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Abstract
We propose a statistical procedure to determine the dimension of the nonstationary

subspace of cointegrated functional time series taking values in the Hilbert space of
square-integrable functions defined on a compact interval. The procedure is based
on sequential application of a proposed test for the dimension of the nonstationary
subspace. To avoid estimation of the long-run covariance operator, our test is based
on a variance ratio-type statistic. We derive the asymptotic null distribution and
prove consistency of the test. Monte Carlo simulations show good performance of
our test and provide evidence that it outperforms the existing testing procedure. We
apply our methodology to three empirical examples: age-specific US employment rates,
Australian temperature curves, and Ontario electricity demand.
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1 Introduction
Much recent research in time series analysis has focused on so-called functional time series;
that is, time series that take values in possibly infinite-dimensional Hilbert or Banach spaces
rather than the usual finite-dimensional Euclidean space. Each observation of a functional
time series may be, for example, a continuous function, a square-integrable function, or a
probability density function (of course vector-valued time series are a special case). Recent
monograph treatments include Bosq (2000), who considers stationary linear processes taking
values in Hilbert and Banach spaces, and Horváth and Kokoszka (2012), who discuss statis-
tical analysis of functional data and functional time series with many empirical examples.

The majority of recent developments in functional time series depend crucially on the
assumption of stationarity. Despite its importance, this issue has received very limited
attention in the literature. In the context of functional time series, there exists only a few
articles that consider tests of the null hypothesis of stationarity. In particular, Horváth et al.
(2014) and Kokoszka and Young (2016) develop a modified version of the univariate KPSS
test (Kwiatkowski et al., 1992) of stationarity, and Aue and van Delft (2020) propose a test
of stationarity in the frequency domain.

Of course, testing for stationarity is an important first step. However, when a time series
is not stationary, an important problem is to determine the type and magnitude of departure
from stationarity. The type of nonstationarity that we consider is the “unit root” or I(1)
nonstationarity well-known from autoregressive processes. Thus, the issue is to determine the
extent of nonstationarity, which we interpret as the dimension of the nonstationary subspace
(to be made precise later). In this context, testing stationarity is the same as testing that
the nonstationary subspace has dimension zero. To the best of our knowledge, the only
article that considers this more general problem is the seminal contribution of Chang et al.
(2016), though they denote it the “unit root dimension.” Specifically, Chang et al. (2016)
propose a test based on generalized eigenvalues associated with the covariance operator of
the observations and the long-run covariance operator of the first-differenced observations.

In the analysis of vector-valued time series in finite-dimensional space, the dimension of
the nonstationary subspace is the number of linearly independent linear combinations that
are nonstationary and is called the number of common stochastic trends. Similarly, the di-
mension of the stationary subspace is the number of linearly independent linear combina-
tions that are stationary and is called the cointegration rank. In finite-dimensional space,
these numbers are both finite. In that context, Stock and Watson (1988) is an important
early contribution, providing a statistical testing procedure for the dimension of the non-
stationary subspace (number of stochastic trends) in cointegrated vector time series. Differ-
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ently from most subsequent work, their procedure is interpreted as a way to find the number
of stochastic trends rather than the cointegration rank. In finite-dimensional space, there
is no meaningful difference between those interpretations since one determines the other.
However, in infinite-dimensional spaces these two interpretations are fundamentally differ-
ent. Both the model of Chang et al. (2016) and our model of cointegrated linear processes
have finite-dimensional nonstationary subspaces, and hence it is clear that the interpreta-
tion given in Stock and Watson (1988) is the most natural.

In the context of time series in finite-dimensional space, there has been a very large
literature developing methods for determination of the cointegration rank or equivalently the
number of common stochastic trends. These have mostly been based on principal components
analysis of long-run covariance matrices (e.g., Phillips and Ouliaris, 1988; Harris, 1997),
canonical correlation analysis (e.g., Ahn and Reinsel, 1990; Bewley and Yang, 1995; Johansen,
1995), and eigenvalue analysis (e.g., Stock and Watson, 1988; Johansen, 1995; Zhang et al.,
2019).

In an important contribution to finite-dimensional time series, Müller (2008) demon-
strates some desirable properties of variance ratio-type unit root test statistics. In particular,
tests based on variance ratio-type statistics that avoid estimation of the long-run covariance
are shown to be able to consistently discriminate between the unit root null and the station-
ary alternative, in the sense of being consistent with correct asymptotic size. Moreover, it
is shown that these properties are not shared by other popular unit root test statistics that
have to estimate the long-run covariance (either directly or indirectly). This is due to the fact
that no estimator of the long-run covariance exists that is consistent for all processes satisfy-
ing a general unit root definition, and hence resulting tests will typically not control asymp-
totic size; see also Müller (2007). More practically, variance ratio statistics avoid estimation
of the long-run covariance, which is known to be difficult even in a finite-dimensional setting.

Inspired by the work of Müller (2008) and Chang et al. (2016), we consider a nonpara-
metric variance ratio-type test statistic for the dimension of the nonstationary subspace. In
the univariate special case our statistic reduces to the KPSS statistic with bandwidth zero
and in the finite-dimensional case to the statistic considered by Breitung (2002); see also
Taylor (2005), Nielsen (2009, 2010), and Pedroni et al. (2015). As in Chang et al. (2016),
we assume that a cointegrated functional time series has finite-dimensional nonstationary
subspace while the stationary subspace is infinite-dimensional (i.e., there are infinitely many
cointegrating relations). We then discuss sequential application of our test to determine the
dimension of the nonstationary subspace (the number of common stochastic trends). We de-
rive the asymptotic null distribution and prove consistency of the proposed test.

Our procedure has several attractive features. First, our test is nonparametric; that is,
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we do not require the specification of a particular model. Second, it is easy to implement in
practice. The statistic is given by the sum of generalized eigenvalues of sample covariance
operators. Third, we do not need to estimate any long-run covariance operators. This is
an important difference from existing methods in functional time series such as Horváth
et al. (2014), Kokoszka and Young (2016), and Chang et al. (2016). Fourth, Chang et al.’s
(2016) test requires projection onto a space that asymptotically includes the nonstationary
subspace, and which is of the same dimension. On the other hand, our proposed method
requires projection onto a space that asymptotically includes the nonstationary subspace,
but it may be of higher dimension than the latter. Clearly, this would appear to be easier
in practice. Fifth, the asymptotic null distribution of the proposed test statistic does not
depend on the choice of projection operator used to approximate the covariance operators,
and is simply a functional of standard Brownian motion. In practice, therefore, our testing
procedure can be easily implemented in a familiar finite-dimensional setting.

The Monte Carlo simulations in Section 5 suggest that our test has better finite-sample
properties than the existing test of Chang et al. (2016). First, our test has much better size
control across a wide range of simulation DGPs. Second, our test has superior finite-sample
power (size-corrected power in cases where Chang et al.’s (2016) test is severely over-sized).
Third, Chang et al.’s (2016) test is subject to a power reversal problem, which is not the
case for our test. Fourth, and consequently, when implemented sequentially to determine the
dimension of the nonstationary subspace, our test is very robust to the choice of the initial
dimension, whereas Chang et al.’s (2016) test is very sensitive to this choice.

We present several empirical illustrations of our methodology, where we also compare with
the test of Chang et al. (2016). In particular, we consider age-specific employment curves,
Australian temperature curves, and Ontario electricity demand curves. Other applications
of Chang et al. (2016) include global temperature distributions as in Chang et al. (2020).

The remainder of this paper is organized as follows. We review some essential mathe-
matical preliminaries in Section 2. Our testing procedure and asymptotic theory is provided
in Section 3. In Section 4 we present the results from our Monte Carlo simulations. We then
apply our methodology to three empirical data sets in Section 5. All proofs are in the ap-
pendices and in the Online Supplement to this article.

2 Mathematical preliminaries
Let H denote the space of square-integrable functions defined on a compact interval I
equipped with the inner product given by 〈f, g〉 =

∫
I f(u)g(u)du for f, g ∈ H and its in-

duced norm ‖f‖ = 〈f, f〉1/2 for f ∈ H. Then H is a separable Hilbert space. Without loss
of generality, we normalize and assume that I = [0, 1] and

∫
f(u)du =

∫ 1
0 f(u)du throughout

4



the paper. When there is no risk of confusion, we suppress the argument u and we use the
terms vector and function interchangeably to denote an element of (the vector space) H.

Given a subset M ⊂ H, M⊥ denotes the orthogonal complement of M and clM denotes
the closure of M . Given two subspaces M1,M2 ⊂ H with M1 ∩M2 = {0}, H is said to be a
direct sum of M1 and M2, denoted by H = M1 ⊕M2, if any element x ∈ H can be written
as x = xM1 + xM2 for some xM1 ∈M1 and xM2 ∈M2.

We let LH denote the space of bounded linear operators acting on H equipped with the
uniform operator norm, ‖A‖LH = sup‖x‖≤1 ‖Ax‖. For A ∈ LH, we denote the kernel and
range of A by kerA and ranA, respectively. The dimension of ranA is called the rank of A.

The adjoint of an operator A ∈ LH is denoted by A∗. A linear operator A ∈ LH is said
to be positive semi-definite (resp. positive definite) if 〈Ax, x〉 ≥ 0 (resp. 〈Ax, x〉 > 0) for any
x ∈ H. In this paper, f ⊗ g denotes the operation (f, g) 7→ 〈f, ·〉g for f, g ∈ H.

Sometimes we need to restrict the domain and the codomain of a bounded linear operator
to closed subspaces of H. Whenever this is required, we let A|M1→M2 denote the operator
A ∈ LH whose domain is M1 ⊂ H and codomain is M2 ⊂ H.

2.1 H-valued random variables

Let (Ω,F ,P) be the underlying probability space. An H-valued random element Z is a
measurable function from Ω to H, where H is understood to be equipped with the Borel σ-
field. The random element is said to be integrable if E‖Z‖ < ∞ and square-integrable if
E‖Z‖2 <∞. If the random element is integrable, there exists a unique element µ ∈ H such
that E〈Z, f〉 = 〈µ, f〉 for any f ∈ H, and such µ is called the mean function of Z. If the
random element is square-integrable, we define the covariance operator of Z as Cz = E[Z⊗Z].

2.2 I(1) and cointegrated linear processes in H

We require a notion of I(1) sequences and cointegration in our Hilbert space setting. To this
end, we adopt the setting of Beare et al. (2017), who generalize the concept of a cointegrated
I(1) sequence to an arbitrary complex Hilbert space and provide a rigorous mathematical
treatment, although some of the concepts were introduced earlier by Chang et al. (2016).

A sequence (Xt, t ≥ 0) is said to be I(1) if its first differences ∆Xt = Xt −Xt−1 satisfy

∆Xt =
∞∑
j=0

Φjεt−j, t ≥ 1, (2.1)

where (εt, t ∈ Z) is a square-integrable i.i.d. sequence, and (Φj, j ≥ 0) is a sequence in LH
satisfying ∑∞j=0 j‖Φj‖LH < ∞ and Φ(1) = ∑∞

j=0 Φj 6= 0. We assume that the covariance
operator Cε of εt is positive definite and denote the long-run covariance operator of (∆Xt, t ≥
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1) by Λ∆X = Φ(1)CεΦ(1)∗. For the sequence (2.1), the Beveridge-Nelson decomposition is

∆Xt = Φ(1)εt + νt − νt−1, t ≥ 1, (2.2)

where νt = ∑∞
j=0 Φ̃jεt−j and Φ̃j = −∑∞k=j+1 Φk; see Phillips and Solo (1992).

