, and Lian (2015) expand convergence and selection consistency to generalized

linear models for models with more parameters than observations. For the adaptive group lasso,

Zhang and Xiang (2016) are able to show consistency and asymptotic normality when using

OLS as the initial estimator, although this restricts the number of parameters to be less than the

number of observations. Wei and Huang (2010) allow for more parameters than observations by

using the group lasso as the initial estimator and are able to demonstrate selection consistency for

the adaptive group lasso. Wang and Tian (2019) show selection and estimation consistency for

generalized linear models when the number of groups diverges with the sample size, as well as

selection consistency when the number of parameters exceeds the number of observations.

The pag-lasso is applied to the selection of the set of relevant risk factors from the vast set

of risk factors and anomalies proposed in the asset pricing literature since the development of the

capital asset pricing model (Sharpe, 1964; Lintner, 1965) and the arbitrage pricing theory (Ross,

1976). For a good overview of the so called "Factor Zoo", see Harvey and Liu (2019). There have

been numerous attempts at choosing between these factors as an asset pricing model containing

several hundred risk factors can be impractical. Ahmed, Bu, and Tsvetanov (2019) compares

some of the most prominent and mainstream factors models and find that the four-factor model

by Stambaugh and Yuan (2016) outperforms the q-factor model by Hou, Xue, and Zhang (2015),

the Fama-French five-factor model (Fama and French, 2015), and the six-factor model by Barillas

and Shanken (2018). Bryzgalova (2019) takes a brute force approach and computes all possible

combinations of a universe of 50 factors, which is indeed effective in covering all factor models that

have been or could have been suggested, but hardly efficient and certainly not feasible considering

the actual universe of potential factors easily exceeding 500. Harvey, Liu, and Zhu (2016) propose

that researchers use a larger threshold when testing the significance of the abnormal returns derived

from new risk factors and anomalies to correct for multiple testing problems, and Feng, Giglio, and

Xiu (2020) propose a lasso based procedure that can be used to evaluate new factors that should
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control for the explanatory power already present in the existing set of suggested risk factors. One

can also consider the factor zoo as a set of noisy approximations of the true set of underlying latent

risk factors as done by, e.g., Kozak, Nagel, and Santosh (2020) and Lettau and Pelger (2020a),

which use principal component analysis to recover the latent risk factors and vastly shrink the

factor space.

This paper deploys the pag-lasso to select a subset of the proposed factors and anomalies, by

requiring that the factors not only help explain the test assets but also the remaining tradeable risk

factors that are not chosen by the estimator. In particular, we combine three different approaches

from the literature on machine learning and asset pricing. First, our approach builds on a lasso-type

estimator (cf. Freyberger, Neuhierl, and Weber, 2020; Feng et al., 2020) because of its ability to

perform variable selection when faced with many possible explanatory variables. Second, we

require that the asset pricing factors chosen by our approach should price not only the set of test

portfolios but also the set of factors left out by the estimator (cf. Barillas and Shanken, 2018).

Finally, we use the fact that pricing errors should be close to zero when we are using the true set

of factors (cf. Lettau and Pelger, 2020b). We demonstrate that the pag-lasso is able to identify a

set of relevant factors that price the cross section of returns of both the test assets as well as the

remaining factors and anomalies not included in the relevant set. This stands in stark contrast to

the aglasso, which is only able to identify a sufficient set of factors in a few of the samples. We are

also able to show the evolution of the set of relevant risk factors over time which is stable for many

of the included factors indicating some degree of robustness of the pag-lasso procedure. The study

is repeated using the mainstream factor models by Carhart (1997), Fama and French (2015), and

Hou et al. (2015) in the prior set for the pag-lasso, and we show that they are unable to provide a

set of factors sufficient for pricing the test assets as well as the excluded factors.

Section 2 presents the pag-lasso estimator in a generalized linear model framework. Section 3

develops the statistical properties of the pag-lasso. Section 4 provides the Monte Carlo study

comparing various formulations of the pag-lasso and the aglasso. Section 5 applies the pag-lasso

to the selection of risk factors from the asset pricing literature. Section 6 concludes the paper.
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2 The Method

Consider the generalized linear model of Nelder and Wedderburn (1972). We assume that there

exists a real matrix of covariates 𝑋 and a real vector of responses, 𝑌 , where the density of 𝑌 is

assumed to have an exponential form

𝑓 (𝑌 |𝑋) = exp (𝜉 (𝑋) − 𝜙 (𝜉 (𝑋)) + 𝜓(𝑌 )) ,

given known functions 𝜉 (·), 𝜙(·), and 𝜓(·). The expected value of the response variable given

the data is then given by E [𝑌 |𝑋] = 𝜙′ (𝜉 (𝑋)), where 𝜙′ (𝛽) is the first derivative of 𝜙(·) and is

assumed to exist. In order to parametrise the model we use the link function 𝑔(·) to model the link

between the expectation, E [𝑌 |𝑋], and the linear combination, 𝑋𝛽, such that 𝑔 (E [𝑌 |𝑋]) = 𝑋𝛽,

and thus

E [𝑌 |𝑋] = 𝜙′ (𝜉 (𝑋)) = 𝑔−1 (𝑋𝛽) ,

where 𝑔(·) is assumed to be invertible. We will consider the canonical link where 𝑔−1 (𝑋𝛽) =

𝜙′ (𝑋𝛽), and, consequently, 𝜉 (𝑋) = 𝑋𝛽. The vector of parameters, 𝛽, is split into 𝑝𝑛 groups

indexed by 𝑗 = 1, . . . , 𝑝𝑛 and with individual length 𝑑 𝑗 . The total length of 𝛽 is then 𝑞𝑛 =
∑𝑝𝑛
𝑗=1 𝑑 𝑗 .

Consequently, 𝑋 will be a 𝑁 × 𝑞𝑛 dimensional matrix, where 𝑁 is the number of observations, and

we denote row 𝑖 = 1, . . . , 𝑁 of 𝑋 as 𝑋𝑖 , referring to the 𝑖th observation of 𝑋 . Similarly𝑌 is a vector

of length 𝑁 , and 𝑌𝑖 is the 𝑖th observation of 𝑌 . We will continue with the following log-likelihood

ℓ𝑛 (𝛽; 𝑋,𝑌 ) =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖𝑋

𝑇
𝑖 𝛽 − 𝜙

(
𝑋𝑇𝑖 𝛽

))
.

The adaptive group lasso allows for the selection of variables with a natural grouping. Inspired

by the improvements made by the adaptive lasso over the original lasso, the adaptive group

lasso utilizes an initial estimator to calculate adaptive weights for the penalization term that differs

across the various groups of variables. The adaptive group lasso maximizes the following objective
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function with respect to 𝛽

𝑄𝑛 (𝛽; 𝑋,𝑌 ) = ℓ𝑛 (𝛽; 𝑋,𝑌 ) − 𝜆𝑛, 𝑗
𝑝𝑛∑︁
𝑗=1

𝛽 𝑗2
= ℓ𝑛 (𝛽; 𝑋,𝑌 ) − 𝜆𝑛

𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2
where 𝜆𝑛 is a tuning parameter for the penalty term, 𝛽 is the initial estimator used to create adaptive

weights, and ∥·∥2 is the Euclidean norm. The value of the objective function decreases for non-

zero parameter estimates. The tuning parameter 𝜆𝑛 determines the degree of regularisation of the

parameters. Small values of 𝜆𝑛 leads to less regularisation, with the limiting case, 𝜆𝑛 = 0, gives

in no regularisation at all and results in the standard OLS estimator. For 𝜆𝑛 → ∞ the penalty

dominates the likelihood in the objective function and sets all parameters to zero. The optimal

value of 𝜆𝑛 is often found through minimisation of some information criterion or cross validation.

𝜆𝑛, 𝑗 = 𝜆𝑛
𝛽 𝑗−12 illustrates the adaptive nature of the penalization of non-zero estimates. The

initial estimator is typically chosen as some consistent estimator like the group lasso2 such that

truly non-zero parameters have estimates larger in magnitude than those for irrelevant variables,

in general. Hence, we expect that non-zero parameters are penalized less than the irrelevant

parameters yielding a more accurate variable selection and less bias in the parameter estimation.

The pag-lasso augments the aglasso by allowing for pre-existing knowledge to guide the variable

selection. We assume that the pre-existing knowledge can be summarized in 𝑌 𝑝. The information

collected in 𝑌 𝑝 can be constructed in various ways, but one possible scenario would be to have

some knowledge regarding the value or relevance of the parameters prior to estimation. This can

be the case in very high dimensional settings with small sample sizes, as seen in genome-wide

association studies (see Jiang et al., 2016). In these studies, it is very costly to generate more

observations, and the possibility of utilising findings from previous studies can be of great value.

The intuition is that the estimator is penalized for making predictions that deviate from 𝑌 𝑝, in

addition to minimizing the error relative to the observations in 𝑌 . The importance placed in 𝑌 𝑝

2OLS can be used in low-dimensional settings. Using the lasso and the group lasso as the initial estimator is theoretically
equivalent as they are both consistent estimators. However, we find that using the lasso as the initial estimator yields
more variables to be included in the second step of the estimation compared to the group lasso.
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relative to 𝑌 is given by the weight 𝜂 > 0. A high value of 𝜂 indicates a strong belief in the model

summarized in 𝑌 𝑝 3. The objective function of the pag-lasso to be maximised is then given by

𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) = ℓ𝑛 (𝛽; 𝑋,𝑌 ) + 𝜂ℓ𝑛 (𝛽; 𝑋,𝑌 𝑝) − 𝜆𝑛
𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2
= 𝑆𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) + 𝜆𝑛

𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2 , (1)

where 𝑆𝑛 = 1
𝑛

∑𝑛
𝑖=1

(
𝑌𝑖𝑋

𝑇
𝑖
𝛽 − 𝜙

(
𝑋𝑇
𝑖
𝛽
) )

+ 𝜂

𝑛

∑𝑛
𝑖=1

(
𝑌
𝑝

𝑖
𝑋𝑇
𝑖
𝛽 − 𝜙

(
𝑋𝑇
𝑖
𝛽
) )
, 𝛽 is some consistent esti-

mator used to construct the adaptive weights, and 𝑌 𝑝 is constructed using some prior information.

The tuning parameter 𝜂 determines the weight placed on the prior information. For 𝜂 = 0, no

weight is placed on the prior information and the estimator collapses to the adaptive group lasso.

For 𝜂 → ∞ only the prior information is taken into account and the “current” data set is completely

disregarded. In the simple setting of linear regression, the pag-lasso estimator maximises the

objective function

𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) =
1
𝑛
∥𝑌 − 𝑋𝛽∥22 +

𝜂

𝑛
∥𝑌 𝑝 − 𝑋𝛽∥22 + 𝜆𝑛

𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2
= 𝑆𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) + 𝜆𝑛

𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2 ,
where 𝑆𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) = 1

𝑛
∥𝑌 − 𝑋𝛽∥22 +

𝜂

𝑛
∥𝑌 𝑝 − 𝑋𝛽∥22.

The estimator minimizing the objective function in (1) can be written as (cf. Jiang et al. (2016))

𝛽 = argmax
𝛽

©«ℓ𝑛
(
𝛽; 𝑋,𝑌

)
− 𝜆𝑛

𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗2ª®¬ , (2)

with 𝑌 = (𝑌 + 𝜂𝑌 𝑝) /(1 + 𝜂), which is of the same form as the adaptive group lasso. Hence the

pag-lasso can be solved using the same algorithms as the adaptive group lasso. For some given

3If the information summarized in 𝑌 𝑝 is derived from a large number of existing studies from credible sources, then
that could warrant a larger value of 𝜂. In this setting, the new data might be considered to be noisier than some average
of the pre-existing studies, and the researcher wishes to extract any additional information from this new sample.
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prior information on the values of 𝛽 denoted by 𝛽𝑝 we can calculate 𝑌 𝑝 as

𝑌 𝑝 = 𝜙′ (𝑋𝛽𝑝) .

One way to quantify the prior information is by considering a subset of the available variables

which are believed to be relevant with high certainty, denoted by 𝑆𝑝. 𝛽𝑝 is then obtained as the

group lasso estimate

𝛽𝑝 = argmax
𝛽

©«1𝑛
𝑛∑︁
𝑖=1

(
𝑌𝑖𝑋

𝑇
𝑖 𝛽 − 𝜙

(
𝑋𝑇𝑖 𝛽

))
− 𝜆𝑛

𝑝𝑛∑︁
𝑗=1
𝑤 𝑗

𝛽 𝑗2ª®¬ ,
where

𝑤 𝑗 =


0, 𝑗 ∈ 𝑆𝑝√︁
𝑑 𝑗 , 𝑗 ∉ 𝑆𝑝 .

This ensures that all variables in 𝑆𝑝 are estimated as non-zero while at the same time allowing

additional estimates to be non-zero if the corresponding variables contain sufficient information.

First, let (𝑌𝑖 , 𝑋𝑖) with 𝑖 = 1, . . . , 𝑛 be iid samples from some population (Y,X). The use

of the pag-lasso assumes sparsity in the set of parameters. Here, sparsity refers to the fact that

the parameters for all variables in most of the groups are exactly zero. We denote the true

vector of parameters as 𝛽0 =

(
𝛽𝑇01, . . . , 𝛽

𝑇
0𝑝𝑛

)𝑇
, and define 𝛽0 =

(
𝛽
(1)𝑇
0 , 𝛽

(2)𝑇
0

)𝑇
with 𝛽 (1)0 =(

𝛽𝑇0 𝑗 , 𝑗 = 1, . . . , 𝑘𝑛
)𝑇
, and 𝛽 (2)0 =

(
𝛽𝑇0 𝑗 , 𝑗 = 𝑘𝑛 + 1, . . . , 𝑝𝑛

)𝑇
. Without loss of generality, we

assume that
𝛽0 𝑗2 ≠ 0 for 𝑗 = 1, . . . , 𝑘𝑛, and

��𝛽0 𝑗2 = 0 for 𝑗 = 𝑘𝑛 + 1, . . . , 𝑝𝑛. As a result,

we also define 𝑋𝑖 =
(
𝑋

(1)𝑇
𝑖

, 𝑋
(2)𝑇
𝑖

)
, for 𝑖 = 1, . . . , 𝑛, and 𝑋 = (𝑋1, . . . , 𝑋𝑛)𝑇 ≜

(
𝑋 (1) , 𝑋 (2) ) with

𝑋 (1) =
(
𝑥1, . . . , 𝑥𝑘𝑛

)
and 𝑋 (2) =

(
𝑥𝑘𝑛+1, . . . , 𝑥𝑝𝑛

)
. We denote the total number of parameters and

total number of non-zero parameters as 𝑞𝑛 =
∑𝑝𝑛
𝑗=1 𝑑 𝑗 and 𝑞0 =

∑𝑘𝑛
𝑗=1 𝑑 𝑗 , respectively.

Furthermore, we define the parameter space as Ω𝑛 ⊆ R𝑞𝑛 . For any 𝛽 ∈ Ω𝑛, let 𝜙 (𝑋𝛽) =(
𝜙

(
𝑋𝑇1 𝛽

)
, . . . , 𝜙

(
𝑋𝑇𝑛 𝛽

) )𝑇 , 𝜙′ (𝑋𝛽) = (
𝜙′

(
𝑋𝑇1 𝛽

)
, . . . , 𝜙′

(
𝑋𝑇𝑛 𝛽

) )𝑇 , and Σ (𝛽) = diag
(
𝜙′′

(
𝑋𝑇1 𝛽

)
, . . . , 𝜙′′

(
𝑋𝑇𝑛 𝛽

) )
. From the generalized linearmodel it follows thatE [𝑌 ] = 𝜙′ (𝑋𝛽0) and cov (𝑌 ) =

7
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Σ (𝛽0). Define Σ = 1
𝑛
𝑋𝑇Σ (𝛽0) 𝑋 and Σ(1) =

1
𝑛
𝑋 (1)𝑇Σ (𝛽0) 𝑋 (1) . Let 𝜏min (𝐴) and 𝜏max (𝐴) denote

the smallest and largest eigenvalues of any given symmetricmatrix, 𝐴. Let 𝜃1 = min 𝑗=1,...,𝑘𝑛
𝛽0 𝑗2.

For simplicity we use the constant 𝑀 > 0 in various settings throughout the paper. It is allowed to

take different values in different contexts.

3 Theoretical Results

3.1 Generalized Linear Models

This section is an adaptation of the theorems inWang and Tian (2019) for the aglasso in generalized

linear models. The following results are divided into two categories. First, we consider the

statistical properties of the pag-lasso in a low dimensional setting where the number of parameters

to be estimated is smaller than the number of observations. In the second case, the number of

parameters is allowed to be larger than the number of observations.

3.1.1 The case of 𝑞𝑛 < 𝑛

Before presenting the theoretical results, we provide the following assumptions.

(A1) 𝑞𝑛 = 𝑂 (𝑝𝑛) and 𝑞0 = 𝑂 (𝑘𝑛).

(A2) There exists an initial estimator 𝛽, such that
��𝛽 − 𝛽02 = 𝑂𝑃 (

(𝑝𝑛/𝑛)1/2
)
.

(A3) The eigenvalues of Σ are bounded away from zero and infinity.

(A4) There exists some constant 𝑀 > 0, such that max1≤𝑖≤𝑛max1≤ 𝑗≤𝑝𝑛
𝑥𝑖 𝑗 ≤ 𝑀 .

(A5) There exists a large constant 𝑀 > 0 and a large open subset, B𝑛 ⊂ Ω𝑛 that contains 𝛽0, such

that for almost all 𝑥𝑖 , we have
��𝜙 (3) (

𝑥𝑇
𝑖
𝛽
) �� ≤ 𝑀 .

(A6) There exist constants 0 < 3𝑐1 < 𝑐2 ≤ 1 and𝑀 > 0, such that 𝑝𝑛 = 𝑂 (𝑛𝑐1) and 𝑛(1−𝑐2)/2𝜃1 ≥

𝑀 .

(A7) There exists some constant 𝑀 > 0, such that E
[ (
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)2] ≤ 𝑀 , and for 𝑖, 𝑙 ∈ {1, . . . , 𝑁}

we have that cov
[
𝑥𝑖 , 𝜀𝑙 + 𝜂𝜀𝑝𝑙

]
= 0.

