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proposed method preserves non-parametrically the cross-sectional dependence between di�erent
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1 Introduction

The idea of forecast combination was introduced by Bates and Granger (1969), extended by Granger

and Ramanathan (1984), and spawned a large literature. For a recent overview of forecast combination

literature, see Elliott and Timmermann (2016). Granger and Jeon (2004) introduced the concept of

"thick modeling", which consists of making inference based on combined outputs from alternative

models.

In this paper we use bootstrap to consistently estimate the variance of a combined forecast and the

asymptotic covariance matrix of a weighted average of an estimated parameter vector using alternative

models with �xed weights. Our theoretical framework follows Hansen (2014) and Liu and Kuo (2016)

in generating forecasts by using weighted average of the predictions from a set of candidate models that

vary by the choice of auxiliary regressors adopted by forecasters. Thus, there is a panel of forecasting

models with di�erent sets of predictors.

We �rst show that the standard pairwise bootstrap (PB) and standard �xed-design residual-based

bootstrap methods are both invalid in the context of model averaging. The PB involves the resampling

of data instead of the residuals. Speci�cally, it consists of resampling the pairs of dependent and

predictors variables. The PB was originally suggested by Freedman (1981) for cross-sectional models,

see e.g., further extensions of this method in Mammen (1993), Gonçalves and Kilian (2004), and many

references therein. Standard �xed-design residual-based bootstrap approach, consists of stacking all

residuals at time t into a vector, and then resampling these cross-sectional vectors of residuals over

time.1 Note that the latter bootstrap approach is a common and natural way to preserve cross-sectional

dependence and is valid in other contexts, see for example Maddala and Wu (1999), Gonçalves (2011)

and Gospodinov and Ng (2013). See also the related work of Kilian and Lütkepohl (2017 cf. Ch

12) in the context of bootstrapping VAR models, among others. In our context of model averaging,

the failure of these common approaches is due to their inability to mimic appropriately the behavior

of the regression residuals from the full model. Due to the omitted variable biases in approximating

models, these standard bootstrap approaches induce an additional term in the bootstrap variance of

averaging estimators. To be speci�c, alternative predictive regressions su�er from omitted variables

and hence do not generate valid estimates of the population innovations in the encompassing model.

We then propose and theoretically justify an alternative �xed-design residual-based bootstrap approach

for model averaging in predictive regressions. The proposed method can preserve nonparametrically

the cross-sectional dependence over di�erent models and the time series dependence in the error term

simultaneously. The new procedure involves using common bootstrap shocks resampled from the full

model in all approximating models, and can be used by relying on blocking-based resampling and/or

dependent wild-based methods.

Following Hjort and Claeskens (2003), Elliott et al. (2013), Hansen (2014), and Liu (2015), we

1Recently, Gonçalves and Perron (2020) show that a common approach of resampling cross-sectional vectors over time
is invalid in the context of factor-augmented regressions with cross-sectional dependence among idiosyncratic errors.
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study the asymptotic properties of averaging estimators in a local asymptotic framework, where the

true regression coe�cients associated with the auxiliary regressors are in a local T−1/2 neighborhood

of zero. This framework ensures the consistency of the averaging estimators, while, in general, it

presents an asymptotic bias. We analyze the asymptotic distribution of averaging estimator with

both �xed weights and data-dependent weights. As discussed in Liu (2015), we �nd that for the

averaging estimator with �xed weights the asymptotic bias is a function of the local parameters,

whereas the asymptotic variance is not. For the averaging estimator with data-dependent weights,

both the asymptotic bias and the asymptotic variance are functions of the local parameters. Given

that in the local asymptotic framework, the local parameters cannot be estimated consistently, it is not

possible to provide a consistent estimator of the asymptotic mean squared error (AMSE) of averaging

estimator (with �xed and/or with data-dependent weights). So the bootstrap estimate of the AMSE

will be inconsistent, under drifting sequence of parameters.

For this reason, we focus only on the part of the AMSE of averaging estimator with �xed weights,

which is consistently estimable, i.e., the asymptotic variance. Our results support the �ndings of

Hjort and Claeskens (2003) (cf. Section 10.6), who showed that it is not possible to use bootstrap

methods to consistently estimate the asymptotic distribution of averaging estimators. Similarly, Liu

(2015) showed that the asymptotic distribution of the averaging estimator with data-dependent weights

cannot be approximated by simulation. In a related work, Pötscher (2006) showed that the �nite

sample distribution of the averaging estimator cannot be consistently estimated. It should be pointed

out that the proposed bootstrap approach analyzed in our paper is not for model selection purposes.

Furthermore, the bootstrap theory presented in our paper (in a local asymptotic framework) is only

applicable for averaging estimators based on �xed weights. In particular, it does not allow the weights

to be data-dependent, random or result of a pretest procedure.

Nevertheless, a �xed-weight scheme like the equally weighted average of forecasts from alternative

models has been found to be reliable, widely used, and from a risk perspective represent a relatively

safe choice in practice. As Elliott and Timmermann (2016, p. 344) concluded, the �simple combination

methods such as equal weighting often perform well and can be di�cult to beat in situations where

combinations weights are di�cult to estimate with more precision or the precision of the underlying

forecasts is broadly similar.� In their classic paper, Stock and Watson (1999) found that the equal-

weighted average of forecasts across all methods produced the most attractive forecasts at 6- and

12-month horizons. In a related work, Elliott et al. (2013) propose the so-called complete subset

regression method, which uses equal-weighted combinations of forecasts based on all possible models

that have included a �xed (given) number of predictors, see also Rapach and Zhou (2013).2

2Results from the latest M4-competition produced by 49 teams based on 100,000 time series from 6 application
domains, 61 methods, and a number of forecasting horizons and data frequencies rea�rmed the relative competitive edge
of the simple equal-weighted combination scheme, see Shaub (2020) and Petropoulos and Svetunkov (2020). The percent
of target variables for which the equal-weighted combination was more accurate than other methods including a number
of more sophisticated weighting schemes, current generation time series models and machine learning procedures varied
from approximately 42 to 72, cf. Makridakis, et al. (2020, Appendix D).
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In this paper, we show that although bootstrapping methods do not work to estimate consistently

the whole distribution of the weighted averaging estimator, it can be used to consistently estimate

the variance of the estimator with �xed weights. We show the validity of the bootstrap in estimating

the variance of a combined forecast and the asymptotic covariance matrix of the estimated combined

parameter based on di�erent models. We study and illustrate the proposed resampling residual-based

bootstrap approach for blocking-based and dependent wild-based methods. Speci�cally, regression

residuals are resampled by either the moving blocks bootstrap (MBB) of Künsch (1989) and Liu and

Singh (1992), the non-overlapping block bootstrap (NBB) of Carlstein (1986), the dependent wild

bootstrap (DWB) of Shao (2010), or the blocking external bootstrap (BEB) method of Yeh (1998) and

Shao (2011).

Gonçalves and White (2005) proved the consistency of the bootstrap covariance matrix estimator

in a time series regression context, but without model averaging. Hansen and Racine (2018) propose a

bootstrap model averaging procedure for testing unit roots. Recently Gonçalves et al. (2019) studied

conditions under which block bootstrap can be used to obtain valid standard errors of parameters

estimated via multi-stage QMLE estimators. In related work, Hahn and Liao (2019) studied the

relation between bootstrap consistency and consistency of bootstrap standard errors.

The bagging, also known as bootstrap aggregation or bootstrap smoothing introduced by Breiman

(1996), is a model-averaging device that reduces the variability and eliminates discontinuities of a

combined predictor. Even though the bagging method uses bootstrap, it was originally introduced to

improve the accuracy of the estimators � rather than to approximate the distributions or improve the

con�dence interval of predictions. See e.g., the work of Bühlmann and Yu (2002) and Inoue and Kilian

(2008). Here, we are using the bootstrap to estimate the variance of a combined estimator with �xed

weights based on di�erent models.

Our paper is organized as follows. Section 2 introduces the forecasting model, approximating

models and review the asymptotic results. In Section 3, we introduce the bootstrap method and prove

its consistency. Section 4 presents the simulation results. Section 5 provides an empirical illustration,

reexamining the Taylor rule estimates reported by Granger and Jeon (2004), based on bagging using

24 alternative models. Finally, Section 6 concludes. The mathematical proofs are relegated to the

Appendix.

2 Approximating Models

We consider the following h-step-ahead forecasting model

yt+h = x′
tβ + z′tγ + et+h ≡ h′

tθ + et+h, t = 1, . . . , T − h, (1)

E (htet+h) = 0, (2)
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where h = 1, 2, 3 . . . , is the forecast horizon, yt+h is real-valued variable of interest, for example,

in�ation, GDP growth, unemployment rate and the like. xt = (x1t, x2t, . . . , xpt)
′ (p× 1) and zt =

(z1t, z2t, . . . , zqt)
′ (q × 1) are vectors of predictors such that ht =

(
h1t, h2t, . . . , h(p+q)t

)′
= (x′

t, z
′
t)
′

((p+ q)× 1), θ =
(
β′, γ ′)′ is the ((p+ q)× 1) vector of parameters and et+h is an unobservable error

term. We allow et+h to be heteroskedastic and serially correlated (formal assumptions are given in

Section 2.2).

We follow Liu and Kuo (2016), and interpret xt and zt as the core regressors and the auxiliary

regressors, respectively. The core regressors xt are of primary interest to researchers and must be

included in the model, while the auxiliary regressors zt may or may not included in the model. Then

researchers want xt in the model irrespective of the estimated t-ratios of the β-parameters, while they

are less certain in including regressors zt. The auxiliary regressors could be lags of yt, any nonlinear

transformations of the original variables, or the interaction terms between the regressors, see e.g., Liu

and Kuo (2016). As discussed in Magnus et al. (2010) and Liang et al. (2011), the core regressors xt

may only include a constant term or even an empty matrix.

Suppose we have a set of N approximating models {i : 1, . . . , N} that are not necessarily nested.

Each model uses a particular set of auxiliary regressors z
(i)
t (qi × 1) (i.e., selects qi regressors from

the available set of auxiliary regressors) but all use the same core regressors xt. Let Πi be a qi × q

selection matrix that selects the included (potentially relevant) predictors used in the ith model by the

forecaster. For example suppose that q = 5 and the ith model includes the following three auxiliary

regressors: z1t, z3t and z4t. Then, we have qi = 3,

Πi =

 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 such that Π′
iΠi =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .

The ith model includes all core regressors xt and a subset of auxiliary regressors z
(i)
t = Πizt. The

goal is to provide a h-step-ahead forecast of yT+h or its conditional mean yT+h|T = E (yT+h|hT ,hT−1, . . . ) =

x′
Tβ + z′Tγ= h′

Tθ, based on the core regressors xt, the selected subset of auxiliary regressors z
(i)
t and

using the available data {
(
yt,xt, z

(i)
t

)
: 1, . . . , T} at time T . The i'th approximating model is

yt+h = x′
tβ + z

(i)′
t γi + e

(i)
t+h ≡ h

(i)′
t θi + e

(i)
t+h, for i = 1, . . . , N, t = 1, . . . , T − h (3)

where h
(i)
t =

(
x′
t, z

(i)′
t

)′
is the selected regressors of dimension ((p+ qi)× 1), θi =

(
β′, γ ′

i

)′
is an

((p+ qi)× 1) vector of coe�cients and e
(i)
t+h is the approximating error in the i'th model. Thus, the

i'th model uses p+ qi regressors. In matrix notation, (1) can be written as follows

y = Xβ + Zγ + e ≡ Hθ + e, (4)

where y =(y1+h, . . . , yT )
′ ,X =

(
x′
1, . . . ,x

′
T−h

)′
, Z =

(
z′1, . . . , z

′
T−h

)′
, e =(e1+h, . . . , eT )

′ , andH =(X,Z) .
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Similarly, we write (3) in matrix notation as

y = Xβ+Ziγi + e(i) ≡ Hiθi + e(i), (5)

where Zi= ZΠ′
i =

(
z
(i)′
1 , . . . , z

(i)′
T−h

)′
, Hi=(X,Zi) and e(i)=

(
e
(i)
1+h, . . . , e

(i)
T

)′
.

Given (4) and (5), we can write

e(i) = Hθ−Hiθi + e = Z
(
Iq −Π′

iΠi

)
γ + e. (6)

Following Hansen (2014), we can see equation (5) as having omitted variables. Let I denote an identity

matrix and 0 a zero matrix. We also let

Si =

(
Ip 0p×qi

0q×p Π′
i

)
be a selection matrix of dimension (p+ q) × (p+ qi). We can also write θi = S′

iθ, and similarly

Hi = HSi. In the full model where all auxiliary regressors are included in the model (i.e., qi = q), we

have Π′
i = Iq, and the ordinary least-square (OLS) estimator of θ is

θ̂ =
(
H′H

)−1
H′y =

(
β̂
′
,γ̂ ′
)′
. (7)

The OLS estimator in the ith submodel is

θ̂i =
(
H′

iHi

)−1
H′

iy, (8)

whereas in the narrowest model (i.e., the smallest model among all possible submodels used by fore-

casters), Π′
i = 0q, and the OLS estimator is given by

θ̂i =
(
X′X

)−1
X′y. (9)

The h-step-ahead point forecast of yT+h from the ith approximating model is given by

ŷ
(i)
T+h|T = h

(i)′
T θ̂i = h′

TSiθ̂i. (10)

We form with these individual forecasts ŷ
(i)
T+h|T , i = 1, . . . , N the N × 1-dimensional vector ŷT+h|T =(

ŷ
(1)
T+h|T , . . . , ŷ

(N)
T+h|T

)′
. We want to linearly combine these N forecasts using weights ωi, i = 1, . . . , N,

such that ω = (ω1, . . . , ωN )′ is a weight vector in the unit simplex in RN ,

W = {ω ∈ [0, 1]N :
N∑
i=1

ωi = 1}. (11)

Model selection is the process of identifying which submodel is the best approximating model where

the practitioner applies weight 1 to a particular single model (ωi = 1) and weight 0 to all other

models. When many competing models are available for estimation, and without enough guidance from

theory, model averaging may represent a feasible alternative to model selection. Forecast combination

generalizes forecasting method when many competing forecasts are available from alternative models.
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2.1 Combination of forecasts

De�ne the average forecast estimator of yT+h|T as

ŷT+h|T (ω) = ω′ŷT+h|T =
N∑
i=1

ωiŷ
(i)
T+h|T =

N∑
i=1

ωih
′
TSiθ̂i = h′

T θ̂ (ω) , (12)

where

θ̂ (ω) =
N∑
i=1

ωiSiθ̂i. (13)

It follows that in approximating linear models, the combined forecast is the same as the forecast based

on the weighted average of the parameter estimates across di�erent models.

