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Abstract

I provide a unified theoretical framework for long memory term structure models and show

that the recent state-space approach suffers from a parameter identification problem. I

propose a different framework to estimate long memory models in a state-space setup,

which addresses the shortcomings of the existing approach. The proposed framework

allows asymmetrically treating the physical and risk-neutral dynamics, which simplifies

estimation considerably and helps to conduct an extensive comparison with standard term

structure models. Relying on a battery of tests, I find that standard term structure models

perform just as well as the more complicated long memory models and produce plausible

term premium estimates.
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1 Introduction

Understanding term premium in the bond markets is important for financial market partici-

pants and policy institutions. Because term premium cannot be directly observed, it must be

estimated from data on the yield curve. Short memory models1 generally draw on a simple

first-order vector autoregressive VAR(1) process to estimate term premium. Long memory

term structure models, in turn, are based on a more general process and usually nest short

memory specification. They can accommodate the strong persistence observed in nominal

yields and even non-stationarity but still ensure dynamic mean reversion. Thus, several stud-

ies argue that accounting for long memory can improve the performance of term structure

models (see among others, Abritti, Gil-Alana, Lovcha, and Moreno, 2016; Golinski and Zaf-

faroni, 2016; Osterrieder and Schotman, 2017).

Although both long and short memory term structure models can be employed to generate

term premium estimates, it is not clear which model performs best. Admittedly, there are

important studies in the long memory literature that investigate both models along several

dimensions. However, to the best of my knowledge, no single study compares term premium

estimates obtained from these models against a battery of tests and formally shows a superior

one. For instance, Abritti et al (2016) claim that long memory models can generate more

realistic term premium estimates as these models enjoy a much slower mean-reversion of their

long-horizon forecasts than do short memory models. But they only visually demonstrate

both term premium estimates without running any formal tests, such as predictability tests

in the spirit of Dai and Singleton (2002). Similar remarks can be made about other studies.

Thus, this study aims to fill this gap in the literature.

To carry out an extensive comparison between these models, I address two challenges in

this study. First, I improve the theoretical framework to estimate long memory term structure

models and generalize the state-space approach proposed in Golinski and Zaffaroni (2016).

Second, I propose a factor specification that considerably simplifies estimation and allows me

to conduct a wide range of comparisons with standard term structure models. Using this

framework, I investigate whether the standard and parsimonious short memory model a la

Joslin, Singleton, and Zhu (2011) can improve on long memory term structure models.

1Technically speaking, a process with an order of integration d ≤ 0 is called a short memory process.
However, in this paper, a short memory process is meant to be an integrated order of zero, I(0), process. A
long memory process is an integrated order of d process, I(d), where d > 0 and d can take fractional values.
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There are several contributions of the paper. First, I generalize the theoretical framework

proposed by Osterrieder and Schotman (2017) that allows defining different orders of integra-

tion for pricing factors under different probability measures in long memory term structure

models and develop it further. I also establish a theoretical relation between orders of inte-

gration of factors under different probability measures and market price of risk. Although

it is well-known in the literature how drifts or autoregressive terms are adjusted when we

change probability measures, a similar adjustment, in general, is not straightforward in the

case of orders of integration. This theoretical result can be applied, for instance, to find the

order of integration of the short-term policy rate rt under the Q-measure in Osterrieder and

Schotman (2017). The authors estimate different orders of integration for the market price of

risk λt and rt under the P-measure. Based on the results, I find that rt under the Q-measure

in Osterrieder and Schotman (2017) accordingly follows a long memory process with the order

of integration dQ = dP − dλ, where dP and dλ are the orders of integration of rt under the

P-measure and λt, respectively.

Second, I show that the state-space representation proposed in Golinski and Zaffaroni

(2016) to estimate long memory term structure models suffers from an identification problem.

Their infinite order vector moving average VMA(∞) representation only allows to identify

one out of the three level parameters, i.e., the intercept of pricing factors under the physical

probability measure, the constant market price of risk, or the level of the short rate. Although

the authors estimate two of these parameters together with the latent state variable by im-

plicitly setting the intercept of the pricing factors under the physical probability measure to

zero, I show that these parameters and the latent variable are unidentified in their framework.

While a refinement of their procedure is available, it does not allow to identify two out of the

three level parameters together with the latent state vector as in the case of a short memory

model.

Another shortcoming of the VMA(∞) representation is that the mean in the VMA(∞)

process is not well-defined when pricing factors are non-stationary, i.e., when the order of

integration d > 0.5 (Johansen and Nielsen, 2016). In addition, the VMA(∞) framework is

not suitable for asymmetrically treating the physical and risk-neutral dynamics of pricing

factors and defining different orders of integration under the two measures.

To address these problems, I propose to estimate long memory term structure models

using an infinite order vector autoregressive, VAR(∞), representation. One advantage of the
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new approach is that its coefficients decay much faster than the corresponding coefficients of

the VMA(∞) process (especially when d > 0.5), which makes the selection of a large trun-

cation lag unnecessary. 2 As shown by Grassi and de Magistris (2014) a long truncation lag

may lead to biased estimators in finite samples.

After addressing the above methodological issues in long memory models, I estimate sev-

eral dynamic term structure models (DTSMs) with short and long memory, and perform

various tests in a rigorous setting. Using a battery of tests3, I find that short memory term

structure models perform just as well as long memory models. I obtain plausible term pre-

mium estimates, which are very similar to estimates in the literature. Only the magnitudes of

the term premium estimates of the long and short memory models somewhat differ, although

the term premium dynamics is similar. In general, the long memory models have relatively

larger term premium estimates. Overall, I show that standard term structure models with

short memory produce similar term premium estimates as more complicated long memory

models.

While this framework shares some features with Abritti et al (2015) and Golinski and

Zaffaroni (2016), it differs from these studies along the following lines. Abritti et al (2015)

estimate a vector autoregressive fractionally integrated moving average VARFIMA(p,d,q)

model using only observed state variables, whereas the framework proposed in this paper

allows for including both observed and unobserved factors. Another novelty of my framework

is its asymmetric treatment of factors under different probability measures. Following Joslin,

Le and Singleton (2013), I propose modeling the factors under the risk-neutral probability

measure Q as a short-memory process (i.e., VAR(1)) while specifying a long-memory process

under the physical probability measure P . As Joslin et al (2013) argue, setting a lag order of

one for the pricing factors under the risk-neutral measure is sufficiently comprehensive.

Although the proposed framework is fairly general and allows me to estimate long memory

under both probability measures as in Golinski and Zaffaroni (2016), I employ the asymmetric

specification due to its clear advantages. First, the asymmetric approach enables me to apply

standard pricing formulas and substantially reduce computational burden, which is another

limitation of the Golinski and Zaffaroni (2016) approach. Second, it also facilitates the appli-

cation of the efficient identification restrictions proposed in Joslin et al (2011). These extra

2I would like to thank an anonymous referee and Morten Ørregaard Nielsen for the last two comments.
3The results of a forecasting exercise can be found in the appendix
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benefits generally impose no additional costs.

2 Factor specifications

Since the employed short memory specification is fairly standard, I only discuss the long mem-

ory specification (see the appendix for the short memory case). In particular, I assume that a

vector of the pricing factors xt = (x1t x2t ... xKt)
′ follows a vector autoregressive fractionally

integrated moving average VARFIMA(p,d,q) process under the Q-measure

ΦQ(L)DQ(L)(xt − µQ) = ΘQ(L)ΣεQt , (1)

where εQt ∼ N(0, I), εQt is a K × 1 vector, ΦQ(L) = I − ΦQ
1 L − ΦQ

2 L
2 − ... − ΦQ

p Lp, ΦQ
i is

a K × K matrix for i = 1, 2, ..., p and L is the usual lag operator. In addition, ΘQ(L) =

I+ΘQ
1 L+ ...+ΘQ

q Lq, ΘQ
j is a K×K matrix for j = 1, 2, .., q and DQ(L) is a diagonal matrix

defined as follows

DQ(L) =

(1− L)d
Q
1 0 . . . 0

. . . . . . . . . . . .

0 0 . . . (1− L)d
Q
K

 .

This VARFIMA(p,d,q) specification is sufficiently general and nests several existing specifica-

tions in the literature. For instance, if the lag polynomial term DQ(L) is an identity matrix,

then we obtain a VARMA(p,q) specification. In addition, if the lag polynomial ΘQ(L) is also

an identity, then we obtain a familiar VAR(p) specification.

If all eigenvalues of the convolution ΦQ(L)DQ(L) fall inside the unit circle, then xt can

be expressed as an infinite order vector moving average VMA(∞) process as well:

xt = µQ +

∞∑
i=0

ΨQ
i ε

Q
t−i, (2)

where ΨQ
i is a K ×K matrix.

Furthermore, I assume that the pricing factors xt follows a VARFIMA(p,d,q) process

under the P-measure as well

Φ(L)D(L) (xt − µ) = Θ(L)Σεt, (3)

where εt ∼ N(0, I) and D(L) is a diagonal matrix as before with possibly different orders of

integration in the main diagonal. Under the assumption that all eigenvalues of the convolution

Φ(L)D(L) lie inside the unit circle, xt can be represented as an infinite order VMA(∞) process

xt = µ+
∞∑
i=0

Ψiεt−i, (4)
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where Ψi is a K ×K matrix. The short term interest rate rt is defined as a linear function of

the pricing factors

rt = δ0 + δ
′
1xt, (5)

where δ0 is a scalar and δ1 is a K × 1 vector. The (logarithmic) stochastic discount factor

(SDF) is a quadratic function of the K risk factors

−mt+1 = rt +
1

2
λ′t λt + λ′t εt+1, (6)

where λt is a vector of the market price of risks, which is defined as a linear function of the

shocks as follows

λt = λ0 +
∞∑
i=0

ζiεt−i, (7)

where λ0 is a K × 1 vector and ζi is a K × K matrix. Defining market price of risk as an

infinite order VMA(∞) process is in the spirit of Christoffersen, Elkamhi, Feunou, and Jacobs

(2009) and Osterrider and Schotman (2017). In addition to encompassing the widely used

affine specification, such definition of λt enables us to specify a more general affine process in

the factors as clearly exhibited in the following example.

