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Abstract

This paper develops likelihood-based methods for estimation, inference, model selection, and

forecasting of continuous-time integer-valued trawl processes. The full likelihood of integer-

valued trawl processes is, in general, highly intractable, motivating the use of composite likeli-

hood methods, where we consider the pairwise likelihood in lieu of the full likelihood. Maximiz-

ing the pairwise likelihood of the data yields an estimator of the parameter vector of the model,

and we prove consistency and asymptotic normality of this estimator. The same methods allow

us to develop probabilistic forecasting methods, which can be used to construct the predic-

tive distribution of integer-valued time series. In a simulation study, we document good finite

sample performance of the likelihood-based estimator and the associated model selection proce-

dure. Lastly, the methods are illustrated in an application to modelling and forecasting financial

bid-ask spread data, where we find that it is beneficial to carefully model both the marginal

distribution and the autocorrelation structure of the data. We argue that integer-valued trawl

processes are especially well-suited in such situations.
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1 Introduction

Count-valued time series are encountered in many fields, such as epidemiology (Wakefield, 2007;

Schmidt and Pereira, 2011; Pedeli et al., 2015), environmental studies (Livsey et al., 2018; Noven

et al., 2018), and finance (Fokianos et al., 2009, 2020; Barndorff-Nielsen et al., 2012; Pedeli and

Karlis, 2013; Shephard and Yang, 2017; Veraart, 2019). Developing methods for estimation and

inference for count-valued models is thus an important endeavour, and many approaches have been

suggested in the literature. For instance, Al-Osh and Alzaid (1987) proposes several methods for

estimating so-called first order integer-valued autoregressive (INAR(1)) models, while Pedeli et al.

(2015) suggest saddlepoint approximation methods for estimating INAR(p) models, and Fokianos

(2016) considers a GLM perspective on estimation. Recently, spectral estimation and indirect

inference have been pursued in Doukhan et al. (2020) and Davis et al. (2020), respectively, while

Doukhan et al. (2021) estimates Markov switching integer-valued ARCH models using maximum

likelihood methods. For extensive treatments of count-valued time series, we refer to Davis et al.

(2016) and Karlis (2016). A recent review is Davis et al. (2021).

In this paper, we develop likelihood-based methods for estimation, inference, model selection,

and forecasting of continuous-time integer-valued trawl (IVT) processes. IVT processes, intro-

duced in Barndorff-Nielsen et al. (2014), are a flexible class of integer-valued, serially correlated,

stationary, and infinitely divisible continuous-time stochastic processes. In general, however, IVT

processes are not Markovian, which implies that the structure of the full likelihood of an IVT

process is highly intractable (Shephard and Yang, 2016). This is the impetus of the present paper,

where we propose to use composite likelihood (CL, Lindsay, 1988) methods for estimation and

inference. Specifically, we propose to estimate the parameters of an IVT model by maximizing a

pseudo/quasi likelihood function constructed using only pairs of data points, the so-called pairwise

likelihood. CL methods in general, and the pairwise likelihood approach in particular, have been

succesfully used in many applications, such as statistical genetics (Larribe and Fearnhead, 2011),

geostatistics (Hjort and Omre, 1994), and finance (Engle et al., 2020). Although the theory behind

CL estimation is quite well understood in the case of iid observations (e.g. Cox and Reid, 2004;

Varin and Vidoni, 2005; Varin, 2008), the time series case, which is what we consider here, requires

separate treatment (Varin et al., 2011, p. 11).

A central feature of IVT processes is that they allow for specifying the correlation structure

of the model separately from the marginal distribution of the model, making them flexible and

well-suited for modelling count- or integer-valued data. In particular, the marginal distribution

of an IVT process can be any integer-valued infinitely divisible distribution, while the correlation

structure can be specified independently using a so-called trawl function. This setup allows for

both short- and long-memory of the IVT process. So far, IVT processes have been applied to

financial data (Barndorff-Nielsen et al., 2014; Shephard and Yang, 2017; Veraart, 2019) and to the

modelling of extreme events in environmental time series (Noven et al., 2018). IVT processes are,
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under weak conditions, stationary and ergodic, which motivated Barndorff-Nielsen et al. (2014) to

suggest a method of moments-based estimator for the parameters of the IVT model. This method

of moments estimator has been used in most applied work using IVT processes (e.g. Barndorff-

Nielsen et al., 2014; Shephard and Yang, 2017; Veraart, 2019). Exceptions are Shephard and

Yang (2016) and Noven et al. (2018). In Noven et al. (2018), a pairwise likelihood was used for

a hierarchical model involving a latent (Gamma-distributed) trawl process and the corresponding

asymptotic theory was derived in Courgeau and Veraart (2020). However, the asymptotic theory

for inference for integer-valued trawl processes which are observed directly, is not covered by these

earlier papers. In Shephard and Yang (2016), the authors derive a prediction decomposition of

the likelihood function of a particularly simple IVT process, the so-called Poisson-Exponential

IVT process, allowing them to conduct likelihood-based estimation and inference. Although the

likelihood estimation method developed in Shephard and Yang (2016) theoretically applies to more

general IVT processes, the computational burden quickly becomes overwhelming in these scenarios,

making estimation by classical maximum likelihood methods infeasible in practice.

The contributions of this paper can be summarized as follows. First, we prove consistency and

asymptotic normality of the maximum composite likelihood (MCL) estimator of the parameter

vector of an IVT model. For the purpose of conducting feasible inference and model selection, we

propose two alternative estimators of the asymptotic variance of the MCL estimator: a kernel-

based estimator, inspired by the heteroskedastic and autocorrelation consistent (HAC) estimator

of Newey and West (1987), and a simulation-based estimator. Second, we use the same princi-

ple of considering the pairwise likelihood in lieu of the full likelihood, to derive the predictive

distribution of an IVT model, conditional on the current value of the process; this allows us to

use the IVT framework for forecasting integer-valued data. In a simulation study, we compare

the MCL estimator to the standard method of moments-based estimator suggested in Barndorff-

Nielsen et al. (2014) and find that the MCL estimator provides substantial improvements in most

cases. Indeed, in a realistic simulation setup, we find that the MCL estimator can improve on

the method-of-moments-based estimator by more than 50%, in terms of finite sample root median

squared error.

We apply the methods developed in the paper to a time series of the bid-ask spread of a financial

asset. The time series behavior of the bid-ask spread has been extensively studied in the literature

on the theory of the microstructure of financial markets (e.g. Huang and Stoll, 1997; Bollen et al.,

2004). The model selection procedure developed in the paper indicates that a model with Negative

Binomial marginal distribution and slowly decaying autocorrelations most adequately describe the

data. These findings are in line with those of Groß-KlußMann and Hautsch (2013), who also

found strong persistence in bid-ask spread time series. Then, in a pseudo out-of-sample forecast

exercise, we find that it is important to carefully model both the marginal distribution and the

autocorrelation structure to get accurate forecasts of the future bid-ask spread. These findings

illustrate the strength of modelling using a framework where the choice of marginal distribution
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can be made independently of the choice of autocorrelation structure.

The rest of the paper is structured as follows. Section 2 outlines the mathematical setup of

IVT processes, while Section 3 contains details on the estimation and model selection procedures.

Section 4 presents the theory behind our proposed forecasting approach. Section 5 contains an

extensive Monte Carlo simulation study, investigating the finite sample properties of the estima-

tion and model selection procedures. Section 6 illustrates the use of the methods of this paper in

an empirical application to financial bid-ask spread data. Section 7 concludes. Practical details

on implementation of the asymptotic theory, and additional derivations are given in an appendix.

A Supplementary Material file, see Bennedsen et al. (2021), contains the proofs of the theoretical

results, further simulation results and extensive details on various calculations used in the im-

plementation of the methods. A software package for implementation of simulation, estimation,

inference, model selection, and forecasting of IVT processes is freely available in the MATLAB

programming language.1

2 Integer-valued trawl processes

Let (Ω,F ,P) denote a probability space, satisfying the usual assumptions and supporting a Poisson

random measure N , defined on Z× [0, 1]×R, with mean (intensity) measure η ⊗ Leb⊗ Leb. Here

Leb denotes the Lebesgue measure and η is a Lévy measure. That is,

E[N(dy, dx, ds)] = η(dy)dxds. (2.1)

We further assume that ‖η‖ :=
∫∞
−∞ yη(dy) <∞. A Lévy basis L can be constructed on [0, 1]× R

by defining

L(dx, ds) :=

∫ ∞
−∞

yN(dy, dx, ds), (x, s) ∈ [0, 1]× R.

Intuitively, for a Borel set B ∈ B([0, 1] × R), L(B) sums the number of events in B, weighted by

the “size” of an event, y; the events are distributed uniformly over “height” (x ∈ [0, 1]) and “time”

(s ∈ R), where the “size” of the events are distributed according to the measure η(y). Since we

are only interested in integer-valued Lévy bases, η is concentrated on the integers (y ∈ Z).

The Lévy basis L is an infinitely divisible random measure with cumulant (log-characteristic)

function

CL(dx,ds)(θ) := logE[exp(iθL(dx, ds))] =

∫ ∞
−∞

(
eiθy − 1

)
η(dy)dxds, (x, s) ∈ [0, 1]× R.

(2.2)

An important random variable associated with the Lévy basis L, is the so-called Lévy seed, L′.

1The software package can be found at https://github.com/mbennedsen/Likelihood-based-IVT.
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Definition 1 (Lévy seed). Let L be an integer-valued, homogeneous Lévy basis with cumulant

function given by (2.2). Then, the random variable L′ satisfying E[exp(iθL′)] = exp(CL′(θ)), with

CL′(θ) =
∫ (
eiθy − 1

)
η(dy), is called the Lévy seed associated with the Lévy basis L.

Remark 2.1. Because the distribution of a Lévy process is entirely determined by its distribution

at a particular time point, we can specify a Lévy process L′t from a Lévy seed L′, by requiring that

L′1 ∼ L′.

Using the Lévy seed, we can rewrite the cumulant function of the Lévy basis (2.2) as CL(dx,ds)(θ) =

CL′(θ)dxds, or, for a Borel set B ∈ B([0, 1]× R),

CL(B)(θ) = CL′(θ)Leb(B). (2.3)

From (2.3) we have that κj(L(B)) = κj(L
′)Leb(B), j ≥ 0, where κj(Z) denotes the j’th cumulant

of the random variable Z, when it exists.2 In particular

E[L(B)] = E[L′]Leb(B) and V ar(L(B)) = V ar(L′)Leb(B). (2.4)

The relationship (2.3) implies that the distribution of the random variable L(B) is entirely specified

by the Lévy seed L′ and the Lebesgue measure of the set B. In Section 2.1 below, we illustrate

how this can be used to construct trawl processes with a given marginal distribution.

The Lévy basis L acts on sets in B([0, 1]× R). We restrict attention to trawl sets of the form

At = A+ (0, t), A = {(x, s) : s ≤ 0, 0 ≤ x < d(s)}, t ≥ 0, (2.5)

where d : R− → [0, 1] is a trawl function, which determines the shape of the trawl set At. Section

2.2 elaborates on the assumptions we make on d. Intuitively, At is obtained from the set A by

“dragging” it along in time. Note in particular that Leb(At) = Leb(A) for all t. Finally, define the

integer-valued trawl (IVT) process X = (Xt)t≥0 as the Lévy basis evaluated over the trawl set:

Xt := L(At), t ≥ 0. (2.6)

The following sections illustrate how to use this setup as a flexible modelling tool. In particular,

we demonstrate how the marginal distribution (Section 2.1) and the correlation structure (Section

2.2) can be specified independently. Some specific examples are provided.

2.1 Modelling the marginal distribution

Let B ∈ B([0, 1]× R) be a Borel set which, in what follows, will often be a subset of the trawl set

At. We consider the distribution of the Lévy basis evaluated over the set B, i.e. of the random

variable L(B). From (2.3) we have that

CL(B)(θ) = Leb(B)CL′(θ) = CL′
Leb(B)

(θ),

2Recall that the cumulants κj(Z) of the random variable Z are defined implicitly through the power series

expansion of the cumulant function of Z, i.e., CZ(θ) = logE[exp(iθZ)] =
∑∞

j=1 κj(Z)(iθ)j/j!.
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where L′t is a Lévy process with L′1 ∼ L′. This implies that the distribution of the random variable

L(B) can be seen as those of the Lévy process L′t, induced by the Lévy seed L′, at time t = Leb(B),

see Remark 2.1. In particular, since Leb(At) = Leb(A) for all t, we have

CXt(θ) = CL(At)(θ) = Leb(A)CL′(θ) = CL′
Leb(A)

(θ),

where Xt is the IVT process defined in (2.6).

From this discussion it is clear that the marginal distribution of the IVT process Xt is entirely

decided by the Lebesgue measure of the trawl set A and the Lévy seed L′ of the underlying Lévy

basis L. Indeed, by specifying a distribution for L′, we can built IVT processes with the corre-

sponding marginal distribution. The following two examples illustrates how to do this; additional

details can be found in the Supplementary Material, where more examples are also given.

Example 2.1 (Poissonian Lévy seed). Let L′ ∼ Poisson(ν), i.e. L′ is distributed as a Poisson

random variable with intensity ν > 0. It follows from standard properties of the Poisson distribution

that Xt ∼ Poisson(νLeb(A)). In other words, for all t ≥ 0,

P (Xt = x) = (νLeb(A))xe−νLeb(A)/x!, x = 0, 1, 2, . . . .

Example 2.2 (Negative Binomial Lévy seed). Let L′ ∼ NB(m, p), i.e. L′ is distributed as a

Negative Binomial random variable with parameters m > 0 and p ∈ [0, 1]. It follows from standard

properties of the Negative Binomial distribution that Xt ∼ NB(mLeb(A), p). In other words, for

all t ≥ 0,

P (Xt = x) =
Γ(Leb(A)m+ x)

x!Γ(Leb(A)m)
(1− p)Leb(A)mpx, x = 0, 1, 2, . . . ,

where Γ(z) =
∫∞

0 yz−1e−ydy for z > 0 is the Γ-function.

2.2 Modelling the correlation structure

Recall that the shape of the trawl set At is determined by the trawl function d, see Equation (2.5).

We will restrict attention to a class of trawl functions with a particularly flexible structure, the

so-called superposition trawls (Barndorff-Nielsen et al., 2014; Shephard and Yang, 2017). They are

defined as

d(s) :=

∫ ∞
0

eλsπ(dλ), s ≤ 0,

where π is a probability measure on R+. This construction essentially randomizes the decay pa-

rameter λ in an otherwise exponential function. Given a trawl function d, it holds that

Leb(At) = Leb(A) =

∫ 0

−∞
d(s)ds. (2.7)
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It is also useful to note that for t ≥ s,

Leb(At ∩As) = Leb(At−s ∩A) =

∫ −(t−s)

−∞
d(s)ds, (2.8)

and

Leb(At \As) = Leb(As \At) = L(A)− Leb(At ∩As). (2.9)

Thus, given a trawl function d, it is straightforward to calculate Leb(A), Leb(At∩As), and L(At\As)
for all t ≥ s.

As we saw above, the Lévy seed, together with the Lebesgue measure of A, controls the marginal

distribution of the IVT process. Analogously, the trawl function d controls the autocorrelation

structure of the process. To see this, note that for t, s ≥ 0 (Barndorff-Nielsen et al., 2014),

Cov(L(At), L(As)) = V ar(L′)Leb(At ∩As) = V ar(L′)Leb(At−s ∩A).

The IVT process with a superposition trawl function is stationary, so using (2.4) we get the

correlation function for h > 0,

ρ(h) := Corr(L(At+h), L(At)) =
Leb(Ah ∩A)

Leb(A)
=

∫∞
h d(−s)ds∫∞
0 d(−s)ds

, (2.10)

from which it is evident how the trawl function d directly determines the correlation structure of

the trawl process. The following three examples illustrate this approach; additional details can be

found in the Supplementary Material, where more examples are also given.

Example 2.3 (Exponential trawl function). For the case where the measure π has an atom at

λ > 0, i.e. π(dx) = δλ(dx), where δx(·) is the Dirac delta function at x ∈ R+, we get d(s) = eλs for

s ≤ 0. Consequently, the correlation function of the IVT process with exponential trawl function

becomes

ρ(h) = Corr(Xt+h, Xt) =

∫∞
h d(−s)ds∫∞
0 d(−s)ds

= exp(−λh), h ≥ 0.

Example 2.4 (Inverse Gaussian trawl function). Letting π be given by the inverse Gaussian

distribution

π(dx) =
(γ/δ)1/2

2K1/2(δγ)
x−1/2 exp

(
−1

2
(δ2x−1 + γ2x)

)
dx,

where Kν(·) is the modified Bessel function of the third kind and γ, δ ≥ 0 with both not zero

simultaneously. It can be shown that the resulting trawl function is given by

d(s) =

(
1− 2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1− 2s

γ2

))
, s ≤ 0,
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and hence that the correlation function of the IVT process with inverse Gaussian trawl function

becomes

ρ(h) = Corr(Xt+h, Xt) = exp
(
−δγ(

√
1 + 2h/γ2)− 1

)
, h ≥ 0.

The details on these calculations can be found in the Supplementary Material.

Example 2.5 (Gamma trawl function). Let π have the Γ(1 +H,α) density,

π(dx) =
1

Γ(1 +H)
α1+HλHe−λαdx,

where α > 0 and H > 0. We can show that

d(s) =
(

1− s

α

)−(H+1)
, s ≤ 0,

which implies the correlation function

ρ(h) = Corr(Xt+h, Xt) =
Leb(Ah ∩A)

Leb(A)
=

(
1 +

h

α

)−H
.

Note that in this case∫ ∞
0

ρ(h)dh =

{
∞ if H ∈ (0, 1],
α

H−1 if H > 1,

from which we see that an IVT process with a Gamma trawl function enjoys the long memory

property, in the sense of a non-integrable autocorrelation function, when H ∈ (0, 1]. The details on

these calculations can be found in the Supplementary Material.

