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Abstract

We construct a parsimonious test of constancy of the correlation matrix in the
multivariate conditional correlation GARCH model, where the GARCH equations
are time-varying. The alternative to constancy is that the correlations change de-
terministically as a function of time. The alternative is a covariance matrix, not
a correlation matrix, so the test may be viewed as a general test of stability of a
constant correlation matrix. The size of the test in finite samples is studied by
simulation. An empirical example is given.
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1 Introduction

Successors of the constant conditional correlation (CCC-)GARCH model by Bollerslev
(1990) have become quite popular in financial applications. For overviews of multivari-
ate GARCH models, see Bauwens, Laurent and Rombouts (2006) and Silvennoinen and
Terésvirta (2009). The most popular time-varying conditional correlation GARCH model
is the DCC-GARCH model by Engle (2002). Tse and Tsui (2002) independently devel-
oped a rather similar model called the Varying Correlation (VC-)GARCH model. Both
nest the CCC-GARCH model. However, there do not exist tests for testing the CCC
model against either one of them. The reason may be that when the data-generating
process is the CCC-GARCH model, neither the DCC- nor the VC-GARCH model is
identified. This causes problems in deriving an appropriate test.

Among multivariate regime-switching GARCH models, both the Markov-switching
multivariate GARCH model (Pelletier 2006), and the smooth transition conditional cor-
relation (STCC-)GARCH model (Berben and Jansen 2005, Silvennoinen and Terdsvirta
2005, 2015) nest the CCC-GARCH model. Neither of them is identified when data are
generated from the smaller model. The latter authors circumvented the identification
problem and developed a Lagrange multiplier type test of CCC-GARCH against STCC-
GARCH.

In the meantime, GARCH equations of the CCC-GARCH model have been extended
to accommodate potential nonstationarity in the series to be modelled. This has, to a
large extent, been done through the so-called multiplicative decomposition of the variance
of an individual series into the customary conditional variance and a deterministic com-
ponent. Contributions include Feng (2004, 2018), van Bellegem and von Sachs (2004),
Engle and Rangel (2008), Amado and Teréasvirta (2008, 2013, 2017), Brownlees and Gallo
(2010) and Mazur and Pipien (2012). Amado and Terésvirta (2014) incorporated this
feature into CCC-, DCC- and VC-GARCH models. For a recent review, see Amado,
Silvennoinen and Terésvirta (2019). The problem for which multiplicative decomposition
offers a solution is that many sufficiently long return series are nonstationary in the sense
that the amplitude of volatility clusters that GARCH is designed to parameterise is not
constant over time. The purpose of the deterministic component in the decomposition is
to rescale the observations such that the rescaled series can be described by a standard
weakly stationary GARCH model.

Silvennoinen and Terésvirta (in press) retained the multiplicative decomposition of
variances and, in addition, assumed that the correlations of their smooth transition cor-
relation model were changing deterministically over time. As opposed to the DCC-
and VC-GARCH, this allows systematic changes in correlations. For example, corre-
lations may change from one level to another and remain there. Hall, Silvennoinen and
Terésvirta (2021) derived a test of CCC-GARCH against this Time-Varying Correlation
(TVC-)GARCH model. A drawback of their test, called the HST-test for short, is that
if the dimension of the model is large, the null hypothesis of the test will also be quite
large. This limits the applicability of the HST-test in practical, large dimensional appli-
cations. In this paper we develop a parsimonious alternative to the HST-test. The main
thrust is to use the spectral decomposition of the correlation matrix, thereby making the
eigenvalues rather than individual correlation parameters the focal point of the test. As



with the HST-test, while the statistic here has been derived using a linear time trend as
a transition variable, it can be generalised to detect variation in correlations according
to other variables of interest, see Silvennoinen and Terdsvirta (2015). As a consequence,
both of these tests are designed to detect correlation movement as a function of the chosen
transition variable, making them flexible in practical applications. The test presented in
this paper does have a difference compared to the HST test: the alternative hypothesis is
generally not a correlation matrix. The resulting test may therefore be viewed as a gen-
eral misspecification test of the CCC-GARCH model when the correlations are allowed
to change systematically over time.

The plan of the paper is as follows. Section 2 contains an overview of previous tests
of constant GARCH equations and correlations. The model and the null hypothesis
to be tested are also presented there. The log-likelihood, score and the information
matrix can be found in Sections 3 and 4 and the test statistic in Section 5. In Section 6,
the performance of the test in finite samples is examined by simulation, including a
few cases in which the GARCH equations are misspecified. Section 7 contains a real-
world application. Conclusions can be found in Section 8. Proofs and further simulation
evidence are relegated to an appendix.

2 Previous literature and the Time-Varying Smooth
Transition Correlation GARCH Model

Before considering our Time-Varying Smooth Transition Correlation (TV-STC-GARCH)
model, we take a quick look at the literature on tests of constancy of the error covariance
matrix of a possibly nonlinear vector model. This literature is not very large, and rather
few tests actually focus on the correlation matrix. There exist tests against conditional
heteroskedasticity. Liitkepohl (2004, pp. 130-131) constructed a test of no multivariate
ARCH against multivariate ARCH of order ¢q. This Lagrange multiplier test works best
when ¢ and N, the dimension of the model, are small. The test statistic has an asymptotic
x2-distribution with ¢N?(N + 1)?/4 degrees of freedom when the null hypothesis of no
ARCH holds.

Eklund and Terésvirta (2007) designed a test in which the covariance matrix 3; is
decomposed as in Bollerslev (1990) such that ¥, = D, P D, where D, = diag(dy;, . .., dn)
is a time-varying matrix with positive diagonal elements and P is a positive definite
correlation matrix. The null hypothesis is that D; = D = diag(d;, . ..,dy) where d; > 0,
i =1,...,N. The alternative is d; # d; at least for one i. Typically d;; = d; + d(x;),
where both the (parametric) function d(-) and the argument @, can be defined in various
ways. The restriction that P is constant saves degrees of freedom but in some situations
has a negative effect on the power of the test.

A similar decomposition is employed by Catani, Terdsvirta and Yin (2017), but the
purpose of their test is more limited. The decomposition has the form ¥, = D,S; P S, D,
where D, = diag(h}{Q, . h%f) such that hy, i =1,..., N, are ARCH- or GARCH-type
conditional variances. For example,
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where I(+) is an indicator variable, with a;o > 0, a1 > 0, a1 + K41 > 0, and 5;; > 0, so (1)
has a GJR-GARCH structure, see Glosten, Jagannathan and Runkle (1993). Furthermore
S, = diag(git/Q, . ,gjl\{f) where gi = 14300, 8527, 5, and z; = (214, .., 2n) ~ 1id(0, P).
The null hypothesis Hy: S; = Iy, org;; = 1,7 =1,..., N, which means that after estimat-
ing the CCC-GARCH model, there is no structure unmodelled in conditional variances.
When D, = D, this test may be viewed as a parsimonious version of Liitkepohl’s test of
no multivariate ARCH. The authors point out that their test can also be interpreted as
a generalisation of the more parsimonious test by Ling and Li (1997).

The aforementioned tests are tests of 3; such that in the decomposition ¥, = D; P, D,
or Xy = DS;P,S,D,, it is assumed P, = P, and the hypothesis to be tested has been
D, = D. In this work the focus is on testing Hy: P, = P. Assuming S; = I, Tse
(2000) derived a portmanteau type constancy test of this hypothesis and found that it
has reasonable power against the alternatives he was interested in. Péguin-Feissolle and
Sanhaji (2016) proposed two portmanteau tests that are in fact extensions to Tse’s test.
The authors showed by simulation that the power of their tests is superior to that of Tse.
A common feature of these tests is that the alternative is not a correlation matrix.

