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Now- and Backcasting Initial Claims with

High-Dimensional Daily Internet Search-Volume Data

Abstract

We generate a sequence of now- and backcasts of weekly unemployment insurance ini-
tial claims (UI) based on a rich trove of daily Google Trends (GT) search-volume data
for terms related to unemployment. To harness the information in a high-dimensional
set of daily GT terms, we estimate predictive models using machine-learning tech-
niques in a mixed-frequency framework. In a simulated out-of-sample exercise, now-
and backcasts of weekly UI that incorporate the information in the daily GT terms
substantially outperform models that ignore the information. The relevance of GT
terms for predicting UI is strongly linked to the COVID-19 crisis.

JEL classifications: C45, C53, C55, E24, E27, J65

Keywords: Unemployment insurance, Internet search, Mixed-frequency data, Penal-
ized regression, Neural network, Variable importance



1. Introduction

The COVID-19 crisis has created economic upheaval in the United States, including histor-

ically unprecedented levels of unemployment insurance initial claims (UI). After a national

emergency was declared on March 13, 2020 and closures of non-essential retail establishments

were ordered in many parts of the country, UI spiked in late March, reaching a (seasonally

adjusted) record of 6,867,000 for the week ending March 28, 2020. By comparison, the peak

in UI during the Great Recession was “only” 665,000 (for the week ending March 28, 2009).

While UI has subsequently declined, it remains at elevated levels. Because it provides im-

portant information about the US labor market and is reported at the weekly frequency,

UI has become perhaps the most closely watched economic variable during the COVID-19

crisis. Reflecting its relevance and timeliness, Lewis, Mertens, and Stock (2020) include UI

in their recently developed weekly economic indicator for the United States.

In this paper, we use a rich trove of daily internet search-volume data from Google Trends

(GT) to predict UI, with an eye toward improving prediction during the COVID-19 crisis.

Because we cannot know a priori the most relevant GT search terms for predicting UI, we

employ a high-dimensional set of GT terms related to unemployment that reflects individu-

als’ searches for information about filing for unemployment benefits when they become (or

anticipate becoming) unemployed. We then rely on machine-learning techniques to harness

the relevant information in the terms. Specifically, we use daily data for 103 unemploy-

ment-related GT terms for the most recent seven days to generate a sequence of now- and

backcasts of a given week’s (Sunday through Saturday) UI, in anticipation of the figure’s

release by the Department of Labor on Thursday of the following week. The sequence of

now- and backcasts incorporates the most recent daily GT data as they become available,

which allows us to investigate the “term structure” of the flow of information with respect

to predictive accuracy. The sequence of now- and backcasts of week-t UI are made from ten

days to one day before the UI release on Thursday of week t+ 1.
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Each of our predictive models relates UI to its first or second lag—in recognition of

the serial correlation in UI—as well as seven days of GT data.1 Each model thus contains

7×103+1 = 722 predictors (or inputs), so that ours is a high-dimensional setting. We begin

with a linear specification for the predictive models underpinning the now- and backcasts.

We estimate the linear predictive models via the least absolute shrinkage and selection opera-

tor (LASSO, Tibshirani 1996) and elastic net (ENet, Zou and Hastie 2005). The LASSO and

ENet are popular machine-learning devices, which improve prediction in high-dimensional

settings by including a penalty term in the objective function for estimating the model’s pa-

rameters. Intuitively, the penalty term works to shrink the parameters toward zero, thereby

helping to prevent overfitting. Because their penalty terms include an `1 component, the

LASSO and ENet permit shrinkage to zero; hence, they facilitate model interpretation by

performing variable selection.

To allow for more complex, nonlinear predictive relationships, we also employ artificial

neural networks (ANNs) to generate now- and backcasts of UI based on the 722 predictors.

ANNs contain one or more hidden layers, each of which contains multiple neurons that

transmit predictive signals through the network. Under a reasonable set of restrictions, a

single-layer ANN with a sufficient number of neurons can approximate any smooth function

(e.g., Cybenko 1989; Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991;

Barron 1994). Because ANNs with multiple hidden layers are often used in practice, we

consider ANNs with one to three hidden layers (NN1, NN2, and NN3, respectively).2 We fit

the ANNs using the recently developed Adam stochastic gradient descent (SGD) algorithm

(Kingma and Ba 2015).

Our use of mixed-frequency data in the predictive models is a version of the unrestricted

mixed-data sampling (U-MIDAS) approach of Foroni, Marcellino, and Schumacher (2015).

The restricted MIDAS approach (Ghysels, Santa-Clara, and Valkanov 2005) imposes a lag-

1The inclusion of the first or second lag of UI is determined by the timing of the UI release, as explained
in Section 3.

2ANNs with one or two (three or more) hidden layers are typically referred to as shallow (deep) neural
networks.
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polynomial structure on the higher-frequency data. Instead of somewhat arbitrarily imposing

a lag-polynomial structure, we harness machine-learning techniques to fit the weights for the

individual variables in the predictive models in our high-dimensional setting. The U-MIDAS

framework also allows us to analyze how the flow of information affects the accuracy of the

sequence of now- and backcasts, as each successive element in the sequence includes a more

recent day of GT data. In essence, we combine two branches of the economic forecasting

literature, one that applies machine-learning tools (e.g., Diebold and Shin 2019; Kotchoni,

Leroux, and Stevanovic 2019; Borup and Schütte forthcoming; Medeiros et al. forthcoming)

and one that employs mixed-frequency data (e.g., Clements and Galvão 2008; Foroni and

Marcellino 2014; Brave, Butters, and Justiniano 2019). To our knowledge, our study is the

first to use high-dimensional, mixed-frequency data together with the U-MIDAS approach

and machine-learning techniques to generate predictions, so that we make a methodological

contribution along this dimension.