2.3 Modelling IVT processes

Using the above methods, we can build flexible continuous-time integer-valued processes with

a marginal distribution determined by the underlying Lévy basis, and independently specified

correlation structure determined by the trawl function. In our main examples given above, we

considered a Lévy basis with Poisson (Example 2.1) or Negative Binomial (Example 2.2) marginals,

and various trawl functions, namely the Exponential trawl function (Example 2.3), the IG trawl

function (Example 2.4), and the Gamma trawl function (Example 2.5). Other specifications for

the underlying Lévy basis and trawl function than those given here could of course be considered.

In practice, these choices should be guided by the properties of the data being modelled.

The simplest IVT process we can construct in this way is the Poisson-Exponential IVT process,

i.e., the the case where L′ ∼ Poisson(ν) and d(s) = exp(λs), s ≤ 0, see Examples 2.1 and 2.3. This

special case results in a Markovian process, which is not in general true of IVT processes (Barndorff-

Nielsen et al., 2014). In fact, the model is similar to the popular Poissonian INAR(1) model,

introduced in McKenzie (1985) and Al-Osh and Alzaid (1987). An illustration of the exponential

trawl set, At, dragged through time, together with a simulation of the resulting Poisson-Exponential

IVT trawl process Xt = L(At), is seen in Figure 1. The parameters used are λ = 1 and ν = 5. At

each time point t, the value of Xt (bottom plot) is the number of points inside the trawl set At

(top plot).
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Figure 1: Top: Simulation of a Poisson Lévy basis on R × [0, 1] (black dots) with an exponential

trawl set At (shaded) superimposed at three periods in time, t ∈ {0, 7, 8}. Bottom: The associated

trawl process Xt = L(At), given by the number of ‘points’ inside the trawl set At at time t. The

intensity of the Poisson random measure is ‖η‖ = η(1) = ν = 5 and the parameter controlling the

exponential trawl function, d(s) = exp(λs), is λ = 1.

3 Estimation of integer-valued trawl processes

Barndorff-Nielsen et al. (2014) showed that the parameter vector θ of an IVT process can be

consistently estimated using a generalized methods of moments (GMM) procedure. Since we will

compare our likelihood-based estimation approach with the method of moments approach, we

briefly review this latter approach in Appendix A. In Section 3.1, we develop our likelihood-based

approach to estimation of θ.

Both estimation procedures rely on the fact that the IVT process is stationary and mixing.

The mixing property of IVT processes obtains from results given in Fuchs and Stelzer (2013), see

Barndorff-Nielsen et al. (2014, p. 699). Although mixing in general is sufficient for the consistency

of the estimators, the central limit theorem for the likelihood-based estimator (Theorem 3.3 below)

relies on the size (or rate) of mixing. We therefore give these details for IVT processes in the

following Theorem 3.1. Before we state the result, we recall the definition of α-mixing for a

stationary process. Let F0
−∞ = σ(Xt; t ≤ 0) and, for m > 0, F∞m = σ(Xt; t ≥ m), and define the

numbers

αm := sup
G∈F0

−∞,H∈F∞m
|P(H ∩G)− P(H)P(G)|, m > 0.

The process X = (Xt)t∈R is α-mixing if αm → 0 as m → ∞. It is α-mixing of size −φ0 if

αm = O(m−φ), as m→∞, for some φ > φ0.
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Theorem 3.1. The IVT process X has αm = O(ρ(m)) as m → ∞, where ρ(m) is the autocorre-

lation function of X.

Remark 3.1. The autocorrelation functions of the Exponential (Example 2.3) and IG (Example

2.4) IVT models imply that these models are in fact α-mixing with an exponential decay rate. The

autocorrelation function of the Gamma (Example 2.5) IVT model implies that it is α-mixing of

size −(H − ε) for all ε > 0.

3.1 Estimation by composite likelihoods

Due to the non-Markovianity of the IVT process we face computational difficulties when attempting

to estimate the model by maximizing the likelihood of the observations: calculation of the full

likelihood is overwhelmingly unwieldy in any but the most simple cases (Shephard and Yang,

2016). For this reason, we here propose to use the CL method originally proposed in Lindsay

(1988). The main idea behind the CL approach is to specify a quasi-likelihood function which

captures the salient features of the data at hand; here this means capturing the features of the

Lévy basis, controlling the marginal distribution, and those of the trawl function, controlling the

dependence structure. We focus on the so-called pairwise CLs, i.e. we consider the likelihood of

the observations of the IVT process using pairs of data points.

3.1.1 Pairwise composite likelihood

Suppose we have n ∈ N observations of the IVT process X, x1, . . . , xn, on an equidistant grid of

size ∆ = T/n, for some T > 0. Define the following likelihood function using pairs of observations

k periods apart,

CL(k)(θ;x) :=
n−k∏
i=1

f(xi+k, xi; θ), k ≥ 1, (3.1)

where f(xi+k, xi; θ) is the joint probability mass function (PMF) of the observations xi and xi+k,

parametrized by the vector θ. From (3.1), we construct the composite likelihood function

LCL(θ;x) := L(K)
CL (θ;x) :=

K∏
k=1

CL(k)(θ;x) =
K∏
k=1

n−k∏
i=1

f(xi+k, xi; θ), (3.2)

where K ∈ N denotes the number of pairwise likelihoods to include in the calculation of the

composite likelihood function. The number K plays the same role as in the case of the GMM

estimator (A.1), and it should be chosen such that the salient features of the data are likely to be

captured. We give an example of how to select K in the empirical application in Section 6.

Remark 3.2. An alternative composite likelihood function can be constructed by noting that

f(x1, . . . , xn) = f(xn|xn−1, . . . , x1)f(xn−1|xn−2, . . . , x1) · · · f(x2|x1)f(x1).

10



In the Markovian case, this would simplify to

f(x1, . . . , xn) = f(xn|xn−1)f(xn−1|xn−2) · · · f(x2|x1)f(x1), (3.3)

Equation (3.3) can be viewed as an alternative composite likelihood function. When comparing

the performance of the two composite likelihood functions (in (3.2) and (3.3)), we obtained very

similar results. Hence we will only present the details for the pairwise likelihood function (3.2) in

the following.

Let Θ be a compact parameter space such that the true parameter vector, θ0, lies in the interior

of Θ. The maximum composite likelihood (MCL) estimator of θ is defined as

θ̂CL := arg max
θ∈Θ

lCL(θ;x), (3.4)

where lCL(θ;x) := logLCL(θ;x) is the log composite likelihood function.

To calculate the composite likelihood function LCL(θ;x), the individual pairwise PMFs, f(xi+h, xi; θ),

are required. To derive an expression for these PMFs, note that for two time points t, u ∈ R, the

random variables Xt and Xu can be decomposed as

Xt = L(At) = L(At\Au) + L(At ∩Au)

and

Xu = L(Au) = L(Au\At) + L(At ∩Au),

where the random variables L(At\Au), L(Au\At) and L(At ∩ Au) are independent. The indepen-

dence of the three random variables follows by the fact that the Lévy basis L is an independently

scattered random measure and that the sets At\Au, Au\At, and At ∩Au are disjoint. That is, two

arbitrary observations of the trawl process, Xt and Xu, can be decomposed into three independent

random variables, where one of them, L(At ∩ Au), is common between the two observations. Fig-

ure 2 illustrates this decomposition, where an exponential trawl (with λ = 1, see Example 2.3) is

plotted at the time points t = 4 and u = 3 and the sets A4\A3, A3\A4 and A3 ∩A4 are indicated.

From this discussion, it is immediately clear that the random variables Xt and Xu are independent,

conditional on the common part L(At ∩Au).

We can use these insights to derive expressions for the pairwise likelihoods f(xi+k, xi; θ) and in

Appendix C, we give an infinite sum representation of f(xi+k, xi; θ) which is valid in the general

integer-valued case. To avoid the practical problems introduced by the infinite sum, Appendix C

also presents a simulation-based alternative to estimating f(xi+k, xi; θ). Conversely, in the count-

valued case, which is our main focus below, the expression for f(xi+k, xi; θ) simplifies to a finite

sum, as shown in the next proposition. Letting Pθ(B) denote the probability of the event B given

parameters θ, we have the following.

11
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Figure 2: Decomposition of exponential trawl sets at time t = 4, u = 3 super-imposed on a Poisson

Lévy basis, with ν = 5, on R× [0, 1]. The exponential trawl parameter is set to λ = 1.

Proposition 3.1. Suppose the Lévy basis L is non-negative, i.e. η(y) = 0 for y < 0. The joint

PMF of two observations xi+k and xi is

f(xi+k, xi; θ) =

min{xi+k,xi}∑
c=0

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
. (3.5)

The probabilities Pθ(·) in (3.5) can be expressed as a function of the parameters of the Lévy

seed and the trawl function. Indeed, for a Borel set B ∈ B([0, 1]× R) we have

Pθ(L(B) = x) = Pθ(L′Leb(B) = x),

where L′t is a Lévy process with L′1 ∼ L′, and L′ being the Lévy seed associated to X, see Remark

2.1. Similarly, the Lebesgue measures of the sets A(i+k)∆ \Ai∆, Ai∆ \A(i+k)∆, and A(i+k)∆ ∩Ai∆
can be expressed via the parameters in the trawl function d using Equations (2.7)–(2.9). Indeed,

Leb(A(i+k)∆ ∩Ai∆) =

∫ −k∆

−∞
d(s)ds,

and

Leb(A(i+k)∆ \Ai∆) = Leb(Ai∆ \A(i+k)∆) = Leb(A)− Leb(A(i+k)∆ ∩Ai∆) =

∫ 0

−k∆
d(s)ds.

Plugging these into (3.5) we obtain the pairwise likelihoods, f(xi+k, xi; θ), and thus the CL function,

LCL(θ;x), as a function of θ. The following example illustrates this in the case of the Poisson-

Exponential IVT process. Many additional examples are collected in the Supplementary Material.

Example 3.1 (Poisson-Exponential IVT process). Let L′ ∼ Poisson(ν) and d(s) = exp(λs), s ≤ 0,

for some ν, λ > 0. Since L′ ∼ Poisson(ν) we have L(B) ∼ Poisson(Leb(B)ν) for Borel sets B and

hence

Pθ (L(B) = x) = (νLeb(B))xe−νLeb(B)/x!, x ≥ 0.

12



Further, it is not difficult to show that

Leb(A(i+k)∆ ∩Ai∆) = λ−1e−λk∆ and Leb(A(i+k)∆ \Ai∆) = λ−1(1− e−λk∆).

Using this, the probabilities in (3.5) can be expressed as a function of ν and λ and hence the

maximization (3.4) can be carried out using standard numerical methods.

3.1.2 Asymptotic theory

Because we are only considering dependencies across pairs of observations and not their dependence

with the remaining observations, the pairwise composite likelihood function (3.2) can be viewed as

a misspecified likelihood. Nonetheless, since the individual PMFs f(xi+k, xi; θ) in (3.2) are proper

bivariate PMFs, the composite score function ∂lCL(θ;x)/∂θ provides unbiased estimating equations

and, under certain regularity assumptions, the usual asymptotic results will apply (Cox and Reid,

2004). However, as pointed out in Varin et al. (2011), formally proving the results in the time

series case requires a more rigorous treatment. The following three theorems provide the details

on the asymptotic theory in the setup of this paper. Detailed mathematical proofs are available in

Section 2 of the Supplementary Material Bennedsen et al. (2021). First, we have a Law of Large

Numbers.

Theorem 3.2. Fix K ∈ N and let θ̂CL be given by (3.4) where Θ is a compact space and let the

true parameter vector satisfy θ0 ∈ int(Θ). Then

θ̂CL
P→ θ0, n→∞.

The mixing property of IVT processes, presented in Theorem 3.1, implies that the following

Central Limit Theorem also holds.

Theorem 3.3. Let the conditions from Theorem 3.2 hold and assume that the autocorrelation

function of the IVT process satisfies
∑∞

n=1 ρ(n) <∞. Then,

√
n(θ̂CL − θ0)

d→ N
(
0, G(θ0)−1

)
, n→∞,

where G(θ0) is the Godambe information matrix (Godambe, 1960) matrix with inverse

G(θ0)−1 = H(θ0)−1V (θ0)H(θ0)−1,

where

H(θ0) = −
K∑
k=1

E
[

∂2

∂θ′∂θ
log f(Xk∆, X0; θ)|θ=θ0

]
,

and

V (θ0) =

K∑
k=1

V ar

(
∂

∂θ
log f(Xk∆, X0; θ)|θ=θ0

)
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+ 2
K∑
k=1

K∑
k′=1

∞∑
i=1

Cov

(
∂

∂θ
log f(Xk∆, X0; θ)|θ=θ0 ,

∂

∂θ′
log f(X(i+k′)∆, Xi∆; θ)|θ=θ0

)
.

Further, the infinite sum in the expression for V (θ0) converges.

Theorem 3.3 implies that feasible inference can be conducted using an estimate of the inverse

of the Godambe information matrix

Ĝ(θ̂CL)−1 = Ĥ(θ̂CL)−1V̂ (θ̂CL)Ĥ(θ̂CL)−1,

where θ̂CL is the maximum composite likelihood estimate from (3.4). Note that while the straight-

forward estimator Ĥ(θ̂CL) = −n−1 ∂
∂θ∂θ′ lCL(θ̂CL;x) is consistent for H(θ) due to the stationarity

and ergodicity of the IVT process, V̂ (θ̂CL) is more difficult to obtain, since the obvious candidate

n−1 ∂
∂θ lCL(θ;x) ∂∂θ lCL(θ;x)′ vanishes at θ = θ̂CL, a fact also remarked in Varin and Vidoni (2005).

While it is possible to estimate V (θ0) using a Newey-West-type kernel estimator (Newey and West,

1987), we obtained more precise results using a simulation-based approach to estimating V (θ0).

The details of both approaches are provided in Appendix B.

The proof of Theorem 3.3 relies on the IVT process being mixing of size −φ0 for some φ0 > 1.

As shown in Theorem 3.1, this excludes IVT processes with very strong memory, e.g. those with

autocorrelation function adhering to ρ(h) = O(h−H) for H ∈ (0, 1]. As mentioned in Remark 3.1,

this is for instance the case for the Gamma trawl function (Example 2.5) with H ∈ (0, 1]. For these

processes, the convergence rate of the MCL estimator θ̂CL is slower than
√
n, as the following result

shows.

Theorem 3.4. Let the conditions from Theorem 3.2 hold and assume that the autocorrelation

function of the IVT process satisfies ρ(h) = L∞(h)h−H for some H ∈ (0, 1], where L∞ is a

function which is slowly varying at infinity, i.e. for all a > 0 it holds that limx→∞
L∞(ax)
L∞(x) = 1.

Then,

(i) For all ε > 0,

nH/2−ε(θ̂CL − θ0)
P→ 0, n→∞.

(ii) Let J = dim(θ0) be the dimension of θ0 and denote by θ̂CLi and θ0,i the i’th component of the

vectors θ̂CL and θ0, respectively. Then, for i = 1, 2, . . . , J ,

V ar
(
nH/2+ε(θ̂CLi − θ0,i)

)
→∞, n→∞.

Remark 3.3. Although the CLT in Theorem 3.3 excludes long memory processes, Theorem 3.4

implies that a CLT in the long memory case would have a convergence rate of nH/2 for some

H ∈ (0, 1]. Deriving such a CLT is beyond the scope of the present paper, but we note that related

asymptotic results have recently been obtained in Pakkanen et al. (2021), where a non-Gaussian
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limit is found. In that paper, the authors derive the asymptotic theory for partial sums of general

trawl processes and their Theorem 4 covers the case of integer-valued trawl processes. Based on

these findings, we conjecture (and simulation results, not reported here, seem to confirm) that

the composite likelihood estimator θ̂CL has a similar non-Gaussian limit in the long memory case.

Investigations of the precise details are left for future work.

3.1.3 Information criteria for model selection

Takeuchi’s Information Criterion (Takeuchi, 1976) is an information criterion, which can be used

for model selection in the case of misspecified likelihoods. Varin and Vidoni (2005) adapted the

ideas of Takuchi to the composite likelihood framework and provided arguments for using the

composite likelihood information criterion (CLAIC)

CLAIC = lLC(θ̂CL;x) + tr
{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
(3.6)

as a basis for model selection, where tr{M} is the trace of the matrix M . Specifically, Varin and

Vidoni (2005) suggest picking the model that maximizes CLAIC.

To gain some intuition for the CLAIC, let q be the dimension of the parameter vector θ, and

note that if instead of the composite likelihood function we had used the correct full likelihood

function, the information equality would imply that V H−1 = −Iq with Iq being the q × q identity

matrix. Consequently, in this case,

CLAIC = lCL(θ̂CL;x) + tr
{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
≈ lCL(θ̂CL;x)− q,

which is the well-known Akaike Information Criterion (AIC, Akaike, 1974). This also explains

the notation “CLAIC” for this criterion. Analogous to the usual Bayesian/Schwarz Information

Criterion (BIC, Schwarz, 1978), we also suggest the alternative composite likelihood information

criterion (Gao and Song, 2010)

CLBIC = lCL(θ̂CL;x) +
log(n)

2
tr
{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
, (3.7)

where n is the number of observations of the data series x. Note that the various models we

consider are generally non-nested, whereas most research on model selection using the composite

likelihood approach has considered nested model (Ng and Joe, 2014). An analysis of the properties

of CLAIC and CLBIC in the non-nested case in the spirit of, e.g., Vuong (1989) would be very

valuable but is beyond the scope of the present article.

4 Forecasting integer-valued trawl processes

Let Ft = σ((Xs)s≤t) be the sigma-algebra generated by the history of the IVT process X up until

time t and let h > 0 be a forecast horizon. The goal of this section is to use the information
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available at time t to forecast the future value Xt+h. The optimal forecast, in a mean-squared

error sense, is the conditional expectation of the future value, i.e. X̃t+h|t = E[Xt+h|Ft]. However,

it is clear that X̃t+h|t is not data coherent in the sense that it is, in general, not integer-valued

(Freeland and McCabe, 2004).