Example 1. Let xt be a single factor. Define xt under the P-measure as an ARFIMA(1, d, 0)

process

(1− L)dxt = µ+ ϕ(1− L)dxt−1 +ΣεPt , (8)

and the market price of risk, λt, as

λt = λ0 + λ1(1− L)dxt. (9)

Assuming the (logarithmic) stochastic discount factor as in (6) and using εPt = εQt − λt−1, xt

under the Q-measure becomes

(1− L)dxt = (µ− Σλ0) + (ϕ− Σλ1)(1− L)dxt−1 +ΣεQt .

Therefore, although xt is a long memory process with the same order of integration d under

both measures, the market price of risk λt evolves as an I(0) process. Also note that despite

being an I(0) process, λt is specified as a linear function of the infinite lags of the factor, xt.

Contrary to Example 1 or extensively employed standard I(0)/I(1) process, generally it is

not straightforward to determine the orders of integration for factors under different measures

and the market price of risk in long memory models. To clarify this point further, suppose
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that xt under the P-measure remains as in (8) in Example 1 but now the market price of risk

is defined as essentially affine in the factor

λt = λ0 + λ1xt. (10)

Now, it is not immediately obvious how to pin down the order of integration for xt under the

Q-measure. Nevertheless, we can determine the orders of integration of factors under different

measures by using the relations between the impulse-response functions of the factors and the

market price of risk. With the specification for the market price of risk in (7), the impulse-

response coefficients are related as follows (see Proof of Proposition 1):

Ψj = ΨQ
j +

j−1∑
k=0

ΨQ
j−k−1ζk, (11)

for j = 1, 2, .... However, if the market price of risk is specified as essentially affine in the

factors, then the relation becomes recursive:

Ψj = ΨQ
j +

j−1∑
k=0

ΨQ
j−k−1λ1Ψk. (12)

The following proposition demonstrates how to determine the orders of integration if the fac-

tors xt under different measures are defined as long memory processes with the market price

of risk λt given in (7). In other words, it shows how the orders of integration change when

we change probability measures.

Proposition 1: Suppose that

(A1) factor dynamics under the Q-measure as well as the P-measure are given as in (1) and

(3),

(A2) orders of integration for factors under the Q-measure and P-measure are dQ ≥ 0 and

dP ≥ 0, respectively,

(A3) (logarithmic) stochastic discount factor is defined as in (6)

(A4) impulse-response coefficients are not related recursively as in (12),

(A5) the market price of risk λt is defined as in (7) with orders of integration dλ ≥ 0.

If xt is a single factor, then the relation between the orders of integration is as follows:

dP = dQ + dλ. (13)

Proof: See Appendix A.

Remark 1. Osterrieder and Schotman (2017) estimate different orders of integration for the
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market price of risk λt and rt under the P-measure. They assume that the order of integration

0 ≤ dλ < 0.5 whereas 0 ≤ dr < 1 under the P-measure. Thus, based on Proposition 1, we

can say that rt under the Q-measure is a long memory process with the order of integration

dQ = dP − dλ, which can be easily computed from their estimations.

3 VMA(∞) representation

To estimate a DTSM with long memory in the latent factors, we can cast it in a state-space

framework. Golinski and Zaffaroni (2016) estimate a DTSM with long memory process in a

state-space framework using its VMA(∞) representation. This section illustrates the Golinski

and Zaffaroni (2016) framework and discusses its shortcomings. In the next section, I explain

some advantages of the VAR(∞) representation that I propose to estimate a long memory

process in a state-space setting.

AK×1 dimension vector of pricing factors xt with long memory has an infinite dimensional

state-space representation under the P-measure (see Chan and Palma, 1998). Golinski and

Zaffaroni (2016) differentiate between state factors xt and latent variables Ct. They define

an infinite dimensional state vector Ct as

Ct =

 E[xt|xt, xt−1, ...]
E[xt+1|xt, xt−1, ...]

. . .

 . (14)

Thus, Ct captures all conditional expectations of xt at time t under the P-measure. Then it

is possible to represent the VARFIMA(p,d,q) process defined for xt in the state-space setup

relying on its infinite order VMA(∞) representation as follows

Ct = FCt−1 +Hεt, (15)

where an infinite dimensional H matrix is constructed using the impulse-response coefficients

Ψi of the VARFIMA(p,d,q) process

H =

Ψ0

Ψ1

. . .

 .

In addition, F is a double-infinite dimensional selection matrix with the following structure

F =

 0 IK 0 0 . . .
0 0 IK 0 . . .
. . . . . . . . . . . . . . .

 ,
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where IK is a K × K identity matrix. The relationship between the factors and the latent

variables is defined as

xt = GCt, (16)

where G is an infinite dimensional selection matrix

G =
(
IK 0 0 . . .

)
. (17)

Golinski and Zaffaroni (2016) assume an essentially affine specification (10) for the market

price of risk. Given the stochastic discount factor in (6), it is possible to show that the zero-

coupon bond prices are affine in the state vector Ct.

Proposition 2: Suppose that the pricing factors xt = GCt under the Q- and P-measures

are defined in (1) and (3), respectively whereas the short rate is defined in (5). Given the

stochastic factor defined in (6) and the market price of risk in (10), the no-arbitrage zero-

coupon bond price Pn
t at time t for maturity n is

Pn
t = exp(An +B′

nCt), (18)

where the state vector Ct is defined in (14) and (15), the loadings An and Bn satisfy the

following Riccati recursions

An+1 = An −B′
nHλ0 + 0.5B′

nHH
′Bn − δ0 (19)

B′
n+1 = B′

n(F −Hλ1G)− δ′1G

Proof: See Appendix A.

Remark 2. The pricing formulas for the zero-coupon bond prices are provided in Theorem

4.1 of Golinski and Zaffaroni (2016), where they assume an ARFIMA process for each factor.

The pricing formulas in Proposition 2 represent a more general case where the factors follow

a VARFIMA process. Note also the similarity between the formulas in (19) and the pricing

formulas for the short memory case.

Despite the infinite dimensionality of the state space, Chan and Palma (1998) show how

to obtain the exact likelihood based on a sample of T observations. They also propose

an approximate maximum likelihood approach using a truncated state-space system which

delivers the same asymptotic properties, though in a fewer number of steps. Chan and

Palma (1998) propose to set the truncation lag m = T β, where β ≥ 1/2. While setting a

larger truncation lag may enhance convergence properties of the estimators, Grassi and de
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Magistris (2014) claim that choosing a too large truncation lag may lead to biased estimators

in finite samples.

For the truncated state-space representation, we can consider an approximate model for

xt of the form

xt = µ+
m∑
i=0

Ψiεt−i, (20)

which corresponds to a VMA(m) instead of a VMA(∞) process. Then Ct is truncated at the

lag m and the corresponding Km× 1 vector C̃t will be defined as follows

C̃t =


E[xt|xt, xt−1, ...]
E[xt+1|xt, xt−1, ...]

. . .
E[xt+m−1|xt, xt−1, ...]

 ,
and the selection matrices are

G̃ =
(
IK 0 . . . 0

)
, F̃ =

 0 IK . . . . . .
. . . . . . . . . . . .
0 0 . . . IK

 ,

where G̃ is a K ×Km matrice and F̃ is a Km×Km matrice.

Golinski and Zaffaroni (2016) suggest to use the VMA(∞) representation of a long memory

process to estimate DTSMs with latent variables in the state-space framework. By implicitly

setting µ to zero, Golinski and Zaffaroni (2016) estimate δ0 and λ0 together with the state

vector Ct (see Table 4 in their study). The following proposition shows that it is not possible

to jointly identify (δ0, λ0) together with the state vector Ct.

Proposition 3: Suppose that

(i) the unobserved pricing factors xt = GCt follows a VARFIMA(p,d,q) process in (3) where

Ct and G are defined as in (14) and in (17).

(ii) the measurement equation is defined in (18) with its loadings An and Bn given in (19).

(iii) the transition equation is defined in (15).

(iv) µ in (3) is set to zero, i.e., µ = 0.

(v) all parameters other than (δ0, λ0) are econometrically identified.

Then it is not possible to identify (δ0, λ0) together with the latent state vector Ct.

Proof: See Appendix A.

Remark 3. In short memory case, when all factors are unobserved, it is only possible to

identify two out of the three level parameters (δ0, λ0, µ) whereas in the VMA(∞) representation
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it is only possible to identify δ0 in a multivariable setting. However, if K = 1, it is possible

to identify either δ0 or λ0 but not both.

It can be shown that it is not possible to identify µ even when all parameters and pricing

factors are identified as it does not appear neither in the transition equation nor in the

measurement equation. For instance, Golinski and Zaffaroni (2016) estimate a five factor

model with the first two factors being inflation and real activity. Although both inflation

and real activity are observed, the authors cannot estimate µ for these factors as this is not

possible in the VMA(∞) representation. An obvious refinement would be to make a minor

modification to the definition of the state variable Ct in Golinski and Zaffaroni (2016) and to

re-define it as de-meaned

Ct =

 E[xt − µ|xt, xt−1, ...]
E[xt+1 − µ|xt, xt−1, ...]

. . .

 .
This allows the intercept under the physical measure to show up in the definition of the

factors, i.e., xt = µ+GCt. In this case, the recursion for the loading An becomes

An+1 = An − δ′1µ−B′
nHλ0 + 0.5B′

nHH
′Bn − δ0.

Given that Ct and all parameters except µ and δ0 are identified, it is not possible to econo-

metrically identify µ and δ0. To see this classical identification problem, choose an arbitrary

value for µ∗ ̸= µ and set the value of δ∗0 such that

(δ∗0 − δ0) = −δ′1(µ∗ − µ).

Then one can use the induction argument to prove that µ and δ0 are not jointly identified.

Finally, it is interesting to explore a more general specification for the market price of risk

given in (7) and its implications for pricing of the zero-coupon bonds and estimation of the

term structure model. This specification allows to define different orders of integration for

pricing factors, xt under the two probability measures and for the market price of risk. To

present the pricing formulas for the zero-coupon bond prices in this framework, one final step

is to determine the law of motion for Ct under the risk neutral probability measure since it

is not as straightforward as in the case of the essentially affine specification for the market

price of risk.

Similar to the definition of Ct under the physical probability measure, we can define a state

variable CQ
t in which the conditional expectations are taken under the risk-neutral probability
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measure

CQ
t =

 EQ[xt − µQ|xt, xt−1, ...]
EQ[xt+1 − µQ|xt, xt−1, ...]

