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The incremental information in the yield

curve about future interest rate risk

Abstract

Using high-frequency intraday futures prices to measure yield volatility at selected
maturities, we find that daily yield curves carry incremental information about
future interest rate risk at the long end, relative to that contained in the time series
of historical volatilities. Some of the information in the yield curves is not captured
by standard affine models. At the short end, time series based forecasts outperform
yield curve based forecasts. Both provide utility to a risk averse investor in longer-
term instruments, not in short, relative to a random walk. Our results point to the
existence of an unspanned volatility factor.
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1. Introduction

Affine term structure models have been the workhorse in the interest rate literature for

decades and can successfully explain bond prices (see Duffee (2002), Christensen et al.

(2011), and many others). However, it is questionable whether these models are able

to explain yield volatilities, and hence reinvestment rate risk, which plays a crucial role

in portfolio allocation, market timing, derivative pricing, and risk management. The

literature has primarily focused on whether volatilities are spanned by interest rates,

as implied by standard affine models. Collin-Dufresne et al. (2009) and Andersen and

Benzoni (2010) conclude that they are not, while Jacobs and Karoui (2009) and Bikbov

and Chernov (2009) reach mixed conclusions.

In this paper, we consider out-of-sample forecasting of yield volatility. Since future

reinvestment rate risk matters for pricing and trading decisions, the yield curve should

be sensitive to, and hence informative about, future yield volatility. Nevertheless, the

forecasting perspective has so far received little attention in the yield volatility literature.

The only exceptions are Collin-Dufresne et al. (2009) and Joslin and Konchitchki (2018),

who consider fixed-window estimation, and do not compare the model based forecasts

against time series benchmarks beyond a random walk (RW). In contrast, we update the

parameters recursively according to investor’s information set, and compare the model

based volatility forecasts to leading time series benchmarks, in particular, the hetero-

geneous autoregressive (HAR) model of Corsi (2009) and the realized GARCH model

of Hansen et al. (2012). Our focus is on whether the yield curve contains incremental

information about future yield volatility, beyond that available from the time series of

historical volatilities. In addition, we examine whether the time series based forecasters

contain incremental information about future volatility, beyond the information that can

be read off the yield curve. Further, we supplement the existing static analysis of the

spanning issue with a dynamic out-of-sample assessment.

As a separate contribution, we use high-frequency intraday yield curves in the anal-

ysis, thus adding precision to volatility measurements. The past two decades have seen
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important advances in high-frequency data analysis, primarily focusing on equities, e.g.,

Barndorff-Nielsen and Shephard (2002), Andersen et al. (2003), and Zhang et al. (2005).

However, intraday data have seen little application in the interest rate literature. Notable

exceptions are Faust et al. (2007), who use high-frequency data to study macroeconomic

announcement effects, not volatility, and Andersen and Benzoni (2010) and Cieslak and

Povala (2016), who use realized volatilities of interest rates based on a 10-minute sampling

frequency, chosen to mitigate the effects of market microstructure noise. We overcome

the latter issue in a more direct manner by relying on the pre-averaged realized variance

estimator of Jacod et al. (2009), a noise-robust estimator of volatility with excellent em-

pirical properties for various asset classes, as documented by Christensen et al. (2014).

This choice allows us to use data at higher frequency. From US Treasury and Eurodollar

futures prices, we construct yields with maturities 6 months, and 1, 5, and 7 years, at

the 1-minute frequency. From these, we calculate a daily time series of realized volatility

measures at each of the four maturities. We consider daily yield curve based forecasters

of volatility over the subsequent month, constructed from either (i) affine term structure

models, (ii) principal component analysis (PCA), or (iii) interest rate (yield and forward)

spreads, estimated recursively in a standard daily yield panel. The alternative forecasters

based on the time series of historical volatilities (RW, HAR, realized GARCH) serve as

benchmarks.

We find that the yield curve contains superior information about future yield volatility

relative to the time series of historical volatilities in terms of forecasting accuracy at longer

maturities. The most accurate of the forecasts considered are generated by a common

factor or interest rate spread approach at the 1, 5, and 7 year maturities, and by the

HAR model at 6 months. This indicates that the yield curve contains some important

information about future reinvestment rate risk that neither the term structure models

nor the volatility history capture. Next, we carry out a specification test as in Cieslak and

Povala (2016) and find that none of the affine or time series models considered subsumes

all the relevant information about future volatility contained in the yield curve across

all maturities. Extending this idea, we develop a test of whether past volatility forecast
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errors are informative about future forecast errors, as would be the case under unspanned

stochastic volatility (USV) in the sense of Collin-Dufresne and Goldstein (2002). We

perform the test by extracting a common factor from the volatility forecast errors across

maturities and find that it provides significant information about future forecast errors,

thus indicating the presence of USV features in the data. Overall, we find that the yield

curve contains incremental information about future volatility relative to the time series

of historical volatilities at the long end of the curve, and that some of the information in

the curve is not captured by standard affine models. At the short end, the time series

models outperform yield curve based volatility forecasts.

We investigate the economic value of the forecasters to an investor in a portfolio

allocation exercise, using a utility-based framework as in Bollerslev et al. (2018). From

the results, the information about future interest rate risk contained in either the yield

curve or historical volatility provides economic value to a risk averse investor in longer

maturity bonds, whereas the RW forecast suffices at the short end of the curve, on utility

grounds. A robustness analysis shows that higher-order PCA factors beyond the first

three usually explaining yields in fact carry information about volatility. The portion of

future volatility information in the yield curve that is not captured by standard affine term

structure models is contained in these higher-order factors rather than in nonlinearities.

Finally, a comparison with forecasts of future interest rate risk extracted from a wide cross

section of coupon bonds confirms that the yield curve based forecasts are well represented

by the daily panel estimates.

Our work on out-of-sample interest rate risk complements several strands of litera-

ture. Within the class of affine term structure models, conditional variances are affine

in state variables. In standard versions, volatilities can be extracted from the cross sec-

tion of interest rates. Under USV, some factors affect volatility, but not interest rates

directly. Jacobs and Karoui (2009) examine the ability of three-factor affine models to

fit conditional volatilities in-sample, using estimates from an EGARCH model to proxy

for true volatility. They reach mixed conclusions, depending on the sample considered.

Correlations between model-implied volatility and the proxy range between 60% and 75%
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in US Treasury data, but are much lower in swap data, even negative for some maturities.

Collin-Dufresne et al. (2009) consider affine models with and without a USV factor and

conclude that volatility cannot be extracted from the cross section of interest rates based

on swap data. Andersen and Benzoni (2010) find low R2s for regressing future variances

on PCA factors from the yield curve, and argue that they conduct a test of whether

variances are spanned by bonds. The validity of this regression test of USV is questioned

by Bikbov and Chernov (2009), who show that low R2 is expected if yields are observed

with error, a standard assumption when estimating term structure models. Bikbov and

Chernov (2009), Joslin (2017), and Joslin and Konchitchki (2018) consider both swaps

and swaptions and reject the restrictions needed for affine models to generate USV. We

contribute to this literature by considering the spanning question in an out-of-sample

framework, and providing evidence pointing to the existence of a USV factor.

The USV puzzle has recently led to the construction of more complex models, with

a focus on the ability to fit volatilities and price swaptions. Feldhütter et al. (2016)

propose a nonlinear model that is able to generate features consistent with USV. Cieslak

and Povala (2016) construct a model with volatility factors driven by a Wishart process.

Filipović et al. (2017) present a nonlinear model featuring USV that can price both bonds

and swaptions successfully. None of these papers considers out-of-sample forecasting. It

is beyond the scope of the present paper to include these more complex models, as they

are very time-consuming to implement and reestimate recursively.

The paper is organized as follows. Section 2 describes the forecasting methods, includ-

ing the term structure models, PCA and interest rate spread based forecasts, and time

series models. Section 3 describes the high-frequency futures data and the construction

of realized yield volatility measures. Section 4 presents the estimation method for the

term structure models based on the Kalman filter. Section 5 contains the empirical anal-

ysis, and Section 6 the robustness analysis. Section 7 concludes. The Appendix contains

additional material on data, models, estimation, and results.
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2. Interest rate risk forecasters

Throughout, yτt denotes the maturity τ yield at time t. In our empirical out-of-sample

analysis, we consider daily forecasting of month-ahead interest rate risk by maturity.

To assess the forecasts, we use the high-frequency data to calculate daily realized yield

volatility, labeled V τ
t (see Section 3.3). In line with the volatility literature, the target for

the forecast built at t, based on investor’s information set, is not the realized volatility

at t + h, but instead the aggregated realized measure V τ
t+1|t+h = ∑h

i=1 V
τ
t+i, a proxy for

integrated volatility from t through t + h, or IV τ
t|t+h, say.1 All forecasts considered are

recursive, i.e., only data through t are used to construct the forecast of V τ
t+1|t+h, for

each maturity τ and method considered, with h set to 22 trading days for month-ahead

forecasting.2 Methods utilizing the cross-sectional information in the yield curve are

presented first, followed by methods relying exclusively on the information in the time

series of historical volatilities.

2.1. Yield curve based volatility forecasters

We consider an N × T fixed-maturity panel, i.e., the yields at t are yt = (yτ1
t , . . . , y

τN
t )′,

t = 1, . . . , T , and yields of all maturities can be used to generate volatility forecasts at

a given maturity τ . For each candidate forecasting method, recursive volatility forecasts

are constructed using the regression

V τ
t+1|t+h = ατ,h + βτ,h′Zt + uτ,ht+h , (1)

for fixed τ , h, with βτ,h a q × 1 vector of predictive coefficients, and Zt the relevant

information variable extracted from the yield panel and conditioning the forecast as of

t for the given method, e.g., a q-vector of fitted PCA factors, or a conditional volatility

forecast from an affine model. When constructing the forecast at t′ of V τ
t′+1|t′+h, only data

through t′ are used to extract Z1, . . . , Zt′ from the yield panel, then estimate Eq. (1) over
1If the yield follows the Itô process dyτt = µτt dt+ στt dWt, then IV τt|t+h =

∫ t+h
t

(στs )2
ds.

2Results for h = 44, forecasting two months ahead, are in the Appendix.
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t = 1, . . . , t′ − h, and the forecast is α̂τ,h + β̂τ,h′Zt′ . We consider methods for extracting

Zt based on affine term structure models, PCA, common factors, and risk premiums.

The recursive regressions in Eq. (1) are used in the construction of volatility fore-

casts, for two reasons. First, investor is not basing the forecast of V τ
t′+1|t′+h exclusively

on Zt′ from the daily yields, having observed the history of realized volatilities through

t′. Second, in the implementation, volatility forecasts based on Zt include estimation

error, whereas realized yield variance used as forecasting target in the assessment in-

cludes measurement error, thus leading to potential biases. Therefore, the Mincer and

Zarnowitz (1969) type predictive regressions in Eq. (1) are used to leverage any indication

in investor’s information set that the centering or scale of Zt from the given method do

not line up well with subsequent realized volatilities. The main question is whether Zt

serves as a useful information variable, i.e., whether variation in this provides incremental

predictive power. If, for example, a combination of the most recent realized volatility

observations V τ
t′ , V

τ
t′−1, . . . provides the best forecast at t′, as in the HAR model, then this

feature will not be fully captured by the intercept and slope in Eq. (1), estimated over the

full window t = 1, 2, . . . , t′ − h. It should be possible to improve on the resulting forecast

using pure time series methods and historical volatilities, hence revealing that Zt from

the panel does not carry incremental information. Thus, the regression approach secures

a level playing field for comparison of yield curve and time series based yield volatility

forecasts.

In our empirical work, we use N = 8 maturities to extract Zt from daily data, and

volatility forecasts based on investor’s information set are constructed using the recursive

regressions in Eq. (1) for each of the four maturities τ for which we have high-frequency

data.
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2.1.a. Affine term structure models

In the affine class, the short rate rt = y0
t is driven by some d-dimensional vector of state

variables, Xt, such that rt = δ0 + δ′1Xt, and the dynamics of Xt are

dXt = κ(θ −Xt)dt+ Σ
√
S(Xt)dWt , (2)

where Wt is a d-dimensional Brownian motion under the physical measure P, κ and Σ

are d× d matrices, δ1 and θ are d× 1 vectors, and δ0 is a scalar. In addition, S(Xt) is a

diagonal d× d matrix with each element affine in Xt,

[S(Xt)]ii = αi + β′iXt , (3)

with αi a scalar and βi a d× 1 vector. Given a suitable market price of risk specification

λt (see Appendix C), the dynamics of Xt are governed by an affine diffusion under the

risk-neutral measure Q, too,

dXt = κ̃(θ̃ −Xt)dt+ Σ
√
S(Xt)dWQ

t . (4)

Following Duffie and Kan (1996), the yields are given by

yτt = A(τ)
τ

+ B(τ)′
τ

Xt , (5)

where A, B are solutions to the system of ordinary differential equations

dA(τ)
dτ

= θ̃′κ̃′B(τ)− 1
2

d∑
i=1

[Σ′B(τ)]2i αi + δ0 , A(0) = 0 ,

dB(τ)
dτ

= −κ̃′B(τ)− 1
2

d∑
i=1

[Σ′B(τ)]2i βi + δ1 , B(0) = 0 ,
(6)

which can be solved either analytically or numerically.

By Eq. (5), the h periods ahead conditional variance of the maturity τ yield, given
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information through t, is

V τ
t,h = V art(yτt+h) = 1

τ 2B(τ)′V art(Xt+h)B(τ) = bτ,h0 + bτ,h′1 Xt , (7)

i.e., affine in the latent state variables. The precise forms of bτ,h0 and bτ,h1 are given in

Appendix D.3. We consider affine models with d, the number of factors, from 1 to 3.