Consider instead a probabilistic forecasting approach, where the interest is in the distribution

of Xt+h|Ft. The advantages of this method are that it can easily generate data coherent point

forecasts, e.g. using the median or mode of the distribution, and it provides more information

(in the form of the entire predictive distribution) than a simple point forecast. However, since

the IVT process X is in general non-Markovian, the distribution of Xt+h|Ft is highly intractable.

This problem is similar to the one encountered when considering the likelihood of observations of

X, cf. Section 3.1. For this reason, we propose to approximate the distribution of Xt+h|Ft by

Xt+h|Xt, i.e. instead of conditioning on the full information set, we only condition on the most

recent observation. Thus, our proposed solution to the forecasting problem is akin to the proposed

solution to the problem of the intractability of the full likelihood. That is, instead of considering

the full distribution of Xt+h|Ft, we use the conditional “pairwise” distribution implied by Xt+h|Xt.

To fix ideas, let t ∈ R and h > 0, and consider the random variables Xt = L(At) = L(At ∩
At+h) +L(At \At+h) and Xt+h = L(At+h) = L(At ∩At+h) +L(At+h \At). The goal is to find the

conditional distribution of Xt+h given Xt. Using similar reasoning as that above, see e.g. Figure

2, it is evident that L(At ∩ At+h) and L(At+h \ At) are independent random variables. Further,

since L(At+h \ At) is independent of Xt with known distribution, we only need to determine

the distribution of L(At ∩ At+h) given Xt. The following lemma characterises the conditional

distribution of L(At ∩At+h).

Lemma 4.1. Let x ∈ N ∪ {0} and l ∈ {0, 1, . . . , x}, then

P (L(At ∩At+h) = l|Xt = x) =
P(L(At \At+h) = x− l)P(L(At ∩At+h) = l)

P(Xt = x)
.

The following examples give the details for our two main specifications for the marginal dis-

tribution of Xt, the Poisson distribution (Example 2.1) and the Negative Binomial distribution

(Example 2.2).

Example 4.1. In the case when L′ ∼ Poi(ν), we get the Binomial distribution:

L(At ∩At+h)|Xt ∼ Bin

(
Xt,

Leb(A0 ∩Ah)

Leb(A0)

)
.

Example 4.2. In the case when L′ ∼ NB(m, p), we get the following distribution:

P(L(At ∩At+h) = l|Xt = x)

=

(
x

l

)
Γ(Leb(A0 \Ah)m+ x− l)

Γ(Leb(A0 \Ah)m)

Γ(Leb(A0 ∩Ah)m+ l)

Γ(Leb(A0 ∩Ah)m)

Γ(Leb(A0)m)

Γ(Leb(A0)m+ x)
, x ≥ l ≥ 0,

where
(
x
l

)
= x!

l!(x−l)! is the binomial coefficient.
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Using Lemma 4.1, we can derive the distribution of Xt+h|Xt, which can be used for probabilistic

forecasting. The details for non-negative valued Lévy bases are given in the following proposition.

Proposition 4.1. Suppose the Lévy basis L is non-negative, i.e. η(y) = 0 for y < 0. Now

P(Xt+h = xt+h|Xt = xt) =

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c)P(L(At ∩At+h) = c|Xt = xt).

The following corollaries give the specific details for our two main specifications for the marginal

distribution of Xt, studied in Examples 4.1 and 4.2 above.

Corollary 4.1. If L′ ∼ Poi(ν), then

P(Xt+h = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

(νLeb(Ah \A0))xt+h−c

(xt+h − c)!
e−νLeb(Ah\A0)

(
xt
c

)(
Leb(Ah ∩A0)

Leb(A0)

)c(
1− Leb(Ah ∩A0)

Leb(A0)

)xt−c
.

Corollary 4.2. If L′ ∼ NB(m, p), then

P(Xt+h = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

(1− p)Leb(Ah\A0)mpxt+h−c
(
xt
c

)
1

(xt+h − c)!

· Γ(Leb(Ah \A0)m+ xt+h − c)
Γ(Leb(Ah \A0)m)

Γ(Leb(Ah \A0)m+ xt − c)
Γ(Leb(Ah \A0)m)

Γ(Leb(Ah ∩A0)m+ c)

Γ(Leb(Ah ∩A0)m)

Γ(Leb(A0)m)

Γ(Leb(A0)m+ xt)
.

If the parameters of an IVT process X with Poisson or Negative Binomial marginal distribution

are known, we can use Corollary 4.1 or 4.2, and the calculations for the Lebesgue measures of

the trawl sets given in Equations (2.7)–(2.9), for computing the predictive PMFs and thus for

forecasting. When the true parameter values are unknown, they can be estimated using the MCL

estimator suggested above, and plugged into the formulas to arrive at estimates of the predictive

PMFs.

5 Monte Carlo simulation experiments

In a simulation study, we examine the finite sample properties of the composite likelihood-based

estimation procedure of Section 3.1; the details are given in Section 5.1 below. We also conducted a

simulation study to assess the finite sample properties of the model selection procedure introduced

in Section 3.1.3; the results and details of this study are reported in the Supplementary Material.

The IVT framework is very flexible and there are many possible choices of data generating

processes (DGPs) to use in the simulation studies. Here, we will consider the six combinations

of the two marginal distributions, given in Examples 2.1 and 2.2, and three correlations struc-

tures, given in Examples 2.3, 2.4, and 2.5. In other words, we consider the Poisson-Exponential
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Table 1: Parameter values used in simulation studies
DGP ν m p λ δ γ H α

P-Exp 17.50 1.80

P-IG 17.50 1.80 0.80

P-Gamma 17.50 1.70 0.80

NB-Exp 7.50 0.70 1.80

NB-IG 7.50 0.70 1.80 0.80

NB-Gamma 7.50 0.70 1.70 0.80

Parameter values for the six different DGPs used in the simulation studies of Section 5. See Examples 2.1, 2.2, 2.3,

2.4, and 2.5 for details. The value ν = mp/(1− p) with m = 7.5 and p = 0.70 is chosen such that the first moment

of the Poisson and Negative Binomial Lévy bases are matched. Marginal distributions and autocorrelation functions

implied by these parameter values are shown in Figure 3.

(P-Exp), the Poisson-Inverse Gaussian (P-IG), the Poisson-Gamma (P-Gamma), the Negative

Binomial-Exponential (NB-Exp), the Negative Binomial-Inverse Gaussian (NB-IG), and the Neg-

ative Binomial-Gamma (NB-Gamma) IVT models. Note that the first model contains two free

parameters, the second, third, and fourth models three free parameters, and the fifth and sixth

models four free parameters. Since the Lévy bases considered here are non-negative-valued, we will

use Proposition 3.1 for calculation of the pairwise likelihoods.

The parameter values used in the simulation studies are given in Table 1 and the implied

marginal distributions and autocorrelation structures are shown in Figure 3. The figure illustrates

the difference between the six DGPs: those based on the Poisson Lévy basis have a more concen-

trated marginal distribution compared to those based on the Negative Binomial Lévy basis; those

based on the exponential trawl function have smaller degrees of autocorrelation (memory) than

those based on the Inverse Gaussian trawl function, and the Gamma trawl function can exhibit

still greater autocorrelation.

The choice of parameter values used in the simulation studies below and given in Table 1 are

based on the estimates obtained in the empirical study in Section 6. We have found the finite

sample properties of the methods proposed in this paper to be relatively robust to the exact choice

of parameter values; in the Supplementary Material we illustrate this, by performing simulation

studies similar to the ones presented here, but with different settings for the true parameter values.

5.1 Finite sample properties of the MCL estimator

Consider n equidistant observations of an IVT process on an equidistant grid of size 0.10, i.e.

X∆, X2∆, . . . , Xn∆ with ∆ = 0.10. We simulate 500 Monte Carlo replications of such time series

and in each iteration estimate the parameters of the model using the MCL approach of Equation

(3.4). For the IVT models based on the exponential trawl function (Example 2.3), we set K = 1,

while we set K = 10 for the remaining IVT models.3 In extensive simulation experiments (not

3Our analyses have shown that K = 1 will deliver good estimation results for the IVT models with exponential

trawl functions, but poor estimation results for the models with more other trawl functions. This is not surprising
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Figure 3: Marginal distributions of the Lévy bases and autocorrelations of the DGPs used in the

simulation studies of Section 5. The marginal distribution and autocorrelation structure of IVT

processes can be specified independently, resulting in six different DGPs in this setup (P-Exp, P-IG,

P-Gamma, NB-Exp, NB-IG, NB-Gamma). See Examples 2.1, 2.2, 2.3, 2.4, and 2.5 for details.

The parameter values used to produce the plots are given in Table 1.

reported here), we verified that the results are robust to the choice of K. In the Supplementary

Material (Tables S2–S7), we report the median, the median bias, and the root median squared error

(RMSE) of the estimator, calculated over the 500 Monte Carlo replications for various values of n.

The reason for reporting the median, instead of the mean, is that we found that when the number

of observations, n, is small, the estimation approach will occasionally result in large outliers in few

of the Monte Carlo runs, thus skewing the results (this was the case for both the MCL and GMM

estimators).

As mentioned, previous applied work using IVTs have mainly relied on the moment-based

estimator. We therefore compare the GMM estimation procedure, laid forth in Section A, with

the MCL estimator suggested in this paper. Figure 4 plots the RMSE of the MCL estimator

of a given parameter divided by the RMSE of the GMM estimator of the same parameter for

the six DGPs of Table 1. Thus, numbers smaller than one indicate that the MCL estimator has

lower RMSE than the GMM estimator and vice versa for numbers larger than one. We see that

for most parameters in most of the DGPs, the MCL estimator outperforms the GMM estimator

substantially; indeed, in many cases, the RMSE of the MCL estimator is around 50% that of the

GMM estimator. The exception seems to be the trawl parameters, i.e. the parameters controlling

the autocorrelation structure, in the case of the Gamma and IG trawls, where the GMM estimator

occasionally performs on par with the MCL estimator. However, in most cases, it appears that the

MCL estimator is able to provide large improvements over the GMM estimator.

since the correlation structure for an IVT model with an exponential trawl is very simple, while it is more complicated

for other IVT processes. The upshot is that choosing K = 1 is sufficient for the simple exponential trawl-based IVT

models, while it is necessary to choose K > 1 to obtain good results for IVT models constructed using other trawl

functions. This is analogous to the situation for the GMM estimator, where the estimator of the λ parameter in the

exponential trawl function has a closed-form solution using only the autocorrelation function calculated at the first

lag, cf. Appendix A.

19



0 2000 4000 6000 8000
0

0.5

1

1.5

2

0 2000 4000 6000 8000
0

0.5

1

1.5

2

m

p

0 2000 4000 6000 8000
0

0.5

1

1.5

2

0 2000 4000 6000 8000
0

0.5

1

1.5

2

m

p

0 2000 4000 6000 8000
0

0.5

1

1.5

2

H

0 2000 4000 6000 8000
0

0.5

1

1.5

2

m

p

H

Figure 4: Root median square error (RMSE) of the MCL estimator (3.4) divided by the RMSE of

the GMM estimator. The underlying IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table 1 for the values of the parameters used in the simulations. For the

Poisson-Exp and NB-Exp models we set K = 1 in (A.1) and (3.4); for the other models we set

K = 10.

6 Application to financial bid-ask spread data

In this section, we apply the IVT modelling framework to the bid-ask spread of equity prices.

The bid-ask spread has been extensively studied in the market microstructure literature, see, e.g.,

Huang and Stoll (1997) and Bollen et al. (2004). An application similar to the one studied in this

section was considered in Barndorff-Nielsen et al. (2014).

To illustrate the use of methods proposed in this paper, we study the time series of the bid-

ask spread, measured in U.S. dollar cents, of the Agilent Technologies Inc. stock (ticker: A) on

a single day, May 4, 2020. The A stock is traded on the New York Stock Exchange, which is

open from 9.30AM to 4PM. To avoid opening effects, we consider the data from 10:30AM to 4PM,
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i.e. we discard the first 60 minutes of the day. Our data is gathered from the Trade and Quote

database and cleaned using the approach proposed in Barndorff-Nielsen et al. (2009). The data is

available at a very high frequency but to obtain equidistant data, we sample the observations with

∆ = 1
12 minutes (i.e. 5 seconds) time steps, using the previous tick approach, starting at 10:30AM,

resulting in n = 3961 observations.

Let st be the bid-ask spread level at time t, the time series of which is displayed in the top

panel of Figure 5. Since the minimum spread level in the data is one tick (one dollar cent), we

work on this time series minus one, i.e on xt = st − 1. Based on visual inspection of the empirical

autocorrelation (for choosing the trawl function, i.e. for specifying the autocorrelation structure of

the model) and the histogram of the spread level (for choosing the Lévy basis, i.e. for specifying

the marginal distribution), Barndorff-Nielsen et al. (2014) chose the NB-IG IVT model for data

similar to those studied here. Using the methods proposed in this paper, we can now approach the

model selection with more rigour. We first inspect the empirical autocorrelation of the data (shown

in the right panels of Figure 5) which shows evidence of a very persistent process; we therefore set

K to a moderately large value to accurately capture the dependence structure of the data. Here,

we choose K = 10 but the results are robust to other choices. For instance, we experimented with

K = 20 with comparable results.

Using this setting, we calculated the maximized composite likelihood value, CL, and the two

information criteria, CLAIC and CLBIC, obtained for these data using the six models considered

in Section 5. The results are shown in Table 2. The table shows that the NB-Gamma model is the

preferred model on all three criteria, while the second-best model is the NB-IG model.

To further examine the fit of the various models, the bottom six rows of Figure 5 plots the

empirical autocorrelation (left; blue bars) and the empirical marginal distribution of the spread

level (right; blue bars). Each respective row also shows the fit of one of the six models considered

in Table 2; the parameter estimates corresponding to the models are given in Table 3. The fit of

the models shown in the bottom six panels of Figure 5 and the selection criteria of Table 2, indicate

that the models based on the Negative Binomial distribution are preferred to the models based on

the Poisson distribution. We conclude that, for this data series, the Poisson distribution is unable

to accurately describe the marginal distribution of the spread level sampled every 5 seconds. That

the Gamma and IG trawl functions are preferred to the Exponential trawl function indicates that

the Exponential autocorrelation function is not flexible enough to capture the correlation structure

of the data. By both visual inspection of the autocorrelations in Figure 5 and the selection criteria

of Table 2, we conclude that the NB-Gamma model is the preferred model for these data. As

shown in Table 3, this model has Ĥ = 1.70 (s.e. 0.74), implying that the model possesses a slowly

decaying autocorrelation structure, albeit not the long memory property.
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Table 2: Model selection results: bid-ask spread data

Model: Poisson-Exponential Poisson-IG Poisson-Gamma NB-Exponential NB-IG NB-Gamma

CL −244125.5 −242885.2 −242835.8 −216363.9 −216318.1 −216313.5
CLAIC −244125.7 −242899.1 −242855.8 −216364.0 −216318.5 −216313.9
CLBIC −244126.4 −242942.8 −242918.8 −216364.1 −216319.7 −216315.1

Composite likelihood and information criteria values for fitting the A bid-ask spread data on May 4, 2020, shown in

the top plot of Figure 5, calculated using six different models as given in the top row of the table using K = 10. The

maximum value for a given criteria (i.e. row-wise) is given in bold. The parameter estimates corresponding to the

fits are given in Table 3.

Table 3: Estimation results: bid-ask spread data

DGP ν m p λ δ γ H α

P-Exp 28.9319 4.0399

(0.6644) (0.0904)

P-IG 1444.9 0.0015 0.0000

(236.1378) (0.0336) (0.0013)

P-Gamma 98.1513 0.5491 0.0400

(7.5002) (0.0484) (0.0059)

NB-Exp 6.4273 0.6665 1.7835

(0.9324) (0.0215) (0.1349)

NB-IG 7.7104 0.6675 1.7816 0.8292

(1.0111) (0.0238) (0.4436) (0.2094)

NB-Gamma 7.7336 0.6675 1.7020 0.7897

(1.1316) (0.0260) (0.7365) (0.3363)

Parameter estimates (standard errors in parentheses) from the six different DGPs when applied to the bid-ask spread

data of A on May 4, 2020 using the MCL estimator with K = 10. The standard errors have been obtained using the

simulation-based approach to estimating the asymptotic covariance matrix of the MCL estimator, see Appendix B.

See Figure 5 for the resulting fits of the models to the empirical distribution and autocorrelation.
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Figure 5: Analysis of the A spread level on May 4, 2020. Top: The data (spread level in cents) from

10:30AM to 4:00PM sampled every 5 seconds. The vertical red line separates the initial in-sample

period (left) from the out-of-sampe period (right), used in the forecasting exercise in Section 6.1.

The bottom six rows show the empirical autocorrelation (left; blue bars) and the empirical marginal

distribution of the spread level (right; blue bars) together with the fits from the six IVT models

(red lines). The parameters of the models have been estimated using the MCL estimator (3.4) with

K = 10, see Table 3.

6.1 Forecasting the spread level

This section illustrates the use of IVT models for forecasting, as outlined in Section 4. The aim

is to forecast the future spread level of the A stock on May 4, i.e. the data studied above and

plotted in the top panel of Figure 5. We set aside the first n1 = 3221 observations as an “in-sample

period” for initial estimation of the parameters of the models, see the vertical red line in the top

panel of Figure 5 for the placement of this split. We then forecast the spread level from 5 seconds

until 100 seconds into the future, using the approach presented in Section 4. That is, we forecast
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xn1+1, xn1+2, . . . , xn1+20 given the current value xn1 . After this, we update the in-sample data set

with one additional observation so that this sample now contains n2 = n1 + 1 = 3222 observations.

Then we again forecast the next 20 observations, xn2+1, xn2+2, . . . , xn2+20, given xn2 . We repeat

this procedure until the end of the sample, which yields noos = n − n1 − 20 = 720 out-of-sample

forecasts for each forecast horizon. To ease the computational burden, we only re-estimate the

model every 24 periods (i.e. every 2 minutes).