We find that the information in our high-dimensional set of daily GT terms is indeed

useful for now- and backcasting weekly UI, even up to ten days before its release date. This

finding holds for both non-seasonally and seasonally adjusted UI. Specifically, the predictions

for models that include GT terms generate substantial improvements in root mean squared

error (RMSE) vis-à-vis an autoregressive (AR) benchmark model. For an out-of-sample

period spanning the first week of January 2015 through the first week of August 2020, all of

the now- and backcasts based on the daily GT trends deliver a lower RMSE than the AR

benchmark. Many of the reductions in RMSE are quite sizable, reaching as high as 63%.

The improvement in predictive accuracy offered by the daily GT terms is dramatic during

the advent of the COVID-19 crisis.

The now- and backcasts based on both linear models and ANNs perform well overall.

Predictions based on ANNs typically perform better than those based on linear models for

non-seasonally adjusted UI, while the converse holds for seasonally adjusted UI. We also
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consider three ensembles for a given now- or backcast of UI.3 The first takes the average

of the LASSO and ENet predictions, the second is the average of the predictions generated

by the three ANNs, and the last is the average of all five predictions (LASSO, ENet, NN1,

NN2, and NN3). The ensemble based on all of the individual predictions works quite well,

producing a reduction in RMSE vis-à-vis the AR benchmark that is nearly as large as that

of the best individual model (which we cannot know a priori).

The term structure of the information flow reveals a pronounced increase in predictive

accuracy as more timely daily GT data are incorporated into the sequence of now- and

backcasts. For the first nowcast, which is made ten days before the UI release, the GT terms

improve the RMSE vis-à-vis the AR benchmark by approximately 25% (15%) on average

for non-seasonally (seasonally) adjusted UI. For the backcast made three days before the UI

release, which incorporates GT data for seven more recently available days, the improvement

in RMSE is around 55% (45%) on average for non-seasonally (seasonally) adjusted UI. The

best overall performance obtains when there is full overlap between the seven days of GT

terms and the UI week, corresponding to the backcast made three days before the UI release.

We also test whether the predictive accuracy of the models that incorporate the GT terms

relative to that of the AR benchmark varies with social conditions related to the COVID-19

crisis. Using four measures of social conditions (UI minus its pre-crisis average, change in

COVID-19 deaths, government response stringency index, and workplace closure stringency

sub-index), we find that the relative performance of the models that incorporate the GT

terms significantly improves as social conditions worsen. This provides further evidence that

the predictive information in the GT terms is linked to the COVID-19 crisis.

To look inside the “black box” of the fitted ANNs, we compute variable-importance

measures (Greenwell, Boehmke, and McCarthy 2018) and partial-dependence plots (PDPs,

Friedman 2001) for the individual predictors. The variable-importance measures allow us

to see which predictors are the most relevant in the fitted ANNs, as well as the linear

3Ensembles are often refereed to as combinations in the econometrics literature; see Timmermann (2006)
for a survey of forecast combinations.
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models fitted via the LASSO and ENet. Prior to the COVID-19 crisis, the lag of UI is

the most important predictor in all of the fitted models. With the advent of the crisis, the

situation changes markedly, as GT terms related to the application process for UI benefits

(e.g., apply for unemployment benefits, file for unemployment, and unemployment office)

become substantially more important. The PDPs allow us to analyze the strength of the

nonlinearities in the fitted ANNs. For non-seasonally adjusted UI, there is evidence of

nonlinearities in the predictive relationships between the GT terms and UI, with the effect

of the GT terms becoming stronger as the terms take on more extreme values in connection

with the COVID-19 crisis.

We contribute to an emerging literature that uses internet search-volume data to predict

labor market variables. For example, D’Amuri and Marcucci (2017) show that GT search

volume for terms including jobs improves US unemployment rate prediction, while Niesert

et al. (2020) find that an array of GT terms are useful for predicting unemployment rates in a

collection of developed countries. Borup and Schütte (forthcoming) use a large number of GT

terms and machine-learning tools to improve US employment growth prediction. In contrast

to these studies, which predict variables available at the monthly frequency, our target is

weekly UI—which has become perhaps the most closely watched variable since the advent

of the COVID-19 crisis—and we use a mixed-frequency approach. Some recent studies use

GT terms to predict UI during the crisis (Aaronson et al. 2020; Goldsmith-Pinkham and

Sojourner 2020; Larson and Sinclair 2020). Unlike the present paper, these studies consider

only a small number of GT terms and do not utilize machine-learning methods.4

The rest of the paper is organized as follows. Section 2 describes the data, while Section 3

explains the information flow for the sequence of now- and backcasts. Section 4 specifies the

predictive models and outlines their estimation. Section 5 reports results for the out-of-

4Aaronson et al. (2020) use an event-study design based on the sensitivity of UI to hurricanes to predict
UI during the start of the COVID-19 crisis using GT terms, while Goldsmith-Pinkham and Sojourner (2020)
predict UI during the start of the crisis using the GT term file for unemployment. Larson and Sinclair (2020)
use a small number of GT terms in panel regressions to nowcast UI across US states; in contrast to our study,
nowcasts based on the GT terms fail to outperform those based on an AR benchmark. Choi and Varian
(2012) use a small number of GT terms to predict UI through mid 2011.
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sample exercise. Section 6 interprets the fitted models via variable-importance measures

and PDPs. Section 7 concludes.