The TV-STC-GARCH model is a multivariate GARCH model with time-varying
GARCH equations and correlations

€ = Ht1/2Ct = DtStPtl/ZCt, (2)

where g, = (14, ...,€n:) 18 a stochastic N x 1 vector and H; = D, S, P,S; D, is an N x N
conditional covariance matrix of &;, typically the vector of returns in applications. The
diagonal matrix S = diag(gitﬂ(@gl), . ,g]lv/f(OgN)) is a matrix of square roots of positive-
valued deterministic components to be defined below and D; = diag(h}{Z(Ogl, 0n1),...,

h%f(eg]v, 0,~)) contains the conditional standard deviations of ¢, = S;'e;, = (¢yy, .. .,

oOne), where ¢y = €54/ gilt/ °i=1,...,N. In what follows it is assumed that the elements

of ¢, have a first-order GJR-GARCH representation, see Glosten et al. (1993):
hit(Ogi, Oi) = g + aindr,  + kil (¢ip1 < 0)07, 1 + Birhig—,

it =1,...,N. Furthermore, in S;,

git = dip + Z 0ijGii (t/ T, vij, €ij) (3)
j=1
with
Gii(t/T) = Giy(t/T, 355, €5) = (1 + exp{—y; [ [#/T = cie)D) ", (4)
k=1
1= 1, <oy N, where Vij > 0 and Ci; = (Cijla .. ,Cini].)/ such that Cij1 S . S CinZ.].. Note

that &, > 0 is assumed known to solve the identification problem arising from both h;
and g;; having an intercept. It is often convenient to set d;,0 = 1, but any positive constant
will do. Finally, P, is a positive definite deterministically varying covariance matrix of
z; = D;'S;e;, and ¢, ~ iid(0, Iy). For the purposes of this paper it is assumed that



P, is rotation invariant: P, = QA4Q’, where the matrix Q@ = (qi,...,q,)" holds the
time-invariant eigenvectors as its columns, and the time-varying eigenvalues are

A = (1-GU/T)(A—-A)+G(t/T)( A+ A")

= A+{2G(t/T) — 1}A" (5)

with
G(t/T) = (1 +exp{—y(t/T — c1)(t/T — c2)})"", v > 0. (6)
If changes in the elements of A; = diag(Ayy, . . ., An¢) are assumed monotonic, the exponent

of order one in (6) is sufficient. If nonmonotonicity is allowed, a second-order exponent is

necessary. Further note that these elements are required to be positive and sum up to N.

It is assumed that the elements of the diagonal matrix A satisfy the same conditions, and

the elements of the diagonal matrix A* sum up to zero. When P, = P, it is assumed that

P is a positive definite correlation matrix, in which case H, is a slightly generalised version

of the decomposition of the conditional covariance matrix Bollerslev (1990) suggested.
Hall et al. (2021) derived a constancy test in a more general situation in which

P, = {1-G(t/T)}Pu) + G(t/T) Py,

where G(t/T) is defined as in (6) and P(;) and P are two positive definite correlation
matrices. In that set-up, as a convex combination of these two matrices P; is always a
positive definite correlation matrix . Their Lagrange multiplier test statistic of the null
hypothesis v = 0, i.e. P, = P, is asymptotically y?-distributed with N(N — 1) degrees of
freedom when the null hypothesis holds.

Even here, the focus is on testing P, = P against the alternative that the matrix
varies deterministically with time. As already indicated, P; is not a correlation matrix
when P, # P. Testing constancy of P, in this framework is motivated by the fact that
the test of the null hypothesis Hy: v = 0 in (6) involves fewer parameters than the test
of Hall et al. (2021) when N > 2. It may be viewed as a parsimonious version of their
test, which is an advantage when N becomes large. When Hy holds, G(t/T) = 1/2, and
A; = A. Tt is seen from (5) and (6) that in that situation the covariance matrix (5) is not
identified. Both A*, ¢; and ¢y are unidentified nuisance parameters.

In order to derive a test of this null hypothesis, we circumvent the identification
problem as in Luukkonen, Saikkonen and Terédsvirta (1988) and develop G(¢/T') into a
Taylor series around the null hypothesis. After reparameterising, (5) becomes

U, =W + U t/T + O (t/T)* + ¥ (p), (7)

where W (g is a residual matrix and ¥(;y = diag(y;1,...,%¥;n), 5 = 0,1,2. Requiring
the diagonal elements of ¥, to sum up to N implies that Yoy = N — Zf\;l Yo; and
Yin = —Zf\:ll Yy for 7 = 1,2. Under Hy, ¥y = A. The elements ¢j;, i = 1,..., N;
j = 1,2, in (7) are of the form v;; = 7j$ji, lei # 0, 7 = 1,2, so the new 2(N — 1)-
dimensional null hypothesis is Hj: ¥y = ¥ () = 0.

Since we shall construct a Lagrange multiplier test that only requires estimating the
model under the null hypothesis we can ignore the residual vector 1pr because it is a



null vector when Hy (or Hf)) holds. It does contribute to the power of the test when the
alternative is true. This leads to the following auxiliary covariance matrix:

Pl =Q(¥ o) +¥ut/T + ¥ o) (t/T)*)Q'. (8)

Matrix (8) is a correlation matrix only under Hj,, and its purpose is to function as a basis
for a test of constant correlations. We call the model (2) in which (5) is replaced by (8),
the auziliary time-varying correlation GARCH model. It is a device constructed to derive
the test and not a data-generating process. Its log-likelihood and score are considered in
the next section.

The test we propose is similar to the one by Yang (2014) in that both make use of
the spectral decomposition of 3;. It should be noted, however, that Yang (2014) did not
decompose the covariance matrix further into conditional variances and correlations. He
constructed instead a test of constancy of the covariance matrix based on this decom-

position. Our work may therefore be also seen as a variant of or an extension to Yang
(2014).

3 Log-likelihood and score of the auxiliary model

The log-likelihood of the auxiliary TV-STC-GARCH model for observation ¢ equals

where ¢;(t/T) = to; + Yut/T + i (t/T)?, and wy = qlzy, @ = 1,..., N, with z; =
D;'S;'e,, so cov(z;) = P,. The vector 8 = (6,,0,,,0,)", where its components are
defined as follows: 6, = (67, ... ,O;N)’ with 8, = (8],~/,c;)', where 6; = (6i1,...,0i,),
Yi = (Yits -+, Vi)' and ¢ = (ciy, ..., ¢,)'s O = (0),, ..., 0),y) with O = (o, i, ki,
Bi1)’; and 0y = (), ¥, 9,)’, contains the parameters of (8). Let e; be the ith column of
the N x N identity matrix and 1y = (1,...,1)  an N x 1 vector of ones. For notational

purposes define the following N — 1 x 3 parameter matrix

1/101 Y1 Y1
v = = [ o Y1 Yo }
@/JON 1 Yin-1 YN

and 1et ’d) - V€C< ) = (w07¢1a’¢2) and ¢ = vec( ) (1/)17 s 7E/N—1)/7 Where Ej =
(toj,¥15,%25)', 5 =1,..., N — 1. We now state the following result:



Theorem 1. Consider the auziliary TV-STC-GARCH model (2) with (8) whose log-
likelihood for observation t is defined in (9). The blocks of the average score of the auziliary
log-likelihood are

N

gZ

1 T 8 t 1 T gzt 1 3hzt A
=57 {€izz(P)e; — 1} (10)
; 2T ; git 084 hlt 00, A

and

ot 1 «— 1 0
TZ 8:9(h-) - ﬁzh_ta t{ez ziz,(P) e, — 1} (11)
t=1 g t=1 "
fori=1,...,N, and
2

1 < 94,(0) 1 & w?
T2 oy - _TZ: t/T Y ) Y

t=1 (3

- ! d —1 v (12
N—Zﬁwwmxﬁ—zgwwﬁ> %T -
fori=1,...,N —1, where 7, = (1,t/T, (t/T)?)". Under Hy, (10), (11) and (12) become

or 1 1 Og; 1 Oh;
TZ 1) <_ Iy t){ 2z P le; — 1},

90,; 0 = 2T &g, 00, hiy 90y

Ot ( 1 < 1 0h
th = 37 2 g (AP e 1)

hi
and

T

8&5 . i 1 U}?t _
—Z m—ngW%in

1
_ 1 th _ 1 }Tt-
N — Zk:l ka N — Zk 1 ka
Proof. See Appendix B.