To evaluate the forecasts, we consider four different loss metrics. The first two, the mean

absolute error (MAE) and the mean squared error (MSE), are often used in econometric forecasting

studies of real-valued data (e.g. Elliott and Timmermann, 2016). For a forecast horizon h =

1, 2, . . . , 20, define the mean absolute forecast error,

MAE(h) =
1

noos

n−(20−h)∑
i=n1+h

|xi − x̂i|i−h|,

where x̂i|i−h is the h-step ahead forecast of xi, constructed using the information available up

to observation i − h. That is, x̂i|i−h is the point forecast of xi coming from a particular IVT

model, such as the conditional mean, median, or mode. In what follows, we set x̂i|i−h equal to

the estimated conditional mode, i.e. x̂i|i−h = arg maxk P̂(Xi|i−h = k), where P̂ is the estimated

predictive PMF of the IVT model, see Section 4.4 Define also the mean squared forecast error

MSE(h) =
1

noos

n−(20−h)∑
i=n1+h

(xi − x̂i|i−h)2.

We consider two additional loss metrics, designed to directly evaluate the accuracy of the estimated

predictive PMF P̂, which is arguably more relevant to the problem at hand than MAE and MSE.

The first is the logarithmic score (Elliott and Timmermann, 2016, p. 30):

logS(h) =
1

noos

n−(20−h)∑
i=n1+h

− log P̂(Xi|i−h = xi),

where xi is the realized outcome. The second is the ranked probability score (RPS; Epstein, 1969):

RPS(h) =
1

noos

n−(20−h)∑
i=n1+h

M∑
k=0

(F̂i|i−h(k)− I{xi≤k})
2,

where F̂i|i−h(k) =
∑k

j=0 P̂(Xi|i−h = j) is the estimated cumulative distribution function of Xi|xi−h
coming from a given model and I{xi≤k} is the indicator function of the event {xi ≤ k}.

Figure S8 shows the four different forecast loss metrics for the preferred NB-Gamma IVT model

as a ratio of the forecasting loss of a benchmark model in the out-of-sample forecasting exercise de-

scribed above. The numbers plotted in the figure are Loss(h)NB−Gamma/Loss(h)benchmark, where

4We also experimented with specifying x̂i|i−h as the estimated conditional mean, and found similar results to

those reported below. These results can be found in Figures S6–S8 of the Supplementary Material file.
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“Loss” denotes one of the four loss metrics given above and h = 1, 2, . . . , 20 denotes the forecasting

horizon. Thus, numbers less than one favour the NB-Gamma model compared to the benchmark

model and vice versa for numbers greater than one. Initially, we choose the Poisson-Exponential

IVT process as benchmark model; as remarked above, this process is identical to the Poissonian

INAR(1) model, which is often used for forecasting count-valued data (e.g. Freeland and McCabe,

2004; McCabe and Martin, 2005; Silva et al., 2009). It is evident from Figure S8 that losses from

the NB-Gamma model are smaller than those from the benchmark model for almost all forecast

horizons and loss metrics, the only exception being the short forecast horizons in case of MSE loss.5

In the case of the the two most relevant loss functions for evaluating the predictive distribution,

the logS and RPS, the reduction in losses are substantial for all forecast horizon, on the order of

20%.
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Figure 6: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of

the NB-Gamma forecasting model, cf. Section 4, compared with the Poissonian INAR(1) model,

over noos = 720 out-of-sample forecasts. (The vertical red line in the top panel of Figure 5 denotes

the beginning of the out-of-sample period.) A circle above the bars indicates rejection null of equal

forecasting performance between the two models, against the alternative that the NB-IG model

provides superior forecasts, using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5%

level; an asterisk denotes rejection at a 1% level.

To assess whether these loss-differences are also statistically significant, we perform the Diebold-

Mariano test of superior predictive ability (Diebold and Mariano, 1995). The null hypothesis of the

statistical test is that the two models have equal predictive power, while the alternative hypothesis

is that the NB-Gamma model provides superior forecasts compared to the benchmark model. In

Figure S8, a circle (asterisk) denotes rejection of the Diebold-Mariano test at a 5% (1%) level.

5The poor relative MSE numbers of the NB-Gamma model for the short forecast horizon are caused by our choice

of using the conditional mode as a point forecast. Indeed, if we instead use the conditional mean as the point forecast,

the NB-Gamma model outperforms the benchmark model in terms of MSE also for the shorter forecast horizons

(Supplementary Material, Figure S6).
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Figure 7: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of

the NB-Gamma forecasting model, cf. Section 4, compared with the Poisson-Gamma model, over

noos = 720 out-of-sample forecasts. (The vertical red line in the top panel of Figure 5 denotes

the beginning of the out-of-sample period.) A circle above the bars indicates rejection null of equal

forecasting performance between the two models, against the alternative that the NB-IG model

provides superior forecasts, using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5%

level; an asterisk denotes rejection at a 1% level.
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Figure 8: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of

the NB-Gamma forecasting model, cf. Section 4, compared with the NB-Exponential model, over

noos = 720 out-of-sample forecasts. (The vertical red line in the top panel of Figure 5 denotes

the beginning of the out-of-sample period.) A circle above the bars indicates rejection null of equal

forecasting performance between the two models, against the alternative that the NB-IG model

provides superior forecasts, using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5%

level; an asterisk denotes rejection at a 1% level.
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The test rejects the null hypothesis of equal predictive ability for almost all forecast horizons and

loss metrics at a 1% level. These results indicate that there are potentially significant gains to be

had from using the IVT framework for forecasting count-valued data such as those studied in this

section.

To investigate whether the increased forecast performance of the NB-Gamma model comes

from having a more flexible marginal distribution than the Poissonian INAR(1) benchmark model

(Negative Binomial vs. Poisson marginals) or from having a more flexible correlation structure

(polynomial decay vs. exponential decay) or both, we compare the forecasts from NB-Gamma

model to those coming from a P-Gamma model and from a NB-Exp model. These results are

given in Figures S6 and S7, respectively. From Figure S6, we see that the NB-Gamma model

outperforms the P-Gamma model considerably, indicating that it is important to use a model

with Negative Binomial marginals when forecasting these data. Again, the exception is the short

forecast horizons in the case of MSE loss. From Figure S7, we see that for the shorter forecast

horizons, the NB-Exp model performs on par with the NB-Gamma model, but for the longer

forecast horizons, the NB-Gamma model is superior. Hence, when forecasting, it also appears to

be important to specify a model with an accurate autocorrelation structure, especially for longer

forecasting horizons.

7 Conclusion

This paper has developed likelihood-based methods for estimation, inference, model selection, and

forecasting of IVT processes. Since the full likelihood of IVT processes is intractable, we propose

to estimate the parameters of the model by maximizing the pairwise likelihood of the data. We

proved consistency and asymptotic normality of this MCL estimator and provided the details on

how to conduct feasible inference and model selection. We also developed a pairwise approach to

approximating the conditional predictive PMF of the IVT process, which can be used for forecasting

integer-valued data. All these methods are implemented in a freely available software package

written in the MATLAB programming language.

In a simulation exercise, we demonstrated the good properties of the MCL estimator com-

pared to the often-used method of moments-based estimator. Indeed, the reduction in root median

squared error of the MCL estimator was in many cases more than 50% compared to the corre-

sponding GMM estimator.

In an empirical application to financial bid-ask spread data, we illustrated the model selection

procedure and found that the Negative Binomial-Gamma IVT model provided the best fit to the

data. Using the forecast tools developed in the paper, we saw that this model outperformed the

often-used Poissonian INAR(1) model considerably, resulting in a reduction in forecast loss on the

order of 20% for most forecast horizons. We demonstrated that most of the superior forecasting

performance came from accurate modelling of the marginal distribution of the data; however,
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we also found that it was beneficial to carefully model the autocorrelation structure, especially for

longer forecasting horizons. These findings highlight the strengths of the IVT modelling framework,

where the marginal distribution and autocorrelation structure can be modelled independently in a

very flexible fashion.

A Method of moments-based estimation of IVT processes

For a parametric IVT model, let the parameter vector θ of the model be given by θ = (θd, θL),

where θd contains the parameters governing the trawl function d and θL contains the parameters

governing the marginal distribution of the IVT process, as specified by the underlying Lévy seed

L′. For instance, in the case of the Poisson-Exponential IVT process considered above, cf. Figure

1, we would have θd = λ and θL = ν.

Because the correlation structure of an IVT process is decoupled from its marginal distribution,

the theoretical autocorrelation function of the process will not depend on θL, and we can thus

estimate θd in a first step, using the empirical autocorrelations of the data. To be precise, let

ρθd(h) be the parametric autocorrelation function as implied by the trawl function d, see Equation

(2.10), and let ρ̂(k) be the estimate of the empirical autocorrelation of the data at lag k. The

GMM estimator of θd is

θ̂GMM
d := arg min

θd∈Θd

K∑
k=1

(ρθd(k)− ρ̂(k))2 , (A.1)

where K ≥ 1 denotes the amount of lags to include in the estimation and Θd is the parameter

space of the trawl parameters in θd.
6

For the estimation of the parameters θL governing the marginal distribution of the IVT process,

recall that the j’th cumulant κj of Xt is given by

κj = Leb(A) · κ′j , j = 1, 2, . . . ,

where κ′j is the j’th cumulant of the Lévy seed L′. Using the estimates θ̂GMM
d from the first step,

we can estimate the Lebesgue measure of the trawl set as

L̂eb(A) =

∫ ∞
0

d̂(−s)ds, (A.2)

where d̂(·) denotes the estimate of the trawl function implied by the estimated trawl parameters

θ̂GMM
d . The parameters governing the marginal distribution, θL, can now be estimated as follows.

Let r be the number of elements in θL and denote by L̂eb(A) the estimate of the Lebesgue measure

6In the case of the IVT process with an exponential trawl function d(s) = exp(λs), s ≤ 0, we use a closed-form

estimator of the λ parameter using only the autocorrelation function calculated at the first lag, that is λ̂GMM =

− log ρ̂(1)/∆, where ∆ > 0 is the equidistant time between observations.
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obtained from (A.2). Estimates of the cumulants, κ̂j , can be obtained straightforwardly by calcu-

lating the empirical cumulants of the data. Let Ir be a set of r distinct natural numbers (e.g., the

numbers from 1 to r). Now

κ̂j = L̂eb(A) · κ′j , j ∈ Ir,

defines r equations in the r unknowns θL. GMM estimates of the elements in θL, θ̂GMM
L , can be

obtained by solving these r equations. Finally, set θ̂GMM := (θ̂GMM
d , θ̂GMM

L ), which is the method

of moments-based estimator of θ.

B Practical details on feasible inference using the MCL estimator

As shown in Theorem 3.3 of Section 3.1.2, the asymptotic variance of the maximum composite

likelihood estimator, θ̂CL is given by the inverse Godambe information matrix,

G(θ0)−1 = H(θ0)−1V (θ0)H(θ0)−1.

As mentioned, the matrices H(θ0) and V (θ0) can be consistently estimated by

Ĥ(θ̂CL) = − 1

n

∂

∂θ∂θ′
lCL(θ̂CL;x)

= − 1

n

K∑
k=1

n−k∑
i=1

∂2

∂θθ′
log f(x(i+k)∆, xi∆; θ)|θ=θ̂CL ,

V̂HAC(θ̂CL) = Σ̂0 +

q∑
j=1

(
1− j

q + 1

)
(Σ̂j + Σ̂′j),

where

Σ̂j :=
1

n

K∑
k=1

K∑
k′=1

n−j−k′∑
i=1

∂

∂θ
log f(x(i+k)∆, xi∆; θ)|θ=θ̂CL

∂

∂θ′
log f(x(i+j+k′)∆, x(i+j)∆; θ))|θ=θ̂CL ,

and q ∈ N is the number of autocorrelation terms to take into account in the HAC estimator.

The Hessian, H(θ0), is straightforwardly estimated by the above expression. Indeed, a numerical

approximation of this matrix is often directly available as output from the software maximizing the

composite likelihood function. We have found that while this estimator Ĥ(θ̂CL) is quite precise,

the HAC estimator V̂HAC(θ̂CL) can be rather imprecise. In practice, we therefore recommend

estimating V (θ0) using simulation-based approach; the details are given in the following Appendix

B.1.

B.1 Simulation-based approach to estimating the asymptotic covariance matrix

To obtain a simulation-based estimator of V (θ0), let B denote a positive integer (e.g. B = 500)

and suppose that θ̂CL is the maximum composite likelihood estimate of θ from (3.4) when applied

to the original data. To estimate V (θ0), do as follows:
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1. For b = 1, 2, . . . , B, simulate N observations of a trawl process X(b) = {X(b)
i }Ni=1 with under-

lying parameters θ̂CL.

2. For b = 1, 2, . . . , B, use the simulated dataX(b) to calculate s(b)(θ̂CL) = N−1/2 ∂
∂θ lCL(θ̂CL;X(b)).

The gradient can either be calculated numerically or analytically.7 Note that the bootstrap

data is used to calculate the gradient, but the parameter vector θ̂CL is the original estimator

obtained from the initial (real) data set.

3. Estimate V (θ̂CL) as the sample covariance matrix of the simulated scores
{
s(b)(θ̂CL)

}B
b=1

.

Note that the number of simulated observations, N , in Step 1 does not need to equal the number

of observations in the original data set, n. When n is large, setting N = n can be computationally

costly; we found that setting N = 500 or even N = 100 provided good results. In our simulation

study and in the empirical application we have set B = N = 500.

C Alternative expressions of the pairwise likelihood

Proposition 3.1 presented a simple expression for the pairwise PMFs f(xi+k, xi; θ) in the case

where the underlying Lévy basis is positive. In the general case, i.e. where the Lévy basis is

integer-valued, we have, by the law of total probability, that

f(xi+k,xi; θ) := Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi

)
=

∞∑
c=−∞

Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi|L(A(i+k)∆ ∩Ai∆) = c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
=

∞∑
c=−∞

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
(C.1)

· Pθ
(
L(A(i+k)∆ ∩Ai∆) = c

)
,

which can be used for calculating the pairwise likelihood as a function of the parameter vector θ,

in the general integer-valued case. When implementing this result in practice, one could truncate

the sum in (C.1) according to some criterion in order to approximate the joint PMF. Truncation

can be avoided by resorting to a simulation-based approach, however. The following proposition

shows that a simulation unbiased version of the joint PMF exists, and that the simulation is, in

fact, easy to perform.

Proposition C.1. Let t, s ≥ 0, choose M ∈ N and let C(j) ∼ L(At ∩ As), j = 1, 2, . . . ,M , be an

iid sample. Then

f̂(xt, xs; θ) =
1

M

M∑
j=1

Pθ(L(At \As) = xt − C(j))Pθ(L(As \At) = xs − C(j))

7The Supplementary Material contains analytical expressions for the gradients implied by the various parametric

specifications considered in this paper.
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is a simulation-based unbiased estimator of f(xt, xs; θ). We further note that the simulation error

f̂(xt, xs; θ)− f(xt, xs; θ)

is, conditional on x, stochastically independent for different values of t and s. Also, this error

converges to zero at rate
√
M as long as

∞∑
c=−∞

f(xt|c; θ)2f(xs|c; θ)2f(x; θ) <∞,

where f(c; θ) = Pθ(C(1) = c) denotes the PMF of C(j), j = 1, 2, . . . ,M , and f(xt|c; θ) = Pθ(Xt =

xt|L(At ∩As) = c) denotes the conditional PMF of Xt.

Proposition C.1 shows that the simulated CL function is an unbiased estimator of the true CL

function. In other words, if we let U denote the vector of uniform random variables behind the

simulation of {C(j)}Mj=1 and define

logLU (θ;x, u) = logL(K)
U (θ;x, u) :=

K∑
k=1

n−k∑
i=1

log f̂(xi+k, xi; θ),

then LU (θ;x, u) is a simulation unbiased estimator for the composite likelihood LCL(θ;x). That is

LCL(θ;x) =

∫
LU (θ;x, u)fU (u)du,

where fU (u) ∝ 1 is the joint density of the uniform random numbers behind all the simulation. It

is well known that numerically optimizing a simulated likelihood function (the so-called simulated

maximum likelihood approach, see e.g. Lerman and Manski, 1981) suffers a number of drawbacks

and can be fragile in practice (e.g. Flury and Shephard, 2011). However, by a result in the seminal

Andrieu et al. (2010), it is feasible to do Markov Chain Monte Carlo (MCMC) when one can

unbiasedly simulate the likelihood. As a consequence, it is feasible to perform simulation-based

estimation through MCMC, instead of relying on numerical optimization. From an estimation

viewpoint, this can be an attractive approach (Flury and Shephard, 2011).
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1 Introduction

This document contains supplementary material for the article Bennedsen et al. (2021). It is

structured as follows. Section 2 contains the proofs of our theoretical results. Section 3 contains

additional simulation results for the MCL estimator: Section 3.1 presents simulation results sup-

plementing those from the main paper, and Section 3.2 investigates the finite sample performance

of the MCL estimator using a different simulation setup. Section 4 contains additional forecasting

results, supplementing the results given in Section 6.1 of the main paper. Sections 5 and 6 present

details on various parametric Lévy bases and trawl functions, respectively. These structures might

be used in the construction of IVT processes, as illustrated in the main paper. Section 7 contains

details on how to calculate the gradients for the log-composite likelihood functions implied by

most of the parametric IVT processes. These calculations are straightforward to make (although

somewhat tedious) and can rather easily be made for other IVT specifications than those consid-

ered here. The gradients can be used in the numerical optimization of the composite likelihood

functions and are also crucial for implementing the asymptotic theory presented in the main pa-

per. In particular, to estimate the asymptotic variance matrix V (θ), it is necessary to evaluate

the gradient at θ̂CL (we refer to the Appendix of the main paper for details). Section 8 contains

some additional technical calculations. Lastly, Section 9 contains brief details on the software pack-

ages accompanying the main paper. In particular, we supply software for simulation, estimation

(including inference), model selection, and forecasting of IVT processes.
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2 Mathematical proofs

We first give an alternative representation of the Lévy basis L, underlying the IVT process X.