8
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Assumptions (A1)-(A6) are identical to those presented in Wang and Tian (2019) and as-

sumption (A7) is required for the following theorems to hold for the pag-lasso. Assumption (A1)

gives some bound on the number of variables in each group but still allows for the number of

groups and variables in each group to grow with the sample size, 𝑛. By (A1), we have that (A2)

is consistent with an estimator with a diverging number of parameters in Fan and Peng (2004).

Assumptions (A3)-(A5) are regularity conditions also used for the derivations in Fan and Peng

(2004). Assumption (A6) allows for the number of groups to diverge to infinity and bounds the size

of the non-zero parameters in
{𝛽0 𝑗2 : 𝑗 = 1, . . . , 𝑘𝑛} away from zero. It is similar to condition

(8) in Zhao and Yu (2006). Assumption (A7) states that the explanatory variables are uncorrelated

with the errors across observations and that the variance of the errors is finite. The following

theorems exhibit properties similar to those in Wang and Tian (2019), and assumption (A7) is the

critical addition used to arrive at these results.4 Proofs can be found in the appendix.

Theorem 3.1. Under conditions (A1) - (A7), we have

𝛽 − 𝛽02 = 𝑂 𝑝

(
(𝑝𝑛/𝑛)1/2

)
,

if 𝜆𝑛𝑛(2−𝑐2+𝑐1)/2 → 0.

This theorem shows the convergence rate of the pag-lasso. The rate is identical to that found in

Theorem 3.2 of Portnoy (1984) and Theorem 1 of Fan and Peng (2004) and is conditional on the

convergence rate of the initial estimator, 𝛽.

Theorem 3.2. Let 𝛽∗ =
(
𝛽
(1)𝑇
∗ , 0𝑇

)𝑇
, and define

𝛽
(1)
∗ = argmax

𝛽

𝑆𝑛 (𝛽) − 𝜆
𝑘𝑛∑︁
𝑗=1

𝛽 𝑗−12 𝛽 𝑗 ��2 , 𝛽 𝑗 = 0 for 𝑗 = 𝑘𝑛 + 1, . . . , 𝑝𝑛 .
Suppose that conditions (A1) - (A7) hold. If 𝜆𝑛𝑛1−𝑐1 → ∞, then with probability tending to one,

𝛽∗ is the solution of (2).

4Failing to specify the prior information correctly will make it less likely for assumption (A7) to hold.
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This theorem shows that if the penalty parameter, 𝜆𝑛, increases sufficiently quickly with 𝑛, then

the pag-lasso estimator is able to set the coefficients relating to irrelevant variables to zero with

probability tending to one for large 𝑛.

Theorem 3.3. (Oracle property) Suppose that 𝜆𝑛𝑛(2−𝑐2+𝑐1)/2 → 0, 𝜆𝑛𝑛1−𝑐1 → ∞, and furthermore

that E
[
𝑌1 − 𝜙′

(
𝑋𝑇1 𝛽0

) ]4
< ∞. Under conditions (A1) - (A7), the pag-lasso estimator 𝛽 =(

𝛽 (1)𝑇 , 0𝑇
)𝑇 satisfies

1. Sparsity: P
({
𝑗 :

𝛽 𝑗2 ≠ 0} = {1, . . . , 𝑘𝑛}
)
→ 1.

2. Asymptotic normality:

𝑛1/2𝛼𝑇𝑛Σ
1/2
(1)

(
𝛽 (1) − 𝛽 (1)0

)
𝑑→ N (0, 1) ,

where 𝛼𝑛 is a
(∑𝑘𝑛

𝑗=1 𝑑 𝑗

)
-dimensional unit vector.

This theorem shows the oracle property for the pag-lasso estimator. Required that the penalty

parameter is large enough to set the coefficients for irrelevant variables equal to zero (as ensured by

𝜆𝑛𝑛
1−𝑐1 → ∞ and Theorem 3.2) and small enough to keep coefficients of relevant parameters as

non-zero (𝜆𝑛𝑛(2−𝑐2+𝑐1)/2 → 0), the pag-lasso is able to recover the true sparsity pattern and yield

root-𝑛 consistent estimates of the non-zero coefficients.

3.1.2 The case of 𝑞𝑛 > 𝑛

We will now present the theoretical properties of the pag-lasso in the high-dimensional setting

where 𝑝𝑛 > 𝑛. The following definition from Wei and Huang (2010) is used to prove selection

consistency.

Definition 1. An estimator 𝛽 is consistent at zero with rate 𝑟𝑛 if

𝑟𝑛 max
𝑗=𝑘𝑛+1,..., 𝑝𝑛

𝛽2 = 𝑂 𝑝 (1),

10
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where 𝑟𝑛 → ∞ as 𝑛→ ∞, and there exists a constant 𝜉0 > 0 such that for any 𝜖 > 0,

𝑃

(
min

𝑗=1,...,𝑘𝑛

𝛽2 > 𝜉0𝜃1) > 1 − 𝜖,
for 𝑛 sufficiently large.

For the following results we make the assumptions:

(B1) The eigenvalues of Σ(1) are bounded away from zero and infinity.

(B2) Conditions (A1), (A4), (A5), and (A7) hold.

(B3) The initial estimator 𝛽 is consistent at zero with rate 𝑟𝑛 → ∞.

(B4) There exist constants 0 < 3𝑐3 < 𝑐4 ≤ 1 and 𝑀 > 0, such that 𝑘𝑛 = 𝑂 (𝑛𝑐3) and such that

𝑛(1−𝑐4)/2𝜃1 ≥ 𝑀 .

(B5) There exist constants 𝑀 > 0 and 𝑅 > 0, such that E
[��𝜀𝑖 + 𝜂𝜀𝑝𝑖 ��𝑟 ] ≤ 1

2𝑟!𝑀
𝑟−2𝑅 for any

𝑟 ≥ 2.

(B6)

𝑘𝑛

𝑛𝑟2𝑛𝜆
2
𝑛

→ 0,
log (𝑝𝑛)
𝑛𝑟2𝑛𝜆

2
𝑛

→ 0.

Assumptions (B1)-(B5) are identical to those presented in Wang and Tian (2019) and assump-

tion (B6) is required for the following theorems to hold for the pag-lasso. Assumption (B1) ensures

that Σ(1) is positive definite, which is reasonable as long as the number of relevant variables, 𝑞0,

is much smaller than the number of observations, 𝑛. Assumption (B3) requires a zero-consistent

estimator as the initial estimator. By theorem 3 in Wang et al. (2015), the initial estimator can

be chosen as the group lasso estimator, which is consistent at zero with rate (𝑛/(𝑘𝑛 log (𝑝𝑛)))1/2.

Assumption (B5) bounds the moments of the noise and requires the tail distribution of the noise to

have an exponential decay. Assumption (B6) restricts the relation between the number of groups

and the penalty parameter. When using the group lasso as the initial estimator (B6) can be written

as

11
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(B6)’

𝑘2𝑛 log (𝑝𝑛)
𝑛2𝜆2𝑛

→ 0,
log (𝑝𝑛)2 𝑘𝑛

𝑛2𝜆2𝑛
.

Choosing the penalty parameter 𝜆𝑛 = 𝑛(𝑐4−𝑐3−1)/2−𝛿 with any small 𝛿 > 0, we can have as many as

exp
(
𝑛−𝛿+𝑐4/2−𝑐3+1/2

)
groups. The proofs for the following theorems can be found in the appendix.

Theorem 3.4. 𝛽∗ =

(
𝛽
(1)𝑇
∗ , 0𝑇

)𝑇
is defined as in Theorem 3.2. Suppose that conditions (B1) -

(B4) hold. If 𝜆𝑛𝑛(1−𝑐4+𝑐3)/2 → 0, then

𝛽∗ − 𝛽02 = 𝑂 𝑝

(
(𝑘𝑛/𝑛)1/2

)
.

This theorem shows the convergence rate for the pag-lasso. The proof is similar to that of

Theorem 3.1 and is omitted.

Theorem 3.5. Under conditions (B1) - (B6). If 𝜆𝑛𝑛(1−𝑐4+𝑐3)/2 → 0, then the pag-lasso estimator

𝛽∗ =
(
𝛽
(1)𝑇
∗ , 0𝑇

)𝑇
is the solution of (2) with probability tending to one.

This theorem shows that the pag-lasso sets the coefficients of irrelevant parameters equal to

zero.

Theorem 3.6. Under condition (B4), we have

P
({
𝑗 :

𝛽 𝑗2 ≠ 0} = {1, . . . , 𝑘𝑛}
)
→ 1.

This theorem ensures that truly non-zero parameters are also estimated as non-zero parameters

by the pag-lasso. Together with Theorem 3.5, this shows that the pag-lasso is able to recover the

true sparsity pattern. This is as close to the oracle property as one can get in a high-dimensional

setting where it is impossible to arrive at asymptotic normality for the non-zero estimates.

12



The Prior Adaptive Group Lasso and the Factor Zoo Bertelsen, K. P.

4 Simulation Study

This section compares the pag-lasso with the aglasso (Wang and Leng, 2008). For both estimators,

we use the lasso and the group lasso as initial estimators to calculate the adaptive weights. We

compare the models across several dimensions.

nVAR The total number of non-zero coefficients in the estimation.

CNZ The number of coefficients that are correctly estimated to be non-zero.

INZ The number of coefficients that are incorrectly estimated to be non-zero.

Contains The share of simulations where the correct model is contained in the estimated model.

Sparsity The share of simulations where all the relevant coefficients are estimated as non-zero

and all irrelevant variables are excluded.

Bias Calculated as the L1 norm bias for the non-zero coefficients.

ME The model error is calculated as

𝑀𝐸 =
1
𝑁

(
𝛽 − 𝛽0

)𝑇
𝑋𝑇𝑋

(
𝛽 − 𝛽0

)
MSE The mean squared error quantifies the in-sample fit of the model. For given estimates 𝛽 it

is calculated as

MSE =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑋𝛽 − 𝑌

)2
We consider six different examples consisting of three formulations of 𝛽0 and two different

types of simulated explanatory variables. The three different formulations of 𝛽0 are

𝛽01 =
(
−0.5,−2, 0.5, 2,−1.5, 1, 2,−1.5, 2,−2, 1, 1.5,−2, 1, 1.5, 0𝑇 , . . . , 0𝑇

)𝑇
(3)

𝛽02 =
(
−0.5,−2, 0.5, 0𝑇 , 2,−1.5, 1, 0𝑇 , 2,−1.5, 2, 0𝑇 ,−2, 1, 1.5, 0𝑇 ,−2, 1, 1.5, 0𝑇 , . . . , 0𝑇

)𝑇
(4)

13
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𝛽03 =
(
−0.5,−2, 0.5, 2,−1.5, 1, 0𝑇 , . . . , 0𝑇 , 2,−1.5, 2,−2, 1, 1.5,−2, 1, 1.5

)𝑇
, (5)

where 0 is a three-dimensional vector of zeros.

The simulated data is created in two ways, where we consider the case with 𝑝 groups and 3

variables in each group. First, we generate 𝑝 latent variables, 𝑍1, . . . , 𝑍𝑝, from a multivariate

normal distribution with zero mean and with the covariance between 𝑍𝑖 and 𝑍 𝑗 being 0.5 |𝑖− 𝑗 |.

In the first setting, we trichotomise the data such that for each 𝑍 𝑗 we generate three interrelated

variables

𝑋 𝑗1𝑖 =


1, if 𝑍 𝑗𝑖 < Φ−1 (1/3) ,

0, if 𝑍 𝑗𝑖 ≥ Φ−1 (1/3) ,

𝑋 𝑗2𝑖 =


1, if Φ−1 (1/3) ≤ 𝑍 𝑗𝑖 < Φ−1 (2/3) ,

0, if 𝑍 𝑗𝑖 < Φ−1 (1/3) or 𝑍 𝑗𝑖 ≥ Φ−1 (2/3) ,
(6)

𝑋 𝑗3𝑖 =


1, if 𝑍 𝑗𝑖 ≥ Φ−1 (2/3) ,

0, if 𝑍 𝑗𝑖 < Φ−1 (2/3) .

Thus yielding 𝑝 different groups with 3 related variables. Alternatively, we generate the three

variables as

𝑋 𝑗1𝑖 =𝑍 𝑗𝑖

𝑋 𝑗2𝑖 =𝑍
2
𝑗𝑖 (7)

𝑋 𝑗3𝑖 =𝑍
3
𝑗𝑖 .

For given 𝛽0 and 𝑋 , we generate 𝑌 = 𝑋𝛽0 + 𝜖 , where 𝜖 ∼ N (0, 𝜎𝜖 ). This yields six different

examples split into (1) 𝑌 generated using trichotomised data and 𝛽01, (2) 𝑌 generated using

trichotomised data and 𝛽02, (3) 𝑌 generated using trichotomised data and 𝛽03, (4) 𝑌 generated

using non-trichotomised data and 𝛽01, (5) 𝑌 generated using non-trichotomised data and 𝛽02, and

(6) 𝑌 generated using non-trichotomised data and 𝛽03. The variables are not standardised prior
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to estimation. While standardisation prior to estimation can be useful it is mostly of relevance

when the explanatory variables vary significantly in magnitude. The magnitude of the variables

generated in (6) is identical, and we don’t consider it to be a significant problem for the variables

in (7) either. The number of groups is set to 𝑝 = 100, the standard deviation of 𝜖 is 𝜎𝜖 = 2, the

number of observations is 𝑁 = 100, the number of relevant groups is 𝑘 = 5, and the number of

variables in each group is 𝑑 = 3. To give an idea of the sensitivity to the weight placed on the prior

information through 𝜂 we set 𝜂 = {1, 10}.

We estimate the pag-lasso in a number of different specifications and compare it to the aglasso.

Both are estimated using the lasso and the group lasso as initial estimators. The tuning parameter

𝜆 is chosen using ten-fold cross-validation. The different specifications of the pag-lasso cover the

various degrees to which the prior contains the true set of relevant variables. They are divided into

three categories with a total of six groups.

G1: The prior only includes relevant groups.

S1: The prior includes all five relevant groups.

S2: The prior includes three of the five relevant groups.

G2: The prior includes a mix of relevant and irrelevant groups.

S3: The prior includes all five relevant groups as well as two irrelevant groups.

S4: The prior includes three of the five relevant groups as well as ten irrelevant groups.

G3: The prior only includes irrelevant groups.

S5: The prior includes two irrelevant groups.

S6: The prior includes ten irrelevant groups.

Tables 1, 2 , and 3 show the performance of the pag-lasso using the variable groups presented

above and 𝜂 = 1 compared to the aglasso using the data obtained from examples 1, 2, and 3.

Tables 13, 15, and 17 depict the simulations using the same data generating process but with

𝜂 = 10 and are referred to in the appendix.
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Table 1: Simulations for example 1 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 11.376 14.041 12.074 14.042 12.417 11.571 12.927
(0.285) (0.163) (0.257) (0.164) (0.284) (0.308) (0.395)

CNZ 11.368 14.041 12.072 14.041 12.029 11.153 11.161
(0.284) (0.163) (0.257) (0.164) (0.258) (0.289) (0.288)

INZ 0.009 0.000 0.002 0.001 0.388 0.418 1.767
(0.016) (0.000) (0.008) (0.004) (0.110) (0.110) (0.247)

Contains 0.250 0.716 0.327 0.718 0.320 0.224 0.225
(0.043) (0.045) (0.047) (0.045) (0.047) (0.042) (0.042)

Sparsity 0.250 0.716 0.327 0.718 0.280 0.196 0.122
(0.043) (0.045) (0.047) (0.045) (0.045) (0.040) (0.033)

Bias 14.479 4.261 7.863 4.259 7.948 8.807 8.767
(0.154) (0.256) (0.401) (0.256) (0.406) (0.406) (0.401)

MSE 26.225 4.926 10.552 4.923 10.591 12.645 12.190
(9.144) (3.226) (6.354) (3.221) (6.539) (6.965) (6.662)

ME 22.842 2.150 7.690 2.149 7.778 9.757 9.465
(0.914) (0.322) (0.633) (0.322) (0.649) (0.689) (0.659)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽01 from (3) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

Tables 4, 5, and 6 show the performance of the pag-lasso with 𝜂 = 1 compared to the aglasso

using the data obtained from examples 1, 2, 3 with trichotomised 𝑋 . Tables 19, 21, and 23 show

the simulations using the trichotomised data for the data generating process with 𝜂 = 10 and are

deferred to the appendix.

The first column of the tables contains the results from the adaptive group lasso estimates,

and the remaining six columns are specific to the pag-lasso. The six columns refer to the six

different specifications of the prior set of relevant variables presented above. There are some

general tendencies from the various simulations which indicate that there are indeed gains to be
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Table 2: Simulations for example 2 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 11.802 14.208 12.327 14.196 13.275 13.368 15.573
(0.276) (0.147) (0.254) (0.147) (0.312) (0.345) (0.446)

CNZ 11.772 14.208 12.321 14.190 12.219 11.466 11.403
(0.274) (0.147) (0.253) (0.147) (0.251) (0.280) (0.283)

INZ 0.030 0.000 0.006 0.006 1.056 1.902 4.170
(0.030) (0.000) (0.013) (0.013) (0.170) (0.201) (0.351)

Contains 0.302 0.758 0.367 0.751 0.344 0.257 0.255
(0.046) (0.043) (0.048) (0.043) (0.048) (0.044) (0.044)

Sparsity 0.298 0.758 0.366 0.750 0.225 0.125 0.065
(0.046) (0.043) (0.048) (0.043) (0.042) (0.033) (0.025)

Bias 6.486 2.305 2.994 2.325 3.040 4.900 4.802
(0.105) (0.149) (0.162) (0.150) (0.163) (0.208) (0.206)

MSE 24.564 4.667 10.255 4.696 10.118 11.633 10.922
(8.595) (2.688) (6.424) (2.687) (6.327) (6.665) (6.073)

ME 21.265 1.904 7.426 1.934 7.407 8.941 8.472
(0.865) (0.271) (0.644) (0.271) (0.634) (0.665) (0.606)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽02 from (4) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

made when utilising additional information if that information resembles the true data generating

process sufficiently close.