. . .

 =

 EQ[
∑∞

i=0Ψ
Q
i ε

Q
t−i|xt, xt−1, ...]

EQ[
∑∞

i=0Ψ
Q
i+1ε

Q
t−i|xt, xt−1, ...]

. . .

 .
It is possible to use the relation between the impulse-responses in (11) to establish that Ct

and CQ
t are the same state variables. Then the VARFIMA process under the risk-neutral

probability can be represented as

Ct = FCt−1 +HQεQt , (21)

where the HQ matrix is now constructed using the impulse-response coefficients ΨQ
i of the

VARFIMA process under the risk neutral probability measure. The following proposition

presents the pricing formulas for the bonds.

Proposition 4: Suppose that the pricing factors xt = µQ+GCt under the Q- and P-measures

are defined in (1) and (3), respectively whereas the short rate is defined in (5). Given the

stochastic factor defined in (6) and the market price of risk in (7), the no-arbitrage zero-

coupon bond price Pn
t at time t for maturity n is

Pn
t = exp(An +B′

nCt), (22)

where the state vector Ct is defined in (14) and (15), the loadings An and Bn satisfy the

following Riccati recursions

An+1 = An − δ′1µ
Q + 0.5B′

nH
Q(HQ)′Bn − δ0 (23)

B′
n+1 = B′

nF − δ′1G

Proof: Similar to Proof of Proposition 2.

Proposition 5: Suppose that the unobserved factors xt = µQ + GCt under the Q- and P-

measures are defined in (1) and (3), respectively. The transition equation for the state-space

system is given in (15) and the measurement equation is defined by the price relation given in

(22) . Then it is not possible to econometrically identify the intercept, µ of the factors under

the P-measure. Besides, it is only possible to identify the level of the short rate, δ0 together

with the state vector Ct but not the intercept, µQ under the risk neutral probability measure.

Proof: Similar to Proof of Proposition 3 and the induction argument above.

All these discussions demonstrate that the VMA(∞) representation is not suitable for
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a more general asymmetric specification of factor dynamics as it does not allow properly

identifing the levels together with the state vector. On the contrary, in the next section

we will see that the proposed VAR(∞) representation are robust to the identification issues

inflicting the VMA(∞) representation and does not fall behind of short memory models in

that respect.

4 VAR(∞) representation

The long memory process can also be represented as an infinite order VAR(∞) process as

shown by Palma (2007, p 74). Given that Θ(L) is invertable, the VARFIMA process given in

(1) or (3) can be written as

Φ(L)D(L)Θ−1(L)xt+1 = µ+Σεt+1, εt+1 ∼ N(0, I).

Denoting Π(L) = Φ(L)D(L)Θ−1(L) and using the VAR(∞) representation, xt can be ex-

pressed as

xt+1 = µ+ π1xt + π2xt−1 + ...+ πmxt−m+1 + ....+Σεt+1, (24)

where πi for i = 1, 2, ... are obtained from the VAR(∞) representation as detailed in the

appendix. It is worth noting that it is possible to use the truncated version of the state-space

similar to the case of the VMA(∞) representation for estimations, i.e., it is possible to replace

the VAR(∞) representation by a VAR(m) process.

Note that this representation of long memory imposes a high degree of structure on vector

autoregressive coefficients πi without compromising the degrees of freedom. Joslin et al (2013)

estimate an asymmetric specification using a VAR(p) process with a maximum lag order p = 4

under the P-measure. Even specifying a smaller lag order for a VAR(p) process quickly wipes

out the degrees of freedom when the number of variables included in a VAR(p) process

increases gradually. On the contrary, the above specification allows us to choose as many lags

as we wish while only using a small number of parameters to be estimated. For instance,

in the following section I estimate a VAR(60) (i.e. setting the truncation lag m = 60) with

3 variables using only 18 parameters whereas in the standard unrestricted VAR framework,

this would require around 190 parameters.
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To estimate (24) in the state-space setting, let us define a latent variable Ct as follows

Ct =

 xt
xt−1

. . .

 , (25)

where Ct is a Km × 1 vector. Then using its companion form, we can express the factor

dynamics given in (24) more compactly. For that define µ̃, H and Φ as

µ̃ =

 µ
0
. . .

 , H =

 1
0
. . .

⊗ Σ, Φ =

π1 π2 . . . πm−1 . . .
IK 0 . . . 0 . . .
. . . . . . . . . . . . . . .

 ,

where ⊗ is the Kronecker product, µ̃ is a Km× 1 vector, H is a Km×K matrix and Φ is a

Km×Km matrix. Thus, the latent variable dynamics are expressed as

Ct+1 = µ̃+ΦCt +Hεt+1, (26)

and the factors xt are defined as

xt = GCt, (27)

where K ×Km selection matrix G is defined as before

G =
(
IK 0 . . .

)
.

Using a similar notation, the state variable dynamics under the risk neutral measure can

be written as

Ct+1 = µ̃Q +ΦQCt +Hεt+1. (28)

The following proposition shows that the pricing formulas for the zero-coupon bonds are

almost the same with the standard case.

Proposition 6: Suppose that the pricing factors xt = GCt under the Q- and P-measures

are defined in (1) and (3), respectively whereas the short rate is defined in (5). Given the

stochastic factor defined in (6) and the market price of risk in (7), the no-arbitrage zero-

coupon bond price Pn
t at time t for maturity n is

Pn
t = An +B′

nCt, (29)
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where the state vector Ct is defined in (25) and (26), the loadings An and Bn satisfy the

following Riccati recursions

An+1 = An −B′
nµ

Q + 0.5B′
nHH

′Bn − δ0 (30)

B′
n+1 = B′

nΦ
Q − δ′1G

Proof: Similar to the proofs above.

Apparently, in the VAR(∞) representation, it is possible to identify two out of the three

level parameters similar to short memory models as the identification problem is essentially

the same.

5 Data and estimation method

The estimation sample is started as in Bauer and Rudebusch (2016) and covers the period

January, 1985 - December, 2018. I employ the 3-month and the 6-month T-bill yields, as

well as the 1-, 2-, 3-, 5-, 7-, and 10-year bond yields in the estimations. The 3-month yield

data is taken from Fama-Bliss estimations, whereas the 6-month comes from the St Louis

Fed database. The remaining longer term yields are obtained from the periodically updated

database of Gürkaynak, Sack and Wright (2007). All monthly yields are defined as the end

of the month basis. For survey data, I draw on the Survey of Professional Forecasters (SPF)

database of the Philadelphia Fed. For more information please see the appendix.

Potentially, it is possible to specify and estimate a long memory process under both mea-

sures in a dynamic term structure model. However, the proposed framework is quite flexible

and also allows to define a different dynamics under the two measures. Here, I asymmet-

rically treat the risk-neutral and the physical dynamics. I specify a VAR(1) process under

the risk neutral measure, which is a common specification in the literature but estimate a

VARFIMA(1,d,0) process under the physical measure. It is assumed that the market price of

risk λt follows a linear process given in (7). Although a long memory specification under both

measures may have its advantages, the asymmetric specification speeds up the computations

and allows me to carry out an extensive comparison with the long memory model. Further-

more, I specify a VAR(1) process for the factors under both measures in the short memory

models.

In this study, I estimate both affine as well as shadow rate models (SRMs) with long and

short memory. In the SRMs, the factor specifications and their representations remain the
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same as in the affine models. However, the short rate specification is modified slightly. Now,

it is assumed that the shadow rate st is expressed as

st = δ0 + δ
′
1xt, (31)

whereas the short rate is rt = max(0, st). Since SRMs do not have a closed form solution,

I follow Priebsch (2013) to obtain the expressions for the zero-coupon bond yields. In my

estimations, I rely on the first order approximation (see also Krippner, 2012) as it delivers

adequate fit and sufficiently smaller errors with substantial reduction in computational time.

I apply the standard Kalman filter while estimating the affine models. To estimate the

SRMs, I employ the widely used extended Kalman filter. In the case of the long memory

SRM, the non-linear state-space representation becomes

yt = Z(xt) + vt,

Ct+1 = µ̃+ΦCt +Hεt+1,

where the measurement error, vt ∼ N(0, σ2vI), yt is a vector of yields, and xt = GCt. Z(xt) is

a non-linear function in the pricing factors and obtained from Priebsch (2013) approximation

under the Q-measure. Because I use the truncated state-space, I set the truncation lagm = 60

in the VAR(m) representation.

6 Empirical results

In this section, I present my results from the estimation of the term structure models. First

of all, it should be mentioned that because the factors follow a short memory process under

the Q-measure, the standard pricing formulas can be applied to the affine as well as the

shadow rate models in the long memory framework. Second, as the factors are defined as a

parsimonious VAR(1) process under the Q-measure, I apply the identification restrictions of

Joslin et al (2011) in both short and long memory models. That is, I employ the restrictions

that ΦQ is an ordered Jordan matrix whereas Σ is a lower triangular matrix with positive

diagonal entries. The δ1 is restricted to the vector of ones and µQ is set to zero. In the long

memory models, I additionally order the persistence estimates d in the descending order as

in the Jordan form above.

Almost all models are estimated using three pricing latent factors, which is a common

specification in the literature. However, in the forecasting exercise given in the appendix, I
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Table 1: Short memory affine model

This table reports the empirical results from the standard short memory affine model over the period January,
1985-December, 2018. The standard errors in parentheses are calculated using the approach proposed by
Harvey (1989), p 142 (see also p 938 of Andreasen, 2013). ϕQ represents the estimated eigenvalues. All
estimated coefficients are statistically significant at the 5% level except the ones with the asterisk sign.

Φ ϕQ µ Σ
latent 1 1.0055 0.0318 0.0448 0.9973 0.0008* 0.0041

(0.0045) (0.0041) (0.0042) (0.0004) (0.0009) (0.0006)
latent 2 −0.0176 0.9514 −0.0655 0.9684 −0.0021* −0.0028 0.0053

(0.0051) (0.0043) (0.0038) (0.0028) (0.0013) (0.0012) (0.0011)
latent 3 −0.0140 −0.0147 0.9195 0.8880 −0.0021 −0.0013* −0.0046 0.0019

(0.0023) (0.0025) (0.0035) (0.0041) (0.0009) (0.0012) (0.0012) (0.0004)

δ0 0.1455
(0.0010)

σv 0.0007
(0.0000)

also include inflation and real activity in addition to the three latent factors. Finally, I assume

that all yields are measured with error.