The stationary subspace (cointegrating space) of X is the collection of all h ∈ H such
that the scalar sequence (〈Xt, h〉, t ≥ 0) is stationary for a suitable choice of X0. Beare et al.
(2017) showed that this space is given by ker Λ∆X . Since Cε is positive definite, the stationary
subspace is equal to [ran Φ(1)]⊥. The nonstationary subspace (attractor space) is defined as
the orthogonal complement of the stationary subspace, i.e. cl ran Φ(1). This is the subspace of
H in which the I(1) stochastic trend in the Beveridge-Nelson decomposition (2.2) takes values.
Throughout, A denotes the nonstationary subspace and A⊥ denotes the stationary subspace.

Given the direct sum decomposition H = A ⊕ A⊥, any element h ∈ H can be uniquely
decomposed as h = hA + hA⊥ for some elements hA ∈ A and hA⊥ ∈ A⊥. If hA 6= 0 then
〈Xt, h〉 is I(1). If in fact h ∈ A, then 〈Xt, h〉 may be called a stochastic trend, generalizing
the notion from finite-dimensional space. Furthermore, when the nonstationary subspace, A,
is finite-dimensional, its dimension can be called the number of common stochastic trends.

3 Inference on the dimension of the nonstationary subspace
In this section, we provide a statistical procedure to determine the dimension of the nonsta-
tionary subspace. For simplicity, we first focus on the case where (Xt, t ≥ 1) has zero mean.
In Section 3.4, we consider I(1) sequences with deterministic components.

3.1 Model and hypotheses of interest

We apply the following assumption throughout.

Assumption 1. (Xt, t ≥ 1) satisfies the conditions stated in Section 2.2, and in particular
(2.1), (2.2). The rank of Φ(1) is given by the integer s in [0,∞).

Under Assumption 1, the nonstationary subspace A is finite-dimensional and given by
ran Φ(1) since any finite-dimensional subspace is closed. Moreover, we have the direct sum de-
compositionH = ran Φ(1)⊕[ran Φ(1)]⊥ = A⊕A⊥ and the relation dim(A) = rank(Φ(1)) = s.

Remark 1. For example, a sufficient condition for A to be finite-dimensional is that (Xt, t ≥
1) is autoregressive with compact autoregressive operators; see Beare and Seo (2020, Re-
mark 3.6) or Franchi and Paruolo (2020). As another example, the functional observations
could be generated by a factor model, where the (possibly nonstationary) factors could rep-
resent level, slope, curvature, etc., as in the Nelson and Siegel (1987) term structure model.
Finally, our empirical examples in Section 5 as well as those in Chang et al. (2016) all sug-
gest that s <∞ is empirically reasonable. �
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Let (φj, j ∈ N) be an orthonormal basis of H satisfying span(φ1, . . . , φs) = ran Φ(1). We
may then understand Xt as the basis expansion

Xt =
∞∑
j=1
〈Xt, φj〉φj with

∞∑
j=1
〈Xt, φj〉2 <∞ almost surely.

Let `2(N) denote the space of square-summable sequences equipped with the inner product
〈{xj}, {yj}〉`2(N) = ∑∞

j=1 xjyj for {xj}, {yj} ∈ `2(N). Then, under the isomorphism from H
to `2(N), (Xt, t ≥ 0) may be viewed as the random infinite sequence

(〈Xt, φ1〉, . . . , 〈Xt, φs〉, 〈Xt, φs+1〉, . . . ), t ≥ 0. (3.1)

Clearly, since span(φ1, . . . , φs) = ran Φ(1), the first s components of (3.1) are scalar-
valued I(1) processes because

∆〈Xt, φj〉 = 〈Φ(1)εt, φj〉+ 〈νt − νt−1, φj〉 , j = 1, . . . , s,

are stationary with long-run covariances 〈Λ∆Xφj, φj〉 6= 0. On the other hand, the (infinitely
many) remaining components of (3.1) are all stationary for a suitable choice of X0 because

〈Xt, φj〉 = 〈X0 − ν0, φj〉+ 〈νt, φj〉 , j ≥ s+ 1,

and 〈νt, φj〉 is stationary since 〈νt, ·〉 is a measurable transformation of a stationary sequence.
Moreover, 〈Xt, φj〉 has nonzero long-run covariance if ∑∞j=1 jΦj 6= 0, i.e. it is I(0) in this case.

It thus follows that the dimension of the nonstationary subspace, dim(A) = rank(Φ(1)),
can be interpreted as the number of stochastic trends embedded in the functional time series
(Xt, t ≥ 0). We consider hypothesis testing on dim(A) and provide a statistical procedure to
determine dim(A). In finite-dimensional Euclidean space, Cn or Rn, this is closely related to
cointegration rank (see references in the Introduction). If the cointegration rank is r ≤ n in
Rn, then there are n−r stochastic trends in that setting. However, under Assumption 1 in our
infinite-dimensional setting, only the dimension of the nonstationary subspace (number of
stochastic trends) may be finitely identified while the cointegration rank is always∞. Hence,
it may not be proper to call our test a cointegration rank test, but it still may be viewed as
a generalization of conventional cointegration rank tests from finite-dimensional space.

We apply the following assumption to obtain asymptotic results.
Assumption 2. In (2.1), (2.2) it holds that (i) (εt, t ∈ Z) is an i.i.d. sequence with E‖εt‖4 <

∞; (ii) the covariance operator Cν of (νt, t ≥ 1) is positive definite on A⊥, i.e., 〈Cνx, x〉 > 0
for all x ∈ A⊥.

The above assumption is convenient in our asymptotic analysis. Specifically, Assump-
tion 2(i) is a standard condition to obtain weak convergence of linear processes in H as in
Berkes et al. (2013). Assumption 2(ii), which does not seem restrictive in practice, ensures
that a particular limiting quantity is positive definite; see (B.4) in the appendix.
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We consider the following null and alternative hypotheses,

H0 : dim(A) = s0 vs H1 : dim(A) ≤ s0 − 1. (3.2)

The null hypothesis in (3.2) can be either a pre-specified hypothesis of interest, or (3.2) can
be applied sequentially to estimate s. We explore the latter possibility in Theorem 2.

3.2 Preliminary asymptotic analysis of covariance operators

We first fix notation for the subsequent discussion. Since ran Λ∆X = ran Φ(1) under As-
sumption 1, only the first s eigenvalues of Λ∆X are nonzero. We let ((αj, ηj), j = 1, . . . , s)
denote the pairs of eigenvalues and eigenvectors of Λ∆X and assume α1 ≥ α2 ≥ · · · ≥ αs > 0
without loss of generality. Note that these can be used to define Λ1/2

∆X and Λ−1/2
∆X by the spec-

tral decomposition. In addition, for convenience, we let (ηj, j ≥ s + 1) denote an orthonor-
mal basis of [ran Φ(1)]⊥ so that (ηj, j ∈ N) is an orthonormal basis of H.

Let (W(r), r ∈ [0, 1]) denote a Brownian motion taking values in H with covariance
operator ∑s

j=1 ηj ⊗ ηj and define V(r) =
∫ r

0 W(w)dw for r ∈ [0, 1]. Then

〈W(r), ηj〉 d=Wj(r) and 〈V(r), ηj〉 d= Vj(r), j = 1, . . . , s,

〈W(r), ηj〉 d= 0 and 〈V(r), ηj〉 d= 0, j ≥ s+ 1,
(3.3)

where “ d=” denotes equality in distribution, (Wj(r), r ∈ [0, 1]), j = 1, . . . , s, is a sequence
of standard Brownian motions independent across j, and Vj(r) =

∫ r
0 Wj(w)dw. Under the

isomorphism between s-dimensional real Hilbert space with element h and the Euclidean
space Rs with element (〈h, η1〉, 〈h, η2〉, · · · , 〈h, ηs〉)′, we can consider (W(r), r ∈ [0, 1]) and
(V(r), r ∈ [0, 1]) as the usual s-dimensional standard Brownian motion and integrated stan-
dard Brownian motion.

We define two random operators associated with (W(r), r ∈ [0, 1]) and (V(r), r ∈ [0, 1]) as

W̃ =
∫
W(r)⊗W(r)dr and Ṽ =

∫
V(r)⊗ V(r)dr. (3.4)

Under the above-mentioned isomorphism, these operators may also be understood as random
matrices taking values in Rs×s. Then we find from (3.3) and (3.4) that

〈ηi, W̃ηj〉
d=
∫
Wi(r)Wj(r)dr and 〈ηi, Ṽηj〉

d=
∫
Vi(r)Vj(r)dr, 1 ≤ i, j ≤ s,

〈ηi, W̃ηj〉
d= 0 and 〈ηi, Ṽηj〉

d= 0, otherwise.

Given functional observations (Xt, t = 1, . . . , T ), let Yt = ∑t
j=1Xj for t = 1, . . . , T . We

define the unnormalized sample covariance operators

Ĉ =
T∑
t=1

Xt ⊗Xt and K̂ =
T∑
t=1

Yt ⊗ Yt. (3.5)

Asymptotic properties of Ĉ and K̂ play a crucial role in our analysis.
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In particular, Lemma 1 in Appendix A shows that T−2Ĉ and T−4K̂ converge to C and K,
respectively, where

C d= Λ1/2
∆XW̃Λ1/2

∆X and K d= Λ1/2
∆X ṼΛ1/2

∆X . (3.6)
Given the definition of Λ1/2

∆X , for any element of h ∈ H allowing the unique decomposition
h = hA + hA⊥ , we have

Ch = C(hA + hA⊥) = ChA ∈ A and Kh = K(hA + hA⊥) = KhA ∈ A. (3.7)

That is, C and K eliminate any (infinite-dimensional) component in A⊥ and leave only a
(finite-dimensional) component in A. Moreover, the operators C and K are almost surely
invertible on A, even if they are not invertible on H. Note that, when H = Rn, this result
specializes to T−2∑

tXtX
′
t

d→ C, where C satisfies Ch = h′C = 0 for h ∈ A⊥ and h′Ch is
invertible almost surely for h = [h1, . . . , hs] with orthonormal vectors h1, . . . , hs ∈ A.

3.3 Variance ratio test

Suppose first that we have a projection operator, denoted P`, whose range is an ` ≥ s

dimensional subspace that contains A. Since ((I −P`)Xt, t ≥ 1) is a stationary sequence, its
nonstationary subspace is {0}. Thus, we may disregard this part of (Xt, t ≥ 1) and focus
on the projected time series (P`Xt, t ≥ 1). The latter is isomorphic to an `-dimensional
multivariate time series with ` − s cointegrating relationships and s (linearly independent)
stochastic trends, i.e. with s-dimensional nonstationary subspace.

Of course, the assumption that P` is known is not reasonable in practice, so we need to
replace P` with an estimate. We first apply the following high level condition.

Assumption 3. For some finite integer ` ≥ s there exists (φT1 , . . . , φT` ) such that

P T
` =

∑̀
j=1

φTj ⊗ φTj and ‖P T
` x− x‖ = op(1) for any x ∈ A. (3.8)

Intuitively, Assumption 3 requires a finite collection of vectors whose span asymptotically
includes the nonstationary subspace, A. We call ranP T

` an estimate of an asymptotic super-
space of A. Of course, there are many possible empirical projection operators that could be
applied in practice (e.g., based on eigenanalysis of various covariance, long-run covariance,
or autocovariance operators), so we find it convenient to use Assumption 3 as a practically
important guideline for what a candidate projection operator needs to satisfy. In Section 3.5
we discuss some practical, data-dependent choices of ` and P T

` that satisfy Assumption 3.
Some asymptotic implications of Assumption 3 are discussed in the following remark.