Generally, using the lasso as the initial estimator results in more variables being included

by the final estimator. There are 15 relevant variables (five relevant groups and three variables

in each group), and the aglasso tends to select around 20 variables with the trichotomised data

when using the group lasso as the initial estimator. This jumps to 25 variables when using the

lasso as the initial estimator. The pag-lasso also experiences a jump in the number of included

variables, but it is not as large as seen with the aglasso. Using the group lasso as the initial
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Table 3: Simulations for example 3 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.135 14.250 12.693 14.256 13.014 12.618 14.430
(0.274) (0.146) (0.244) (0.144) (0.273) (0.313) (0.426)

CNZ 12.117 14.250 12.687 14.253 12.669 11.853 11.862
(0.272) (0.146) (0.244) (0.144) (0.243) (0.284) (0.281)

INZ 0.018 0.000 0.006 0.003 0.345 0.765 2.568
(0.023) (0.000) (0.013) (0.009) (0.111) (0.141) (0.295)

Contains 0.362 0.772 0.437 0.771 0.431 0.332 0.326
(0.048) (0.042) (0.050) (0.042) (0.050) (0.047) (0.047)

Sparsity 0.359 0.772 0.436 0.770 0.379 0.252 0.131
(0.048) (0.042) (0.050) (0.042) (0.049) (0.043) (0.034)

Bias 4.801 1.700 1.990 1.693 2.010 3.321 3.431
(0.091) (0.132) (0.132) (0.133) (0.130) (0.171) (0.171)

MSE 22.702 4.531 8.482 4.517 8.561 10.390 9.933
(7.532) (2.715) (5.412) (2.575) (5.459) (5.858) (5.286)

ME 19.386 1.752 5.631 1.731 5.758 7.578 7.336
(0.750) (0.270) (0.536) (0.256) (0.535) (0.581) (0.523)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽03 from (5) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

estimator improves the performance of the estimator because the additional variables included

by the lasso are predominantly irrelevant variables. This property is not as pronounced for the

non-trichotomised data, however.

Turning to the Contains metric, both estimators include all, or mostly all, of the relevant

variables with the trichotomised data, thus limiting the possible gains from including more in-

formation with the pag-lasso. There are, however, gains from incorporating relevant information,

as can be seen from the slight increase in the share of simulations that contains all the relevant

variables, which increases from around 80% for the adaptive group lasso to upwards of 99% for
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Table 4: Simulations for example 1 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 19.403 15.781 16.375 17.322 27.481 20.797 33.077
(0.587) (0.207) (0.291) (0.282) (0.629) (0.529) (0.722)

CNZ 14.424 14.972 14.890 14.968 14.848 14.299 14.207
(0.122) (0.029) (0.057) (0.031) (0.067) (0.133) (0.141)

INZ 4.979 0.808 1.485 2.354 12.632 6.498 18.871
(0.564) (0.205) (0.283) (0.280) (0.624) (0.504) (0.702)

Contains 0.814 0.991 0.964 0.989 0.951 0.775 0.748
(0.039) (0.010) (0.019) (0.010) (0.022) (0.042) (0.043)

Sparsity 0.252 0.809 0.664 0.454 0.017 0.088 0.002
(0.043) (0.039) (0.047) (0.050) (0.013) (0.028) (0.004)

Bias 7.568 7.308 7.469 7.506 8.368 8.180 8.959
(0.198) (0.188) (0.212) (0.191) (0.228) (0.228) (0.243)

MSE 3.419 3.262 3.191 3.147 2.544 2.890 2.316
(0.636) (0.557) (0.616) (0.549) (0.559) (0.677) (0.598)

ME 0.901 0.734 0.844 0.851 1.493 1.310 1.866
(0.044) (0.042) (0.054) (0.044) (0.060) (0.065) (0.065)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽01 from (3) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

the pag-lasso. These gains can be found in the first four specifications of the prior set of relevant

variables (𝑆1, 𝑆2, 𝑆3, and 𝑆4). While 𝑆1 is the only specification that is completely correct, they

are all able to increase the share of simulations that select at least all the relevant variables. If

the prior information is completely wrong and does not contain any of the relevant variables, we

observe a reduction in the share of simulations that contain the entire set of relevant variables.

We see a similar pattern for the non-trichotomised data. However, the two settings with complete

misspecification of the prior set of relevant variables, the performance is still close to that of the

aglasso.
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Table 5: Simulations for example 2 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 21.324 16.062 16.890 17.964 29.688 22.530 35.523
(0.697) (0.253) (0.353) (0.350) (0.674) (0.633) (0.755)

CNZ 14.517 14.994 14.904 14.988 14.841 14.385 14.232
(0.115) (0.013) (0.055) (0.019) (0.070) (0.129) (0.143)

INZ 6.807 1.068 1.986 2.976 14.847 8.145 21.291
(0.682) (0.252) (0.347) (0.349) (0.668) (0.612) (0.739)

Contains 0.845 0.998 0.969 0.996 0.949 0.806 0.761
(0.036) (0.004) (0.017) (0.006) (0.022) (0.040) (0.043)

Sparsity 0.185 0.769 0.599 0.385 0.012 0.075 0.000
(0.039) (0.042) (0.049) (0.049) (0.011) (0.026) (0.000)

Bias 4.684 4.249 4.328 5.833 6.808 6.903 7.778
(0.155) (0.142) (0.150) (0.226) (0.246) (0.242) (0.270)

MSE 3.287 3.230 3.141 3.092 2.447 2.747 2.213
(0.663) (0.587) (0.653) (0.577) (0.592) (0.699) (0.614)

ME 0.920 0.773 0.903 0.912 1.600 1.431 1.970
(0.048) (0.046) (0.060) (0.048) (0.062) (0.071) (0.068)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽02 from (4) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

The share of simulations that correctly identifies the sparsity pattern in the coefficients must

by definition be lower than the share of simulations in which simply the non-zero coefficients are

detected. The difference in the two metrics, Contains and Sparsity, is found in the estimator’s

ability to exclude irrelevant variables. The aglasso includes around five irrelevant variables across

the different trichotomised examples, and the pag-lasso includes anything from less than one

to more than 20 irrelevant variables. This is driven by the accuracy of the prior information.

Unsurprisingly, the number of irrelevant selected variables increases with the number of irrelevant

variables included in the prior set. However, the number of irrelevant variables that are selected by

the pag-lasso also seems to increase when fewer relevant variables are included, as can be seen in
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Table 6: Simulations for example 3 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 19.554 15.777 16.512 17.412 27.609 21.024 33.318
(0.588) (0.203) (0.293) (0.293) (0.620) (0.529) (0.723)

CNZ 14.445 14.976 14.928 14.976 14.910 14.358 14.262
(0.120) (0.027) (0.046) (0.027) (0.051) (0.129) (0.134)

INZ 5.109 0.801 1.584 2.436 12.699 6.666 19.056
(0.567) (0.201) (0.292) (0.292) (0.617) (0.506) (0.709)

Contains 0.819 0.992 0.976 0.992 0.970 0.793 0.761
(0.039) (0.009) (0.015) (0.009) (0.017) (0.041) (0.043)

Sparsity 0.254 0.807 0.674 0.461 0.018 0.088 0.001
(0.044) (0.039) (0.047) (0.050) (0.013) (0.028) (0.003)

Bias 3.425 2.938 3.013 4.250 5.817 5.243 6.975
(0.118) (0.114) (0.120) (0.199) (0.260) (0.219) (0.279)

MSE 3.404 3.267 3.171 3.142 2.522 2.865 2.300
(0.633) (0.594) (0.628) (0.561) (0.577) (0.685) (0.603)

ME 0.904 0.739 0.856 0.864 1.507 1.325 1.873
(0.044) (0.045) (0.055) (0.046) (0.061) (0.069) (0.068)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽03 from (5) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.

the difference between groups 𝑆1 and 𝑆2. The aglasso excludes almost all of the irrelevant variables

with the non-trichotomised data, thus making the potential gains from using the pag-lasso very

small. On the other hand, the number of irrelevant variables that are selected with prior sets 𝑆5

and 𝑆6 is also very small compared to what is seen with the trichotomised data, thus limiting the

reduction in performance with poorly specified prior sets as well.

Looking at model fit and estimation accuracy, as summarised by the metrics Bias, MSE, and

ME, we see that for the trichotomised data, the pag-lasso only leads to minor gains when correctly

specified prior sets. However, the reduction in performance is also limited when the prior set

is misspecified. The non-trichotomised paint a different picture with vast improvements in Bias,
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MSE, and ME for the pag-lasso. Across all the metrics studied in the simulations, we find that

increasing the weight given to the prior information, 𝜂, leads to more extreme findings. If the

pag-lasso outperforms the aglasso, then increasing 𝜂 will lead to even stronger outperformance,

and, conversely, if the pag-lasso underperforms the aglasso, decreasing 𝜂 leads to even stronger

underperformance.

5 Empirical Study

We apply the pag-lasso to a large set of pricing factors from the asset pricing literature. Since

the development of the capital asset pricing model (Sharpe, 1964; Lintner, 1965) and the arbitrage

pricing theory (Ross, 1976), the asset pricing literature has contributed with the discovery of a

large number of factors that are suggested to be useful in explaining the cross section of returns

of financial assets. As the number of proposed factors has continued to increase, the asset pricing

literature has sought to sort and select among the candidates in the "Factor Zoo". Harvey et al.

(2016) suggest that a larger critical value should be used when testing for new factors in order to

adjust for multiple testing. Pukthuanthong, Roll, and Subrahmanyam (2019) set up criteria that

must be fulfilled before a factor can be categorised as "genuine", Bryzgalova (2019) uses a brute

force approach and estimates all possible combinations of 51 factors to identify the best model in

a Bayesian setup5. Feng et al. (2020) present a double lasso approach to test for new factors while

correctly controlling for previously identified factors, Ahmed et al. (2019) compare a few of the

most prominent factor models6, and Kozak et al. (2020) estimate a low dimensional set of latent

factors using principal components.

5This approach quickly becomes unfeasible due to the combinatorial increase in computation time. The data used in
the present study contains 150 risk factors, which is already much larger than the one used in Bryzgalova (2019).
Using this method to sort through the more than 500 factors summarized by Harvey and Liu (2019) will be completely
infeasible using modern technology.

6We present the performance of the factor models by Carhart (1997), Fama and French (2015), and Hou et al. (2015) in
section 5.4 and compare them to our implementation of the prior adaptive group lasso.
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5.1 Data

We use the collection of factors and test portfolios that are used in Feng et al. (2020)7. The data set

contains 150 factors from the asset pricing literature. While this does not come close to covering

the entire factor zoo, it is among the largest collections of factors that have been assembled to date.

The set of factors consists of all the U.S. equity market factors from Kenneth French’s data library,

the liquidity factor from Pastor and Stambaugh (2003), the q-factors from Hou et al. (2015), the

intermediary asset pricing factors from He, Kelly, and Manela (2017), factors from the AQR data

library, and 135 long-short value-weighted proxy portfolios based on characteristics described in

Hou, Xue, and Zhang (2020) and Green, Hand, and Zhang (2017). See Feng et al. (2020) for more

details on the construction of the factors. A brief overview of the 150 factors can be found in

table 25. The factors are observed at a monthly frequency from July 1976 to December 2017.

We use the 202 portfolios used in Giglio and Xiu (2019), which consist of 25 portfolios

constructed using a two-way sort by size and book-to-market ratio, 25 portfolios two-way sorted

by operating profitability and investment, 25 portfolios two-way sorted by size and variance, 35

portfolios two-way sorted by size and net issuance, 25 portfolios two-way sorted by size and

accruals, 25 portfolios two-way sorted by size and momentum, 25 portfolios two-way sorted by

size and beta, and 17 industry portfolios.

5.2 Setting up the model

We divide the sample into rolling windows of five years of length. This should provide enough data

points to identify a limited number of relevant factors while being short enough to keep most of

the fundamental dynamics constant. Then we estimate the relevant set of factors for each window

such that we can describe the evolution of the set over time by comparing the different windows.

From the arbitrage pricing theory, we have that given traded factors, 𝑓𝑡 , the asset excess returns,

𝑟𝑖𝑡 follow a linear factor model

𝑟𝑖𝑡 = 0 + 𝑓 𝑇𝑡 𝛽𝑖 , 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇,

7We thank the authors for kindly providing the data.
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where 𝑓𝑡 and 𝛽𝑖 are 𝐾 ×1 vectors with factor excess returns and factor loadings, respectively. For a

given set of factors and test assets, this relation can be evaluated by testing 𝛼𝑖 = 0 in the regression

𝑟𝑖𝑡 = 𝛼𝑖 + 𝑓 𝑇𝑡 𝛽𝑖 + 𝜖𝑖𝑡 , (8)

for fixed 𝑖, where 𝜖𝑖𝑡 is an iid error term. If 𝛼𝑖 = 0, then the factors in 𝑓𝑡 are said to "price" 𝑟𝑖𝑡 . Like

Barillas and Shanken (2018), we want to require the selected factors to be able to price unselected

factors in addition to the test assets. The selected factors, of course, trivially price themselves, but

we will also require the relation in (8) to hold with each of the 𝐾 factors acting as test assets.

This system can be stacked into a single equation, similarly to what was done in Hwang

and Rubesam (2020). Let 𝑟𝑖 =
(
𝑟𝑇
𝑖1, . . . , 𝑟

𝑇
𝑖𝑇

)𝑇 be the 𝑇 × 1 vector of test asset excess returns

for each 𝑖 = 1, . . . , 𝑁 . Let 𝑓 𝑗 =

(
𝑓 𝑇
𝑗1, . . . , 𝑓

𝑇
𝑗𝑇

)𝑇
be the 𝑇 × 1 vector of factor excess returns

for each 𝑗 = 1, . . . , 𝐾 . Then collect all 𝑟𝑖 and 𝑓 𝑗 such that 𝑟 =
(
𝑟𝑇1 , . . . , 𝑟

𝑇
𝑁
, 𝑓 𝑇1 , . . . , 𝑓

𝑇
𝐾

)𝑇 is
the (𝑁 + 𝐾) 𝑇 × 1 vector of excess returns for all assets that are required to be priced by the

selected factors. Collect the traded factors in the 𝑇 × 𝐾 matrix 𝑓 = ( 𝑓1, . . . , 𝑓𝐾 ) and construct the

(𝑁 + 𝐾) 𝑇 × (𝑁 + 𝐾) 𝐾 block diagonal matrix of factor excess returns 𝐹 = 𝐼𝑁+𝐾 ⊗ 𝑓 , where 𝐼𝑁+𝐾

is the 𝑁 + 𝐾 dimensional identity matrix. Then the test regressions in (8) for all test assets and

factors can be written as

𝑟 = 𝛼 ⊗ 𝜄𝑇 + 𝐹𝛽 + 𝜖,

where 𝛼 is the 𝑁 + 𝐾 × 1 vector of intercepts, 𝛽 =
(
𝛽𝑇1 , . . . , 𝛽

𝑇
𝑁+𝐾

)𝑇 is the (𝑁 + 𝐾) 𝐾 × 1 vector

of factor loadings, 𝜖 =
(
𝜖𝑇1 , . . . , 𝜖

𝑇
𝑁+𝐾

)𝑇 is the (𝑁 + 𝐾) 𝑇 × 1 vector of residuals, and 𝜄𝑇 is a

𝑇 × 1 vector of ones. Of course this can also be cast as a standard linear regression by defining

𝐵 =
(
𝛼𝑇 , 𝛽𝑇

)𝑇 and 𝑋 = (𝜄𝑇 ⊗ 𝐼𝑁+𝐾 , 𝐹) such that

𝑟 = 𝑋𝐵 + 𝜖 .

The procedure can also handle non-traded factors by defining 𝑔𝑙𝑡 as the return of non-traded
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factor 𝑙 = 1, . . . , 𝐿 at time 𝑡. In a fashion similar to the construction of 𝐹 above, we can then

construct𝐺 as the (𝑁 + 𝐾) 𝑇 × (𝑁 + 𝐾) 𝐿 matrix containing the non-traded factors. Since they are

non-traded, they will not be included on the left-hand side in 𝑟 . Then, the combination of 𝐹 and 𝐺

will price the set of test assets and traded factors in the regression

𝑟 = 𝛼 ⊗ 𝜄𝑇 + 𝐹𝛽 + 𝐺𝛾 + 𝜖,

The factors in 𝐹 can be divided such that all columns relating to the same factor are grouped

together. This allows the group lasso to require that a factor is either included or excluded for all

assets. This prevents factor 𝑗 from being selected as good at pricing asset 𝑖 but not asset 𝑙. If

a factor is deemed to be relevant it must be included for all assets, which, in turn, increases the

penalty in the lasso objective function. The prior adaptive group lasso then selects the set of factors

that best balance the trade-off between pricing the test assets while keeping the set of relevant

factors small. To illustrate the grouping structure consider

𝐹 =

©«

𝑓 · · · 0 · · · 0
...

...
...

0 · · · 𝑓 · · · 0
...

...
...

0 · · · 0 · · · 𝑓

ª®®®®®®®®®®®®¬
=

©«

𝑓1 · · · 𝑓𝐾 · · · 0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...

0 · · · 0 · · · 𝑓1 · · · 𝑓𝐾 · · · 0 · · · 0
...

...
...

...
...

...

0 · · · 0 · · · 0 · · · 0 · · · 𝑓1 · · · 𝑓𝐾

ª®®®®®®®®®®®®¬
,

Such that the red variables in 𝐹 are grouped together and the green variables are grouped together.

Similarly, the grouping can be illustrated in the vector factor loadings

𝛽 =

(
𝛽11 · · · 𝛽1𝐾 · · · 𝛽𝑖1 · · · 𝛽𝑖𝐾 · · · 𝛽𝑁1 · · · 𝛽𝑁𝐾

)𝑇
.

Let 𝛽 𝑗 be the subvector of 𝛽 containing the elements relating to factor 𝑗 .
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For a given prior 𝑟 𝑝, the prior adaptive group lasso estimates, �̂�, and 𝛽, are obtained as

[
�̂�, 𝛽

]
=argmin

𝛼,𝛽

©« 1𝑇 ∥𝑟 − 𝛼 ⊗ 𝜄𝑇 − 𝐹𝛽∥22 +
𝜂

𝑇
∥𝑟 𝑝 − 𝛼 ⊗ 𝜄𝑇 − 𝐹𝛽∥22 + 𝜆𝑛

𝐾∑︁
𝑗=1
𝑤 𝑗

𝛽 𝑗2ª®¬
=argmin

𝛼,𝛽

©« 1𝑇 ∥𝑟 − 𝛼 ⊗ 𝜄𝑇 − 𝐹𝛽∥22 +
𝜆𝑛

1 + 𝜂

𝐾∑︁
𝑗=1
𝑤 𝑗

𝛽 𝑗2ª®¬ ,
where 𝑟 = (𝑟 + 𝑟 𝑝) /(1 + 𝜂). The estimates are obtained using ten-fold cross validation.