Here, I only report the results for the affine models with short and long memory. The

estimation results for the SRMs can be found in the appendix. The estimation results for the

affine model with short memory as well as long memory are presented in Table 1 and Table

2, respectively. The parameters determining the risk-neutral dynamics (ΦQ and δ0) as well

as Σ are similar in both specifications. In addition, the parameters are estimated very tightly

in both cases. The eigenvalues from the Jordan form (ϕQ) in both models appear to be in

line with the findings of the short memory literature (Joslin et al, 2011; Bauer et al, 2012).

It is clear that the long memory assumption under the P-measure is innocuous and does not

affect the risk-neutral dynamics.

Regarding the physical dynamics, it is clear that there are sizeable differences between

the models. The parameters Φ and µ are estimated somewhat differently in both models. In

the long memory case, the estimated orders of integration (d) for the factors are large and

consistent with the findings in the literature (Abbritti et al, 2016; Osterrieder and Schotman,

2017). Since the estimated d coefficients are statistically larger than 0.5, all latent factors are

non-stationary.
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Table 2: Long memory affine model

This table reports the empirical results from the long memory affine model over the period January, 1985-
December, 2018. The standard errors in parentheses are calculated using the approach proposed by Harvey
(1989), p 142 (see also p 938 of Andreasen, 2013). ϕQ represents the estimated eigenvalues. All estimated
coefficients are statistically significant at the 5% level except the ones with the asterisk sign.

Φ ϕQ d µ Σ
latent 1 0.0914 −0.1169 −0.0444 0.9973 0.8761 −0.0006 0.0039

(0.0042) (0.0037) (0.0054) (0.0001) (0.0033) (0.0000) (0.0001)
latent 2 0.3805 0.7479 0.2572 0.9683 0.8761 0.0004 −0.0022 0.0046

(0.0034) (0.0050) (0.0042) (0.0005) (0.0034) (0.0000) (0.0002) (0.0001)
latent 3 −0.1807 −0.2832 0.3962 0.8892 0.5897 −0.0003 −0.0016 −0.0039 0.0018

(0.0029) (0.0033) (0.0060) (0.0021) (0.0044) (0.0000) (0.0001) (0.0001) (0.0000)

δ0 0.1450
(0.0014)

σv 0.0007
(0.0000)

7 Model properties

In this section, I discuss various properties of the estimated models, some of which may also

be considered testing the ability of the models in matching conditional expectations of future

yields. First, I present the in-sample fit of the models. Then I conduct the two ”linear

projections of yields” (LPY) tests proposed by Dai and Singleton (2002), which investigate

whether the estimated models can replicate the desired slope coefficients from the standard

and the risk-adjusted Campbell-Shiller regressions. I also report the results of the Mincer-

Zarnowitz (1969) regressions for the models, which test whether the model-implied excess

returns comply with the realized excess returns. Using another criteria, I explore whether

the estimated models can predict the short rate expectations from the Survey of Professional

Forecasters (SPF) for the 3-month bond yield over short and long horizons. In the last part,

I discuss the estimates of term premium dynamics and the overall performance of the models.

In the appendix, an interested reader can also find the results from a forecasting exercise for

the affine models.

7.1 In-sample fit

The in-sample fit of all estimated models are very satisfactory (Table 3). Despite the 7 years

of the zero lower bound (ZLB) period in the sample January, 1985 - December, 2018, the

largest error in the affine models is not greater than 7.5 basis points. Long and short memory

models fare comparably well in the estimation period. Once more, it is evident that the long
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Table 3: In-sample fit

This table reports the in-sample fit of the estimated affine and shadow rate models with short ”SM” and
long ”LM” memory over the period January, 1985-December, 2018. The fit is computed using the root mean
squared error (RMSE). The errors are expressed in annualized basis points.

Model 3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year
Affine SM 7.03 6.52 7.44 3.28 4.81 5.58 3.21 6.32
Affine LM 7.17 6.48 7.45 3.35 4.82 5.56 3.25 6.35
SRM SM 7.51 6.57 6.88 3.59 4.79 5.07 3.22 5.51
SRM LM 6.88 6.41 7.01 3.54 4.78 5.26 3.18 5.89

memory specification under the physical measure does not influence the satisfactory fit of the

models when compared to the short memory case. While I apply the first rather than second

order approximation of Priebsch (2013) to find the solutions of the bond yields, the SRMs in

both cases perform relatively well.

7.2 Campbell-Shiller regressions

Dai and Singleton (2002) propose two tests to check the ability of DTSMs to match the

conditional mean of future yields. The first test (LPY I) explores whether population slope

coefficients from the Campbell and Shiller (1991) regressions can match their counterparts

from the data. It sets out and estimates the following regression

yj−m
t+m − yjt = δj + ϕj

m

j −m
(yjt − ymt ) + ujt , (32)

where ujt ∼ IID(0, var(ujt )) for maturities j = m+ 1,m+ 2, ...,K. A well-known result from

the Campbell and Shiller (1991) study shows that the spread, (yjt − ymt ), can predict the

movements in long maturity yields, (yj−m
t+m − yjt ). Thus, in order for a DTSM to pass the LPY

I test, the standard Campbell-Shiller regression on the simulated samples from the DTSM

should replicate the slope coefficients from the data.

The second LPY II test investigates whether the yields in the sample comply with the

expectations hypothesis once they are adjusted for risk using the term premium estimates

from the DTSM. Specifically, it tests whether the loadings ϕQj are equal to 1 in the following

regression

yj−m
t+m − yjt − (cj−m

t+m − cj−m
t ) +

m

j −m
θj−m
t = δQj + ϕQj

m

j −m
(yjt − ymt ) + uj,Qt , (33)

where cjt ≡ yjt − 1/j
∑j−1

i=0 Et[rt+i] is the term premium in the jth maturity yield, θjt ≡

f jt − Et[rt+j ] is the term premium in the forward rate f jt ≡ −log(P j+1
t /P j

t ), and uj,Qt ∼
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Figure 1: Affine models

This figure reports the Campbell-Shiller loadings implied by the model and the data. The ”SM” denotes short
memory model whereas the ”LM” long memory. The 95% confidence interval (shaded area) for the LPY I
test is based on the short memory model and computed using a block bootstrap of 5,000 replications with a
window size of 12 months. The confidence bands for the LPY II tests are obtained using the term premium
estimates from the short memory model.

(a) LPY I test (b) LPY II test

IID(0, var(uj,Qt )).

To carry out the suggested LPY I test, I generate 10,000 samples of the equal length

as in the data from the term structure models. For each replication, I estimate (32) using

m = 6 months and then take the mean of the slope estimates. For LPY II test, I use the

term premium estimates from the models and adjust the corresponding yields accordingly.

I compare these model-implied loadings with the estimates from the data covering the pe-

riod January, 1985 - December, 2018. The 95% confidence intervals are calculated using the

Campbell-Shiller regressions applied to the data. Here, I run 5,000 block bootstrap repli-

cations employing jointly the regressand and the regressor in the regressions with a block

window of 12 months.

Figure 1 depicts the results of the Campbell-Shiller regressions for the affine models con-

ducted for the yield maturities 1 to 10 years. As expected in the LPY I test, the simulated

Campbell-Shiller loadings (ϕj) decline and remain in the 95% confidence band in both affine

models although this decline is more pronounced in the short memory model. To pass the

second test, the Campbell-Shiller loadings (ϕQj ) from the models should not be statistically

different from 1 (black line). Because the affine models meet this criterion, they pass the LPY

II test as well.

Figure 2 shows the results of the two tests for the SRMs. Clearly, as the simulated

Campbell-Shiller regression loadings remain in the confidence bands, the SRMs match the
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Figure 2: Shadow rate models

This figure reports the Campbell-Shiller loadings implied by the model and the data. The ”SM” denotes short
memory model whereas the ”LM” long memory. The 95% confidence interval (shaded area) for the LPY I
test is based on the short memory model and computed using a block bootstrap of 5,000 replications with a
window size of 12 months. The confidence bands for the LPY II tests are obtained using the term premium
estimates from the short memory model.

(a) LPY I test (b) LPY II test

data and pass the two tests. Here as well, the short memory model performs relatively better

in the first test as it generally aligns with the data (red solid line). However, these differences

are small and generally not statistically significant.

7.3 Mincer-Zarnowitz test

The Mincer and Zarnowitz (1969) regression is another popular tool to test forecasting per-

formance of a candidate model. In a DTSM context, I apply the Mincer and Zarnowitz (1969)

regression to check the ability of the models in matching conditional moments. In particular,

I run an m-period realized excess return on the model-implied expected excess return, i.e.

rxm,j
t+m = α0,j + α1,jEt[rx

m,j
t+m] + um,j

t+m, (34)

where rxm,j
t+m ≡ −(j − m)yj−m

t+m + jyjt − mymt . For a satisfactory model, the intercept α0,j

should be equal to zero, whereas the slope α1,j should not be statistically different from 1.

As in the case of the LPY tests, I generate 10,000 samples of equal length as in the data

from each of the term structure models. For each replication, I estimate (34) using m = 6

months and then take the mean of the estimates. I compare these model-implied loadings

with the estimates from the data covering the period January, 1985 - December, 2018.

Figure 3a depicts the estimation results obtained from the affine models for the slope

coefficients α1,j . The horizontal axis shows the employed bond maturities j = 1, 2, ..., 10 in
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Figure 3: Mincer-Zarnowitz test

This figure reports the Mincer-Zarnowitz loading implied by the model and the data. The ”SM” denotes short
memory model whereas the ”LM” long memory. The 95% confidence intervals (shaded area) are obtained from
the data and computed using a block bootstrap of 5,000 replications with a window size of 12 months.

(a) Affine models (b) Shadow rate models

years. It is clear that the slope coefficients α1,j from the affine models are not statistically

different from 1. Although not reported here, the intercept estimates α0,j are not statistically

different from zero as well. Thus, these models satisfy the Mincer-Zarnowitz test. Figure 3b

displays the slope coefficients α1,j for the SRMs from the Mincer-Zarnowitz regression. It

is evident that they broadly satisfy the Mincer-Zarnowitz criterion while the short memory

model performs marginally better.