Some practitioners, who adopt the combination of forecasts approach, may choose optimally the

weight ω by using a statistical procedure having known properties. For instance, one may select the

forecast weights to minimize the asymptotic risk over the set of all possible forecast combinations.

Alternatively, among many other choices, the mean square forecast error (MSFE) or the Mallows

Model Averaging as in Hansen (2007, 2008) can be used to choose ω, resulting to a data-dependent

weight, which may be random, cf. Elliott and Timmermann (2016, ch.14). In Section 2.3, we discuss

the impact of using data-dependent weights on the variance of the averaging estimators θ̂ (ω) and

ŷT+h|T (ω) .

One of our goals in this paper is to measure the uncertainty of the average forecast estimator

de�ned in (12), for a given weight ω, whether optimal or not. In particular, we propose a bootstrap

based-approach to compute the variance of the average forecast estimator ŷT+h|T (ω) .

2.2 Assumptions

We need to put some structure on the problem. Following Hjort and Claeskens (2003), Elliott et

al. (2013), Hansen (2014), and the more recent work of Liu (2015), we examine the asymptotic

distribution of θ̂ (ω) and ŷT+h|T (ω) in a local asymptotic framework, where the parameters γ are in

a root-T neighborhood of 0. More speci�cally, we make the following assumption.

Assumption 1. γ = γT = δ/
√
T , where δ is an unknown constant vector.

Throughout, for a matrix A, A > 0 denotes A is positive de�nite. ∥A∥ = (trace (A′A))1/2 denotes

the Euclidean norm. C represents a generic �nite constant. We also impose the following assumption:

Assumption 2.

(a) {(h′
t, et+h)} is a strictly stationary and ergodic time series with �nite r > 4 moments and

E (et+h|Ft) = 0, where Ft = σ (ht,ht−1, . . . ; et, et−1, . . .) .

(b) Q = lim
T→∞

E
(
T−1H′H

)
= lim

T→∞
E
(
T−1

∑T−h
t=1 (hth

′
t)
)
> 0.
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(c) Ω = lim
T→∞

V ar
(
T−1/2H′e

)
= lim

T→∞
1
T

∑T−h
s=1

∑T−h
t=1 E (hsh

′
tes+het+h) > 0.

Assumption 1 ensures that the AMSE of the averaging estimators θ̂ (ω) and ŷT+h|T (ω) remain

�nite. The O
(
1/
√
T
)
ensures that both squared model biases and estimator variances have the same

order O (1/T ) . The least squares estimator (given by (9)) for the submodel has omitted variable bias.

As we will see below (see equation (14)), by Assumption 1,
√
T
(
Siθ̂i − θ

)
does not diverge despite

the presence of the asymptotic bias.

Assumption 2 imposes moment conditions on {et+h}, {ht} and the score vector {htet+h}, and
assume that data are strictly stationary. Assumption 2(a) is identical to Assumption 3.2' of Liu and

Kuo (2016 cf. footnote 14). The latter is a modi�cation of Assumption 3.2 of Liu and Kuo (2016)

for h-step-ahead forecasting model. Assumption 2 is similar to Assumption R of Cheng and Hansen

(2014), see also Assumption 5 of Djogbenou et al. (2015), and Assumption 5 of Gonçalves and Perron

(2014). Assumption 2(a) implies that et+h is conditionally unpredictable at time t. As discussed by

Cheng and Hansen (2014), when h > 1, it implies that et+h can be serially correlated. This is in line

with the fact that for h-step-ahead forecasting model, the error et+h typically follows a moving average

process of order h−1 (see e.g., Brown and Maital (1981) and Diebold, 2007, pp. 256-257). Assumption

2 is su�cient to imply that Q̂T = T−1H′H
p→ Q and T−1/2H′e

d→ R ∼ N(0(p+q)×1,Ω).

Before stating the next results, it is convenient to introduce some more notations, which also will

be needed later. We de�ne

Pi = plim
T→∞

Pi,T where Pi,T = Si

(
S′
iQ̂TSi

)−1
S′
i, and S0 =

(
0p×q

Iq

)
.

We further let Ω̂T a HAC estimator of Ω (see e.g., (70)).

2.3 Asymptotic results

In this section we discuss the asymptotic distribution of averaging estimator with both �xed weights

and data-dependent weights. Following the proof of Theorem 1 of Liu and Kuo (2016 cf. (A.1)), under

Assumptions 1 and 2, as T → ∞,

√
T
(
Siθ̂i − θ

)
d→ Aiδ +N(0(p+q)×1,Vii) = Aiδ +PiR ≡ Λi, (14)

where Ai=(PiQ− Ip+q)S0, and Vij ≡ Cov (Λi,Λj) = PiΩP′
j . Given (14), under Assumptions 1 and

2, as T → ∞, in the full model we have,

√
T
(
θ̂ − θ

)
d→ N(0(p+q)×1,Q

−1ΩQ−1) = Q−1R, (15)

implying that

δ̂ =
√
T γ̂

d→ Rδ = δ+S′
0Q

−1R ∼ N(δ,S′
0Q

−1ΩQ−1S0). (16)

Starting with the averaging estimator with �xed weights, given (13) and (14), it follows that under
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Assumptions 1 and 2, as T → ∞,

√
T
(
θ̂ (ω)− θ

)
d→ A (ω) δ +N(0(p+q)×1,V (ω)) =

N∑
i=1

ωiΛi ≡ Λ, (17)

where

A (ω) ≡
N∑
i=1

ωiAi,

and

V (ω) ≡ V(1) (ω) +V(2) (ω) =

N∑
i=1

ω2
iVii +

∑
i ̸=j

ωiωjVij . (18)

In (14), Aiδ is the asymptotic bias that arises in estimating θ in model i, whereas when we use

the weighted average of the parameter estimates across the di�erent models θ̂ (ω) to estimate θ, the

asymptotic bias becomes A (ω) δ, as given in (17).

Remark 1. In general the asymptotic bias Aiδ is nonzero for all possible models except the full model

where all auxiliary regressors are included and such that qi = q, Π′
i = Iq, Si = Ip+q implying that

Pi = Q−1. As carefully explained in Liu (2015, p. 145), for the submodels, the asymptotic bias is

zero if the coe�cients of the auxiliary regressors are zero, i.e., γ = 0, or the auxiliary regressors are

uncorrelated, i.e., Q is a diagonal matrix. Hence, the magnitude of the asymptotic bias is determined

by the covariance matrix Q and the local parameter δ.

Note also that the decomposition of the variance given in (18) has two components: the �rst

component V(1) (w) is a weighted average of the variances of the estimated parameter from each model

and the second component V(2) (w) is a weighted average of their covariances. As is evident in (6) the

error e(i) from each model has a common component e, which drives the non-zero covariances across

models. Our aim in this paper is to use bootstrap approach to consistently estimate the asymptotic

variance of averaging estimators. As we show later, any valid bootstrap should mimic both components

of V (ω) , as well as the behavior of the regression residuals from the full model. We accomplish this

in Section 3.2.2.

Given (12) and (17), it follows that the AMSE of the averaging estimators θ̂ (ω) and ŷT+h|T (ω)

(based on �xed weights) are

AMSE
(
θ̂ (ω)

)
= A (ω) δδ′A′ (ω) +V (ω) , (19)

and

AMSE
(
ŷT+h|T (ω)

)
= h′

TA (ω) δδ′A′ (ω)hT +ΣyT+h|T , (20)

respectively, where ΣyT+h|T ≡ h′
TV (ω)hT . Thus, AMSE

(
θ̂ (ω)

)
and AMSE

(
ŷT+h|T (ω)

)
are both

function of the local parameter δ, which cannot be consistently estimated in the local asymptotic frame-

work. This implies that we cannot provide a consistent estimator of AMSE
(
θ̂ (ω)

)
and AMSE

(
ŷT+h|T (ω)

)
.
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In particular, the bootstrap estimate of AMSE
(
θ̂ (ω)

)
and AMSE

(
ŷT+h|T (ω)

)
will be inconsistent.

Although we cannot provide a consistent estimator of consistent estimator of the AMSE of the averaging

estimators, we may follow the extant literature and propose an (alternative) asymptotically unbiased

estimator. For this purpose, we let ÂT (ω) =
∑N

i=1 ωiÂi,T , where Âi,T =
(
Pi,T Q̂T − Ip+q

)
S0, and

then ÂT (ω)
P→ A (ω) under Assumption 2. Given (16), we can deduce that δ̂ is an asymptotically

unbiased estimator for δ. It also converges in distribution to a linear function of the normal random

vector R. Note that the mean of RδR
′
δ is δδ′ + S′

0Q
−1ΩQ−1S0, so

δ̂δ′ = δ̂δ̂
′
− S′

0Q̂
−1
T Ω̂T Q̂

−1
T S0 (21)

provides an asymptotically unbiased estimator for δδ′, see Claeskens and Hjort (2003) (cf. Section

3.1) and Liu (2015), for similar results. Hence, h′
T ÂT (ω) δ̂δ′Â′

T (ω)hT may be use as asymptotically

unbiased estimator of h′
TA (ω) δδ′A′ (ω)hT . Consequently, an asymptotically unbiased estimator of

AMSE
(
ŷT+h|T (ω)

)
is

ÂMSE
(
ŷT+h|T (ω)

)
= h′

T ÂT (ω) δ̂δ′Â′
T (ω)hT + Σ̂yT+h|T , (22)

where Σ̂yT+h|T is a consistent estimator of ΣyT+h|T . In Section 3, we demonstrate how bootstrap

methods may be used to consistently estimate ΣyT+h|T , and provide a detailed description of the

bootstrap procedures. For alternative asymptotically unbiased estimators of limiting risk of averaging

estimators, see, e.g., Claeskens and Hjort (2003), Hansen (2008), Cheng and Hansen (2015) and Liu

and Kuo (2016).

In this paper, we focus on the estimation of the part of the AMSE of the averaging estimators θ̂ (ω)

and ŷT+h|T (ω) which are consistently estimable, i.e., the asymptotic variances V (ω) and ΣyT+h|T ,

respectively. There is always a danger of producing inconsistent results by relying on non consistent

but asymptotically unbiased estimators. It is problematic to base inference on them, as there is no

guarantee � at any sample size � that they will be close to the true AMSE with probability approaching

one. In a related work, Chan and Pauwels (2018) show that the MSFE of optimally combined forecasts

is a biased estimate and may not be a reliable estimator of the true MSFE. They also show that a simple

comparison of MSFEs without further statistical testing, leads to a biased selection, with inconsistent

results.

Remark 2. In addition to the discussion in Remark 1, note that in many practical situations, the

bias e�ect for averaged forecasts can be reasonably assumed negligible. For example, forecasts from

short regressions or grossly misspeci�ed models (having usually severe bias) are trimmed from the set

of forecasts to be weighted. Furthermore, we may also have some bias cancellations from the pooled

forecast. As Hendry and Clements (2004) argued one would not expect to have the biases of the indi-

vidual forecasts ŷ
(i)
T+h|T on one side only, so in practice we typically have some bias cancellations, and

this will reduce the overall bias, see also Atiya (2020).

It is well-known that providing forecasts without specifying the levels of uncertainty associated with
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them amounts to nothing more than fortune telling. Unfortunately, there is no consensus on the choice

of the measure of uncertainty of the (averaging) forecasts. In particular, all models are approximations

so the issue of MSE versus variance must always be present. It is just that in the context of model

averaging, when we do combination, we are explicitly allowing for mis-speci�cation. Any time we

estimate a model there is bias. Con�dence intervals are therefore mis-centered.3 In this paper, we are

ignoring the bias and focusing on the variance.

The models chosen for the forecast combination often result in practice from model selection tests.

As in Claeskens and Hjort (2003), in the following, we assume that the weight is a smooth function of

the asymptotic distribution of δ̂ =
√
T γ̂, see (16)) where γ̂ is given in (7) and is the estimate from the

full model. Next, let ω
(
i|δ̂
)
denote a data-dependent weight function for the ith model. As for the

�xed weight case, we assume that for i = 1, . . . , N, the weights ω
(
i|δ̂
)
take the values in the interval

[0, 1] and the sum of the weights is required to be one. Given (14), and following the proof of Theorem

6 of Liu (2015), if ω
(
i|δ̂
)

d→ ω (i|Rδ) and Assumptions 1 and 2 hold, as T → ∞,

√
T
(
θ̂ (ω)− θ

)
=

N∑
i=1

ω
(
i|δ̂
)√

T
(
Siθ̂i − θ

)
d→

N∑
i=1

ω (i|Rδ) (Aiδ +PiR) ≡ R1 +R2. (23)

Hence, the asymptotic variance of the averaging estimator θ̂ (ω) (based on data-dependent weights) is

function of the local parameter δ.