2. Data

This section describes the data, which span the first week of January 2005 to the first week

of August 2020.

2.1. Unemployment Insurance Initial Claims

Our target variable is UI for the United States. UI is available at the weekly frequency,

corresponding to initial claims for Sunday through Saturday. Each Thursday morning at

8:30 EST, the Department of Labor releases the UI figure for the previous week. We take

this publication lag into account when computing our predictions.5 As detailed in Section 3,

we are careful in tracking the information flow, so that we only use information available at

the time of prediction formation.

The choice between targeting non-seasonally or seasonally adjusted data has been the

subject of recent debate during the COVID-19 crisis (e.g., Rinz 2020). The issue is whether

the conventional multiplicative seasonal-adjustment process overstates the actual seasonality

in the data during the crisis, when UI reached historically unprecedented levels.6 To address

this issue, we generate predictions for both non-seasonally and seasonally adjusted UI.

2.2. Google Trends

Daily internet search-volume data are obtained from GT, which provides an index of the

proportion of queries for a specific search term within a geographical area. The index is

5Compared to other macroeconomic variables (e.g., gross domestic product and consumption), UI data
are subject to relatively minor revisions, as UI is based on government administrative data (rather than
surveys). UI is typically revised only once during the following week. We accommodate this via vintage data
when computing our predictions.

6Indeed, the Department of Labor recently switched to an additive seasonal-adjustment process for UI
(Davidson 2020). The change was only made going forward, so that historical data will not be revised.
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released with a maximum delay of 36 hours. This delay is the result of Google filtering

irregular search activity, such as automated searches or queries that may be associated with

attempts to spam search; see “FAQ about Google Trends data.”

We construct a high-dimensional set of predictors based on daily GT terms. Starting

with the source term unemployment, we use Google Keyword Planner, which provides the

most relevant terms to include in a webpage to increase web traffic, to obtain the following

top 15 keywords associated with this term: (1) unemployment, (2) unemployment benefits,

(3) unemployment office, (4) unemployment insurance, (5) file for unemployment, (6) apply

for unemployment, (7) unemployment claim, (8) how to file for unemployment, (9) ui on-

line, (10) unemployment application, (11) unemployment weekly claim, (12) unemployment

compensation, (13) unemployment number, (14) unemployment online, (15) employment in-

surance. These “primitive terms” appear quite plausible, as they are associated with the

actions of a person who becomes unemployed. Our out-of-sample period begins in 2015 in

Section 5, so that, to avoid look-ahead bias, the set of primitive terms is based on GT data

through the end of 2014.

We expand each of the primitive terms via a GT feature that provides a list of 25 related

terms, again based on GT data through the end of 2014. We use the top category of related

terms (instead of the rising category). This step adds terms that are specific to individual

US states (e.g., ny unemployment benefits, unemployment benefits california); semantically

related to the primitive terms (e.g., how to apply for unemployment benefits, unemployment

phone number, filing unemployment online, state unemployment office); closely related to

unemployment, such as health care coverage and tax policies (e.g., unemployment health

insurance, unemployment insurance taxes); and narrowly defined (e.g., edd online, which

refers to the Employment Development Department, through which unemployment insurance

benefits can be applied for in California). After excluding duplicates, this produces a total

of 270 keywords.
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After removing low-volume queries (defined as series with less than 95% non-zero values),

we have 103 unique terms at the daily frequency. In the context of predicting employment

growth, Borup and Schütte (forthcoming) find that minor variations in the wording of queries

(like adding or removing an s for a plural or singular version of a word) can have a notable

influence on their predictive power. We cannot know a priori which specific terms or varia-

tions are the most relevant for predicting UI, so that we include a large number of related

terms and rely on supervised machine-learning methods to place greater weight on those

that are deemed the most relevant. Terms that are specific to individual US states capture

idiosyncrasies for each state, which is useful if, say, New York is suddenly the main driver of

unemployment claims. This is relevant, given the heterogeneity in the spreading of COVID-

19 and political responses across different parts of the United States. Table 1 lists the 103

unique GT terms for our analysis.

GT only allows for the downloading of daily data in blocks that do not cover the full

sample period, so that we concatenate data from each download to construct complete time

series. The downloaded data for each GT term are scaled to have a value of 100 for the day

with the highest volume. We thus need to adjust the levels of each downloaded block of data

to chain together series that are comparable over time. To accomplish this, we download

seven-month blocks of data, with a month of overlap. For each GT term, we compute the

average daily value for the current and preceding blocks for the overlapping month. We then

use the ratio of the two averages to adjust the levels for all preceding blocks.7

Each block of downloaded GT data covering a particular period is based on a randomized

sample (about 1%) of total search queries during the period. The values for the block

corresponding to the period thus change according to the time and IP address of the request

7A simple example illustrates the basic idea. Suppose that the first set of downloaded data for an arbitrary
series is 90 and 99 for periods 1 and 2, respectively; the next set of downloaded data is 85 and 76 for periods
2 and 3, respectively. We take the ratio of the values for period 2, 85/99 = 0.86; we then use the ratio to
adjust the period 1 value to 90 × 0.86 = 77.27, which gives us a comparable series of 77.27, 85, and 76 for
periods 1, 2, and 3, respectively.
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to download the data. To reduce sampling error, we make ten requests for a particular period

and take the average of the values over the ten downloaded blocks.