7.4 Matching survey expectations

In this section, I discuss performances of the estimated models in fitting the 3 month short-

rate expectations from the Survey of Professional Forecasters (SPF). First, I report the results

of the models estimated with the yield data only in fitting 12-month- and 10-year (average)-

ahead survey expectations for the 3-month bond yield. Then I also augment the yield data

with the 6- and 12-month-ahead survey expectations from the SPF similar to Kim and Or-

phanides (2012) and examine whether the same models can improve upon their benchmark

cases. Finally, I also augment the yield data with the survey expectations for the average

3-month bond yield over the next 10-year horizon and compare their performances with the

rest of the models.

Table 4 presents the ability of the affine and the SRMs with short and long memory in

fitting the short rate expectations from the SPF. Generally, the estimated models can fit the

short horizon survey expectations comparably well even without the data augmentation. On
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average, the short memory models perform similarly with the long memory ones, except one

case. Without data augmentation, the affine short memory model beats all the remaining

models in fitting the 10-year average survey expectations. That is, all remaining models have

larger than 200 basis points expectation errors over the next 10 years, whereas the short

memory affine model has almost half of these errors.

Including only the short horizon expectations in the term structure estimation halves

Table 4: Matching short-rate expectations from surveys

This table reports the root mean squared errors (RMSE) in annualized basis points (bp) between the model-
implied 3-month bond yield forecasts and the expected 3-month yield obtained from the Survey of Professional
Forecasters (SPF) over the period January, 1985 - December, 2018. The ”YDO” denotes the standard estima-
tion of the models with the bond yields data only. The ”SHS” denotes the models estimated with the yields
data plus short horizon 6- and 12-month-ahead survey expectations from the SPF. The ”LHS” denotes the
models estimated with the yields data and the average 10-year expectations for the 3-month bond yield from
the SPF.

Affine SRM

Short memory Long memory Short memory Long memory

(a) 12-month
Yields data only (YDO) 68.8 75.6 88.7 87.1

Short horizon survey data (SHS) 31.7 33.2 28.2 30.4
Long horizon survey data (LHS) 53.7 55.3 69.9 71.3

(b) 10-year average
Yields data only (YDO) 109.9 217.3 214.8 252.3

Short horizon survey data (SHS) 64.8 85.3 65.3 77.0
Long horizon survey data (LHS) 27.5 23.9 28.9 27.8

the forecast errors for the period 12 months ahead and substantially reduces the errors for

the next 10-year period (for more details see the appendix). Augmenting the models with

only long horizon survey expectations helps to reduce the forecast errors for the long horizon

substantially. To sum up, all the models perform satisfactorily well given the results from the

literature (see, for instance, Andreasen and Meldrum, 2019).

7.5 Term premium

Term premium estimates of the long and short memory affine models for the 10-year bond

yield are displayed in Figure 4a. It is striking that these two term premium estimates resem-

ble the term premium estimates of Abbritti et al. (2016) during the period 1985-2011 (see

p 347 in Abbritti et al, 2016). Not only their shapes, but also their scales are very similar.

Abbritti et al. (2016) estimate a VARFIMA(1,d,0) model but employing the observed first

three principal components (obtained from a panel of the bond yields) and a different esti-
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mation methodology in frequency domain. Nevertheless, model estimations using different

methodologies and different sample periods produce similar term premium estimates. In ad-

dition, the term premium estimates from the affine models display a high correlation with

the estimates of Adrian, Crump, and Moench (2013) study. This correlation is around 98%

for the short memory model and 77% for the long memory model.

Figure 4a shows that the term premium estimates of the long memory affine model are

Figure 4: Term premium

Term premium estimates from long memory (LM) and short memory (SM) affine models. The green line
(ACM) depicts Adrian, Crump, and Moench (2013) estimates. The shaded regions indicate NBER recession
dates for the US. economy.

(a) Affine models (b) Shadow rate models

generally larger than the estimates of the short memory affine model during most of the sam-

ple period. Figure 4b displays the term premium estimates using the same maturity bond

yield in the SRMs. They look like the estimates of the affine models despite the 7 years of

the ZLB period in the sample. In the SRMs as well, the estimates of the term premium of

the long memory model are generally larger than those of the short memory model.

All term premium estimates appear counter-cyclical as they rise before and during re-

cessions and fall during expansions. However, they are generally lagging the cycle. The

volatilities of the term premium estimates for the 10-year bond yield in affine models are

similar and close to 1.2% whereas in the SRMs, the long memory model has a slightly lower

volatility (1.2% vs 1.4%). Over the course of the sample, the 10-year bond yield exhibited a

downward trend and declined by 8.3%. The long and short memory affine models attribute

half of this decline, namely, 4.8% and 3.8%, to falling short-rate expectations. The SRMs

explain a larger portion, i.e., around 5-6% of this decline by lower short-rate expectations.

For comparison, the short-rate survey expectations attribute around half of this decline to
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falling short-rate expectations. Overall, the abilities of the models do not differ significantly

in interpreting term premium dynamics.

8 Conclusion

In this study, I generalize the state-space approach proposed in Golinski and Zaffaroni (2016)

to estimate long memory term structure models and address the shortcomings in their estima-

tion framework. The computational efficiency of the new framework allows me to carry out

an extensive comparison of long and short memory term structure models. Using a battery of

tests, I find that the short memory term structure models perform just like the long memory

models.

The estimated affine as well as the shadow rate models with short and long memory pro-

duce similar parameter estimates and term premium as in the literature. Moreover, the short

and long memory models perform remarkably similar against a number of criteria. Even if

there is a difference in their performance, this difference is statistically insignificant and does

not provide strong support for any model type.

All estimated models achieve a similar in-sample fit, perform adequately in the Campbell-

Schiller predictability tests as well as in the Mincer-Zarnowitz test. There is little to dis-

tinguish between the ability of these models in matching the short rate survey expectations

as well. Only the magnitudes of the term premium estimates of the long and short memory

models somewhat differ although the term premium dynamics is similar. In general, the long

memory models have relatively larger term premium estimates. Overall, I show that standard

term structure models with short memory produce similar term premium estimates as more

complicated long memory models.
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Appendices

A.1 Proofs

Lemma 1: For finite d1 ≥ 0 and d2 ≥ 0 assume that4 as i→ ∞

ζi ∼ c id2−1

ψQ
i ∼

{
c id1−1if d1 > 0

ri where |r| < 1 if d1 = 0,

then as n→ ∞
n∑

i=0

ψQ
n−iζi ∼ c nd1+d2−1,

where c denotes an arbitrary constant, not always the same.

Proof: I only consider the case d1 > 0 and d2 > 0, as the proof of the other case follows a

similar line of thoughts. Assume with no loss of generality that ψQ
i ̸= 0 and ζi ̸= 0 for all

i <∞. Write

n∑
i=0

ψQ
n−iζi ∼

n∑
i=0

c (n− i)d1−1id2−1 =

[n/2]∑
i=0

c (n− i)d1−1id2−1 +
n∑

i=[n/2]+1

c (n− i)d1−1id2−1,

where we express the above sum in two parts as we need to consider two cases: (i) when i is

relatively smaller, i.e., i ≤ [n/2] and (ii) when i is relatively larger, i.e., i > [n/2]. For the

first sum, as n→ ∞

[n/2]∑
i=0

c (n− i)d1−1id2−1 ∼ c nd1−1

[n/2]∑
i=0

id2−1 ∼ c nd1−1nd2 = c nd1+d2−1,

where the first relation
∑[n/2]

i=0 c (n − i)d1−1id2−1 ∼ c nd1−1
∑[n/2]

i=0 id2−1 follows from the in-

termediate results in Proof of Theorem 4.6 of Golinski and Zaffaroni (2016) and the second

result, i.e., as n→ ∞,
∑n

i=0 i
d2−1 ∼ c nd2 for d2 > 0 follows from Lemma D.1 there (see also

Knopp (1990), p 295). For the second sum, as n→ ∞
n∑

i=[n/2]+1

c (n− i)d1−1id2−1 ∼ c nd2−1
n∑

i=[n/2]+1

(n− i)d1−1 =

nd2−1

[n/2]−1∑
i=0

id1−1 ∼ c nd2−1nd1 = c nd1+d2−1.

4I say an ∼ bn, where bn ̸= 0, when an
bn

→ 1 as n → ∞.
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Thus, as n→ ∞
n∑

i=0

ψQ
n−iζi ∼ c nd1+d2−1.

The result in Lemma 1 is used to prove Proposition 1.

Proof of Proposition 1: We first establish a relation between the impulse-response coef-

ficients of the factors xt under different measures and the market price of risk, λt and then

apply Lemma 1 to this relation.

From the existence of the Radon-Nikodym derivative and Gaussian assumption of εt, we

obtain εQt = εt + λt−1. Substituting λt given in (7) and εQt = εt + λt−1 in (2), we obtain

xt = µQ +
∞∑
j=0

ΨQ
j ε

Q
t−j = µQ +

∞∑
j=0

ΨQ
j (εt−j + (λ0 +

∞∑
k=0

ζkεt−j−k−1))

= µQ + (

∞∑
j=0

ΨQ
j )λ0 +

∞∑
j=0

ΨQ
j εt−j +

∞∑
j=0

∞∑
k=0

ΨQ
j ζkεt−j−k−1

= µQ + (

∞∑
j=0

ΨQ
j )λ0 +

∞∑
j=0

ΨQ
j εt−j +

∞∑
k=0

∞∑
j=k+1

ΨQ
j−k−1ζkεt−j

= µQ + (

∞∑
j=0

ΨQ
j )λ0 +

∞∑
j=0

ΨQ
j εt−j +

∞∑
j=1

j−1∑
k=0

ΨQ
j−k−1ζkεt−j .

Thus, using the VMA(∞) representation of xt under the physical measure in (4) and equating

the coefficients, we obtain

µ = µQ + (
∞∑
j=0

ΨQ
j )λ0, (A.1)

for j = 1, 2, ...

Ψj = ΨQ
j +

j−1∑
k=0

ΨQ
j−k−1ζk, (11)

and Ψ0 = ΨQ
0 .

In the case of a single factor, as j → ∞, the impulse-responses of xt under the Q-measure

and market price of risk, λt, are given as

ζj ∼ c jd
λ−1

ΨQ
j ∼

{
c jd

Q−1if dQ > 0

rj where |r| < 1 if dQ = 0.
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Then as j → ∞, by Lemma 1

j−1∑
k=0

ΨQ
j−k−1ζk ∼ c jd

Q+dλ−1.