There are several ways to construct the prior information summarized in 𝑟𝑃. We will take

advantage of the fact that when all relevant factors are included, the factors will price the test assets

as well as the remaining factors. Using this property of the asset pricing models as a guiding

principle for the estimation has also been utilised in Barillas and Shanken (2018) and Lettau and

Pelger (2020a). Hence, we estimate the following group lasso that restricts the intercepts to be

zero.

[
𝛽𝑃

]
= argmin

𝛽

©« 1𝑇 ∥𝑟 − 𝐹𝛽∥22 + 𝜆𝑛
𝐾∑︁
𝑗=1

𝛽 𝑗2ª®¬ ,
from which the prior information can be computed as 𝑟 𝑝 = 𝑋𝛽𝑃.

We estimate the set of relevant risk factors using the pag-lasso and aglasso. We then evaluate

these sets of potentially relevant factors using the test by Gibbons, Ross, and Shanken (1989), in the

following referred to as GRS. Let the set of factors for evaluation be given by S =
{
𝑗 :

𝛽 𝑗2 ≠ 0}
with cardinality 𝑆. Let 𝐹S and 𝛽S be the subsets of 𝐹 and 𝛽, respectively, only containing the

elements that are relevant to the factors indexed by 𝑆, and let 𝑟−S and 𝛼−S be the subsets of 𝑟 and

𝛼 not related to the factors contained in S. Then the model is re-estimated with OLS

𝑟−S = 𝛼−S ⊗ 𝜄𝑇 + 𝐹𝑆𝛽𝑆 + 𝜖 .

The GRS test evaluates the null hypothesis that all the intercepts are equal to zero against the

alternative that at least one of the intercepts are different from zero. The test statistic is computed

26



The Prior Adaptive Group Lasso and the Factor Zoo Bertelsen, K. P.

as

𝜉 =
�̂�𝑇 Σ̂𝛼�̂�

1 + �̂�𝑇
𝐹
Σ̂𝐹 �̂�𝐹

∼ 𝜒2 (𝑁 + 𝐾 − 𝑆) ,

where Σ̂𝛼 is the estimated covariance matrix of the intercepts, and �̂�𝐹 and Σ̂𝐹 are the estimated

mean and covariances of the factor returns. The degrees of freedom are given by the number of

test assets, and the number of potential factors subtracted the number of factors estimated to be

relevant.

A number of different studies have used machine learning techniques to estimate the set of

relevant risk factors. Freyberger et al. (2020) use the group lasso to model excess returns non-

parametrically, Feng et al. (2020) use a double pass lasso to form a test for new factors, Lettau

and Pelger (2020b) penalizes pricing errors in principal component framework, and Hwang and

Rubesam (2020) models the time series and the cross section using Bayesian methods and all

possible (relevant) combinations of the risk factors. These studies are different but related ways

to describe the set of relevant asset pricing factors in some form. The present study differs from

previous studies in its ability to explicitly name the relevant factors over time while taking the

pricing error into account in addition to explaining the time series and cross section of returns.

In spirit, our approach combines the penalty for pricing errors in Lettau and Pelger (2020b) and

the requirement of the ability of the selected factors to price the excluded factors in Barillas and

Shanken (2018). Although, we employ different methods from the lasso literature.

5.3 The relevant factors over time

This section provides an overview of the ability of the aglasso and the pag-lasso to produce sets

of factors that are able to price the test assets, as well as the factors not selected by the estimator.

Figures 1, 2, and 3 show the frequency with which the most important factors are included by the

aglasso as well as the pag-lasso with either up to 10 or 20 factors in the prior set. Figures 4, 5, and

6 show how the inclusion of the various factors evolves over time. Figures 7, 8, and 9 show the

p-value of the GRS test corresponding to the estimated set of relevant factors at any given period.
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Figure 1: Factors chosen by the aglasso
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This figure shows the factors chosen by the aglasso. The vertical axis contains the frequency with which
the factors are chosen across all sample windows. The horisontal axis contains the factor id referencing
to the list in table 25. The factors are sorted by their frequency of inclusion in the estimated set in
descending order.

Figure 2: Factors chosen by the pag-lasso with ten prior factors
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This figure shows the factors chosen by the pag-lasso with up to 10 factors in the prior set. The vertical
axis contains the frequency with which the factors are chosen across all sample windows. The horisontal
axis contains the factor id referencing to the list in table 25. The factors are sorted by their frequency of
inclusion in the estimated set in descending order, and factors chosen with a frequency below 25% are
omitted.
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Figure 3: Factors chosen by the pag-lasso with 20 prior factors
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This figure shows the factors chosen by the pag-lasso with up to 20 factors in the prior set. The vertical
axis contains the frequency with which the factors are chosen across all sample windows. The horisontal
axis contains the factor id referencing to the list in table 25. The factors are sorted by their frequency of
inclusion in the estimated set in descending order, and factors chosen with a frequency below 25% are
omitted.

Figure 4: Timeline of factors chosen by the aglasso
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the aglasso. The vertical axis contains the factor id referencing to
the list in table 25.
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Figure 5: Timeline of factors chosen by the pag-lasso with ten prior factors
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the pag-lasso with up to ten factors in the prior set. The vertical axis
contains the factor id referencing to the list in table 25. The publication date of the factor is shown in
orange, and the last date of the sample used in the original study is shown in green.
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Figure 6: Timeline of factors chosen by the pag-lasso with 20 prior factors
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the pag-lasso with up to 20 factors in the prior set. The vertical axis
contains the factor id referencing to the list in table 25. The publication date of the factor is shown in
orange, and the last date of the sample used in the original study is shown in green.
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We see that the aglasso only estimates three factors to be relevant, namely the excess market

return (1) (Black, Jensen, and Scholes, 1972), small minus big (21) (Fama and French, 1993),

and momentum (34) (Carhart, 1997). Notably, the excess market return and small minus big are

included at all times, whereas the momentum factor is only included during a smaller window

from 2000-2005, as can be seen in figure 4. We also see that performing a GRS test on this very

restricted set of factors rejects the null hypothesis of no pricing errors at almost all times except a

few cases at the end of the sample.

The pag-lasso includes a much larger number of risk factors than the aglasso. This stems

from the number of chosen parameters in the prior step of the pag-lasso is much larger due to the

restriction of zero intercepts. They are, however, not all included at all times. The factors with

the highest selection frequency are the excess market return (1), small minus big (21), momentum

(34), the intermediary investment factor (149) (He et al., 2017), and betting against beta (140)

(Frazzini and Pedersen, 2014). From figure 8, we see that there are more periods in which the

GRS test cannot reject the null that the factors selected by the pag-lasso are able to jointly price

the test assets as well as the unselected factors. There are, however, numerous periods in which

the GRS test still leads to rejections of zero pricing errors. This changes when allowing as many

as 20 factors to be included in the prior set. In addition to the factors included by the pag-lasso

with ten factors in the prior set, the factors with the highest inclusion frequency are R&D to sales

(57) (Chan et al., 2001), illiquidity (61) (Amihud, 2002), HML devil (137) (Asness and Frazzini,

2013), liquidity (62) (Pastor and Stambaugh, 2003), long-term reversal (7) (De Bondt and Thaler,

1985), short-term reversal (23) (Jegadeesh and Titman, 1993), and market beta (2) (Fama and

MacBeth, 1973). We see in figure 9 that factors selected by the prior adaptive group lasso are

able to price the test assets as well as the remaining factors in almost all periods. We also see

that while the aglasso only includes the momentum factor (34) (Carhart, 1997) in a fraction of the

windows, both formulations of the pag-lasso include momentum in many more windows. Across

reasonable values of 𝜂 the chosen set of factors only showed minor differences. The simulations

in section 4 showed that the weight placed on the prior information through 𝜂 plays a significant

role. However, the significant overlap between the factors in the prior set and the factors that are
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Figure 7: Testing the null of no pricing errors for the aglasso
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the aglasso. The test is performed for each sample window across time as shown on
the horisontal axis. The vertical axis is truncated from above at 15%. There are horisontal lines showing
the 1% and 5% significance levels.

eventually selected could suggest that the explanatory power of the prior factors is so strong that it

trumps the remaining factors.

While many of the factors selected by the pag-lasso and the aglasso are well-known in the asset

pricing literature, we will give a brief overview. Of the three factors selected by the aglasso we

start with the well-known excess market return (Black et al., 1972), which in theory contains all

assets in the investor universe. By most practical implementations, this is crudely approximated

by the S&P500 index. Second, the aglasso chooses the small minus big factor (Fama and French,

1993), which illustrates that small firms tend to have higher expected returns than large firms.

Finally, the aglasso selects the one year momentum factor from Carhart (1997) and Jegadeesh and

Titman (1993), which takes advantage of the fact that stocks with high returns for the past year

(past winners) tend to keep delivering high returns. In addition to these, the pag-lasso selects the

intermediary investment factor (He et al., 2017), which considers the value-weighted equity return

of primary dealers. They argue that unsophisticated households are unlikely to be the primary

driver of market returns for complex assets as proposed by the consumption CAPMmodel. Instead,
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Figure 8: Testing the null of no pricing errors for the pag-lasso with ten prior factors
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the pag-lasso with up to ten factors in the prior set. The test is performed for each
sample window across time as shown on the horisontal axis. The vertical axis is truncated from above
at 15%. There are horisontal lines showing the 1% and 5% significance levels.

Figure 9: Testing the null of no pricing errors for the pag-lasso with 20 prior factors
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the pag-lasso with up to 20 factors in the prior set. The test is performed for each
sample window across time as shown on the horisontal axis. The vertical axis is truncated from above
at 15%. There are horisontal lines showing the 1% and 5% significance levels.
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they proxy the marginal investor using primary dealers since they are present in a significant part

of all transactions made in the market, and over-the-counter markets in particular. The betting

against beta factor (Frazzini and Pedersen, 2014) is based on a strategy that buys low beta stocks

and sells high beta stocks, which should yield positive expected returns contrary to the predictions

made by the original CAPM model. The R&D to sales factor (Chan et al., 2001) is based on

the strategy of buying stocks of firms with a large ratio of R&D expenditures to sales and selling

the stocks of those with low ratios. The illiquidity factor (Amihud, 2002) is an illustration of the

fact that relatively illiquid stocks have higher expected returns than liquid stocks. The HML devil

factor (Asness and Frazzini, 2013) is an alternative to the value factor (Fama and French, 1993)

but using a more timely measure of the book to market ratio. The liquidity factor (Pastor and

Stambaugh, 2003) uses that stocks with high sensitivity to overall market liquidity have higher

expected returns than low sensitivity stocks. The long-term reversal factor (De Bondt and Thaler,

1985) is based on the assumption of overreaction of investors to dramatic news events, which

is corrected over the following year(s). The short-term reversal factor (Jegadeesh and Titman,

1993) is a short-term counterpart to the long-term reversal factor by De Bondt and Thaler (1985),

considering the reversal experienced in the first month after portfolio construction. The market

beta factor (Fama and MacBeth, 1973) is constructed based on the sensitivity of individual stock

returns to the market return.

The p-values in figures 7, 8, and 9 are the result of several 𝜒2 tests. Hence, simply due to

multiple testing, we would expect to see a positive number of rejections of the null for given positive

significance levels even under the null. We see that for all the presented models, there are indeed

times at which the null of zero pricing errors is rejected. Since we have not explicitly corrected for

multiple testing, we cannot say for certain that the sets selected by the pag-lasso can or cannot be

rejected overall. However, we can comment on the relative performance of the different approaches

and it is highly unlikely that the rejections depicted in figure 7 are all due to multiple testing.

Looking at the distribution of the selected factors over time in figures 4, 5, and 6, we see

that they are, for the most part, included in consecutive windows. This speaks to some degree of

stability of the estimator as well as the underlying factor structure of the returns, such that if a
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Figure 10: Adjusted 𝑅2 with ten prior factors
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This figure shows the adjusted 𝑅2 across all sample windows for the aglasso and the pag-lasso with up
to ten factors in the prior set.

Figure 11: Adjusted 𝑅2 with 20 prior factors
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This figure shows the adjusted 𝑅2 across all sample windows for the aglasso and the pag-lasso with up
to 20 factors in the prior set.
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Figure 12: Factors chosen with the Fama and French (2015) model as prior
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This figure shows the factors chosen by the pag-lasso with the factors from the Fama and French (2015)
model in the prior set. The vertical axis contains the factor id referencing to the list in table 25. The
horisontal axis contains the factor id referencing to the list in table 25. The factors are sorted by their
frequency of inclusion in the estimated set in descending order.

Figure 13: Timeline of factors chosen with the Fama and French (2015) model as prior
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the pag-lasso with the factors from the Fama and French (2015)
model in the prior set. The vertical axis contains the factor id referencing to the list in table 25.
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Figure 14: Testing the null of no pricing errors with the Fama and French (2015) model as
prior
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the pag-lasso with the factors from the Fama and French (2015) model in the prior set.
The test is performed for each sample window across time as shown on the horisontal axis. The vertical
axis is truncated from above at 15%. There are horisontal lines showing the 1% and 5% significance
levels.
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factor is included at some point in time it is likely to be included in the future as well as having

been relevant in the past. The publication date and end-of-sample date for the discovery of the

included factors are indicated by orange and green dots, respectively, in the figures. From this, we

do not see any particular evidence that the chosen factors are only relevant before their publication

date. This may serve as an indication that the selected factors were not due to data snooping at

their discovery.

Figures 10 and 11 show the changes in adjusted 𝑅2 for the pag-lasso with either 10 or 20 factors

in the prior set compared to the aglasso, and figures 21 and 22 in the appendix show the changes

in 𝑅2 for the pag-lasso with either 10 or 20 factors in the prior set compared to the aglasso. The

inclusion of additional factors by the pag-lasso compared to the aglasso yields an unsurprising

increase in 𝑅2. Perhaps more interesting, we also see an increase in the adjusted 𝑅2, thus penalizing

the inclusion of additional variables for the pag-lasso compared to the aglasso. Our results indicate

that we need more than the usual (around) five factors used as controls in the literature since we

need 10-20 factors in the relevant set in order to price the entire cross-section. Given that the set of

relevant factors is not constant over time, the total number of historically relevant pricing factors

is much larger.

5.4 Mainstream factor models as the prior set

We can also implement the pag-lasso using the mainstream factor models used in the asset pricing

literature. Figures 12, 13, and 14 show the selected set when using the pag-lasso with the five

factors of (Fama and French, 2015). The pag-lasso does not add any factors beyond the five-factor

model, and the robust minus weak and conservative minus aggressive factors are not selected at

all times. Similar to the aglasso, using the Fama-French five-factor model is not enough to achieve

pricing in the cross section of the test assets as well as the remaining excluded assets.

Figures 16, 15, and 17 show the selected sets of factors when the pag-lasso uses the Carhart

(1997) four-factor model as the prior set. The final set of relevant factors estimated by the model

contains the four factors at almost all times. We find that the Carhart (1997) model is not sufficient

to price the cross section of test assets together with the remaining factors.
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Figure 15: Timeline of factors chosen with the Carhart (1997) model as prior
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the pag-lasso with the factors from the Carhart (1997) model in the
prior set. The vertical axis contains the factor id referencing to the list in table 25.

Figure 16: Factors chosen with the Carhart (1997) model as prior
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This figure shows the factors chosen by the pag-lasso with the factors from the Carhart (1997) model in
the prior set. The vertical axis contains the factor id referencing to the list in table 25. The horisontal
axis contains the factor id referencing to the list in table 25. The factors are sorted by their frequency of
inclusion in the estimated set in descending order.
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Figure 17: Testing the null of no pricing errors with the Carhart (1997) model as prior
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the pag-lasso with the factors from the Carhart (1997) model in the prior set. The
test is performed for each sample window across time as shown on the horisontal axis. The vertical axis
is truncated from above at 15%. There are horisontal lines showing the 1% and 5% significance levels.

Figures 18, 19, and 20 show the selected sets of factors when the prior adaptive group lasso

uses the Hou et al. (2015) q-factor model as the prior set. Similarly to the results above, we do find

that using the well-established factors improves pricing slightly. However, they are nowhere near

enough to price all the assets at all times.
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Figure 18: Factors chosen with the Hou et al. (2015) model as prior
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This figure shows the factors chosen by the pag-lasso with the factors from the Hou et al. (2015) model
in the prior set. The vertical axis contains the factor id referencing to the list in table 25. The horisontal
axis contains the factor id referencing to the list in table 25. The factors are sorted by their frequency of
inclusion in the estimated set in descending order.

Figure 19: Timeline of factors chosen with the Hou et al. (2015) model as prior
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This figure shows a timeline of the periods during which the corresponding factors are included in the
estimated set of relevant factors by the pag-lasso with the factors from the Hou et al. (2015) model in
the prior set. The vertical axis contains the factor id referencing to the list in table 25.
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Figure 20: Testing the null of no pricing errors with the Hou et al. (2015) model as prior
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This figure shows the p-values for the GRS test, testing the null of "no pricing errors" when using the
factors selected by the pag-lasso with the factors from the Hou et al. (2015) model in the prior set. The
test is performed for each sample window across time as shown on the horisontal axis. The vertical axis
is truncated from above at 15%. There are horisontal lines showing the 1% and 5% significance levels.

6 Conclusion

We develop the prior adaptive group lasso (pag-lasso) that simultaneously selects variables from

a high-dimensional model and estimates the coefficient values with a natural grouping of the

variables while allowing for the use of previously obtained information. We show the selection

and estimation consistency analytically in a low-dimensional setting with few variables relative

to the number of observations as well as under the assumption of high-dimensionality with many

variables relative to the number of observations. If the information used to guide the variable

selection is of sufficiently high quality,8 we establish that the pag-lasso features properties similar

to those for the adaptive group lasso (aglasso) derived in Wang and Tian (2019). The analytical

results are supported by aMonte Carlo study where we show that the pag-lasso does indeed achieve

superior performance to the aglasso when the prior information is sufficiently accurate in finite

samples. The simulations also illustrate the effect of the weight placed on the prior information. If

8As described by assumption (A7)
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the prior information is of sufficient quality, a higher weight leads to improvements in performance.

However, if the prior information is inaccurate, a higher weight transmits the inaccuracies into the

pag-lasso estimator, thus hurting performance. In general we find that the pag-lasso is robust to

omissions of relevant variables in the prior set, as it is still able to include them in the final set of

variables. For future research, it would be interesting to derive similar econometric properties as

those described in section 3 with a looser restriction on the errors of the prior information, such

that the quality of the prior information and 𝜂 could show up in the convergence rates.