Remark 2. Without loss of generality, we may assume that (φT1 , . . . , φTs ) converges to some
orthonormal basis (φ1, . . . , φs) of A under Assumption 3. The orthonormal set (φ1, . . . , φs)
may be random elements; we do not require that (φT1 , . . . , φTs ) converges to a fixed orthonor-
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mal basis of A. Under Assumption 3, we also have

‖φTj − (I − PA)φTj ‖ = op(1), s+ 1 ≤ j ≤ `.

That is, (φTj , j = s+ 1, . . . , `) is asymptotically included in A⊥. It should be noted that we
do not require any limiting behavior of φTj for j ≥ s+ 1 in our asymptotic analysis, i.e. it is
not required to converge to any (random or fixed) element of H. �

On the subspace ranP T
` , consider the generalized eigenvalue problem

τTj P
T
` K̂P T

` ξ
T
j = P T

` ĈP T
` ξ

T
j , ξTj ∈ ranP T

` . (3.9)

The solution to the eigenvalue problem (3.9) can be characterized as

τTj =
〈P T

` ĈP T
` ξ

T
j , ξ

T
j 〉

〈P T
` K̂P T

` ξ
T
j , ξ

T
j 〉
. (3.10)

The stochastic order and limiting behavior of the eigenvalue, τTj , is different depending on
whether or not the corresponding eigenvector, ξTj , falls inside the nonstationary subspace, A.
This is described in detail in Lemma 2 in Appendix A, where it is shown that T 2τTj converges
to a non-degenerate limit if ξTj ∈ A while (TτTj )−1 = Op(1) if ξTj ∈ A⊥. The latter result is a
lower bound on the order of magnitude of τTj , and in particular ensures that T 2τTj diverges
to infinity in that case. Thus, the s smallest eigenvalues have different stochastic order than
the remaining eigenvalues and T 2∑s

j=1 τ
T
j has a non-degenerate limiting distribution.

In view of (3.10), we call T 2∑s
j=1 τ

T
j a variance ratio statistic. For univariate time series it

reduces to the well-known KPSS statistic of Kwiatkowski et al. (1992) with zero bandwidth,
and for finite-dimensional multivariate time series it reduces to the statistic considered by
Breitung (2002). Additional motivation for the variance ratio statistic can therefore be found
in the univariate case, where the statistic can be derived as a Lagrange multiplier or locally
best invariant statistic for testing I(0) against I(1) (Kwiatkowski et al., 1992) or for testing
the null of a moving average unit root (Tanaka, 1990).

We prove the following theorem, which suggests a testing procedure to determine the
dimension of the nonstationary subspace in our Hilbert space setting. An extension to
accommodate deterministic terms is presented in Section 3.4.

Theorem 1. Suppose that Assumptions 1–3 hold, and let (τT1 , . . . , τT` ) with τT1 ≤ . . . ≤ τT`

and (ξT1 , . . . , ξT` ) ⊂ H be the pairs of eigenvalues and eigenvectors satisfying (3.9). Then

T 2
s∑
j=1

τTj
d→ tr

(
(Ṽ|A→A)−1W̃|A→A

)
, (3.11)

T 2
q∑
j=1

τTj
p→∞ for any s+ 1 ≤ q ≤ `. (3.12)
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Remark 3. Suppose again that P` is known and replaces P T
` . In this case, additional in-

tuition can be gained by considering the isomorphism between ranP` and R`, where an el-
ement x ∈ ranP`, with the unique basis expansion x = ∑`

j=1〈x, xj〉xj for an orthonormal
basis (x1, . . . , x`) of ranP`, is identified as the vector (〈x, x1〉, . . . , 〈x, x`〉)′. Under this iso-
morphism, (P`Xt, t ≥ 1) may be viewed as a multivariate `-dimensional time series and (3.9)
may be viewed as a generalized eigenvalue problem in R`, where P`ĈP` and P`K̂P` appearing
in (3.9)–(3.10) are isomorphic to the sample covariance matrices of this `-dimensional time
series and its cumulated sum, respectively. Then, as noted by Breitung (2002) for cointe-
grated systems in a Euclidean space setting, the stochastic order of τTj depends on whether
or not the corresponding eigenvector ξTj falls inside the span of the cointegrating vectors (or
equivalently the attractor space). �

Remark 4. Theorem 1 suggests a consistent test for the hypothesis in (3.2). Specifically,
the statistic T 2∑s0

j=1 τ
T
j has a well-defined limiting distribution under H0 : s = s0, while it

diverges to infinity under H1. For a given significance level α, we therefore reject H0 when
T 2∑s0

j=1 τ
T
j > cα for some cα depending on α. Using the isomorphism between A and Rs, it

follows that the asymptotic distribution in (3.11) satisfies

tr
(
(Ṽ|A→A)−1W̃|A→A

)
d= tr

((∫ 1

0
Vs(r)V ′s (r)dr

)−1 ∫ 1

0
Ws(r)W ′

s(r)dr
)
, (3.13)

where Ws is s-dimensional standard Brownian motion and Vs(r) =
∫ r

0 Ws(w)dw. Hence,
critical values cα for the test statistic, T 2∑s0

j=1 τ
T
j , can be simulated from (3.13) with s = s0

by standard methods. �

To estimate or determine the dimension s of A, we apply a top-down procedure, where
we sequentially test (3.2) with s0 = smax, smax − 1, . . . , 1 for some reasonably chosen smax

and using nominal level α. The estimate of the dimension of the nonstationary subspace, ŝ,
is then given by the first non-rejected null hypothesis. If H0 is rejected for all values of s0

considered, then we set ŝ = 0. The following result then follows from Theorem 1.
Theorem 2. Suppose that the assumptions of Theorem 1 hold and P{smax ≥ s} → 1. Then,
for a fixed nominal level α, the test described in Remark 4 is consistent, and if s ≥ 1,

P{ŝ = s} → 1− α and P{ŝ > s} → 0. (3.14)

If the nominal level is chosen such that α → 0 as T → ∞ then P{ŝ = s} → 1. Finally, if
s = 0 then P{ŝ = s} → 1, regardless of α.

We note that Theorem 2 requires that P{smax ≥ s} → 1. In theory, this could be
guaranteed by letting smax → ∞ as T → ∞. In practice we would normally expect s to
be quite small, so this would be guaranteed by letting smax be some moderate number. As
suggested by Chang et al. (2016, footnotes 4 and 13), smax could be determined by graphical

11



methods, like eigenvalue plots, or by the number of functional principal components that
determine a large proportion of the total variance. The following remark considers the
consequences of selecting smax < s.

Remark 5. From our proof of Theorem 1, it may easily be deduced that if smax < s, then

T 2
smax∑
j=1

τTj
d→ tr

(
(Ṽ|A′→A′)−1W̃|A′→A′

)
, (3.15)

where A′ denotes some smax-dimensional subspace of A. As in Remark 4, the isomorphism
between Rsmax and any smax-dimensional subspace of H implies that the limit in (3.15)
satisfies

tr
(
(Ṽ|A′→A′)−1W̃|A′→A′

)
d= tr

((∫ 1

0
Vsmax(r)V ′smax(r)dr

)−1 ∫ 1

0
Wsmax(r)W ′

smax(r)dr
)
.

Because smax < s, all the eigenvalues in the test statistic for the first hypothesis in the
sequential procedure, namely H0 : dim(A) = smax, are convergent and satisfy (3.15). It
follows that, in this case, instead of (3.14) we have P{ŝ = smax} → 1− α. �

Remark 6. The consequence of Remark 5 is that, when smax < s, the sequential testing
procedure will conclude that ŝ = smax with probability converging to 1 − α as T → ∞.
Therefore, in practice, if the sequential procedure results in ŝ = smax it seems prudent to
restart with a higher value of smax. Indeed, our test is very robust to choice of smax, even
when smax is much larger than s. For simulation evidence on this point, see Section 4.4 and
Table 4, and for empirical evidence, see Section 5.4 and Figure 5. �

Remark 7. The proposed top-down testing procedure may be seen as an application of
the Pantula principle, which was originally developed by Pantula (1989) to determine the
order of integration of univariate time series. The procedure is very similar to the Johansen
procedure to determine the cointegration rank for multivariate time series taking values in
Rk, whereby one would test the hypotheses s = k, k−1, . . . , 0 sequentially until non-rejection;
see Johansen (1995, Chapter 12). �

3.4 Deterministic components

Until now we assumed that (Xt, t ≥ 1) has mean zero. We now adapt the discussion to
allow a deterministic component. A nonzero intercept function or a linear trend function
seem most relevant in practice, so we focus on those, but an extension to more general
deterministic components requires only a slight modification of the subsequent discussion.

Specifically, for some functions µ1, µ2 ∈ H, we consider the unobserved components model

Xt = µ1 + µ2t+ Ut, (3.16)

where (Ut, t ≥ 1) is an unobserved I(1) sequence with mean zero that is generated like
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(Xt, t ≥ 1) in the previous sections. The model (3.16) includes the intercept function, µ1,
and the linear trend function, µ2. If only an intercept function is wanted, then we set µ2 = 0.

We define the functional residuals from least squares estimation,

U
(1)
t = Xt −

1
T

T∑
t=1

Xt and U
(2)
t = U

(1)
t −

(
t− T + 1

2

) ∑T
t=1

(
t− T+1

2

)
Xt∑T

t=1

(
t− T+1

2

)2 ;

see Kokoszka and Young (2016) for details. Here, the superscript (1) denotes residuals from
the model with only an intercept function, while (2) denotes residuals from the model with
both intercept and linear trend functions. Analogously to (3.5) we define, for % = 1, 2,

Ĉ(%) =
T∑
t=1

U
(%)
t ⊗ U

(%)
t and K̂(%) =

T∑
t=1

 t∑
j=1

U
(%)
j ⊗

t∑
j=1

U
(%)
j

 . (3.17)

We then consider the following generalized eigenvalue problem,

τTj,(%)P
T
` K̂(%)P T

` ξ
T
j,(%) = P T

` Ĉ(%)P T
` ξ

T
j,(%), ξTj,(%) ∈ ranP T

` . (3.18)

To describe the asymptotic distributions, we let (W(%)(r), r ∈ [0, 1]) denote a demeaned
(for % = 1) or demeaned and detrended (for % = 2) Brownian motion taking values in H
with covariance operator ∑s

j=1 ηj ⊗ ηj and define V(%)(r) =
∫ r

0 W(%)(w)dw for r ∈ [0, 1] and
% = 1, 2. Based on these, we then define W̃(%) and Ṽ(%) as in (3.4).

Theorem 3. Suppose that Assumptions 1–3 hold, and let (τT1,(%), . . . , τ
T
`,(%)) with τT1,(%) ≤ . . . ≤

τT`,(%) and (ξT1,(%), . . . , ξ
T
`,(%)) ⊂ H be the pairs of eigenvalues and eigenvectors satisfying (3.18).

Then, for % = 1, 2,

T 2
s∑
j=1

τTj,(%)
d→ tr

(
(Ṽ(%)|A→A)−1W̃(%)|A→A

)
, (3.19)

T 2
q∑
j=1

τTj,(%)
p→∞ for any s+ 1 ≤ q ≤ `. (3.20)

Remark 8. As in Remark 4, it can be shown that the limiting distribution in (3.19) satisfies

tr
(
(Ṽ(%)|A→A)−1W̃(%)|A→A

)
d= tr

((∫ 1

0
V (%)
s (r)V (%)

s
′(r)dr

)−1 ∫ 1

0
W (%)
s (r)W (%)

s
′(r)dr

)
, (3.21)

whereW (%)
s is s-dimensional demeaned (resp. detrended) Brownian motion when % = 1 (resp.