Thus,

Ψj ∼ c jd
P−1,

where dP = max(dQ, dQ + dλ) = dQ + dλ due to the assumptions of dQ ≥ 0 and dλ ≥ 0.

Proof of Proposition 2: To write the pricing formulas for the zero coupon bonds, I rely on

the following relation

Pn+1
t = EQ

t [exp(−rt)Pn
t+1].

Before starting, note that by a mere change of measure the dynamics of Ct under the Q-

measure is

Ct = −Hλ0 + (F −Hλ1G)Ct−1 +HεQt . (A.2)

I guess that the pricing relation is as follows

Pn
t = exp(An +B′

nCt).

Thus,

Pn+1
t = EQ

t [exp(−rt)exp(An +B′
nCt+1)]

= exp(−δ0 − δ′1GCt +An −B′
nHλ0 +B′

n(F −Hλ1G))E
Q
t [exp(B

′
nHε

Q
t+1)]

= exp
(
An −B′

nHλ0 + 0.5B′
nHH

′Bn − δ0 + (B′
n(F −Hλ1G)− δ′1G)Ct

)
.

Thus,

An+1 = An −B′
nHλ0 + 0.5B′

nHH
′Bn − δ0

B′
n+1 = B′

n(F −Hλ1G)− δ′1G.

Proof of Proposition 3: Let’s fix some notations first. Define a new unobserved pricing

vector x∗t = xt + c and define c̃ as

c̃ =

 c
c
. . .

 .
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Note that c = G c̃ where G is given in (17). Now, C∗
t is defined as

C∗
t =

 E[x∗t |x∗t , x∗t−1, ...]
E[x∗t+1|x∗t , x∗t−1, ...]

. . .

 , (A.3)

where C∗
t follows a transition dynamics similar to Ct in (15)

C∗
t = FC∗

t−1 +Hεt. (A.4)

In addition, since C∗
t = Ct + c̃, we can use the transition dynamics of Ct in (15) to write

Ct + c̃ = (c̃− F c̃) + F (Ct−1 + c̃) +Hεt ⇒

C∗
t = (c̃− F c̃) + FC∗

t−1 +Hεt. (A.5)

Comparing (A.4) and (A.5), it is clear that

c̃− F c̃ = 0, (A.6)

holds in infinite dimension. Furthermore, choose λ∗0 = λ0 − λ1Gc̃ and δ
∗
0 = δ0 − δ′1Gc̃.

Here, I prove that (δ0, λ0, Ct) is observationally equivalent to (δ∗0 , λ
∗
0, C

∗
t ). That is, if I show

that for all m

P
(m)
t = exp(A∗

m +B′
mC

∗
t ) = exp(Am +B′

mCt), (A.7)

then the proof is complete. Note that since all parameters except (δ0, λ0) are assumed to be

identified, Bm is the same for both xt and x
∗
t .

I use the induction argument to prove (A7). First, to prove the base case m = 1, note that

the price of the zero-coupon bond for the maturity m = 1 is

P
(1)
t = exp(−δ∗0 − δ′1GC

∗
t ) (A.8)

= exp(−δ0 + δ′1Gc̃− δ′1Gc̃− δ′1GCt)

= exp(−δ0 − δ′1GCt),

where I use the fact that δ∗0 = δ0 − δ′1Gc̃ and C
∗
t = Ct + c̃.

Now, assume that for m = n, the relation in (A.7) holds, i.e.,

P
(n)
t = exp(A∗

n +B′
nC

∗
t ) = exp(An +B′

nCt). (A.9)

Since

A∗
n +B′

nC
∗
t = A∗

n +B′
nc̃+B′

nCt,
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we obtain A∗
n+B′

nc̃+B
′
nCt = An+B′

nCt by relying on the relation in (A.9). In other words,

our assumption for m = n in (A.9) implies that

A∗
n +B′

nc̃ = An. (A.10)

Now, if I prove that the pricing relation in (A.7) holds for m = n + 1, then the proof is

complete. To start, note that

P
(n+1)
t = exp(A∗

n+1 +B′
n+1C

∗
t ) (A.11)

= exp(A∗
n −B′

nHλ
∗
0 + 0.5B′

nHH
′Bn − δ∗0 +B′

n+1(Ct + c̃))

= exp(A∗
n −B′

nHλ0 + 0.5B′
nHH

′Bn − δ0

+B′
nHλ1Gc̃+ δ′1Gc̃+B′

n+1Ct +B′
n+1c̃)

where in the second line I use the formula for A∗
n+1 given in (19) and substitute λ∗0 = λ0−λ1Gc̃

and δ∗0 = δ0 − δ′1Gc̃. Now, let’s use the relation given in (A.6), i.e., c̃− F c̃ = 0.

P
(n+1)
t = exp(A∗

n −B′
nHλ0 + 0.5B′

nHH
′Bn − δ0 (A.11)

+B′
nHλ1Gc̃+ δ′1Gc̃+B′

n(c̃− F c̃)︸ ︷︷ ︸
0

+B′
n+1Ct +B′

n+1c̃).

Now, if we collect the terms, (A.11) can be re-written as

P
(n+1)
t = exp(A∗

n −B′
nHλ0 + 0.5B′

nHH
′Bn − δ0 (A.11)

− (B′
n(F −Hλ1G)− δ′1G)︸ ︷︷ ︸

B′
n+1

c̃+B′
nc̃+B′

n+1Ct +B′
n+1c̃).

Note that B′
n+1 = B′

n(F − Hλ1G) − δ′1G by (19). Now, if we use the implied assumption

(A.10) (by assumption (A.9)), i.e., A∗
n +B′

nc̃ = An in (A.11) above, we obtain

P
(n+1)
t = exp(A∗

n+1 +B′
n+1C

∗
t ) (A.11)

= exp(A∗
n −B′

nHλ0 + 0.5B′
nHH

′Bn − δ0 −B′
n+1c̃+B′

nc̃+B′
n+1Ct +B′

n+1c̃)

= exp(An −B′
nHλ0 + 0.5B′

nHH
′Bn − δ0 +B′

n+1Ct)

= exp(An+1 +B′
n+1Ct),

where the final line follows from the loading formula for An+1 in (19).
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A.2 Short memory factor specifications

Although long memory specification is fairly general and nests short memory as well, I pre-

fer to separately present short memory specification following the short memory literature.

Thus, a vector of state factors xt = (x1t x2t ... xKt)
′ follows a parsimonious first order vector

autoregressive VAR(1) process under the P-measure:

(xt − µ) = Φ(xt−1 − µ) + Σεt, (A.12)

where εt ∼ N(0, I), εt and µ are K × 1 vectors, Φ is a K ×K matrix and Σ is a K ×K lower

triangular matrix. The short term interest rate rt is defined as a linear function of the pricing

factors

rt = δ0 + δ
′
1xt, (5)

where δ0 is a scalar and δ1 is a K × 1 vector. The (logarithmic) stochastic discount factor

(SDF) is a quadratic function of the K risk factors

−mt+1 = rt +
1

2
λ′t λt + λ′t εt+1, (6)

where λt is a vector of the market price of risks, which are essentially affine in the pricing

factors

λt = λ0 + λ1xt, (10)

where λ0 is a K × 1 vector and λ1 is a K × K matrix. Therefore, the pricing factors also

follow a parsimonious VAR(1) process under the Q-measure

(xt − µQ) = ΦQ(xt−1 − µQ) + ΣεQt , (A.13)

where εQt ∼ N(0, I), εQt is a K × 1 vector and

µQ = (I − ΦQ)−1(I − Φ)µ− Σλ0, ΦQ = Φ− Σλ1.

A.3 Kalman Filter with Surveys

To estimate an affine, no-arbitrage DTSM, I apply the standard Kalman filter:

yt = A+ B xt + vt

Ct+1 = µ̃+ΦCt +Hεt+1,
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where xt = GCt. The J × 1 vector A and J ×K dimension matrix B are defined as

A =


Aτ1

Aτ2

. . .
AτN

 B =


Bτ1

Bτ2

. . .
BτN

 ,
where Aτi = − 1

τi
A

′
τi and Bτi = − 1

τi
B

′
τi . Am and Bm are computed using the well-known

Ricatti difference equations:

Am+1 = Am + (µQ)′Bm +
1

2
B′

mΣΣ′Bm − δ0

Bm+1 = (ΦQ)′Bm − δ1,

with starting values A0 = 0 and B0 = 0.

I augment the yields in the measurement equation with 3- and 6-month-ahead expectations

as well as the 10-year-ahead (average) expectations of the 3-month T-bill rate. Now, the

measurement equation becomes
yt
ye,63,t

ye,123,t

ỹe,1203,t

 =


A

A3 + B3G(I − Φ)−1(I − Φ6)µ̃
A3 + B3G(I − Φ)−1(I − Φ12)µ̃

A3 + 1/120B3G(I − Φ)−1
∑120

i=1(I − Φi)µ̃

+


BG

B3GΦ
6

B3GΦ
12

1/120B3G
∑120

i=1Φ
i

Ct +


vt
vet
vet
ṽet

 .
The transition equation stays the same as in the case of the standard DTSM. For the VAR(∞)

representation, Ct is defined as

Ct =


xt
xt−1

xt−2

. . .
xt−m+1

 .
To initialize the Kalman filter, I estimate C1 (in fact, x1). However, to set up P1, I use the

VMA(∞) representation of the VARFIMA(p,d,q) model. Since

xt+1 = µ+
∞∑
j=0

Ψjεt−j ,

then

E[(xt − µ) (xt−l − µ)′] = E[(

∞∑
j=0

Ψjεt−j)(

∞∑
k=0

Ψkεt−l−k)
′] =

∞∑
j=0

∞∑
k=0

ΨjE[εt−jε
′
t−l−k]Ψ

′
k.

But since εt ∼ N(0, I) is i.i.d. shocks, then I only have non-zero terms when k = j − l

E[(xt − µ) (xt−l − µ)′] =
∞∑
j=l

ΨjΨ
′
j−l.
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Note that I truncate this sum at m. To compute covariance matrix for Ct, I set up an upper

triangular Teoplitz matrix

T =


Ψ0 Ψ1 Ψ2 Ψ3 . . . Ψm−1

0 Ψ0 Ψ1 Ψ2 . . . Ψm−2

0 0 Ψ0 Ψ1 . . . Ψm−3

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . Ψ0

 .