Remark 3. We emphasize that in contrast to the �xed weights case, the asymptotic variance of av-

eraging estimators based on data-dependent weights is function of the local parameter δ. Under the

local-to-zero assumption, the local parameter δ cannot be consistently estimated. Thus we cannot pro-

vide a consistent estimator of the asymptotic variance of θ̂ (ω) and ŷT+h|T (ω) when the weights are

data-dependent. In particular, when the weights are data-dependent, in the local asymptotic framework,

we cannot rely on bootstrapping to provide a consistent estimate of the asymptotic variances of weighted

average estimators such as θ̂ (ω) and ŷT+h|T (ω). This negative result is related to the �nding in Hjort

and Claeskens (2003) (cf. Section 10.6) regarding the invalidity of bootstrapping method on averag-

ing estimators. In a drifting asymptotic framework using data-dependent weights (and likelihood-based

model), Hjort and Claeskens (2003) argued that bootstrapping does not work because the asymptotic

distribution of weighted average estimator is a function of the local parameter δ, and unfortunately, the

estimator δ̂ does not go to δ in probability.

Given the impossibility to consistently estimate the asymptotic variances of θ̂ (ω) and ŷT+h|T (ω)

based on data-dependent weights, in the local asymptotic framework, we are interested in establish-

ing valid bootstrap methods to compute the variances of θ̂ (ω) and the average forecast estimator

ŷT+h|T (ω) based on �xed (non-estimated) weights.

3As commented by an anonymous referee, �xing this issue is a major area of current research, and this unsolved issue
may never be solved to full satisfaction.

10



Notice that combination of forecasts based on �xed weights encompasses the equal-weighted (ωi =

1/N , i = 1, . . . , N,) forecast combinations. Empirical studies often �nd a surprising result that simple

equal-weighted forecast combinations perform very well compared with more sophisticated schemes

that rely on estimated combination weights. Stock and Watson (1999) �rst reported this �nding and

called it "forecast combination" puzzle. Theoretical research during last 20 years has identi�ed several

reasons: (i) The gains from data-based combination weights critically depend to the heteroskedasticity

and negative correlations in forecast errors between models; (ii) the space of variances/covariances for

which equal weight is optimal is much wider than identical variances and same pairwise correlations, (iii)

often bad models get weeded out, resulting in similar error variances and positive error covariances;

(iv) errors introduced by the estimation of weights could overwhelm any gain from using optimal

weights, and (iv) weights seldom stay the same and estimation of varying weights over the sample

introduces more sampling variability. See e.g., Smith and Wallis (2009), Genre et al. (2013), Elliott

and Timmermann (2016), Lahiri et al. (2017), and Claeskens et al. (2016).

3 Bootstrap inference in model averaging

In this section, we study two di�erent types of bootstrap methods in predictive regressions: the pair-

wise bootstrap and �xed-design residual-based bootstrap. As usual, we will denote with asterisks

quantities in the bootstrap world. Throughout this paper, P ∗ (E∗ and V ar∗) denotes the proba-

bility measure (expected value and variance) induced by the bootstrap resampling, conditional on

a realization of the original time series. In addition, for a sequence of bootstrap statistics Z∗
T , we

write Z∗
T = op∗ (1) in probability, or Z∗

T →P ∗
0, as n → ∞, in probability, if for any ε > 0, ι > 0,

limT→∞ P [P ∗ (|Z∗
T | > ι) > ε] = 0. Similarly, we write Z∗

T = Op∗ (1) as T → ∞, in probability if for

all ε > 0 there exists a Mε < ∞ such that limT→∞ P [P ∗ (|Z∗
T | > Mε) > ε] = 0. Finally, we write

Z∗
T →d∗ Z as T → ∞, in probability, if conditional on the sample, Z∗

T weakly converges to Z under

P ∗, for all samples contained in a set with probability P converging to one. We also let

ÃT (ω) ≡
N∑
i=1

ωiÃi,T , (24)

where

Ãi,T ≡
√
T

[
1

T
Pi,TH

′ −
(
H′H

)−1
H′
]
y. (25)

3.1 Standard pairwise bootstrap does not work

In this subsection, for simplicity, we restrict attention to the case of one-step forecasts (h = 1). Note

that when h = 1, under Assumption 2, et+h becomes a martingale di�erence sequence (m.d.s.), and,

as a result, the i.i.d. bootstrap method applied to the tuples
(
yt+h,h

′
t

)
is an appropriate method to

use. The PB was originally suggested by Freedman (1981) for cross-sectional models, see also Mammen

11



(1993). This method has been studied further (among others) by Gonçalves and Kilian (2004) in the

context of autoregression models with conditional heteroskedasticity. In our context, the standard

PB amounts to resampling with replacement from the set of {
(
yt+h,h

′
t

)
: t = 1, . . . , T − h}. Let

{
(
y∗t+h,h

∗′
t

)
: t = 1, . . . , T − h} be an i.i.d. resample from this set. Thus, in the PB, the dependent

variable y∗t+h and the independent variables h∗′
t are always selected in pairs. Note that in the ith

submodel, the PB selected regressors h
∗(i)′
t analog of h

(i)′
t is h

∗(i)′
t = S′

ih
∗
t . In matrix notation, we have

H∗
i = H∗Si, where H∗ =

(
h∗′
1 , . . . ,h

∗′
T−h

)′
. Hence, the PB OLS estimator in the ith submodel is

θ̂
∗PB
i =

(
H∗′

i H
∗
i

)−1
H∗′

i y
∗, (26)

where y∗=
(
y∗1+h, . . . , y

∗
T

)′
. The PB average estimator θ̂

∗PB
(ω) analog of θ̂ (ω) is given by

θ̂
∗PB

(ω) =
N∑
i=1

ωiSiθ̂
∗PB
i .

In general there is no closed-form expression for the PB variance of θ̂
∗PB

(ω) . For this reason, we

consider the following simple example to illustrate and pinpoint the failure of the PB method in the

context of model averaging. Throughout this section, suppose that we have N = 2 approximating

models: the full model and a submodel i, using p + qi regressors such that qi < q. Consequently,

the averaging estimator θ̂ (ω) = ωiSiθ̂i + (1− ωi) θ̂, where we use the weights ωi and 1 − ωi for the

submodel i and full model, respectively.

Denote

Ei,1,T = (T − h)−1
T−h∑
t=1

hth
′
t

(
z′t+h

(
Iq −Π′

iΠi

)
γ
)2

Ei,2,T = (T − h)−1
T−h∑
t=1

htz
′
t

(
Iq −Π′

iΠi

)
γ,

where (Iq −Π′
iΠi) is the selection matrix that chooses the omitted auxiliary regressors, and let

Ei,1 = plim
T→∞

Ei,1,T (27)

Ei,2 = plim
T→∞

Ei,2,T . (28)

Note that if qi = q, in the full model, Ei,1,T = Ei,2,T = 0(p+q)×1 (because Π′
i = Iq).

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Assume that ωi = 1. It follows that, as

T → ∞,

(a)
√
T
(
θ̂ (ω)− θ

)
d→ A (ω) δ +N(0(p+q)×1,V (ω))

where A (ω) = Ai, and

V (ω) = Vii. (29)
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(b) If in addition (27) and (28) hold, then the PB average estimator θ̂
∗PB

(ω) is such that

√
T
(
θ̂
∗PB

(ω)− θ̂
)
− ÃT (ω) →d∗ N(0(p+q)×1,V

∗PB (ω)),

in probability, where ÃT (ω) = Ãi,T and

V∗PB (ω) = V (ω) +PiEi,1P
′
i +PiEi,2E

′
i,2P

′
i. (30)

Remark 4. According to Theorem 3.1, the distribution of
√
T
(
θ̂ (ω)− θ

)
and its PB analog

√
T
(
θ̂
∗PB

(ω)− θ̂
)

are not close. Speci�cally, the asymptotic variance V∗ (ω) of the PB averaging estimator θ̂
∗PB

(ω) is

not equal to the asymptotic variance V (ω) of θ̂ (ω). The main problem is that alternative predictive

regressions su�er from omitted variables and hence do not generate valid estimates of the popula-

tion innovations in the encompassing model. A closer look on the proof of Theorem 3.1 shows that

V∗PB (ω) ̸= V (ω) because the PB errors e
∗(i)
t+h = y∗t+h−h

∗(i)′
t θ̂i fail to mimic the behavior of the regres-

sion residuals from the full model. Speci�cally, if the PB errors e
∗(i)
t+h were rather equal to y∗t+h − h∗′

t θ̂,

for all i = 1, . . . , N, then we will have V∗PB (ω) = V (ω) . Unfortunately, the PB errors e
∗(i)
t+h are not

resampled (in the PB procedure), but are instead obtained after the tuples
(
y∗t+h,h

∗(i)′
t

)
is resampled

from the set {
(
yt+h,h

(i)′
t

)
: t = 1, . . . , T − h}. As a consequence, we cannot modify the PB errors

e
∗(i)
t+h in order to guarantee its use to consistently estimate the variance of averaging estimator. Note

also that there is no reason to believe that the invalidity of the PB method for averaging estimators will

disappear in more complicated situations.

3.2 Residual-based bootstrap inference

The goal of this subsection is to introduce and discuss bootstrap schemes that resample residuals in

the model averaging context. Our proposed bootstrap methods resample the regression residuals 4{
ê
(i)
t+h

}
over time t = 1, . . . , T − h for each model i = 1, . . . , N . More speci�cally, we consider a

�xed-design residual-based bootstrap procedure which takes the regressors in the sample as �xed, and

apply an appropriate resampling method to the estimated residuals. The �xed-design (wild bootstrap)

was originally suggested by Kreiss (1997), Hansen (2000) used a �xed-regressor bootstrap approach in

the context of testing for structural change in regression models, whereas Gonçalves and Kilian (2004,

2007) studied �xed-design wild bootstrap for dynamic models (without model averaging).

The regression residuals are

ê
(i)
t+h = yt+h − h

(i)′
t θ̂i for i = 1, . . . , N, t = 1, . . . , T − h. (31)

Let
{
e
∗(i)
t+h, t = 1, . . . , T − h

}
denote a bootstrap sample from

{
ê
(i)
t+h, t = 1, . . . , T − h

}
. We con-

4See also the recent work of Gonçalves and Perron (2014) and Djogbenou et al. (2015), who consider residuals-
based bootstrap inference in factor-augmented regression context without model averaging; and the residual-based block
bootstrap approach studied by Paparoditis and Politis (2003) and Jentsch et al. (2015), in the context of unit root
testing and multivariate cointegrated processes, respectively.
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sider the following bootstrap DGP

y
∗(i)
t+h = x′

tβ̂ + z
(i)′
t γ̂i + e

∗(i)
t+h ≡ h

(i)′
t θ̂i + e

∗(i)
t+h, for i = 1, . . . , N, t = 1, . . . , T − h. (32)

Precise bootstrap schemes by which the bootstrap sample is generated are discussed in detail further

below. Note that we can equivalently write (32) as

y∗(i) = Hiθ̂i + e∗(i), (33)

where y∗(i)=
(
y
∗(i)
1+h, . . . , y

∗(i)
T

)′
and e∗(i)=

(
e
∗(i)
1+h, . . . , e

∗(i)
T

)′
. Next we re�t the model using the �ctitious

response variables, and retain the bootstrap regression parameter estimator θ̂
∗
i analog of θ̂i. In other

words, based on the bootstrap dataset
{(
y
∗(i)
t+h,h

(i)′
t

)
, t = 1, . . . , T − h

}
we compute θ̂

∗
i . In particular,

the bootstrap OLS estimator analog of θ̂i in the ith submodel is

θ̂
∗
i =

(
H′

iHi

)−1
H′

iy
∗(i). (34)

In the full model where all auxiliary regressors are included, the bootstrap OLS estimator analog of θ̂

is

θ̂
∗
=
(
H′H

)−1
H′y∗, with y∗ = Hθ̂ + e∗. (35)

where y∗=
(
y∗1+h, . . . , y

∗
T

)′
and e∗=

(
e∗1+h, . . . , e

∗
T

)′
. Note also that because the residual-based boot-

strap scheme used to generate y∗(i) is a �xed-design, we keep the regressors Hi �xed in the bootstrap

regressions. Next, we can similarly compute the bootstrap analog of ŷ
(i)
T+h|T given by (10) (i.e., the

least-squares forecast of yT+h|T in model i) as follows

ŷ
∗(i)
T+h|T = h

(i)′
T θ̂

∗
i . (36)

Hence, the bootstrap average forecast estimator ŷ∗T+h|T (ω) analog of ŷT+h|T (ω) is

ŷ∗T+h|T (ω) =
N∑
i=1

ωiŷ
∗(i)
T+h|T =

N∑
i=1

ωih
′
TSiθ̂

∗
i = h′

T θ̂
∗
(ω) , (37)

where

θ̂
∗
(ω) =

N∑
i=1

ωiSiθ̂
∗
i . (38)

It is useful to rewrite
√
T
(
θ̂
∗
(ω)− θ̂

)
as:

√
T
(
θ̂
∗
(ω)− θ̂

)
= ÃT (ω) +

N∑
i=1

ωiPi,T

(
1√
T
H′e∗(i)

)
, (39)

with ÃT (ω) given by (24) (for further details, see equation (A.7) in the appendix). Next, we let

V∗ (ω) = plim
T→∞

V∗
T (ω) where V∗

T (ω) ≡ V ar∗
[√

T
(
θ̂∗ (ω)− θ̂

)]
,
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and

V∗
ij,T ≡ Cov∗

[
Pi,T

(
1√
T
H′e∗(i)

)
,Pj,T

(
1√
T
H′e∗(j)

)]
. (40)

Given (39) and (40), it follows that the bootstrap variance V∗
T (ω) can be written as

V∗
T (ω) = V

∗(1)
T (ω) +V

∗(2)
T (ω) ≡

N∑
i=1

ω2
iV

∗
ii,T +

∑
i ̸=j

ωiωjV
∗
ij,T . (41)

3.2.1 Failure of standard �xed-design residual-based bootstrap

Let êt=
(
ê
(1)
t , . . . , ê

(N)
t

)′
denote an (N × 1)-vector of residuals at time t from (all) models i = 1, . . . , N.