Finally, we seasonally adjust each of the GT terms using the popular STL filtering pro-

cedure (Cleveland et al. 1990). To avoid look-ahead bias, we recursively seasonally adjust

the GT terms using data available at the time of prediction formation.

Figure 1 depicts UI, along with two selected GT terms (file for unemployment and un-

employment office), for the first week of January 2020 to the first week of August 2020.8

The time stamp on the horizontal axis indicates the UI release. The upper (lower) panels

display results for non-seasonally (seasonally) adjusted UI. For both the non-seasonally and

seasonally adjusted cases, UI exhibits a dramatic increase for the March 26 release, corre-

sponding to the week ending March 21, followed by another sharp increase in the next week,

leading to an historical high of approximately 6.2 (6.9) million on a non-seasonally (season-

ally) adjusted basis for the week ending March 28. UI then decreases gradually, although it

remains quite elevated from an historical perspective.

The two GT terms in Figure 1 appear to track UI quite well. Specifically, the terms

start to increase markedly in the weeks around the sharp increase in UI, and they follow

the subsequent downward trajectory fairly closely. Figure 1 suggests that GT terms are

relevant for predicting UI. This is economically intuitive, as individuals are likely to search

for information about filing for unemployment benefits when they become (or anticipate

becoming) unemployed. Such searches leave a footprint in the search volume of relevant

queries, which we harness to predict UI.

3. Information Flow

Table 2 explains the flow of information for generating our sequence of predictions. In terms

of notation, we denote the days comprising week t by Sundayt, Mondayt, . . . , Saturdayt.

The Department of Labor releases the week-(t − 1) UI figure (UIt−1) on Thursdayt. Since

8These are two of the most important terms for predicting UI in Section 6.
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GT data are released with a maximum 36-hour delay, we employ a conservative two-day lag,

so that search-volume data for queries for, say, Saturdayt are available on Mondayt+1. When

generating each prediction, we use the seven most recently available daily observations for

each of the 103 GT terms.

We begin with a prediction of UIt formed on Mondayt, which corresponds to a nowcast

of UIt. After accounting for the maximum 36-hour reporting lag, the seven most recently

available daily observations for the GT terms cover Sundayt−1 through Saturdayt−1. We

compute the nowcast by first using historical data available at the time of prediction for-

mation to estimate one of the predictive models described in Section 4, which relates UI for

a given week to GT terms for the seven days in the previous week, as well as the second

lag of UI. The UI lag accounts for the strong autocorrelation in UI. We use the second lag,

because, as indicated in the last column of Table 2, the most recent UI observation available

for computing the nowcast of UIt is for week t − 2 (due to the reporting lag for UI). We

then plug the values for the GT terms for Sundayt−1 through Saturdayt−1 and most recent

UI observation (UIt−2) into the fitted model to generate the nowcast of UIt.

Next is a prediction of UIt formed on Tuesdayt, which again corresponds to a nowcast.

Since an additional day of GT data is available, this nowcast is based on terms for Mondayt−1

to Sundayt, so that there is now a one-day overlap between the GT terms and UIt; see the

fourth column of Table 2. To compute the nowcast, we first fit the predictive model, which

relates UI in a given week to GT terms for Sunday of that week and Monday through

Saturday of the previous week (as well as the second lag of UI). We then plug the values

for the GT terms for Mondayt−1 to Sundayt (and UIt−2) into the fitted model. We proceed

analogously to compute the nowcast of UIt formed on Wednesdayt, which is characterized

by a two-day overlap between the GT terms and UIt.

The next three nowcasts in Table 2 are formed on Thursdayt, Fridayt, and Saturdayt. In

addition to incorporating GT data through Tuesdayt, Wednesdayt, and Thursdayt, respec-

tively, the latest available UI release allows us to use UI for week t − 1. We thus use the
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first (instead of the second) lag of UI in the predictive model. Observe that as we move

from Thursdayt to Saturdayt when forming the nowcasts, we go from a three- to a five-day

overlap between the available GT terms and UIt. Otherwise, we compute the nowcasts in

the same manner as the first three nowcasts in Table 2.

The remaining predictions of UIt, formed on Sundayt+1 through Wednesdayt+1, con-

stitute backcasts. The backcast formed on Mondayt+1 employs the maximum overlap of

seven days between the available GT terms and UIt. The backcast formed on Tuesdayt+1

(Wednesdayt+1) uses GT data for six (five) days from week t and one (two) day(s) from week

t+ 1.

The sequence of predictions in Table 2 allows us to investigate the term structure of the

information flow with respect to predicting UI. As we proceed from the nowcast formed on

Mondayt to the backcast formed on Mondayt+1, the degree of overlap between the days used

to predict UIt increases. For the final two backcasts in Table 2, we include GT terms from

the first one or two days of week t + 1 when predicting UIt. We are interested in how the

availability of more recent daily GT data affects the accuracy of the now- and backcasts.