Thus, to initialize P1, I calculate the following expression:

P1 = E[(C1 − µ̃) (C1 − µ̃))′] = T T ′.

A.4 Extended Kalman Filter

Following Durbin and Koopman (2012), I use the following recursions for the extended Kalman

filter

vt = yt − Z(xt), Ft = ŻtPtŻ
′
t + σ2v IN

Ct+1 = µ+ΦCt, Pt+1 = ΦPt(Φ−KtŻt)
′ +HH ′,

where xt = GCt, Kt = ΦPtŻ
′
tF

−1
t and Żt =

∂Z
∂Ct

. For updating I use the following relations

Ct|t = Ct + PtŻ
′
tF

−1
t vt

Pt|t = Pt − PtŻ
′
tF

−1
t ŻtPt.

A.5 VMA(∞) representation

Brockwell and Davis (1990) show how to obtain impulse-response coefficients for an ARMA

process (p 92). This result can be generalized to a multivariate setting as well. For that

define Θ0 = Σ and Θj = 0 for j > q as well as Φj = 0 for j > p, then the impulse-response

coefficients φj for a VARMA(p,q) process is obtained as

φj = Θj +
∑

0<k≤j

Φk φj−k, 0 ≤ j < max(p, q + 1),

and

φj =
∑

0<k≤p

Φk φj−k, j ≥ max(p, q + 1).
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Now, to derive the impulse-response coefficients Ψj for a VARFIMA(p,d,q) process, we need

to multiply two lag polynomials, φ(L) and D(L). First, note that as shown by Diebold and

Rudebusch (1989), a binomial expansion of the operator (1− L)d can be written as follows:

(1− L)d =

∞∑
j=0

Γ(j − d)Lj

Γ(−d)Γ(j + 1)
= 1− dL+

d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + ...

Since D(L) is a diagonal matrix, its inverse is also diagonal. Denoting the inverse polynomial5

as η(L), the impulse-response coefficients Ψ for a VARFIMA(p,d,q) process can be obtained

as

(
∞∑
j=0

ηjL
j)(

∞∑
k=0

φkL
k) =

∞∑
j=0

∞∑
k=0

ηjφkL
j+k =

∞∑
k=0

∞∑
j=k

ηj−kφkL
j

=
∞∑
j=0

j∑
k=0

ηj−kφkL
j =

∞∑
j=0

(

j∑
k=0

ηj−kφk)L
j

Thus,

Ψj =

j∑
k=0

ηj−kφk.

A.6 VAR(∞) representation

Let us first compute the VAR(∞) representation of a VARMA(p,q) model, which is defined

as

Φ(L)xt = Θ(L)εt,

where Φ(L) = I −Φ1L−Φ2L
2 − ...−ΦpL

p and Θ(L) = I +Θ1L+ ...+ΘqL
q. The VAR(∞)

representation of the VARMA(p,q) model takes the following form

εt = Θ(L)−1Φ(L)xt = Π(L)xt =
∞∑
j=0

Πjxt−j .

The product of the two polynomials Θ(L)Π(L) are computed as

(
∑q

k=0ΘkL
k)(

∑∞
j=0ΠjL

j) =
∑q

k=0

∑∞
j=0ΘkΠjL

j+k =
∑q

k=0

∑∞
j=k ΘkΠj−kL

j =∑∞
j=0

∑min(q,j)
k=0 ΘkΠj−kL

j =
∑∞

j=0(
∑min(q,j)

k=0 ΘkΠj−k)L
j .

5Note that d will be replaced with −d in the above binomial expansion
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Using the relation that Θ(L)Π(L) = Φ(L), we can recursively express the VAR(∞) represen-

tation coefficients as

−Φj = Πj +

min(q,j)∑
k=1

ΘkΠj−k,

where Φ0 = −I and Φj = 0 for j > p. Now, let us express the VAR(∞) representation of

a VARFIMA(p,d,q) process. To find the respective coefficients, we need to multiply the two

polynomials, Π(L)D(L) = Ξ(L), where D(L) is a diagonal matrix. That is, the VAR(∞)

representation of the VARFIMA(p,d,q) process is defined as

εt = Π(L)D(L)xt = Ξ(L)xt =
∞∑
j=0

Ξjxt−j .

The product of the two polynomials, Π(L)D(L), are computed as

Π(L)D(L) = (

∞∑
k=0

ΠkL
k)(

∞∑
j=0

DjL
j) =

∞∑
k=0

∞∑
j=0

ΠkDjL
j+k =

∞∑
k=0

∞∑
j=k

ΠkDj−kL
j =

∞∑
j=0

j∑
k=0

ΠkDj−kL
j =

∞∑
j=0

(

j∑
k=0

ΠkDj−k)L
j .

Thus,

Ξj =

j∑
k=0

ΠkDj−k.

A.7 Survey data

For survey data, I draw on the publicly available Survey of Professional Forecasters (SPF)

database of the Fed Reserve Bank of Philadelphia. In my estimations, I employ 6- and 12-

month-ahead forecasts of the 3-month T-bill rate as well as its 10-year average forecast. The

6- and 12-month-ahead forecasts are compiled on a quarterly basis and they are available since

1981. The Philadelphia Fed has started conducting these surveys in real time and adhering to

a consistent timing since 1990:Q3. In the beginning of each quarter, the questionnaires are sent

to the forecasters and the final deadline for reporting forecasts is the mid of the second month

of the corresponding quarter. The Fed questionnaire asks to forecast for 6 quarters but only

4 quarters are relevant for forecasting ahead from the current quarter. Since these forecasts

can be considered as the mid of month forecasts, I employ a piecewise linear interpolation

method to obtain the end of month forecasts. For instance, to get the end of month forecast
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Figure A.1: Shadow rate

This figure depicts the shadow rate estimates from long memory ”LM” and short memory ”SM” models along

with the estimates of Wu and Xia (2016) which are obtained from the website of the Fed Reserve Bank of

Atlanta.

for 6 months ahead in February I use the mean forecasts for 2 and 3 quarters ahead and

interpolate these two points to get the end of month forecast for August. In the case of

the long-horizon forecast (10-year-ahead average) for the 3-month T-bill rate, the survey is

conducted on less frequently basis, i.e., once a year. For the long horizon forecast, I do not

carry out any adjustments to the available forecast. In fact, in the case of the short horizon

forecasts, my interpolations are very similar to the actual forecasts. In addition, the sample

length of the long-horizon forecast (10-year-ahead average) is relatively shorter as it starts

in 1992. Finally, it is worth noting that when I employ the survey forecasts in the Kalman

filter, I treat unavailable dates as missing observations and adjust the filter accordingly.

A.8 Shadow rate models

The estimated results for the shadow rate models with short and long memory are presented

in Table A.1 and Table A.2, respectively. The estimated coefficients of the long memory

model are similar to the ones in the affine model with long memory whereas the coefficients of

the short memory SRM resemble the estimates in the affine model with short memory. The

coefficients determining the Q-dynamics in the short memory model are close to those of the

long memory model too. All drifts of the factors in the long memory shadow rate model are

statistically insignificant at the 5% significance level. Figure A1 depicts the estimated shadow

rates from both models along with the estimated shadow rate of Wu and Xia (2016). When
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compared to the Wu and Xia (2016) estimates, the shadow rate estimates of both models are

smaller and close to the zero in most of the period. This dynamics may explain the reason

why affine models perform as adequate as the SRMs despite the presence of a long ZLB period

in the sample.

Table A.1: Short memory SRM

This table reports the empirical results from the short memory shadow rate model. The standard errors in
parentheses are calculated using the approach proposed by Harvey (1989), p 142 (see also p 938 of Andreasen,
2013). ϕQ represents the estimated eigenvalues. All estimated coefficients are statistically significant at the
5% level except the ones with the asterisk sign.

Φ ϕQ µ Σ
latent 1 1.0034 0.0304 0.0464 0.9978 0.0005* 0.0036

(0.0105) (0.0080) (0.0047) (0.0004) (0.0003) (0.0007)
latent 2 −0.0025* 0.9725 −0.0323 0.9671 −0.0003* −0.0020* 0.0060

(0.0027) (0.0067) (0.0061) (0.0031) (0.0003) (0.0018) (0.0014)
latent 3 −0.0069 −0.0175 0.8910 0.8941 −0.0017* −0.0013* −0.0049 0.0031

(0.0029) (0.0031) (0.0052) (0.0062) (0.0013) (0.0017) (0.0015) (0.0006)

δ0 0.1288
(0.0083)

σv 0.0007
(0.0000)

A.9 Macro-finance models

In this section, I estimate a 5-factor unspanned macro-finance term structure model (see,

for instance, Joslin, Priebsch and Singleton, 2014) using both short and long memory over

the same sample period. Similar to the latent factor approach in the previous sections, I

treat the Q- and P-dynamics asymmetrically in the long memory framework. That is, the

three pricing factors follow a VAR(1) process under the Q-measure, whereas they evolve as a

VARFIMA(1,d,0) process under the P-measure together with two additional macro variables.

Here, I assume that these macro variables affect physical dynamics only, i.e., they do not

enter the pricing equations. In the short memory framework, the specification is standard,

i.e., the pricing factors follow a VAR(1) process under both probability measures, but the

same macro variables only affect the P-dynamics.

I assume that all factors are observed without any measurement errors. The two macro

variables included are inflation expectations (INF) over the next one year obtained from the

SPF and real economic activity indicator (GRO). In particular, GRO is the 3-month moving

average of the Chicago Fed National Activity Index (CFNAI), a measure of current real sector
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Table A.2: Long memory SRM

This table reports the empirical results from the long memory shadow rate model. The standard errors in
parentheses are calculated using the approach proposed by Harvey (1989), p 142 (see also p 938 of Andreasen,
2013). ϕQ represents the estimated eigenvalues. All estimated coefficients are statistically significant at the
5% level except the ones with the asterisk sign.