% = 2), and V (%)
s (r) =

∫ r
0 W

(%)
s (w)dw. As in Remark 4, quantiles of this distribution can be

found by simulation. For % = 1, 2 and s0 ≤ 8, these are tabulated in Breitung (2002). �

3.5 Practical choice of P T
` for feasible test

In this section we discuss practical, data-dependent choices of the projection operator, P T
` ,

that asymptotically span the nonstationary subspace, i.e. satisfy Assumption 3. To avoid
basing the generalized eigenvalue problems in (3.9) and (3.18) on high-dimensional covariance
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matrices, which could lead to inaccuracy or even inconsistency of eigenvalues (Yao et al.,
2012), we suggest projection operators constructed from a small set of orthonormal vectors.
The next remark discusses one such projection, based on Ĉ or Ĉ(%), as applied by Chang et al.
(2016). The subsequent theorem discusses another projection, based on our K̂ or K̂(%).

Remark 9. Let C̃ equal Ĉ or Ĉ(%) for % = 1, 2, depending on the specification of deterministic
components, and let {γTj , φTj } be the pairs of eigenvalues and eigenvectors satisfying γTj φTj =
C̃φTj for γT1 ≥ γT2 ≥ . . .. If Assumptions 1 and 2 hold, it follows from Theorem 3.3 of Chang
et al. (2016) that P T

` = ∑`
j=1 φ

T
j ⊗ φTj satisfies Assumption 3 for any ` ≥ s. �

Theorem 4. Suppose that Assumptions 1 and 2 hold. Let K̃ equal K̂ or K̂(%) for % = 1, 2,
depending on the specification of deterministic components, and let {γTj , φTj } be the pairs of
eigenvalues and eigenvectors satisfying

γTj φ
T
j = K̃φTj (3.22)

for γT1 ≥ γT2 ≥ . . .. Then P T
` = ∑`

j=1 φ
T
j ⊗ φTj satisfies Assumption 3 for any ` ≥ s.

In Theorem 4, we suggest an estimate P T
` based on eigenanalysis of K̃ following the idea

of Chang et al. (2016) who estimate P T
` based on eigenanalysis of C̃; see Remark 9. In either

case, the space spanned by the first s eigenvectors converges to the nonstationary subspace,
such that Assumption 3 is satisfied for any ` ≥ s. We use these results to form a test statistic
associated with the null hypothesis in (3.2) following Remark 4. We let the required estimate
P T
` be based on K̃ and Theorem 4, and define the test statistic

TK = T 2
s0∑
j=1

τTj . (3.23)

Remark 10. Of course, we could also form a test statistic based on Remark 9 and C̃ instead
of K̃. It follows from Theorem 4 and Remark 9 that all our previous results and remarks
apply to both versions of the test. From our experience in simulations, the statistic TK in
(3.23) is preferred in terms of finite-sample performance. �

The statistic TK depends on the tuning parameter `, the choice of which is discussed next.
However, we note that the limiting distributions of TK in Theorems 1 and 3 do not depend
on any nuisance parameters. Furthermore, the computation of the statistic does not require
an estimate of the long-run covariance operator Λ∆X . In contrast, Chang et al.’s (2016)
statistic requires computation of the long-run covariance operator P T

` Λ∆XP
T
` for their choice

of P T
` , and the functional KPSS statistics of Horváth et al. (2014) and Kokoszka and Young

(2016) require estimation of the long-run covariance operator of the sequence (Xt, t ≥ 1).

Remark 11. Note that s in Theorem 4 and Remark 9 is the true dimension of the nonsta-
tionary subspace, which of course is unknown in general. However, this is not a problem in
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practice because we start with s0 = smax, where smax ≥ s, and test down; see Theorem 2.
Then we can apply Theorem 4 and Remark 9 with ` ≥ s0, which is feasible. See also Re-
marks 5 and 6 regarding the choice of smax. �

Remark 12. For the choice of `, we suggest either a fixed value, for example ` = smax +k for
some integer k ≥ 0, or alternatively a value that depends on the null hypothesis, ` = s0 + k

for some integer k ≥ 0. Note that both these choices are feasible in practical application
since both smax and s0 are chosen by the practitioner. Clearly, the choice of ` may be an
important issue for finite sample properties of our tests. We experimented with both ` = s0

and ` = s0 + 2 in additional Monte Carlo simulations (the results for ` = s0 can be found in
Tables S.1, S.2, S.3 and S.5 in the Online Supplement), and found that ` = s0 + 2, which of
course is feasible in practice, provides a good compromise between size and power. �

Remark 13. In Chang et al.’s (2016) test of (3.2), exactly s0 orthonormal vectors that
asymptotically span the nonstationary subspace, A, are required for consistency. An inter-
esting feature of our Assumption 3, which is supported in practice by Theorem 4, is that
our testing procedure does not require exactly s0 orthonormal vectors that asymptotically
span A. Instead, our testing procedure allows ` to be larger than s0 in the estimate of the
asymptotic superspace, ranP T

` , whose span asymptotically includes A. Intuitively, it seems
clear that estimation of A is much more difficult than estimation of any space that is asymp-
totically a superspace of A, and this may cause problems for Chang et al.’s (2016) test in
finite samples. This is, to some extent, confirmed in additional simulations (reported in Ta-
bles S.1, S.2, S.3 and S.5 in the Online Supplement), where the test with ` = s0 + 2 outper-
forms that with ` = s0. �

Remark 14. Sometimes, estimation of A is of independent interest. Theorem 4 shows that
the first s eigenvectors of K̃ converge to an orthonormal basis of A. Therefore, estimation
of A reduces to estimation of s, which can be determined by our testing procedure. See
also Theorem 3.3 of Chang et al. (2016), where it is shown that the first s eigenvectors of C̃
converge to orthonormal basis of A. �

4 Monte Carlo simulations
In this section, we investigate the finite sample performance of our test by Monte Carlo
simulation. For all simulation experiments, the sample sizes are T = 200 and T = 500, the
number of replications is 10,000, the nominal size is 5%, and critical values for the variance
ratio tests are from Table 6 in Breitung (2002) (see Remarks 4 and 8). Note that s is the
true value of the dimension of A in the DGP and s0 is the value under the null hypothesis.
Thus, we simulate size when s0 = s and power when s0 ≥ s + 1. We report results for two
statistics: CKP is the statistic of Chang et al. (2016) and TK is our preferred variance ratio
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statistic using ` = s0 + 2 eigenvalues of the sample covariance operator K̂(1) to construct
P T
` ; see (3.23) and Remark 10. The performance of the CKP statistic is sensitive to the

choice of bandwidth parameter used in the estimation of the long-run covariance operator.
We follow Chang et al. (2016) and use the Parzen kernel with the automatic data-dependent
bandwidth rule of Andrews (1991). Finally, all statistics include correction for a non-zero
intercept function, but no linear trend function.

4.1 Experiment 1: densities of individual earnings

This simulation experiment is based on the time series of cross-sectional densities of indi-
vidual earnings that was analyzed in Chang et al. (2016). As pointed out by Petersen and
Müller (2016), it is not, in general, advisable to treat density-valued time series as elements
of the square-integrable Hilbert space with the usual inner product; see also Seo and Beare
(2019). However, this experiment is useful in examining the performance of our test in the
same setting considered by Chang et al. (2016).

The observations of individual weekly earnings are obtained from the Current Population
Survey (CPS) and deflated using inflation-adjustment factors suggested by CPS with base
year 2005; see https://cps.ipums.org/cps/cpi99.shtml. Moreover, as in Chang et al.
(2016), we drop top-coded earnings as well as zero earnings. As a result, our data set provides
cross-sectional observations of individual earnings for 247 months from January 1994 to July
2014, and the number of cross-sectional observations for each month ranges from 12,180
in April 1996 to 15,826 in October 2001. For convenience, we divide each observation by
3500, which is strictly larger than the historically maximal observation, 3394.81, so that all
observations are in [0, 1]. Clearly, this normalization does not cause any numerical differences
compared with the results without normalization. As in Chang et al. (2016), we estimate
monthly densities of individual earnings by kernel density estimation with the Epanechnikov
kernel and bandwidth given by 2.3449σ̂n−1/5, where σ̂ is the standard deviation of cross-
sectional observations and n is the cross-sectional sample size.

The basic data-generating process (DGP) for the simulation experiment is constructed
in the same way as in Chang et al. (2016) with the only difference that we use 247 B-
spline basis functions for the representation of L2[0, 1]-functions, and obtain the eigenvectors
(v̂1, . . . , v̂247) of the covariance operator Ĉ. We thus let

Xt − X̄T =
247∑
j=1

aj,tv̂j (4.1)

and
∆aj,t = βj∆aj,t−1 + σjηj,t, j = 1, 2(= s),

aj,t = βjaj,t−1 + σjηj,t, j ≥ 3,
(4.2)
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Table 1: Simulation results for DGP (4.1)–(4.3)
T = 200 T = 500

Test s0\q1 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5
TK 2 0.011 0.010 0.009 0.009 0.011 0.010 0.037 0.036 0.036 0.036 0.036 0.036

3 0.463 0.457 0.473 0.456 0.468 0.431 0.882 0.887 0.884 0.888 0.884 0.886
4 0.870 0.869 0.879 0.874 0.871 0.845 0.999 0.999 0.999 0.999 0.999 0.999
5 0.986 0.987 0.989 0.989 0.987 0.985 1.000 1.000 1.000 1.000 1.000 1.000

CKP 2 0.024 0.044 0.182 0.393 0.590 0.756 0.040 0.041 0.052 0.111 0.230 0.383
3 0.992 0.658 0.158 0.081 0.071 0.073 1.000 1.000 1.000 0.333 0.083 0.048
4 0.991 0.388 0.106 0.065 0.052 0.053 1.000 1.000 0.627 0.126 0.040 0.020
5 0.947 0.251 0.070 0.040 0.020 0.017 1.000 0.993 0.260 0.032 0.008 0.004

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0. The
nominal size is 5%.

where ηj,t are i.i.d. N(0,1) across j and t, and βj and σj are replaced by the estimates from
the observations âj,t = 〈Xt − X̄T , v̂j〉 for t = 1, . . . , T . Note that this DGP is a special case
of the functional AR(1) processes in Section 4.3.

In the basic DGP in (4.1)–(4.2) we have ∑2
j=1 σ

2
j/
∑247
j=1 σ

2
j ' 0.65. This implies that 65%

of the random functional variation at time t+1, given all the information up to time t, occurs
in the nonstationary subspace. In our empirical examples to age-specific employment rates
and to Ontario electricity demand in Sections 5.1 and 5.3, this number is 14% and 1.6%,
respectively. Thus, the value 65% in the DGP (4.1)–(4.2) may seem like a very high value.
We therefore replace σj in (4.2) with σ̃j defined as

σ̃2
j = (1/q1)σ2

j , j = 1, 2(= s),

σ̃2
j = q1σ

2
j , j ≥ 3,

(4.3)

for q1 ∈ {1.0, 1.5, . . . , 3.5}. Now
∑2
j=1 σ̃

2
j/
∑247
j=1 σ̃

2
j varies from approximately 65% to 13% as

q1 varies from 1.0 to 3.5.
In Table 1 we report the results from the DGP in (4.1)–(4.3). In the rows with s0 = s = 2

we report the simulated size of the tests. It is clear that the CKP test is very sensitive to
the value of q1 with severe over-sizing when q1 ≥ 2 for T = 200 and when q1 ≥ 2.5 when
T = 500. On the other hand, the TK variance ratio test is very robust to q1, though it is
somewhat under-sized when T = 200 and slightly under-sized when T = 500.