4. Predictive Models

The general form of a predictive model is given by

UIt = f (j)
(

UIt−1(2), g
(j)
t ;θ(j)

)
, (4.1)

where θ(j) is a vector of model parameters specific to f (j);

g
(j)
t︸︷︷︸

7K×1

=

[
g′t−j/7 g′t−(j+1)/7 . . . g′t−(j+6)/7

]′
; (4.2)
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gt−i/7 is a K × 1 vector of GT terms for the (7 − i)th day of week t for i = 0, . . . , 6;

and K = 103.9 The fifth column of Table 2 provides the value of j for each of the now-

and backcasts; the data overlap in the fourth column is given by 7 − |j|. Based on data

availability for UI, we use UIt−2 for the first three nowcasts and UIt−1 for the remaining now-

and backcasts in Table 2, explaining the subscript notation for the AR term in Equation

Equation (4.1).10

We begin with a linear specification for the predictive model:

UIt = α(j) + β
(j)
ARUIt−1(2) + β(j)

g

′
g
(j)
t + ε

(j)
t , (4.3)

where β
(j)
g is a 7K×1 vector of slope coefficients for the daily GT terms and ε

(j)
t is zero-mean

error term. In terms of Equation (4.1), the vector of model parameters is given by

θ(j) =

[
α(j) β

(j)
AR β

(j)
g

′
]′
. (4.4)

There are 7 × 103 + 1 = 722 regressors in Equation (4.3). In our high-dimensional setting,

we use the LASSO and ENet to estimate θ(j) in Equation (4.3) when generating the now-

and backcasts.11

Equation (4.3) can be viewed as a U-MIDAS model (Foroni, Marcellino, and Schumacher

2015), as it allows each of the higher-frequency predictors in g
(j)
t to have its own coefficient. A

restricted MIDAS specification imposes a lag-polynomial structure on the daily observations.

We use a U-MIDAS approach for two reasons. First, the daily observations only naturally

align with the calendar week when j = 0 or j = 7 (see Table 2). Second, we employ machine-

9The vector of GT terms for each day of week t is as follows: Sunday, gt−6/7; Monday, gt−5/7; Tuesday,
gt−4/7; Wednesday, gt−3/7; Thursday, gt−2/7; Friday, gt−1/7; Saturday, gt.

10Including additional lags for UI in Equation (4.1) has little effect on the results, so that a single lag
appears sufficient for capturing the autocorrelation in UI.

11When we compute simulated out-of-sample now- and backcasts starting in the first week of January
2015, the number of weekly UI observations available for fitting the predictive model is 520, which is less
than the number of predictors (722), so that the conventional ordinary least squares estimator fails.
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learning methods that allow us to flexibly estimate the weights—rather than somewhat

arbitrarily imposing a lag-polynomial structure—while guarding against overfitting.12

4.1. Penalized Regression

The LASSO (Tibshirani 1996) is a machine-learning device based on penalized regression.

It alleviates overfitting by augmenting the objective function for estimating θ(j) in Equa-

tion (4.3) with an `1 penalty term:

arg min
θ(j)∈R7K+2

1

2T

{
T∑
t=1

[
UIt −

(
α(j) + β

(j)
ARUIt−1(2) + β(j)

g

′
g
(j)
t

)]2}
+ λ‖β(j)‖1, (4.5)

where

β(j) =

[
β
(j)
AR β

(j)
g

′
]′
, (4.6)

T is the number of weekly UI observations used to fit the model, ‖·‖1 is the `1 norm, and

λ ≥ 0 is a regularization parameter for controlling the degree of shrinkage. Unlike the

`2 penalty in ridge regression (Hoerl and Kennard 1970), the `1 penalty in Equation (4.5)

permits shrinkage to zero (for sufficiently large λ), so that the LASSO performs variable

selection.

Although the LASSO is effective at selecting relevant predictors in certain environments

(e.g., Zhang and Huang 2008; Bickel, Ritov, and Tsybakov 2009; Meinshausen and Yu 2009),

it tends to arbitrarily select one predictor from a group of highly correlated predictors. The

ENet (Zou and Hastie 2005) is a refinement of the LASSO, which mitigates this tendency by

including both `1 (LASSO) and `2 (ridge) components in the penalty term for the objective

12Foroni, Marcellino, and Schumacher (2015) find that a “small” difference in sampling frequency between
the higher- and lower-frequency variables (as in our application) favors the U-MIDAS over the restricted
MIDAS approach.
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function:

arg min
θ(j)∈R7K+2

1

2T

{
T∑
t=1

[
UIt −

(
α(j) + β

(j)
ARUIt−1(2) + β(j)

g

′
g
(j)
t

)]2}
+ λPδ

(
β(j)

)
, (4.7)

where

Pδ
(
β(j)

)
= 0.5(1− δ)‖β(j)‖22 + δ‖β(j)‖1, (4.8)

‖·‖2 is the `2 norm, and 0 ≤ δ ≤ 1 is a blending parameter for the `1 and `2 components of

the penalty term. When δ = 1, Pδ = ‖β(j)‖1 in Equation (4.8), so that the ENet reduces to

the LASSO. We follow the recommendation of Hastie and Qian (2016) and set δ = 0.5.13

After estimating θ(j) in Equation (4.3) via the LASSO or ENet using data available at

the time of prediction formation, we plug the most recently available UI observation and

seven most recently available daily observations for each of the 103 GT terms into the fitted

model to generate a given now- or backcast in Table 2.

4.2. Artificial Neural Networks

We consider feedforward ANNs, which have proven useful for prediction in numerous do-

mains. An ANN architecture is comprised of multiple layers. The first, the input layer, is

the set of predictors, which we denote by x1, . . . , xP0 . One or more hidden layers follow.