4 Information matrix

In order to form the test statistic, we need the information matrix of Ly = % Zthl 0,(0).
Define 0¢gy, /00, = 6git/@0m|9gi:92i and 0OhY,/00); = 8hit/89hi|0hi:(,2i, where ng‘ =
(0Y, Y Y and 6). = (al,ad, kY, Zol) are the true parameter vectors. Let ¢, =
AL YN = )\N L Yoy = N — Zk 1 "9, be the true eigenvalues, so the matrix of



true eigenvalues equals WY = diag (4], .

.., ¥0x). The true correlation matrix is denoted

by P°. The information matrix is divided into blocks as follows:

Joo, Joo, Jyu
(%t (%t 979 97h 9%

J = fm Z E 50 907 "0 = Joon Joy (13)
55

The following result defines the blocks of (13).

Theorem 2. The blocks of the information matriz (13) are as follows: The (i,7) block,

i # j, of o0, equals

L oty oty
ool = Tlﬂﬂonangiaeﬂ‘HO
t=1 97
IR dg?
= —[/ 091 0yr dr
4/, g?ngr (909z 20,
g% OnY, 1 oY, , 1 dgY 1 Ohl
+ lim — Z{ 7 ,t o t( ft o ,Jt)}]
o T glthlt ae 00., " %00, ¢% 00, " 17,00/,
xe;(P°)~ ejeiPOej
and
. ol Oty
Jogo,)ii = %EEOT 4 Eaeg,»aefi‘ 0
- 1[/1( 1 agw agm‘ d7’+ lim l d iah’?t( 1 agzt iah’?t )]
4y (d0)2 06, 00, Tvoo T' &= h, 08y, g5, 08, hy, 00,
< {el(P*) e, + 1},
The (i, ) block, i # j, of Jy,e, equals
. oty Ol
(Jo,0,)ij = TII_I&T;Egem—a%j’Ho
T
1 1 0hY onf
_ li - jt /PO /PO )
o 4thlh0 10, 96, 06, " (P?) " e;eiPle;
and
ol (%t
T
1 1 OhY, OhY
— I - it it IPO -1 ; 11,
e 4T;(h?t)280hi89§n. aP) et



The (i,7) sub-block, i # j, of Jy,e, equals

B 8& 8€t
[JOgGh]ZJ o jlglolo T Z Eaegl aO;U | o

1 105 1 0n% 1 0n
= lim it el Y J / PO -1, IPO )
T-00 4T Z<gn 20,  hY, (‘3991')/19 00, {ei(P7) " ejeiPle;}

and

o a0, oL,
[Jogeh]ii - jll_{{.lo? Eag 89/‘
o 1 0¢% 1 om0 1 on o
— fim o i L Oy 1 ONiy oo poy-1e. 4 11,
7505 AT 4 ( 090, 1 26, 10 g (&P et 1}

Furthermore, the (i,j) sub-block of Jy,5: 45 =1,..., N, has the form

['I@g@]ij = hm — Z E agt agt

T—oo T 0091 aal |HO
1,11 0 1<~ 1 9

— - r d 1 - . it !
1 /0 900, ”TEEO T 2= 1, 76,

{ €, idj q7, €; QNCIZI-EN},
1/1 07 ’ a N — Zk 1 ¢0k

where v = (1,7,7%), and the corresponding sub-block of Jo, 5 equals

[Jah@]ij = lim _ZE oty 0ty

’Ho

T—oo T’ 00},; 3¢
po o1 onY { 1 ex)
= lim — T, e e; /EN |-
T—00 4T h?t 89]” t q]ql i N — Zk | Q/}Ok AN EN
Finally,
1 1/2 1/3
oty 06,1 5 /
o =E—=— | = =(¥ 1v11y ) ® /3 1/4 |,
v O 7#/ A (N Zk  or)? A

1/5
where ‘IIO = diag(z/m, e ;wo,N—1>-

Proof. See Appendix B.



5 Test statistic

Under regularity conditions, Silvennoinen and Terésvirta (in press) showed that the max-
imum likelihood estimators of the parameters of the null model (time-varying GARCH
equations and constant correlations) are consistent and asymptotically normal. Rewrite
(13) as

Jegag Jggeh Jegwo ']99@12

ol 8& Jo,0, Jovo Jou
— 1 - E — hOhn X On)io 14
ngoTZ 00 89/ Jdiowo Jlboan ' ( )
JE12E12
where Eu = (E/H,lv e ,EIQ,N—Q with ElQ,j = (Y1j,%2;)'s 5 =1,..., N — 1. Then
1 1
oo = 5 (P57 + Iy aly ),
o 2 (N Zk 1 @Z)Ok)
1 1
J, 7 = =(P;% + Iy a1y e[ 1/2 1/3
1/107/’12 2 0 (N Zk 177Z)0k) N-1 [ }
and . | / /
1/3 1/4
Jr - o=—(V;%+ 1y 11 ®[ }
Y19Y12 2( 0 (N Zk : ka) N—-1+N 1) 1/5
Let
Jegeg Jegeh Jegwo
Joo = Jo,0,  Jo,v0
J¢o¢0
and
Jo,.,
J@lg = Jeham
onalz

Using the Lagrange multiplier principle and the assumption that z; is multivariate normal,
we obtain the following statistic for testing Hy: 915, =0, j=1,..., N — 1

LM = @?tﬂlzta e vf?VtT{Qt)}{JEmEu meoJ 1J0¢12}

=N
—~—

Nl
(]~

~~
Il

1

(/33\(1)757'1/2757 e aij\?VtTllm)l}? (15)

X
—
N =
]~

N 1 w3 1 w3
Tjt = =— ( & 1) - N—1 ( ]]V\[t_l ~ = 1)7 (16)
Wo; Yo N =21 Yo N =221 Yo
where ¢0] is the estimate of ¢)y; under Hf,. In addition, in (16) w; = @S ' D; e, where
St dlag(glt ey gN/lt ) contains square roots of the estimated deterministic components,
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D, = diag(/f;%z, e ,ﬁ]l\{tg ) contains the estimated conditional standard deviations of ¢y,
and g; is the jth eigenvector of the estimated correlation matrix P under Hj. Based on
the results in Silvennoinen and Terdsvirta (in press), this statistic has an asymptotic x>
distribution with 2(/N — 1) degrees of freedom when Hj holds. To make it operational, the
blocks of the information matrix in (15) have to be replaced by their consistent estimators.

If the transition function (6) is assumed monotonic in t/7", that is, t/T — ¢y = 1,
the second-order component can be omitted from the approximation (7), and the N — 1-
dimensional null hypothesis becomes 1, = 0. If this assumption holds, the power of the
test increases compared to the situation in which the second-order component is included
in the test.

As already discussed, the matrix P, = QA;Q’ is a correlation matrix only when
P, = P, that is, when A; = A. There is one exception to this rule, however. When
all correlations are equal, the time-varying matrix P, = QA;Q’ remains a correlation
matrix when A; is defined as in (5). In the GARCH context this type of equicorrelation
is discussed in Engle and Kelly (2012).