Table 1 summarizes the models considered, including reference, Am(d) classification as

in Dai and Singleton (2000), m being the number of factors conditioning variances, and

market price of risk specification. In Appendix C, we provide a formal description of each

model. We use Eq. (7) as the basis of our first yield curve based forecasters. Given the

diversity of models considered, we are able to examine the impact of both the number

of latent factors and stochastic (state dependent) volatility on the forecasting of future

interest rate risk.

Insert Table 1 About Here

Implementation of Eq. (7) requires values for bτ,h0 , bτ,h1 , andXt. We estimate the models

recursively by quasi maximum likelihood (QML) using the Kalman filter and an expanding

estimation window, allowing for additive measurement errors in yields (see Section 4 for

details). To construct the forecast at t′ of subsequent realized yield volatility V τ
t′+1|t′+h,

only information through t′ is used to generate bτ,h0 , bτ,h1 , and X1, . . . , Xt′ , and hence the

conditional volatility (or variance) estimates V̂ τ
t,h, t = 1, . . . , t′, from Eq. (7), for each

maturity τ , and fixed h. Next, Eq. (1) is estimated with Zt = V̂ τ
t,h, t = 1, . . . , t′ − h, i.e.,

q = 1 in this case, and the final forecast of V τ
t′+1|t′+h is α̂τ,h + β̂τ,h′V̂ τ

t′,h. Thus, even with

correct model specification, the conditional variance itself is not an unbiased forecast of

subsequent realized yield volatility. By the law of total variance, it includes the variance

of the conditional mean yield, given both information through t′ and integrated volatility

through t′+h, thus inducing an upward bias.3 The recursive regressions in Eq. (1) provide
3Write Ft for the information set. We have V ar(yτt+h | Ft) = E(V ar(yτt+h | Ft, IV τt|t+h) | Ft) +

V ar(E(yτt+h | Ft, IV τt|t+h) | Ft), where V ar(yτt+h | Ft, IV τt|t+h) = IV τt|t+h. Hence, V τt,h = V ar(yτt+h | Ft)
equals Et(IV τt|t+h) ≈ Et(V τt+1|t+h) (as realized volatility converges rapidly to integrated volatility in high-
frequency data) plus a positive bias stemming from conditional mean variation, V ar(E(yτt+h | Ft, IV τt|t+h) |
Ft). The latter is negligible for short horizons h (cf. Andersen et al. (2006)), but potentially important
for our month-ahead forecasts. See also Appendix D on conditional mean variation in the Kalman filter.
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a simple means of converting conditional variances into proper forecasts of future interest

rate risk based on investor’s information set.

2.1.b. PCA based forecasters

To examine whether or not the yield curve contains relevant information about future

volatility and, if it does, whether the term structure models capture this information, we

construct volatility forecasts using PCA factors based on the yield curve. We assume that

the N × T yield panel is generated by a factor model,

yt = π0 + π′1Ft + εt , (8)

where Ft is a k-vector of common covariance-generating factors, k < N , π1 is a k×N ma-

trix of factor loadings, and π0 represents de-meaning. We estimate Ft by PCA using the

methodology of Bai and Ng (2002). There is some consensus in the literature that three

factors can explain the variation in the yield curve (e.g., Litterman and Scheinkman

(1991)). However, whether more factors can improve volatility forecasts, and hence

whether different factors are important for explaining yields and for forecasting volatilities

are open questions.

Recursive volatility forecasts are built using the fitted PCA factors F̂t from Eq. (8) for

Zt in Eq. (1), for fixed τ , h, i.e., q = k in this case. In the empirical analysis, we use k = 3

to 6 factors.

2.1.c. A common factor approach

For our third yield curve based forecaster, we consider a common factor approach, using

volatility information across maturities to combine the maturity-specific forecasts from

Section 2.1.b. The approach is similar to that used for forecasting bond risk premiums in

Cochrane and Piazzesi (2005), based on forward rates, and in Ludvigson and Ng (2009),

based on macro variables. Here, we construct a common factor for interest rate risk

forecasting based on information from the yield curve.

Let F̃t denote some combination of fitted PCA factors from Eq. (8). We regress sub-
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sequent variance averaged across maturities on F̃t,

1
4

4∑
i=1

V τ̃i
t+1|t+h = γh0 + γh′1 F̃t + wht+h , (9)

for fixed h, where τ̃1, . . . , τ̃4 are the four maturities for which we have high-frequency data.

Recursive volatility forecasts are constructed using Eq. (1), for each maturity τ = τ̃i,

separately, with the fitted values Ṽt from Eq. (9) for Zt, i.e., q = 1 in this case. In F̃t, we

allow for selection from among the first six PCA factors from Eq. (8), and in robustness

checks we allow squares, cubes, and interactions in the first three of these (see Section 6.1).

Following Ludvigson and Ng (2009), the optimal combination of terms to include in F̃t is

selected by minimizing the Bayesian information criterion (BIC) for Eq. (9). We consider

both selection based on the initial estimation period, only, and recursive updating of the

selection every period.

2.1.d. Risk premium based forecasters

Motivated by the literature on forecasting risk premiums in the bond market, we use

interest rate spreads to form two additional yield curve based volatility forecasters. The

first is the yield spread of Campbell and Shiller (1991). In this case, the explanatory

variable for the maturity τ yield volatility is simply the difference between the maturity

τ yield itself and the short rate, which we proxy by the CRSP 1-month T-bill rate,

denoted y1/12
t . Thus, volatility forecasts are constructed from Eq. (1), with Zt = yτt −y

1/12
t ,

i.e., q = 1. The final risk premium based forecaster is based on the forward spread of

Fama and Bliss (1987). We use the difference between the maturity τ forward rate,

f τt = yτt + (τ − h)
(
yτt − yτ−ht

)
/h, and the short rate as explanatory variable. Thus,

maturity τ yield volatility forecasts are constructed from Eq. (1), with Zt = f τt − y
1/12
t .

2.2. Time series based yield volatility forecasters

As benchmarks, we consider three simple time series models, namely, the random walk

(RW), the HAR model of Corsi (2009), and the realized GARCH model of Hansen et al.

(2012). All three are widely used for volatility forecasting in equity markets. The RW
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forecast of V τ
t+1|t+h is simply V τ

t−h+1|t. The realized GARCH specification is chosen because

it utilizes the information in the high-frequency data in forecasting, similarly to RW and

HAR.

2.2.a. The HAR model

The HAR model is given by

V τ
t+1|t+h = βτ,h0 + βτ,hD V τ

t + βτ,hW V τ
t−4|t + βτ,hM V τ

t−21|t + uτ,ht+h . (10)

The motivation for the cascade specification is the hypothesis on heterogeneous beliefs,

according to which different investors react to information from the past day, week (5

trading days), and month (22 days). The model is estimated using nonoverlapping de-

pendent variables, i.e., estimation given information through t′ uses t = t′− h, t′− 2h, . . .

in Eq. (10). Upon estimation, the forecast as of t′ is given directly by Eq. (10), for t = t′.

2.2.b. Realized GARCH

Our final time series benchmark is the realized GARCH model. To accommodate mean

reversion in yields, we consider a slightly extended model specification, given by

yτt − yτt−h = aτ + bτyτt−h +
√
hτt z

τ
t , (11)

hτt = cτ +
p∑
i=1

dτi h
τ
t−ih +

q∑
j=1

gτj V
τ
t−(j+1)h+1|t−jh , (12)

V τ
t−h+1|t = ξτ + φτhτt + ϑτ1z

τ
t + ϑτ2((zτt )2 − 1) + uτt , (13)

where hτt is the conditional variance of yτt , given information through t− h, zτt ∼ N(0, 1),

uτt ∼ N(0, σ2
τ,u), and suppressing the dependence of parameters on h. The standard

model for equities, with returns (log-price changes) rather than yield changes on the left-

hand side of Eq. (11), corresponds to the special case bτ = 0, and the extended model

accommodates mean reversion in yields for bτ ∈ (−1, 0) (at a rate corresponding to κ =

− log(1+bτ )/h in continuous time, see Appendix D). For purposes of forecasting volatility
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over the h = 22 day horizon, we consider a monthly specification, i.e., given information

through t′, the model is fit to yields and realized measures at t = t′, t′ − h, t′ − 2h, . . ., in

analogy with the HAR model.

The model is estimated by maximum likelihood. We adopt the specification p = 1,

q = 2 from Hansen et al. (2012). Upon estimation, the forecast as of t′ is ξ̂τ + φ̂τhτt′+h.

For comparison, we applied the standard model with either yields or yield changes on the

left-hand side of Eq. (11), i.e., imposing bτ = −1 and 0, respectively. From the results,

the extended mean-reverting realized GARCH model performs best for purposes of yield

volatility forecasting, so we focus on this specification in our empirical work.4

3. Data description and construction of realized measure

3.1. Data description and cleaning

Our high-frequency data set is based on the three Treasury futures (5 years, 10 years, and

long term) for the long end of the yield curve, and 3-month Eurodollar futures for the

short end. The Treasury futures are traded on the Chicago Board of Trade (CBOT), and

the Eurodollar futures on the Chicago Mercantile Exchange (CME). Data are obtained

from CME Group. For liquidity reasons, we start our sample on January 2, 2000, and

data run through October 31, 2016. Due to the opening hours in the early part of our

sample, we consider a trading day from 7:20 am to 2:00 pm Eastern Time. All weekends

and non-working days are excluded. This leaves a raw data set covering 4,207 days.

The Treasury futures have delivery dates in four different months during the year—

March, June, September, and December. For each underlying bond maturity, we include

the futures contract with highest liquidity, in most cases that with shortest term to

delivery. For the Eurodollar futures, we include the two contracts with closest to 3 and 9

months to delivery, and convert the prices of these into yields of 6 months and 1 year to

maturity. Section 3.2 describes the details of the procedure.

For each of the five contracts (three Treasury and two Eurodollar futures), we construct

minute bars containing the first observation in each minute. If multiple observations on
4Results for the standard realized GARCH model are available from the authors on request.
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the same contract have the same time stamp, we use the median price. We apply a

sanity check, discarding observations at a distance more than ten times the absolute mean

from the median of the previous ten observations. Finally, we exclude days without any

observation for a whole hour for at least one of the five futures contracts. This eliminates

93 trading days, leaving 4,114 observation days in the final analysis data set. Appendix

B describes the liquidity of the Treasury contracts.

3.2. Construction of intraday yield curves using futures data

We extract yield curves from futures prices in a two-step approach. In the first step,

futures prices are converted into coupon bond prices. In the second, yield curves are

extracted from the coupon bond prices. Our approach differs from that of Faust et al.

(2007) mainly in two respects. First, we include more information on the long end of

the curve, using all three Treasury futures, rather than only 10-year contracts. Second,

following Dai et al. (2007), Andersen and Benzoni (2010), and others, we calibrate yield

curves using the cubic spline method of Waggoner (1997), instead of the Nelson and Siegel

(1987) method. In the following, we briefly outline the approach. More details on the

first step are provided in Appendix A.1, and on the second in Appendix A.2.

Both Treasury and Eurodollar futures are considered in the first step. The underlying

bond of a Treasury futures contract is hypothetical, and unknown until delivery. The

seller chooses a bond from a delivery basket consisting of bonds meeting requirements

from CME, implying that a Treasury futures involves two options: When to deliver,

and which bond to deliver. We neglect the value of the first option by assuming that the

delivery date is the first working day of the delivery month. Next, given the delivery date,

we construct the delivery basket by combining the futures data with daily CRSP data on

Treasuries, find the cheapest-to-deliver (CTD) bond in the basket thus constructed, and

calculate the futures-implied coupon bond price.5

5Treasuries are non-convertible, and starting in 2000 avoids problems with the flower bonds issued
until 1965, as these all matured by 1998. Callable bonds and notes were issued until 1985, but many of
these subsequently repurchased by the Treasury and reissued as non-callable, although on a discretionary
basis, without sinking fund provision. We drop the small number of remaining callable issues outstanding
as of January 2, 2000.
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The value of the Eurodollar futures at maturity is determined by the 3-month LIBOR

rate. From the observed futures price, we derive a LIBOR rate with maturity date 3

months after the delivery date. LIBOR rates are afflicted with credit risk, and we deduce

Eurodollar-implied government yields by assuming a constant credit spread between LI-

BOR and government yields. Daily LIBOR rates with maturities of 6 months and 1 year

are obtained from the St. Louis Fed and compared with daily Gürkaynak et al. (2007)

yields (see Section 3.4 for the construction) to estimate the spread. Finally, Eurodollar-

implied government yields are converted into zero-coupon bond prices, so that units match

with the coupon bonds.

In the second step, extracting yield curves from the futures-implied bond prices using

cubic splines, an implication of our approach is that the maturities of bonds considered

vary over the sample period, and therefore knot points vary, too. Due to the small number

of cross-sectional observations (five futures contracts), we choose not to interpolate the

calibrated curves between points of principal payments. The outcome of the procedure is

a complete set of consecutive yield curves at the 1-minute frequency.