Recalling that the true value is s = 2, the rows with s0 ≥ 3 report simulated power. To
make the comparison meaningful, these are size-corrected. To this end, we need to modify
the DGP in (4.2) such that data can be generated with s ≥ 3 nonstationary components. To
do this, we randomly choose s−2 values from j = 3, . . . , 8 and set their values of βj equal to
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Table 2: Simulation results for DGP (4.1), (4.2), (4.4)
T = 200 T = 500

Test s0\q2 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
TK 2 0.011 0.017 0.031 0.061 0.094 0.137 0.037 0.041 0.050 0.064 0.083 0.107

3 0.456 0.499 0.525 0.564 0.558 0.556 0.875 0.905 0.931 0.953 0.960 0.966
4 0.871 0.894 0.920 0.921 0.917 0.902 0.999 1.000 1.000 1.000 1.000 1.000
5 0.984 0.992 0.995 0.996 0.992 0.987 1.000 1.000 1.000 1.000 1.000 1.000

CKP 2 0.024 0.035 0.082 0.232 0.466 0.677 0.040 0.054 0.108 0.230 0.413 0.601
3 0.993 0.992 0.860 0.306 0.155 0.097 1.000 1.000 1.000 1.000 0.894 0.448
4 0.999 0.995 0.797 0.397 0.268 0.192 1.000 1.000 1.000 1.000 0.914 0.649
5 1.000 0.992 0.821 0.510 0.378 0.280 1.000 1.000 1.000 1.000 0.963 0.796

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0. The
nominal size is 5%.

one. From the results in Table 1 we see that the large size distortions of the CKP test imply
that its power is nearly zero in many cases. It is only with small values of q1 that the CKP test
has meaningful size and power. Furthermore, in some cases where the CKP test has accurate
size it suffers from a power-reversal problem, in the sense that power declines as s0 increases
and is further away from the true s (e.g., when T = 500 and q1 = 2.0). This phenomenon was
also observed by Chang et al. (2016) in their Table 7, where the true number of stochastic
trends is one, and columns 1 and 2 are reasonable, but columns 3–5 correspond to alternatives
that are farther away from the null hypothesis with declining power. On the other hand, the
power of the TK variance ratio test is unaffected by the value of q1, as was the size.

4.2 Experiment 2: densities of individual earnings with measurement error

We next consider a modification of the basic DGP in (4.1)–(4.2), where we include estima-
tion/measurement error in the DGP. First, the time series in Chang et al.’s (2016) DGP in
(4.1)–(4.2) consist of estimated densities, so we should not disregard estimation error. Sec-
ond, the first step of functional time series analysis typically includes smoothing of discrete
observations to obtain functional observations. This data pre-processing therefore entails es-
timation error for each Xt, and we make the DGP a little more realistic by adding an i.i.d.
noise to each realization. That is, in addition to (4.1)–(4.2), we consider

X̃t = Xt + q2ut, ut = PF10Bt, (4.4)

where Bt is a sequence of i.i.d. standard Brownian bridges and PF10 denote the projection
operator onto the span of the first 10 Fourier basis functions (without a constant function).
The projection PF10 is not essential to this experiment and is applied to make X̃t a smooth
function for each t. The inverse signal-to-noise ratio is q2 ∈ {0.00, 0.05, . . . , 0.25}.
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The results for the DGP in (4.1), (4.2), and (4.4) are reported in Table 2. Again, the
CKP test has very poor size control for this DGP. Even for the larger sample with T = 500,
the size of the CKP test is 10.8% with q2 = 0.10 and 60.1% with q2 = 0.25. In contrast, the
TK test has only slight size distortions for the largest values of q2 considered.

We again consider size-corrected power due to the large size distortions for the CKP test
in particular. In cases where the size of the CKP test is reasonable, it appears to have good
power, and for the smallest values of q2 the CKP test has higher power than the TK test. On
balance, though, the TK test has higher power than the CKP test in most cases.

Overall, the CKP test is clearly very sensitive to the specifications of q1 and q2 in our
Experiments 1 and 2, in terms of both simulated size and power. In constrast, the TK
variance ratio test is very robust to all specifications.

4.3 Experiment 3: functional AR(1) process

For our next simulation experiment we consider the commonly applied functional AR(1)
model. In particular, our setup follows that of Beare et al. (2017) and Aue et al. (2017). Let
(ζj, j = 1, . . . , 21) be the first 21 orthonormal polynomial basis functions defined on [0, 1],
and let (ζ(j), j = 1, . . . , 21) be the same collection in a different order obtained by randomly
permuting (ζj, j = 1, . . . , 8) and (ζj, j = 9, . . . , 21), separately. We generate the functional
time series as

Xt = µ+
21∑
j=1

θj〈ζ(j), Xt−1〉ζ(j) +Bt, (4.5)

where (Bt, t = 1, . . . , T ) is a sequence of i.i.d. standard Brownian bridges and

θj =

 1 for j ≤ s,

θ(j−s) for j ≥ s+ 1,

for 0 ≤ θ < 1. Following, e.g., Aue et al. (2017), we permute (ζj) as described above to avoid
any effects caused by the particular shape and ordering of the basis functions, and hence the
shapes of the stationary and nonstationary subspaces. Intuitively, when the nonstationary
subspace is s-dimensional, s elements are randomly drawn from the first eight polynomials.
Similarly, to avoid any effects caused by the particular shape of the mean function µ in (4.5),
it is generated by ∑21

j=1 gjζj, where gj are i.i.d. standard normal random variables. Finally,
the functional observations are constructed by smoothing (Xt, t = 1, . . . , T ) in (4.5) using
41 Fourier basis functions (the choice of basis functions has minimal effect in this setting).

Table 3 presents simulation results for θ ∈ {0.0, 0.5, 0.8}. We first note that the CKP
test has very poor size control for all θ and all s = dim(A). Even though it improves as
the sample size increases, there is still severe over-rejection for T = 500. The size-corrected
simulated power of the CKP test is very low in all cases, presumably due to the large size
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Table 3: Simulation results for functional AR(1)
T = 200 T = 500

θ Test s0 s = 0 s = 1 s = 2 s = 3 s = 0 s = 1 s = 2 s = 3
0.0 TK s 0.049 0.045 0.058 0.050 0.050 0.047

s+ 1 0.999 0.966 0.954 0.955 1.000 1.000 1.000 0.999
s+ 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
s+ 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CKP s 0.372 0.644 0.567 0.173 0.424 0.577
s+ 1 0.187 0.134 0.036 0.020 0.496 0.209 0.161 0.038
s+ 2 0.124 0.001 0.001 0.002 0.372 0.091 0.000 0.001
s+ 3 0.000 0.000 0.000 0.000 0.199 0.000 0.000 0.000

0.5 TK s 0.047 0.043 0.041 0.050 0.048 0.052
s+ 1 0.981 0.907 0.897 0.859 1.000 0.996 0.994 0.996
s+ 2 1.000 0.999 0.999 0.997 1.000 1.000 1.000 1.000
s+ 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CKP s 0.390 0.688 0.799 0.195 0.455 0.635
s+ 1 0.149 0.067 0.044 0.032 0.342 0.117 0.060 0.032
s+ 2 0.000 0.009 0.010 0.012 0.000 0.002 0.003 0.003
s+ 3 0.000 0.001 0.002 0.004 0.000 0.000 0.000 0.000

0.8 TK s 0.027 0.023 0.019 0.045 0.042 0.041
s+ 1 0.785 0.618 0.537 0.437 0.976 0.915 0.901 0.860
s+ 2 0.982 0.959 0.940 0.917 1.000 1.000 1.000 0.999
s+ 3 1.000 0.999 0.999 0.997 1.000 1.000 1.000 1.000

CKP s 0.459 0.744 0.823 0.271 0.569 0.729
s+ 1 0.143 0.064 0.070 0.072 0.315 0.104 0.069 0.077
s+ 2 0.019 0.056 0.080 0.113 0.005 0.020 0.046 0.091
s+ 3 0.012 0.042 0.092 0.317 0.000 0.007 0.031 0.231

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0. Nominal
size is 5%.

distortions. On the other hand, the TK variance ratio test has excellent size and power for
all θ and s considered in this simulation setup.

In additional simulations, reported in Tables S.4 and S.5 in the Online Supplement, we
considered model (4.5) with the nonstationary subspace spanned by the first s polynomial ba-
sis functions, i.e. without permutation of (ζj, j = 1, . . . , 8). Because lower-order polynomial
basis functions are much more smooth than higher-order polynomials, all tests have better
finite-sample properties in this case. However, the CKP test still substantially over-rejects
the null hypothesis when θ is relatively large, while the TK test performs very well overall.
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4.4 Experiment 4: sequential application of tests

In practice, rather than testing a specific hypothesis of interest, we expect that the most
common application of our proposed test, and of the CKP test, is to estimate the dimension
of the nonstationary subspace as in Theorem 2. To this end, both procedures require a
priori setting an upper bound, denoted smax. The hypotheses H0 : dim(A) = s0 for s0 =
smax, smax − 1, . . . , 1 are then tested sequentially, and the estimate ŝ is the first non-rejected
null hypothesis. It is preferable that this ŝ is robust to the choice of smax, i.e. that it does
not depend on the choice of smax (as long as smax ≥ s). In our last simulation experiment
we consider this sequential application of the tests to obtain ŝ. The data is generated by the
functional AR(1) process (4.5) with θ = 0.5.

Table 4 reports the results as relative frequencies of ŝ divided into the four “bins”, ŝ < s,
ŝ = s, ŝ = s+1, and ŝ > s+1. For each of four true values, s ∈ {0, 1, 5, 8}, we consider three
different choices for the initial hypothesis, smax ∈ {s + 1, s + 3, 20}. The first two choices
are a simple way to simulate careful selection of smax based on graphical or other measures
as discussed in Chang et al. (2016, Section 5), with the second choice being slightly more
liberal in view of the requirement that smax ≥ s (and s is unknown in practice).

The results in Table 4 are clearly favorable to the TK test. In particular, the CKP test
tends to find ŝ > s when either smax or s increases. This issue with the CKP test is likely
due to the power reversal problem of the test as mentioned in Section 4.1 and also observed
by Chang et al. (2016) in their Table 7. On the other hand, our TK test finds ŝ = s with
large probability that is nearly unaffected by the choice of smax. Although this probability
decreases somewhat when s increases, it also increases substantially with the sample size.

Additional simulations (reported in Tables S.1, S.2, S.3 and S.5 in the Online Supplement)
have shown that the variance ratio tests based on Ĉ(1) and/or with ` = s0 are somewhat
over-sized, though not nearly as much as the CKP test. This suggests that estimation of A is
more difficult than estimation of an asymptotic superspace of A, and we conjecture that this
may be the main reason for the size distortion of the CKP test; see also Remarks 12 and 13.

Overall, our Monte Carlo simulations strongly support the use of the TK variance ratio
test. It is very robust to the DGP specifications with excellent size control throughout. Fur-
ther evidence on the robustness based on empirical applications is presented in Section 5.4.