From the construction of the IVT process in Section 2 in Bennedsen et al. (2021), it is clear that

the distribution of L is representable as a compound Poisson distribution. That is, for a Borel set

B, we can write

Pθ(L(B) = x) =
∞∑
q=0

Pθ

(
q∑
i=1

Yi = x, Ñ(B) = q

)

=

∞∑
q=0

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(B) = q), x ∈ Z, (S1)

where Yi are iid integer-valued random variables with probability mass function η̃(y) := η(y)∑∞
y=−∞ η(y)

,

i.e. Pθ(Yi = y) = η̃(y), where η is the Lévy measure given in the construction of the IVT process

in Equation (2.1) in Bennedsen et al. (2021). Likewise, Ñ is a Poisson random measure, given by

Ñ(dx, ds) =

∫ ∞
−∞

N(dy, dx, ds),

with an underlying intensity ν̃ :=
∑∞

y=−∞ η(y). The random variables Yi are independent of the

random measure Ñ . Intuitively, we have decomposed the event that the sum of the points in the

set B equals x (i.e. {L(B) = x}) into the intersection of the two events that there are q individual

points in B (i.e. {Ñ(B) = q}) and the “sizes” of these q points add up to x (i.e. {
∑q

i=1 Yi = x}).
With this construction, we have

Pθ(Ñ(B) = q) =
(ν̃Leb(B))q

q!
e−ν̃Leb(B), q = 0, 1, 2, . . . . (S2)

We will use this alternative representation of L in our proofs below.

Proof of Theorem 3.1. Let m > 0 and define Nm = Ñ(Am ∩ A) as the Poisson random variable,

which counts the number of ‘events’ in the set Am ∩ A0. From (S2), we know that there exists a

constant ν̃ > 0 such that

P(Nm = 0) = e−ν̃Leb(Am∩A0)

and, therefore,

P(Nm 6= 0) = 1− P(Nm = 0) = 1− e−ν̃Leb(Am∩A0) = ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

(S3)

as m→∞.

Let G ∈ F0
−∞ and H ∈ F∞m be such that P(G),P(H) > 0, and write, using the law of total

probability,

|P(H ∩G)− P(H)P(G)| = |P(H|G)− P(H)| · P(G)

3



= |P(H|G,Nm = 0)P(Nm = 0|G) + P(H|G,Nm 6= 0)P(Nm 6= 0|G)

− P(H|Nm = 0)P(Nm = 0)− P(H|Nm 6= 0)P(Nm 6= 0)| · P(G)

≤ (D1,m +D2,m) · P(G),

where

D1,m := |P(H|G,Nm = 0)P(Nm = 0|G)− P(H|Nm = 0)P(Nm = 0)|,

D2,m := |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|Nm 6= 0)P(Nm 6= 0)|.

We seek to bound these expressions. For D1,m, we use the fact that on the event {Nm = 0} the

two events G and H are independent. For both D1,m and D2,m, we will use that the probability

of the complementary event {Nm 6= 0} is “small enough”, cf. Equation (S3). For the first of the

terms, we get, using conditional independence of H and G and (S3),

D1,m = P(H|Nm = 0) · |P(Nm = 0|G)− P(Nm = 0)|

≤ |P(Nm = 0|G)− P(Nm = 0)|

≤ |1− P(Nm = 0|G)|+ |1− P(Nm = 0)|

= |1− P(Nm = 0|G)|+ ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

and, using Bayes formula and then the law of total probability,

|1− P(Nm = 0|G)| = |1− P(G|Nm = 0)P(Nm = 0)P(G)−1|

= P(G)−1|P(G)− P(G|Nm = 0)P(Nm = 0)|

= P(G)−1|P(G|Nm = 0)P(Nm = 0) + P(G|Nm 6= 0)P(Nm 6= 0)

− P(G|Nm = 0)P(Nm = 0)|

= P(G)−1|P(G|Nm 6= 0)P(Nm 6= 0)|

≤ P(G)−1P(Nm 6= 0)

= P(G)−1(ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0))).

We conclude that

D1,m · P(G) ≤ 2ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

For the second term above, we get

D2,m = |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|Nm 6= 0)P(Nm 6= 0)|

= |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)

+ P(H|G,Nm 6= 0)P(Nm 6= 0)− P(H|Nm 6= 0)P(Nm 6= 0)|

≤ E1,m + E2,m,

4



where

E1,m := |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)|,

E2,m := |P(H|G,Nm 6= 0)P(Nm 6= 0)− P(H|Nm 6= 0)P(Nm 6= 0)|.

Now, by (S3),

E2,m = P(Nm 6= 0) |P(H|G,Nm 6= 0)− P(H|Nm 6= 0)|

≤ P(Nm 6= 0)

= ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

Also,

E1,m = |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)|

= P(H|G,Nm 6= 0) · |P(Nm 6= 0|G)− P(Nm 6= 0)|

≤ |P(Nm 6= 0|G)− P(Nm 6= 0)|

≤ P(Nm 6= 0|G) + P(Nm 6= 0).

Using Bayes formula, we can write

P(Nm 6= 0|G) = P(G|Nm 6= 0)P(Nm 6= 0)P(G)−1

≤ P(Nm 6= 0)P(G)−1

so that, from (S3),

E1,m ≤ (1 + P(G)−1)(ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0))).

We conclude that

D2,m · P(G) ≤ 3ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

Taking it all together, we have that

|P(H ∩G)− P(H)P(G)| ≤ (D1,m +D2,m) · P(G)

≤ 5ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

implying, since G and H were arbitrary, that (taking supremums)

αm ≤ 5ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

To show that αm = O(Leb(Am ∩ A0)), let x1, x2 ∈ Z and define the events H := {X0 = x1} and

G := {Xm = x2}. We can show that

|P(H ∩G)− P(H)P(G)| = O(Leb(Am ∩A0)), m→∞. (S4)
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Since, clearly, H ∈ F0
−∞ and G ∈ F∞m , we conclude that αm = O(Leb(Am∩A0)) as m→∞. Using

Equation (2.10), i.e. the fact that ρ(m) = Leb(A)−1Leb(Am ∩A0), the proof is completed.12

Proof of Proposition 3.1. When ν(y) = 0 for y < 0 we have Pθ(L(A(i+k)∆∩Ai∆) = c) = 0 for c < 0.

Further, since the maximal amount of events in L(A(i+k)∆∩Ai∆) is bounded by the number of events

in xt+k and xt (no negative values in the trawl sets), we also have Pθ(L(A(i+k)∆∩Ai∆) = c) = 0 for

c > min{xt+k, xt}. This, together with the discussion of the decomposition of trawl sets in Section

3.1.1 (cf. Figure 2) in Bennedsen et al. (2021), and the law of total probability, implies that

f(xi+k,xi; θ) := Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi

)
=

∞∑
c=−∞

Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi|L(A(i+k)∆ ∩Ai∆) = c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
=

max{xi,xi+k}∑
c=0

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
,

as we wanted to show.

Proof of Theorem 3.2. Due to the stationarity and ergodicity of the IVT processes considered in

this paper, the normalized log-composite likelihood function will converge in probability to its

population counterpart, i.e.

Qn(θ) :=
1

n
lCL(θ;X) =

1

n

K∑
k=1

n−k∑
i=1

log f(X(i+k)∆, Xi∆; θ)
P→ E

[
K∑
k=1

log f(Xk∆, X0; θ)

]
=: Q(θ),

as n→∞. Since the pairwise likelihoods are indeed proper (bivariate) likelihoods, the information

inequality implies that Q(θ) is uniquely maximized at θ = θ0 (see, e.g., Lemma 2.2 in Newey

and McFadden, 1994, p. 2124). The result now follows from Theorem 4.1 and Theorem 4.3 in

Wooldridge (1994).

Proof of Theorem 3.3. Let

sn(θ) :=
∂

∂θ
lCL(θ;X) =

K∑
k=1

n−k∑
i=1

∂

∂θ
log f(X(i+k)∆, Xi∆; θ)

denote the score function and consider the estimating equation related to the MCL estimator

θ̂ = θ̂CL, namely sn(θ̂) = 0. Using this equation, we Taylor expand sn(θ̂) around the true parameter

12The result in Equation (S4) can be shown using similar arguments as those Lemma 2.1 below. Since (S4) is

simpler to prove than Lemma 2.1, we omit the proof of the former. In fact, Lemma 2.1 implies that (S4) holds for the

alternative sets H ′ := {X0 = x1, X−1 = x2} and G′ := {Xm = x3, Xm+1 = x4}. Since, also in this case, H ′ ∈ F0
−∞

and G′ ∈ F∞m , we see that Lemma 2.1 can indeed be directly applied to achieve the required result.
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vector θ0 to get

sn(θ0) +
∂

∂θ′
sn(θ̄)(θ̂ − θ0) = 0,

where θ̄ lies on the line segment between θ0 and θ̂ and ∂
∂θ′ sn(θ̄) is shorthand for ∂

∂θ′ sn(θ)|θ=θ̄.
Rearranging this equation and multiplying through by

√
n, we get

√
n(θ̂ − θ0) = −

(
1

n

∂

∂θ′
sn(θ̄)

)−1

n−1/2sn(θ0).

Stationarity and ergodicity, along with consistency of θ̂ due to Theorem 3.2, implies that− 1
n
∂
∂θ′ sn(θ̄)′

P→

H(θ0) as n → ∞. To prove the result, we thus need to show that n−1/2sn(θ0)
(d)→ N(0, V (θ0)) as

n → ∞. By the mixing properties of the IVT process X, given in Theorem 3.1, it is enough to

show that E[sn(θ0)] = 0 and V ar
(
n−1/2sn(θ0)

)
→ V (θ0) as n→∞ (e.g. Davidson, 1994, Corollary

24.7, p. 387).13

To show this, we consider, for simplicity, the case where θ is a scalar. The vector case is similar,

but with slightly more involved notation. First note that, clearly,

E [sn(θ0)] = E
[
∂

∂θ
lCL(θ;X)|θ=θ0

]
= 0.

Also

V ar (sn(θ0)) = V ar

(
∂

∂θ
lCL(θ;X)|θ=θ0

)
= V ar

(
K∑
k=1

n−k∑
i=1

∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

)

=
K∑
k=1

n−k∑
i=1

V ar

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

)

+

K∑
k=1

K∑
k′=1

∑
i 6=j

Cov

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

,
∂

∂θ
log f(Xj∆, X(j+k′)∆; θ)

∣∣
θ=θ0

)
.

Due to stationarity, the first sum is O(n) as n → ∞. To prove the proposition, we therefore

investigate the second sum. With slight abuse of notation, let ∂
∂θ f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

be denoted

by ∂
∂θ log f(Xi∆, X(i+k)∆; θ0). For l ≥ 1, define also the joint probability mass function

fl(x1, x2, x3, x4; θ, k, k′) := Pθ
(
X0 = x1, Xk∆ = x2, Xl∆ = x3, X(l+k′)∆ = x4

)
, x1, x2, x3, x4 ∈ Z.

Now, using that

E
[
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0)

]
= 0,

13Note that the crucial condition (c’) of Corollary 24.7 in Davidson (1994) relies on the IVT process X being

mixing of size φ0 for some φ0 > 1. This rules out the long memory processes, as shown in Theorem 3.1.

7



we have, for all i, j, k, k′,

Cov

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0),

∂

∂θ
log f(Xj∆, X(j+k′)∆; θ0)

)
= E

[
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0)

∂

∂θ
log f(Xj∆, X(j+k′)∆; θ0)

]
=

∞∑
x1=−∞

∞∑
x2=−∞

∞∑
x3=−∞

∞∑
x4=−∞

∂

∂θ
f(x1, x2; θ0)

∂

∂θ
f(x3, x4; θ0)

f|i−j|(x1, x2, x3, x4; θ0, k, k
′)

f(x1, x2; θ0)f(x3, x4; θ0)

=
∞∑

x1=−∞

∞∑
x2=−∞

∞∑
x3=−∞

∞∑
x4=−∞

∂

∂θ
f(x1, x2; θ0)

∂

∂θ
f(x3, x4; θ0)

(
f|i−j|(x1, x2, x3, x4; θ0, k, k

′)

f(x1, x2; θ0)f(x3, x4; θ0)
− 1

)
,

where the last equality follows because, e.g.,

∞∑
x1=−∞

∞∑
x2=−∞

∂

∂θ
f(x1, x2; θ0) =

∂

∂θ

∞∑
x1=−∞

∞∑
x2=−∞

f(x1, x2; θ0) =
∂

∂θ
1 = 0.

Now, Lemma 2.1 below shows that(
fn(x1, x2, x3, x4; θ0, k, k

′)

f(x1, x2; θ0)f(x3, x4; θ0)
− 1

)
= O(Leb(An∆ ∩A0)), n→∞,

from which we conclude, using Equation (2.10), i.e. Leb(An∆ ∩ A0) = ρ(n∆)Leb(A), and the

summability condition on ρ imposed in the theorem, that the second sum in the expression for

V ar (sn(θ0)) is O(n) as well. Indeed, taking it all together, we have that, as n→∞,

n−1V ar (sn(θ0))→
K∑
k=1

V ar

(
∂

∂θ
log f(X0, Xk∆; θ)|θ=θ0

)

+ 2
K∑
k=1

K∑
k′=1

∞∑
i=1

Cov

(
∂

∂θ
log f(X0, Xk∆; θ)|θ=θ0 ,

∂

∂θ
log f(Xi∆, X(i+k′)∆; θ)

∣∣
θ=θ0

)
:= V (θ0),

where the series converges. This finalizes the proof.

Proof of Theorem 3.4. With similar calculations to those used in the proof of Theorem 3.3, we can

write

nH/2(θ̂ − θ0) = −
(

1

n

∂

∂θ′
sn(θ̄)

)−1

nH/2−1sn(θ0).

We again have that − 1
n
∂
∂θsn(θ̄)′

P→ H(θ0) as n→∞. As in the proof of Theorem 3.3, we can write

V ar (sn(θ0)) = A1,n +A2,n,

where A1,n is O(n). Further, Lemma 2.1 below implies that

A2,n = O(n2Leb(An∆ ∩A0)),
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as n→∞. Equation (2.10) along with the condition on ρ imposed in the theorem thus yields

A2,n = O(n2L∞(n∆)n−H),

as n→∞. Using this, we get that, for all ε > 0,

nH−2±2εV ar (sn(θ0)) = O(nH−1±2ε) +O(L∞(n∆)n±2ε), (S5)

as n→∞. Finally, we recall the so-called Potter bounds for slowly varying functions: Since L∞ is

a slowly varying function, for all ε > 0 it holds that (Bingham et al., 1989, Theorem 1.5.6(ii))

L∞(n∆)nε →∞ and L∞(n∆)n−ε → 0,

as n→∞. Combining the Potter bounds with (S5) yields the required results.

Lemma 2.1. Fix k, k′ ≥ 1, let X be an IVT process, let f(·, ·; θ) be the joint PMF of (X0, Xk∆),

and let fn(·, ·, ·, ·; θ) be the joint PMF of (X0, Xk∆, Xn∆, X(n+k′)∆). That is

f(x1, x2; θ) := Pθ (X0 = x1, Xk∆ = x2) , x1, x2 ∈ Z,

and

fn(x1, x2, x3, x4; θ) := Pθ
(
X0 = x1, Xk∆ = x2, Xn∆ = x3, X(n+k′)∆ = x4

)
, x1, x2, x3, x4 ∈ Z.

Define the function

Gn(x1, x2, x3, x4; θ) :=

(
fn(x1, x2, x3, x4; θ)

f(x1, x2; θ)f(x3, x4; θ)
− 1

)
.

The following holds:

1

Leb(Ak∆ ∩An∆)
Gn(x1, x2, x3, x4; θ)→ G(x1, x2, x3, x4; θ), n→∞,

where G is a function, given in Equation (S9) below, that depends on the Lévy basis and trawl

function of X. (In Remark 2.1 below, we give the function G in the special case where the Lévy

basis is Poissonian and the trawl function is the Gamma trawl.)

Proof of Lemma 2.1. Letting fn(x1, x2|x3, x4; θ) := Pθ
(
X0 = x1, Xk∆ = x2|Xn∆ = x3, X(n+k′)∆ = x4

)
,

we can write

Gn(x1, x2, x3, x4; θ) =
fn(x1, x2, x3, x4; θ)− f(x1, x2; θ)f(x3, x4; θ)

f(x1, x2; θ)f(x3, x4; θ)

=
fn(x1, x2|x3, x4; θ)f(x3, x4; θ)− f(x1, x2; θ)f(x3, x4; θ)

f(x1, x2; θ)f(x3, x4; θ)

= (fn(x1, x2|x3, x4; θ)− f(x1, x2; θ))f(x1, x2; θ)−1.

To prove the lemma, we therefore study the asymptotic behavior of fn(x1, x2|x3, x4; θ)−f(x1, x2; θ)

as n→∞.
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Recall first the decomposition of the trawl sets into three disjoint sets which led to Proposition

3.1, see Figure 2, in Bennedsen et al. (2021). In a similar manner, we can decompose the four trawl

sets associated to X0 = L(A0), Xk∆ = L(Ak∆), Xn∆ = L(An∆), and X(n+k′)∆ = L(A(n+k′)∆), into

10 disjoint sets as illustrated in Figure S1 below. For ease of notation, we ignore the dependence

on n, k, and k′ for a moment and write

A0 = C3 ∪ C4 ∪ C6 ∪ C7, Ak∆ = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6,

An∆ = C1 ∪ C2 ∪ C3 ∪ C4 ∪D2 ∪D3, A(n+k′)∆ = C1 ∪ C3 ∪D1 ∪D2,

where the sets C1, C2, . . . , C7, D1, D2, D3 are disjoint. We will use below that limn→∞ Leb(Cj) = 0

for j = 1, 2, 3, 4, limn→∞ Leb(C5) = Leb(Ak∆\A0), limn→∞ Leb(C6) = Leb(A0∩Ak∆), limn→∞ Leb(C7) =

Leb(A0 \Ak∆), limn→∞ Leb(D1) = Leb(A(n+k′)∆ \An∆), limn→∞ Leb(D2) = Leb(An∆ ∩A(n+k′)∆),

and limn→∞ Leb(D3) = Leb(An∆ \A(n+k′)∆), cf. Figure S1 in Bennedsen et al. (2021).