In the empirical application, we use the fact that the pricing error in the regressions should

be statistically indistinguishable from zero when including the relevant pricing factors. Using this

as the guiding principle when estimating the set of relevant factors with the prior adaptive group

lasso, we select more factors than the adaptive group lasso and we are able to price the test assets

as well as the remaining traded factors not chosen by the pag-lasso in almost all of the considered

periods. The selected set of relevant pricing factors is relatively stable over time, as many of the

factors are included for several consecutive periods as opposed to popping in and out at random.

The relatively restricted and considerably smaller set selected by the aglasso is, on the other hand,

not able to price the test assets and the remaining factors in the majority of the sample windows.

We also compare the factors selected by the pag-lasso with the factors used in the mainstream

asset pricing factor models by Fama and French (2015), Carhart (1997), and Hou et al. (2015).

Again, we find that the mainstream factor models are insufficient in pricing the cross section of test

assets together with the factors that are not included in the factor model in question. The factors

that are included most often by the pag-lasso include well-known factors like the excess market

return (Black et al., 1972), small minus big (Fama and French, 1993), momentum (Carhart, 1997),

the intermediary investment factor (He et al., 2017), betting against beta (Frazzini and Pedersen,

2014), R&D to sales (Chan et al., 2001), illiquidity (Amihud, 2002), HML devil (Asness and

Frazzini, 2013), liquidity (Pastor and Stambaugh, 2003), long-term reversal (De Bondt and Thaler,

1985), short-term reversal (Jegadeesh and Titman, 1993), and the market beta (Fama andMacBeth,

1973). From Figure 6, showing the evolution of the set of relevant factors over time as estimated

by the pag-lasso, we also find that the included factors remain relevant after their publication
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dates, serving as evidence against any accusations of data snooping by the original authors of the

selected factors. For future research, it would be interesting to consider different avenues to further

smooth the estimated set of relevant factors and test the performance against that of the pag-lasso

as described in this present paper.
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A Tables

Table 7: Simulations for example 1 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.615 14.026 12.670 14.027 12.919 12.502 13.333
(0.249) (0.164) (0.245) (0.165) (0.271) (0.274) (0.326)

CNZ 12.605 14.026 12.666 14.026 12.604 12.235 12.297
(0.248) (0.164) (0.245) (0.165) (0.247) (0.259) (0.256)

INZ 0.010 0.000 0.004 0.001 0.316 0.267 1.036
(0.018) (0.003) (0.011) (0.006) (0.101) (0.089) (0.189)

Contains 0.427 0.711 0.435 0.713 0.425 0.364 0.373
(0.049) (0.045) (0.050) (0.045) (0.049) (0.048) (0.048)

Sparsity 0.425 0.711 0.435 0.713 0.380 0.333 0.264
(0.049) (0.045) (0.050) (0.045) (0.049) (0.047) (0.044)

Bias 13.885 4.283 6.713 4.280 6.837 7.211 7.108
(0.154) (0.256) (0.401) (0.256) (0.406) (0.406) (0.401)

MSE 21.693 4.956 8.195 4.952 8.345 9.027 8.681
(9.144) (3.226) (6.354) (3.221) (6.539) (6.965) (6.662)

ME 18.358 2.179 5.397 2.177 5.581 6.221 5.969
(0.914) (0.322) (0.633) (0.322) (0.649) (0.689) (0.659)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽01 from (3) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 8: Simulations for example 2 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.957 14.199 12.966 14.196 13.704 13.680 15.156
(0.239) (0.148) (0.236) (0.150) (0.291) (0.309) (0.383)

CNZ 12.921 14.193 12.951 14.181 12.855 12.567 12.585
(0.235) (0.147) (0.235) (0.148) (0.236) (0.245) (0.245)

INZ 0.036 0.006 0.015 0.015 0.849 1.113 2.571
(0.035) (0.013) (0.025) (0.021) (0.157) (0.173) (0.290)

Contains 0.481 0.753 0.485 0.749 0.464 0.406 0.413
(0.050) (0.043) (0.050) (0.043) (0.050) (0.049) (0.049)

Sparsity 0.473 0.751 0.483 0.745 0.337 0.268 0.173
(0.050) (0.043) (0.050) (0.044) (0.047) (0.044) (0.038)

Bias 6.022 2.322 2.720 2.334 2.768 3.594 3.522
(0.105) (0.149) (0.162) (0.150) (0.163) (0.208) (0.206)

MSE 20.657 4.700 7.831 4.718 7.907 8.392 7.920
(8.595) (2.688) (6.424) (2.687) (6.327) (6.665) (6.073)

ME 17.384 1.935 5.062 1.955 5.226 5.726 5.415
(0.865) (0.271) (0.644) (0.271) (0.634) (0.665) (0.606)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽02 from (4) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 9: Simulations for example 3 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 13.191 14.259 13.131 14.256 13.398 13.233 14.460
(0.226) (0.145) (0.232) (0.144) (0.253) (0.270) (0.347)

CNZ 13.161 14.256 13.116 14.250 13.098 12.789 12.882
(0.225) (0.145) (0.231) (0.143) (0.230) (0.247) (0.241)

INZ 0.030 0.003 0.015 0.006 0.300 0.444 1.578
(0.030) (0.009) (0.021) (0.013) (0.102) (0.115) (0.235)

Contains 0.534 0.773 0.526 0.769 0.519 0.471 0.486
(0.050) (0.042) (0.050) (0.042) (0.050) (0.050) (0.050)

Sparsity 0.530 0.772 0.523 0.767 0.467 0.407 0.281
(0.050) (0.042) (0.050) (0.042) (0.050) (0.049) (0.045)

Bias 4.275 1.696 1.861 1.699 1.874 2.395 2.421
(0.091) (0.132) (0.132) (0.133) (0.130) (0.171) (0.171)

MSE 18.637 4.519 6.995 4.520 6.998 7.548 7.102
(7.532) (2.715) (5.412) (2.575) (5.459) (5.858) (5.286)

ME 15.368 1.742 4.197 1.733 4.231 4.762 4.453
(0.750) (0.270) (0.536) (0.256) (0.535) (0.581) (0.523)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽03 from (5) and 𝑋 from (7). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 10: Simulations for example 1 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 23.474 16.328 17.374 17.921 28.540 23.501 35.495
(0.763) (0.269) (0.388) (0.334) (0.695) (0.663) (0.825)

CNZ 14.353 14.972 14.819 14.968 14.766 14.230 14.129
(0.133) (0.029) (0.074) (0.031) (0.083) (0.142) (0.151)

INZ 9.121 1.356 2.555 2.954 13.774 9.271 21.366
(0.743) (0.267) (0.379) (0.333) (0.690) (0.642) (0.809)

Contains 0.797 0.991 0.941 0.989 0.924 0.760 0.732
(0.040) (0.010) (0.024) (0.010) (0.026) (0.043) (0.044)

Sparsity 0.092 0.701 0.498 0.393 0.014 0.048 0.001
(0.029) (0.046) (0.050) (0.049) (0.012) (0.021) (0.003)

Bias 7.929 7.387 7.712 7.581 8.583 8.589 9.319
(0.198) (0.188) (0.212) (0.191) (0.228) (0.228) (0.243)

MSE 3.258 3.198 3.098 3.079 2.461 2.682 2.151
(0.636) (0.557) (0.616) (0.549) (0.559) (0.677) (0.598)

ME 1.002 0.798 0.974 0.918 1.609 1.536 2.049
(0.044) (0.042) (0.054) (0.044) (0.060) (0.065) (0.065)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽01 from (3) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 11: Simulations for example 2 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 26.118 16.854 18.321 18.822 30.936 25.962 38.436
(0.910) (0.321) (0.476) (0.407) (0.732) (0.784) (0.865)

CNZ 14.361 14.991 14.835 14.988 14.754 14.262 14.079
(0.140) (0.016) (0.075) (0.019) (0.087) (0.146) (0.164)

INZ 11.757 1.863 3.486 3.834 16.182 11.700 24.357
(0.894) (0.321) (0.468) (0.405) (0.726) (0.771) (0.859)

Contains 0.808 0.997 0.949 0.996 0.922 0.776 0.731
(0.039) (0.005) (0.022) (0.006) (0.027) (0.042) (0.044)

Sparsity 0.047 0.634 0.426 0.310 0.006 0.025 0.000
(0.021) (0.048) (0.049) (0.046) (0.008) (0.016) (0.000)

Bias 5.008 4.338 4.518 5.846 6.903 7.214 8.069
(0.155) (0.142) (0.150) (0.226) (0.246) (0.242) (0.270)

MSE 3.098 3.150 3.020 3.011 2.364 2.514 2.029
(0.663) (0.587) (0.653) (0.577) (0.592) (0.699) (0.614)

ME 1.053 0.854 1.061 0.993 1.720 1.695 2.185
(0.048) (0.046) (0.060) (0.048) (0.062) (0.071) (0.068)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽02 from (4) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 12: Simulations for example 3 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 24.192 16.569 17.601 18.192 28.923 24.162 36.123
(0.793) (0.316) (0.408) (0.361) (0.714) (0.704) (0.841)

CNZ 14.430 14.973 14.853 14.976 14.832 14.307 14.226
(0.125) (0.028) (0.065) (0.027) (0.069) (0.134) (0.141)

INZ 9.762 1.596 2.748 3.216 14.091 9.855 21.897
(0.780) (0.316) (0.400) (0.360) (0.709) (0.686) (0.827)

Contains 0.820 0.991 0.951 0.992 0.944 0.780 0.756
(0.038) (0.009) (0.022) (0.009) (0.023) (0.041) (0.043)

Sparsity 0.097 0.685 0.504 0.388 0.016 0.053 0.000
(0.030) (0.046) (0.050) (0.049) (0.013) (0.022) (0.000)

Bias 3.556 2.985 3.077 4.241 5.824 5.421 7.086
(0.118) (0.114) (0.120) (0.199) (0.260) (0.219) (0.279)

MSE 3.214 3.174 3.068 3.051 2.412 2.625 2.092
(0.633) (0.594) (0.628) (0.561) (0.577) (0.685) (0.603)

ME 1.009 0.833 0.997 0.954 1.647 1.575 2.086
(0.044) (0.045) (0.055) (0.046) (0.061) (0.069) (0.068)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽03 from (5) and 𝑋 from (6). The group names for the pag-lasso
columns refers to the prior variable sets given on page 15. The metrics used to evaluate the performance of
the models are listed in the first column and explained on page 13. The numbers show the average score by
the models for each corresponding metric, and the numbers in parenthesis are the standard error of a sample
average.
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Table 13: Simulations for example 1 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 11.376 14.041 12.014 14.042 12.379 11.498 13.095
(0.285) (0.163) (0.257) (0.164) (0.287) (0.314) (0.414)

CNZ 11.368 14.041 12.011 14.041 11.969 10.992 11.035
(0.284) (0.163) (0.257) (0.164) (0.258) (0.292) (0.290)

INZ 0.009 0.000 0.002 0.001 0.409 0.506 2.060
(0.016) (0.000) (0.008) (0.004) (0.113) (0.120) (0.270)

Contains 0.250 0.716 0.316 0.718 0.310 0.207 0.211
(0.043) (0.045) (0.046) (0.045) (0.046) (0.041) (0.041)

Sparsity 0.250 0.716 0.315 0.718 0.268 0.175 0.102
(0.043) (0.045) (0.046) (0.045) (0.044) (0.038) (0.030)

Bias 14.479 4.261 7.982 4.259 8.063 9.065 8.963
(0.154) (0.256) (0.406) (0.256) (0.409) (0.419) (0.411)

MSE 26.225 4.926 10.786 4.923 10.808 13.291 12.623
(9.144) (3.226) (6.547) (3.221) (6.675) (7.899) (7.275)

ME 22.842 2.150 7.924 2.149 7.993 10.403 9.917
(0.914) (0.322) (0.651) (0.322) (0.662) (0.782) (0.720)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽01 from (3), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.

59



The Prior Adaptive Group Lasso and the Factor Zoo Bertelsen, K. P.

Table 14: Simulations for example 1 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.615 14.026 12.579 14.027 12.873 12.299 13.354
(0.249) (0.164) (0.247) (0.165) (0.273) (0.287) (0.348)

CNZ 12.605 14.026 12.576 14.026 12.538 11.957 12.080
(0.248) (0.164) (0.247) (0.165) (0.249) (0.269) (0.263)

INZ 0.010 0.000 0.004 0.001 0.336 0.342 1.273
(0.018) (0.003) (0.010) (0.005) (0.103) (0.100) (0.211)

Contains 0.427 0.711 0.418 0.713 0.412 0.325 0.341
(0.049) (0.045) (0.049) (0.045) (0.049) (0.047) (0.047)

Sparsity 0.425 0.711 0.417 0.713 0.366 0.288 0.223
(0.049) (0.045) (0.049) (0.045) (0.048) (0.045) (0.042)

Bias 13.885 4.283 6.885 4.281 6.959 7.643 7.436
(0.154) (0.256) (0.406) (0.256) (0.409) (0.419) (0.411)

MSE 21.693 4.956 8.480 4.952 8.550 9.917 9.289
(9.144) (3.226) (6.547) (3.221) (6.675) (7.899) (7.275)

ME 18.358 2.179 5.676 2.177 5.786 7.097 6.585
(0.914) (0.322) (0.651) (0.322) (0.662) (0.782) (0.720)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽01 from (3), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 15: Simulations for example 2 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 11.802 14.208 12.267 14.196 13.290 13.542 15.936
(0.276) (0.147) (0.254) (0.147) (0.317) (0.348) (0.465)

CNZ 11.772 14.208 12.261 14.190 12.174 11.286 11.304
(0.274) (0.147) (0.253) (0.147) (0.250) (0.282) (0.287)

INZ 0.030 0.000 0.006 0.006 1.116 2.256 4.632
(0.030) (0.000) (0.013) (0.013) (0.177) (0.209) (0.370)

Contains 0.302 0.758 0.354 0.751 0.332 0.234 0.245
(0.046) (0.043) (0.048) (0.043) (0.047) (0.042) (0.043)

Sparsity 0.298 0.758 0.353 0.750 0.215 0.101 0.051
(0.046) (0.043) (0.048) (0.043) (0.041) (0.030) (0.022)

Bias 6.486 2.305 3.026 2.325 3.058 5.230 4.976
(0.105) (0.149) (0.162) (0.150) (0.163) (0.226) (0.215)

MSE 24.564 4.667 10.494 4.696 10.246 12.143 11.157
(8.595) (2.688) (6.599) (2.687) (6.415) (7.015) (6.501)

ME 21.265 1.904 7.661 1.934 7.533 9.464 8.744
(0.865) (0.271) (0.661) (0.271) (0.644) (0.697) (0.645)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽02 from (4), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.
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Table 16: Simulations for example 2 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.957 14.199 12.885 14.193 13.692 13.827 15.435
(0.239) (0.148) (0.240) (0.149) (0.296) (0.326) (0.410)

CNZ 12.921 14.193 12.870 14.181 12.798 12.324 12.420
(0.235) (0.147) (0.238) (0.148) (0.238) (0.254) (0.252)

INZ 0.036 0.006 0.015 0.012 0.894 1.503 3.015
(0.035) (0.013) (0.025) (0.019) (0.161) (0.193) (0.317)

Contains 0.481 0.753 0.470 0.749 0.453 0.368 0.386
(0.050) (0.043) (0.050) (0.043) (0.050) (0.048) (0.049)

Sparsity 0.473 0.751 0.468 0.746 0.319 0.214 0.136
(0.050) (0.043) (0.050) (0.044) (0.047) (0.041) (0.034)

Bias 6.022 2.322 2.746 2.334 2.793 3.938 3.707
(0.105) (0.149) (0.162) (0.150) (0.163) (0.226) (0.215)

MSE 20.657 4.700 8.080 4.719 8.064 8.960 8.302
(8.595) (2.688) (6.599) (2.687) (6.415) (7.015) (6.501)

ME 17.384 1.935 5.306 1.954 5.400 6.300 5.832
(0.865) (0.271) (0.661) (0.271) (0.644) (0.697) (0.645)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽02 from (4), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 17: Simulations for example 3 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 12.135 14.250 12.624 14.256 13.020 12.645 14.742
(0.274) (0.146) (0.245) (0.144) (0.275) (0.321) (0.449)

CNZ 12.117 14.250 12.618 14.253 12.651 11.682 11.730
(0.272) (0.146) (0.245) (0.144) (0.244) (0.291) (0.287)

INZ 0.018 0.000 0.006 0.003 0.369 0.963 3.012
(0.023) (0.000) (0.013) (0.009) (0.115) (0.153) (0.317)

Contains 0.362 0.772 0.422 0.771 0.427 0.309 0.312
(0.048) (0.042) (0.049) (0.042) (0.049) (0.046) (0.046)

Sparsity 0.359 0.772 0.421 0.770 0.371 0.222 0.110
(0.048) (0.042) (0.049) (0.042) (0.048) (0.042) (0.031)

Bias 4.801 1.700 2.008 1.693 2.018 3.551 3.601
(0.091) (0.132) (0.133) (0.133) (0.130) (0.191) (0.184)

MSE 22.702 4.531 8.750 4.517 8.613 11.001 10.363
(7.532) (2.715) (5.485) (2.575) (5.491) (6.888) (6.084)

ME 19.386 1.752 5.884 1.731 5.806 8.212 7.795
(0.750) (0.270) (0.543) (0.256) (0.539) (0.682) (0.600)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽03 from (5), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.
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Table 18: Simulations for example 3 using 𝑋 from (7)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 13.191 14.259 13.065 14.256 13.362 13.122 14.637
(0.226) (0.145) (0.235) (0.144) (0.257) (0.294) (0.381)

CNZ 13.161 14.256 13.050 14.250 13.047 12.492 12.648
(0.225) (0.145) (0.233) (0.143) (0.232) (0.263) (0.255)

INZ 0.030 0.003 0.015 0.006 0.315 0.630 1.989
(0.030) (0.009) (0.021) (0.013) (0.105) (0.131) (0.263)

Contains 0.534 0.773 0.512 0.769 0.510 0.425 0.448
(0.050) (0.042) (0.050) (0.042) (0.050) (0.049) (0.050)

Sparsity 0.530 0.772 0.509 0.767 0.455 0.342 0.229
(0.050) (0.042) (0.050) (0.042) (0.050) (0.047) (0.042)