As it is evident, we stack all residuals at time t into êt. Our goal in this subsection is to show

that standard (�xed-design) residual-based bootstrap, which resamples the whole vector of regression

residuals êt over t, fails to work in the context of model averaging. In particular, one cannot use

standard residual-based bootstrap methods that resample êt to compute a consistent estimator of

V (ω).

As in Section 3.1, here, for simplicity we assume that h = 1. In the following, we discuss the

resampling of êt over t, using two common bootstrap methods: the nonparametric i.i.d. bootstrap and

the wild bootstrap (WB). The nonparametric i.i.d. bootstrap was �rst proposed by Efron (1979). The

WB was originally developed by Wu (1986), Liu (1988) and Mammen (1993) in the context of static

linear regression models with (unconditionally) heteroskedastic errors. Gonçalves and Kilian (2004)

studied �xed-design and recursive-design WB for dynamic models, whereas Gonçalves and Kilian

(2004) consider �xed-design WB for AR(∞) processes.

It is well-known in the bootstrap literature that when dealing with a vector of correlated residuals

for a given time period one should not treat these residuals as mutually independent when resampling,

see e.g., Kilian and Lütkepohl (2017 cf. Ch 12) in the context of VAR models, among others. Sim-

ilarly, in the context of panel data models with presence of cross-sectional dependence, in order to

preserved cross-sectional dependence when resampling, Maddala and Wu (1999), Kapetanios (2008),

and Gonçalves (2011) to name few, suggested to resample cross-sectional units as wholes rather than

resampling within the units. See also the related works by Mark (1995), Rapach and Zhou (2013),

Gospodinov and Ng (2013), Brüggemann et al. (2016) and Montiel Olea and Plagborg-Moller (2020).

In our context, a "natural" way to preserve the contemporaneous correlation across model residuals

is to stack all residuals at time t into a vector and resample over t, i.e., resample the whole vector êt.

As we will see below, this approach which is valid in other contexts, fails to work in the context of

model averaging. The bootstrap sample from {êt+h, t = 1, . . . , T − h} is
{
e∗t+h, t = 1, . . . , T − h

}
where e∗t+h=

(
e
∗(1)
t+h , . . . , e

∗(N)
t+h

)′
. For the WB, we let

e∗t+h = êt+hυ
∗
t+h, t = 1, . . . , T − h, (42)

where υ∗t+h ∼i.i.d.(0, 1) across t and such that E∗ ∣∣υ∗t+h

∣∣2+ε
<∞, for some ε > 0.
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The i.i.d. bootstrap method applied on the vector êt+h of regression residuals generates at time

t+ h the bootstrap residuals as:

e∗t+h i.i.d. ∼
{
êt+h − ¯̂eT−h, t = 1, . . . , T − h

}
, (43)

where ¯̂eT−h = (T − h)−1∑T−h
t=1 êt+h. Note that resampling on the recentered residuals ensures that

E∗ (e∗t+h

)
= 0N×1.

In the following, we let

b̂
(i)
t = ê

(i)
t − êt, (44)

where ê
(i)
t = yt − h

(i)′
t θ̂i and êt = yt − h′

tθ̂. We can rewrite b̂
(i)
t as follows:

b̂
(i)
t = h′

t

[
Ip+q −Pi,T Q̂T

]
θ + h′

t

[
Q̂−1

T −Pi,T

]( 1

T
H′e

)
≡ b̂

(i)
t,1 + b̂

(i)
t,2. (45)

Notice that in the full model, we have b̂
(i)
t = 0. To present our results of invalidity of the WB and the

nonparametric i.i.d. bootstrap applied to the whole vector êt, as given in (42) and (43), respectively,

it is helpful to observe that we can also rewrite V∗
ij,T as follows

V∗
ij,T = Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hsh
′
tCov

∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)]
P′

j,T , (46)

(for further details, see equation (A.9) in the appendix). Next, note that for both methods: WB

and i.i.d. bootstrap, if s ̸= t, we have Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= 0 (since e

∗(i)
t+h is independent across t

conditionally on the observed time series), whereas if s = t, we have

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
=


(
êt + b̂

(i)
t

)
︸ ︷︷ ︸

=ê
(i)
t

(
êt + b̂

(j)
t

)
︸ ︷︷ ︸

=ê
(j)
t

if e∗t+h is obtained by (42)

cij,T , if e∗t+h is obtained by (43)

(47)

such that

cij,T = (T − h)−1
T−h∑
t=1

(
êt + b̂

(i)
t

)(
êt + b̂

(j)
t

)
−

(
(T − h)−1

T−h∑
t=1

(
êt + b̂

(i)
t

))(
(T − h)−1

T−h∑
t=1

(
êt + b̂

(j)
t

))
.

Denote

cij,1,T = (T − h)−1
T−h∑
t=1

ê2t

cij,2,T = (T − h)−1
T−h∑
t=1

b̂
(i)
t,1b̂

(j)
t,1

cij,3,T =

(
(T − h)−1

T−h∑
t=1

b̂
(i)
t,1

)(
(T − h)−1

T−h∑
t=1

b̂
(j)
t,1

)
,
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and

cij,1 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
ê2t
)]

cij,2 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
b̂
(i)
t,1b̂

(j)
t,1

)]

cij,3 = lim
T→∞

[
(T − h)−1

T−h∑
t=1

E
(
b̂
(i)
t,1

)][
(T − h)−1

T−h∑
t=1

E
(
b̂
(j)
t,1

)]
.

Theorem 3.2. Suppose that Assumptions 1 and 2 hold.

(a) If e∗t+h is obtained by (42), then we have

V∗
ij,T = Pi,T

T−1
T−h∑
t=1

hth
′
t

(
êt + b̂

(i)
t

)
︸ ︷︷ ︸

=ê
(i)
t

(
êt + b̂

(j)
t

)
︸ ︷︷ ︸

=ê
(j)
t

P′
j,T

= Pi,T

[
T−1

T−h∑
t=1

hth
′
tê

2
t

]
P′

j,T︸ ︷︷ ︸
→PPiΩP′

j=Vij

+ ṼWB

ij,T + op (1) ,

where

ṼWB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t,1b̂

(j)
t,1

]
P′

j,T .

If in addition plim
T→∞

ṼWB

ij,T = ṼWB
ij , then

V∗
T (ω) →P V (ω) + ṼWB (ω) ,

as T → ∞, where

ṼWB (ω) ≡
N∑
i=1

N∑
j=1

ωiωjṼ
WB

ij , (48)

with

ṼWB

ij = Pi lim
T→∞

[
T−1

T−h∑
t=1

E
[
hth

′
t

(
θ′
(
Ip+q − Q̂TP

′
i,T

)
hth

′
t

(
Ip+q −Pj,T Q̂T

)
θ
)]]

P′
j .

(b) If e∗t+h is obtained by (43), then we have

V∗
ij,T = cij,TPi,T Q̂TP

′
j,T

= cij,1,TPi,T Q̂TP
′
j,T︸ ︷︷ ︸

→P cij,1PiQP′
j

+ Ṽi.i.d.B

ij,T + op (1) ,

where

Ṽi.i.d.B

ij,T = (cij,2,T + cij,3,T )Pi,T Q̂TP
′
j,T .

17



If in addition plim
T→∞

Ṽi.i.d.B

ij,T = Ṽi.i.d.B
ij , then

V∗
T (ω) →P

N∑
i=1

N∑
j=1

ωiωjcij,1PiQP′
j + Ṽi.i.d.B (ω) ,

as T → ∞, where

Ṽi.i.d.B (ω) ≡
N∑
i=1

N∑
j=1

ωiωjṼ
i.i.d.B

ij , (49)

with

Ṽi.i.d.B

ij = (cij,2 + cij,3)PiQP′
j .

According to Theorem 3.2, one cannot use the standard residual-based bootstrap method to ap-

proximate the asymptotic covariance matrix of a combined estimators, more speci�cally, plim
T→∞

V∗
T (ω) ̸=

V (ω). The validity of any bootstrap method in the context of model averaging depends crucially on

the ability of the bootstrap to allow consistent estimation of the asymptotic covariance matrix V (ω) .

Standard residual-based bootstrap method which resample the whole vector of regression residuals êt

over t, fail to do so by not correctly mimicking the behavior of the regression residuals from the full

model.

Remark 5. The problem is not that the standard bootstrap method, which resamples the whole vector

of residuals over t, does not capture cross-sectional dependence of ê
(i)
t+h over i. Rather the main problem

is that it induces an additional term in the bootstrap variance (i.e., ṼWB
ij and Ṽi.i.d.B

ij for the WB and

the i.i.d. bootstrap, respectively), which should not be there. This additional term in the bootstrap

variance is present, even in the simple context without model averaging, where we consider only one

approximating model (N = 1), which is not the full model. Notice that in this latter simple case, the

vector êt+h boils down to ê
(i)
t+h, which contains regression residuals from the full model êt+h but also

the term b̂
(i)
t+h ̸= 0 (see (44)). As we pointed out for the failure of the PB, valid estimates of the

population innovations in the encompassing model are not generated, because submodels su�er from

omitted variables. Although Theorem 3.2 considers two special cases: the WB and the i.i.d. bootstrap

method that resample as in (42) and (43), respectively, the result extends to any bootstrap method that

resamples the vector êt over t.

As it is evident from Theorem 3.2, the term b̂
(i)
t+h (more precisely its component b̂

(i)
t+h,1 (de�ned in

(45))) drives the asymptotic behavior of the non-desirable additional term in the bootstrap variance.

Furthermore, notice that if the regression residuals were resampled from the full model, then b̂
(i)
t+h

would be identically zero, and consequently there will be no additional term in the bootstrap variance,

i.e., ṼWB
ij = 0 and Ṽi.i.d.B

ij = 0 for the WB and the i.i.d. bootstrap, respectively. Finally, note that

for the i.i.d. bootstrap even if the regression residuals were resampled from the full model, such that

we result with Ṽi.i.d.B
ij = 0, the asymptotic limit of the bootstrap variance estimator V∗

T (ω) would be
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∑N
i=1

∑N
j=1 ωiωjcij,1PiQP′

j , the latter is equal to the asymptotic variance V (ω) only when the error

term is assume to be i.i.d. and homoscedastic.

Given the failure of the standard PB and residual-based bootstrap, we are interested in establishing

valid bootstrap methods in this environment of combination of estimators.

3.2.2 Residual-based bootstrap approach for model averaging

Our proposed residual-based bootstrap approach consists of resampling the errors from the full model,

i.e., for i = 1, . . . , N, we obtain bootstrap residual sample
{
e
∗(i)
t+h, t = 1, . . . , T − h

}
from {êt+h, t = 1, . . . , T − h}

and, using these, building y
∗(i)
t+h keeping the regressors �xed. Below, B is the number of bootstrap repli-

cations (e.g., B = 999). The steps for obtaining an estimator of the variance of a weighted average of

parameter estimates across di�erent models and/or an estimator of the variance of a combined forecast

are as follows.

Algorithm 1. The residual-based bootstrap resampling in model averaging.

1. Fit the full model and retain the �tted values and the residuals {êt+h, t = 1, . . . , T − h}.
2. Generate the errors

{
e
∗(i)
t+h

}
according to the equation

e
∗(i)
t+h = e∗t+h, (50)

for i = 1, . . . , N, t = 1, . . . , T − h, where e∗t+h are the bootstrap residuals from the full model.

3. Formulate the bootstrap version of yt+h as in (32).

4. Compute θ̂
∗
i , ŷ

∗(i)
T+h|T , θ̂

∗ (ω) and ŷ∗T+h|T (ω) as given by (34) and (36), (38) (37), respectively.

5. Repeat steps 2, 3 and 4 B times, resulting in statistics:{
θ̂
∗1
(ω) , . . . , θ̂

∗B
(ω)
}

and/or
{
ŷ∗1T+h|T (ω) , . . . , ŷ∗BT+h|T (ω)

}
,

then store the values of θ̂∗b (ω) and ŷ∗bT+h|T (ω), b = 1, . . . , B.

6. As will be shown shortly, the bootstrap variance estimator V∗
T (ω) of the weighted average of

the parameter estimates across the di�erent models can be evaluated by simulation using

T
1

B

B∑
b=1

(
θ̂
∗b
(ω)− 1

B

B∑
b=1

θ̂
∗b
(ω)

)(
θ̂
∗b
(ω)− 1

B

B∑
b=1

θ̂
∗b
(ω)

)′

, (51)

where B = ∞ in theory. In practice, B = 999 tends to provide a reasonable approximation.