5 Empirical applications

5.1 Logit transformed age-specific employment rates

We first apply our methodology to the time series of age-specific employment rates in the US
observed monthly from January 1989 to November 2018. The data is available from the CPS
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Table 4: Relative frequencies of ŝ for functional AR(1)
T = 200 T = 500

smax Test s ŝ < s ŝ = s ŝ = s+1 ŝ > s+1 ŝ < s ŝ = s ŝ = s+1 ŝ > s+1
s+1 TK 0 0.979 0.021 1.000 0.000

1 0.042 0.853 0.105 0.051 0.944 0.005
5 0.088 0.734 0.178 0.077 0.919 0.004
8 0.334 0.624 0.042 0.259 0.741 0.000

CKP 0 1.000 0.000 0.000 1.000 0.000 0.000
1 0.396 0.603 0.001 0.000 0.199 0.801 0.000 0.000
5 0.114 0.054 0.831 0.000 0.762 0.238 0.000 0.000
8 0.000 0.000 1.000 0.000 0.063 0.027 0.909 0.000

s+3 TK 0 0.979 0.021 0.000 1.000 0.000 0.000
1 0.041 0.853 0.105 0.001 0.051 0.944 0.005 0.000
5 0.088 0.734 0.176 0.002 0.077 0.919 0.004 0.000
8 0.334 0.624 0.041 0.000 0.259 0.741 0.000 0.000

CKP 0 1.000 0.000 0.000 1.000 0.000 0.000
1 0.354 0.528 0.000 0.117 0.199 0.801 0.000 0.000
5 0.000 0.000 0.000 1.000 0.757 0.235 0.000 0.008
8 0.000 0.000 0.000 1.000 0.001 0.000 0.000 0.999

20 TK 0 0.979 0.021 0.000 1.000 0.000 0.000
1 0.041 0.853 0.105 0.001 0.051 0.944 0.005 0.000
5 0.088 0.734 0.176 0.002 0.077 0.919 0.004 0.000
8 0.334 0.624 0.041 0.000 0.259 0.741 0.000 0.000

CKP 0 0.000 0.000 1.000 0.000 0.000 1.000
1 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
5 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
8 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and θ = 0.5. Nominal size is 5%.

at https://ipums.org; see Flood et al. (2018). We only consider individuals in the working
age (15–64) population. For age a, the age-specific employment rate at time t is computed as

Xa,t =
∑nt
i=1wi,tZi,t1{ai,t = a}∑nt
i=1wi,t1{ai,t = a}

,

where 1{·} denotes the indicator function, nt is the number of individuals observed at time t,
and wi,t, ai,t, and Zi,t denote the weight (WTFINL in CPS), age, and employment status
dummy of individual i at time t, respectively. The employment rate specific to each age,
Xa,t, is then seasonally adjusted using the software package provided by the US Census
Bureau. The age-specific employment rate takes values between 0 to 1 by construction, so as
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Figure 1: Group characteristics

(a) younger age group (b) older age group (c) all ages

is common in the literature, we hereafter consider the logit transformation, ψ(Xa,t), instead
of Xa,t. Finally, the functional observations Xt(u) for u ∈ [15, 64] and t = 1, . . . , T = 359
are obtained by smoothing ψ(Xa,t) over a using 31 B-spline basis functions.

In Figure 1 we plot three real-valued sequences (〈Xt, v〉, t ≥ 1) to explore characteristics
of the functional time series. Specifically, we consider v = vy, vo, and va, where

vy(u) = 1{u ≤ 25}, vo(u) = 1{u ≥ 54}, va(u) = 1, u ∈ [15, 64].

Clearly, 〈Xt, vy〉 and 〈Xt, vo〉) are the average employment rates for the younger and older age
groups, respectively, and 〈Xt, va〉 is the overall average employment rate. Firstly, Figure 1
suggests that the functional time series of age-specific employment rates is nonstationary,
because if it were stationary, then (〈Xt, v〉, t ≥ 1) would be stationary for any choice of v ∈ H.
Secondly, it seems that the series may have a linear time trend. Thirdly, the three series
clearly have some degree of co-movement, but they also have their own characteristics. For
example, in 2009 employment rates decline sharply in both age groups, but the decline seems
more severe in the younger age group than in the older age group. Note that, if we only focus
on the employment rate that is aggregated over ages as in Figure 1(c), this information is lost.

Panel (a) of Figure 2 displays the functional observations, and in panel (b) we display
the first six (largest) eigenvalues of K̂(2) from (3.22) on a logarithmic scale, where we use the
detrended functional observations. This is because Figure 1 suggested the possible presence
of a linear time trend; note that the horizontal axis in Figure 2(a) is age and not time, so a
“trend” in the latter plot is related to the shape of the intercept function and not the time
trend. Let the inner product of the jth eigenvector of (3.22) with (U (2)

t , 1 ≤ t ≤ T ) denote
jth score process. Figures 2(c)–(f) display the first four score processes.

The order of magnitude and rate of decay of the eigenvalues can be suggestive of the di-
mension of the nonstationary subspace, as discussed in Chang et al. (2016) for the eigenval-
ues of Ĉ. In particular, the number of “large” eigenvalues should correspond to the dimen-
sion of the nonstationary subspace. Furthermore, based on Theorem 4 we expect that the
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Figure 2: Monthly age-specific employment rates January 1989 to November 2018

(a) logit of employment rates (b) first six eigenvalues of K̂(2) (c) first score

(d) second score (e) third score (f) fourth score

first s score processes behave as unit root processes. From the plots of both the eigenvalues
and the score processes, there seems to be quite strong graphical evidence in favor of the di-
mension being at least one or two.

In addition to the graphical evidence, we also calculated the functional KPSS test statis-
tics of Horváth et al. (2014) and Kokoszka and Young (2016) based on projection onto the
space spanned by the first d eigenvectors of the long-run covariance operator of Xt. We used
the Parzen kernel with bandwidth given by T 1/3, and the parameter d was chosen such that
the cumulative variance of the first d eigenvectors, ∑d

j=1 λ̂j/
∑T
j=1 λ̂j, was around 90% as rec-

ommended by Horváth et al. (2014) and Kokoszka and Young (2016). The test statistics
equal 5.99 (intercept) and 0.52 (linear trend and intercept), and in both cases are significant
at the 1% level using the critical values in Table 6.1 of Horváth and Kokoszka (2012) and
Table 1 of Kokoszka and Young (2016).

Table 5 summarizes the test results under two different specifications of the deterministic
component, nonzero intercept and linear trend. Even though Chang et al. (2016) do not
explicitly consider the case where the DGP includes a linear trend function, we may apply
their test to the functional residuals U (2)

t in which case the asymptotic distribution of their
test statistic under the null is given by the minimum eigenvalue of

∫ 1
0 W

(2)
s0 (r)W (2)

s0
′(r)dr.

For both specifications of deterministic terms in Table 5, the CKP test rejects more than
the TK variance ratio test. In particular, with only an intercept, the CKP test suggests that
the dimension of the nonstationary subspace is ŝ = 2 and the TK test suggests ŝ = 3. Allowing
for a linear trend, which based on Figure 1 seems prudent, the CKP and TK tests suggest ŝ = 1
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Table 5: Test results for logit of age-specific employment rates
Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5
Intercept only
TK 17.67 156.38 579.59 1623.55∗∗ 4411.19∗∗∗
CKP 0.1134 0.0325 0.0077∗∗∗ 0.0075∗∗∗ 0.0068∗∗∗

Linear trend and intercept
TK 130.43 426.18 1401.94∗∗ 4381.61∗∗∗ 7107.46∗∗∗
CKP 0.1110 0.0093∗∗∗ 0.0074∗∗∗ 0.0073∗∗∗ 0.0066∗∗∗

Notes: The functional data are smoothed with 31 B-spline functions, and the number of observations is
T = 359. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.
Critical values for the CKP test in the linear trend case are calculated from the functional residuals U (2)

t

and 100,000 approximate realizations from the asymptotic distribution. Data and R code to replicate this
table are available on the authors’ websites.

and ŝ = 2, respectively. This pattern is, at least to some extent, expected from the simulation
evidence, where the CKP test was often found to be over-sized. For that reason, we would
be most inclined to conclude that the logit transformed age-specific employment curves have
a two-dimensional nonstationary subspace (i.e., are driven by two stochastic trends).

5.2 Minimum temperatures in Australia

The next empirical example is an application to yearly minimum temperature curves in
Australia. This example is also considered in Aue et al. (2017), who reject the null of
stationarity against the alternative of structural change in the mean function. However,
their finding could also be a consequence of a nontrivial nonstationary subspace.

The raw data is obtained from the Australian Bureau of Meteorology at http://www.
bom.gov.au and consists of daily minimum temperature observations. For each year, the
observations are smoothed using 23 Fourier basis functions to obtain a curve of minimum
temperatures through the year. We consider six weather stations that have relatively large
samples, and we allow for a non-zero intercept function in the processes. The functional
KPSS test statistics for the six series range from 1.20 to 3.77 and are significant at the 10%
level (Gunnedah Pool), 5% level (Cape Otway), or 1% level (remainder).

Figure 3 shows a graphical summary of the Sydney data set. In particular, Figure 3(b)
shows the six largest eigenvalues of K̂(1) on a logarithmic scale. The first eigenvalue is clearly
very different from the remaining eigenvalues, suggesting a one-dimensional nonstationary
subspace (one stochastic trend). This is also suggested from the plots of the first and second
scores in Figure 3(c), of which only the first seems nonstationary.

Table 6 reports the test results for the six temperature series. The findings for the CKP
test are very mixed. In all of the data sets, s0 = 5 is not rejected, although smaller values
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Figure 3: Annual minimum temperature curves at Sydney station 1860–2018

(a) minimum temp. curves (b) first six eigenvalues of K̂(1) (c) first and second scores

Table 6: Test results for Australian minimum temperatures
Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5
Sydney, 1860–2018
TK 16.27 440.81∗∗ 1508.09∗∗∗ 3348.58∗∗∗ 6728.21∗∗∗
CKP 0.0523 0.0199∗∗ 0.0184 0.0149 0.0148
Melbourne, 1856–2014
TK 14.65 397.21∗∗ 1331.09∗∗∗ 4421.53∗∗∗ 7933.17∗∗∗
CKP 0.0846 0.0194∗∗ 0.0174∗ 0.0138 0.0137
Gunnedah Pool, 1877–2011
TK 68.92∗ 393.15∗∗ 1369.26∗∗∗ 2809.60∗∗∗ 4820.76∗∗∗
CKP 0.0202∗∗∗ 0.0166∗∗ 0.0141∗∗ 0.0142 0.0134
Cape Otway, 1864–2018
TK 55.64 980.81∗∗∗ 2197.37∗∗∗ 4611.09∗∗∗ 8595.01∗∗∗
CKP 0.0187∗∗∗ 0.0140∗∗∗ 0.0143∗∗ 0.0138 0.0131
Boulia Airport, 1888–2018
TK 31.56 226.93 1376.03∗∗∗ 3510.24∗∗∗ 6449.36∗∗∗
CKP 0.0176∗∗∗ 0.0160∗∗∗ 0.0129∗∗ 0.0130∗ 0.0140
Gaydah Post Office, 1894–2008
TK 16.72 429.14∗∗ 1109.67∗∗ 2574.92∗∗∗ 4469.61∗∗∗
CKP 0.0517 0.0208∗∗ 0.0184 0.0182 0.0154
Notes: The functional data are smoothed with 23 Fourier basis functions. In the order of stations reported
in the table, the numbers of observations are 160, 161, 133, 155, 126, and 117, respectively. We use ∗, ∗∗,
and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.

are rejected, and smaller yet are not. The CKP findings are thus strongly dependent on the
starting point, smax, of the procedure. On the other hand, our TK test detects one stochastic
trend for all temperature curves with at least 5% significance (s0 = 1 is in fact rejected for
the Gunnedah Pool series, but only at the 10% level).