Yields are read off the calibrated curves at maturities τ reflecting the underlying ma-

turities of the futures contracts, to ensure a sufficient amount of market based information

around the relevant points along the curves. Initially, we consider τ = 0.5, 1, 5, 7, and 15

years. The match to the maturities underlying the corresponding futures is by construc-

tion for the first two, and holds to a reasonable degree for the third, while τ = 7 is included

as the closest among standard maturities to the approximately 7.5 year average maturity

of the Treasury note underlying the 10-year contract. The underlying of the long term

Treasury futures is a hypothetical 6% bond. At expiration, a bond with maturity between

15 and 25 years must be delivered. When the interest rate is below 6%, conversion rates

favor bonds with short maturities, i.e., the underlying bond is actually of maturity 15

years for our out-of-sample window, and hence τ = 15 is considered as a candidate fifth

maturity for our construction. To verify the quality of the resulting high-frequency yields

at the five candidate τ -values, we match a daily frequency subsample of them with daily

Gürkaynak et al. (2007) yields. For the latter, the number of bonds with maturity around
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15 years outstanding at any given point in time in the CRSP data is rather limited, hence

implying a low weight around this maturity in the calibration, and we find a relatively

low correlation between the resulting yields and the daily subsample of ours at τ = 15.

Thus, as we cannot verify the quality of our fit at the fifth maturity, we henceforth restrict

attention to the yields read off our high-frequency curves at τ = 0.5, 1, 5, and 7 years,

although we continue to use all five futures contracts in the construction of the curves.

At the four maturities retained, correlations between the end-of-day subset of futures-

implied yields extracted from our 1-minute data and the daily calibrated yields range

between 99.58% and 99.86% (see Table A.1 in the Appendix). In effect, we have created

a high-frequency intraday version of the Gürkaynak et al. (2007) dataset up to maturity

τ = 7. Table 2 shows descriptive statistics on our yield data, by maturity. The term

structure of interest rates is upward sloping on average over the sample period, and

the term structure of volatilities downward sloping at longer maturities. Skewness and

kurtosis are modest, especially at longer maturities. Figure 1 displays the evolution

through time in yields, by maturity, along with a three-dimensional view of the evolution

of yield curves through calendar time. The transition to the zero lower bound (ZLB)

regime around 2008 has a strong impact, especially at the shorter maturities.

Insert Table 2 and Figure 1 About Here

3.3. Realized volatility measure

Access to high-frequency data on intraday yield curves enables us to estimate volatilies

using realized measures. The market for the Treasury futures used in the construction

of yield curves (Section 3.2) has undergone dramatic changes in liquidity during our

sample period, in part due to the introduction of the electronic trading pit in 2004,

and data are likely afflicted with market microstructure noise (see Appendix B). The

high frequency econometrics literature proposes estimators of volatility that are robust

to microstructure noise, e.g., the two time scales estimator of Zhang et al. (2005), the

realized kernel approach of Barndorff-Nielsen et al. (2008), and the pre-averagered realized

variance of Jacod et al. (2009). We deal with the issue by implementing the pre-averaging
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estimator following Christensen et al. (2014), who show that this is successful in empirical

analysis of volatility.

For each maturity τ , and on each day, write the intraday yield data as yτi
n

, for

i = 0, 1, . . . , n. Pre-averaged yield changes are calculated by averaging yields in a local

neighborhood consisting of K observations,

ȳτi = 1
K

 K−1∑
j=K/2

yτi+j
n

−
K/2−1∑
j=0

yτi+j
n

 , (14)

with K the nearest even integer to θ
√
n, and θ a tuning parameter. The pre-averaged

realized variance is then calculated as

V τ
t = n

n−K + 2
1

KψK

n−K+1∑
i=0

(ȳτi )2 − ω̂2

θψK
, (15)

with ψK = (1 + 2K−2)/12, and ω̂2 an estimate of the noise variance,

ω̂2 = − 1
n− 1

n∑
i=2

(
yτi
n
− yτi−1

n

)(
yτi−1

n
− yτi−2

n

)
. (16)

Given our one-minute sampling, the number of observations in a day, n, is 380, and we

set θ = 1. Since we are interested in volatility over the entire day, not only the hours

for which we have high-frequency data, we add the squared overnight difference in yields,

following Andersen and Benzoni (2010) and Bollerslev et al. (2018). The risk measure

over the next month is simply V τ
t+1|t+h, h = 22, aggregating the pre-averaged realized

variances over 22 trading days.

Table 3 shows descriptive statistics on the daily annualized pre-averaged realized yield

volatilities over one day,
√
V τ
t , in Panel A, and one month,

√
V τ
t+1|t+22, in Panel B, in

percent, by maturity. Although the volatility (square root) form of the measures facilitates

interpretation, e.g., a unit mean corresponds to a one percent annual yield volatility, the

raw (variance) form is used for forecasting, and descriptive statistics for this are reported

in Panels C and D.

Insert Table 3 About Here
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The term structure of volatilities (variances) exhibits a hump shape across the four matu-

rities considered, with highest average at the τ = 1 year maturity. The standard deviation

(time series variation in volatility) shows a similar pattern. Skewness and excess kurtosis

are highest at the medium maturities, τ = 1 and 5 for the variance and volatility mea-

sures, respectively, and lowest at the long end of the curve, τ = 7, where they essentially

vanish for the one-month volatility measure.6 On average, volatilities over one month are

slightly larger than over one day, possibly reflecting that some conditional mean variation

remains in the realized measures due to finite sampling frequency, cf. footnote 3, as well

as Jensen’s inequality for the square root measures (volatility spikes are included in 22

measures rather than one). As expected, other moments are smallest for the aggregated

measures.

Figure 2 displays the evolution through time in daily annualized pre-averaged realized

one-month yield volatility in percent, by maturity, corresponding to Table 3, Panel B,

along with a three-dimensional view of the volatility surface.

Insert Figure 2 About Here

Volatilities rise quite dramatically for the shortest maturities during the financial crisis

and the transition to the ZLB regime, and after the transition drop to a lower level than

before.

3.4. Daily yield data

To enable estimation of the affine term structure models, as well as the PCA, common

factor, and risk premium based forecasters, on a daily yield panel with more than four

observations in the cross section,7 we consider the estimated parameters provided by

Gürkaynak et al. (2007). Their daily frequency dataset is extracted from a large set of

coupon bonds, using the Svensson (1994) method. The continuously compounded yield
6Skewness and kurtosis are close to 0 and 3.
7Our high-frequency yield curves are constructed using five futures contacts, and four yields are

retained in the resulting high-frequency panel, cf. Section 3.2. The time series models are estimated
using realized measures (Section 3.3) based on the high-frequency panel.
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at maturity τ is written as

yτt = β0 + β1
1− e−

τ
θ1

τ
θ1

+ β2

(
1− e−

τ
θ1

τ
θ1

− e−
τ
θ1

)
+ β3

(
1− e−

τ
θ2

τ
θ2

− e−
τ
θ2

)
, (17)

and estimates of (β0, β1, β2, β3, θ1, θ2) are provided at daily frequency.8 We follow Chris-

tensen et al. (2010) and consider N = 8 maturities in the daily cross sections, namely, 3

and 6 months, and 1, 2, 3, 5, 7, and 10 years.

4. Estimation

The affine term structure models from Section 2.1.a are estimated on daily data, cf.

Section 3.4, using the Kalman filter. The basic measurement and transition equations are

obtained by allowing for measurement error ετt+h in the yields in Eq. (5), and discretizing

the state dynamics in Eq. (2), i.e., the state space model is given by

yτt+h = A(τ)
τ

+ B(τ)′
τ

Xt+h + ετt+h , (18)

Xt+h = Ch +D′hXt + ηt+h , (19)

where ετt+h ∼ N(0, Hτ,h), ηt+h ∼ N(0, Qt,h), h = 1 for daily data and daily time index

t, with expressions for A and B in Appendix C, and for Ch, Dh, and Qt,h in Appendix

D. For the two Gaussian models, the standard linear filter applies. For the stochastic

volatility models, Cox et al. (1985) (henceforth CIR) and AFNS3, we apply the extended

Kalman filter, approximating transitions by Gaussian distributions.

Upon estimation, conditional variance estimates are computed using Eq. (7), now with

h indicating the forecasting horizon (h = 22 for month-ahead forecasting), and corrected

for the bias stemming from measurement error in yields, ετt+h in Eq. (18), producing

Ṽ τ
t,h = bτ,h0 + bτ,h′1 Xt+h +Hτ,h. Recursive volatility forecasts are constructed using Ṽ τ

t,h for

Zt in Eq. (1).

For the stochastic volatility models, we consider, in addition, a further extension to
8Available at http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html and updated

daily.
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the estimation method by including second moments in the filter, following Cieslak and

Povala (2016) and Feldhütter et al. (2016). Based on Eq. (7), the additional measurement

equation, beside Eq. (18), is

V τ
t+h = bτ,h0 + bτ,h′1 Xt + ũτ,ht+h , (20)

with V τ
t+h the pre-averaged realized yield variance from Eq. (15), ũτ,ht+h ∼ N(0, σ2

τ,h), and

h = 1 for the daily data estimation. The Gaussian term structure models imply that

the variance of the yields is constant, and the filter extended with (20) is not applied to

these models, although the predictive regression correction in Eq. (1) is. Indeed, the latter

largely serves as a computationally simple alternative to the second moment extension,

and we find in our empirical work that the basic recursive regressions in Eq. (1) based on

investor’s information set perform better for forecasting purposes than including Eq. (20)

in the state space model.9

5. Empirical results

We consider the forecasting of yield volatility over the next month. The first set of

estimates is based on the period January 2, 2000, through December 31, 2007, and the

next 100 observations are used for recursive estimation of the predictive regressions in

Eq. (1). This leaves 2,167 observations for the out-of-sample period, covering June 7,

2008, through October 31, 2016. This way, the out-of-sample window starts just before

the transition to the ZLB regime. For PCA, risk premium based forecasters, and the

HAR model, forecasts are not restricted to be positive. To ensure meaningful volatility

forecasts, we apply a sanity filter, such that we do not forecast below the 2.5 percentile

of the empirical distribution of observed realized variances.10

9Appendix D provides further details on estimation, including the Kalman filter and the second
moment extension.

10The empirical distribution of observed variances is updated recursively, and forecasts below the 2.5
percentile replaced by this.
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5.1. Statistical value of interest rate risk forecasts

To assess the yield volatility forecasts against a RW, we consider the R2
OoS measure of

Campbell and Thompson (2007),

R2
OoS = 1−

∑T−h
t=t0+1(V τ

t+1|t+h − V̂ τ
t,h,ξ)2∑T−h

t=t0+1(V τ
t+1|t+h − V̂ τ

t,h,RW )2
, (21)

where V̂ τ
t,h,ξ is the forecast from model ξ, t0 is the end of the initial estimation period, and T

is the end of the sample. A positive R2
OoS indicates more accurate volatility forecasts from

model ξ than from the RW. The null hypothesis R2
OoS ≤ 0 is tested against the alternative

R2
OoS > 0 using a one-sided Diebold and Mariano (1995) test based on the Newey and

West (1994) variance estimator with automatic lag selection of Andrews (1991).

Insert Table 4 About Here

Table 4 presents the resulting R2
OoS statistics in percent and Diebold-Mariano p-values

for all forecasters and maturities considered. From the first column of the table, none of

the forecasters significantly improves over the RW at the shortest maturity, τ = 0.5 (6

months). Only the HAR model generates positive R2
OoS, and the p-value, at 0.39, is

insignificant at conventional levels. This indicates that at the short end of the curve,

neither cross-sectional yield curve information nor time series modelling adds predictive

information about future volatility beyond the naive forecast. In contrast, at maturities

τ = 1 year and longer, R2
OoS is generally positive, i.e., most methods produce more accu-

rate forecasts than the RW, with p-values similar across methods, declining as maturity

increases, and turning significant at the 10% and 1% levels at τ = 5 and 7 years, respec-

tively. Thus, information from either the yield curve or the time series of volatilities can

be put together to improve volatility forecasts relative to the RW at longer maturities,

but not at the short end of the curve.

A few comparisons within Table 4 are worth noting. The first panel shows results for

the term structure models. Introducing stochastic volatility leads to improved forecasts

for the three-factor model, but not for the one-factor model, i.e., R2
OoS is higher for
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AFNS3 than for AFNS0, but about as high or higher for the Vasicek model than for

CIR. The AFNS3 model performs about as well as Vasicek, but AFNS0 does not. In

general, parsimony can be rewarded in forecasting comparisons, as it reduces parameter

uncertainty and the risk of in-sample overfitting, albeit at the expense of increased risk

of model misspecification. The results suggest that the one-factor specifications strike a

better balance between parsimony and misspecification than AFNS0, and that allowance

for stochastic volatility is required to justify the additional parameters in the three-factor

specifications.

In general, the AFNS0 implementation is quite unsuccessful. Therefore, the table also

shows results for AFNS0 without the predictive regression correction in Eq. (1), which for

this model only turns out not to improve forecasting performance across all maturities,

but R2
OoS remains lower than for the one-factor Vasicek model.11 Further, including

second moments in the extended Kalman filter does not lead to an overall improvement

in volatility forecasting for the AFNS3 model, consistent with the notion that Eq. (1)

provides an adequate account of the second moment history in investor’s information

set.12

The next panels in Table 4 show results for the PCA, risk premium, and common

factor based forecasters. For the latter, the label “Initial” indicates that the selection of

PCA factors is based on the initial estimation period, and “Recursive” that it is updated

every period. All these methods generate R2
OoS measures about as high or higher than the

term structure models in the first panel, especially at the longest maturities, suggesting

that the yield curve contains some information about future interest rate risk that the

term structure models do not capture. For the PCA based forecasters, including more

than three components actually makes forecasts deteriorate, presumably due to loss of

parsimony. This is consistent with Litterman and Scheinkman (1991), who found that

three factors provide a good description of the term structure.

The last panel in Table 4 shows results for the time series models. Although the
11Results for the other models without regression correction are available from the authors on request.
12Forecasting performance is dismal for the other models when including second moments. Results are

available from the authors on request.
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HAR model generates the highest R2
OoS at τ = 0.5 in the table, the cross section based

forecasters (term structure models, PCA based, etc.) generate higher measures than HAR

at τ = 1 and 5, and the risk premium and common factor based forecasters at τ = 7, too.