Using this decomposition and the law of total probability, we may write

f(x1, x2; θ) =
∞∑

c1,c2,c3,c4=−∞
Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj)

and

f(x1, x2|x3, x4; θ) =
∞∑

c1,c2,c3,c4=−∞
Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

· Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
.

Taking these together, we get

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ)

=

∞∑
c1,c2,c3,c4=−∞

Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·

Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
−

4∏
j=1

Pθ (L(Cj) = cj)

 .

Note that, for the first term in the parenthesis, the following holds

Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
= f(x3, x4; θ)−1Pθ

(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4, Xn∆ = x3, X(n+k′)∆ = x4

)
= f(x3, x4; θ)−1Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)

·
4∏
j=1

Pθ (L(Cj) = cj) ,
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which allows us to write

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ)

=
∞∑

c1,c2,c3,c4=−∞
Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj) f(x3, x4; θ)−1

· (Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)− f(x3, x4)) .

Define the set C0 := {(c1, c2, c3, c4) ∈ Z4 : ci 6= 0 for at least one i = 1, 2, 3, 4}. The above

calculations imply that

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ) = f(x3, x4)−1
(
F (1)
n + F (2)

n

)
, (S6)

where

F (1)
n := Pθ (L(C6) + L(C7) = x1, L(C5) + L(C6) = x2)

4∏
j=1

Pθ (L(Cj) = 0)

· (Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ))

and

F (2)
n :=

∑
(c1,c2,c3,c4)∈C0

Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj)

· (Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)− f(x3, x4; θ)) .

We can think of F
(1)
n as the part of (fn(x1, x2|x3, x4; θ) − f(x1, x2; θ))f(x3, x4) where c1 = c2 =

c3 = c4 = 0, while F
(2)
n is the remainder.

We study first the behavior of F
(1)
n as n → ∞. Considering the first two factors of this term,

the continuity of the probability measure Pθ(·) implies that

lim
n→∞

Pθ (L(C6) + L(C7) = x1, L(C5) + L(C6) = x2)
4∏
j=1

Pθ (L(Cj) = 0)

= Pθ (L(A0 ∩Ak∆) + L(A0 \Ak∆) = x1, L(A0 ∩Ak∆) + L(Ak∆ \A0) = x2)

= f(x1, x2; θ).

The third term in F
(1)
n , i.e.

Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ)
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will, by the same logic as above, converge to zero as n→∞. In fact, by decomposition of the trawl

sets of f(x3, x4; θ) in the same manner as above, we get that

Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ)

= Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)

1−
4∏
j=1

Pθ (L(Cj) = 0)


−

∑
(c1,c2,c3,c4)∈C0

Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)

·
4∏
j=1

Pθ (L(Cj) = cj) .

In the first part of Lemma 2.2 below, we show that there exists a constant ν̃ > 0, such that

1−
4∏
j=1

Pθ (L(Cj) = 0) = ν̃Leb(Ak∆ ∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n → ∞. Similarly, in the second part of Lemma 2.2, we show that there exists a non-negative

function η̃ concentrated on the integers, such that, for cj 6= 0,

Pθ (L(Cj) = cj) = η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞, while

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n → ∞. This shows that for quadruplets (c1, c2, c3, c4) where ci 6= 0 for some i = 1, 2, 3, 4 and

cj = 0 for the remaining j 6= i (i.e. quadruplets of the form (c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0) or

(0, 0, 0, c4)), we have

4∏
j=1

Pθ (L(Cj) = cj) = η̃(ci)ν̃Leb(Ci)e
−ν̃

∑4
j=1 Leb(Cj) + o

 4∑
j=1

Leb(Cj)


= η̃(ci)ν̃Leb(Ci)e

−ν̃Leb(Ak∆∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n → ∞. Conversely, for quadruplets (c1, c2, c3, c4) where ci, cj 6= 0 for at least two distinct

i, j = 1, 2, 3, 4, we have

4∏
j=1

Pθ (L(Cj) = cj) = o (Leb(Ak∆ ∩An∆)) ,

as n→∞.

Define the numbers aj := limn→∞
Leb(Cj)

Leb(An∆∩Ak∆) ≥ 0, j = 1, 2, 3, 4, which are such that∑4
j=1 aj = 1 since C1 ∪ C2 ∪ C3 ∪ C4 = An∆ ∩ Ak∆, cf. Figure S1 below. Taking the above

together, we may, after a little algebra, conclude that, as n→∞,

F
(1)
n

Leb(Ak∆ ∩An∆)
→ ν̃f(x1, x2; θ)f(x3, x4; θ) (S7)
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Figure S1: Illustration of the decomposition of the four trawl sets A0, Ak∆, An∆, A(n+k′)∆.

− ν̃f(x1, x2)
∑
c 6=0

η̃(c) ((a1 + a3)f(x3 − c, x4 − c; θ) + (a2 + a4)f(x3 − c, x4; θ)) .

Turning now to F
(2)
n , similar calculations yield that, as n→∞,

F
(2)
n

Leb(Ak∆ ∩An∆)
→− ν̃f(x3, x4; θ)

∑
c 6=0

η̃(c) ((a1 + a2)f(x1, x2 − c; θ) + (a3 + a4)f(x1 − c, x2 − c; θ))

+ ν̃a1

∑
c 6=0

η̃(c)f(x1, x2 − c)f(x3 − c, x4 − c)

+ ν̃a2

∑
c 6=0

η̃(c)f(x1, x2 − c)f(x3 − c, x4)

+ ν̃a3

∑
c 6=0

η̃(c)f(x1 − c, x2 − c)f(x3 − c, x4 − c)

+ ν̃a4

∑
c 6=0

η̃(c)f(x1 − c, x2 − c)f(x3 − c, x4). (S8)

Finally, recalling Equation (S6), we can conclude that

lim
n→∞

Gn(x1, x2, x3, x4; θ)

Leb(Ak∆ ∩An∆)
= lim

n→∞

F
(1)
n + F

(2)
n

Leb(Ak∆ ∩An∆)
f(x1, x2; θ)−1f(x3, x4; θ)−1

=: G(x1, x2, x3, x4; θ), (S9)

where limn→∞
1

Leb(Ak∆∩An∆)F
(i)
n for i = 1, 2 are given above in Equations (S7)–(S8). (See the

following Remark 2.1 for how the expression for G simplifies slightly in the case of an IVT process

with Poisson Lévy basis and Gamma trawl function.)
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Remark 2.1. Note that in the case of a Poisson Lévy basis (Example 2.1 in Bennedsen et al. (2021)),

we have ν̃ = ν, η̃(1) = 1, and η̃(c) = 0 for c 6= 1. Further, in the case of d being a Gamma trawl

function (Example 2.5), it is straightforward to show that a1 = a2 = a4 = 0 and a3 = 1. For

this specification, the limit in the proof of Lemma 2.1 simplifies somewhat. Indeed, in this case,

Equation (S9) yields

G(x1, x2, x3, x4; θ) = ν

(
f(x1 − 1, x2 − 1; θ)

f(x1, x2; θ)
− 1

)(
f(x3 − 1, x4 − 1; θ)

f(x3, x4; θ)
− 1

)
.

Lemma 2.2. In the setting of the proof of Lemma 2.1, we have that the following two-part result.

(First part) There exists a constant ν̃ > 0, such that

1−
4∏
j=1

Pθ (L(Cj) = 0) = ν̃Leb(Ak∆ ∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n→∞.

(Second part) There exists a non-negative function η̃, concentrated on the integers, such that,

for cj 6= 0,

Pθ (L(Cj) = cj) = η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞, while

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞.

Proof of Lemma 2.2. The proof of the lemma relies on the alternative representation of the Lévy

basis L given at the start of the appendix, see Equation (S1).

(Proof of second part) Note that since η(0) = 0, we have Pθ (Yi = 0) = 0. Using this in the

setup of Lemma 2.1, we get, from Equations (S1) and (S2),

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) +

∞∑
q=2

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(Cj) = q)

= e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n →∞, while for cj 6= 0,

Pθ (L(Cj) = cj) = Pθ (Y1 = cj)Pθ(Ñ(Cj) = 1) +

∞∑
q=2

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(Cj) = q)

= η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞. This proves the second part of the lemma.
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(Proof of first part) As for the first part, use Equations (S1) and (S2) to write

4∏
j=1

Pθ (L(Cj) = 0) = e−ν̃
∑4

j=1 Leb(Cj) + o

 4∑
j=1

Leb(Cj)


= e−ν̃Leb(An∆∩Ak∆) + o (Leb(An∆ ∩Ak∆))

= 1− ν̃Leb(An∆ ∩Ak∆) + o (Leb(An∆ ∩Ak∆)) ,

as n → ∞, where we in the last line Taylor expanded the exponential function. This proves the

first part of the lemma.

Proof of Lemma 4.1. Using Bayes’ theorem and the unconditional independence of L(At ∩ At+h)

and L(At \At+h), we have for x ∈ N ∪ {0} and l ∈ {0, 1, . . . , x}:

P(L(At ∩At+h) = l|Xt = x) =
P(Xt = x|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At ∩At+h) + L(At \At+h) = x|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At \At+h) = x− l|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At \At+h) = x− l)P(L(At ∩At+h) = l)

P(Xt = x)
.

Proof of Proposition 4.1. Using the conditional law of total probability we obtain the following

convolution formula

P(Xt+h = xt+h|Xt = xt) = P(L(At ∩At+h) + L(At+h \At) = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At ∩At+h) + L(At+h \At) = xt+h|Xt = xt, L(At ∩At+h) = c)

· P(L(At ∩At+h) = c|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c|Xt = xt, L(At ∩At+h) = c)P(L(At ∩At+h) = c|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c)P(L(At ∩At+h) = c|Xt = xt).

Proof of Proposition C.1. Ignoring the dependence on θ we have

f(xt, xs) =
∞∑

c=−∞
f(xt, xs|c)f(c) =

∞∑
c=−∞

f(xt|xs, c)f(xs|c)f(c).
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Since, conditionally on L(At ∩ As) = c, Xt and Xs are independent we have f(xt|xs, c) = f(xt|c)
and thus

f(xt, xs) =
∞∑

c=−∞
f(xt|c)f(xs|c)f(c),

which shows that sampling from f(c; θ) delivers the quantity we need. The rest of the proposition

is obvious.
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3 Additional simulation results

3.1 Simulation results supplementing those from the main paper

The parameter values used in the simulation studies are given in Table S1 and the implied marginal

distributions and autocorrelation structures are shown in Figure S2. This table and this figure were

also shown in the main paper, but we reproduce them here for completeness.

The simulation results, for various values of n, are shown in Tables S2–S7 for the six DGPs

of Table S1. We report the median, the median bias, and the root median squared error (RMSE)

of the estimator, calculated over the 500 Monte Carlo replications. The reason for reporting the

median, instead of the mean, is that we found that when the number of observations, n, is small,

the estimation approach will occasionally result in large outliers in few of the Monte Carlo runs,

thus skewing the results (this was the case for both the MCL and GMM estimators).

From the tables, we see evidence of the MCL estimator being consistent, i.e. the bias converges

towards zero as the number of observations, n, grows. As expected, the estimator is most precise

for the simpler models, e.g. the Poisson-Exp IVT (Table S2) and somewhat less precise for the

more complex models, e.g. the NB-IG model (Table S6) and NB-Gamma model (Table S7).

3.1.1 Finite sample properties of the model selection procedure

This section illustrates the use, and finite sample properties, of the model selection procedure

introduced in Section 3.1.3 of the main paper. Consider n = 4000 equidistant observations of

an IVT process on a grid of ∆ = 0.10, i.e. X∆, X2∆, . . . , Xn∆.14 For each of the six possible

models, we then calculate the three goodness-of-fit measures, namely the value of the maximized

composite likelihood function CL, the AIC-like composite likelihood information criteria CLAIC,

and the BIC-like composite likelihood information criteria CLBIC. The model which has the

maximum value of a criteria is “selected” by that criteria. We repeat this process for 100 Monte

Carlo replications and the six different DGPs using the parameters of Table S1. Figure S3 reports

the “selection rates” of the models, i.e. the fraction of times that a model, given on the x-axis, is

selected, for each of the three different criteria. Each panel in the figure corresponds to a particular

DGP, as shown above the respective panels.

Consider, for instance, the case where the true DGP is the NB-Exp IVT model. The results

from using this DGP are given in the upper right panel of Figure S3. In this case, when we estimate

the six different models and calculate the three goodness-of-fit measures, the true model (i.e. NB-

Exp) has the highest composite likelihood value in 70% of simulations. In contrast, the CLAIC

and CLBIC result in selecting the true model in 73% and 81% of the simulations, respectively.

Note that since the models considered here are not nested, it is not necessarily the case that the

14The number of simulated observations, n = 4000, the space between observations, ∆ = 0.10, and the tuning

parameter, K = 10, are chosen such as to be comparable to the data studied in the empirical section of the main

paper.
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maximized composite likelihood value CL will be larger for the more complicated models.

Overall, Figure S3 indicates that the model selection procedure is quite accurate when the

marginal distribution of the DGP is the Negative Binomial distribution. Conversely, when the

marginal distribution of the DGP is the Poisson distribution, the correct model is chosen less often.

However, in these situations, it is often the case that although the Negative Binomial distribution

is (incorrectly) preferred to the Poisson distribution, the correct trawl function (autocorrelation

structure) is nonetheless selected.

Lastly, to examine the effect of the tuning parameter K on the model selection procedure, we

ran the same experiment but using both K = 5 and K = 20 (results not shown here, but available

upon request). We find that the model selection procedure deteriorates when K = 5, while it

performs similarly to that shown in Figure S3 when K = 20, indicating that it is important to

set K sufficiently large value, so that the selection criteria can properly distinguish between the

models.

18



Table S1: Parameter values used in simulation studies
DGP ν m p λ δ γ H α

P-Exp 17.50 1.80

P-IG 17.50 1.80 0.80

P-Gamma 17.50 1.70 0.80

NB-Exp 7.50 0.70 1.80

NB-IG 7.50 0.70 1.80 0.80

NB-Gamma 7.50 0.70 1.70 0.80

Parameter values for the six different DGPs used in the simulation studies of Section 3.1. The value ν = mp/(1− p)

with m = 7.5 and p = 0.70 is chosen such that the first moment of the Poisson and Negative Binomial Lévy bases

are matched. Marginal distributions and autocorrelation functions implied by these parameter values are shown in

Figure S2.
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Figure S2: Marginal distributions of the Lévy bases (top) and autocorrelations of the DGPs (bot-

tom) used in the simulation studies of Section 3.1. The marginal distribution and autocorrelation

structure of IVT processes can be specified independently, resulting in six different DGPs in this

setup (P-Exp, P-IG, P-Gamma, NB-Exp, NB-IG, NB-Gamma). The parameter values used to

produce the plots are given in Table S1.
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Table S2: MCL estimation results: Poisson trawl process with exponential trawl function

ν̂ (ν = 17.5) λ̂ (λ = 1.8)

n Med. Bias RMSE Med. Bias RMSE

100 17.3213 −0.1787 1.8616 1.8351 0.0351 0.2035

250 17.4204 −0.0796 1.1761 1.8009 0.0009 0.1279

500 17.5179 0.0179 0.8444 1.8012 0.0012 0.0883

1000 17.6023 0.1023 0.6164 1.8049 0.0049 0.0626

2000 17.5540 0.0540 0.4538 1.8026 0.0026 0.0476

4000 17.5099 0.0099 0.3038 1.8000 0.0000 0.0327

8000 17.5302 0.0302 0.2197 1.8036 0.0036 0.0222

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 1. DGP:

Poisson-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10,

see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations: 500.

Table S3: CL estimation results: Poisson trawl process with IG trawl function

ν̂ (ν = 17.5) δ̂ (δ = 1.8) γ̂ (γ = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 17.7984 0.2984 1.8764 2.4177 0.6177 0.9923 1.0985 0.2985 0.5365

500 17.7749 0.2749 1.4921 2.0205 0.2205 0.6317 0.9306 0.1306 0.3352

1000 17.6514 0.1514 1.0344 1.9141 0.1141 0.4896 0.8592 0.0592 0.2422

2000 17.5182 0.0182 0.8090 1.8977 0.0977 0.3413 0.8333 0.0333 0.1864

4000 17.5273 0.0273 0.5931 1.8120 0.0120 0.2426 0.8051 0.0051 0.1347

8000 17.4966 −0.0034 0.4125 1.8072 0.0072 0.1692 0.8030 0.0030 0.0842

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 10.

DGP: Poisson-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table

S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations: 500.

Table S4: CL estimation results: Poisson trawl process with Γ trawl function

ν̂ (ν = 17.5) Ĥ (H = 1.7) α̂ (α = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 17.8207 0.3207 1.8470 3.0719 1.3719 1.4020 1.5159 0.7159 0.7302

500 17.5946 0.0946 1.2180 2.1831 0.4831 0.9537 1.0463 0.2463 0.4816

1000 17.4396 −0.0604 0.9877 1.8563 0.1563 0.7227 0.8914 0.0914 0.3636

2000 17.4540 −0.0460 0.6642 1.7807 0.0807 0.5371 0.8406 0.0406 0.2728

4000 17.5048 0.0048 0.4821 1.6902 −0.0098 0.3851 0.7784 −0.0216 0.2004

8000 17.5612 0.0612 0.3925 1.6433 −0.0567 0.2464 0.7607 −0.0393 0.1189

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 10.