Clearly, this strong dependence of the CKP procedure on the starting value, smax, is
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Figure 4: Monthly electricity demand in Ontario January 1994 to November 2018

(a) electricity demand curves (b) first six eigenvalues of K̂ (c) first and second scores

Table 7: Test results for Ontario monthly electricity demand
Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5
TK 48.79 472.85∗∗ 2614.72∗∗∗ 5257.11∗∗∗ 8342.73∗∗∗
CKP 0.0188∗∗∗ 0.0192∗∗ 0.0194 0.0097∗∗∗ 0.0074∗∗∗

Notes: The seasonally adjusted functional data are smoothed with 31 B-spline basis functions. The number of
observations is T = 299. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, resp.

undesirable in practice. At the same time, our TK variance ratio test seems to be much less
subject to this problem, and this should be a very appealing feature of our test for applied
researchers. The robustness (or lack thereof) of the CKP procedure and the TK variance
ratio test to the starting value, smax, is further explored in Section 5.4.

5.3 Ontario monthly electricity demand

In our final empirical example, we examine the existence of nonstationarity in Ontario elec-
tricity demand. The raw data is observed every hour from January 1994 to November 2018,
and is available at http://www.ieso.ca. We obtain T = 299 monthly electricity demand
curves using around 700 hourly data points for each month smoothed with 31 B-spline basis
functions. The monthly curves are log-transformed and then seasonally adjusted by func-
tional regression on a set of 12 seasonal dummies (of course, this implies that the series have
zero mean, but in the asymptotic theory it corresponds to inclusion of an intercept function).

Figure 4 shows a graphical summary of the time series of monthly electricity demand
curves. As in the previous example, the first eigenvalue is orders of magnitude larger than
the remaining eigenvalues, and the first score process looks nonstationary while the second
looks stationary. Again, this is suggestive of a one-dimensional nonstationary subspace. The
functional KPSS test rejects stationarity at the 1% level with a test statistic of 1.84.

Table 7 presents test results for the electricity demand data set. The TK test concludes
that the nonstationary subspace is one-dimensional at the 5% significance level. The CKP
test, on the other hand, concludes that the process is either stationary or has a three-
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Figure 5: Estimates from the TK and CKP procedures for the data sets

(a) age-specific empl. rate (b) Sydney min. temp. (c) Gunnedah Pool min. temp.

(d) Boulia Airport min. temp. (e) Ontario electricity demand
Notes: For age-specific employment rates a linear trend is included, for the minimum temperature series an
intercept but no trend is included, and for the electricity demand seasonal dummies are included. In all
cases the significance level of the tests is 5%. The results for the minimum temperatures in Gaydah Post
Office, Melbourne, and Cape Otway are identical to those in Panels (b), (b), and (d), respectively.

dimensional nonstationary subspace at the 1% significance level (s0 = 3 is the only non-
rejected hypothesis). In view of the Monte Carlo simulation results, this is not too surprising.

5.4 Robustness to choice of smax

In practice, rather than testing a specific hypothesis of interest, we expect that the most
common application of our proposed test, and of the CKP test, is to estimate the dimension
of the nonstationary subspace as in Theorem 2. To this end, both procedures require a priori
setting an upper bound, denoted smax. The hypothesesH0 : dim(A) = s0 for s0 = smax, smax−
1, . . . , 1 are then tested sequentially. It is preferable that the result of this procedure is robust
to the choice of smax, i.e. that it does not depend on the choice of smax (as long as smax ≥ s).

We know from the simulation evidence in Section 4.4 and Table 4, as well as the empirical
examples discussed above, that the CKP results depend heavily on the choice of smax, while
the TK variance ratio test is more robust to this choice. We now investigate this issue further
in Figure 5, where we report the estimated dimension for each data set using the sequential
testing procedure in Theorem 2 with 5% significance level for smax = 3, . . . , 20. It is obvious
from Figure 5 that the CKP procedure is very sensitive to the initial hypothesis, smax, while
the variance ratio test is very robust.
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In particular, the CKP test tends not to reject the initial hypothesis, H0 : dim(A) =
smax, when smax gets bigger. Consequently, sequential application of the CKP test would
either lead to the conclusion that the dimension of the nonstationary subspace is smax, or
smax would be increased and the sequential test repeated (as discussed in Remark 6) thus
exacerbating the problem. In some cases, this dependence of the CKP test on the choice of
smax is a relatively minor issue, and can be avoided by careful choice of smax. For example,
for the age-specific employment and electricity demand applications, the CKP procedure
gives the same estimate for smax ≤ 7 and smax ≤ 6, respectively. However, in all the other
applications, the CKP procedure finds that ŝ = smax for all choices of smax ≥ 4 (or even
less). This is problematic, not only in view of Remark 6, but also since two researchers with
different choices of smax would frequently find different estimates from the CKP procedure,
even though they retain the same significance level.

On the other hand, our TK variance ratio procedure is very robust to the choice of
smax. For all the data sets, it gives the same estimate for all smax considered. For practical
application, this is a substantial advantage of our procedure.

6 Conclusion
We have proposed a testing procedure to determine the dimension of the nonstationary sub-
space (number of stochastic trends) in functional time series taking values in a Hilbert space.
Our test statistic is of the variance ratio type, and in the univariate special case it reduces
to the well-known KPSS statistic of Kwiatkowski et al. (1992) with bandwidth zero. The
test is based on a projection onto a subspace of Hilbert space that is a superspace of the
true nonstationary subspace with probability converging to one. We provided an easily im-
plemented candidate for this required projection operator using empirical eigenvectors of co-
variance operators. We have derived the asymptotic distribution of the test statistic under
the null hypothesis, which is a functional of standard Brownian motion. It does not depend
on the choice of projection operator nor on the number of eigenvectors used to construct
the projection operator. Monte Carlo simulation results were reported which provide evi-
dence that our test has good finite sample properties and is preferred to the existing test of
Chang et al. (2016). Finally, we applied our methodology to three empirical data sets, age-
specific US employment curves, Australian temperature curves, and Ontario electricity de-
mand curves, and in all cases found evidence of nontrivial nonstationary subspaces.

Appendix A: Preliminary lemmas
The first lemma shows convergence of the sample covariance operators.
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Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section 3.2
it holds that

‖T−2Ĉ − C‖LH = op(1), (A.1)

‖T−4K̂ − K‖LH = op(1). (A.2)

The next lemma shows the different behavior of the sample covariance operators in dif-
ferent directions of the parameter space.

Lemma 2. Suppose that Assumptions 1, 2 and 3 are satisfied. With the notation in Sec-
tion 3.3 the following holds.

(i) For any vT ∈ ranP T
` satisfying supT ‖vT‖ <∞,

|〈T−2P T
` ĈP T

` v
T , vT 〉 − 〈CvT , vT 〉| = op(1),

|〈T−4P T
` K̂P T

` v
T , vT 〉 − 〈KvT , vT 〉| = op(1).

(ii) For any vT ∈ A⊥ ∩ ranP T
` satisfying supT ‖vT‖ <∞,

〈CvT , vT 〉 = 0 and 〈KvT , vT 〉 = 0,

|〈T−1P T
` ĈP T

` v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉| = op(1),

〈T−2P T
` K̂P T

` v
T , vT 〉 = Op(1).

The results of Lemmas 1 and 2 will be important in the derivation of the limiting distri-
bution of our test statistic. In the next two lemmas, these results are extended to accom-
modate deterministic terms.

Lemma 3. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section 3.4
it holds that, for % = 1, 2,

‖T−2Ĉ(%) − C(%)‖LH = op(1), (A.3)

‖T−4K̂(%) −K(%)‖LH = op(1), (A.4)

where C(%) d= Λ1/2
∆XW̃(%)Λ1/2

∆X and K(%) d= Λ1/2
∆X Ṽ(%)Λ1/2

∆X .

Lemma 4. Suppose that Assumptions 1, 2, and 3 are satisfied. With the notation in Sec-
tion 3.4 the following holds for % = 1, 2.

(i) For any vT ∈ ranP T
` satisfying supT ‖vT‖ <∞,

|〈T−2P T
` Ĉ(%)P T

` v
T , vT 〉 − 〈C(%)vT , vT 〉| = op(1),

|〈T−4P T
` K̂(%)P T

` v
T , vT 〉 − 〈K(%)vT , vT 〉| = op(1).
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(ii) For any vT ∈ A⊥ ∩ ranP T
` satisfying supT ‖vT‖ <∞,

〈C(%)vT , vT 〉 = 0 and 〈K(%)vT , vT 〉 = 0,

|〈T−1P T
` Ĉ(%)P T

` v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉| = op(1),

〈T−2P T
` K̂(%)P T

` v
T , vT 〉 = Op(1).

Appendix B: Proofs of theorems

B.1 Proof of Theorem 1

We consider the decomposition P T
` = P T

` PA + P T
` (I − PA) = P T

`,A + P T
`,A⊥ , for P T

`,A = P T
` PA

and P T
`,A⊥ = P T

` (I − PA), and the following operator matrices,

K̂` = P T
` K̂P T

` |ranPT
`
→ranPT

`
=
 (P T

`,A)∗K̂P T
`,A (P T

`,A⊥)∗K̂P T
`,A

(P T
`,A)∗K̂P T

`,A⊥ (P T
`,A⊥)∗K̂P T

`,A⊥

 ,
Ĉ` = P T

` ĈP T
` |ranPT

`
→ranPT

`
=
 (P T

`,A)∗ĈP T
`,A (P T

`,A⊥)∗ĈP T
`,A

(P T
`,A)∗ĈP T

`,A⊥ (P T
`,A⊥)∗ĈP T

`,A⊥

 .
Let DT denote the normalization operator matrix

DT =
T−1/2I1 0

0 I2

 ,
where I1 and I2 are properly defined identity operators. Then the generalized eigenvalue
problem (3.9) can be rewritten as

(T 2τTj )(T−3DT K̂`DT )ξTj = (T−1DT Ĉ`DT )ξTj , ξTj ∈ ranP T
` . (B.1)

By the isomorphism between R` and any `-dimensional subspace of H, the general-
ized eigenvalue problem (B.1) may be understood as a standard eigenvalue problem in R`.
Let [T−1DT Ĉ`DT ] (resp. [T−3DT K̂`DT ]) be the matrix representation of T−1DT Ĉ`DT (resp.
T−3DT K̂`DT ) with respect to the orthonormal basis (φT1 , . . . , φT` ) of ranP T

` , as given by

[T−1DT Ĉ`DT ]ij = 〈T−1DT Ĉ`DTφ
T
j , φ

T
i 〉, 1 ≤ i, j ≤ `,

[T−3DT K̂`DT ]ij = 〈T−3DT K̂`DTφ
T
j , φ

T
i 〉, 1 ≤ i, j ≤ `.

From Assumption 3, Remark 2, and the results in Lemma 2, it follows that

[T−3DT K̂`DT ]−
[K] 0

0 0

 p→ 0, [K]ij = 〈Kφj, φi〉, 1 ≤ i, j ≤ s, (B.2)

[T−1DT Ĉ`DT ]−
[C] 0

0 [C̃ν ]T

 p→ 0, [C]ij = 〈Cφj, φi〉, 1 ≤ i, j ≤ s, (B.3)

[C̃ν ]Tij = 〈C̃νφTj , φTi 〉, s+ 1 ≤ i, j ≤ `, (B.4)
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where C̃ν = (I − PA)Cν(I − PA). Moreover, by our Assumption 2(ii) and Remark 2, the
matrix [C̃ν ]T is positive definite regardless of the limiting behavior of (φTs+1, . . . , φ

T
` ).