Similarly, the bootstrap variance estimator of the average forecast can be evaluated by simulation

V ar∗
(√

T ŷ∗T+h|T (ω)
)
= T

1

B

B∑
b=1

(
ŷ∗bT+h|T (ω)− 1

B

B∑
b=1

ŷ∗bT+h|T (ω)

)2

. (52)

Alternatively one can also use

V ar∗
(√

T ŷ∗T+h|T (ω)
)
= h′

TV ar
∗
(√

T θ̂
∗
(ω)
)
hT , (53)
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where V ar∗
(√

T θ̂
∗
(ω)
)
is computed by using (51).

Note that in Algorithm 1 (see (50)), we use the same bootstrap shocks, which is from the full

model for all the N approximating models. As a result, we can preserve the cross-sectional dependence

of e
(i)
t+h over i, and at the same time we mimic the behavior of the regression residuals from the full

model (avoiding the additional term in the bootstrap variance). The speci�c method of generating{
e∗t+h

}
will depend on the assumptions we make on regressors, errors and/or on the forecast horizon.

In practice (as in our empirical application), to compute the estimated residual from the full model

êt+h, one may consider the model within which all of the approximations models are nested. If such

a model does not exist (i.e., is not one of the approximation models i = 1, . . . , N), a comprehensive

model can be easily created by including all available regressors in it.

Given (39) and (50), if follows that

√
T
(
θ̂
∗
(ω)− θ̂

)
= ÃT (ω) +

N∑
i=1

ωiPi,T

(
1√
T
H′e∗

)
. (54)

Therefore,V∗
ij,T (as de�ned in (40)) can be written asV∗

ij,T = Pi,TΩ
∗
TP

′
j,T , whereΩ

∗
T ≡ V ar∗

(
T−1/2H′e∗

)
=

V ar∗
(
T−1/2

∑T−h
t=1 hte

∗
t+h

)
. Thus, conditional on the observed data, the dependence structure of the

scaled average of the bootstrap regression scores {hte
∗
t+h} dictates the consistency of the bootstrap

variance V∗
T (ω) toward the asymptotic variance V (ω) .

Next, we provide a set of high level conditions on {hte
∗
t+h} that will allow us to characterize the

bootstrap distribution of θ̂∗ (ω) .

Condition (A*): 1√
T
H′e∗

d∗→ N(0(p+q)×1,Ω
∗), in probability, such that Ω∗ > 0 with Ω∗ ≡

p lim
T→∞

Ω∗
T = Ω.

Condition (B*): For i, j = 1, . . . , N, V∗
ij ≡ plim

T→∞
V∗

ij,T = Vij .

Condition A* requires the bootstrap regression scores to obey a central limit theorem in the boot-

strap world. This condition is rather standard in bootstrapping model selection context. More specif-

ically, when we apply weight 1 to the full model and weight 0 to all other models, we have θ̂ (ω) = θ̂,

ÃT (ω) = 0(p+q)×1, and therefore in such a particular context, under Assumption 2, Condition A* is

su�cient to show the �rst-order asymptotic validity of the bootstrap, i.e.,

sup
x∈Rp+q

∣∣∣P ∗
(√

T
(
θ̂
∗
(ω)− θ̂

)
≤ x

)
− P

((√
T
(
θ̂ (ω)− θ

))
≤ x

)∣∣∣→P 0, (55)

as T → ∞.

Condition B* mimics the cross-sectional dependence of e
(i)
t+h over models i = 1, . . . , N. It is useful

to note that once Condition A* is satis�ed (in particular, when plim
T→∞

Ω∗
T = Ω), we only need to show

that Pi,T →P Pi (or Q̂T
p→ Q) to conclude that Condition B* holds.

Theorem 3.3. Let Assumptions 1 and 2 hold. Assume (32) where e
∗(i)
t+h is obtained by (50) for which
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Conditions A* and B* are satis�ed, then as T → ∞
√
T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω) →d∗ N(0(p+q)×1,V (ω)), (56)

in probability.

Theorem 3.3 implies that

sup
x∈Rp+q

∣∣∣P ∗
(√

T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω) ≤ x

)
− P

((√
T
(
θ̂ (ω)− θ

)
−A (ω) δ

)
≤ x

)∣∣∣→P 0, (57)

as T → ∞, thus justifying the use of the bootstrap distribution of
√
T
(
θ̂
∗
(ω)− θ̂

)
−ÃT (ω) as a con-

sistent estimator of the distribution of
√
T
(
θ̂ (ω)− θ

)
−A (ω) δ =

√
T
(
θ̂ (ω)−

(
θ+A (ω) δ/

√
T
))

.

In particular, the bootstrap can be used to construct percentile-type intervals for θ +A (ω) δ/
√
T . A

100 (1− α)% nominal level symmetric bootstrap percentile con�dence interval for θ +A (ω) δ/
√
T is

given by

θ̂ (ω)± T−1/2c∗1−α, (58)

where c∗1−α is such that P ∗
(∣∣∣√T (θ̂∗

(ω)− θ̂
)
− ÃT (ω)

∣∣∣ ≤ c∗1−α

)
= 1 − α. Unfortunately, our pa-

rameter of interest is θ and not θ + A (ω) δ/
√
T . As a result, we cannot rely on (57) to construct

bootstrap percentile con�dence interval for θ (unless if A (ω) δ/
√
T is negligible).

Remark 6. It is worth emphasizing that result in Theorem 3.3 does not imply that, as T → ∞,

sup
x∈Rp+q

∣∣∣P ∗
(√

T
(
θ̂
∗
(ω)− θ̂

)
≤ x

)
− P

((√
T
(
θ̂ (ω)− θ

))
≤ x

)∣∣∣→P 0,

in probability, one exception is when we apply weight 1 to the full model and weight 0 to all other models.

Hence, in general we cannot rely on the bootstrap distribution of
√
T
(
θ̂
∗
(ω)− θ̂

)
to consistently

estimate the distribution of
√
T
(
θ̂ (ω)− θ

)
. This negative result support the �ndings of Hjort and

Claeskens (2003) (cf. Section 10.6), who show (in the framework of local alternative) that bootstrapping

cannot be used to estimate the whole distribution of averaging estimators.

As discussed by Shao and Tu (1995) (pp 79), Gonçalves and White (2004) and lucidly pointed

out by Gonçalves et al. (2019), convergence in distribution of a random sequence does not imply

convergence of moments. Therefore, Theorem 3.3 does not by itself justify using the covariance matrix

of the bootstrap distribution of
√
T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω), given by

lim
B→∞

(1/B)
B∑
b=1

T
(
θ̂
∗(b)

(ω)− θ̂
∗
(ω)
)(

θ̂
∗(b)

(ω)− θ̂
∗
(ω)
)′
, (59)

where θ̂
∗
(ω) = (1/B)

∑B
b=1 θ̂

∗(b) (ω) with B the number of bootstrap replications, to consistently

estimate the asymptotic covariance matrix of θ̂ (ω). Nevertheless, given that

V ar∗
[√

T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω)

]
= V ar∗

[√
T
(
θ̂
∗
(ω)
)]
,
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and given Theorem 3.3, a su�cient condition for the consistency of the bootstrap covariance estimator

in (59) is that

{[√
T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω)

] [√
T
(
θ̂
∗
(ω)− θ̂

)
− ÃT (ω)

]′}
is uniformly integrable,

which is implied by the condition that

E∗
∣∣∣[√T (θ̂∗

(ω)− θ̂
)
− ÃT (ω)

]∣∣∣2+δ′

= Op (1) (60)

for some small δ′ > 0.

Next, note that in general, when the forecasting horizon h is such that h > 1, the residuals

e
(i)
t+h will be correlated and may follow a moving average process (see e.g., Brown and Maital (1981)

and Diebold, 2007, pp. 256-257). When the forecasting horizon is larger than one, and the error

term is correlated over t, it is well known in the bootstrap literature that one can capture time series

dependence nonparametrically by applying blockwise bootstrap methods. For instance, blocking-based

methods such as the MBB of Künsch(1989) and Liu and Singh (1992), the NBB of Carlstein (1986),

and the stationary bootstrap (SB) of Politis and Romano (1994), among others, are suitable under

these circumstances. Alternative to blocking-based bootstrap approaches are wild-based bootstrap

methods for dependent data, such as the DWB of Shao (2010), or the BEB method of Yeh (1998) and

Shao (2011), among others, can be used. In Sections 3.2.3 and 3.2.4, we discussed how to apply these

methods and generate e
∗(i)
t+h in step 2 of Algorithm 1.5

3.2.3 Blocking-based residual resampling

In the following let ℓ = ℓT ∈ N (1 ≤ ℓ < T − h) be a block length for a given block bootstrap. For

simplicity, we assume that (T − h) /ℓT = kT is an integer and denotes the number of blocks of size

ℓT one have to draw. Let {τt, t = 1, . . . , T − h} denote a sequence of random indices chosen by the

blocking bootstrap taking values on {1, . . . , T − h}. We consider the special case of the MBB and the

NBB schemes. For instance for the MBB

{τt, t = 1, . . . , T − h} ≡ {I1 + 1, . . . , I1 + ℓ, . . . , Ik + 1, . . . , Ik + ℓ} , (61)

where Ij , j = 1, . . . , k, are i.i.d. random variables distributed uniformly on {0, . . . , T − h− ℓ} . Note
that ℓ = 1 corresponds to the standard i.i.d. bootstrap. Similarly, for the NBB

{τt, t = 1, . . . , T − h} = {J1ℓ+ 1, . . . , J1ℓ+ ℓ, . . . , Jkℓ+ 1, . . . , Jkℓ+ ℓ} , (62)

where Jj are i.i.d. random variables distributed uniformly on {0, . . . , k − 1} .
In step 2 of Algorithm 1, with the MBB method, the bootstrap residuals are given by

ê
∗(i)
(j−1)ℓ+s+h = êτ(j−1)ℓ+s+h = êIj+s+h, (63)

for j = 1, . . . , k, s = 1, . . . , ℓ, i = 1, . . . , N, where Ij are i.i.d random variables distributed uniformly on

5As pointed out by a referee, an alternative to these bootstrap approaches would be to �whiten� the serially correlated
residuals before applying the bootstrap, taking advantage of the fact that residuals have an MA(h− 1) structure when
forecasting at the h-step ahead horizon. We leave a rigorous proof of the conjecture for future research.
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{0, . . . , T − h− ℓ} .6

Theorem 3.4. Suppose that a blocking-based residual resampling is used to generate bootstrap residual

samples
{
e
∗(i)
t+h

}
, such that in step 2 of Algorithm 1, for i = 1, . . . , N, t = 1, . . . , T−h, e∗(i)t+h are given by

(63). Let Assumptions 1 and 2 be true, and Σ−1
T = O (1) , where ΣT =

∑T−h
t=1

∑T−h
s=1 Cov (htet+h,hses+h).

If ℓT → ∞ such that ℓT = o
(
T 1/2

)
, as T → ∞, then the conclusions of Theorem 3.3 follow. If in

addition, for some δ′ > 0, λ2+δ′
max (Pi,T ) = Op (1), for all i = 1, . . . , N, where λmax (Pi,T ) denotes the

largest eigenvalue of Pi,T , then (60) holds.

Remark 7. It is well known that block-based bootstrap methods can accommodate a large class of de-

pendent heterogeneous data, see e.g., Gonçalves and White (2002). We conjecture that results similar

to Theorem 3.4 will continue to hold when the data are assumed to satisfy a near epoch dependent

(NED) condition, which allows for considerable heterogeneity, see e.g., Gonçalves and White (2005).

Speci�cally, for the case where data are assumed to satisfy a NED condition, once the (�xed-design)

residual-based bootstrap is �rst-order valid in the full model, then the veri�cation of the uniform inte-

grability condition (given by (60)) could be pursued along the same lines as for the stationary data in

Theorem 3.4. A formal treatment of dependent heterogeneous data is beyond the scope of the paper.

3.2.4 Dependent wild-based residual resampling

We now describe the second bootstrap procedure for dependent data that can also be used (in step 2

of Algorithm 1) to obtain an estimator of the variance of a weighted average of a parameter estimates

across di�erent models and/or an estimator of the variance of a combined forecast. We consider the

special case of the DWB and the BEB schemes. The DWB was proposed by Shao (2010) for smooth

function of the sample mean with time series observations.7 The DWB di�ers from the BEB by

smoothing the external draw across blocks. When specialized in our context, in step 2 of Algorithm 1,

we construct bootstrap residual samples as follows

e
∗(i)
t+h = êt+hη

∗
t+h, t = 1, . . . , T − h, (66)

6Similarly for the NBB method, in step 2 of Algorithm 1, the set of indices are formally given by (62). Thus the NBB
analog of (63) is given as follows

ê
∗(i)
(j−1)ℓ+s+h = êJj+s+h (64)

for j = 1, . . . , k, s = 1, . . . , ℓ, i = 1, . . . , N, where Jj are i.i.d random variables distributed uniformly on {0, . . . , k − 1} .
7The BEB method, which was �rst proposed by Yeh (1998) for a linear regression with �xed scalar regressor and

strong mixing errors has been analyzed in other contexts by Shao (2011), Smeekes and Urbain (2013) and Djogbenou et
al. (2015). The related wild block bootstrap method of Hounyo (2017) and Hounyo et al. (2017) can also be used as
well in step 2 of Algorithm 1. For instance, specializing to BEB in our context, in step 2 of Algorithm 1, �rst we form
non-overlapping blocks of size ℓ of consecutive residuals, then construct bootstrap residual samples as follows

e
∗(i)
(j−1)ℓ+s+h = ê(j−1)ℓ+s+hv

∗
j , (65)

with j = 1, . . . , k, s = 1, . . . , ℓ, where v∗j is an external random variable such that v∗j ∼i.i.d.(0, 1) across j = 1, . . . , k.
Then, the bootstrap residuals are obtained by multiplying each residual by an external random variable that is the same
for all observations within a block j.
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where η∗ =
(
η∗1+h, . . . , η

∗
T

)′
is a random vector with mean 0(T−h)×1 and covariance matrix K, with

typical element Kst = E∗ (η∗s · η∗t ) = kDWB

(
t−s
ℓT

)
, such that kDWB (·) is a kernel function and ℓT a

bandwidth parameter. Following Shao (2010), in this paper we assume that η∗ is ℓT -dependent. In

Section 5 we set η∗ = Kη, with η ∼ N (0, IT−h) . Then η∗t+h is a local weighted average of external

draws, thereby making the neighbouring observations time dependent.