The test statistic (15) can be applied in the general case in which the GARCH com-
ponent is multiplicative and contains a smooth deterministically varying component. The
purpose of this component, S; in (2), is to account for nonstationarity in variance that
manifests itself in changing amplitudes of the volatility clusters that ARCH and GARCH
models are designed to explain. A cruder way of describing this type of variability is to as-
sume that there are breaks in the variance. This alternative does not fit into the present
analysis, however, because breaks at unknown points of time make the log-likelihood
ill-behaved. Nevertheless, the statistic (15) does have power against that alternative,
although the standard asymptotic theory does not cover it.

If it is assumed that S; = Iy and that the GARCH process is weakly stationary,
the test statistic continues to be valid. This simplifies the expressions, while the null
hypothesis remains unchanged. Setting D; = Iy makes it possible to test constancy
of P, before specifying the conditional variances. This is discussed in Silvennoinen and
Terdsvirta (in press). If both D, = S; = Iy, the test is a parsimonious test of constancy
of a correlation matrix against the alternative that the correlations change over time.
In that case, P, may be a covariance matrix and not necessarily a correlation matrix.
The statistic (15) must, however, be modified because the restriction that the eigenvalues
sum up to N does not hold for the covariance matrix. With this modification, the test
can for instance be used for testing constancy of the error covariance matrix of a vector
autoregressive model against deterministically changing covariances; see also Yang (2014).

6 Simulations

In this section we investigate the properties of our test via several simulations. The finer
details of the various experiments as well as the tabulated results are found in Appendix C.

We first simulate the size of our test. For this purpose, we choose N = 2,5,10, 20
and T" = 500, 1000,2000 in (2). All GARCH(1,1) equations are standard symmetric
GARCH ones, parameterised such that the persistence is 0.95 and kurtosis of ¢; = 4,
it =1,..., N, orin the next set up, kurtosis of ¢;; = 6,7 =1,..., N. For these simulations,

10



gix = 1, and the unconditional variance is fixed to one by defining a;o = 1 — a1 — Bi1.
The correlation matrix is an equicorrelation matrix (Engle and Kelly 2012) with either
p = 0.33 or p = 0.67, and we call the model the Constant Equicorrelation (CEC-) GARCH
model. Finally, ¢; ~ iid V(0, Iy).

The test statistic has been derived such that the highest order in the Taylor expansion
equals two. In simulations, we include the orders up to four. This is done to find out how
the empirical size of the test behaves when flexibility of the statistic (and the dimension
of the null hypothesis) to cover more variable and nonmonotonic shifts in correlations is
increased. In practice this means that (7) becomes

4
=W+ > Wi (t/T) + ¥,
i=1
where W gy is the residual. The null hypothesis is Hy: W(q)(t/T) = ... = ¥4 (t/T)* = 0.

The p-value size discrepancy, see Davidson and MacKinnon (1998), results for g;; = 1
and for kurtosis of g;; equal to 4 and 6, when p = 0.33 appear in Figure 1 and Table C.1.
Although estimating GARCH equations when T" = 500 cannot be recommended in prac-
tice, this sample size is included in simulations to find out how the test behaves in that
situation. The empirical size of test is very close to its nominal size. In particular, the
change in kurtosis does not have any effect on the empirical size. The only exception
where the test is slightly oversized is the design in which 7" = 500 and the order of the
polynomial is four.

We move on to the strongly correlated situation, that is, p = 0.67. The size discrep-
ancies are in Figure 2, see also Table C.2. The story remains, for most parts, similar to
that of the weakly correlated system. Now the test is somewhat oversized when 7" = 500
and the Taylor polynomial is at least equal to two. The equicorrelation matrix becomes
gradually more ill-conditioned as its dimension grows but is still reasonably accurately
inverted when N = 20.

Furthermore, we consider a situation where we replace the equicorrelation matrix with
a positive definite matrix comprised of equicorrelation blocks. The block-equicorrelation
structure (Engle and Kelly 2012) imposes different equicorrelations between and within
blocks of series. We choose N = 12 and N = 16 and blocks of size four. The chosen
correlation strengths mimic those of the equicorrelated (weak and strong) levels while
maintaining similar condition numbers to ensure fair comparison.! The only difference in
Table C.3 compared to the equicorrelation case (Tables C.1 and C.2) is that the test is
slightly oversized when the order of the polynomial exceeds one.

The remaining results address misspecified GARCH equations. Such misspecification
may show up in the covariance as time-variation, even if the correlations happen to be
constant. The purpose of these simulations is to find out how well our test is able to
detect the resulting time-variation in the eigenvalues.

When g;; is time-varying but this variance is ignored, the model is indeed misspecified.
In these simulations, the GARCH equations are TV-GARCH equations with o = 1, §; =
3, v = 20 and ¢ = 0.5, with equicorrelation coefficient equal to 0.33 and 0.67. The slope
parameter 7; has been calibrated such that the monotonically increasing G;(t/T,~;, ¢;)

ISee Appendix C for details.
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Figure 1: p-value size discrepancy of the test statistic (15) of orders 1 (red), 2 (purple),
3 (blue), and 4 (green). The test is based on the correctly specified DGP, which is
CEC-GARCH with persistence of 0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and
equicorrelation of 0.33. The dashed line indicates the upper 95% confidence level of

1.96,/+/2500.

remains practically equal to zero until ¢/7" = 0.25 and (almost) reaches one when t/T =
0.75. This means that there is a rather mild shift in the (local) unconditional variance
in these equations over time, resulting in the amplitude of clusters doubling in size over
time. The error covariance matrix is thereby time-varying, whereas the error correlation
matrix is constant over time. The reported rejection frequencies in Table C.4 indicate
that the test detects time-variation even for weakly correlated system (see also Figure 3),
and even more so with the correlation of 0.67 (Table C.5), which stresses the importance
of specifying the GARCH equations properly before testing constancy of correlations.
The rejection frequency increases with the sample size and the dimension of the system,
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Figure 2: p-value size discrepancy of the test statistic (15) of orders 1 (red), 2 (purple),
3 (blue), and 4 (green). The test is based on the correctly specified DGP, which is
CEC-GARCH with persistence of 0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and
equicorrelation of 0.67. The dashed line indicates the upper 95% confidence level of

1.96,/+/2500.

and becomes overwhelming when more information against the null hypothesis becomes
available. We also experimented with higher values of d;, but because the feature is
already well illustrated for 6; = 3, we do not report any additional results here.

GARCH can also be misspecified such that asymmetry in the form of GJR-GARCH
is ignored. The simulation design concerning this sets the a; = 0 leaving the asymmetric
component k; solely responsible for the effect of the past shocks. The parameterisation
follows the targets of the previous simulations, that is, the implied kurtosis of four and six,
unconditional variance of one and persistence is kept at 0.95. When the equicorrelation is
0.33, there is positive size distortion for N > 5, and for each N, an increase in sample size
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Figure 3: Rejection frequencies of the test statistic (15) of orders 1 to 4. The test is based
on CEC-GARCH, while the DGP is TV-CEC-GARCH with persistence of 0.95, kurtosis
of 4 (Panel A) and 6 (Panel B), equicorrelation of 0.33, and TV-parameters o = 1, §; = 3,
c¢= 0.5, and v = 20 with s, = t/T.

makes very little difference in terms of improving the size. This is seen from the rejection
frequencies reported in Table C.6, see also Figure 4. The size distortion is already present
when N = 2 for the 0.67 equicorrelated case, see Table C.7. In situations where the
past shocks feed into the volatility via both symmetric and asymmetric channels, the
size distortion is milder than in the extreme case discussed here, and will lie somewhere
between the results here and those in Tables C.1 and C.2. Regardless, it may be concluded
that a misspecification in the GARCH equation has a minor impact on constant correlation
detection in comparison to the case when the deterministic shift in GARCH is erroneously
ignored.