Given the results in (B.2)–(B.4), only the first s eigenvalues of (B.1) are finite in the limit
when normalized by T 2. Specifically, it follows that

T 2
s∑
j=1

τTj
p→

s∑
j=1

τj,

(T 2τTj )−1 p→ 0, j = s+ 1, . . . , `,

which proves (3.12). The limiting eigenvalues (τ1, . . . , τs) and corresponding eigenvectors
(ξ1, . . . , ξs) are defined by the limiting eigenvalue problem

τj[K]ξj = [C]ξj, ξj ∈ Rs. (B.5)

Thus, we may deduce from (B.5) and Remark 4 that
s∑
j=1

τj = tr
(
[K]−1[C]

)
= tr

(
(Λ1/2

∆X ṼΛ1/2
∆X |A→A)−1Λ1/2

∆XW̃Λ1/2
∆X

)
.

Finally, recall that Λ1/2
∆X : A→ A and Ṽ : A→ A are both invertible operators (almost surely

for Ṽ). By the properties of the trace, it then follows that
s∑
j=1

τj = tr
(
((Λ1/2

∆X)|A→A)−1(Ṽ|A→A)−1W̃|A→A(Λ1/2
∆X |A→A)

)
= tr

(
(Ṽ|A→A)−1W̃|A→A

)
,

which proves (3.11).

B.2 Proof of Theorem 2

The result that P{ŝ > s} → 0 is a direct consequence of the consistency of the test, i.e.
of (3.12) in Theorem 1, and the assumption that P{smax ≥ s} → 1. Thus, because P{ŝ >
s} → 0, the sequential test procedure will reach the test of the null hypothesis that s0 = s

with probability converging to one. This is a test of a true null, so we find from (3.11) in
Theorem 1 that P{ŝ = s} → 1− α, which proves the required result.

B.3 Proof of Theorem 3

The proof is nearly identical to that of Theorem 1, but using Lemmas 3 and 4 instead of
Lemmas 1 and 2, and hence is omitted.

B.4 Proof of Theorem 4

Let K̃∞ denote the limit K or K(%) depending on the specification of the deterministic com-
ponent. Then it follows from Lemmas 1 and 3 that ‖T−4K̃ − K̃∞‖LH = op(1).

Let φTj and φj denote the eigenvectors corresponding to the ordered eigenvalues of K̃
and K̃∞, respectively. Using the fact that the first s eigenvalues of K̃∞ are almost surely
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distinct, it follows from Lemma 3.2 of Hörmann and Kokoszka (2010) (as a generalization of
Lemma 4.3 of Bosq (2000)) that

‖φTj − sgn(〈φTj , φj〉)φj‖ = op(1), j = 1, . . . , s. (B.6)

Note that (φ1, . . . , φs) is a random orthonormal set, but the span is nonrandomly given by
span(φ1, . . . , φs) = A. Therefore, (B.6) implies that the set of eigenvectors (φT1 , . . . , φTs )
asymptotically spans A. Specifically, for any x ∈ A,

‖〈φTj , x〉φTj − 〈φj, x〉φj‖
p→ 0, j = 1, . . . , s,

‖〈φTj , x〉φTj ‖
p→ 0, j = s+ 1, . . . , `.

(B.7)

From (B.7), we may easily deduce that Assumption 3 is satisfied.

Appendix C: Proofs of lemmas

C.1 Proof of Lemma 1

Recalling that Xt(u) is a random function of the argument u ∈ [0, 1], we define the double-
indexed function ZT (r, u) = T−1/2XbTrc(u) = T−1/2∑bTrc

t=1 ∆Xt(u) for r ∈ [0, 1] and at the
functional value u ∈ [0, 1]. When there is no risk of confusion, we also use the notation
ZT (r) = T−1/2XbTrc to denote the entire function of u. Under the summability condition∑∞
j=0 j‖Φj‖LH < ∞ and Assumption 2, the sequence ∆Xt in (2.1) is a so-called L4-m-

approximable sequence; see Proposition 2.1 in Hörmann and Kokoszka (2010). Then, from
Theorem 1.1 in Berkes et al. (2013) and the Skorokhod representation, it follows that

sup
0≤r≤1

∥∥∥ZT (r)−W (r)
∥∥∥ p→ 0, (C.1)

where W d= Λ1/2
∆XW . Let C =

∫
W (r)⊗W (r)dr, then clearly C d= Λ1/2

∆XW̃Λ1/2
∆X .

Similarly, for all r ∈ [0, 1], we let W (r, u) denote the function value at u ∈ [0, 1] and use
W (r) to denote the random (square-integrable) function of u. Both Ĉ and C are integral
operators, so we let ĉ(u,w) (resp. c(u,w)) denote the kernel function of T−2Ĉ (resp. C).
These are given as follows,

ĉ(u,w) = 1
T 2

T∑
t=1

Xt(u)Xt(w) =
∫
ZT (r, u)ZT (r, w)dr,

c(u,w) =
∫
W (r, u)W (r, w)dr.

To prove (A.1) we show a stronger result. An operator A is a compact operator if
there exists two orthonormal bases, (fj, j ∈ N) and (gj, j ∈ N), and a real-valued sequence
(γj, j ∈ N) tending to zero, such that

Ax =
∞∑
j=1

γjfj ⊗ gj(x).
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A compact operator A is said to be a Hilbert-Schmidt operator if ∑∞j=1 γ
2
j < ∞. The so-

called Hilbert-Schmidt norm of A is then given by

‖A‖HS =
 ∞∑
j=1
‖Agj‖2

1/2

for any arbitrary orthonormal basis (gj, j ∈ N). The following norm inequality is well known,

‖ · ‖LH ≤ ‖ · ‖HS. (C.2)

It thus suffices to show that ‖T−2Ĉ − C‖HS = op(1).
Define the norm ‖g‖L×L = (

∫ ∫
g(u,w)2dudw)1/2 for a kernel function g : [0, 1]× [0, 1]→

R. Then note that

‖T−2Ĉ − C‖HS = ‖ĉ− c‖L×L ≤
(∫ ∫ ∫ (

ZT (r, u)ZT (r, w)−W (r, u)W (r, w)
)2
dudwdr

)1/2
,

(C.3)
where the equality is because both T−2Ĉ and C are integral operators and the inequality is
the Cauchy-Schwarz inequality. The integrand in (C.3) is equal to the square of

(ZT (r, u)−W (r, u))(ZT (r, w)−W (r, w))

+W (r, u)(ZT (r, w)−W (r, w)) + (ZT (r, u)−W (r, u))W (r, w). (C.4)

Using (C.4) and Minkowski’s inequality, we deduce that (C.3) is bounded from above by(∫ ∫ ∫ (
ZT (r, u)−W (r, u)

)2 (
ZT (r, w)−W (r, w)

)2
dudwdr

)1/2

+ 2
(∫ ∫ ∫

W (r, u)2
(
ZT (r, w)−W (r, w)

)2
dudwdr

)1/2

=
(∫ (∫ (

ZT (r, u)−W (r, u)
)2
du
)2
dr
)1/2

+ 2
(∫ (∫

W (r, u)2du
)(∫ (

ZT (r, w)−W (r, w)
)2
dw
)
dr
)1/2

≤ sup
0≤r≤1

(∫ (
ZT (r, u)−W (r, u)

)2
du
)

+ 2 sup
0≤r≤1

(∫
W (r, u)2du

)1/2
sup

0≤r≤1

(∫ (
ZT (r, w)−W (r, w)

)2
dw
)1/2

= op(1),

where the last equality is from (C.1) and the fact that

sup
0≤r≤1

∥∥∥W (r)
∥∥∥ <∞ almost surely

because W (r) is almost surely continuous on a bounded interval. Thus, (A.1) is established.
To prove (A.2), we note that instead of (C.1) we now have

sup
0≤r≤1

∥∥∥∥∥∥T−3/2
[Tr]∑
t=1

Xt −
∫ r

0
W (u)du

∥∥∥∥∥∥ = sup
0≤r≤1

∥∥∥∥∫ r

0
ZT (u)du−

∫ r

0
W (u)du

∥∥∥∥ = op(1), (C.5)
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which follows from Lemma B.3 in Horváth et al. (2014) and the Skorokhod representation.
The remainder of the proof is almost identical to that of (A.1), and is therefore omitted.

C.2 Proof of Lemma 2

First note that vT ∈ ranP T
` implies P T

` v
T = vT , so that

|〈T−2P T
` ĈP T

` v
T , vT 〉 − 〈CvT , vT 〉| = |〈(T−2Ĉ − C)vT , vT 〉| ≤ ‖T−2Ĉ − C‖LH sup

T
‖vT‖2 = op(1).

The inequality follows from Cauchy-Schwarz and properties of the operator norm and the
final equality follows from Lemma 1. The proof of the second statement of part (i) is identical.

Next, we prove part (ii). The first statement is a direct consequence of the definitions of
C and K; see (3.7). Because vT ∈ A⊥ ∩ ranP T

` we have P T
` (I − PA)vT = vT , so that

〈P T
` ĈP T

` v
T , vT 〉 = 〈(I − PA)Ĉ(I − PA)vT , vT 〉. (C.6)

We then find that

|〈T−1P T
` ĈP T

` v
T , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉|

= |〈T−1(I − PA)Ĉ(I − PA)vT , vT 〉 − 〈(I − PA)Cν(I − PA)vT , vT 〉|

≤ ‖T−1(I − PA)Ĉ(I − PA)vT , vT 〉 − 〈(I − PA)Cν(I − PA)‖LH sup
T
‖vT‖2,

where the inequality follows from Cauchy-Schwarz and properties of the operator norm.
We note that T−1(I − PA)Ĉ(I − PA) may be viewed as the sample covariance operator of
((I − PA)νt, t ≥ 1), and it follows from Assumption 2 and Mas (2002) that

‖T−1(I − PA)Ĉ(I − PA)− (I − PA)Cν(I − PA)‖LH = op(1), (C.7)

which shows the second statement of part (ii). The proof of the third statement is identical.

C.3 Proof of Lemma 3

We need the result corresponding to (C.1) for the case with residuals. Similarly to the proof
of Lemma 1, we define Z(%)

T (r) = T−1/2U
(%)
bTrc and show that

sup
0≤r≤1

∥∥∥∥Z(%)
T (r)−W (%)(r)

∥∥∥∥ = op(1), (C.8)

where W (%)(r) d= Λ1/2
∆XW(%). After showing (C.8), the remainder of the proof is identical to

that of Lemma 1 and is therefore omitted.
The proof of (C.8) applies well-known techniques combined with the convergence results

in (C.1) and (C.5). For example, for % = 1, we have U (1)
t = Xt − T−1∑T

t=1Xt, so that
Z

(1)
T (r) = ZT (r) −

∫
ZT (w)dw. Since W (1)(r) = W (r) −

∫
W (w)dw, the left-hand side of
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(C.8) for % = 1 is bounded by

sup
0≤r≤1

∥∥∥ZT (r)−W (r)
∥∥∥+ sup

0≤r≤1

∥∥∥∥∫ ZT (w)dw −
∫
W (w)dw

∥∥∥∥ = op(1), (C.9)

where the convergence is from (C.1) and (C.5).

C.4 Proof of Lemma 4

This follows by nearly identical arguments to the proof of Lemma 2, using the results in
Lemma 3, and is therefore omitted.
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