In order to state our result for the DWB, we follow Djogbenou et al (2015) and require a slightly

stronger dependence and moment conditions than Assumption 2. Speci�cally, we impose:

Assumption 2':

(a) For some r > 2, {(h′
t, et+h)} is a fourth-order stationary strong mixing sequence of size − 3r

r−2 and

E (et+h|Ft) = 0, where Ft = σ (ht,ht−1, . . . ; et, et−1, . . .) ;E ∥ht∥4r < C and E ∥et+h∥4r < C.

The other parts of this assumption remain as before. Assumption 2' is analogous to the assumptions

made in Andrews (1991, Lemma 1) to prove consistency of the HAC estimator. We also follow Shao

(2010) and make the following restriction on the class of kernels.

Assumption 3. kDWB : R → [0, 1] is symmetric with compact support on [−1, 1] , kDWB (0) = 1,

lim
x→0

(1− kDWB (x)) / |x|q ̸= 0 for some q ∈ (0, 1] such that ψ (ξ) = 1
2π

∫ +∞
−∞ kDWB (x) exp (iξx) dx ≥ 0,

for all ξ ∈ R.

The condition ψ (ξ) ≥ 0 ensures that the matrix K is positive de�nite. These assumptions are

satis�ed by the Bartlett and Parzen kernels but not by the truncated, quadratic spectral and the

Tukey-Hanning kernels (see e.g., Andrews (1991) pp. 822-823). By imposing Assumptions 2' and 3,

we are able to build on results in Andrews (1991) and Shao (2010) when proving our result.

Theorem 3.5. Suppose that a dependent wild-based residual resampling is used to generate bootstrap

residual samples
{
e
∗(i)
t+h

}
, such that in step 2 of Algorithm 1, for i = 1, . . . , N, t = 1, . . . , T − h, e

∗(i)
t+h

are given by (66) with E∗ ∣∣η∗t+h

∣∣2r ≤ ∆ < ∞ for some r > 2. Under Assumptions 1, 2', and 3, if

lT → ∞ such that T−1
T ℓ2(r+1)/r → 0, as T → ∞, then the conclusions of Theorem 3.3 follow. If in

addition, for some δ′ > 0, λ2+δ′
max (Pi,T ) = Op (1), for all i = 1, . . . , N, where λmax (Pi,T ) denotes the

largest eigenvalue of Pi,T , then (60) holds.

This result is the DWB analog of Theorem 3.4.8 Both theorems allow us to use the two methods

to estimate the asymptotic variance of a combined estimator as stated in part 6 of Algorithm 1.

4 Monte Carlo simulations

In this section we assess the �nite sample properties of the bootstrap methods discussed in Section

3.2. The data-generating process is similar to the one used by Liu and Kuo (2016). Speci�cally, we

8For the NBB and BEB methods, similar results as in Theorems 3.4 and 3.5 hold, respectively.
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consider the linear regression model:

yt+h =

k∑
j=1

βjxjt + et+h, (67)

xjt = ρxxjt−1 + ujt for j ≥ 2, (68)

where xjt are AR(1) processes with ρx = 0.5 and 0.9 and we set x1t = 1 to be the intercept. We draw

(u2t, . . . , ukt)
′ from a joint normal distribution N (0,Qu) , where the diagonal elements of Qu are 1

and the o�-diagonal elements are ρu, such that ρu ∈ {0.25, 0.50, 0.75, 0.9}. To obtain the error term

et, we �rst generate an AR(1) process ϵt = 0.5ϵt−1 + εt, where εt ∼ N (0, 0.75) . Then the error term

is constructed by et = 3−1/2
(
1− ρ2x

)
x2ktϵt. We determined the regression coe�cients and the local

parameters as follows:

β =
c√
T

(
1,
k − 1

k
, . . . ,

1

k

)′
,

and

δj =
√
Tβj =

c (k − j + 1)

k
,

for j ≥ 2. The parameter c is selected to vary the population R2 = β̃
′
Qxβ̃/

(
1 + β̃

′
Qxβ̃

)
, where

β̃ = (β2, . . . , βk)
′ and Qx =

(
1− ρ2x

)
Qu. The population R2 is set to vary on a grid between 0.1

and 0.9. We set k = 5 and the sample size T = 200. We consider all possible models, and hence the

number of models is N = 32. We consider two forecasting horizons, h = 1 and h = 4. We use the

equal-weighted (ωi = 1/N , i = 1, . . . , N,) forecast combinations. In the simulations, we consider the

following four approaches to compute the variance of the combined forecast:

(i) standard bootstrap approach, that resamples the entire (N × 1)-vector of regression residuals

over time, (labelled standard); 9

(ii) our proposed approach, using the MBB to resample residuals (labelled MBB);

(iii) our proposed approach, using the DWB to resample residuals (labelled DWB);

(iv) a plug-in approach, based on a direct estimator of ΣyT+h|T , de�ned below and given by (69)

(labelled Plug-in).

For the plug-in approach, we compute Σ̂yT+h|T , a (consistent) plug-in estimator of the asymptotic

variance ΣyT+h|T , as follows

Σ̂yT+h|T = h′
T V̂T (ω)hT =

N∑
i=1

N∑
j=1

ωiωjV̂ij,T , (69)

where

V̂T (ω) =

N∑
i=1

N∑
j=1

ωiωjV̂ij,T , with V̂ij,T = Pi,T Ω̂TP
′
j,T ,

9For the standard approach, we use the DWB method to obtain bootstrap residuals. We have performed a similar
exercise using the standard PB. However, unreported simulations document only small numerical di�erences between the
standard residual-based bootstrap and the standard PB. The latter is excluded for brevity.
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Figure 1: MSE for heteroscedastic linear regression models (ρx = 0.5, h = 4).

such that

Ω̂T = T−1
T∑
t=1

ŝtŝ
′
t + T−1

ℓT∑
h=1

(
1− h

ℓT + 1

) T∑
t=h+1

(
ŝtŝ

′
t−h + ŝt−hŝ

′
t

)
, (70)

where ŝt+h = htêt+h. More speci�cally, in our simulations to compute Ω̂T , we use a HAC estimator

of Ω using a Bartlett kernel with bandwidth ℓT selected by the data-based rule from Andrews (1991).

For the DWB, we use the same bandwidth ℓT selected to compute Ω̂T . Similarly, to select the block

size, for the MBB, we rely on the asymptotic equivalence between the MBB and the Bartlett kernel

variance estimators, and then choose the block size equal to the bandwidth ℓT chosen by Andrews's
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Figure 2: MSE for heteroscedastic linear regression models (ρx = 0.9, h = 4).

automatic procedure for the Bartlett kernel.

We compare the (four) estimators of the asymptotic variance ΣyT+h|T by looking at their MSE over

1000 replications. We use 499 bootstrap replications.

We �rst compare the MSE when the AR(1) coe�cient of the predictor equal 0.5. The results are

presented in Figure 1, for h = 4. The results for h = 1 (not reported) are qualitatively similar to

those reported for h = 4. The standard bootstrap-based estimator has much larger MSE than other

estimators. In particular, our proposed procedures (MBB and DWB) outperform the standard boot-

strap approach. Although all three methods MBB, DWB and Plug-in are asymptotically equivalent,
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the estimator based on the MBB is quite robust to di�erent values of R2 and has much lower MSE

than those based on the DWB and the Plug-in approaches. In most cases, the Plug-in and the DWB

estimators have quite similar performance.

Figure 2 displays the corresponding results of Figure 1, but now with ρx = 0.9. Overall, results

presented in Figure 2, suggest that the ranking of estimators when ρx = 0.9 is qualitatively quite similar

to that for ρx = 0.5. However, for ρu = 0.50, 0.75, and 0.9, the Plug-in and the DWB estimators do

no longer have similar performance. The gains associated with the DWB method over the Plug-in

approach are now more distinguishable and can be quite substantial.

5 Empirical illustration

In this section we illustrate the desirability of using our bootstrapping approaches to compute the

variance of combined estimators. In particular, we follow Granger and Jeon (2004) and revisit the

empirical �ndings of Kozicki (1999) who investigated the usefulness of the Taylor rule recommendations

to policymakers based on combined estimates. Speci�cally, Kozicki (1999) estimated Taylor-types rules

for 24 combinations from reasonable variations in the alternative de�nitions of in�ation and output gap

with monthly data from 1983-1997. In their pioneering approach Granger and Jeon (2004) reported

estimates of the variance of the combined parameters using bootstrap technique. They reported that

the variance from their bootstrap based-approach were considerably smaller than that from simple

average over individual models.

We follow Kozicki (1999) and Granger and Jeon (2004) (cf. Section 8) and consider four in�ation

measures and six di�erent measures of the output gap (which amounts to 24 di�erent models). As the

in�ation measure, we use CPI in�ation, core CPI in�ation, GDP price in�ation, and expected in�ation

collected from the Survey of Professional Forcasters. For the output gap variable, we consider output

gap measures from the Congressional Budget O�ce (CBO), the International Monetary Fund (IMF),

the Organization for Economic Cooperation and Development (OECD), Standard and Poor (DRI), an

approximation of the de�nition of the output gap used by Taylor (Taylor), and a recursive version of

the Taylor method (Recursive). As emphasized by Kozicki (1999), these six alternative measures are

reasonable approximations to the de�nition of true output gap for use in a Taylor Rule equation.10

The precise de�nition of the variables and data sources can be found in Kozicki (1999). We estimate

the following equation for all 24 combinations from di�erent measure of in�ation and output gap:

rt = c+ (1 + α)πt−1 + βygt−1, (71)

where rt is the federal funds rate at time t, c is a constant, πt−1 and y
g
t−1 are the in�ation and output

gap at t− 1, respectively, cf. Granger and Jeon (2004).

10We thank Sharon Kozicki for guiding us in reconstructing her data set. Since DRI has merged with IHS (now called
IHS-Markit), we use the IHS-Markit output gap instead of the original DRI measure.
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Figure 3: Sample autocorrelation function of estimated residual.

We consider di�erent methods to compute

√
var

(∑N
i=1 ωiα̂i

)
and

√
var

(∑N
i=1 ωiβ̂i

)
, with ωi =

1
N , i = 1, . . . , N = 24. First, we implement the standard residual-based bootstrap approach, which

consists of stacking all residuals at time t into a vector, and then resample these cross-sectional vectors

of residuals over time. Thus, it is not valid in our present empirical context (of combined estimators)

as shown in Section 3.2.1. Second, we consider our proposed new procedure.

Figure 3 reveals that the residuals from our full model have signi�cant autocorrelation. Hence, a

simple i.i.d bootstrap or the WB may not be appropriate to capture the observed serial dependence

in the residuals. For our proposed resampling method, we consider MBB. We use B = 9999 bootstrap

replications. The choice of the block size for the MBB is important. As in the simulation study,

we consider the full model where we included all available regressors (a constant term, the above six

measures of in�ation and four measures of output gaps). Then, we use Andrews's (1991) automatic

procedure to compute a data-driven block size ℓ∗ to implement our proposed procedure. Table 1 reports

our results.

In the �rst two columns of Table 1, we report our replication of Kozicki's (1999) 24 individual

Taylor rule equations. These estimates are seen to be very similar to those reported in Granger and

Jeon (2004). We calculated the average values of the in�ation and output gap coe�cients to be 0.637

and 0.131, respectively. Granger and Jeon (2004) estimated these coe�cients to be 0.539 and 0.191,

respectively, and are close, given that we regenerated the original sample. Other estimates in Table

1 (see the two right hand side columns) are obtained using the MBB method as explained in Section

3.2.3.11 On average the selected data-driven block size for the MBB was ℓ∗ = 5. Based on our proposed

11For sake of brevity, we only report in Table 1 results based on MBB using Algorithm 1. Alternatively, note that in
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Table 1: Taylor rule: combined estimators from di�erent models, resampling based on the MBB.

Kozicki (1999) Moving Blocks Bootstrap
Output gap measure In�ation measure S.D.