Finally, Tables C.8-C.9 and Figure 5 show what happens when, instead of normal,
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Figure 4: Rejection frequencies of the test statistic (15) of orders 1 (red), 2 (purple),
3 (blue), and 4 (green). The test is based on CEC-GARCH, while the DGP is CEC-
GJR-GARCH with persistence of 0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and
equicorrelation of 0.33.

the error vectors are t-distributed with df = 5 and df = 8. Not accounting for this
and assuming that the errors are multinormal, causes positive size distortion. Again, the
distortion is not very large compared to what is observed in connection with ignoring
the time-variation. It increases when the tails grow fatter (degrees of freedom decrease
from eight to five) and when the order of the polynomial in the test grows. It may be
noted, however, that this design may not be completely realistic. In practice it is quite
possible that the GARCH residuals of equation ¢ may seem to follow a t-distribution just
because the GARCH component is misspecified, for example by ignoring the deterministic
component g;;. Here we simulate the case in which the standard GARCH equation with
normal errors for some unknown reason does not adequately describe the conditional
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Figure 5: Rejection frequencies of the test statistic (15) of orders 1 (red), 2 (purple), 3
(blue), and 4 (green). The test is based on CEC-GARCH with normal errors, while the
DGP has t-distributed errors, with persistence of 0.95, df = 8 (Panel A) and df = 5
(Panel B), and equicorrelation of 0.33.

variances. Once again, these results suggest that the GARCH equations have to be
correctly specified before testing constancy of correlations can be attempted.

It is worth mentioning that when (3) is valid, the error covariance matrix is noncon-
stant even when the correlations are constant. In that case, the test by Yang (2014) would
no doubt reject the null hypothesis of a constant error covariance matrix, whereas our
test, after modelling the time-varying error variances, would not reject constancy of the
error correlation matrix.

The observations from these simulations underline the need for testing adequacy (con-
stancy, asymmetry) of the GARCH equations before embarking on testing constancy of
correlations. Tests against multiplicative time-varying (TV-)GARCH are discussed in
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Amado and Terésvirta (2017) and Hall et al. (2021). Estimation of TV-GARCH equa-
tions is considered in Amado and Terédsvirta (2013). For other univariate tests, see e.g.
Bollerslev (1986), Hagerud (1997) and Lundbergh and Terésvirta (2002). For multivariate
ones, see Eklund and Terésvirta (2007).

7 Application

In order to demonstrate the use of the test we select 26 stocks that have been included
in the Dow Jones index during the whole observation period from 2 January 2001 to
31 December 2020 and consider their daily returns. The names, symbols and respective
categories of the stocks are listed in Table A.1 in Appendix A. We split the observation
period into two halves such that the returns from 2001 to the end of 2010 form the
first period and the rest belong to the second one. Both samples contain approximately
2500 observations. The first part of the sample includes the periods of turbulence due
to the dot-com bubble and GFC, the second is tranquil with a lead-up into the recent
Covid-19 events. To perform the tests we first determine the number of transitions in
the multiplicative time-varying (MTV) GJR-GARCH equations (it can be zero) using
the sequential procedure described in Hall et al. (2021). The 26 estimated GARCH
equations (or their g;; specification test results) are not reported here, but the plots of the
multiplicative component (3) together with the daily returns appear in Figures 6 — 10.

The first-order test clearly rejects the null of constant correlations. Increasing the
order of the polynomial in the test statistic up does not affect the conclusions. Although
the dimension of the null hypothesis increases from 25 to 100, all tests strongly reject the
hypothesis of stable correlations for both observation periods. The p-values of the test are
practically zero. If this had been attempted for the HST-test, the corresponding degrees
of freedom would have increased from 325 to 1300.

Even if the main purpose of this example is to demonstrate the use of our tests for a
relatively large set of stocks, we also consider stability of the pairwise correlations. The
magnitudes of the resulting p-values from the pairwise tests applied to the first part of
the sample can be found in Tables A.2 and A.3 for the polynomial orders of one and
two, respectively. Tables A.4 and A.5 contain the corresponding ones for the second
part of the sample. In the former, the evidence of time-variation in the correlations is
very clear. In the latter, there are more cases where the first-order test fails to reject
constancy of correlations. The second-order test, however, does find evidence of time-
varying correlations between most pairs of stocks. It appears that the change during the
second period can often be nonmonotonic rather than monotonic.

It is clear that our test is the only alternative when the number of assets is large.
When it is small so that both tests are available, we can make comparisons and see how
much power may be lost when our parsimonious test is applied instead of the HST-test.
To this end, groups of three to four stocks are subsequently examined. The results are
consistent in most all cases. Two exceptions are discussed next.

The four stocks representing consumer staples (WMT, WBA), services (VZ), and
energy (XOM) form the first example. Our test for 2001-2010 results in p-values of 0.0134
and 0.0000 for test orders one (three degrees of freedom, df) and two (six df), respectively.
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In 2011-2020, the corresponding p-values are 0.1059 and 0.0001. For the HST-test, the
p-values for 2001-2010 are 0.0000 for both polynomial orders (six and 12 df), and for
2011-2020 they are 0.0001 and 0.0000, respectively. The obvious conclusion is that the
parsimonious test should mainly be used when the other test is no longer applicable.

The three information technology companies AAPL, IBM and INTC, form an example
of the smallest collection of stocks such that our test differs from the HST-test. For 2001—
2010, the p-values for the first and second-order versions of our tests with two and four df
are 0.0103 and 0.0000. The p-values of the corresponding HST-test (three and six df) are
0.0413 and 0.0000. For the second part of the sample, the p-values of our parsimonious
test are 0.3459 and 0.0001, compared to 0.0000 for both orders for the HST-test. Here
we note the rather rare occasion (2001-2010, first-order test) in which our test is more
powerful than its competitor. An explanation may be found in Table A.2. It is seen that
only one of the p-values of the three pairwise tests lies below 0.1. Thus, in the HST-test
only one pair weighs towards a rejection, whereas the evidence against the null is more
spread out in the test based on the eigenvalues, and the test has one df less than the
HST-test.

In this example, the alternative to constancy of correlations is that the correlations
vary as a function of time. However, both the parsimonious and the HST test are con-
ditioned on the choice of the transition variable which need not be deterministic. This
means that they are equally useful for practitioners who may wish to examine correlation
stability over some other indicator than time. The underlying theoretical foundations of
the tests are unaffected by such considerations, and hence the integrity of the tests is not
compromised.

8 Conclusions

In this paper we derive a test for testing constancy of the correlation matrix in the multi-
variate time-varying GARCH model. It bears some similarity to the test of constancy of
the error covariance matrix in a multivariate model by Yang (2014). However, there are
substantial differences between the two tests. In Yang’s test, the model for covariances
need not be a GARCH model, whereas our test is designed for a class of multivariate
GARCH models. It is based on the decomposition of the error covariance matrix into
variances and the correlation matrix as in Bollerslev (1990). The advantage of this de-
composition is that one can test constancy of the conditional variances one by one as
described in Amado and Terésvirta (2017) or Hall et al. (2021), and estimate the time-
varying variances before considering the constancy of correlations. This makes it possible
to examine potential nonconstancy in the error correlation matrix such that time-variation
in variances has already been taken care of. The simulation results emphasise the im-
portance of correct specification of GARCH equations before constancy of the correlation
matrix is under test.