Bias 4.275 1.696 1.878 1.699 1.888 2.670 2.638
(0.091) (0.132) (0.133) (0.133) (0.130) (0.191) (0.184)

MSE 18.637 4.519 7.155 4.520 7.121 8.360 7.667
(7.532) (2.715) (5.485) (2.575) (5.491) (6.888) (6.084)

ME 15.368 1.742 4.353 1.733 4.353 5.576 5.047
(0.750) (0.270) (0.543) (0.256) (0.539) (0.682) (0.600)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽03 from (5), 𝑋 from (7) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 19: Simulations for example 1 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 19.403 15.304 15.636 16.899 27.668 20.064 33.604
(0.587) (0.139) (0.223) (0.237) (0.604) (0.475) (0.672)

CNZ 14.424 14.972 14.833 14.969 14.775 14.128 14.015
(0.122) (0.029) (0.070) (0.031) (0.082) (0.146) (0.156)

INZ 4.979 0.332 0.803 1.930 12.893 5.936 19.589
(0.564) (0.136) (0.209) (0.234) (0.599) (0.442) (0.655)

Contains 0.814 0.991 0.945 0.990 0.927 0.724 0.695
(0.039) (0.010) (0.023) (0.010) (0.026) (0.045) (0.046)

Sparsity 0.252 0.915 0.772 0.500 0.013 0.074 0.001
(0.043) (0.028) (0.042) (0.050) (0.011) (0.026) (0.002)

Bias 7.568 7.259 7.469 7.464 8.460 8.253 9.113
(0.198) (0.186) (0.220) (0.188) (0.237) (0.232) (0.248)

MSE 3.419 3.335 3.296 3.212 2.584 3.015 2.373
(0.636) (0.543) (0.619) (0.533) (0.552) (0.690) (0.608)

ME 0.901 0.661 0.771 0.785 1.482 1.258 1.870
(0.044) (0.034) (0.050) (0.036) (0.058) (0.063) (0.063)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽01 from (3), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.
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Table 20: Simulations for example 1 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 23.474 15.475 16.039 17.076 28.267 21.841 35.388
(0.763) (0.176) (0.295) (0.261) (0.648) (0.583) (0.760)

CNZ 14.353 14.973 14.746 14.969 14.678 14.067 13.929
(0.133) (0.028) (0.086) (0.031) (0.097) (0.154) (0.167)

INZ 9.121 0.502 1.292 2.107 13.590 7.774 21.459
(0.743) (0.174) (0.280) (0.260) (0.641) (0.554) (0.742)

Contains 0.797 0.991 0.918 0.990 0.896 0.712 0.680
(0.040) (0.009) (0.027) (0.010) (0.030) (0.045) (0.047)

Sparsity 0.092 0.883 0.670 0.481 0.011 0.054 0.001
(0.029) (0.032) (0.047) (0.050) (0.010) (0.023) (0.003)

Bias 7.929 7.280 7.667 7.484 8.659 8.541 9.410
(0.198) (0.186) (0.220) (0.188) (0.237) (0.232) (0.248)

MSE 3.258 3.313 3.264 3.190 2.543 2.873 2.249
(0.636) (0.543) (0.619) (0.533) (0.552) (0.690) (0.608)

ME 1.002 0.684 0.856 0.808 1.567 1.418 2.017
(0.044) (0.034) (0.050) (0.036) (0.058) (0.063) (0.063)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽01 from (3), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 21: Simulations for example 2 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 21.324 15.444 16.023 17.373 29.913 21.534 35.787
(0.697) (0.166) (0.290) (0.286) (0.616) (0.567) (0.688)

CNZ 14.517 14.994 14.841 14.988 14.718 14.190 13.950
(0.115) (0.013) (0.070) (0.019) (0.095) (0.144) (0.169)

INZ 6.807 0.450 1.182 2.385 15.195 7.344 21.837
(0.682) (0.165) (0.277) (0.285) (0.610) (0.541) (0.675)

Contains 0.845 0.998 0.949 0.996 0.914 0.746 0.690
(0.036) (0.004) (0.022) (0.006) (0.028) (0.044) (0.046)

Sparsity 0.185 0.900 0.718 0.441 0.004 0.074 0.000
(0.039) (0.030) (0.045) (0.050) (0.006) (0.026) (0.000)

Bias 4.684 4.202 4.290 5.789 6.950 7.145 8.121
(0.155) (0.136) (0.142) (0.225) (0.248) (0.244) (0.282)

MSE 3.287 3.320 3.255 3.176 2.507 2.898 2.297
(0.663) (0.577) (0.647) (0.561) (0.578) (0.725) (0.653)

ME 0.920 0.683 0.828 0.828 1.594 1.364 1.975
(0.048) (0.037) (0.055) (0.040) (0.061) (0.068) (0.067)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽02 from (4), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.
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Table 22: Simulations for example 2 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 26.118 15.693 16.608 17.628 30.537 23.841 38.037
(0.910) (0.216) (0.355) (0.314) (0.650) (0.695) (0.783)

CNZ 14.361 14.994 14.787 14.988 14.598 14.088 13.767
(0.140) (0.013) (0.082) (0.019) (0.111) (0.162) (0.192)

INZ 11.757 0.699 1.821 2.640 15.939 9.753 24.270
(0.894) (0.215) (0.343) (0.313) (0.644) (0.671) (0.772)

Contains 0.808 0.998 0.933 0.996 0.876 0.730 0.661
(0.039) (0.004) (0.025) (0.006) (0.033) (0.044) (0.047)

Sparsity 0.047 0.856 0.616 0.418 0.002 0.044 0.000
(0.021) (0.035) (0.049) (0.049) (0.004) (0.021) (0.000)

Bias 5.008 4.210 4.347 5.814 6.989 7.359 8.447
(0.155) (0.136) (0.142) (0.225) (0.248) (0.244) (0.282)

MSE 3.098 3.292 3.206 3.151 2.469 2.731 2.159
(0.663) (0.577) (0.647) (0.561) (0.578) (0.725) (0.653)

ME 1.053 0.711 0.913 0.853 1.682 1.556 2.159
(0.048) (0.037) (0.055) (0.040) (0.061) (0.068) (0.067)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽02 from (4), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 23: Simulations for example 3 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 19.554 15.327 15.720 17.004 27.879 20.301 33.864
(0.588) (0.147) (0.224) (0.250) (0.608) (0.493) (0.656)

CNZ 14.445 14.976 14.865 14.976 14.850 14.196 14.109
(0.120) (0.027) (0.062) (0.027) (0.067) (0.140) (0.145)

INZ 5.109 0.351 0.855 2.028 13.029 6.105 19.755
(0.567) (0.145) (0.214) (0.248) (0.605) (0.458) (0.644)

Contains 0.819 0.992 0.955 0.992 0.951 0.741 0.715
(0.039) (0.009) (0.021) (0.009) (0.022) (0.044) (0.045)

Sparsity 0.254 0.917 0.773 0.501 0.014 0.075 0.000
(0.044) (0.028) (0.042) (0.050) (0.012) (0.026) (0.000)

Bias 3.425 2.896 2.957 4.231 6.024 5.510 7.338
(0.118) (0.108) (0.114) (0.201) (0.267) (0.219) (0.288)

MSE 3.404 3.334 3.285 3.203 2.551 2.993 2.354
(0.633) (0.575) (0.630) (0.548) (0.556) (0.710) (0.622)

ME 0.904 0.673 0.780 0.802 1.498 1.271 1.872
(0.044) (0.036) (0.050) (0.038) (0.057) (0.066) (0.064)

This table shows the performance of the pag-lasso relative to the aglasso using the group lasso as the initial
estimator. The data is generated using 𝛽03 from (5), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group names
for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to evaluate the
performance of the models are listed in the first column and explained on page 13. The numbers show the
average score by the models for each corresponding metric, and the numbers in parenthesis are the standard
error of a sample average.
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Table 24: Simulations for example 3 using 𝑋 from (6)

aglasso pag-lasso

g1-s1 g1-s2 g2-s3 g2-s4 g3-s5 g3-s6

nVAR 24.192 15.552 16.149 17.220 28.572 22.239 35.784
(0.793) (0.220) (0.307) (0.284) (0.656) (0.619) (0.756)

CNZ 14.430 14.976 14.799 14.976 14.772 14.127 14.004
(0.125) (0.027) (0.075) (0.027) (0.081) (0.147) (0.162)

INZ 9.762 0.576 1.350 2.244 13.800 8.112 21.780
(0.780) (0.220) (0.296) (0.282) (0.652) (0.592) (0.742)

Contains 0.820 0.992 0.933 0.992 0.925 0.725 0.701
(0.038) (0.009) (0.025) (0.009) (0.026) (0.045) (0.046)

Sparsity 0.097 0.887 0.676 0.480 0.013 0.057 0.000
(0.030) (0.032) (0.047) (0.050) (0.011) (0.023) (0.000)

Bias 3.556 2.907 3.001 4.232 6.009 5.639 7.442
(0.118) (0.108) (0.114) (0.201) (0.267) (0.219) (0.288)

MSE 3.214 3.309 3.244 3.176 2.499 2.836 2.209
(0.633) (0.575) (0.630) (0.548) (0.556) (0.710) (0.622)

ME 1.009 0.697 0.856 0.830 1.585 1.445 2.048
(0.044) (0.036) (0.050) (0.038) (0.057) (0.066) (0.064)

This table shows the performance of the pag-lasso relative to the aglasso using the lasso as the initial
estimator. The data is generated using 𝛽03 from (5), 𝑋 from (6) and 𝜂 = 10 in equation (1). The group
names for the pag-lasso columns refers to the prior variable sets given on page 15. The metrics used to
evaluate the performance of the models are listed in the first column and explained on page 13. The numbers
show the average score by the models for each corresponding metric, and the numbers in parenthesis are the
standard error of a sample average.
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Table 25: Factor Zoo

ID Description Year.pub Year.end Avg.Ret. S.R. Reference

1 Excess Market Return 1972 1965 0.64% 50.6% (Black et al., 1972)
2 Market Beta 1973 1968 -0.08% -5.4% (Fama and MacBeth, 1973)
3 Earnings to price 1977 1971 0.28% 29.7% (Basu, 1977)
4 Dividend to price 1979 1977 0.01% 0.6% (Litzenberger and Ramaswamy, 1979)
5 Unexpected quarterly earnings 1982 1980 0.12% 26.3% (Rendleman et al., 1982)
6 Share price 1982 1978 0.02% 2.2% (Miller and Scholes, 1982)
7 Long-Term Reversal 1985 1982 0.34% 36.3% (De Bondt and Thaler, 1985)
8 Leverage 1988 1981 0.21% 24.3% (Bhandari, 1988)
9 Cash flow to debt 1989 1984 -0.09% -17.0% (Ou and Penman, 1989)
10 Current ratio 1989 1984 0.06% 7.7% (Ou and Penman, 1989)
11 % change in current ratio 1989 1984 0.00% 0.5% (Ou and Penman, 1989)
12 % change in quick ratio 1989 1984 -0.04% -11.9% (Ou and Penman, 1989)
13 % change sales-to-inventory 1989 1984 0.17% 46.2% (Ou and Penman, 1989)
14 Quick ratio 1989 1984 -0.02% -2.9% (Ou and Penman, 1989)
15 Sales to cash 1989 1984 0.01% 1.5% (Ou and Penman, 1989)
16 Sales to inventory 1989 1984 0.09% 16.1% (Ou and Penman, 1989)
17 Sales to receivables 1989 1984 0.14% 22.8% (Ou and Penman, 1989)
18 Bid-ask spread 1989 1979 -0.04% -3.3% (Amihud and Mendelson, 1989)
19 Depreciation / PP&E 1992 1988 0.11% 12.1% (Holthausen and Larcker, 1992)
20 % change in depreciation 1992 1988 0.08% 23.1% (Holthausen and Larcker, 1992)
21 Small Minus Big 1993 1991 0.21% 24.5% (Fama and French, 1993)
22 High Minus Low 1993 1991 0.28% 34.3% (Fama and French, 1993)
23 Short-Term Reversal 1993 1989 0.15% 21.7% (Jegadeesh and Titman, 1993)
24 6-month momentum 1993 1989 0.21% 27.8% (Jegadeesh and Titman, 1993)
25 36-month momentum 1993 1989 0.09% 13.4% (Jegadeesh and Titman, 1993)
26 Sales growth 1994 1990 0.04% 5.8% (Lakonishok et al., 1994)
27 Cash flow-to-price 1994 1990 0.31% 32.5% (Lakonishok et al., 1994)
28 New equity issue 1995 1990 0.10% 8.7% (Loughran and Ritter, 1995)
29 Dividend initiation 1995 1988 -0.03% -3.4% (Michaely et al., 1995)
30 Dividend omission 1995 1988 -0.18% -18.0% (Michaely et al., 1995)
31 Working capital accruals 1996 1991 0.22% 46.0% (Sloan, 1996)

Continued on next page
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Table 25 – continued from previous page

ID Description Year.pub Year.end Avg.Ret. S.R. Reference

32 Sales to price 1996 1991 0.35% 41.8% (Barbee et al., 1996)
33 Capital turnover 1996 1993 -0.11% -16.6% (Haugen and Baker, 1996)
34 Momentum 1997 1993 0.63% 50.2% (Carhart, 1997)
35 Share turnover 1998 1991 -0.02% -2.1% (Datar et al., 1998)
36 % change in gross margin - % change in sales 1998 1988 -0.05% -12.4% (Abarbanell and Bushee, 1998)
37 % change in sales - % change in inventory 1998 1988 0.14% 42.1% (Abarbanell and Bushee, 1998)
38 % change in sales - % change in A/R 1998 1988 0.14% 43.5% (Abarbanell and Bushee, 1998)
39 % change in sales - % change in SG&A 1998 1988 0.09% 19.6% (Abarbanell and Bushee, 1998)
40 Effective Tax Rate 1998 1988 -0.04% -9.1% (Abarbanell and Bushee, 1998)
41 Labor Force Efficiency 1998 1988 -0.03% -8.5% (Abarbanell and Bushee, 1998)
42 Ohlson’s O-score 1998 1995 0.05% 9.3% (Dichev, 1998)
43 Altman’s Z-score 1998 1995 0.20% 22.1% (Dichev, 1998)
44 Industry adjusted % change in CAPEX 1998 1988 0.10% 20.5% (Abarbanell and Bushee, 1998)
45 Number of earnings increases 1999 1992 0.01% 2.8% (Barth, Elliott, and Finn, 1999)
46 Industry momentum 1999 1995 0.01% 1.4% (Moskowitz and Grinblatt, 1999)
47 Financial statements score 2000 1996 0.08% 18.4% (Piotroski, 2000)
48 Industry-adjusted book to market 2000 1998 0.22% 38.0% (Asness et al., 2000)
49 Industry-adjusted cash flow to price ratio 2000 1998 0.26% 52.1% (Asness et al., 2000)
50 Industry-adjusted change in employees 2000 1998 -0.01% -1.5% (Asness et al., 2000)
51 Industry-adjusted size 2000 1998 0.36% 36.3% (Asness et al., 2000)
52 Dollar trading volume 2001 1995 0.38% 35.8% (Chordia et al., 2001)
53 Volatility of liquidity (dollar trading volume) 2001 1995 0.20% 38.8% (Chordia et al., 2001)
54 Volatility of liquidity (share turnover) 2001 1995 0.02% 2.1% (Chordia et al., 2001)
55 Advertising Expense-to-market 2001 1995 -0.13% -15.6% (Chan et al., 2001)
56 R&D Expense-to-market 2001 1995 0.34% 36.2% (Chan et al., 2001)
57 R&D-to-sales 2001 1995 0.06% 5.5% (Chan et al., 2001)
58 Kaplan-Zingales Index 2001 1997 0.22% 25.3% (Lamont et al., 2001)
59 Change in inventory 2002 1997 0.18% 40.7% (Thomas and Zhang, 2002)
60 Change in tax expense 2002 1997 0.09% 18.0% (Thomas and Zhang, 2002)
61 Illiquidity 2002 1997 0.34% 28.6% (Amihud, 2002)
62 Liquidity 2003 2000 0.38% 38.6% (Pastor and Stambaugh, 2003)
63 Idiosyncratic return volatility 2003 1997 0.07% 5.1% (Ali et al., 2003)
64 Growth in long term net operating assets 2003 1993 0.22% 51.8% (Fairfield et al., 2003)

Continued on next page
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ID Description Year.pub Year.end Avg.Ret. S.R. Reference

65 Order backlog 2003 1999 0.05% 5.7% (Rajgopal et al., 2003)
66 Changes in Long-term Net Operating Assets 2003 1993 0.24% 56.0% (Fairfield et al., 2003)
67 Cash flow to price ratio 2004 1997 0.27% 31.7% (Desai et al., 2004)
68 R&D increase 2004 2001 0.06% 11.1% (Eberhart et al., 2004)
69 Corporate investment 2004 1995 0.13% 36.4% (Titman, Wei, and Xie, 2004)
70 Earnings volatility 2004 2001 0.10% 10.7% (Francis et al., 2004)
71 Abnormal Corporate Investment 2004 1995 0.13% 31.2% (Titman et al., 2004)
72 Net Operating Assets 2004 2002 0.31% 66.6% (Hirshleifer et al., 2004)
73 Changes in Net Operating Assets 2004 2002 0.14% 41.6% (Hirshleifer et al., 2004)
74 Tax income to book income 2004 2000 0.14% 28.3% (Lev and Nissim, 2004)
75 Price delay 2005 2001 0.07% 16.8% (Hou and Moskowitz, 2005)
76 # Years since first Compustat coverage 2005 2001 0.01% 1.1% (Jiang, Lee, and Zhang, 2005)
77 Growth in common shareholder equity 2005 2001 0.15% 27.6% (Richardson et al., 2005)
78 Growth in long-term debt 2005 2001 0.06% 13.3% (Richardson et al., 2005)
79 Change in Current Operating Assets 2005 2001 0.19% 34.6% (Richardson et al., 2005)
80 Change in Current Operating Liabilities 2005 2001 0.03% 6.3% (Richardson et al., 2005)
81 Changes in Net Non-cash Working Capital 2005 2001 0.11% 25.2% (Richardson et al., 2005)
82 Change in Non-current Operating Assets 2005 2001 0.21% 44.5% (Richardson et al., 2005)
83 Change in Non-current Operating Liabilities 2005 2001 0.04% 9.6% (Richardson et al., 2005)
84 Change in Net Non-current Operating Assets 2005 2001 0.23% 35.4% (Richardson et al., 2005)
85 Change in Net Financial Assets 2005 2001 0.23% 59.0% (Richardson et al., 2005)
86 Total accruals 2005 2001 0.19% 44.8% (Richardson et al., 2005)
87 Change in Short- term Investments 2005 2001 -0.03% -8.3% (Richardson et al., 2005)
88 Change in Financial Liabilities 2005 2001 0.18% 56.1% (Richardson et al., 2005)
89 Change in Book Equity 2005 2001 0.17% 30.0% (Richardson et al., 2005)
90 Financial statements performance 2005 2001 0.17% 37.1% (Mohanram, 2005)
91 Change in 6-month momentum 2006 2006 0.21% 29.8% (Gettleman and Marks, 2006)
92 Growth in capital expenditures 2006 1999 0.14% 30.4% (Anderson and Garcia-Feijóo, 2006)
93 Return volatility 2006 2000 -0.02% -1.7% (Ang et al., 2006)
94 Zero trading days 2006 2003 -0.05% -4.4% (Liu, 2006)
95 Three-year Investment Growth 2006 1999 0.11% 23.6% (Anderson and Garcia-Feijóo, 2006)
96 Composite Equity Issuance 2006 2003 -0.01% -2.2% (Daniel and Titman, 2006)
97 Net equity finance 2006 2000 0.08% 9.7% (Bradshaw et al., 2006)