In�ation Output In�ation Output

CBO CPI in�ation -0.004 0.023 0.081 0.046
CBO Core CPI in�ation 0.420 0.125 0.099 0.046
CBO GDP price in�ation 0.949 0.326 0.103 0.048
CBO Expected in�ation 1.197 0.328 0.098 0.047
OECD CPI in�ation 0.016 -0.066 0.081 0.044
OECD Core CPI in�ation 0.438 0.088 0.100 0.044
OECD GDP price in�ation 0.951 0.258 0.105 0.046
OECD Expected in�ation 1.278 0.326 0.101 0.046
IMF CPI in�ation -0.022 0.099 0.082 0.047
IMF Core CPI in�ation 0.419 0.193 0.099 0.047
IMF GDP price in�ation 0.942 0.377 0.102 0.049
IMF Expected in�ation 1.164 0.353 0.097 0.048
HIS CPI in�ation 0.050 -0.236 0.081 0.041
HIS Core CPI in�ation 0.375 -0.059 0.102 0.042
HIS GDP price in�ation 0.855 0.098 0.108 0.044
HIS Expected in�ation 1.307 0.246 0.106 0.045
Taylor CPI in�ation -0.005 0.016 0.082 0.042
Taylor Core CPI in�ation 0.396 0.083 0.099 0.042
Taylor GDP price in�ation 0.865 0.248 0.101 0.042
Taylor Expected in�ation 1.136 0.262 0.097 0.042
Recursive CPI in�ation 0.045 -0.166 0.081 0.033
Recursive Core CPI in�ation 0.382 -0.061 0.100 0.033
Recursive GDP price in�ation 0.863 0.091 0.107 0.035
Recursive Expected in�ation 1.263 0.184 0.104 0.036

Combined estimators
Simple average over 24 models 0.637 0.131 0.096 0.043
Not allowing cross-sectional dependence 0.021 0.012
Resampling vector of residuals as whole over time 0.376 0.169
Our proposed resampling approach 0.090 0.042

Notes: This table provides the estimated coe�cients and standard errors from the estimation of the
Taylor rule (see equation (71)) for all 24 combinations from di�erent measure of in�ation and output
gap. `Not allowing cross-sectional dependence' means resampling independently across models, but
allowing for serial correlation (by using the MBB to obtain bootstrap errors). `Resampling vector of
residuals as whole over time' is the standard residual-based bootstrap approach, which consists to stack
all residuals at time t into a vector, then resamples these cross-sectional vectors of residuals over time
as discussed in Section 3.2.1. We use 9999 bootstrap replications.
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resampling approach (using MBB), the estimated standard error of the combined coe�cients estimated

for in�ation and output are 0.090 and 0.042, respectively (see last row of Table 1). Granger and Jeon

(2004) obtained these values to be 0.045 and 0.021, respectively. Our estimates are signi�cantly (two

times) larger than those reported by Granger and Jeon (2004). The simple averages of the standard

errors of the two parameters over the 24 individual models are very close to those obtained using our

new proposed bootstrapping approach.

We also computed the standard errors of the combined coe�cients estimated (i.e.,
∑N

i=1 ωiα̂i (for

in�ation) and
∑N

i=1 ωiβ̂i (for output gap)) using an i.i.d. bootstrap procedure, resampling regression

residuals independently across models i = 1, . . . , N = 24 (not reported in Table 1). We found that they

are very close to those obtained by Granger and Jeon (2004), and were 0.045 and 0.020, respectively.

Hence, our replication results suggest that in Granger and Jeon (2004) the bootstrap procedure did

not take into account the dependence across models.

We also report the standard errors of the two coe�cients using a non-robust cross-sectional re-

sampling approach, which accommodates the serial correlation in the errors (by using the MBB) but

not the cross-sectional dependence between models (by resampling regression residuals independently

across models). Those estimates were found to be 0.021 and 0.012, respectively, and are signi�catively

less than those using our resampling approach. Thus, the primarily source of underestimation of the

standard errors is not due to the lack of adjustment for serial correlation but due to the failure of the

bootstrap procedure in Granger and Jeon (2004) to capture the cross-sectional dependence.

As expected, the standard bootstrap procedure which uses the MBB to resample the whole vector

of regression residuals over time, overestimates the standard error of the combined coe�cients quite

signi�cantly by inducing an additional term in the bootstrap variance of averaging estimators (as

explained in Section 3.2.1). These estimates were found to be 0.376 and 0.169, respectively.

In summary, these results suggest that a resampling approach which imposes independence across

models underestimates the standard error of the combined coe�cients quite signi�cantly by failing to

take into account the correlation between models. In contrast, the common residual-based bootstrap

approach which resamples the entire vector of regression residuals over time t, overestimates the stan-

dard error of the combined coe�cients. Our replication results also suggest that in Granger and Jeon

(2004) the bootstrap procedure did not take into account the dependence across models.

6 Conclusion

The aim of this paper has been to provide conditions under which a residual-based bootstrap method

can provide a consistent estimator of the asymptotic variance of a combined forecast and/or the asymp-

totic covariance matrix of a weighted average of a parameter estimates across di�erent models with �xed

weights. Our results show that the standard PB and standard �xed-design residual-based bootstrap

implementing step 2 of Algorithm 1, a number of resampling methods are available (e.g., NBB of Carlstein (1986), SB
of Politis and Romano (1994) or BEB method of Yeh (1998), among others).

31



are invalid in the context of model averaging. We propose and theoretically justify a residual-based

bootstrap resampling approach for model averaging in predictive regressions to estimate the variance

of a combined estimator. We discuss the application of this method when regression residuals are

resampled by either MBB of Künsch (1989) and Liu and Singh (1992), NBB of Carlstein (1986), DWB

of Shao (2010) and BEB method of Yeh (1998) and Shao (2011).

We illustrate our method using the bootstrap estimates of the Taylor rule parameters reported by

Granger and Jeon (2004), and show that underestimation of the sampling variability of the combined

estimator can be substantial if the cross-sectional dependence between the models is not properly

accounted for while resampling. On the other hand, we also show that in order to preserve the cross-

sectional dependence between models the common approach of resampling cross-sectional vectors over

time can lead to a substantial over estimation of the sampling variability of the combined estimator.

While the theory of this paper has focused on the context of linear predictive regressions, we believe

that our proposed approach can be extended to nonlinear regressions, as long as the speci�c bootstrap

scheme used to generate the common shocks is valid in the full model. However, such an extension is

not straightforward, and proving such a result will be an interesting research agenda. We leave this

for future research.
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A Appendix: Proofs

Proof of Theorem 3.1. Part (a) of Theorem 3.1 follows given (17) and the fact that ωi = 1. For

part (b) of Theorem 3.1, let

e
∗(i)
t+h = y∗t+h − h

∗(i)′
t θ̂i and ě

∗(i)
t+h = y∗t+h − h

∗(i)′
t θi, i = 1, . . . , N, t = 1, . . . , T − h, (A.1)

implying that

e
∗(i)
t+h = ě

∗(i)
t+h − h

∗(i)′
t

(
θ̂i − θi

)
. (A.2)

Using (26) and (7), we may write
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Next we show that T−1H∗′H∗ →P ∗
Q in probability. Note that T−1H∗′H∗ −Q may be written as
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Proof of Theorem 3.2 part (a). Given (33) and (34), note that we can decompose the bootstrap

OLS estimator for the ith submodel as

θ̂
∗
i − θ̂i =

(
H′

iHi

)−1
H′

ie
∗(i).
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Given that Hi = HSi, it follows that

√
TSi

(
θ̂
∗
i − θ̂i

)
= Pi,T

(
1√
T
H′e∗(i)

)
. (A.5)

√
T
(
Siθ̂

∗
i − θ̂

)
=

√
T

[
1

T
Pi,TH

′ −
(
H′H

)−1
H′
]
y︸ ︷︷ ︸

=Ãi,T

+Pi,T

(
1√
T
H′e∗(i)

)
. (A.6)

and

√
T
(
θ̂
∗
(ω)− θ̂

)
=

N∑
i=1

ωi

√
T
(
Siθ̂

∗
i − θ̂

)
=

N∑
i=1

ωiÃi,T︸ ︷︷ ︸
=ÃT (ω)

+
N∑
i=1

ωiPi,T

(
1√
T
H′e∗(i)

)
. (A.7)

Given (A.6), we can write

Cov∗
[√

T
(
Siθ̂

∗
i − θ̂

)
,
√
T
(
Sj θ̂

∗
j − θ̂

)]
= Cov∗

[
Ãi,T +Pi,T

(
1√
T
H′e∗(i)

)
, Ãj,T +Pj,T

(
1√
T
H′e∗(j)

)]
= Cov∗

[
Pi,T

(
1√
T
H′e∗(i)

)
,Pj,T

(
1√
T
H′e∗(j)

)]
= V∗

ij,T . (A.8)

Therefore, we have

V∗
ij,T = Pi,TCov

∗

[
1√
T

T−h∑
s=1

hse
∗(i)
s+h,

1√
T

T−h∑
t=1

hte
∗(j)
t+h

]
P′

j,T

= Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hsh
′
tCov

∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)]
P′

j,T . (A.9)

Next, remark that by de�nition

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= E∗

(
e
∗(i)
s+he

∗(j)
t+h

)
− E∗

(
e
∗(i)
s+h

)
E∗
(
e
∗(j)
t+h

)
.

Given (42), if s ̸= t, we have Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= 0 (since e

∗(i)
t+h is independent across t conditionally

on the observed time series), whereas if s = t, we have

Cov∗
(
e
∗(i)
s+h, e

∗(j)
t+h

)
= E∗

((
ê
(i)
t+hυ

∗
t+h

)(
ê
(j)
t+hυ

∗
t+h

))
− E∗

(
ê
(i)
t+hυ

∗
t+h

)
E∗
(
ê
(j)
t+hυ

∗
t+h

)
= ê

(i)
t+hê

(j)
t+h

[
E∗ (υ∗2t+h

)
− E∗ (υ∗t+h

)2]︸ ︷︷ ︸
=1

=
(
êt+h + b̂

(i)
t+h,1 + b̂

(i)
t+h,2

)(
êt+h + b̂

(j)
t+h,1 + b̂

(j)
t+h,2

)
= ê2t+h + b̂

(i)
t+h,1b̂

(j)
t+h,1

+êt+hb̂
(j)
t+h,1 + êt+hb̂

(j)
t+h,2 + b̂

(i)
t+h,1êt+h + b̂

(i)
t+h,1b̂

(j)
t+h,2 + b̂

(i)
t+h,2êt+h + b̂

(i)
t+h,2b̂

(j)
t+h,1 + b̂

(i)
t+h,2b̂

(j)
t+h,2,
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where the second equality uses the fact that V ar∗
(
υ∗t+h

)
= 1, and the third and fourth equalities

follows given (44) and (45), respectively. Thus, V∗
ij,T can be written as follows

V∗
ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
tê

2
t+h

]
P′

j,T + ṼWB

ij,T + V̌WB

ij,T , (A.10)

such that

ṼWB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,1b̂

(j)
t+h,1

]
P′

j,T ,

and

V̌WB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
têt+hb̂

(j)
t+h,1

]
P′

j,T +Pi,T

[
T−1

T−h∑
t=1

hth
′
têt+hb̂

(j)
t+h,2

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,1êt+h

]
P′

j,T +Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,1b̂

(j)
t+h,2

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,2êt+h

]
P′

j,T +Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,2b̂

(j)
t+h,1

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
tb̂

(i)
t+h,2b̂

(j)
t+h,2

]
P′

j,T .

The desired result follows given the de�nitions of b̂
(i)
t+h,1, b̂

(i)
t+h,2 (see (45)) and Assumptions 1 and 2.

More speci�cally, we can write

V̌WB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
têt+hh

′
t

(
Ip+q −Pj,T

(
1

T
H′H

))
θ

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
têt+hh

′
t

((
1

T
H′H

)−1

−Pj,T

)(
1

T
H′e

)]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
tθ

′
(
Ip+q −

(
1

T
H′H

)
P′

i,T

)
htêt+h

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
tθ

′
(
Ip+q −

(
1

T
H′H

)
P′

i,T

)
hth

′
t

((
1

T
H′H

)−1

−Pj,T

)(
1

T
H′e

)]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
t

((
1

T
H′e

)′
((

1

T
H′H

)−1

−P′
i,T

))
htêt+h

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
t

((
1

T
H′e

)′
((

1

T
H′H

)−1

−P′
i,T

))
hth

′
t

(
Ip+q −Pj,T

(
1

T
H′H

))
θ

]
P′

j,T

+Pi,T

[
T−1

T−h∑
t=1

hth
′
t

((
1

T
H′e

)′
((

1

T
H′H

)−1

−P′
i,T

))
hth

′
t

((
1

T
H′H

)−1

−Pj,T

)(
1

T
H′e

)]
P′

j,T

= op (1) .
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Similarly, ṼWB

ij,T can be written as

ṼWB

ij,T = Pi,T

[
T−1

T−h∑
t=1

hth
′
t

[
θ′
(
Ip+q −

(
1

T
H′H

)
P′

i,T

)
hth

′
t

(
Ip+q −Pj,T

(
1

T
H′H

))
θ

]]
P′

j,T .

Finally, result follows immediately by using (41), (A.10), and recalling that under our assumptions

p lim
T→∞

[
Pi,T

(
T−1

∑T−h
t=1 hth

′
tê

2
t

)
P′

j,T

]
= Vij , and p lim

T→∞
ṼWB

ij,T = ṼWB
ij .

Proof of Theorem 3.2 part (b). The proof for the i.i.d. bootstrap follows similarly the same

arguments provided in the proof of part (a) of Theorem 3.2.

Proof of Theorem 3.3. Given (54), to obtain the desired result, we need to show that (a)

Pi,T
p→ Pi, (b)

1√
T
H′e∗

d∗→ N(0(p+q)×1,Ω) in probability, and (c) V∗
ij,T

p→ Vij . Part (a) holds directly

under Assumption 2, because the selection matrix Si is not random with element either 0 or 1. Part

(b) follows under Condition A*, whereas part (c) holds under Condition B*.

Proof of Theorem 3.4. We proceed as follows: We �rst show the �rst part of Theorem 3.4, next

we verify condition (60). To show the �rst part of Theorem 3.4, we need to verify Conditions A* and

B*.

Starting with Condition A*, we use Theorem 3.1 of Fitzenberger (1998) by verifying his as-

sumptions. Given Assumption 2 and the additional condition in the statement of Theorem 3.4 i.e.,

Σ−1
T = O (1) , where ΣT =

∑T−h
t=1

∑T−h
s=1 Cov (htet+h,hses+h), Fitzenberger's (1998) Assumptions

(A1), (A2), (A3), (A4) and (A5) hold directly.