The test is intended for use in situations in which the number of variables, typically
asset returns, is large, and where for this reason the test by Hall et al. (2021) is either
not available or suffers from numerical problems. Our simulations evidence the test is
reasonably well-behaved as long as the conditional variances are correctly specified. The
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Dow-Jones example illustrates the use of the test in the entire 26-dimensional system, as
well as conducting 325 pairwise tests and tests on some selected subgroups. Pairwise tests,
while not the main topic of this paper, would help locate those pairs whose correlations
are constant. This in turn would help specifying and estimating the final model.
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Figure 6: Daily returns of the Dow Jones stocks from Apple (AAPL) to Cisco (CSCO)
(grey) and the corresponding deterministic component (red) from the MTV-GJR-GARCH
equation for the period 2 January 2001 — 31 December 2010 (left column) and for 3 January
2011 - 31 December 2020 (right column)
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Figure 7: Daily returns of the Dow Jones stocks from Chevron (CVX) to Intel (INTC)
(grey) and the corresponding deterministic component (red) from the MTV-GJR-GARCH
equation for the period 2 January 2001 — 31 December 2010 (left column) and for 3 January
2011 - 31 December 2020 (right column)
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MTV-GJR-GARCH equation for the period 2 January 2001 — 31 December 2010 (left
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Appendices

A Application

AAPL
AXP
BA
CAT
CSCO
CVX
DIS
HD
IBM
INTC
JNJ
JPM
KO
MCD
MMM
MRK
MSFT
NKE
PFE
PG
TRV
UNH
VZ
WBA
WMT
XOM

Apple Inc.

American Express Company

The Boeing Company

Caterpillar Inc.

Cisco Systems, Inc.

Chevron Corporation

The Walt Disney Company

The Home Depot, Inc.
International Business Machines Corporation
Intel Corporation

Johnson & Johnson

JPMorgan Chase & Co.

The Coca-Cola Company
McDonald’s Corporation

3M Company

Merck & Co., Inc.

Microsoft Corporation

Nike, Inc.

Pfizer Inc.

The Procter & Gamble Company
The Travelers Companies, Inc.
UnitedHealth Group Incorporated
Verizon Communications Inc.
Walgreens Boots Alliance, Inc.
Walmart Inc.

Exxon Mobil Corporation

Information technology
Financial services
Aerospace and defense
Construction and Mining
Information technology
Petroleum industry
Broadcasting and entertainment
Home Improvement
Information technology
Semiconductor industry
Pharmaceutical industry
Financial services

Soft Drink

Food industry
Conglomerate
Pharmaceutical industry
Information technology
Apparel

Pharmaceutical industry
Fast-moving consumer goods
Insurance

Managed health care
Telecommunication
Retailing

Retailing

Energy

Table A.1: The 26 stocks that have been continuously part of Dow Jones Industrial
Average from 2 January 2001 to 31 December 2020.
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B Proofs
Proof of Theorem 1. First, recall from (2) that z; = ¢;/(h th/ 2911/ ?). Then
azit B 0 ( Eit )
Dy~ D0y 1212
_1 Eit 8git . 1 Eit 6hzt
SR 0 Di hy
_1 Eit (i 9git iahit)
Qh.l/Qgilt/Q Git 004 hy 00,
i, 1 0g; 1 Oh;
_ S 2 %9, 2 TNty (17)
2 Git aegz hit aegz

Blocks of the score for the observation t are as follows. First,

%:_( 1 0gi i 1 ahzt ZQ gtaw]t t/T)

aegz 29“5 0092 2hzt 8097,
1,1 9gs . 1 Ohy, 6zt
- t/T
2(9115 aegz i hzt 805]1) Z:: th] 39 ( / )
and, using (17),
0 _ _1.10ga 1 0ha |
00, 2 (gzt 8091 hlt aggz Z w]tq] .30,24,0,...,0)

1 ahzt 1 8gzt
X (— o+ —
<hit aegz Git aegl

1,1 9y 1 Oh; o
=30 aegi A @9;)(2 zwwjgiea; (t/T) — 1)

)y (t/T)

1( 1 dgis bl 1 8th
2 git 8991 3991

]-( 1 agzt + ighzt
2 git aegz hit aegz

eztthq]w (t/T)qje; — 1)

)(ejzez,(P) "e; — 1), (18)

where P = QW,Q’. In a similar fashion,

85,5 . 1 ah,t ]. aw]t
90,  2h, 00, Z Yitae - HH/T)
11 Ohy

:§h—faTh(e'iztzg(R&A)*lei —1).
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N-1 N-1 N-1

g—g - %ai[ I/ T) IO = 520/ + 3 ki D)
T+t (N = Y lt/T)) )
k=1
- 1{ 1 ( wJQ't o 1) . 1 ( w?\,t - 1)7_
~2Y0,(/T) (1) T) N - (t/T) N - Sa /)

for j=1,...,N — 1. Under Hj: 9 = 1, = 0, and so the corresponding blocks are

Doy 11 Oge 1 O
ﬁegi Ho = 2 git 8097, hit aﬁg,

)(eiz:z(P°)"'e; — 1),

i

where P° = Q¥,Q’,

oty 11 0hi, , 01
aehi ’HO 2 hit aehl (ezztzt( ) €; )
and (0) ) )
aﬁt 0 1 1 w't 1 th
=i, = 5 {— (" - 1) - - = — 1)}
O, 2 oy N =SV Vb N =SV o
This completes the proof. [ |

In order to prove Theorem 2 we formulate and prove five lemmas.
Lemma 3. Fori # j,

06 06, 1,1 8¢y 1 0RY 1 0gy 1 Ohj,

20 ag 1H = 7(=5 V520 T 1059
90,00, 495,00, ' 13,00, g% 08, " h’, 08,

Jei(P’)"e;e;Ple;.

Wheni=j5,1=1,...,N,

| 1 9g) 1 OhY,
06,007, —

90 00, ' hD 08, )(g_g 00!, ' 1, 00,

E ){e;(PO)_leie;POei + 1}

Proof. From (18) it follows that we have to consider
= E(elzz,(P") e, — 1)(e;ztz£(P0)’1ej —1). (19)

Write
e,z z(P") e, = (e)(P°)! @ €})vec(z,2]),

so (19) becomes

i =((€P) ™ ® ) Evec(zyz))vec(z 21) (P°) e; ® e;)
— €,Ezz;(P%) " 'e; — €Ezz(P°) 'e; + 1. (20)
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Consider the first term on the right-hand size of (20). From Anderson (2003, p. 64) one
obtains

Evec(zz])vec(z;2]) = (P’ ® P°) + (Iy ® P°)K (Iy ® P°) + vec(P%)vec(P°), (21)

where K is an N2 x N? commutation matrix, see Magnus and Neudecker (1979). Applying
(21) to the right-hand size of (20) yields p; = p11 + 12 + 13, where

p = (e(P°)7' ® €)(P" @ P")((P")'e; ® €;)

= (ej(P°) @ €})(e; @ P'e;) = e;(P")'e;e;Pe;, (22)
2 = (ei(P°) ' @ e))(In @ P)K(Iy @ P°)((P")"'e; ® e)
= (ej(P’)"' ® eiP°)K((P’)"'e; ® Pe;)
= (ej(P’)"' @ e[P")(P€; @ (P°)"'e;) = 0 (23)

fori#j,and 1 fori=j,i=1,...,N, and

s = (e;PY) ' @ e})vec(P°)vec(P") ((P°)'e; @ e;) = 1. (24)
Furthermore,

e Ezz, (P 'e,=¢€ e,=1
for m =1, j, so, in total
E(e)zz,(P°)'e; — 1)(e;ztz£(P0)_lej — 1) = €e}(P% 'eje, P,
for i # 7. When ¢ = j, consider
p = E(elzz)(P%)'e; — 1) = 1 — 2Ee}z,2,P'e; + E(e}z,2[(P°) 'e;)*.