Continued on next page
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ID Description Year.pub Year.end Avg.Ret. S.R. Reference

98 Net debt finance 2006 2000 0.17% 48.3% (Bradshaw et al., 2006)
99 Net external finance 2006 2000 0.22% 38.6% (Bradshaw et al., 2006)
100 Revenue Surprises 2006 2003 0.05% 9.0% (Jegadeesh and Livnat, 2006)
101 Industry Concentration 2006 2001 0.03% 3.8% (Hou and Robinson, 2006)
102 Whited-Wu Index 2006 2001 -0.02% -2.6% (Whited and Wu, 2006)
103 Return on invested capital 2007 2005 0.18% 29.3% (Brown and Rowe, 2007)
104 Debt capacity/firm tangibility 2007 2000 0.05% 7.1% (Almeida and Campello, 2007)
105 Payout yield 2007 2003 0.16% 17.5% (Boudoukh et al., 2007)
106 Net payout yield 2007 2003 0.16% 17.2% (Boudoukh et al., 2007)
107 Net debt-to-price 2007 1950 0.02% 2.5% (Penman et al., 2007)
108 Enterprise book-to-price 2007 2001 0.14% 14.7% (Penman et al., 2007)
109 Change in shares outstanding 2008 1969 0.24% 36.1% (Pontiff and Woodgate, 2008)
110 Abnormal earnings announcement volume 2008 2006 -0.08% -17.0% (Lerman et al., 2008)
111 Earnings announcement return 2008 2004 0.02% 6.8% (Brandt et al., 2008)
112 Seasonality 2008 2002 0.16% 17.3% (Heston and Sadka, 2008)
113 Changes in PPE and Inventory-to-assets 2008 2005 0.19% 42.0% (Lyandres, Sun, and Zhang, 2008)
114 Investment Growth 2008 2003 0.17% 39.5% (Xing, 2008)
115 Composite Debt Issuance 2008 2005 0.08% 21.6% (Lyandres et al., 2008)
116 Return on net operating assets 2008 2002 0.09% 8.6% (Soliman, 2008)
117 Profit margin 2008 2002 0.02% 4.4% (Soliman, 2008)
118 Asset turnover 2008 2002 0.06% 6.7% (Soliman, 2008)
119 Industry-adjusted change in asset turnover 2008 2002 0.14% 41.1% (Soliman, 2008)
120 Industry-adjusted change in profit margin 2008 2002 -0.01% -3.2% (Soliman, 2008)
121 Cash productivity 2009 2009 0.27% 37.6% (Chandrashekar and Rao, 2009)
122 Sin stocks 2009 2006 0.44% 41.6% (Hong and Kacperczyk, 2009)
123 Revenue surprise 2009 2005 0.12% 19.3% (Kama, 2009)
124 Cash flow volatility 2009 2008 0.20% 26.6% (Huang, 2009)
125 Absolute accruals 2010 2008 -0.05% -8.6% (Bandyopadhyay et al., 2010)
126 Capital expenditures and inventory 2010 2006 0.19% 42.8% (Chen and Zhang, 2010)
127 Return on assets 2010 2005 -0.09% -13.9% (Balakrishnan et al., 2010)
128 Accrual volatility 2010 2008 0.19% 26.6% (Bandyopadhyay et al., 2010)
129 Industry-adjusted Real Estate Ratio 2010 2005 0.11% 17.3% (Tuzel, 2010)
130 Percent accruals 2011 2008 0.16% 35.0% (Hafzalla et al., 2011)

Continued on next page
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ID Description Year.pub Year.end Avg.Ret. S.R. Reference

131 Maximum daily return 2011 2005 0.00% -0.3% (Bali, Cakici, and Whitelaw, 2011)
132 Operating Leverage 2011 2008 0.20% 32.8% (Novy-Marx, 2011)
133 Inventory Growth 2011 2009 0.13% 30.1% (Belo and Lin, 2012)
134 Percent Operating Accruals 2011 2008 0.15% 28.9% (Hafzalla et al., 2011)
135 Enterprise multiple 2011 2009 0.11% 17.6% (Loughran and Wellman, 2011)
136 Cash holdings 2012 2009 0.13% 15.3% (Palazzo, 2012)
137 HML Devil 2013 2011 0.23% 22.6% (Asness and Frazzini, 2013)
138 Gross profitability 2013 2010 0.15% 22.5% (Novy-Marx, 2013)
139 Organizational Capital 2013 2008 0.21% 31.9% (Eisfeldt and Papanikolaou, 2013)
140 Betting Against Beta 2014 2012 0.91% 92.8% (Frazzini and Pedersen, 2014)
141 Quality Minus Junk 2014 2012 0.43% 60.1% (Asness et al., 2019)
142 Employee growth rate 2014 2010 0.08% 12.9% (Belo et al., 2014)
143 Growth in advertising expense 2014 2010 0.07% 13.0% (Lou, 2014)
144 Book Asset Liquidity 2014 2006 0.09% 12.3% (Ortiz-Molina and Phillips, 2014)
145 Robust Minus Weak 2015 2013 0.34% 49.8% (Fama and French, 2015)
146 Conservative Minus Aggressive 2015 2013 0.26% 46.8% (Fama and French, 2015)
147 HXZ Investment 2015 2012 0.34% 64.7% (Hou et al., 2015)
148 HXZ Profitability 2015 2012 0.57% 77.5% (Hou et al., 2015)
149 Intermediary Investment 2016 2012 (He et al., 2017)
150 Convertible debt indicator 2016 2012 0.11% 26.4% (Valta, 2016)
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B Figures

Figure 21: 𝑅2 with 10 factors in the prior set
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This figure shows the 𝑅2 across all sample windows for the aglasso and the pag-lasso with up to 10
factors in the prior set.
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Figure 22: 𝑅2 with 20 factors in the prior set
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This figure shows the 𝑅2 across all sample windows for the aglasso and the pag-lasso with up to 20
factors in the prior set.
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C Proof of theorem 3.1

Proof. We need to show that there exists a global maximizer, 𝛽, for 𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝) in (1). That

is, for any given 𝜖 > 0, there exists a large constant 𝐶, such that

P

[
sup

∥𝑢∥=𝐶
𝑄𝑛 (𝛽0 + 𝛼𝑛𝑢; 𝑋,𝑌,𝑌 𝑝) < 𝑄𝑛 (𝛽0; 𝑋,𝑌,𝑌 𝑝)

]
≥ 1 − 𝜖,

Where𝛼𝑛
Δ
=

√︁
𝑝𝑛/𝑛. This implies that there exist a localmaximum in the ball {𝛽0 + 𝛼𝑛𝑢 : ∥𝑢∥ ≤ 𝐶},

with 𝑢 =

(
𝑢𝑇1 , . . . , 𝑢

𝑇
𝑝𝑛

)𝑇
being a

(∑𝑝𝑛
𝑗=1 𝑑 𝑗

)
× 1 vector, with probability at least 1 − 𝜖 . Then there

exist a local maximizer, 𝛽, where
𝛽 − 𝛽0 = 𝑂𝑃 (𝛼𝑛). Then by the concavity of𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝),

𝛽 is also the global maximizer.

We have that

𝑄𝑛 (𝛽0 + 𝛼𝑛𝑢; 𝑋,𝑌,𝑌 𝑝) −𝑄𝑛 (𝛽0; 𝑋,𝑌,𝑌 𝑝)

= 𝑆𝑛 (𝛽0 + 𝛼𝑛𝑢) − 𝑆𝑛 (𝛽0) + 𝜆𝑛
𝑝𝑛∑︁
𝑗=1

𝛽 𝑗−1 (𝛽0, 𝑗 + 𝛼𝑛𝑢 𝑗 − 𝛽0, 𝑗)
Δ
= 𝑇𝑛1 + 𝑇𝑛2,

where𝑇𝑛1 = 𝑆𝑛 (𝛽0 + 𝛼𝑛𝑢)−𝑆𝑛 (𝛽0),𝑇𝑛2 = 𝜆𝑛
∑𝑝𝑛
𝑗=1

𝛽 𝑗−1 (𝛽0, 𝑗 + 𝛼𝑛𝑢 𝑗 − 𝛽0, 𝑗) , and 𝑆𝑛 (𝛽) =
−12 ∥𝑌 − 𝑋𝛽 |22 +

𝜂

2 ∥𝑌
𝑝 − 𝑋𝛽∥22.

Then we perform a third order Taylor expansion of 𝑇𝑛1 around 𝑢 = 0 which yields,

𝑇𝑛1 = 𝛼𝑛

(
𝜕𝑆𝑛 (𝛽0)
𝜕𝛽

)𝑇
𝑢 + 1
2
𝛼2𝑛𝑢

𝑇 𝜕
2𝑆𝑛 (𝛽0)
𝜕𝛽𝜕𝛽𝑇

𝑢 + 1
6
𝛼3𝑛𝑢

𝑇∇2
((
𝜕𝑆𝑛 (𝛽∗)
𝜕𝛽

)𝑇
𝑢

)
𝑢

Δ
= 𝐽𝑛1 + 𝐽𝑛2 + 𝐽𝑛3.

where 𝛽∗ is between 𝛽0 and 𝛽0 + 𝛼𝑛𝑢, thus encompassing the approximation error.
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Then following Wang and Tian (2019)

𝐽𝑛1 = 𝛼𝑛

(
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑇𝑖

(
𝑦𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

))
+ 𝜂
𝑛

𝑛∑︁
𝑖=1

𝑥𝑇𝑖

(
𝑦𝑃𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

)))
𝑢

= 𝛼𝑛

(
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑇𝑖

(
𝑦𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

)))
𝑢 + 𝛼𝑛

(
𝜂

𝑛

𝑛∑︁
𝑖=1

𝑥𝑇𝑖

(
𝑦𝑃𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

)))
𝑢

|𝐽𝑛1 | ≤ 𝛼2𝑛 ∥𝑢∥2𝑂𝑃 (1) + 𝛼𝑛
𝜂
𝑛
𝑋𝑇

(
𝑦𝑃 − 𝜙′ (𝑋𝛽0)

)
2
∥𝑢∥2 .

We can show that for a large 𝑀 > 0 the following probability goes to zero

P

[𝜂
𝑛
𝑋𝑇

(
𝑦𝑃 − 𝜙′ (𝑋𝛽0)

)
2
≥ 𝑀

( 𝑝𝑛
𝑛

)1/2]
≤ 𝑛

𝑀2𝑝𝑛
E

[𝜂
𝑛
𝑋𝑇

(
𝑦𝑃 − 𝜙′ (𝑋𝛽0)

)2
2

]
=

𝑛

𝑀2𝑝𝑛
E


𝑝𝑛∑︁
𝑗=1

𝑑 𝑗∑︁
𝑘=1

(
𝜂

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘

(
𝑦𝑃𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

)))2
=

𝜂2

𝑀2𝑝𝑛

𝑝𝑛∑︁
𝑗=1

𝑑 𝑗∑︁
𝑘=1

1
𝑛
E


(
𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘

(
𝑦𝑃𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

)))2 .
Then by condition (A7) we have that E

[
𝑥𝑖 𝑗𝑘𝑥𝑙 𝑗𝑘

(
𝑦𝑃
𝑖
− 𝜙′

(
𝑥𝑇
𝑖
𝛽𝑜

) ) (
𝑦𝑃
𝑙
− 𝜙′

(
𝑥𝑇
𝑙
𝛽0

) ) ]
= 0, and then

P

[𝜂
𝑛
𝑋𝑇

(
𝑦𝑃 − 𝜙′ (𝑋𝛽0)

)
2
≥ 𝑀

( 𝑝𝑛
𝑛

)1/2]
≤ 𝜂2

𝑀2𝑝𝑛

𝑝𝑛∑︁
𝑗=1

𝑑 𝑗∑︁
𝑘=1

1
𝑛
E

[
𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘

(
𝑦𝑃𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

))2]
=

1
𝑀2𝑝𝑛

𝑂𝑃 (𝑝𝑛) → 0 for 𝑀 → ∞.

Hence,

𝛼𝑛

𝜂
𝑛
𝑋𝑇

(
𝑦𝑃 − 𝜙′ (𝑋𝛽0)

)
2
∥𝑢∥2 = 𝛼𝑛𝑂 𝑝

(( 𝑝𝑛
𝑛

) 1
2
)
∥𝑢∥2 = 𝛼2 ∥𝑢∥2𝑂 𝑝 (1).
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Then we can bound |𝐽𝑛1 | by

|𝐽𝑛1 | ≤ 𝛼2𝑛 ∥𝑢∥2𝑂𝑃 (1).

The remainder of the proof follows the proof of Theorem 2.1 inWang and Tian (2019) trivially.

Hence, we have that by choosing a sufficiently large 𝐶 all terms in 𝑇𝑛1 and 𝑇𝑛2 are dominated in

size by 𝐽𝑛2, which is negative. This proves the theorem. □
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D Proof of theorem 3.2

Proof. To prove this theoremwe need to show that 𝛽∗ satisfies the KKT conditions for the objective

function, 𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝), in (1) with probability approaching 1 for high 𝑛. For this, we need to

show that

P

[
∀ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

≤ 𝜆𝑛
𝛽 𝑗−12 ]

→ 1,

which is equivalent to showing that

P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

> 𝜆𝑛
𝛽 𝑗−12 ]

→ 0. (9)

Denote 𝐵𝑛 𝑗 (𝛽) = 𝑛
𝜕𝑆𝑛 (𝛽)
𝜕𝛽 𝑗

, and let ∇1𝐵𝑛 𝑗 (𝛽) and ∇21𝐵𝑛 𝑗 (𝛽) denote the first and second order

partial derivatives of 𝐵𝑛 𝑗 (𝛽) with respect to 𝛽 (1) . By doing a second order Taylor expansion of

𝐵𝑛 𝑗 (𝛽) around 𝛽0 we get

𝐵𝑛 𝑗
(
𝛽∗

)
= 𝐵𝑛 𝑗 (𝛽0) + ∇1𝐵𝑛 𝑗 (𝛽0)𝑇

(
𝛽
(1)
∗ − 𝛽 (1)0

)
+ 1
2

(
𝛽
(1)
∗ − 𝛽 (1)0

)𝑇
∇21𝐵𝑛 𝑗

(
𝛽∗𝑛

) (
𝛽
(1)
∗ − 𝛽 (1)0

)
,

(10)

where 𝛽∗𝑛 is between 𝛽∗ and 𝛽0.

For 𝑗 ∉ {1, . . . , 𝑘𝑛} we have that
𝛽 𝑗2 = 𝑂𝑃 (

(𝑝𝑛/𝑛)1/2
)
. Hence, for some large constant

𝐿 > 0 we can rewrite (9).

P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

> 𝜆𝑛
𝛽 𝑗−12 ]

≤P
[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝐵𝑛 𝑗 (𝛽∗)2 > 𝑛𝜆𝑛 𝛽 𝑗−12 ,
𝛽 𝑗2 < 𝐿 ( 𝑝𝑛

𝑛

) 1
2
]

+ P
[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝛽 𝑗2 ≥ 𝐿

( 𝑝𝑛
𝑛

) 1
2
]

≤P
[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝐵𝑛 𝑗 (𝛽0)2 > 𝜆𝑛𝑛
3/2

3𝐿𝑝1/2𝑛

]
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+ P
[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

∇1𝐵𝑛 𝑗 (𝛽0)𝑇 (
𝛽
(1)
∗ − 𝛽 (1)0

)
2
>
𝜆𝑛𝑛

3/2

3𝐿𝑝1/2𝑛

]
+ P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

12 (
𝛽
(1)
∗ − 𝛽 (1)0

)𝑇
∇21𝐵𝑛 𝑗

(
𝛽∗𝑛

) (
𝛽
(1)
∗ − 𝛽 (1)0

)
2
>
𝜆𝑛𝑛

3/2

3𝐿𝑝1/2𝑛

]
+𝑂 (1)

Δ
=𝑈1 +𝑈2 +𝑈3 +𝑂 (1).

We can rewrite𝑈1 by bounding it by the individual probabilities and using the Markov inequality

𝑈1 ≤
𝑝𝑛∑︁

𝑗=𝑘𝑛+1
P

[𝐵𝑛 𝑗 (𝛽0)2 > 𝜆𝑛𝑛
3/2

3𝐿𝑝1/2𝑛

]
≤

𝑝𝑛∑︁
𝑗=𝑘𝑛+1

9𝐿2𝑝𝑛
𝜆2𝑛𝑛

3
E

[𝐵𝑛 𝑗 (𝛽0)22]
≤ (𝑝𝑛 − 𝑘𝑛 − 1)

9𝐿2𝑝𝑛
𝜆2𝑛𝑛

3
max
𝑗>𝑘𝑛
E


 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗

(
𝑦𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

))
+ 𝜂

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗

(
𝑦
𝑝

𝑖
− 𝜙′

(
𝑥𝑇𝑖 𝛽0

))2
2


≤9𝐿

2𝑝2𝑛

𝜆2𝑛𝑛
3
max
𝑗>𝑘𝑛
E


𝑑 𝑗∑︁
𝑘=1

(
𝑛∑︁
𝑖=1

(
𝑥𝑖 𝑗𝑘

(
𝑦𝑖 − 𝜙′

(
𝑥𝑇𝑖 𝛽0

))
+ 𝜂𝑥𝑖 𝑗𝑘

(
𝑦
𝑝

𝑖
− 𝜙′

(
𝑥𝑇𝑖 𝛽0

))))2
=
9𝐿2𝑝2𝑛
𝜆2𝑛𝑛

3
max
𝑗>𝑘𝑛
E


𝑛∑︁
𝑖=1

𝑑 𝑗∑︁
𝑘=1

𝑥2𝑖 𝑗𝑘
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)2
=
9𝐿2𝑝2𝑛
𝜆2𝑛𝑛

3
max
𝑗>𝑘𝑛

𝑛∑︁
𝑖=1

𝑑 𝑗∑︁
𝑘=1
E

[ (
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)2]
E

[
𝑥2𝑖 𝑗𝑘

]
≤9𝐿

2𝑝2𝑛

𝜆2𝑛𝑛
2
𝐶𝑀 → 0.