DGP: Poisson-Gamma IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see

Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations: 500.
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Table S5: CL estimation results: NB trawl process with exponential trawl function

m̂ (m = 7.5) p̂ (p = 0.7) λ̂ (λ = 1.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

100 8.9761 1.4761 2.3850 0.6649 −0.0351 0.0623 1.9197 0.1197 0.2595

250 7.9680 0.4680 1.3264 0.6872 −0.0128 0.0353 1.8311 0.0311 0.1431

500 7.8443 0.3443 0.9956 0.6896 −0.0104 0.0287 1.8202 0.0202 0.1010

1000 7.6891 0.1891 0.6964 0.6970 −0.0030 0.0202 1.8106 0.0106 0.0728

2000 7.5855 0.0855 0.5010 0.6972 −0.0028 0.0143 1.8001 0.0001 0.0470

4000 7.5362 0.0362 0.3484 0.6993 −0.0007 0.0095 1.8013 0.0013 0.0316

8000 7.5265 0.0265 0.2365 0.6993 −0.0007 0.0065 1.7994 −0.0006 0.0251

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 1. DGP:

Negative Binomial-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with

∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations:

500.

Table S6: CL estimation results: NB trawl process with IG trawl function

m̂ (m = 7.5) p̂ (p = 0.7) δ̂ (δ = 1.8) γ̂ (γ = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 9.4842 1.9842 2.2867 0.6695 −0.0305 0.0501 3.1478 1.3478 1.3540 1.3513 0.5513 0.6440

500 8.1866 0.6866 1.4351 0.6885 −0.0115 0.0335 2.3665 0.5665 0.8803 1.0506 0.2506 0.4657

1000 7.7323 0.2323 0.8607 0.6941 −0.0059 0.0256 1.9682 0.1682 0.6219 0.8834 0.0834 0.3099

2000 7.6150 0.1150 0.5755 0.6970 −0.0030 0.0176 1.9398 0.1398 0.4398 0.8588 0.0588 0.2116

4000 7.5561 0.0561 0.4348 0.6994 −0.0006 0.0129 1.8866 0.0866 0.3547 0.8351 0.0351 0.1741

8000 7.5317 0.0317 0.3103 0.6990 −0.0010 0.0088 1.8470 0.0470 0.2266 0.8247 0.0247 0.1063

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 10.

DGP: Negative Binomial-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10,

see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations: 500.

Table S7: CL estimation results: NB trawl process with Γ trawl function

m̂ (m = 7.5) p̂ (p = 0.7) Ĥ (H = 1.7) α̂ (α = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 9.2542 1.7542 2.3233 0.6678 −0.0322 0.0532 4.0968 2.3968 2.3968 1.9812 1.1812 1.1814

500 8.3098 0.8098 1.5008 0.6799 −0.0201 0.0384 2.6049 0.9049 1.2064 1.2160 0.4160 0.5768

1000 7.9214 0.4214 0.9728 0.6890 −0.0110 0.0257 2.2420 0.5420 0.9221 1.0470 0.2470 0.4404

2000 7.7270 0.2270 0.6394 0.6938 −0.0062 0.0179 1.9538 0.2538 0.7091 0.9244 0.1244 0.3413

4000 7.5876 0.0876 0.4594 0.6977 −0.0023 0.0130 1.8234 0.1234 0.5016 0.8545 0.0545 0.2418

8000 7.5249 0.0249 0.3355 0.6990 −0.0010 0.0091 1.7745 0.0745 0.3466 0.8436 0.0436 0.1671

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K = 10.

DGP: Negative Binomial-Gamma IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with

∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo simulations:

500.
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Figure S3: Simulation study of model selection procedure. Each plot represents the outcome of a

separate Monte Carlo study, where the true DGP in the study is given above the plot. The numbers

plotted are average selection rates of the models given on the x-axis, using a given criteria over

M = 100 Monte Carlo simulations. For each Monte Carlo replication, n = 4000 observations of

the true DGP are simulated on a grid with step size ∆ = 0.10. The parameters used in the study

are given in Table S1 and we set K = 10.
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3.2 Alternative simulation setup

We perform simulation experiments similar to those in the main paper but with a different set of

simulation settings. The parameter values used for the DGPs in this study are given in Table S8;

the associated implied marginal distributions of the underlying Lévy bases and autocorrelations of

the IVT processes are shown in Figure S4.

In this simulation study, we simulate n observations of an IVT process Xt on an equidistant

grid of size ∆ = 0.10. For the IVTs based on the exponential trawl function, we set K = 1, while

we set K = 3 for the remaining IVTs. This should be contrasted to the setup of the main paper,

where we set K = 10. The finite sample estimation results can be found in Tables S9–S14. Figure

S5 plots the relative RMSE of the MCL estimator compared to the MM estimator; numbers smaller

than one favor the MCL estimator.
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Table S8: Parameter values used in simulation setup 2

DGP ν m p λ δ γ H α

P-Exp 5.00 1.00

P-IG 5.00 0.75 0.50

P-Gamma 5.00 0.50 0.75

NB-Exp 2.14 0.70 1.00

NB-IG 2.14 0.70 0.75 0.50

NB-Gamma 2.14 0.70 0.50 0.75

Parameter values for the six different DGPs used in the simulation studies of the Supplementary Material. See the

various Examples of the main paper for details. The value m = ν(1 − p)/p with ν = 5 is chosen such that the first

moment of the Poisson and Negative Binomial Lévy bases are matched. Marginal distributions and autocorrelation

function implied by these parameter values are shown in Figure S4.
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Figure S4: Marginal distributions of the Lévy bases and autocorrelations of the DGPs used in the

simulation studies of Section 3. The marginal distribution and autocorrelation structure of IVT

processes can be specified independently, resulting in six different DGPs in this setup (P-Exp, P-

IG, P-Gamma, NB-Exp, NB-IG, NB-Gamma). The parameter values used to produce the plots are

given in Table S8. Note that the marginal distribution shown in the top plots are of the underlying

Lévy bases and not of the IVT process itself.
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Table S9: CL estimation results: Poisson trawl process with exponential trawl function

ν̂ (ν = 5) λ̂ (λ = 1)

Nobs Avg Bias RMSE Avg Bias RMSE

100 4.9994 −0.0006 0.6464 1.0131 0.0131 0.1220

250 5.0345 0.0345 0.4055 1.0099 0.0099 0.0756

500 5.0468 0.0468 0.2908 1.0074 0.0074 0.0623

1000 5.0100 0.0100 0.2181 1.0067 0.0067 0.0441

2000 5.0217 0.0217 0.1383 1.0026 0.0026 0.0288

4000 5.0103 0.0103 0.1058 1.0009 0.0009 0.0203

8000 5.0012 0.0012 0.0722 1.0005 0.0005 0.0150

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Poisson-

Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table

S8 for the values of the parameters used in the simulations. K = 1. Number of Monte Carlo simulations: 500.

Table S10: CL estimation results: Poisson trawl process with IG trawl function

ν̂ (ν = 5) δ̂ (δ = 0.75) γ̂ (γ = 0.5)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 4.8852 −0.1148 0.6536 0.8535 0.1035 0.2654 5.6836 5.1836 31.0800

500 4.8907 −0.1093 0.4725 0.8241 0.0741 0.1833 1.1475 0.6475 6.2198

1000 4.9770 −0.0230 0.3128 0.7849 0.0349 0.1266 0.5699 0.0699 0.2729

2000 4.9789 −0.0211 0.2322 0.7641 0.0141 0.0890 0.5281 0.0281 0.1196

4000 4.9921 −0.0079 0.1516 0.7525 0.0025 0.0640 0.5118 0.0118 0.0773

8000 4.9997 −0.0003 0.1203 0.7533 0.0033 0.0421 0.5042 0.0042 0.0543

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Poisson-IG

IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S8 for the values of

the parameters used in the simulations. K = 3. Number of Monte Carlo simulations: 500.

Table S11: CL estimation results: Poisson trawl process with Γ trawl function

ν̂ (ν = 5) Ĥ (H = 0.5) α̂ (α = 0.75)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 5.0958 0.0958 0.4897 0.6691 0.1691 0.3452 0.9620 0.2120 0.5434

500 4.9864 −0.0136 0.3323 0.6360 0.1360 0.2879 0.9710 0.2210 0.4283

1000 4.9781 −0.0219 0.2526 0.5957 0.0957 0.2109 0.8667 0.1167 0.3183

2000 4.9866 −0.0134 0.1776 0.5765 0.0765 0.1531 0.8480 0.0980 0.2443

4000 4.9789 −0.0211 0.1233 0.5519 0.0519 0.1156 0.8223 0.0723 0.1678

8000 4.9720 −0.0280 0.0945 0.5515 0.0515 0.0864 0.8147 0.0647 0.1234

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Poisson-

Gamma IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S8 for the

values of the parameters used in the simulations. K = 3. Number of Monte Carlo simulations: 500.
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Table S12: CL estimation results: NB trawl process with exponential trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) λ̂ (λ = 1)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

100 2.7614 0.6186 0.8445 0.6268 −0.0732 0.1010 1.0021 0.0021 0.1902

250 2.3957 0.2528 0.4848 0.6692 −0.0308 0.0618 0.9921 −0.0079 0.1206

500 2.1957 0.0529 0.3009 0.6883 −0.0117 0.0394 1.0038 0.0038 0.0791

1000 2.2200 0.0771 0.2357 0.6912 −0.0088 0.0309 1.0008 0.0008 0.0596

2000 2.1887 0.0458 0.1632 0.6935 −0.0065 0.0215 1.0030 0.0030 0.0410

4000 2.1630 0.0201 0.1126 0.6967 −0.0033 0.0144 0.9999 −0.0001 0.0273

8000 2.1557 0.0128 0.0805 0.6985 −0.0015 0.0109 1.0012 0.0012 0.0210

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Negative

Binomial-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10,

see Table S8 for the values of the parameters used in the simulations. K = 1. Number of Monte Carlo simulations:

500.

Table S13: CL estimation results: NB trawl process with IG trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) δ̂ (δ = 0.75) γ̂ (γ = 0.5)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 2.5049 0.3621 0.5605 0.6361 −0.0639 0.0827 0.9671 0.2171 0.3323 0.6664 0.1664 0.2521

500 2.3485 0.2056 0.4236 0.6688 −0.0312 0.0632 0.8739 0.1239 0.2095 0.5738 0.0738 0.1402

1000 2.2625 0.1197 0.3055 0.6767 −0.0233 0.0450 0.7991 0.0491 0.1460 0.5280 0.0280 0.0986

2000 2.1975 0.0547 0.2073 0.6937 −0.0063 0.0303 0.7757 0.0257 0.1099 0.5147 0.0147 0.0769

4000 2.1757 0.0328 0.1384 0.6936 −0.0064 0.0199 0.7777 0.0277 0.0800 0.5203 0.0203 0.0573

8000 2.1661 0.0232 0.0970 0.6978 −0.0022 0.0152 0.7631 0.0131 0.0560 0.5127 0.0127 0.0380

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Negative

Binomial-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S8 for

the values of the parameters used in the simulations. K = 3. Number of Monte Carlo simulations: 500.

Table S14: CL estimation results: NB trawl process with Γ trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) Ĥ (H = 0.5) α̂ (α = 0.75)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

500 2.6635 0.5206 0.5684 0.6240 −0.0760 0.0873 3.0978 2.5978 2.5978 4.6910 3.9410 3.9414

1000 2.4640 0.3212 0.4184 0.6510 −0.0490 0.0608 1.1213 0.6213 0.6213 1.6475 0.8975 0.8975

2000 2.3565 0.2136 0.3091 0.6659 −0.0341 0.0461 0.7854 0.2854 0.2887 1.1460 0.3960 0.4207

4000 2.2840 0.1411 0.1944 0.6739 −0.0261 0.0327 0.7204 0.2204 0.2391 1.0852 0.3352 0.3518

8000 2.2302 0.0873 0.1583 0.6843 −0.0157 0.0256 0.7034 0.2034 0.2142 1.0659 0.3159 0.3259

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP: Negative

Binomial-Gamma IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see

Table S8 for the values of the parameters used in the simulations. K = 3. Number of Monte Carlo simulations: 500.
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Figure S5: Root median square error (RMSE) of the MCL estimator divided by the RMSE of

the MM estimator. The underlying IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table S8 for the values of the parameters used in the simulations. For the

Poisson-Exp and NB-Exp we set K = 1; for the other DGPs we set K = 3. We also conducted

the comparison with K = 5, as suggested in Barndorff-Nielsen et al. (2014) with similar results

(results not presented here but available from the authors upon request).
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4 Additional forecasting results

Figures S6–S8 report forecasting results analogous to those of Section 6.1 in the main paper, but

now using the conditional mean, instead of the conditional mode, as a point forecast. That is, using

the notation of Section 6.1 in the main paper, to construct a conditional point forecast x̂i|i−1, we

set x̂i|i−h =
∑M

k=0 P̂(Xi|i−h = k)k, where M ≥ 1 is a large (cut-off) number and P̂ is the estimated

predictive density of the IVT model. In our data, the maximum spread level in the in-sample

period was 39 and we consequently we set M = 60 such that we are comfortable that we will have

xi ≤M for all i.
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Figure S6: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of the

NB-Gamma forecasting model, compared with the Poissonian INAR(1) model, over noos = 720 out-

of-sample forecasts. A circle above the bars indicates rejection null of equal forecasting performance

between the two models, against the alternative that the NB-IG model provides superior forecasts,

using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5% level; an asterisk denotes

rejection at a 1% level.
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Figure S7: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of

the NB-Gamma forecasting model, compared with the Poisson-Gamma model, over noos = 720 out-

of-sample forecasts. A circle above the bars indicates rejection null of equal forecasting performance

between the two models, against the alternative that the NB-IG model provides superior forecasts,

using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5% level; an asterisk denotes

rejection at a 1% level.
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Figure S8: Forecasting the spread level of the A stock on May 4, 2020. Four different loss metrics

and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are relative average losses of

the NB-Gamma forecasting model, compared with the NB-Exponential model, over noos = 720 out-

of-sample forecasts. A circle above the bars indicates rejection null of equal forecasting performance

between the two models, against the alternative that the NB-IG model provides superior forecasts,

using the Diebold-Mariano (Diebold and Mariano, 1995) test at a 5% level; an asterisk denotes

rejection at a 1% level.
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5 Details concerning integer-valued Lévy bases

5.1 Poisson Lévy basis

Consider the case where the Lévy basis is Poisson, i.e. L′ ∼ Poi(ν) for some intensity ν > 0. For a

bounded Borel set B with Leb(B) <∞, we have

L(B) ∼ Poi(νLeb(B)).

The cumulants in this case are κj = ν for all j ≥ 0.

5.2 Negative binomial Lévy basis

We follow Barndorff-Nielsen et al. (2012, 2014) and denote by NB(m, p) the negative binomial

law with parameters m ∈ N and p ∈ (0, 1). Recall, that a negative binomial random variable is

positively valued and can be interpreted as the number of successes, k, until m failures in a sequence

of iid Bernoulli trials, each with probability of success p. Let L′ ∼ NB(m, p); it holds that

P (L′ = k) =
Γ(m+ k)

k!Γ(m)
(1− p)mpk, k = 0, 1, 2, . . . .

As is well known, we have that L′t ∼ NB(mt, p) and therefore, for a Borel set B, it holds that

L(B) ∼ NB(Leb(B)m, p), which implies

P (L(B) = k) =
Γ(Leb(B)m+ k)

k!Γ(Leb(B)m)
(1− p)Leb(B)mpk, k = 0, 1, 2, . . . .

Here the relevant cumulants are κ1 = pm
1−p , κ2 = pm

(1−p)2 and κ4 = mp+4p2+p3

(1−p)4 .

5.3 Skellam Lévy basis

The Skellam distribution is the distribution of the difference of two Poisson processes N+
t and

N−t and is therefore integer valued. Let N±t ∼ Poi(ψ±) with ψ± > 0; then S := N+
t − N

−
t ∼

Skellam(ψ+, ψ−). Further, the Skellam Lévy process (L′t)t≥0 with L′1 ∼ Skellam(ψ+, ψ−) has the

marginal distribution L′t ∼ Skellam(tψ+, tψ−) (Barndorff-Nielsen et al., 2012), meaning that for a

Borel set B, we have L(B) ∼ Skellam(Leb(B)ψ+, Leb(B)ψ−). The PMF of the random variable

X ∼ Skellam(ψ+, ψ−) is given by

g(k;ψ+, ψ−) := P (X = k) = e−(ψ++ψ−)

(
ψ+

ψ−

)k/2
Ik

(
2
√
ψ+ψ−

)
,

where Iν(x) is the modified Bessel function of the first kind (see e.g. Abramowitz and Stegun

(1972)) with parameter ν evaluated at x. In the symmetric case, ψ+ = ψ− = ψ, this reduces

to g(k;ψ) := e−2ψIk(2ψ). The cumulants are easily seen to be κj = ψ+ − ψ− for j odd and

κj = ψ+ + ψ− for j even.
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5.4 ∆NB Lévy basis

Analogous to the Skellam process, we can consider the difference of two Lévy seeds which have

negative binomials as their laws; Barndorff-Nielsen et al. (2012) call this a ∆NB Lévy process.

Let L± ∼ NB(m±, p±) be independent Lévy seeds with negative binomial laws. Barndorff-Nielsen

et al. (2012) show that for k ≥ 0, the difference Lévy seed L′ = L+ − L− has PMF

P (L′ = k) = (1− p+)m
+

(1− p−)m
− (p+)k(m+)k

k!
F (m+ + k,m−; k + 1; p+p−), (S1)

where

F (α, β; γ; z) =
∞∑
n=0

(α)n(β)n
(γ)n

zn

n!
, z ∈ [0, 1), α, β, γ > 0,

is the hypergeometric function, see e.g. Abramowitz and Stegun (1972), and (α)n = Γ(α+n)
Γ(α) is

the Pochhammer symbol. The PMF for k ≤ 0 is, by symmetry, given as S1, mutatis mutandis.