Then the three terms in E(e}z;z;(P°)"'e;)? corresponding to (22), (23) and (24) become
e.(P%) 'e;e/P%,;, 1 and 1, respectively, and the result follows. |

Lemma 4. Fori # j,

ol 9ty 1,109¢% 10h, 1088, , .
—_ = — ? R (3 It P 4 P )
399i 8023 |H0 4(925 6991 h?t aegz)hjot 89;” ez( ) ejel ej

When 1 = 7,

E ), = (= —
90,; ae;n|H° 1 9000, K, aegi)hgt 00,

e/(P%)le; + 1}.

Proof. Similar to the proof of Lemma 3 and therefore omitted. [

Lemma 5. Fori # j,
1 OhY, Ohj

St = 7 (P°)lejel(P°)e;.
06, ae;lj|H0 4 W10, 06y, 06, ei(P) e P) e,

When 1 = 7,
oty 0, 1 OnY ond,

1
E - —
86,,; 00, [0 4 (h9)2 06),; 00},

e,(P")'e; +1}.
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Proof. Similar to the proof of Lemma 3 and therefore omitted.

Lemma 6. The expectation E 089& ;jf |, equals
ol o0t 1,1 9g5 1 ohY,

8991 (9’1/J/ o = é(g_gtaegi h_(z‘)taegi)Tt

x {vy elgi€iqi + (N — Y dor)'elqneai}

and, similarly,

=2

-1

g Ol 0L, 11 0n
001 op, " 21 96,

B
Il

1
j=1,...,N —1.
Proof. In order to prove (25), consider the expectation
1
p2 =E(ejziz,(P)"'e; — 1){(q; ® qj)’VeC(thQ)w— — 1}
0j

1
= (ej(P°) ™" ® e))Evec(zz;)vec(212;) (g © g;) —— "
0j

1
— eEz;z,(P%)'e; — (q; ® qj)’vec(Eztzz)w— +1
07

— (€(P")! @ &) Evec(zi2)vee(zi2)) (g, © ;) — — 1.

wOJ
Inserting (21) to (27) yields pg = o1 + proa + f1o3 — 1, where

piz1 = (ej(P°) ' @ €))(P° @ P°)(q; ® qg> ™

1
(e ® e; PO)((IJ ® QJ)
w()j
/ !/ 0 1
= e,q;e;P’q;— = €jq;q;e;,
¢0j

po = (ej(P°) ' @ e))(Iy @ P))K(Iy ® P“)(qj ® qj) ™
]

— (el(P") 0 elP)K(q; 0 Pg)) %
J

= (ej(P°)"' @ e;P°)(P'q; ® qj) = e;q;qe;

Woj
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i {vo; eigi€iqi + (N — Y thor) ' ejgneyai},

(25)

(26)



and

pog = (e (P~

® e;)VeC(PO)VedPO) (g ® q;)——

1
d)O]

e;e; pY 1.
= (€je;)(d] q])%j
In total,
(ei(P")"" ® €})Evec(ziz;)vec(z2))'(q; @ qg)w0 = 2e;q;q;e; + 1. (28)
j
Thus, from (28),
1
E(ejzz,(P’)'ei — 1)(g; ® qg')/VeC(thi)% — 1 =2e(q;qje;.
j
Equation (26) is proved in a similar fashion. [
Lemma 7.
oy o0, 1, 1
E—— = —(‘I’ + 1N—11, _ )® (’TtT,),
oy 2" (N e
where E = (Ell,...,EIN_l)/ ’lU’Lth 'l,bj = (¢0j7¢1j7¢2,j)/; ] = 1,...,N — 1, and \I’() =
diag(vor, - - -, Yo,n-1)-
Proof. Under Hj, wj; = qjz; ~ iid N'(0,v;) and w?, /1o; ~ x*(1). Thus,
L a2
w()j wOJ ,l/}g‘]’
j=1,...,N, where Yoy = N — Zk:_l Yok, and
1 w? w3
E(UE ()=
Yoo; Yo Yo;
for [ # 7. Then,
oy Ot 1t 1wk 1 w3, )
e = ()5BS - 1) + = E( —— — )]
Dy Oy ™ AT 2 (N =S on)2 N = S0 Yo
Lt 1 1
S + )
2 T 1/)03 ( Zk 1 %k)
forj=1,...,N—1, and
oly Ol - 1(15)kJrz 1
Ot Oy 2T (N =30 Yor)?
for [ # j. In matrix form,
1

g 0L 1y

Iy aly ) @ (n7),

oy 2

which is the desired result.

TN S
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Proof of Theorem 2. In order to prove the theorem, begin by considering the limit of

1N pot o : : 2
7241 E 96, 96, 8 T — oo. From Lemma 3, rescaling time to the unit interval and

denoting t/T = [T'r]/T, 0 < r < 1, one obtains

T T
1 8@,5 3& 1 1 Ot 1 3h0t 1 agt 1 8h0t
— E —_ . Z ) J _ J ! P[) Po
2 0 89/ o tz 506, I aogz)(gﬁ 06, " h, ae;j)el< ) ejeiPle;
= [i ZT: 1 agzt ag]t Z{ 1 ag% 8]1%
4T t= (glt)2 90,; 30’ g?thot 98y, 6021]‘
1 8h?t 1 Jg, Lahﬁ

T 06, gt o0, 10 ogr (P ejeiPle (29)
K2 1 g gj

Consider the first term on the r.h.s. of (29) and denote ¢/T" = [Tr]/T, 0 < r < 1. One
obtains

dr

1 T /(t+1)/T Y ag?[Tr]/Tdr _ 1/(T+1)/T 1 09007 095 r
t/T (g?[Tr]/T)2 00, 00, 4 Jyr (9(‘)[TT]/T)2 00y 00y

i
t=1
1 agl’r aglr
71 / 7206, 06!,

as T — oco. Consequently,
T 1 0
1 oty (%t 1 / 1 9g) 09" 1 9g% Ohs
= E— 0 > — T —Ldr + lim x __J
T~ 00, 80’ 4[ o (92)208, 00, T—)ooTZ{g?thOt 00, 00, ;
1 Qh?t( 1 agjt iah?t
h?t 00, ?t 00, ; h?t 00,

= [Jo,0,)i3

)}{ei(P?) ejeiPle; — 1}

and when 1 = j,

T T

1 ol azt L[ 1 9g2 042 1 1 0g% onY.
~“NE - ir lim —
T 2506, 00, %4[/0 (402 08,; 00, dHTE&TZ( 10,90 06,; 00,

100 1 9¢%5 1 9n,
+ 0 ( 0 / 0 /

{ei(P%)'e; + 1} = [Jo,0,)i

as T — oo. In a similar fashion, from Lemma 5, for ¢ # j one obtains

T
0y 5’& 1 ohY, 8hjt P R
Z 00;% 00,,; - 4Tzh0h0 06, 06}, ei(P) " eseiPle; = ool

and when ¢ = 7,

T

1 ot aet 1 1 oY onl
E 7 7
Z(

— lim —
T p— 60}” 60/ T%oo 4T P h?t)Q 60;“ 80;11

ei(P%) e, + 1} = [Jo,0, )i
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as T'— oco. Applying Lemma 4, for i # j, one obtains