Φ ϕQ d µ Σ
latent 1 0.1045 −0.1002 −0.0006* 0.9975 0.9317 −0.0005* 0.0036

(0.0115) (0.0123) (0.0112) (0.0005) (0.0108) (0.0008) (0.0007)
latent 2 0.0815 0.4997 0.0619 0.9683 0.9317 −0.0000* −0.0014* 0.0048

(0.0123) (0.0119) (0.0126) (0.0037) (0.0123) (0.0011) (0.0015) (0.0012)
latent 3 0.0995 −0.1270 0.6193 0.8800 0.4812 0.0000* −0.0018* −0.0037 0.0024

(0.0117) (0.0126) (0.0120) (0.0099) (0.0122) (0.0010) (0.0013) (0.0013) (0.0005)

δ0 0.1181
(0.0070)

σv 0.0007
(0.0000)

activity. The other three observed factors are the rotated counterparts of the latent factors

determining the risk-neutral dynamics. Following Joslin et al (2011), I assume that the 0.5-,

2-, and 10-year zero-coupon yields are measured without errors.

In this setup, I can estimate the parameters governing the risk-neutral and physical dy-

namics separately.6 Specifically, I estimate the 3 × 3 Jordan form ΦQ and δ0 employing the

maximum likelihood approach for the 3 latent factors. For identification, the 3× 1 vector µQ

is set to zero while the 3× 1 vector δ1 to 1. I transform the estimated parameters to obtain

the corresponding parameters of the rotated pricing factors Pt = Wyt, where W is a 3 × 8

weighting matrix.

In the short memory framework, I estimate the parameters of the physical dynamics by

applying the OLS method as suggested by Joslin et al (2011). Contrary to the short memory

model, it is not possible to estimate the parameters governing the physical dynamics in the

long memory framework relying on the OLS method. This is because the physical dynamics

is specified as a long memory process which requires estimation of the fractional orders of

integration d for all factors. Therefore, I apply the Kalman filter to estimate the parameters

of the physical dynamics in the long memory framework (see Table A3 and Table A4).

6Only the Σ parameter affects both dynamics. As literature shows (see, for instance, Joslin et al, 2011;
Andreasen and Christensen, 2015; Abbritti et al 2016; Andreasen and Meldrum, 2019), Σ is better identified
with the physical dynamics, so I include it in the estimation of the parameters of the physical dynamics only.
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Table A.3: Short memory five factor affine model

This table reports the empirical results from the short memory affine model. The standard errors in paren-
theses are asymptotic standard errors. ϕQ represents the estimated eigenvalues. All estimated coefficients
are statistically significant at the 5% level except the ones with the asterisk sign. The abbreviation ”GRO”
indicates the 3-month moving average of the Chicago Fed National Activity Index (CFNAI), the ”Inf” de-
notes 1-year-ahead inflation expectations from the SPF, the latent factors numbered as 1-3 are the rotated
counterparts of the 0.5-, 2-, and 10-year yields, respectively.

Φ ϕQ µ
GRO 0.9360 −0.0112* −0.1038 0.1141 −0.0135* 0.0001*

(0.0182) (0.0283) (0.0400) (0.0535) (0.0223) (0.0005)
Inf 0.0176 0.9940 −0.0237 0.0248* −0.0035* 0.0002*

(0.0053) (0.0083) (0.0117) (0.0156) (0.0065) (0.0001)
latent 1 0.0727 0.0658 0.8048 0.2339 −0.0891 0.9999 0.0004*

(0.0178) (0.0276) (0.0391) (0.0522) (0.0218) (0.0000) (0.0005)
latent 2 0.0592 0.0829 −0.0467* 1.0403 −0.0395* 0.9849 −0.0003*

(0.0220) (0.0341) (0.0484) (0.0646) (0.0270) (0.0005) (0.0006)
latent 3 −0.0059* 0.0744 −0.0294* 0.0533* 0.9345 0.9009 0.0001*

(0.0228) (0.0353) (0.0500) (0.0668) (0.0279) (0.0040) (0.0007)

δ0 −0.0102*
(0.0036)

σv 0.0011
(0.0000)

Table A.4: Long memory five factor affine model

This table reports the empirical results from the long memory affine model. The standard errors in parentheses
are asymptotic standard errors. ϕQ represents the estimated eigenvalues. All estimated coefficients are statis-
tically significant at the 5% level except the ones with the asterisk sign. The abbreviation ”GRO” indicates the
3-month moving average of the Chicago Fed National Activity Index (CFNAI), the ”Inf” denotes 1-year-ahead
inflation expectations from the SPF, the latent factors numbered as 1-3 are the rotated counterparts of the
0.5-, 2-, and 10-year yields, respectively.

Φ ϕQ d µ
GRO 0.8781 −0.0013* −0.0671 0.0694 −0.0041 0.1735 −0.0001

(0.0021) (0.0047) (0.0026) (0.0028) (0.0005) (0.0034) (0.0000)
Inf 0.0049 0.9080 0.0053 −0.0103 0.0033 0.6060 0.0000

(0.0003) (0.0021) (0.0006) (0.0007) (0.0001) (0.0030) (0.0000)
latent 1 0.0752 0.0826 0.6998 0.2775 −0.0356 0.9999 0.2749 0.0005

(0.0012) (0.0040) (0.0027) (0.0026) (0.0007) (0.0000) (0.0021) (0.0000)
latent 2 0.0604 0.1147 0.0451 0.8837 0.0254 0.9851 0.2254 −0.0001

(0.0014) (0.0044) (0.0029) (0.0034) (0.0006) (0.0005) (0.0017) (0.0000)
latent 3 0.0154 0.0660 −0.0735 0.0638 0.9919 0.9006 0.0402 0.0001

(0.0014) (0.0049) (0.0033) (0.0038) (0.0007) (0.0040) (0.0016) (0.0000)

δ0 0.0155
(0.0018)

σv 0.0011
(0.0000)
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A.9.1 Conditional projections

Conditional projections (forecasts) are frequently used at policy making institutions such as

central banks, IMF, etc. Most of the time, forecasts made at these institutions are conditioned

on future paths of certain variables of interest such as policy rate and commodity prices. I

call such forecasts conditional forecasts or conditional projections to distinguish them from

the forecasts whose all future paths are obtained without conditioning on paths of any model

variables. Conditional forecasting exercise is also employed in the forecasting literature for

model comparison and validation although it is not a popular tool in the no-arbitrage DTSM

literature. Here, I show that conditional projections can be effectively utilized for model

comparison and validation in the DTSM literature as well.

As mentioned before, in conditional projections we provide future paths for some variables

of interest and generate forecasts based on these conditioned paths. If conditioned variables

are endogenous, then we need to take into account possible feedbacks originating from the

other model variables. If we do not take these feedbacks into consideration, then our forecasts

will not be model consistent. Therefore, to generate model consistent conditional forecasts, I

apply the approach of Banbura, Giannone and Lenza (2015). This method, which is based on

the Kalman filter and smoothing, is easy to implement. I estimate the models for the whole

sample (January, 1985 - December, 2018) and then use the parameters from these estimations

in the conditional projections covering the period January, 1990 - December, 2018, where the

first five years are used as initial conditions.

I use such exercises to test whether the term structure of interest rates possesses sufficient

information regarding the dynamics of the inflation and real economic activity by condition-

ing on the actual paths of the non-macro factors. Second, I will also use such projections to

test whether conditioning on the actual paths of the macro factors is sufficient to capture the

salient dynamics of the bond yields after the year 1989.

In the first exercise, the forecasts for the real activity and inflation are computed by con-

ditioning on the actual paths of the non-macro factors. Figure A2 shows the conditional

forecasts for the short memory model. In most of the forecast period, the actual real activity

and inflation data fall within the 95% confidence band. Similarly, Figure A3 clearly demon-

strates that the long memory model forecasts are broadly in line with the actual data. In this

exercise, the long memory model slightly outperforms the short memory model in forecasting

the actual paths of the macro variables. It is worth noting that while I use an unspanned
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Figure A.2: Conditional projections with short memory

This figure depicts the conditional projections for the inflation and real activity measure. These forecasts are
computed conditioning on the actual paths of the three non-macro factors. The shaded area indicates the 95%
confidence interval, whereas the actual data is shown with ”x” signs. The forecast covers the period January,
1990 - December, 2018. The first five years are used as initial conditions.

(a) GRO (b) Inflation

specification, the term structure of interest rates seems to possess sufficient information re-

garding the future paths of the macro variables over most of the forecast period.

In the second forecasting exercise, I condition on the actual paths of inflation and real

economic activity and investigate the model forecasts for the term structure of the yields.

The computed conditional forecasts for the 3-month and 10-year bond yields are displayed in

Figure A4. Both models forecast that the 3-month yield should be lifted up after the year

2011. Thus, it seems that the factors other than the inflation and real activity index played

an important role in keeping the short term interest rates close to the zero level. For the

10-year yield, both models effectively capture the secular decline in the long rate over the last

two decades.
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Figure A.3: Conditional projections with long memory

This figure depicts the conditional projections for the inflation and real activity measure. These forecasts are
computed conditioning on the actual paths of the three non-macro factors. The shaded area indicates the 95%
confidence interval, whereas the actual data is shown with ”x” signs. The forecast covers the period January,
1990 - December, 2018. The first five years are used as initial conditions.

(a) GRO (b) Inflation

Figure A.4: Conditional projections

This figure depicts the conditional projections for the 3 month and 10 year yield. These forecasts are computed
conditioning on the actual paths of the two macro factors. The black solid line shows the actual data. The
forecasts of the long memory model are shown with the blue dotted line, whereas the forecasts of the short
memory are given with the red dotted line. The forecast covers the period January, 1990 - December, 2018.
The first five years are used as initial conditions.

(a) GRO (b) Inflation
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A.10 Matching survey expectations

Figure A.5: Matching the short-rate survey expectations

This figure displays the ability of the models in matching the 3-month short-rate expectations from the Survey
of Professional Forecasters (SPF) using the yield data augmented with the short horizon survey expectations.
The 12-month-ahead short-rate expectations from the SPF is denoted by ”1-year SPF” whereas the 10-year-
ahead average short-rate expectations as ”10-year SPF”. The label ”1-year MODEL” shows the 1-year-ahead
short-rate forecasts from the respective model and similarly, the label ”10-year MODEL”. The abbreviation
”SM” denotes short memory, whereas the ”LM” indicates long memory.

(a) Affine SM (b) SRM SM

(c) Affine LM (d) SRM LM
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