The proof that 𝑈2 = 𝑜(1) and that 𝑈3 → 0 follow the proof of theorem 2.2 of Wang and Tian

(2019). □
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E Proof of theorem 3.3

Proof. In order to prove sparsity we need to prove that

P

[
min
𝑗≤𝑘𝑛

𝛽 𝑗2 > 0] → 1.

Using assumption (A6) and theorem 3.1 we have

min
𝑗≤𝑘𝑛

𝛽 𝑗2 ≥𝜃1 − 𝛽 (1) − 𝛽 (1)0 
2

≥𝑀𝑛(𝑐2−1)/2 −𝑂 𝑝

(( 𝑝𝑛
𝑛

) 1
2
)

≥𝑀𝑛(𝑐2−1)/2 −𝑂 𝑝

(
𝑛(𝑐1−1)/2

)
> 0.

We will prove the limiting distribution using the Lindeberg-Feller central limit theorem. Per

the definition of 𝛽, we have that

𝜕𝑄𝑛
(
𝛽
)

𝜕𝛽 (1)
=
𝜕𝑆𝑛

(
𝛽
)

𝜕𝛽 (1)
− 𝜆𝑛𝐷𝑛 = 0, (11)

where we define 𝑆𝑛 (𝛽) = 1
𝑛

∑𝑛
𝑖=1

(
𝑦𝑖𝑥

𝑇
𝑖
𝛽 − 𝜙

(
𝑥𝑇
𝑖
𝛽
)
+ 𝜂

(
𝑦
𝑝

𝑖
𝑥𝑇
𝑖
𝛽 − 𝜙

(
𝑥𝑇
𝑖
𝛽
) ) )
and

𝐷𝑛 =

(𝛽 𝑗−12 sgn (
𝛽 𝑗

)𝑇
, 𝑗 = 1, . . . , 𝑘𝑛

)𝑇
. We perform a second order Taylor expansion of 𝜕𝑆𝑛 (𝛽)

𝜕𝛽 (1)

around 𝛽 (1)0 .

𝜕𝑆𝑛
(
𝛽
)

𝜕𝛽 (1)
=

𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

+ ∇1
©«
𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

ª®®¬
𝑇 (
𝛽 (1) − 𝛽 (1)0

)
(12)

+ 1
2

(
𝛽 (1) − 𝛽 (1)0

)𝑇
∇21

(
𝜕𝑆𝑛

(
𝛽∗𝑛

)
𝜕𝛽 (1)

) (
𝛽 (1) − 𝛽 (1)0

)
.

Then inserting (12) in (11) and isolating yields

− ∇1
©«
𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

ª®®¬
𝑇 (
𝛽 (1) − 𝛽 (1)0

)
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=

𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

+ 1
2

(
𝛽 (1) − 𝛽 (1)0

)𝑇
∇21

(
𝜕𝑆𝑛

(
𝛽∗𝑛

)
𝜕𝛽 (1)

) (
𝛽 (1) − 𝛽 (1)0

)
− 𝜆𝑛𝐷𝑛.

Then using −∇1

(
𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

)𝑇 (
𝛽 (1) − 𝛽 (1)0

)
= (1 + 𝜂) Σ(1) we get

𝑛
1
2 (1 + 𝜂) Σ(1)

(
𝛽 (1) − 𝛽 (1)0

)
= 𝑛

1
2

𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

+ 𝑛
1
2

2

(
𝛽 (1) − 𝛽 (1)0

)𝑇
∇21

(
𝜕𝑆𝑛

(
𝛽∗𝑛

)
𝜕𝛽 (1)

) (
𝛽 (1) − 𝛽 (1)0

)
− 𝜆𝑛𝑛

1
2𝐷𝑛.

By conditions (A3), (A4), and (A5) we have that(𝛽 (1) − 𝛽 (1)0 )𝑇
∇21

(
𝜕𝑆𝑛

(
𝛽∗𝑛

)
𝜕𝛽 (1)

) (
𝛽 (1) − 𝛽 (1)0

)2
2

=

𝑘𝑛∑︁
𝑗=1

1 + 𝜂𝑛 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝜙
(3)

(
𝑥𝑇𝑖 𝛽

∗
𝑛

) (
𝛽 (1) − 𝛽 (1)0

)𝑇
𝑥
(1)
𝑖
𝑥
(1)𝑇
𝑖

(
𝛽 (1) − 𝛽 (1)0

)2
2

≤ 𝑀 (1 + 𝜂) 𝜏2max
(
1
𝑛
𝑋 (1)𝑇𝑋 (1)

) 𝛽 (1) − 𝛽 (1)0 4
2
𝑘𝑛

= 𝑀 (1 + 𝜂) 𝜏2max
(
1
𝑛
𝑋 (1)𝑇𝑋 (1)

)
𝑂 𝑝

(
𝑝3𝑛
𝑛2

)
= 𝑀 (1 + 𝜂) 𝜏2max

(
1
𝑛
𝑋 (1)𝑇𝑋 (1)

)
𝑂 𝑝

(
𝑛−1

)
.

Using that min 𝑗∈{1,...,𝑘𝑛 }
𝛽 𝑗2 = 𝑂 𝑝

(
𝑛(𝑐2−1)/2

)
we have that

𝜆𝑛𝑛 12𝐷𝑛2
2
=

𝑘𝑛∑︁
𝑗=1

𝑑 𝑗∑︁
𝑘=1

(
𝜆𝑛𝑛

1
2
𝛽 𝑗−12 sgn (

𝛽 𝑗𝑘
) )2

= 𝜆2𝑛𝑛𝑘𝑛𝑂 𝑝

(
𝑛1−𝑐2

)
= 𝜆2𝑛𝑂 𝑝

(
𝑛2−𝑐2+𝑐1

)
→ 0,

since 𝜆𝑛𝑛(2−𝑐2+𝑐1)/2 → 0. Then we have that

𝑛
1
2𝛼𝑇𝑛Σ

1
2
(1)

(
𝛽 (1) − 𝛽 (1)0

)
= 𝑛

1
2 (1 + 𝜂)−1 𝛼𝑇𝑛Σ

− 12
(1)

𝜕𝑆𝑛

(
𝛽
(1)
0

)
𝜕𝛽 (1)

+ 𝑜𝑝 (1) .
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We verify the conditions of the Lindeberg-Feller CLT. Let

𝑍𝑛𝑖 =𝑛
− 12 (1 + 𝜂)−1 𝛼𝑇𝑛Σ

− 12
(1)𝑥

(1)
𝑖

(
𝑦𝑖 − 𝜙′

(
𝑥
(1)𝑇
𝑖

𝛽
(1)
0

)
+ 𝜂

(
𝑦
𝑝

𝑖
− 𝜙′

(
𝑥
(1)𝑇
𝑖

𝛽
(1)
0

)))
=𝑛−

1
2 (1 + 𝜂)−1 𝛼𝑇𝑛Σ

− 12
(1)𝑥

(1)
𝑖

(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)
,

denoting 𝜀𝑖 = 𝑦𝑖 − 𝜙′
(
𝑥𝑇
𝑖
𝛽0

)
and 𝜀𝑝

𝑖
= 𝑦

𝑝

𝑖
− 𝜙′

(
𝑥𝑇
𝑖
𝛽0

)
. It holds that E [𝑍𝑛𝑖] = 0 and that

V

[
𝑛∑︁
𝑖=1

𝑍𝑛𝑖

]
=E


(
𝑛∑︁
𝑖=1

𝑍𝑛𝑖

)2
=E

[
𝑛∑︁
𝑖=1

𝑍2𝑛𝑖

]
=E

[
𝑛∑︁
𝑖=1

(
𝑛−

1
2 (1 + 𝜂)−1 𝛼𝑇𝑛Σ

− 12
(1)𝑥

(1)
𝑖

(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

) )2]
=

1
𝑛 (1 + 𝜂)2

E

[
𝑛∑︁
𝑖=1

𝛼𝑇𝑛Σ
− 12
(1)𝑥

(1)
𝑖

(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)2
𝑥
(𝑖)𝑇
𝑖

Σ
− 12
(1)𝛼𝑛

]
= 1.

Then we show that for any 𝜖 > 0,

𝑛∑︁
𝑖=1
E

[
𝑍2𝑛𝑖 𝐼 {|𝑍𝑛𝑖 | > 𝜖}

]
=

𝑛∑︁
𝑖=1
E

[
𝑍2𝑛𝑖

]
E [𝐼 {|𝑍𝑛𝑖 | > 𝜖}]

≤
(
𝑛∑︁
𝑖=1
E

[
𝑍2𝑛𝑖

]2) 12 (
𝑛∑︁
𝑖=1
E [𝐼 {|𝑍𝑛𝑖 | > 𝜖}]2

) 1
2

≤
(
𝑛∑︁
𝑖=1
E

[
𝑍4𝑛𝑖

] ) 12 (
𝑛∑︁
𝑖=1
P [|𝑍𝑛𝑖 | > 𝜖]

) 1
2

= 𝑜(1).

First by showing that

𝑛∑︁
𝑖=1
P [|𝑍𝑛𝑖 | > 𝜖] ≤

1
𝜖2

𝑛∑︁
𝑖=1
E

[
𝑍2𝑛𝑖

]
=
1
𝑛𝜖2

(1 + 𝜂)−2
𝑛∑︁
𝑖=1
E

[ (
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)2]
𝛼𝑇𝑛Σ

− 12
(1)𝑥

(1)
𝑖
𝑥
(1)𝑇
𝑖

Σ
− 12
(1)𝛼𝑛 = 𝑂 (𝑘𝑛) .
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And finally by showing that

𝑛∑︁
𝑖=1
E

[
𝑍4𝑛𝑖

]
=
1
𝑛2

(1 + 𝜂)−4
𝑛∑︁
𝑖=1
E

[ (
𝜀𝑖𝜂 + 𝜀𝑝𝑖

)4] (
𝑥
(1)𝑇
𝑖

Σ
− 12
(1)𝛼𝑛𝛼

𝑇
𝑛Σ

− 12
(1)𝑥

(1)
𝑖

)2
=
1
𝑛2

(1 + 𝜂)−4
𝑛∑︁
𝑖=1
E

[ (
𝜀𝑖𝜂 + 𝜀𝑝𝑖

)4]
𝜏2max

(
𝛼𝑛𝛼

𝑇
𝑛

)
𝜏2max

(
Σ−1
(1)

) 𝑥 (1)𝑇𝑖
𝑥
(1)
𝑖

2
2
≤ 𝑂

(
𝑘2𝑛
𝑛

)
.

□
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F Proof of theorem 3.5

The following Bernstein’s inequality can be found in lemma 2.2.11 of van der Vaart and Wellner

(1997).

Lemma F.0.1. Let 𝛾1, . . . , 𝛾𝑛 be independent random varables with zero mean such that for all 𝑖

and some constant 𝑀 > 0, E [|𝛾𝑖 |𝑚] ≤ 𝑚!𝑀𝑚−2E
[
𝛾2
𝑖

]
/2 for every 𝑚 ≥ 2. Then

P

[����� 𝑛∑︁
𝑖=1

𝛾𝑖

����� > 𝑡
]
≤ 2 exp

(
− 𝑡2

2
(∑𝑛

𝑖=1 E
[
𝛾2
𝑖

]
+ 𝑀𝑡

) ) .
Proof. To prove this theoremwe need to show that 𝛽∗ satisfies the KKT conditions for the objective

function,𝑄𝑛 (𝛽; 𝑋,𝑌,𝑌 𝑝), in (1) with probability approaching 1 for high 𝑛. Thus we need to show

that

P

[
∀ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

≤ 𝜆
𝛽 𝑗−12 ]

→ 1,

which is equivalent to showing that

P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

> 𝜆
𝛽 𝑗−12 ]

→ 0,

Denote 𝐵𝑛 𝑗 (𝛽) = 𝑛 𝜕𝑆𝑛 (𝛽)𝜕𝛽 𝑗
, and let ∇1𝐵𝑛 𝑗 (𝛽) and ∇21𝐵𝑛 𝑗 (𝛽) denote the first and second order

partial derivatives of 𝐵𝑛 𝑗 (𝛽) with respect to 𝛽 (1) . By doing a second order Taylor expansion of

𝐵𝑛 𝑗 (𝛽) around 𝛽0 we get

𝐵𝑛 𝑗
(
𝛽∗

)
= 𝐵𝑛 𝑗 (𝛽0) + ∇1𝐵𝑛 𝑗 (𝛽0)𝑇

(
𝛽
(1)
∗ − 𝛽 (1)0

)
+ 1
2

(
𝛽
(1)
∗ − 𝛽 (1)0

)𝑇
∇21𝐵𝑛 𝑗

(
𝛽∗𝑛

) (
𝛽
(1)
∗ − 𝛽 (1)0

)
,

where 𝛽∗𝑛 is between 𝛽∗ and 𝛽0.

For 𝑗 ∉ {1, . . . , 𝑘𝑛} we have from condition (B3) that
𝛽 𝑗2 = 𝑂𝑃

(
𝑟−1𝑛

)
. Hence, for some
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large constant 𝐿 > 0 we can rewrite (9).

P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝜕𝑆𝑛 (
𝛽∗

)
𝜕𝛽 𝑗


2

> 𝜆𝑛
𝛽 𝑗−12 ]

≤P
[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝐵𝑛 𝑗 (𝛽∗)2 > 𝑛𝜆𝑛 𝛽 𝑗−12 ,
𝛽 𝑗2 < 𝐿

𝑟𝑛

]
+ P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝛽 𝑗2 ≥ 𝐿

𝑟𝑛

]
≤P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝐵𝑛 𝑗 (𝛽0)2 > 𝑛𝑟𝑛𝜆𝑛

3𝐿

]
+ P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

∇1𝐵𝑛 𝑗 (𝛽0)𝑇 (
𝛽
(1)
∗ − 𝛽 (1)0

)
2
>
𝑛𝑟𝑛𝜆𝑛

3𝐿

]
+ P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

12 (
𝛽
(1)
∗ − 𝛽 (1)0

)𝑇
∇21𝐵𝑛 𝑗

(
𝛽∗𝑛

) (
𝛽
(1)
∗ − 𝛽 (1)0

)
2
>
𝑛𝑟𝑛𝜆𝑛

3𝐿

]
+𝑂 (1)

Δ
=𝑈1 +𝑈2 +𝑈3 +𝑂 (1).

Then considering𝑈1 and using lemma F.0.1 and conditions (B5) and (B6) we get

𝑈1 =P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

𝐵𝑛 𝑗 (𝛽0)2 > 𝑛𝑟𝑛𝜆𝑛

3𝐿

]
=P

[
∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

)
2

>
𝑛𝑟𝑛𝜆𝑛

3𝐿

]

=P

∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,

√√√ 𝑑 𝑗∑︁
𝑘=1

(
𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

))2
>
𝑛𝑟𝑛𝜆𝑛

3𝐿


≤P

∃ 𝑗 ∉ {1, . . . , 𝑘𝑛} ,
𝑑 𝑗∑︁
𝑘=1

����� 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

) ����� > 𝑛𝑟𝑛𝜆𝑛

3𝐿


≤𝑝𝑛 max

𝑗∉{1,...,𝑘𝑛 }
P


𝑑 𝑗∑︁
𝑘=1

����� 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

) ����� > 𝑛𝑟𝑛𝜆𝑛

3𝐿


≤𝑝𝑛 max

𝑗∉{1,...,𝑘𝑛 }

𝑑 𝑗∑︁
𝑘=1
P

[����� 𝑛∑︁
𝑖=1

𝑥𝑖 𝑗𝑘
(
𝜀𝑖 + 𝜂𝜀𝑝𝑖

) ����� > 𝑛𝑟𝑛𝜆𝑛

3𝐿𝑑𝑏

]
≤2𝑞𝑛 exp

(
− (𝑛𝑟𝑛𝜆𝑛)2

18𝐿2𝑑2
𝑏
𝑛𝑅 + 2𝑀𝑛𝑟𝑛𝜆𝑛

)
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=𝑂 (1) exp
©«− log (𝑝𝑛)

©«
(𝑛𝑟𝑛𝜆𝑛)2

2 log (𝑝𝑛)
(
9𝐿2𝑑2

𝑏
𝑛𝑅 + 𝑀𝑛𝑟𝑛𝜆𝑛

) − 1
ª®®¬
ª®®¬

=𝑂 (1) exp
(
− log (𝑝𝑛)

(
1

18𝐿2𝑑2
𝑏
𝑅 log (𝑝𝑛) /

(
𝑛𝑟2𝑛𝜆

2
𝑛

)
+ 2𝑀 log (𝑝𝑛) /(𝑛𝑟𝑛𝜆𝑛)

− 1
))

→ 0.

The proof for 𝑈2 → 0 and 𝑈3 → 0 is similar to the proof of theorem 2.5 in Wang and Tian

(2019). □
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G Proof of theorem 3.6

Proof. We need to show that

P

[
min

𝑗∈{1,...,𝑘𝑛 }

𝛽2 > 0) → 1.

From condition (B4) we get

min
𝑗∈{1,...,𝑘𝑛 }

𝛽2 ≥𝜃1 − 𝛽 − 𝛽02
≥𝑀𝑛(𝑐4−1)/2 −𝑂 𝑝

((
𝑘𝑛

𝑛

) 1
2
)

≥𝑀𝑛(𝑐4−1)/2 −𝑂 𝑝

(
𝑛(𝑐3−1)/2

)
> 0.

□
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