The mean-reverting realized GARCH model similarly generates higher R2
OoS than HAR

at longer maturities, but not higher than the risk premium and common factor based

forecasters.

For comparison, Table A.3 in the Appendix show results for volatility forecasts two

months ahead (h = 44), laid out in the same manner as Table 4. Although p-values are

higher, presumably due to higher noise-to-signal ratio at the longer forecasting horizon,

the overall pattern is confirmed. At the τ = 5 year maturity, the risk premium based

forecasts (yield and forward spread) generate highest R2
OoS across all methods, and are

borderline significant at 10%, while AFNS3, PCA, HAR, and realized GARCH all get

p-values of 15% or lower. For month-ahead forecasting, Table 4, the risk premium based

forecasts similarly generate highest R2
OoS across methods at τ = 5, and common factor

based forecasts at τ = 1 and 7, hence reinforcing the notion of information about future

volatility in the yield curve. Finally, from Table A.3, Vasicek replaces HAR as the highest

R2
OoS forecast over two months at the shortest maturity, but does not improve significantly

over RW (p = 20%). Henceforth, we focus on the one-month forecasting horizon.

Overall, the results show that information from either the yield curve or the time series

of volatilities can be used to improve month-ahead (h = 22) volatility forecasts over the

RW at longer maturities, but not at the short end of the curve. Further, the yield curve

contains information about future volatility at longer maturities that is not captured by

the term structure models.

5.2. Extracting incremental information

Here, we address the question of whether the yield volatility forecasting equations based

on the affine term structure models suffer from omitted variable bias, i.e., whether the
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expression for future volatility in Eq. (7) should be expanded to

V τ
t,h = bτ,h0 + bτ,h′1 Xt + bτ,h′2 X̃t , (22)

for forecasting purposes. We consider three ways of extracting the incremental informa-

tion variable X̃t:

(i) By PCA factors from the yield curve.

(ii) Combining (i) with a factor extracted from the past volatility forecast errors from the

analysis in (i).

(iii) By the realized volatility measure based on high-frequency data.

Since PCA factors capture the shape of the yield curve nonparametrically, improved fore-

casting performance (here, significance of bτ,h2 ) in case (i) indicates that the yield curve

contains incremental information relative to that in the affine term structure model con-

sidered. In (ii), significance indicates the existence of a factor explaining yield volatilities,

but not yields, i.e., a USV case. In other words, significance of bτ,h2 shows in case (i) that

the term structure models do not capture all relevant information about future volatility

available from the yield curve, and in case (ii) that the yield curve itself does not capture

all relevant information. In (iii), significance indicates that historical volatility contains

incremental information not captured by the term structure models.

In addition, in (i), we subject the time series models to the same test, i.e., we examine

whether the same yield curve PCA information variable X̃t can be used to improve the

volatility forecasts from the time series models. If so, this indicates that the yield curve

contains incremental information about future volatility, relative to that contained in the

volatility history itself. Conversely, we subject all other volatility forecasts to the test (iii),

i.e., we investigate whether historical volatility contains incremental information about

future volatility not captured by the term structure models, or by the yield curve itself,

including the PCA and risk premium based methods.
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5.2.a. The incremental information in the yield curve

For (i), we regress volatility forecast errors from model ξ on PCA factors from the yield

curve,

V τ
t+1|t+h − V̂ τ

t,h,ξ = φτ,h0 + φτ,h′1 F̂t + uτ,ht+h , (23)

for fixed τ , h, with F̂t the three leading fitted PCA factors at time t from Eq. (8), and test

for joint significance of φτ,h1 (k = 3 coefficients). Under the null, the model generating the

forecast V̂ τ
t,h,ξ subsumes the information content on future volatility available in the PCA

yield curve factors.

Insert Table 5 About Here

Table 5 presents results from the specification test. At the 5% level, the Vasicek, CIR,

and AFNS3 models capture all relevant information in the PCA yield curve factors about

future volatility at maturity τ = 5. On the other hand, at shorter or longer maturities,

the null is strongly rejected, i.e., these models do not capture all relevant information in

the curve. Perhaps surprisingly, the results for AFNS0 are opposite, as this model appears

to capture information in the curve about future volatility at all maturities other than

τ = 5. Judging from the relatively poor performance of AFNS0 in Table 4, the results

for this model in Table 5 can reflect lack of power due to noisy estimation of Eq. (23).

Thus, the indication is that the yield curve contains incremental information about future

volatility beyond that captured by the affine models, which tend to be most informative

at the intermediate maturity τ = 5.

For the time series models, the evidence suggests that the yield curve contains incre-

mental information about future volatility at the long end of the curve, relative to that

contained in the historical volatility series. The null is rejected at τ = 7 for both HAR

and realized GARCH models.

Taken together, the results indicate that the time series models provide the best volatil-

ity forecasts at the short end of the curve, whereas the yield curve contains important

incremental information about future volatility at the long end. Some of the information
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in the yield curve is not captured by standard affine models, although they are relatively

informative at the intermediate maturity τ = 5.

5.2.b. Can past forecast errors predict future forecast errors?

In (ii), we examine whether a factor extracted from past yield volatility forecast errors

can predict future forecast errors. An implication of USV is that it should be possible to

extract at least one factor from volatility which is not related to the yields. We investigate

this possibility by recursively extracting a factor from the fitted residuals from Eq. (23),

say, PCτ,h
u,t , then testing for whether this contains significant information about future

residuals in the regression

ûτ,ht+h = ψτ,h0 + ψτ,h1 PCτ,h
u,t + ητt+h , (24)

for fixed τ , h. Here, ûτ,ht+h is the residual from Eq. (23) at t + h, and PCτ,h
u,t is extracted

from the fitted residuals at t and earlier, across maturities τ , using PCA. Only one factor

is included, due to the small number of volatilities in the cross section. The first 100

observations are used to initialize the factor. A significant coefficient ψτ,h1 indicates that

a serially dependent USV factor is relevant for the forecast.

Insert Table 6 About Here

Table 6 shows results from estimation of Eq. (24). At 5%, evidence of an omitted

factor arises at the longest maturity for the Vasicek and AFNS0 models, and for all

maturities except the intermediate τ = 5 for the other models. Significant coefficients

ψτ,h1 are negative in all cases, consistent with mean-reversion in the USV factor. As the

test is conservative, in that the specified models are augmented with PCA factors fitted

to past yield curves, cf. Eq. (23), the results are indicative of the existence of a latent

volatility factor which is spanned neither by the parametric term structure models, nor

nonparametrically by the yield curve.
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5.2.c. The incremental information in historical volatility

In (iii), we investigate whether historical volatility contains information about future

volatility not captured by the models considered, using a similar regression as in Section

5.2.a, but with the lagged realized measure based on high-frequency data as predictor (see

Andersen and Benzoni (2010) for a related analysis). The specification is Eq. (23), with

V τ
t replacing F̂t, and we test for φτ,h1 = 0.

Insert Table 7 About Here

Results appear in Table 7. According to this test, historical volatility contains no

incremental information relative to the term structure models or common factor based

forecasters, as statistics are generally insignificant across maturities.13 While these fore-

casters do not improve over the RW at short maturities, only at long, from the results

based on R2
OoS > 0 in Table 4, they do subsume the information from the time series,

based on Table 7. The model based forecasts may to some extent benefit from the predic-

tive regression correction in Eq. (1), which incorporates volatility information through the

regression coefficients, but from investor’s perspective, this is available historical volatil-

ity, and should be allowed for in the assessment of the practical value of these models.

Further, from Table 7, PCA based forecasters are informative at long maturities, and risk

premium based at τ = 5, whereas historical volatility contains incremental information

relative to these at short maturities, except when using six PCA factors. Combining with

Table 5, the results show that at the short maturities, the PCA based forecasters provide

incremental information relative to the term structure models, while historical volatility

provides incremental information relative to PCA, but not relative to the term structure

models, i.e., the relation is not transitive, and no dominant volatility forecast stands out

at the short end. From Table 7, among the time series models, HAR subsumes the infor-

mation in historical volatility across all maturities. Realized GARCH is relatively most

informative at τ = 5, but is missing some information contained in V τ
t at other maturities

13Similar results are obtained for the term structure models if V τt in the regression is replaced by the
forecast from the HAR model, but the latter has incremental predictive power relative to the common
factor forecasts at the two longest maturities.
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τ , possibly due to recursive estimation and regime switching (to ZLB).

Overall, our specification tests reveal that the term structure of interest rates contains

incremental cross-sectional information about future risk at the long end, relative to the

time series of historical volatilities, although some of the information is not captured by

the affine models. At the short end, the time series contains information about future

volatility only captured in the model-free (PCA) approach to the yield curve if using

relatively many (six) factors. The affine models and the common factor approach do

subsume this information content in historical volatility, but do not further improve over

the RW forecast at the short end. Finally, we find evidence pointing to the existence of a

USV factor in the data.

5.3. Economic value of interest rate risk forecasts

So far, the analysis has focused on statistical measures of predictive ability. We next

examine whether the volatility forecasting methods considered generate utility in a port-

folio allocation framework, following Bollerslev et al. (2018). To this end, the analysis

is translated from the level of yields to returns. We consider an investor purchasing a

zero-coupon bond of maturity τ + h at time t and selling the bond at t + h. Let r̃t+h

denote the log return from this trading strategy. The relation between returns and yields

is

r̃t+h = −τyτt+h + (τ + h)yτ+h
t , (25)

so the conditional variance of the return as of t is given by

V art(r̃t+h) = τ 2V art(yτt+h) , (26)

i.e., depending on maturity and the yield volatility forecast we consider. Investor is

assumed to have mean-variance preferences and access to a risk-free as well as a risky

asset, the latter being the zero-coupon bond with time-varying volatility. Assuming a

constant Sharpe ratio, investor’s utility depends only on the variance of the risky asset.

We consider maturities 7, 13, 61, and 85 months, so that the analysis depends on the
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forecasts from the previous sections.

Let wt be the portfolio weight allocated to the risky bond and 1 − wt the allocation

to the risk-free asset with return rft . The return to the portfolio at time t+ h is

rt+h = rft + wtrxt+h , (27)

where rxt+h = r̃t+h− rft is the excess return to the risky asset. Since rft is common across

all forecasters, we only consider utility in terms of excess return. Expected utility per

unit of wealth is given by

Ut+h = wtE(rxt+h)−
1
2γw

2
tV art(rxt+h) , (28)

where γ is relative risk aversion, and V art(rxt+h) = V art(r̃t+h) from Eq. (26). The optimal

weight w∗t is then

w∗t = 1
γ

Et(rxt+h)
V art(rxt+h)

, (29)

which, given the constant Sharpe ratio, SR = Et(rxt+h)/
√
V art(rxt+h), becomes

w∗t = 1
γ

SR√
V art(rxt+h)

. (30)

By Eqs. (27) and (30), the volatility target sought by the investor is w∗t
√
V art(rxt+h) =

SR/γ. If the forecasted volatility τ
√
V art(yτt+h) exceeds this target, investor will place

only a portion of wealth in the risky asset, wt < 1, and save the remainder in the risk-free

asset. Conversely, when the forecasted volatility falls short of the target, investor will

take a geared position in the risky asset, wt > 1, financed by borrowing at the risk-free

rate. Thus, investor follows a volatility timing strategy.

To examine the utility gains from the various forecasters, let Et(·) denote the con-

ditional expected value from the true model, Eξt (·) the conditional expected value from

model ξ, and similarly for conditional variances. Assuming that investor uses model ξ

for portfolio selection, the optimal weight becomes w∗t,ξ = SR/
(
γτ
√
V arξt (yτt+h)

)
. The
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expected utility per unit of wealth can then be expressed as

Ut+h = SR2

γ


√
V art(yτt+h)√
V arξt (yτt+h)

− 1
2
V art(yτt+h)
V arξt (yτt+h)

 . (31)

If a model is able to perfectly predict conditional variance, then investor’s utility is

SR2/(2γ). Following Bollerslev et al. (2018), we set the annualized Sharpe ratio to 0.4.

The risk aversion parameter, γ, is set to 5, following Sarno et al. (2016) and Gargano

et al. (2017) from the bond return prediction literature. This corresponds to an annual-

ized volatility target of 8%.

Insert Table 8 About Here

To evaluate predictors, we simply average realized utility. Table 8 reports the results.

At the two shortest maturities, the RW generates highest realized utility across all volatil-

ity forecasting methods. At the 5 year maturity, investor is better off ignoring the RW

forecast and investing in the risk-free asset, which generates utility zero. Even higher

utility is achieved at the two longest maturities using either HAR, realized GARCH, or

risk premium based forecasters, all of which improve significantly over RW, as does CIR

including second moments at τ = 5. The yield spread based forecast, HAR, and realized

GARCH are essentially tied for highest utility at the two longest maturities, along with

Vasicek at the longest, τ = 7, where PCA provides value, too. Among the term struc-

ture models, CIR generates highest utility at maturities six months and one year, CIR

including second moments at five years, and Vasicek at the longest maturity. The CIR,

AFNS0, and AFNS3 models perform better than the PCA based forecasters across all but

the longest maturity. Apparently, at the two longest maturities, the inclusion of second

moments is better justified on utility based rather than statistical grounds, as it generates

higher realized utility for CIR, although not for AFNS3.