Each hidden layer l contains Pl neurons, each of which takes signals from the neurons in the

previous hidden layer to generate a subsequent signal:

h(l)m = g

(
w

(l)
m,0 +

Pl−1∑
j=1

w
(l)
m,jh

(l−1)
j

)
for m = 1, . . . , Pl; l = 1, . . . , L, (4.9)

13To better guard against overfitting, we tune the regularization parameter λ for the LASSO and ENet in
Equations (4.5) and (4.7), respectively, via the extended regularization information criterion (Hui, Warton,
and Foster 2015), which is a refinement of the Bayesian information criterion (Schwarz 1978).
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where h
(l)
m is the signal corresponding to the mth neuron in the lth hidden layer;14

w
(l)
m,0, w

(l)
m,1, . . . , w

(l)
m,Pl−1

are weights; and g(·) is an activation function. The final layer is

the output layer, which translates the signals from the last hidden layer into a prediction:

ŷ = w
(L+1)
0 +

PL∑
j=1

w
(L+1)
j h

(L)
j , (4.10)

where ŷ denotes the prediction of the target variable. For the activation function, we use

the popular rectified linear unit (ReLU) function:

g(x) =


0 if x < 0,

x otherwise.

(4.11)

In response to a sufficiently strong signal, Equation (4.11) activates a neuronal connection

and relays the signal forward through the network. To illustrate the basic structure of an

ANN, the following diagram portrays a feedforward ANN consisting of five inputs and two

hidden layers with four and two neurons, respectively:

x1

x2

x3

x4

x5

Input

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden(1)

h
(2)
1

h
(2)
2

Hidden(2)

ŷ

Output

The myriad of interactions among the inputs and neurons in the network allows for complex

nonlinear predictive relationships.

14For the first hidden layer, h
(0)
j = xj for j = 1, . . . , P0.
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Theoretically, a single hidden layer with enough nodes is sufficient for approximating

any smooth function (e.g., Cybenko 1989; Funahashi 1989; Hornik, Stinchcombe, and White

1989; Hornik 1991; Barron 1994). Nevertheless, ANNs with multiple hidden layers are often

used in practice (e.g., Rolnick and Tegmark 2018). We consider ANNs with one, two, and

three hidden layers (NN1, NN2, and NN3, respectively). We include 104 neurons in the single

hidden layer for NN1, corresponding to the number of GT terms (103) for the different days

plus the lag of UI. Based on the “pyramid” strategy (Masters 1993), NN2 (NN3) contains

104 and ten (104, ten, and three) neurons in its first and second (first, second, and third)

hidden layers, respectively.

Fitting (or training) an ANN requires estimating the weights. We train the ANNs by min-

imizing an objective function based on the MSE for the training sample, which we augment

with an `1 penalty term to help guard against overfitting. We use the recently developed

Adam SGD algorithm (Kingma and Ba 2015) to train the ANNs, which we implement in

Python using the keras package. In the algorithm, we set the number of epochs to 700 and

batch size to 32 (the keras default).15

4.3. Ensembles

We also consider ensemble predictions, which are popular in machine learning. In recognition

of model uncertainty, instead of relying on a prediction based on a single model, we take an

average of the predictions generated by multiple models. For each of the now- and backcasts,

we construct three ensembles. The first (Ensemble-Linear) is an average of the predictions

based on the linear models fitted via the LASSO and ENet. The second (Ensemble-ANN)

is an average of the predictions based on the fitted NN1, NN2, and NN3 models. The final

ensemble (Ensemble-All) is an average of the predictions based on the linear models fitted

via the LASSO and ENet and fitted NN1, NN2, and NN3 models.

15To reduce the influence of starting values for the random-number generator in the algorithm, we compute
an ensemble prediction by training a given model ten different times with a different seed each time and
taking the average of the ten predictions.

16



5. Out-of-Sample Results

We generate simulated out-of-sample now- and backcasts for UI for the first of week of

January 2015 through the first week of August 2020. Simulating the situation of a forecaster

in real time, we proceed as follows using a rolling-window approach. We first use UI and

GT data available for the first week of January 2005 (when enough GT terms have sufficient

volume) through the last week of December 2014 to fit the predictive models. We then plug

the most recent UI value and relevant GT values into the fitted models to generate the now-

and backcasts for UI for the first week of January 2015. Next, we refit the predictive models

using UI and GT data available for the second week of January 2005 through the first week

of January 2015 and plug the most recent UI and relevant GT values into the fitted models

to compute the UI now- and backcasts for the second week of January 2015. We continue in

this manner through the end of the out-of-sample period. We reiterate that the simulated

now- and backcasts only use information available at the time of prediction formation, as

described in Section 3.

Although it substantially increases computational cost, it is important to refit the models

each week as new data become available. In particular, as we discuss in Section 6, the GT

terms play a relatively limited role in models fitted using data that exclude the COVID-19

crisis, while they become substantively more important when the training sample includes

data from the crisis. By refitting the models each week, we are able to capture the growing

importance of the GT terms in a more timely manner.

An AR model based on the first or second lag of UI is used to generate the benchmark

now- and backcasts, where we again fit the AR models using a rolling-window approach.16

An AR model is a standard benchmark in the economic forecasting literature. Due to

the significant autocorrelation in UI, it is a relevant benchmark in our application, and it

16Based on the information flow (see Section 3), the AR benchmark model is given by UIt = ρ0+ρ2UIt−2+εt
for the nowcasts formed on Mondayt through Wendesdayt; it is given by UIt = ρ0 + ρ1UIt−1 + εt for the
now- and backcasts formed on Thursdayt through Wendesdayt+1. We estimate the AR models via ordinary
least squares.
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performs substantially better than a näıve model that ignores the autocorrelation in UI and

simply uses the rolling mean to predict UI.