The resulting distribution is denoted as L′ ∼ ∆NB(m+, p+,m−, p−) and it is easy to show that

(Barndorff-Nielsen et al., 2012) the Lévy process corresponding to L′ has marginal distribution

L′t ∼ ∆NB(tm+, p+, tm−, p−), meaning that we have for a Borel set B,

L(B) ∼ NB(Leb(B)m+, p+, Leb(B)m−, p−).

The cumulants for the ∆NB Lévy seed is easily deduced from those of the negative binomial ones,

recalling that the ∆NB law is the difference of two independent NB random variables.
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6 Details concerning parametric trawl functions

The expressions for the likelihoods in the previous section reveal that we are interested in calculating

expressions such as Leb(At\A) and Leb(At ∩ A) for different trawl functions. In this section we

derive the required results for various trawls based on the superposition trawl function d(s) =∫∞
0 eλsπ(dλ), s ≤ 0, see also the main paper.

6.1 The exponential trawl

The case where the measure π has an atom at λ > 0, i.e. π(dx) = δλ(dx), where δy(·) is the Dirac

delta function at y ∈ R+, we get d(s) = eλs. Consequently, for t ≥ 0,

Leb(A) = λ−1, Leb(At\A) = λ−1(1− e−λt), Leb(At ∩A) = λ−1e−λt.

This implies the correlation function

ρ(h) = exp(−λh), h > 0.

6.2 The finite superposition exponential trawl

Let π have finitely many atoms, i.e. π(dx) =
∑q

i=1wiδλi(dx) for q ∈ N. Then

d(s) =

q∑
i=1

wie
λis,

and

Leb(A) =

q∑
i=1

wiλ
−1
i , Leb(At\A) =

q∑
i=1

wiλ
−1
i (1− e−λit), Leb(At ∩A) =

q∑
i=1

wiλ
−1
i e−λit.

This implies the correlation function

ρ(h) =

(
q∑
i=1

ωiλ
−1
i

)−1 q∑
i=1

ωiλ
−1
i exp(−λih), h > 0.

6.3 The GIG trawl

A flexible class of trawl functions can be specified through the generalized inverse Gaussian (GIG)

density function (see e.g. Barndorff-Nielsen et al. (2014)),

fπ(x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)
,

where ν ∈ R and γ, δ ≥ 0 with both not equal to zero simultaneously. Kν(x) is the modified Bessel

function of the third kind with parameter ν, evaluated at x (e.g. Abramowitz and Stegun (1972)).

Suppose now, that π has density fπ, i.e. π(dλ) = fπ(λ)dλ. For s ≤ 0, the trawl function becomes

d(s) =

∫ ∞
0

eλsfπ(λ)dλ =

(
1− 2s

γ2

)−ν/2 Kν (δγαs)

Kν(δγ)
,
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whereas

Leb(A) =
γ

δ

Kν−1(δγ)

Kν(δγ)
, Leb(At ∩A) =

γα−ν+1
t

δ

Kν−1(δγαt)

Kν(δγ)
,

and

Leb(At\A) =
γ

δKν(δγ)

(
Kν−1(δγ)− α−ν+1

t Kν−1(δγαt)
)
,

where αt :=
√

2t
γ2 + 1. This implies the correlation function

ρ(h) = α−ν+1
h

Kν−1(δγαh)

Kν−1(δγ)
, h > 0.

6.4 The IG trawl

The inverse Gaussian distribution is a special case of the GIG distributions, where ν = 1
2 . In this

case, the trawl function simplifies to

d(s) =

(
1− 2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1− 2s

γ2

))
, s ≤ 0,

which means that

Leb(A) =
γ

δ
, Leb(At ∩A) =

γ

δ
eδγ(1−αt), Leb(At\A) =

γ

δ

(
1− eδγ(1−αt)

)
,

where again αt =
√

2t
γ2 + 1. This implies the correlation function

ρ(h) = exp(δγ(1− αh)), h > 0.

6.5 The Γ trawl

An interesting case, capable of generating long memory in the trawl process, is given by the Γ

trawl. Suppose that π has the Γ(1 +H,α) density,

fπ(λ) =
1

Γ(1 +H)
α1+HλHe−λα,

where α > 0 and H > 0. Now,

d(s) =
(

1− s

α

)−(H+1)
, s ≤ 0,

which implies

Leb(A) =
α

H
, Leb(At ∩A) =

α

H

(
1 +

t

α

)−H
, Leb(At\A) =

α

H

(
1−

(
1 +

t

α

)−H)
.
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This yields the correlation function

ρ(h) = Corr(L(At+h), L(At)) =
Leb(Ah ∩A)

Leb(A)
=

(
1 +

h

α

)−H
,

so that∫ ∞
0

ρ(h)dh =

{
∞ if H ∈ (0, 1],
α

H−1 if H > 1,

from which we see, that the trawl process has long memory for H ∈ (0, 1].
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7 Details concerning gradients

Recall that we have the composite log likelihood function

lCL(θ;x) := l
(K)
CL (θ;x) = logL

(K)
CL (θ;x) =

K∑
k=1

n−k∑
i=1

log f(xi+k, xi; θ).

Let θi be an element of θ. The derivative of lCL(θ;x) wrt. θi is

∂

∂θi
lCL(θ;x) =

∂

∂θi
logL

(K)
CL (θ;x) =

K∑
k=1

n−k∑
i=1

1

f(xi+k, xi; θ)

∂

∂θi
f(xi+k, xi; θ). (S1)

Recall also that

f(xi+k, xi; θ) =
∞∑

c=−∞
P

(c)
1,i,k · P

(c)
2,i,k · P

(c)
3,k

with

P
(c)
1,i,k := P (L(Ak∆ \A) = xi+k − c) , P

(c)
2,i,k = P (L(Ak∆ \A) = xi − c) , P

(c)
3,k = P (L(Ak∆ ∩A) = c) ,

implying that

∂

∂θi
f(xi+k, xi; θ) =

∞∑
c=−∞

(
∂

∂θi
P

(c)
1,i,k · P

(c)
2,i,k · P

(c)
3,k + P

(c)
1,i,k ·

∂

∂θi
P

(c)
2,i,k · P

(c)
3,k + P

(c)
1,i,k · P

(c)
2,i,k ·

∂

∂θi
P

(c)
3,k

)
.

(S2)

The terms P
(c)
1,i,k, P

(c)
2,i,k, P

(c)
3,k are calculated in the numerical maximization of the composite likeli-

hood routine for all c. The aim of this section is to calculate ∂
∂θi
P

(c)
j,i,k for j = 1, 2, 3, so that the

gradient of the log likelihood function is easily calculated using Equations (S1) and (S2). It is clear

that ∂
∂θi
P

(c)
j,i,k will depend on both the Lévy basis as well as the form of the trawl set (and hence the

trawl function). We first supply the relevant derivations for the Poisson Lévy basis (Section 7.2)

and the Negative Binomial Lévy basis (Section 7.3), and then the trawl functions Exp, SupExp,

IG, and Γ (Sections 7.4–7.7).

7.1 Some preliminary practical details

In our numerical implementation of the composite likelihood methods, we often have restrictions

on some parameters. Most notably, we have positivity restriction, e.g. we require that the intensity

ν > 0 for the Poisson Lévy basis. One could impose such restrictions buy using a constrained op-

timization procedure, when performing the numerical optimization of the log composite likelihood

function lCL(θ;x). We prefer to work with an unconstrained optimization procedure, by transform-

ing the parameters such that they are fulfilling their restrictions automatically. That is, if θ is a

restricted parameter, we find an invertible transformation function g, such that θ̃ = g−1(θ) ∈ R is
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unrestricted. The unconstrained numerical optimizer is optimizing over the unrestricted parameter

θ̃ and arrives at, say, θ̃∗. Our estimate of θ is thus θ̂ = g(θ̃∗). Consequently, it is necessary to

correct for this when calculating standard errors (delta rule) as well as when supplying a gradient

for our numerical optimization scheme. The reason is that the calculations concerning the gradient,

detailed in the previous section, are with respect to θ, and not θ̃, which is the actual parameter

being used in the numerical optimization procedure. In case of a transformed variable, the gradient

that should be supplied to the machine is therefore not the one given in (S2), but rather

∂

∂θ̃i
f(xi+k, xi; θ) =

∂

∂θi
f(xi+k, xi; θ)

∂θi

∂θ̃i
=

∂

∂θi
f(xi+k, xi; θ)

∂

∂θ̃i
g(θ̃).

In this paper two restrictions are encountered: many parameters are positive, while a few are

restricted to be in the unit interval. If θ > 0 is a positive parameter, we use a log transformation

by defining the new parameter θ̃ through

θ̃ = g−1(θ) = log θ, θ = g(θ̃) = exp(θ̃).

If p ∈ (0, 1) is a parameter, we use an inverse logistic (sigmoid) transformation,

p̃ = g−1(p) = log

(
p

1− p

)
, p = g(p̃) =

1

1 + exp(−p̃)
.

7.2 Poisson Lévy basis

Let L′ ∼ Poi(ν) and recall that for a Borel set B, this implies

P (L(B) = x) =
[νLeb(B)]x exp(−νLeb(B))

x!
.

We deduce, that for a generic parameter θ 6= ν,

∂

∂θ
P (L(B) = x) =

(
xLeb(B)−1 − ν

)
P (L(B) = x)

∂

∂θ
Leb(B).

The only ingredient left to calculate is

∂

∂ν
P (L(B) = x) =

(
xν−1 − Leb(B)

)
P (L(B) = x) .

7.3 Negative Binomial Lévy basis

Recall that in the case where the Lévy seed L′ is distributed as a Negative Binomial random

variable with parameters m > 0 and p ∈ [0, 1], we have L(B) ∼ NB(Leb(B)m, p), which implies

P (L(B) = x) =
Γ(Leb(B)m+ x)

x!Γ(Leb(B)m)
(1− p)Leb(B)mpx, x = 0, 1, 2, . . . .

Using the well-known property of the Γ function that Γ(x+ 1) = xΓ(x) (Gradshteyn and Ryzhik,

2007, p. 904), we can write

P (L(B) = x) = (Leb(B)m+ x− 1) (Leb(B)m+ x− 2) · · · (Leb(B)m)
1

x!
(1− p)Leb(B)mpx,
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for k = 0, 1, 2, . . .. We deduce, that for a generic parameter θ 6= m, p,

∂

∂θ
P (L(B) = x)

=

(
∂

∂θ
Leb(B)

)
mP (L(B) = x)

(
log(1− p) +

1

Leb(B)m
+

1

Leb(B)m+ 1
+ · · ·+ 1

Leb(B)m+ x− 1

)
.

The only ingredients left to calculate are

∂

∂p
P (L(B) = x) = P (L(B) = x)

(
x

p
− Leb(B)m

1− p

)
,

and

∂

∂m
P (L(B) = x)

= P (L(B) = x)Leb(B)

(
log(1− p) +

1

Leb(B)m
+

1

Leb(B)m+ 1
+ · · ·+ 1

Leb(B)m+ x− 1

)
.

7.4 Exponential trawl function

Let L′ be a generic Lévy seed and d(s) = exp(λs) for s ≤ 0. Recall that for t > 0,

Leb(At \A) = λ−1(1− exp(−λt)), Leb(At ∩A) = λ−1 exp(−λt).

It is not difficult to show that

∂

∂λ
Leb(At \A) = λ−1

(
t exp(−λt)− λ−1(1− exp(−λt))

)
,

while

∂

∂λ
Leb(At ∩A) = −λ−1 exp(−λt)

(
λ−1 + t

)
.

7.5 SupExp trawl function

Let L′ be a generic Lévy seed and d(s) be the supExp trawl function (see above). Recall that for

t > 0,

Leb(At \A) =

q∑
i=1

wiλ
−1
i (1− e−λit), Leb(At ∩A) =

q∑
i=1

wiλ
−1
i e−λit.

It is not difficult to show that for j = 1, 2, . . . , q,

∂

∂λj
Leb(At \A) = wjλ

−1
j

(
t exp(−λjt)− λ−1

j (1− exp(−λjt))
)
,

∂

∂λj
Leb(At ∩A) = −wjλ−1

j exp(−λjt)
(
λ−1
j + t

)
,

while

∂

∂wj
Leb(At \A) = λ−1

j (1− e−λjt),

∂

∂wj
Leb(At ∩A) = λ−1

j e−λjt.
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7.6 IG trawl function

Let L′ be a generic Lévy seed and d(s) be the IG trawl (see above). Recall that, for t > 0,

Leb(At \A) =
γ

δ
(1− exp(δγ(1− αt))) , Leb(At ∩A) =

γ

δ
exp(δγ(1− αt)),

where αt =
√

2t
γ2 + 1.

We can show that

∂

∂δ
Leb(At \A) = −δ−1Leb(At \A)− γ2δ−1(1− αt) exp(δγ(1− αt)),

∂

∂γ
Leb(At \A) = −γ−1Leb(At \A)− γ exp(δγ(1− αt))[1− αt + 2γ−2α−1

t t],

and

∂

∂δ
Leb(At ∩A) = Leb(At ∩A)(γ(1− αt)− δ−1),

∂

∂γ
Leb(At ∩A) = Leb(At ∩A)(γ−1 + δ(1− αt) + 2δγ−2α−1

t t).

7.7 Γ trawl function

Let L′ be a generic Lévy seed and d(s) be the Γ trawl (see above). Recall that, for t > 0,

Leb(At \A) =
α

H

(
1−

(
1 +

t

α

)−H)
, Leb(At ∩A) =

α

H

(
1 +

t

α

)−H
.

It is easy to show that

∂

∂H
Leb(At ∩A) = −α

(
1 +

t

α

)−(H+1)(
H−2

(
1 +

t

α

)
+ 1

)
,

∂

∂α
Leb(At ∩A) =

(
1 +

t

α

)−(H+1)(
H−1

(
1 +

t

α

)
+
t

α

)
.

and

∂

∂H
Leb(At \A) = −αH−2 − ∂

∂H
Leb(At ∩A),

∂

∂α
Leb(At \A) = H−1 − ∂

∂α
Leb(At ∩A).
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8 Additional calculations

8.1 Calculations for the GIG trawl of Section 6.3

We have the trawl function

d(s) =

(
1− 2s

γ2

)−ν/2 Kν

(
δγ
√

1− 2s
γ2

)
Kν(δγ)

.

In the following we use the substitution x =
√

1 + 2s
γ2 to get

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−ν/2 Kν

(
δγ
√

1 + 2s
γ2

)
Kν(δγ)

ds

=

∫ ∞
1

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx

=
γ2

Kν(δγ)

(∫ ∞
0

x−ν+1Kν (δγx)−
∫ 1

0
x−ν+1Kν (δγx)

)
.

Now apply (6.561.12) and (6.561.16) in Gradshteyn and Ryzhik (2007) to get15

Leb(A) =
γ

δ

Kν−1(δγ)

Kν(δγ)
.

Set α :=
√

2t
γ2 + 1. Now, make the same substitution as above to get

Leb(At ∩A) =

∫ ∞
t

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−ν/2 Kν

(
δγ
√

1 + 2s
γ2

)
Kν(δγ)

ds

=

∫ ∞
α

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx.

Set y = α−1x to get∫ ∞
α

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx =

γ2

Kν(δγ)

∫ ∞
1

(αy)−ν+1Kν (δγαy)αdy

=
γ2α−ν+2

Kν(δγ)

∫ ∞
1

y−ν+1Kν (δγαy) dy.

Now, splitting the integral as above and using the same formulae yields

Leb(At ∩A) =
γα−ν+1

δ

Kν−1(δγα)

Kν(δγ)
.

8.2 Calculations for the IG trawl of Section 6.4

We have

d(s) =

(
1− 2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1− 2s

γ2

))
,

15Note, that we here need to impose ν < 1.
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which means that

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1 +

2s

γ2

))
ds.

So, after the change of variable x =
√

1 + 2s
γ2 we have

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
1

x−1 exp (δγ(1− x)) γ2xdx

= γ2

∫ ∞
1

exp (δγ(1− x)) dx

= γ2eδγ
∫ ∞

1
e−δγxdx

=
γ

δ
.

Again, defining α :=
√

2t
γ2 + 1, we get by similar calculations

Leb(At ∩A) =

∫ ∞
t

d(−s)ds = γ2eδγ
∫ ∞
α

e−δγxdx =
γ

δ
eδγ(1−α).
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9 Software (MATLAB)

The following functions are available in the MATLAB software language. We give a very brief

description of the functions here, but refer to the extensive documentation in the code for further

details. The code can be freely downloaded from the webpage https://github.com/mbennedsen/

Likelihood-based-IVT.

• simulateIVT:

– Simulates equidistant observations of a parametric IVT process, specified by a Lévy basis

and a trawl function. The Lévy basis and trawl function can be specified independently

of each other using the framework described in this Supplementary Material.

• estimateIVT:

– Takes as input a vector of equidistantly spaced observations and a parametric spec-

ification (Lévy basis and trawl function) and outputs estimates of the corresponding

parameters using the maximum composite likelihood approach developed in the main

paper.

• modelselectIVT:

– This function estimates six parametric IVT models (Poisson-Exponential, Poisson-IG,

Poisson-Gamma, NB-Exponential, NB-IG, NB-Gamma) and calculates the composite

likelihood function when evaluated in the optimized parameters, as well as the CLAIC

and CLBIC criteria given in the main paper. These three criteria can be used for model

selection, larger values indicating a better fit.

• forecastIVT:

– Takes as input a parametric IVT model (Lévy basis and trawl function), a forecast

horizon (which can be a vector of several forecast horizons), as well as historical ob-

servations; the output is the predictive probability distribution for the given forecast

horizons. The parameters underlying the predictive distribution are estimated using

the maximum composite likelihood approach presented in the main paper.

• analyze stock A and analyze simulated data:

– These files illustrate the use of the functions simulateIVT, estimateIVT, modelselectIVT,

and forecastIVT. The file analyze stock A reproduces the output of the main paper,

while analyze simulated data simulates a user-specified IVT process and then con-

ducts analyses similar to those considered in the main paper on these simulated data.
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