Overall, the analysis shows that the information about future reinvestment rate risk

contained in both the yield curve (Vasicek, PCA, interest rate spreads) and historical

volatility (HAR, mean-reverting realized GARCH) provides economic value to a risk averse

investor in longer maturity instruments, not in short.
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6. Robustness

This section addresses the robustness of the results in Section 5. First, we consider

whether interest rate risk forecasts are improved by including nonlinear terms in PCA

factors. Next, we examine whether there is a trade-off between explaining yields and

forecasting volatility. Finally, we assess the information about future yield volatility in a

wide cross section of coupon bond prices.

6.1. Nonlinearities and interest rate risk

Feldhütter et al. (2016) find that including nonlinearities via quadratic and cubic terms as

well as interactions in factors increases in-sample explanatory power for realized variance.

In our out-of-sample framework, we find in Table 4 that using the three leading factors F̂t

extracted from the yields at time t based on Eq. (8) suffices for the PCA based forecasts,

i.e., adding factors beyond three does not increase accuracy. Here, we examine whether

including nonlinearities in the first three PCA factors improves forecasts, both for the

common factor approach and the maturity-specific14 forecasts. As in the linear common

factor approach, Eq. (9), the selection of terms to include is based on the BIC, either for

the initial estimation period, or updated recursively.

Insert Table 9 About Here

Results appear in Table 9. For the common factor approach, selecting nonlinear

terms based on the initial estimation period, only, generates more accurate forecasts than

recursively updating the selection.15 This finding points to a regime switch in which

the ZLB regime is more similar to the initial estimation period than to the transition

period, i.e., forecasts into the ZLB period are harmed by updating the selection during

the transition. The same applies for the maturity-specific forecasts at the two longest

maturities. Further, at these maturities, the common factor based forecasts are more

precise than the maturity-specific. At the two shortest maturities, the maturity-specific
14In that no common factor based on Eq. (9) is used.
15A similar phenomenon is observed for the linear common factor based forecasts in Table 4, although

only at the two shortest maturities.
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forecasts with recursive selection of nonlinear terms are about as precise as the best

common factor based forecasts. However, only common factor based forecasts improve

significantly over the RW, and only at the long end of the curve, τ = 7, although results

are close to significant at τ = 5, too (significant at 10% with initial selection). In the linear

case, Table 4, similar (borderline) significant results at (τ = 5 and) τ = 7 were found not

only for common factor based approaches, but for the maturity-specific (PCA based), too.

Thus, including nonlinear terms makes maturity-specific forecasts lose significance at the

long end, although the R2
OoS measure itself is improved at the short end with recursive

updating. Including nonlinear terms in the common factor approach makes the measure

improve in the case with initial selection, but deteriorate at the long end in the recursive

case, hence reinforcing the impression of a regime shift.

Insert Figure 3 About Here

Figure 3 shows yield volatility forecast errors over time, by maturity, for selected fore-

casting methods. Cumulative squared errors for a given forecasting method are subtracted

from those for the RW, so that an increasing curve indicates better forecasting than by

RW, and vice versa. In the common factor case, the improvement in the approach with

initial selection of nonlinear terms relative to recursive updating occurs around 2009 for

the two shortest maturities, consistent with the ZLB transition driving the phenomenon.

For comparison, the figure shows results for Vasicek, CIR, and HAR, too. Most meth-

ods exhibit jumps in forecasting accuracy, moving into the ZLB regime, although the

effect materializes later at longer maturities. It could be expected that CIR (with state-

dependent volatility) would handle the entire ZLB period better than Vasicek, but this is

only confirmed at the long end of the curve.16 Historical volatility (HAR) forecasts better

than the curve-based methods at the shortest maturity, but not at longer, where the com-

mon factor based forecasts dominate. Improvements relative to the RW continue steadily

over calendar time at τ = 7, especially for the yield curve based methods, consistent with

incremental volatility information at the long end of the curve, whereas results stabilize

through the ZLB period at shorter maturities.
16During the transition, around 2009, it holds at the short end, too.
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Summing up, the results show that, first, allowing for nonlinearities does not generate

an overall improvement in yield volatility forecasting. Second, the regime switch around

the transition to the ZLB is confirmed. Following this, the curve-based methods improve

over historical volatility at the long end.

6.2. Trade-off between explaining yields and forecasting volatility

The finding in Table 4 that using the first three PCA factors F̂t from Eq. (8) generates more

accurate yield volatility forecasts than using the first four, five, or six factors raises the

additional question of whether using exactly these three is optimal, or whether some of the

remaining factors beyond the first three are more informative about future yield volatility.

Further, if volatility forecasts are indeed improved by using some other combination of

factors, the question arises whether the optimal combination is common across maturities.

To address these issues, we consider a regression of the type in Eq. (1), with Zt repre-

senting a combination of three of the first six PCA factors, i.e., not necessarily the first

three. We consider all 20 possible combinations.

Insert Table 10 About Here

Table 10 presents the R2
OoS results. As for the PCA based forecasts in Table 4, all

combinations of factors significantly improve forecasting performance relative to the RW

at level 1% at the longest maturity, τ = 7, and at 10% at τ = 5, whereas no combination

outperforms the RW at the short end of the curve. For none of the maturities is volatility

forecasting based on the three leading PCA factors (last line in the table) among the best

choices. It is not among the worst specifications, with four or more combinations at each

maturity performing worse (except only two at τ = 5). Still, the evidence is clearly that

using the first three factors is not optimal for purposes of forecasting yield volatilities.

Further, the optimal combination of factors for volatility forecasting is not common across

maturities, but it is close. At the long end of the curve, the best forecasts are obtained by

using factors 3, 5, and 6, and this combination is among the best across all maturities. At

τ = 5, only two very similar combinations, (3, 4, 6) and (3, 4, 5), generate slightly higher

R2
OoS than (3, 5, 6). At τ = 2, only three of 20 combinations are better, and at τ = 1 only
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a single, similar one, (2, 3, 6). The importance of including the sixth factor for purposes of

yield volatility forecasting is consistent with the finding from Table 7 that only using six

PCA factors subsumes the information about future yield volatility contained in historical

volatility. The deterioration in performance by adding factors beyond the leading three

in Table 4 indicates the importance of parsimony, i.e., although higher-order factors are

informative about volatility, this is only revealed by forecasting using these factors alone.

The results indicate a trade-off between explaining yield levels and forecasting interest

rate risk. The fourth and higher PCA factors explain future volatilities more than current

yield curves, which to a large extent are explained by the first two factors, level and slope.

The third factor, curvature, plays a role for both curves and volatilities.

6.3. Interest rate risk forecasts based on a cross section of coupon bond prices

Our analysis relies on panel data on yields constructed from high-frequency futures prices,

with five price observations in the cross section dimension, for the time series methods,

and on the daily panel with N = 8 yields in the cross section for the curve-based methods.

Here, we investigate the possibility that the full cross section of observed coupon bond

prices at any point in time carries more information about future interest rate risk. We

consider daily CRSP data on quoted prices of bonds with maturity between 3 months

and 10 years, adjusted for accrued interest, and excluding callable issues. The price of a

bond promising M semi-annual payments of C/2 at τ = (τ1, . . . , τM) is represented as

Pt(τ, C) = C

2
τ1 − t
1/2 Bτ1

t +
M∑
j=2

C

2 B
τj
t + 100BτM

t , (32)

with Bτj
t = exp(−τjyτjt ) the price of a zero-coupon bond of maturity τj, and (τ1− t)/(1/2)

the fraction of the first coupon receivable, reflecting the share of the half-year interval

between coupons over which the coupon bond is held. Bond prices P i,obs
t are assumed to

be observed with measurement error,

P i,obs
t = Pt(τ i, Ci) + εit , (33)
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with Pt(·) the model-implied price from Eq. (32), (τ i, Ci) contractual terms for bond i, and

the measurement error εit Gaussian with variance σ2
t , independently across observations

i = 1, . . . , Nt available at t. Write P obs
t for the Nt-vector of observed coupon bond prices,

Θt for the Q-parameters of the pricing model, augmented with the short rate rt, considered

latent and backed out from the cross section, and P (Θt) for the Nt-vector of model-implied

prices. Estimation is by cross-sectional nonlinear regression or QML,

Θ̂t = arg max
Θt

(
−Nt

2 log σ2
t −

1
2σ2

t

(P obs
t − P (Θt))′(P obs

t − P (Θt))
)
. (34)

The cross-sectional estimate Θ̂t does not depend on σ2
t . Figure A.2 in the Appendix shows

the evolution over time in Nt, ranging from a low of 85 in the early part of the sample to

a high of 272 towards the end.

For purposes of yield volatility forecasting, Q-parameters do not suffice, as V τ
t,h in

Eq. (7) depends on P-parameters through the coefficients bτ,h0 and bτ,h1 . For concreteness,

we focus on the CIR model, i.e., Eq. (34) is the estimator considered by Brown and

Dybvig (1986), who examined the consistency between the cross-sectional estimate of the

short rate volatility parameter σ in the square root process and a time series estimate of

this, based on the sample variance of estimated short rates across calendar time. This

comparison was relevant because σ is common across Q and P in the continuous-time

model (see Appendix C.2). Instead, since we consider volatility forecasting at longer

maturities, we estimate the market price of risk λ (cf. Table 1) from a time series of

short rates calibrated period by period in Eq. (34). Specifically, we consider an Euler

discretization of the CIR process,

rt+1 − rt = κ(θ − rt) + σ
√
rtεt+1 , (35)

following Chan et al. (1992), who focused on the P-parameter estimates resulting from

time series analysis of Eq. (35). Given the estimated Q-parameters from Eq. (34), we in-

stead express Eq. (35) as a function of λ. Since rt+1 conditional on rt is Gaussian under

the discretization, we estimate λ by QML. For forecasts at t, we use Q-parameters from
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Eq. (34) at t, along with λ estimated from a short time series t − 10, . . . , t in Eq. (35).

An alternative would be to estimate all three P-parameters in a longer time series, and

construct final estimates of all four parameters (including λ) by optimal weighting of esti-

mates from the sequential cross-sectional and time series regressions, following Andreasen

and Christensen (2015). Rather than pursuing this approach, we focus on the short time

series of fitted rt for setting λ, to retain the cross-sectional nature of the approach.

Insert Table 11 About Here

Table 11 shows the resulting R2
OoS statistics. For comparison, results are shown both

for forecasts based purely on cross sectionally estimated Q-parameters and short rates,

and the combined approach described. The latter generates the most accurate forecasts

of the two at the long end, τ = 7, confirming that the current risk premium carries

future volatility information, and consistent with the relatively strong performance of the

risk premium based forecasters in Table 4. At shorter maturities, the Q-based forecasts

generate slightly higher R2
OoS, presumably due to parsimony. The improvement over the

RW turns significant at 10% and 5% for τ = 5 and 7, respectively, broadly in line with

the pattern for curve based and time series models in Table 4, although significance at 1%

is generally achieved at the long end in the latter case. Further, volatility forecasts based

on the cross section of coupon bonds do not generate as high R2
OoS as the risk premium

based forecasts in Table 4, and not higher than PCA, either.

Overall, the robustness analysis confirms that the daily yield panel captures the cross-

sectional information adequately. Further, more of the future volatility information in

the curve not captured by standard term structure models appears to be contained in

higher-order factors than in nonlinearities.

7. Concluding remarks

Our results show that the assessment of future interest rate risk is a complicated affair.

Agents with a primary interest in the short end of the curve, such as market timers,

should base their forecasts on historical volatility, with a focus on recent periods, as in the
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formal time-varying volatility models. If the long end is important, e.g., for immunization

of assets and liabilities, or valuation of capital assets, then incremental information is

available by looking across maturities along the curve, and more so than implied by formal

term structure models, which fare best at intermediate maturities, around five years. Some

of the curve-based information about future volatility is distinct from that explaining the

level of yields, and is contained in higher-order factors rather than nonlinearities. Based

on a simple portfolio exercise, the information about future reinvestment rate risk in either

the yield curve or the volatility history is of economic value to a risk averse investor in

longer-term instruments, whereas reliance on the naive forecast (current volatility) suffices

at the short end, on utility grounds. Finally, our results point to the existence of a latent

volatility factor, unspanned by yields.

We have emphasized that when leveraging volatility information drawn from the yield

curve, investor should not ignore historical volatility in the information set. That the

resulting picture is diverse is perhaps not surprising. Investor is, after all, gazing into

the crystal ball. Clearly, mimicking this situation requires a recursive, out-of-sample

approach, to avoid admitting the artificial investor the benefit of hindsight.
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Table 1: Affine models
This table presents the reference, notation of Dai and Singleton (2000), and market price
of risk specification for the affine term structure models considered.