Condition B* follows by noting that by Condition A*, Ω∗
T = V ar∗

[
1√
T

∑T−h
t=1 hte

∗
t+h

]
p→ Ω, and

under Assumption 2 Pi,T
p→ Pi.

Finally, we verify condition (60). For this purpose, we need to introduce some additional notations.

In the following, for any matrix A, ∥A∥1 denotes the matrix norm de�ned by ∥A∥21 = maxx ̸=0
x′A′Ax

x′x .

Notice that for A symmetric, ∥A∥1 is equal to the largest eigenvalue of A, i.e., ∥A∥1 = λmax (A) .

For some small δ′ > 0, we can write

E∗
∣∣∣[√T (θ̂∗

(ω)− θ̂
)
− ÃT (ω)

]∣∣∣2+δ′

= E∗

∣∣∣∣∣
N∑
i=1

ωi

[√
T
(
Siθ̂

∗
i − θ̂

)
− Ãi,T

]∣∣∣∣∣
2+δ′

≤ N1+δ′
N∑
i=1

ω2+δ′

i E∗
∣∣∣[√T (Siθ̂

∗
i − θ̂

)
− Ãi,T

]∣∣∣2+δ′

= N1+δ′
N∑
i=1

ω2+δ′

i E∗

∣∣∣∣∣Pi,T

(
1√
T

T−h∑
t=1

hte
∗
t+h

)∣∣∣∣∣
2+δ′

≤ N1+δ′
N∑
i=1

ωi∥Pi,T ∥2+δ′

1︸ ︷︷ ︸
=λ2+δ′

max

T−(2+δ′)/2E∗

∣∣∣∣∣∣∣
T−h∑
t=1

hte
∗
t+h − E∗ (hte

∗
t+h

)︸ ︷︷ ︸
=0


∣∣∣∣∣∣∣
2+δ′

≡ C

N∑
i=1

Bi,
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where the �rst inequality uses the cr-inequality. The last inequality uses the fact that for any δ′ > 0,

and 0 ≤ ωi ≤ 1, we have 0 ≤ ω2+δ′

i ≤ ωi ≤ 1. Because N is �nite, it follows that to prove condition

(60), it su�ces to show that Bi= Op (1). Thus, we have

Bi ≤ ωiλ
2+δ′
max (Pi,T )T

−(2+δ′)/2E∗

∣∣∣∣∣
T−h∑
t=1

∣∣hte
∗
t+h − E∗ (hte

∗
t+h

)∣∣2∣∣∣∣∣
(2+δ′)/2

≤ ωiλ
2+δ′
max (Pi,T )T

−(2+δ′)/2E∗

∣∣∣∣∣∣
(

T−h∑
t=1

∣∣hte
∗
t+h − E∗ (hte

∗
t+h

)∣∣2+δ′
)2/(2+δ′)

(T − h)1−2/(2+δ′)

∣∣∣∣∣∣
(2+δ′)/2

= ωiλ
2+δ′
max (Pi,T )T

−(2+δ′)/2 (T − h)(2+δ′)/2−1
T−h∑
t=1

E∗ ∣∣hte
∗
t+h − E∗ (hte

∗
t+h

)∣∣2+δ′

≤ 22+δ′ωiλ
2+δ′
max (Pi,T )

(
T − h

T

)(2+δ′)/2

(T − h)−1
T−h∑
t=1

E∗ ∣∣hte
∗
t+h

∣∣2+δ′

= 22+δ′ωiλ
2+δ′
max (Pi,T )

(
T − h

T

)(2+δ′)/2

(T − h)−1
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗
∣∣∣e∗(j−1)ℓ+s+h

∣∣∣2+δ′

,(A.11)

where the �rst inequality uses the Burkholder's inequality, the second inequality follows by the Holder's

inequality, whereas the last inequality uses the cr-inequality.

Next, using the de�nitions of et+h and êt+h yields êt+h = et+h − h′
t+h

(
θ̂ − θ

)
. Note that we have

k∑
j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗
∣∣∣e∗(j−1)ℓ+s+h

∣∣∣2+δ′

=
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗ ∣∣êIj+s+h − E∗ (êIj+s+h

)∣∣2+δ′

≤ C
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗ ∣∣êIj+s+h

∣∣2+δ′

≤ C

k∑
j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗
∣∣∣eIj+s+h − h′

Ij+s+h

(
θ̂ − θ

)∣∣∣2+δ′

≤ C

 ∑k
j=1

∑ℓ
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗ ∣∣eIj+s+h

∣∣2+δ′

+
∑k

j=1

∑ℓ
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′
E∗
∣∣∣h′

Ij+s+h

(
θ̂ − θ

)∣∣∣2+δ′


≤ C

 ∑k
j=1

∑ℓ
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′ 1
T−h−ℓ+1

∑T−h−ℓ+1
g=1 |eg−1+s+h|2+δ′

+
∣∣∣√T (θ̂ − θ

)∣∣∣2+δ′∑k
j=1

∑ℓ
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′ 1
T−h−ℓ+1

∑T−h−ℓ+1
g=1 |hg−1+s+h|2+δ′

 .(A.12)

Given (A.11) and (A.12) and the fact that under our assumptions λ2+δ′
max (Pi,T )= Op (1) , to prove that

Bi= Op (1) , it su�ces that Bi,1= Op (1) and Bi,2= Op (1) such that

Bi,1 ≡
∣∣∣√T (θ̂ − θ

)∣∣∣2+δ′

(T − h)−1
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′ 1

T − h− ℓ+ 1

T−h−ℓ+1∑
g=1

|hg−1+s+h|2+δ′ ,
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and

Bi,2 ≡ (T − h)−1
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′ 1

T − h− ℓ+ 1

T−h−ℓ+1∑
g=1

|eg−1+s+h|2+δ′ .

For Bi,1, note that because
√
T
(
θ̂ − θ

)
converges in distribution, it follows that

∣∣∣√T (θ̂ − θ
)∣∣∣2+δ′

=

OP (1) . Thus, to prove that Bi,1= Op (1) , it su�ces to show that

Bi,1,1 ≡ (T − h)−1
k∑

j=1

ℓ∑
s=1

∣∣h(j−1)ℓ+s

∣∣2+δ′ 1

T − h− ℓ+ 1

T−h−ℓ+1∑
g=1

|hg−1+s+h|2+δ′ = Op (1) .

We have

E |Bi,1,1|

=
(T − h)−1

T − h− ℓ+ 1
E

∣∣∣∣∣∣
ℓ∑

s=1

k∑
j=1

|hg−1+s+h|2+δ′
T−h−ℓ+1∑

g=1

|hg−1+s+h|2+δ′

∣∣∣∣∣∣
≤ (T − h)−1

T − h− ℓ+ 1

ℓ∑
s=1

E

∣∣∣∣∣∣
k∑

j=1

|hg−1+s+h|2+δ′
T−h−ℓ+1∑

g=1

|hg−1+s+h|2+δ′

∣∣∣∣∣∣
≤ (T − h)−1

T − h− ℓ+ 1

ℓ∑
s=1

E
∣∣∣∣∣∣

k∑
j=1

|hg−1+s+h|2+δ′

∣∣∣∣∣∣
21/2E

∣∣∣∣∣∣
T−h−ℓ+1∑

g=1

|hg−1+s+h|2+δ′

∣∣∣∣∣∣
21/2

≤ (T − h)−1

T − h− ℓ+ 1

ℓ∑
s=1

T − h

ℓ

k∑
j=1

E |hg−1+s+h|2(2+δ′)

1/2(T − h− ℓ+ 1)
T−h−ℓ+1∑

g=1

E |hg−1+s+h|2(2+δ′)

1/2

=
(T − h)−1

(T − h− ℓ+ 1)1/2

(
T − h

ℓ

)1/2 ℓ∑
s=1

 k∑
j=1

E |hg−1+s+h|2(2+δ′)

1/2T−h−ℓ+1∑
g=1

E |hg−1+s+h|2(2+δ′)

1/2

≤ (T − h)−1

(T − h− ℓ+ 1)1/2

(
T − h

ℓ

)1/2
 ℓ∑
s=1

 k∑
j=1

E |hg−1+s+h|2(2+δ′)

1/2  ℓ∑
s=1

T−h−ℓ+1∑
g=1

E |hg−1+s+h|2(2+δ′)

1/2

=

[
1

T − h

T−h∑
t=1

E |ht|2(2+δ′)

]1/2  1

T − h− ℓ+ 1

T−h−ℓ+1∑
g=1

1

ℓ

ℓ∑
s=1

E |hg−1+s+h|2(2+δ′)

1/2

= O (1) .

Thus, by Markov's inequality, we have Bi,1,1 =Op (1) . For Bi,2, using the same arguments as for Bi,1,1,

we have

E |Bi,2| ≤

[
1

T − h

T−h∑
t=1

E |ht|2(2+δ′)

]1/2  1

T − h− ℓ+ 1

T−h−ℓ+1∑
g=1

1

ℓ

ℓ∑
s=1

E |eg−1+s+h|2(2+δ′)

1/2

= O (1) ,

This completes the proof.

Proof of Theorem 3.5. The strategy of the proof follows closely that of Theorem 3.4. However,
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we highlight the main di�erences. As in that proof, we �rst show the �rst part of Theorem 3.5, next

we verify condition (60). To show the �rst part of Theorem 3.5, we need to verify Conditions A* and

B*.

Starting with Condition A*, as in the proof of Theorem 3 of Djogbenou et al. (2015), we use

Theorem 3.1 of Shao (2010) by verifying his assumptions. In particular, under Assumption 2, {htet+h}
are strong mixing of size − 3r

r−2 for some r > 2 with E ∥htet+h∥2r < C, implying that
∑∞

j=1 α (j)
r

r+2 <

∞ verifying his Assumption 3.1. Next, by using Lemma 1 of Andrews (1991), we also have that∑∞
j=1 j

2α (j)
r−2
r <∞ and E ∥htet+h∥2r < C <∞, thus verifying his Assumption 3.2.

Condition B* follows by noting that by Condition A*, Ω∗
T = V ar∗

[
1√
T

∑T−h
t=1 htêt+hη

∗
t+h

]
p→ Ω,

and under Assumption 2 Pi,T
p→ Pi. Speci�cally, we have

V∗
ij,T = Pi,T

[
T−1

T−h∑
t=1

T−h∑
s=1

hth
′
sêt+hês+hkDWB

(
t− s

lT

)]
︸ ︷︷ ︸

=Ω∗
T=V ar∗

[
1√
T

∑T−h
t=1 htêt+hη

∗
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Finally we verify condition (60). Given (A.7), for some small δ′ > 0, we can write
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The last inequality uses the cr-inequality and the fact that for any δ′ > 0, and 0 ≤ ωi ≤ 1, we have

0 ≤ ω2+δ′

i ≤ ωi ≤ 1. Thus, it su�ces to show that Di,1 +Di,2 = Op (1) , since N is �nite. Note that

Di,1 = ωiλ
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.
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Then we have
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where the �rst inequality uses the Burholder's inequality, the second inequality follows by the Holder's

inequality, whereas the last inequality uses the cr-inequality. Because λ2+δ′
max (Pi,T )= OP (1) , and

given that under our assumptions we have E∗ |ηt+h|2+δ′ ≤ ∆ < ∞ for some δ′ > 0, to prove that

Di,1= Op (1) , it su�ces that E |Di,1,1|= O (1) where Di,1,1 = (T − h)−1∑T−h
t=1 |htet+h|2+δ′ . Thus, by

using the Cauchy-schartz inequality, we have
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For Di,2, note that
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Because
√
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)
converges in distribution, it follows that
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= OP (1) . In ad-

dition, λ2+δ′
max (Pi,T )= OP (1) under our assume conditions. Thus, to prove that Di,2 = OP (1) ,

it su�ces that E∗
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= OP (1) . To show this, observe that we can write

ht =
(
h1t, h2t, . . . , h(p+q)t

)′
. Then, we have

E∗

[
λ2+δ′
max

(
1

T

T−h∑
t=1

hth
′
tη

∗
t+h

)]
≤ E∗

∣∣∣∣∣tr
(

1

T

T−h∑
t=1

hth
′
tη

∗
t+h

)∣∣∣∣∣
2+δ′



≤ T−q
p+q∑
i=1

E∗


∣∣∣∣∣∣∣
T−h∑
t=1

h2itη∗t+h − E∗ (h2itη∗t+h

)︸ ︷︷ ︸
=0


∣∣∣∣∣∣∣
2+δ′




≤ T−q
p+q∑
i=1

E∗

∣∣∣∣∣
T−h∑
t=1

(
h2itη

∗
t+h − E∗ (h2itη∗t+h

))2∣∣∣∣∣
(2+δ′)/2

 ,
where the third inequality uses the Burholder's inequality. Next by using the Holder's inequality,
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follows by the cr-inequality. We obtain
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Given that under our assumptions we have E∗ ∣∣η∗t+h

∣∣2+δ′ ≤ ∆ <∞, it follows that

E

∣∣∣∣∣E∗

[
λ2+δ′
max

(
1

T

T−h∑
t=1

hth
′
tη

∗
t+h

)]∣∣∣∣∣ ≤ CT−(2+δ′)/2
p+q∑
i=1

(T − h)−1
T−h∑
t=1

E |hit|2(2+δ′)

= O
(
T−(2+δ′)/2

)
,

since (under Assumption 2)
∑p+q
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t=1 E |hit|2(2+δ′) = O (1) . This concludes the proof.
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