T
— E— —— |4 — lim — i Y J e (PP ! pO
T 96, 08, " 7 1 T Z(gn 98, " 1, 06,, 10, 001, )ejeiPle;
= [Jo,0,)ij
and when 7 = j,
T T
1 8&5 aft . 1 1 agt 1 ahot 1 ahot ; 0r—1
E 1 AT - A )T . (P i 1
Tg 90,00, " 14T Z(gn 50, " 1596, ogy, () et 1)
= [Jo,0,)ii

as T — oco. Applying Lemma 6 and using the same arguments as above, one obtains

ol ol 10 1 0h
t _t/ I, = Z gzt — it )7
T p— 8091 2T gzt 30m hit 8091
( e; qjqz v eiqng;en)
770 07 N — Zk 1 wﬂk
1, ("1 9¢° L1 0n
- —ZJir d li Zt
- 2 </0 i 8991 " TI_ISO T Z Iy aagl
1 / / 1 /
X (——€q;q,€j — eiqvgien) = [Jp gl
(1/)03‘ e N Zk ; ka N N) [ egu)]J
where 7 = (1,7, %), and
liE&& azt| 1 1 on, _
sl Ho — 70 1t
T — 2T — hyy 0O
1
X (——ejq;qie; — e.gyvgien) = [Jy 7
(woj J J N — Zk : ka N N) [ ahw]J
as T' — oo. Finally, from Lemma 7 it follows that
T 1o 2
oty ot 1
D E = = (T + Ivaly ) ® / rtort | dr
t=1 01,b 1/J (N — Zk 1 2/’Ok) 0 rd
. 1 1/2 1/3
= (¥5* + Iy_1ly_ ;) ® 1/3 1/4
(N =305 ton)? 1/5

ast — T and T — oo. This completes the proof of Theorem 2.
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C Simulation details and results

In this Section we present further details of the various simulations discussed in the paper,
as well as further investigations of the proposed test. All simulations presented here are
based on 2500 replications. The version of R used is 4.1.0. We have developed our own
R package, ‘mtvgarch’ to support this research into multivariate, time-varying GARCH
models. The package is not currently available on CRAN, but is available upon request.
The version used on this paper is 0.8.54. The code is maintained in a private GitHub
repository.

The processing of the simulations is very compute-resource intensive. The mtvgarch
package uses the doParallel package (available on CRAN) to parallelise the processing.
This should be done using a MPP (massively-parallel-processing) array, but will also
work on a multi-core desktop PC. A minimum of 8 logical processors and 32GB RAM
is sufficient to run most simulations, but will be slow and will not handle the higher
dimensional cases. We recommended reducing (or removing) the parallelisation when the
execution of the code results in CPU or Memory usage approaching 100 percent. MS Azure
Virtual Machines (VM) were used to do a lot of the processing. The operating system
was Windows Server 2019 and the size was Standard-F8s-v2 with 8 vCPU’s and 64GB
RAM.2 Our VM’s took approximately 10 hours to process simulations where N = 20 and
T = 2000.

Size

Tables C.1 and C.2 contain the size simulations, where the DGP is a CEC-GARCH (con-
stant equicorrelation). For each series, g, = 1 and the parameterisation of the GARCH
equation is such that the persistence is 0.95 and kurtosis is set to 4 in the first experiment,
and to 6 in the second. That is, a; = 0.1104, 51 = 0.8396 in the former, and a; = 0.1561,
B1 = 0.7939 for the latter. The GARCH intercept is set to 1 — a; — 87 to standardise
the unconditional variance to unity. The equicorrelation coefficient is equal to 0.33 in the
former and 0.67 in the latter. The transition variable in the test is a linear time trend.
The dimension N ranges from 2 to 20, and sample size T' from 500 to 2000. Note that
the smallest size T' = 500 is no longer feasible for N = 20.

We extend the previous set-up by defining the constant correlation matrix as having a
block structure. The system of N series is divided into subgroups consisting of four series.
Group i is described as having an equicorrelated state with p; as the correlation parameter,
i =1,...,N/4. The correlation between groups i and j is defined as V/Pip;. This structure
ensures positive definiteness of the resulting correlation matrix. We consider N = 12
(three groups of four series), first with p = (0.2,0.3,0.4) and then p = (0.25,0.5,0.75).
The condition numbers of the resulting matrices are similar (7.13 and 25.69) to the ones
for equicorrelated matrices of the same dimension with correlation 0.33 (condition number
C' = T7) and 0.67 (condition number C' = 25), respectively. This is important, because

2The Fsv2-series currently run on the 3rd Generation Intel Xeon Platinum 8370C (Ice Lake), the Intel
Xeon Platinum 8272CL (Cascade Lake) processors or the Intel Xeon Platinum 8168 (Skylake) processors.
It features a sustained all core Turbo clock speed of 3.4 GHz and a maximum single-core turbo frequency
of 3.7 GHz.
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there is an introduced error associated with the matrix inversions that take place during
the computation of the test statistic, and the error gets larger the higher the dimension
N and the closer the matrix is to singularity. Setting the condition numbers equal will
ensure the error is at par across the models and the results are comparable. We further
extend the set up to N = 16 (four groups of four series), with p = (0.10,0.20, 0.35,0.45)
and p = (0.25,0.35,0.55,0.75). The condition numbers for these matrices are 9.20 and
32.21, again aligning with those of equicorrelated systems of the same size (C' = 9 when
p = 0.33, and C' = 33 when p = 0.67). The GARCH parameterisation is the same as
in the first experiment, targeting persistence 0.95 and kurtosis 4 and 6. The simulation
results are presented in Table C.3.

Misspecified variance

The next experiment investigates the effect of neglecting the TV-component. That is, the
DGP is a TV-CEC-GARCH, but the baseline volatility shift is ignored at the estimation
stage, and only a CEC-GARCH model is estimated. As before, the GARCH equations
are set up with persistence of 0.95, kurtosis of 4 and 6, ag = 1 — a7 — 31 for each series,
and two strengths of equicorrelation are examined, 0.33 and 0.67. The TV-component
has a transition located at the center of the sample, and the transition variable is a linear
time trend. The speed of the transition is set to v = 20, which translates to a transition
that gradually begins at the first quartile and finishes at the third. The magnitude of
the increase in the volatility from the initial level of §p = 1 is set to d; = 3 in the first
simulation, and to §; = 8 in the second one, which effectively doubles and triples the
standard deviations, respectively. The results for 4; = 3 are presented in Tables C.4 and
C.5. Because the result indicates a very strong tendency to reject the null even at the
rather modest increase in variance, the results for §; = 8 are omitted.

Another experiment investigates the sensitivity of the test to the correctness of the
GARCH model specification. In this case the GARCH equation is misspecified such
that it includes an asymmetry component (GJR-GARCH), but this is ignored when the
model is estimated and the test statistic computed. To keep the results comparable,
the parameters are chosen such that the implied kurtosis levels are 4 and 6, in addition
to keeping the unconditional variance equal to one (g = 1 — oy — 0.551 — 3y for each
series) and persistence at 0.95. We choose to look at the extreme case where the effect
of the past shock is inherited only from the negative shocks (i.e. @3 = 0). This yields
k1 = 0.14, 5, = 0.88 for the case of kurtosis= 4 and x; = 0.198,3; = 0.851 when
kurtosis= 6. The results are tabulated in Tables C.6 and C.7.

Misspecified error distribution

As the last investigation we look into the effect of nonnormality of the error distribution.
We choose t-distribution with df = 8 and df = 5. To create multivariate t-distributed
data, the individual noise series are first standardised to have unit variance. The cor-
relation matrix is again an equicorrelated one, with p = 0.33 and p = 0.67, as before.
The resulting data is thus correlated multivariate ¢, with t-distributed (standardised)
marginals. The GARCH parameters are chosen such that the fourth moment still exists,
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and the resulting kurtosis is reasonable. We also wish to keep the persistence at 0.95 to
allow for comparison with the normal cases discussed earlier, and the GARCH intercept
is set to 1 — ay — 1. To this end, we choose a; = 0.06 and 8; = 0.89 when df = 8 (the
implied kurtosis is 5.17), and ay = 0.03 and §; = 0.92 for df = 5 (the implied kurtosis is
9.72). The results of the size simulations are presented in Tables C.8 and C.9.
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