Model Reference Am(d)-notation Market price of risk
Vasicek Vasicek (1977) A0(1) λ
CIR Cox et al. (1985) A1(1) λ/σ

√
rt

AFNS0 Christensen et al. (2011) A0(3) (Σ
√
S(Xt))−1(κ(θ −Xt)− κ̃(θ̃ −Xt))

AFNS3 Christensen et al. (2010) A3(3) (Σ
√
S(Xt))−1(κ(θ −Xt)− κ̃(θ̃ −Xt))



Table 2: Descriptive statistics on high-frequency yields
This table presents the mean, standard deviation, skewness, and kurtosis for the end-of-
day subset of our high-frequency annualized yields in percent, by maturity. The sample
spans the period from January 2, 2000, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Mean 1.76 1.80 2.77 3.44
Std. 1.98 1.96 1.55 1.28

Skewness 0.96 0.90 0.42 0.15
Kurtosis 2.52 2.48 2.13 2.07
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Table 3: Descriptive statistics on pre-averaged realized yield volatility
This table presents the mean, standard deviation, skewness, and kurtosis of the daily
annualized pre-averaged realized yield volatilities, by maturity. Statistics for the square
root (volatility) form are shown for one-day measures in Panel A, and for one-month
(h = 22) measures in Panel B, both in percent. Statistics for the raw (variance) form are
shown for one-day measures in Panel C, and for one-month (h = 22) measures in Panel
D. The sample spans the period from January 2, 2000, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Panel A: One-day volatility,

√
V τt

Mean 0.68 1.01 0.37 0.30
Std. 0.80 1.07 1.00 0.57

Skewness 3.61 4.11 6.71 2.54
Kurtosis 24.69 47.36 77.69 9.95

Panel B: Month-ahead volatility,
√
V τt+1|t+22

Mean 0.90 1.28 0.84 0.77
Std. 0.60 0.82 0.70 0.27

Skewness 2.16 2.06 2.86 0.17
Kurtosis 9.56 11.96 16.06 2.95

Panel C: One-day variance, V τt
Mean 1.09 2.19 1.13 0.41
Std. 3.95 9.34 9.31 1.27

Skewness 11.65 31.61 22.96 6.93
Kurtosis 187.4 1393.0 651.7 87.8

Panel D: Month-ahead variance, V τt+1|t+22
Mean 1.16 2.32 1.20 0.44
Std. 1.94 3.93 2.89 0.35

Skewness 4.85 7.11 6.93 1.33
Kurtosis 34.19 72.69 61.07 4.93
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Table 4: Out-of-sample R2 for month-ahead yield volatility forecasting
This table displays R2

OoS measures in percent relative to a RW for all forecasting methods
and maturities. In parentheses asymptotic p-values for a one-sided Diebold-Mariano test
using the Newey-West variance estimator with automatic lag selection of Andrews (1991).
For common factor based forecasters, the label “Initial” indicates that the selection of PCA
factors is based on the initial estimation period, and “Recursive” that it is updated every
period. The initial estimation period ranges from January 2, 2000, through June 6, 2008,
and the out-of-sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Term structure models

Vasicek -8.92 22.09 40.11 28.39
(0.73) (0.18) (0.10) (0.01)

CIR -39.58 15.30 34.65 29.66
(0.85) (0.33) (0.13) (0.01)

AFNS0 -5250.04 -11882.82 36.8 9.31
(0.87) (0.92) (0.13) (0.36)

AFNS0 (uncorrected) -471.70 10.58 39.78 -280.58
(0.87) (0.62) (0.11) (1.00)

AFNS3 -14.36 21.75 46.72 28.69
(0.72) (0.29) (0.09) (0.01)

AFNS3 (2nd moments) -82.25 2.42 47.08 27.99
(1.00) (0.48) (0.08) (0.02)

PCA based forecasters
PCA3 -10.61 20.33 47.43 32.40

(0.73) (0.26) (0.09) (0.00)
PCA4 -11.37 19.46 47.24 30.79

(0.74) (0.26) (0.09) (0.01)
PCA5 -11.99 21.47 46.78 30.27

(0.75) (0.24) (0.09) (0.01)
PCA6 -36.50 13.41 45.87 30.07

(0.95) (0.32) (0.10) (0.01)
Risk premium based forecasters

Forward spreads -20.56 13.57 47.80 33.52
(0.89) (0.34) (0.08) (0.00)

Yield spreads -19.79 13.15 47.42 34.20
(0.88) (0.34) (0.08) (0.01)

Common factor based forecasters
Initial -10.68 23.07 43.77 36.57

(0.76) (0.21) (0.12) (0.00)
Recursive -26.76 15.37 45.73 37.12

(0.91) (0.28) (0.10) (0.00)
Time series models

HAR 3.46 -51.40 30.88 32.81
(0.39) (0.92) (0.20) (0.00)

Mean-reverting realized GARCH -34.51 4.25 45.73 35.53
(0.90) (0.43) (0.10) (0.01)
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Table 5: The incremental information on future volatility in the yield curve
This table shows results from regression Eq. (23), explaining yield volatility forecast errors
from the specified models using three PCA factors fitted to past yield curves, based on
Eq. (8). Reported values are F -statistics for joint tests of φτ,h1 = 0 (three coefficients).
Asymptotic p-values in parentheses. The initial estimation period ranges from January
2, 2000, through June 6, 2008, and the out-of-sample period from June 7, 2008, through
October 31, 2016.

F -test
τ = 0.5 τ = 1 τ = 5 τ = 7

Term structure models
Vasicek 14.60 16.22 5.61 12.68

(0.00) (0.00) (0.13) (0.01)
CIR 39.75 32.14 3.92 24.43

(0.00) (0.00) (0.27) (0.00)
AFNS0 6.88 6.67 9.37 0.92

(0.08) (0.08) (0.02) (0.82)
AFNS3 23.91 53.53 6.62 14.04

(0.00) (0.00) (0.09) (0.00)
Time series models

HAR 1.70 3.92 2.61 11.53
(0.64) (0.27) (0.46) (0.01)

Mean-reverting realized GARCH 8.48 16.30 4.91 15.10
(0.04) (0.00) (0.18) (0.00)
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Table 6: Specification test for unspanned stochastic volatility factor
This table shows results from regression Eq. (24), explaining yield volatility forecast errors
from the specified models augmented with three yield curve PCA factors as in Eq. (23)
using a PCA factor fitted to past yield volatility forecast errors. Reported values are
t-statistics for testing ψτ,h1 = 0. Asymptotic p-values in parentheses, based on the Newey-
West variance estimator with automatic lag selection of Andrews (1991). The initial
estimation period ranges from January 2, 2000, through June 6, 2008, and the out-of-
sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Vasicek -1.22 -1.58 0.43 -2.25

(0.22) (0.11) (0.67) (0.02)
CIR -2.13 -2.35 1.14 -2.70

(0.03) (0.02) (0.25) (0.01)
AFNS0 -1.73 -2.06 0.39 -2.41

(0.08) (0.04) (0.69) (0.02)
AFNS3 -2.13 -2.24 0.30 -3.09

(0.03) (0.03) (0.76) (0.00)
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Table 7:
The incremental information on future yield volatility in historical volatility
This table shows results from the regression Eq. (23), using pre-averaged realized volatility
from high-frequency data as predictor, to test for whether historical volatility contains
incremental information about future volatility, relative to the specified models. Reported
values are t-statistics for testing φτ,h1 = 0. Asymptotic p-values in parentheses, based on
the Newey-West variance estimator with automatic lag selection of Andrews (1991). The
initial estimation period ranges from January 2, 2000, through June 6, 2008, and the
out-of-sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Term structure models

Vasicek 0.32 -2.18 0.19 -0.21
(0.75) (0.03) (0.85) (0.84)

CIR 0.18 0.03 -1.47 -0.09
(0.86) (0.97) (0.14) (0.93)

AFNS0 -1.56 -1.44 0.84 0.65
(0.12) (0.15) (0.40) (0.51)

AFNS3 0.28 0.14 -0.38 -0.98
(0.78) (0.89) (0.70) (0.33)

AFNS3 (2nd moments) 0.57 -0.20 -0.61 -0.10
(0.57) (0.84) (0.54) (0.92)

PCA based forecasters
PCA3 4.49 3.46 -0.69 0.70

(0.00) (0.00) (0.49) (0.48)
PCA4 3.69 3.12 -0.72 0.78

(0.00) (0.00) (0.47) (0.44)
PCA5 3.46 2.87 -0.77 -0.10

(0.00) (0.00) (0.44) (0.92)
PCA6 0.08 0.45 -0.97 -0.80

(0.94) (0.65) (0.33) (0.43)
Risk premium based forecasters

Forward spread 6.53 4.31 0.48 1.94
(0.00) (0.00) (0.63) (0.05)

Yield spread 6.61 4.60 0.85 2.58
(0.00) (0.00) (0.40) (0.01)

Common factor based forecasters
Static 1.32 1.74 -0.77 -0.33

(0.19) (0.08) (0.44) (0.74)
Recursive 0.37 0.48 -0.60 -1.73

(0.71) (0.63) (0.55) (0.08)
Time series models

HAR -0.38 -0.16 -0.09 0.41
(0.70) (0.87) (0.93) (0.68)

Mean-reverting realized GARCH 4.42 5.47 1.06 1.95
(0.00) (0.00) (0.29) (0.05)
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Table 8: Utility from yield volatility forecasts
This table presents average realized utility from using the specified yield volatility forecast-
ers for portfolio allocation. In parentheses asymptotic p-values for a one-sided Diebold-
Mariano test relative to a RW using the Newey-West variance estimator with automatic
lag selection of Andrews (1991). A portfolio consisting of the risk-free asset generates
utility zero. The initial estimation period ranges from January 2, 2000, through June 6,
2008, and the out-of-sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Term structure models

Vasicek 0.75 1.08 -28.96 1.33
(1.00) (0.98) (0.72) (0.00)

CIR 1.24 1.28 -27.14 -5.01
(0.93) (0.69) (0.69) (0.83)

AFNS0 1.08 0.95 -20.78 -0.99
(1.00) (1.00) (0.57) (0.79)

AFNS3 0.99 1.11 -32.65 -6.34
(1.00) (0.99) (0.69) (0.86)

PCA based forecasters
PCA3 0.90 0.24 -97.02 1.08

(1.00) (1.00) (1.00) (0.03)
PCA4 0.92 0.01 -96.59 1.11

(1.00) (1.00) (1.00) (0.02)
PCA5 0.94 -0.03 -101.59 -0.41

(1.00) (0.99) (1.00) (0.75)
PCA6 0.97 -0.01 -102.87 -0.19

(1.00) (0.99) (1.00) (0.70)
Risk premium based forecasters

Forward Spread 1.01 0.92 0.02 1.25
(1.00) (1.00) (0.00) (0.01)

Yield Spread 1.01 0.92 0.98 1.36
(1.00) (1.00) (0.00) (0.00)

Common factors based forecasters
Static 1.13 0.86 -26.43 0.99

(1.00) (0.99) (0.77) (0.06)
Recursively 0.97 -0.02 -77.71 -0.22

(1.00) (0.99) (0.99) (0.72)
Term structure models including second moments

CIR 0.52 0.63 0.59 0.49
(1.00) (1.00) (0.00) (0.38)

AFNS3 0.99 1.02 -34.64 -7.98
(1.00) (1.00) (0.70) (0.92)

Time series models
HAR 1.29 1.01 1.00 1.36

(0.95) (1.00) (0.00) (0.00)
Mean-reverting realized GARCH 0.92 0.05 1.03 1.37

(1.00) (0.96) (0.00) (0.00)
RW 1.35 1.31 -17.95 0.38

(-) (-) (-) (-)
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Table 9: Yield volatility forecasts using nonlinearities in yield curve factors
This table displays R2

OoS measures in percent relative to a RW for yield volatility forecasts
allowing linear and nonlinear terms as well as interactions in the three leading yield curve
factors extracted by PCA in Eq. (8). The optimal combination of terms is selected by BIC.
The label “initial” indicates that the selection is based on the initial estimation period,
and “recursive” that it is updated every period. In parentheses asymptotic p-values for a
one-sided Diebold-Mariano test using the Newey-West variance estimator with automatic
lag selection of Andrews (1991). The initial estimation period ranges from January 2,
2000, through June 6, 2008, and the out-of-sample period from June 7, 2008, through
October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Maturity-specific, initial -36.51 11.57 -0.65 18.52

(0.95) (0.35) (0.51) (0.16)
Maturity-specific, recursive 6.08 30.28 -29.41 -16.64

(0.35) (0.16) (0.67) (0.64)
Common factor, initial 5.74 31.39 45.89 39.30

(0.36) (0.14) (0.08) (0.00)
Common factor, recursive -14.76 23.24 35.96 33.76

(0.78) (0.20) (0.14) (0.00)
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Table 10: Trade-off between explaining yields and forecasting volatility
This table displays R2

OoS measures in percent relative to a RW for all combinations of three
of the first six PCA yield factors from Eq. (8). In parentheses asymptotic p-values for a
one-sided Diebold-Mariano test using the Newey-West variance estimator with automatic
lag selection of Andrews (1991). The initial estimation period ranges from January 2,
2000 to June 6, 2008, and the out-of-sample period from June 7, 2008, through October
31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
PCA456 -11.93 20.67 46.01 36.30

(0.75) (0.25) (0.10) (0.00)
PCA356 -5.13 23.96 48.86 41.47

(0.63) (0.22) (0.09) (0.00)
PCA346 -12.99 19.72 49.05 39.00

(0.81) (0.25) (0.09) (0.00)
PCA345 -5.91 22.52 49.10 39.84

(0.64) (0.22) (0.09) (0.00)
PCA256 -7.55 26.79 48.39 39.60

(0.66) (0.19) (0.09) (0.00)
PCA246 -8.82 22.86 48.40 34.54

(0.69) (0.23) (0.09) (0.00)
PCA245 -13.01 23.72 47.86 35.27

(0.78) (0.20) (0.09) (0.00)
PCA236 -4.58 24.52 48.20 31.67

(0.61) (0.21) (0.10) (0.01)
PCA235 -6.40 25.37 48.17 31.16

(0.64) (0.18) (0.09) (0.01)
PCA234 -6.11 22.81 48.47 28.38

(0.64) (0.21) (0.09) (0.01)
PCA156 -15.96 15.31 47.37 34.30

(0.80) (0.32) (0.08) (0.01)
PCA146 -19.43 10.95 47.43 30.16

(0.86) (0.37) (0.08) (0.02)
PCA145 -16.75 17.11 46.95 32.99

(0.83) (0.29) (0.08) (0.01)
PCA136 -15.81 13.94 48.54 37.39

(0.84) (0.33) (0.09) (0.00)
PCA135 -9.46 20.50 48.43 39.66

(0.71) (0.26) (0.09) (0.00)
PCA134 -10.56 17.66 48.75 37.65

(0.73) (0.29) (0.08) (0.00)
PCA126 -14.39 17.05 47.90 37.20

(0.77) (0.30) (0.08) (0.00)
PCA125 -16.86 21.46 47.73 37.90

(0.83) (0.24) (0.08) (0.00)
PCA124 -15.44 18.51 48.01 34.07

(0.81) (0.27) (0.08) (0.01)
PCA123 -10.61 20.33 47.43 32.40

(0.63) (0.25) (0.08) (0.01)
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Table 11: Yield volatility forecasts from cross section of coupon bond prices
This table displays R2