5.1. Predictive Accuracy

Panel A (B) of Table 3 reports results for non-seasonally (seasonally) adjusted UI.17 The

third column reports the RMSE for the AR benchmark for each of the now- and backcasts.

The MSE is defined as

MSE =
1

T

T∑
t=1

(
UIt − ÛIt

)2
, (5.1)

where ÛIt generically denotes a prediction of UIt and T is the number of observations avail-

able for analyzing the predictions. RMSE is the square root of Equation (5.1).

For the nowcasts formed on Mondayt through Wednesdayt, the RMSE for the AR bench-

mark is 569,418 (642,032) for non-seasonally (seasonally) adjusted UI. Beginning with the

nowcast on Thursdayt, the AR model is based on the first (instead of the second) lag of UI,

as the UIt−1 figure becomes available on Thursdayt. This leads to a substantial reduction in

RMSE to 352,507 (445,565) for the non-seasonally (seasonally) adjusted case.

The fourth through eleventh columns of Table 3 report the RMSE ratio for the model in

the column heading vis-à-vis the AR benchmark. The ratios are all below one, so that the

now- and backcasts based on the machine-learning methods—which incorporate the informa-

tion in the daily GT terms—always outperform the AR benchmark in terms of RMSE. The

improvements in predictive accuracy are typically sizable. For the initial nowcast formed on

Mondayt, which is formed ten days before the UI release, the reductions in RMSE relative to

the AR benchmark range from approximately 15% to 30% (10% to 20%) for non-seasonally

(seasonally) adjusted UI. The RMSE ratios decrease close to monotonically as we move

from the nowcast formed on Mondayt to the backcast formed on Mondayt+1, which uses

17We assess the accuracy of the now- and backcasts using revised UI data.
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the largest data overlap (seven days) between the daily GT terms and weekly UI. For the

Mondayt+1 backcast, the reductions in RMSE vis-à-vis the AR benchmark range from around

50% to over 60% (40% to 55%) for non-seasonally (seasonally) adjusted UI. For seasonally

adjusted UI, there are often additional improvements in RMSE for the backcasts formed on

Tuesdayt+1 and Wednesdayt+1. Overall, the predictions generally become more accurate in

Table 3 as we include additional days of GT data, with the reduction in MSFE vis-à-vis the

AR benchmark reaching as high as 63.2% (for the NN2 backcast formed on Mondayt+1 for

non-seasonally adjusted UI).

The different machine-learning methods in Table 3 perform reasonably similarly, although

a distinct pattern emerges with respect to non-seasonally and seasonally adjusted UI. For the

latter, as indicated by the bold entries in Table 3, predictions based on linear models nearly

always perform the best, suggesting that a linear specification is adequate for capturing

the information in the GT terms when it comes to predicting seasonally adjusted UI. In

contrast, the most accurate predictions for non-seasonally adjusted UI are almost always

based on ANNs, so that accommodating nonlinarities appears important in this case.

The ensembles generally perform well in Table 3. In particular, Ensemble-All—which is

an average of the LASSO, ENet, NN1, NN2, and NN3 predictions—often produces close to

the lowest RMSE for the individual now- and backcasts. Because we cannot know a priori

the best method, the Ensemble-All approach provides a promising practical strategy for now-

and backcasting UI.

5.2. COVID-19 Crisis

Figure 2 depicts selected now- and backcasts and realized UI values for the first week of

March 2020 through the third week of April 2020, near the advent of the COVID-19 crisis.

According to the upper panels, the AR benchmark model has substantial difficulty tracking

UI at the start of the crisis. For both the non-seasonally and seasonally adjusted cases,

the Monday nowcast (which is based on the second lag of UI) anticipates very little of the
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sharp increases in the third and fourth weeks of March. Although the prediction for the

second week of April is quite accurate, that for the third week of April massively overstates

the actual value. The Monday backcast (which is based on the first lag of UI) anticipates

little of the sharp increase in the third week of March and still significantly understates the

increase in the next week. The nowcast then significantly overstates UI in the first two weeks

of April, while the prediction is much more accurate for the third week of April.18

The models that incorporate information from the GT trends are typically much more

accurate than the AR benchmark in Figure 2. The middle panels show Monday, Tuesday,

and Thursday nowcasts and Monday backcasts for linear models fitted via the LASSO. Apart

from the second week of April, the Monday and Tuesday nowcasts perform much better than

the corresponding AR benchmark (Monday nowcast) in the upper panels. The inclusion

of more timely GT trends as they become available clearly improves the performance of

the models, so that the Tuesday nowcasts and Monday backcasts in the middle panels are

substantially more accurate than the corresponding AR benchmark (Monday backcast) in

the upper panels. The results for the predictions based on the fitted NN2 models in the

lower panels follow a similar pattern, although the Monday and Tuesday nowcasts evince

larger errors in the first two weeks of April vis-à-vis those in the middle panels.

Compared to the other predictions in Figure 2, the Monday nowcast based on the fitted

NN2 model in the lower-left panel is better able to predict the spike in UI in the third week

of March. This is because the GT terms play a relatively more important role in the fitted

NN2 model for the Monday backcast when it is trained using data before the start of the

COVID-19 crisis. The sharp increases in search volume for many GT terms near the start of

the crisis thus translate into a comparatively larger UI prediction for the third week of March

for the Monday backcast in the lower-left panel. When the training sample includes the UI

observation for the third week of March, the GT terms become much more important in the

18In the upper panels of Figure 2, the Monday nowcast is the same as the Tuesday and Wednesday nowcasts;
the Monday backcast is the same as the Thursday through Saturday nowcasts and Sunday, Tuesday, and
Wednesday backcasts.
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fitted models, which substantially improves the accuracy of the predictions. This highlights

the value of retraining the model each week in our rolling-window estimation procedure.