OoS measures in percent relative to a RW for the CIR model estimated
on a cross section of coupon bonds. CIRQ indicates that forecasting is based on cross-
sectionally estimated Q-parameters and short rates, and CIRP that the market price of
risk is estimated based on the Q-parameters, the ten most recent fitted short rates, and
Euler discretization. In parentheses asymptotic p-values for a one-sided Diebold-Mariano
test using the Newey-West variance estimator with automatic lag selection of Andrews
(1991). The initial estimation period ranges from January 2, 2000 to June 6, 2008, and
the out-of-sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
CIRQ -48.91 8.46 47.24 27.35

(0.91) (0.43) (0.10) (0.04)
CIRP -55.02 4.97 46.81 32.87

(0.93) (0.46) (0.10) (0.03)
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Figure 1: High-frequency yields
This figure shows the time series of high-frequency annualized yields in percent, by ma-
turity, along with a three-dimensional view of the evolution through time of the yield
curves. The sample spans the period from January 2, 2000, through October 31, 2016.
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Figure 2: Annualized pre-averaged realized yield volatility
This figure shows the time series of daily annualized pre-averaged realized one-month yield
volatilities in percent, by maturity, along with a three-dimensional view of the evolution
through time of the term structure of volatilities (log variances). The sample spans the
period from January 2, 2000, through October 31, 2016.
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Figure 3: Yield volatility forecast errors relative to RW
This figure shows yield volatility forecast errors over time, by maturity, for selected fore-
casting methods. Cumulative squared errors for a given forecasting method are subtracted
from those for the RW, so that an increasing curve indicates better forecasting than by
RW, and vice versa. The sample spans the period from January 2, 2000, through October
31, 2016.
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A. From futures prices to yield curves

A.1. From futures prices to coupon bond prices

The seller (the short) has two options included in the Treasury futures. The first regards

which bond to deliver, and the second the delivery date within the delivery month. For the

first option, the underlying assets of the Treasury futures (see Section 3) are hypothetical

bonds with a notional yield of 6% throughout our sample period. The seller must deliver

an actual bond, selected from a delivery basket constructed for each futures contract

according to CME requirements, with a conversion factor for each bond. The conversion

factor converts the bond price into “. . . the approximately decimal price at which $1 par

of the security would trade as if it had a 6% yield-to-maturity.”17 The formula is

f = a
(
coupon

2 + c+ d
)
− b (A.1)

a =
( 1

1.03

) v
6

b = coupon

2
6− v

6

c =


(

1
1.03

)2n
if z < 7(

1
1.03

)2n+1
otherwise

d = coupon

0.06 (1− c)

v =


z if z < 7

3 if z ≥ 7 for 10-year note, long term bond

z − 6 if z ≥ 7 for 5-year note

with coupon the annualized coupon, n the number of (whole) years from the first day of

the delivery month to maturity, and z the number of months between n and the maturity

date, rounded to nearest quarter for the 10-year note and the long term Treasury bond,

and nearest month for the 5-year note. The delivery bond (or note) must have a maturity

between 4.17 and 5.25 years for the 5-year futures, between 6.5 and 10 years for the

10-year futures, and between 15 and 25 years for the long term Treasury bond futures.
17https://www.cmegroup.com/trading/interest-rates/calculating-us-treasury-futures-conversion-

factors.html
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Given the conversion factor ft from Eq. (A.1), the invoice amount is

It = ft · Ft + at , (A.2)

with Ft the futures price, and at accrued interest. On delivery, the seller pays the basis

πt = St − It , (A.3)

with St the cash bond price (including accrued interest), and therefore selects the cheapest-

to-deliver (CTD) bond fulfilling the futures contract specifications and minimizing Eq. (A.3)

(maximizing the implied repo rate).

The second option regards the delivery date. For the purpose of backing out the

futures-implied bond price, we assume that both the CTD bond and delivery date are

known. We set the delivery date to the first working day of the delivery month, and use

the CRSP data on Treasuries to construct the delivery basket. The price of the futures

is then given as

It = (St − Ct)ertT , (A.4)

with St the spot price of the CTD bond (including accrued interest), Ct the present value

of coupon payments before delivery, T the time to delivery, and rt the risk-free rate. For

the latter, we use the 3-month yield from the daily panel, rt = y
1/4
t (Section 3.4). The

3-month rate should be more market-based than, say, a 1-month rate, and a good short

rate proxy, cf. Chapman et al. (1999).

In brief, the recipe for constructing the futures-implied bond price St is as follows:

(i) Construct the delivery basket from the CRSP data on the first trading day of the

delivery month.

(ii) Find the cheapest-to-deliver bond minimizing the basis πt from Eq. (A.3) within the

delivery basket from (i).

(iii) Use Eq. (A.2) to calculate the invoice amount It for the CTD bond from (ii).
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(iv) Substitute the invoice amount from (iii) for It in Eq. (A.4), and back out the futures-

implied bond price by isolating St.

A.2. From coupon bond prices to yield curves

A variety of methods is available for extracting the yield curve from the cross section

of coupon bond prices. In the literature on yield curves at high frequency, some version

of cubic spline is usually employed, e.g., Andersen and Benzoni (2010) and Cieslak and

Povala (2016), due to the small number of observations in the cross section, and the need

for flexibility to fit the curve reasonably. As a consequence, interpolation between points

of principal payments is difficult. Following Andersen and Benzoni (2010), we use the

method of Waggoner (1997). This assumes that the discount function Bτ
t = exp(−τyτt )

is determined by a cubic spline h( · ,Ψ), i.e., τyτt = h(τ,Ψ), with Ψ a set of parameters

(suppressing dependence on t). The yield curve is split along the maturity axis using K

knot points, 0 < τ1 < . . . < τK , with τK the maximum maturity of the bonds considered.

The cubic spline is restricted such that h( · ,Ψ) and its two first derivatives are continuous.

This implies that one parameter is added for each additional knot point. Fisher et al.

(1995) and Dai et al. (2007) set K to approximately one third of the number of bonds

included, while Andersen and Benzoni (2010) and Cieslak and Povala (2016) set K equal

to the number of bonds. We follow the high-frequency literature and set the number of

knot points equal to the number of bonds on which we calibrate the yield curve, i.e.,

K = 5. We let {sk}Kk=1 denote the set of knot points.

To calibrate h(τ,Ψ), we follow Fisher et al. (1995) and use the simple parametrization

of the cubic B-spline basis. Any cubic spline can be constructed as a linear combination

of B-splines, h(τ,Ψ) = φ(τ)Ψ, where Ψ is a κ× 1 vector of coefficients, and φ(·) is a cubic

B-spline basis, i.e., a vector of κ = K + 2 cubic B-splines satisfying

φrk(τ) = φr−1
k (τ) τ − dk

dk+r−1 − dk
− φr−1

k+1(τ) dk+r − τ
dk+r − dk+1

.

Here, r = 4 for a cubic spline, and dk is an augmented set of knot points, d1 = d2 = d3 =

s1, dk+3 = sk for 1 ≤ k ≤ κ, and dκ+4 = dκ+5 = dκ+6 = sκ.
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The price of a coupon bond is written as

P (Ψ) =
J∑
j=1

Cj exp(−h(tj,Ψ)) ,

with J the number of payments (coupons and principal) over the remaining lifetime of

the bond, and Cj the jth payment, due tj periods hence. The yield curve is estimated

using penalized nonlinear least squares (PNLS),

Ψ̂ = arg min
Ψ

K∑
i=1

(Pi − P̂i(Ψ))2 +
∫ τK

0
λ(s)h′′(s)2ds ,

with the penalty term λ(s) calibrated to be more severe at longer maturities, following

Waggoner (1997), Dai et al. (2007), and Andersen and Benzoni (2010). This implies that

the yield curve is flexible at the short end, and reduces oscillations at the long end. We

find that this procedure results in a better fit to bond prices than the Nelson and Siegel

(1987) approach used in Faust et al. (2007).

Upon estimation, four points are read off the resulting high-frequency (1 minute) yield

curves, at τ = 0.5, 1, 5, and 7 years.

B. Liquidity of Treasury futures

Table A.2 shows the percentage of high-frequency intervals containing a Treasury futures

price observation, and hence affording unique yield identification, at the 1, 5, and 10

minute sampling frequencies, by maturity. All three maturities, 5 and 10 years, and

long term, are included in the table, because all three Treasury futures are used in curve

fitting, although only implied yields at maturities up to τ = 7 are used in the subsequent

analysis (see Section 3.2 and Appendix A). From the table, around 83% to 95% of the 1

minute intervals contain an observation. This increases to around 97% and 99% for 5 and

10 minute intervals, respectively. The lower panel of the table shows the corresponding

percentages when discarding trading days with no trading activity for more than an hour.

All numbers increase by around 0.5-1.0%. This suggests that the discarded days do not

contain many uniquely identified observations and, hence, it makes sense to discard them.
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Figure A.1 shows the evolution over time in the daily percentage of intervals containing a

futures price observation. There is a jump between 2003 and 2004, due to the introduction

of the electronic trading pit in 2004, and clearly fewer intervals containing futures price

observations at the 1 minute frequency than at 5 and 10 minutes, at least until 2008. This

suggests that the high-frequency Treasury futures data are likely afflicted with market

microstructure noise.

Insert Table A.2 and Figure A.1 About Here

C. Models

C.1. The Vasicek model

The model of Vasicek (1977) is an A0(1) model in which the dynamics of the short rate

rt = y0
t are given by

drt = κ(θ − rt)dt+ σdWt .

We assume that the market price of risk is completely affine, i.e., λt = λ. Thus,

θ̃ = θ − σλ

κ
, κ̃ = κ .

The solution to the Ricatti equations (6) is given by

B(τ) = 1
κ̃

(1− e−κ̃τ ) ,

A(τ) =
(
θ̃ − σ2

2κ̃2

)
(τ −B(τ)) + σ2

4κ̃B(τ)2 .

The conditional variance of the future short rate is

V art(rt+h) = σ2

2κ(1− e−2κh) .
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C.2. The Cox-Ingersoll-Ross Model

The model of Cox et al. (1985) is an A1(1) model with

drt = κ(θ − rt)dt+ σ
√
rtdWt .

We adopt the completely affine market price of risk specification, λt = λ
√
rt/σ. Thus,

κ̃ = κ+ λ, θ̃ = κθ

κ+ λ
.

The solution to the Ricatti equations (6) is given by

B(τ) = 2(eγτ − 1)
(γ + κ̃)(eγτ − 1) + 2γ ,

A(τ) = −2κ̃θ̃
σ2

[
log(2γ) + 1

2(κ̃+ γ)− log ((γ + κ̃)(eγτ − 1) + 2γ)
]
,

with γ given by

γ =
√
κ̃2 + 2σ2 .

The conditional variance of the short rate is

V art(rt+h) = σ2rt
κ

(e−κh − e−2κh) + σ2θ

2κ (1− e−κh) .

C.3. The arbitrage-free Nelson-Siegel Model with deterministic volatility

The AFNS0 model of Christensen et al. (2011) is an A0(3) model. The real-world dynamics

of the state variables are given by

dXt = κ(θ −Xt)dt+ ΣdWt ,

where Xt and θ are 3×1 vectors, and κ and Σ are 3×3 matrices. The model is constructed

to make the shape of the yield curve resemble the Nelson and Siegel (1987) parametrization
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by assuming that the market price of risk is essentially affine and restricting

κ̃ =


0 0 0

0 −λ 0

0 λ λ

 ,

θ̃ = 03×1 .

The yield curve is then

yτt = X1
t + 1− e−λτ

λτ
X2
t +

(
1− e−λτ
λτ

− e−λτ
)
X3
t −

A(τ)
τ

. (C.5)

This corresponds to the Nelson and Siegel (1987) shape, except for the term A(τ)
τ

, for

which the closed form is given in Christensen et al. (2011).

C.4. The arbitrage-free Nelson-Siegel model with stochastic volatility

The AFNS3 stochastic (or state-dependent) volatility model of Christensen et al. (2010)

is an A3(3) model. Under Q, the dynamics of the state variables are restricted to

dXt =


ε 0 0

0 λ −λ

0 0 λ




θ̃1

θ̃2

θ̃3

−Xt

 dt

+


σ1,1 0 0

0 σ2,2 0

0 0 σ3,3



√
X1,t 0 0

0
√
X2,t 0

0 0
√
X3,t

 dWQ
t .

The Ricatti equations (6) are then given by

dB1(τ) = 1− εB1(τ)− 1
2σ

2
1,1 ,

dB2(τ) = 1− λB2(τ)− 1
2σ

2
2,2 ,

dB3(τ) = λB2(τ)− λB3(τ)− 1
2σ

2
3,3 ,

dA(τ) = B(τ)′κ̃θ̃ .
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We solve the ODEs numerically for each trial parameter vector in the iterative estimation

procedure. For ε → 0, the yield curve converges to Nelson and Siegel (1987) shape,

except for the modification by A(τ)
τ

, as in Eq. (C.5). Following Christensen et al. (2010),

we set ε = 10−6, restrict κ to be diagonal, and adopt the extended affine specification for

the market price of risk. To ensure that the factors stay positive, we impose the Feller

condition under both probability measures.

D. Estimation Procedure

The term structure models are estimated using the Kalman filter, following Duffee (2002),

Christensen et al. (2011), and others. Let yt, t = 1, . . . , T , be the N -vector of observed

yields, with t counting the time increment between observations of ∆ = 1/250 years,

Ã = (A(τ1)
τ1

, . . . , A(τN )
τN

)′, and B̃ the d × N matrix with columns B(τi)
τi

. By Eqs. (18) and

(19), the state space system is thus given by the measurement and transition equations

yt = Ã+ B̃′Xt + εt , (D.6)

Xt = C∆ +D′∆Xt−1 + ηt , (D.7)

where εt
ηt

 ∼ N


0

0

 ,
H∆ 0

0 Qt,∆


 .

The conditional expectation and variance of the state process are given by

Et−1(Xt) =(I − e−κ∆)θ + e−κ∆Xt−1 = C∆ +D′∆Xt−1 , (D.8)

V art−1(Xt) =
∫ t

t−1
exp(−κ(t− u))σ(Et−1(Xu))σ(Et−1(Xu))′

exp(−κ(t− u))′du = Qt,∆ , (D.9)

where exp(·) is the matrix exponential, and σ(·) = Σ
√
S(·), with S(·) from Eq. (3). For

example, σ(Xu) = diag(σi,i
√
Xi,u) in the model in Appendix C.4. By Eq. (D.8), the

transition parameters in Eqs. (19) and (D.7) are C∆ = (Id − exp(−κ∆))θ and D∆ =
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exp(−κ∆). Write Yt = (y1, . . . , yt) for the data through t and define Xt|t−1 = E(Xt | Yt−1),

Σt|t−1 = V ar(Xt | Yt−1), Xt|t = E(Xt | Yt), and Σt|t = V ar(Xt | Yt). Suppressing ∆ for

notational ease, the prediction step is then

Xt|t−1 = C +D′Xt−1|t−1 , (D.10)

Σt|t−1 = D′Σt−1|t−1D +Qt , (D.11)

whereQt is the conditional variance of the state variables from Eq. (D.9), whileD′Σt−1|t−1D

reflects conditional mean variation, cf. footnote 3. The update step is

Xt|t = Xt|t−1 + Σt|t−1B̃F
−1
t vt , (D.12)

Σt|t = Σt|t−1 − Σt|t−1B̃F
−1
t B̃′Σt|t−1 , (D.13)

with the one step ahead prediction error and its variance given by

vt = yt − Ã− B̃′Xt|t−1 , (D.14)

Ft = V ar(vt) = B̃′Σt|t−1B̃ +H . (D.15)

The filter is initiated by setting X0|0 and Σ0|0 equal to the unconditional expected value

and variance. From Eq. (2), X0|0 = θ, and from Eq. (D.7), Σ0|0 = D′Σ0|0D + Q, with Q

from Eq. (D.9) at Et−1(Xu) = θ. Thus, vec(Σ0|0) = (Id2 −D′ ⊗D′)−1 vec(Q).

Given the Gaussianity assumptions on measurement and transition equations, the

parameters ψ are estimated by maximizing the prediction error decomposition of the

conditional log likelihood function

L(ψ) =
T∑
t=1

(−1
2N log(2π)− 1

2 log(detFt)−
1
2v
′
tF
−1
t vt) . (D.16)

The states Xt are Gaussian for the Vasicek and AFNS0 models. For the square root

processes (the CIR and AFNS3 models), estimation based on Eq. (D.16) amounts to QML.

Here, the Gaussian approximation implies that states are not restricted to be positive. In
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this case, following Chen and Scott (2003), we truncate states at 0. Given the large number

of parameters in some of the models, we use the global optimizer differential evolution

with several starting values. For every 250 observations, we reestimate parameters using

differential evolution. In intermediate periods we use local optimizers.

D.1. Predictive regression correction

From Eq. (D.6), var(yt | Xt−1) = B̃′V art−1(Xt)B̃ + H, suppressing dependence on the

time increment ∆. Using this and Eqs. (D.9), (D.11) and (D.15),

V ar(yt | Yt−1) = V ar(vt)

= B̃′(D′Σt−1|t−1D + V art−1(Xt))B̃ +H

= B̃′D′Σt−1|t−1DB̃ + V ar(yt | Xt−1) . (D.17)

Thus, the conditional variance of yields is given by that corresponding to perfect observa-

tion of state variables through t−1, i.e., the second term in Eq. (D.17), with an adjustment

for conditional mean variation due to imperfect state observation given by the first term

in Eq. (D.17) (see footnote 3). When forecasting using the predictive regression in Eq. (1),

with Zt given by Eq. (7), then Zt corresponds to the second term in Eq. (D.17). Forecast-

ing therefore involves three modifications. First, the filtered state Xt|t is used in place of

Xt in Eq. (7). Second, using Eq. (1), ατ,h and βτ,h provide empirical predictive regression

corrections for the bias stemming from conditional mean variation, i.e., the first term

in Eq. (D.17). Finally, the estimated coefficents in Eq. (1) reflect the history of realized

volatilites, which are part of investor’s information set, thereby conditioning on a larger

information set than that based on daily yields in the Kalman filter, and providing a

computationally simple alternative to the filter including second moments below.
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D.2. Conditional moments of state process

By the results in Fackler (2000), also used in Jacobs and Karoui (2009), the first two

conditional moments can be written as

Et(Xt+h) = Ch +D′hXt , (D.18)

vec(V art(Xt+h)) = ζ0,h + ζ ′1,hXt , (D.19)

with Ch = (Id− exp(−κh))θ and Dh = exp(−κh), see Eqs. (D.8)-(D.9). The d2× 1 vector

of intercepts ζ0,h in Eq. (D.19) is determined by

Ch
ζ0,h

 = (Id+d2 − exp(Πh))Π−1Θ , (D.20)

and the d× d2 matrix of slope terms ζ1,h by

Dh

ζ ′1,h

 = exp(−Πh)

Id
0

 . (D.21)

In Eq. (D.20), the (d+ d2)-vector Θ is

Θ =

 κθ

(Σ⊗ Σ)Dα

 ,

with α = 0 in Eq. (3) for the models we consider, and D given by

Di,j =

1 if i = (j − 1)d+ j ,

0 otherwise .

Further,

Π =

 κ 0

−(Σ⊗ Σ)DB κ⊗ Id + Id ⊗ κ

 ,
a (d+ d2)× (d+ d2) matrix, with the ith row of B given by β′i from Eq. (3), and rankB =

m ≤ d.
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D.3. Conditional moments of yields

By Eqs. (5) and (D.18), the conditional means of the yields are

Et(yt+h) = Ã+ B̃′ (Ch +D′hXt) . (D.22)

Using Eqs. (7) and (D.19), the conditional yield variances are

V art(yτt+h) = 1
τ 2B(τ)′V art(Xt+h)B(τ)

= 1
τ 2vec(B(τ)⊗B(τ))′V art(Xt+h)

= bτ,h0 + bτ,h
′

1 Xt, (D.23)

bτ,h0 = 1
τ 2vec(B(τ)⊗B(τ))′ζ0,h , (D.24)

bτ,h′1 = 1
τ 2vec(B(τ)⊗B(τ))′ζ ′1,h , (D.25)

where bτ,h0 is a scalar, and bτ,h1 a d× 1 vector.

D.4. Including second moments in the estimation

The measurement equation Eq. (D.6) can be extended to include realized volatility,

yt+h
Vt+h

 =

Ã+ B̃′Xt+h

V art(yt+h)

+

H 0

0 HV

 ε̃t+h , (D.26)

where Vt is stacking the NV realized yield volatilities V τ
t for which high-frequency data are

available (NV = 4 in our implementation), the error term is stacking εt+h from Eq. (D.6)

and ũτ,ht+h from Eq. (20), ε̃t+h ∼ N(0, IN+NV ), and HV = HV
h , an NV × NV matrix with

σ2
τ,h along the diagonal. The prediction step is then

yt|t−1 = Ã+ B̃′Xt|t−1 , (D.27)

Vt|t−1 = b0 + b′1Xt|t−1 +HV , (D.28)
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with Xt|t−1 from Eq. (D.10), HV = HV
1 , b0 an NV -vector stacking bτ,h0 from Eq. (D.24), b′1

an NV × d matrix stacking bτ,h′1 from Eq. (D.25), and h = 1 in all of these, for estimation

in daily data. The update step is

Xt|t = Xt|t−1 + Σt|t−1

B̃
b1


′

F−1
t vt , (D.29)

Σt|t = Σt|t−1 − Σt|t−1

B̃
b1


′

F−1
t

B̃
b1

Σt|t−1 , (D.30)

where vt is the one step ahead prediction error or innovation

vt =

 yt − Ã− B̃′Xt|t−1,

Vt − b0 − b′1Xt|t−1 −HV

 ,

and Ft the prediction error variance,

Ft =

B̃Σt|t−1B̃
′ +H b1Σt|t−1B̃

′

B̃Σt|t−1b
′
1 b1Σt|t−1b

′
1 +HV

 .

Because Eq. (D.26) uses conditional volatility rather than integrated volatility for the

state variable, cf. footnote 3, the term involving HV actually captures both the error in

realized relative to integrated volatility and conditional mean variation corresponding to

D′Σt−1|t−1D in Eqs. (D.11) and (D.17). We find in our empirical work that adjustment

using the recursive regressions in Eq. (1) performs better for forecasting purposes than

the second moment extension of the Kalman filter.
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Table A.1:
Correlation between futures-implied and Gürkaynak et al. (2007) yields
This table shows the sample correlation between end-of-day futures-implied yields and
yields constructed using Gürkaynak et al. (2007) parameter estimates. The sample spans
the period from January 2, 2000, through October 30, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
99.84% 99.86% 99.76% 99.58%
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Table A.2: Liquidity of Treasury futures
This table shows the fraction of high-frequency intervals containing a Treasury futures
price observation, by underlying maturity and sampling frequency. The full sample is
included in the upper panel. In the lower panel, days with no trading activity for more
than one hour are discarded. The sample spans the period from January 2, 2000, through
October 30, 2016.

1-min 5-min 10-min
Full sample

5-year note 83.79% 96.48% 98.50%
10-year note 94.12% 98.97% 99.20%

Long term bond 94.78% 99.11 % 99.25%
Trading days with no activity for more than an hour discarded

5-year note 84.54% 97.13% 99.11%
10-year note 94.80% 99.59% 99.80%

Long term bond 95.44% 99.72 % 99.84%
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Table A.3: Out-of-sample R2 for two months ahead yield volatility forecasting
This table displays R2

OoS measures in percent relative to a RW for all forecasting methods
and maturities. In parentheses asymptotic p-values for a one-sided Diebold-Mariano test
using the Newey-West variance estimator with automatic lag selection of Andrews (1991).
For common factor based forecasters, the label “Initial” indicates that the selection of PCA
factors is based on the initial estimation period, and “Recursive” that it is updated every
period. The initial estimation period ranges from January 2, 2000, through June 6, 2008,
and the out-of-sample period from June 7, 2008, through October 31, 2016.

τ = 0.5 τ = 1 τ = 5 τ = 7
Term structure models

Vasicek 32.81 42.48 31.66 10.97
(0.20) (0.17) (0.17) (0.26)

CIR -30.00 -15.55 4.92 3.08
(0.71) (0.62) (0.44) (0.44)

AFNS0 -0.77 -128.54 39.98 17.20
(0.52) (0.86) (0.12) (0.18)

AFNS3 4.29 6.88 38.94 3.78
(0.44) (0.40) (0.13) (0.45)

AFNS3 (2nd mom) 25.97 -48.89 35.55 16.59
(0.27) (0.77) (0.17) (0.19)

PCA based forecasters
PCA3 7.22 2.37 44.65 11.46

(0.40) (0.47) (0.13) (0.21)
PCA4 5.96 0.46 44.17 8.55

(0.42) (0.49) (0.13) (0.27)
PCA5 5.44 2.77 44.37 8.48

(0.43) (0.47) (0.12) (0.28)
PCA6 -19.31 -12.7 38.12 10.07

(0.85) (0.71) (0.17) (0.25)
Risk premium based forecasters

Forward spreads -0.74 -9.15 46.09 14.15
(0.51) (0.60) (0.10) (0.20)

Yield spreads 0.08 -9.63 46.52 13.88
(0.50) (0.61) (0.10) (0.21)

Common factor based forecasters
Initial 10.64 7.98 27.75 16.79

(0.35) (0.40) (0.28) (0.13)
Recursive -5.29 -5.32 34.36 17.25

(0.62) (0.60) (0.20) (0.16)
Time series models

HAR -24.72 -356.3 42.30 -21.15
(0.97) (0.87) (0.14) (0.67)

Mean-reverting realized GARCH -43.86 -47.38 29.08 -50.12
(0.94) (0.88) (0.15) (0.92)
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Figure A.1: Liquidity of Treasury futures over time
This figure shows the evolution in the daily fraction of high-frequency intervals containing
a Treasury futures price observation, by underlying maturity and sampling frequency. The
sample spans the period from January 2, 2000, through October 31, 2016.
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Figure A.2: Number of coupon bonds over time
This figure shows the evolution in the number Nt of coupon bonds with maturity between
3 months and 10 years used in the daily cross-sectional estimations Eq. (34). Callable
issues are excluded. The sample spans the period from January 2, 2000, through October
31, 2016.
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