Section 6 analyzes the importance of the GT terms in models fitted using samples that

exclude and include data from the crisis.

Next, we investigate whether the relative performance of competing models vis-à-vis

the AR benchmark varies systematically with measures of social conditions related to the

COVID-19 crisis. Suppose that we want to test whether the difference between MSEs for the

AR benchmark and a competing model changes with a measure of social conditions, denoted

by zt. Following Clark and West (2007), we first define the period-t adjusted loss differential

for predictive model j:

d
(j)
t =

(
UIt − ÛI

AR

t

)2
−
(

UIt − ÛI
(j)

t

)2
+
(

ÛI
AR

t − ÛI
(j)

t

)2
for t = 1, . . . , T, (5.2)

where ÛI
AR

t and ÛI
(j)

t are the predictions based on the AR benchmark and model j, respec-

tively. We then use the following regression to test whether the difference between MSEs for

the benchmark and model j varies with zt:

d
(j)
t = φ

(j)
0 + φ

(j)
1 zt + e

(j)
t , (5.3)

where e
(j)
t is a zero-mean error term. If φ

(j)
1 equals zero, then the MSE difference does not

vary with zt. Alternatively, if, say, φ
(j)
1 > 0, then the MSE difference increases as zt increases

(i.e., the AR benchmark becomes less accurate relative to model j as zt increases).19

We use the following four variables for zt in Equation (5.3):

19The first two terms on the right-hand-side of Equation (5.2) constitute the conventional loss differential
(Diebold and Mariano 1995; West 1996). However, tests based on the conventional loss differential are
subject to severe size distortions when comparing predictions from nested models (Clark and McCracken
2001; McCracken 2007). Clark and West (2007) include the last term on the right-hand-side of Equation (5.2)
to improve the size properties of tests based on the loss differential for nested models. In our application,
because the competing models include lagged UI, they essentially nest the AR benchmark model, so that we

use the adjusted loss differential to help guard against size distortions. Inferences regarding φ
(j)
1 in Table 4

are similar when we use the conventional loss differential in Equation (5.3).
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• UI minus pre-crisis average. Difference between week-t UI and its pre-crisis average,

where the pre-crisis average is based on data for the first week of January 2005 through

the second week of March 2020.

• Change in COVID-19 deaths. Weekly change in reported US deaths due to COVID-

19. Data for reported US deaths due to COVID-19 are from the European Centre for

Disease Prevention and Control.

• Stringency index. Indicator variable that takes a value of one when the government

imposes stringent measures to mitigate COVID-19 and zero when such measures are

not in place or easing. The indicator variable is based on the stringency index from

the Oxford COVID-19 Government Response Tracker (Hale et al. 2020). The index

reflects the strength of government actions in response to the COVID-19 pandemic. It

increases when measures such as school and retail establishment closures and/or travel

restrictions are imposed, and decreases when they are relaxed.

• Workplace index. Indicator variable that takes a value of one when the government

imposes stringent workplace closure measures to mitigate COVID-19 and zero when

such measures are not in place or easing. The indicator variable is based on the

workplace closure sub-index of the Hale et al. (2020) stringency index.

Table 4 reports ordinary least squares estimates of φ
(j)
0 and φ

(j)
1 (φ̂

(j)
0 and φ̂

(j)
1 , respectively)

in Equation (5.3) for the Monday backcasts.20 The second and third columns report results

for the UI deviation from its pre-crisis average. In this case, φ
(j)
0 can be interpreted as the

(adjusted) MSE difference during “normal” times (i.e., before the COVID-19 crisis), while

φ
(j)
1 measures the change in the MSE difference as UI moves above its pre-crisis average. For

all of the competing models and both non-seasonally and seasonally adjusted UI, the φ̂
(j)
0

estimate in the second column is insignificant at conventional levels, so that the competing

models do not outperform the AR benchmark when UI is at its pre-crisis average. In contrast,

20The results are qualitatively similar for the other now- and backcasts.
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the φ̂
(j)
1 estimates in the third column are all positive and significant (at the 1% level), so

that the competing models deliver significant improvements in predictive accuracy vis-à-

vis the AR benchmark as UI rises above its pre-crisis level. The results for the change in

COVID-19 deaths in the fourth and fifth columns are similar to those in the second and

third columns. According to the φ̂
(j)
0 estimates in the fourth column, there is no significant

difference in MSEs when the change in COVID-19 deaths is zero, while the φ
(j)
1 estimates

in the fifth column are all positive and significant (at the 1% level). The competing models

thus become significantly more accurate relative to the AR benchmark as the change in

COVID-19 deaths increases.

The sixth and seventh (eighth and ninth) columns of Table 4 report results for the in-

dicator variable based on the stringency (workplace) index. For both indicator variables,

the φ̂
(j)
0 estimates in the sixth and eighth columns are all positive and significant (at the 1%

level), meaning that the competing models deliver a significantly lower MSE than the AR

benchmark when the government does not impose or eases stringent measures to mitigate

COVID-19. The φ̂
(j)
1 estimates in the seventh and ninth columns are all positive and sig-

nificant (at the 5% level); hence, the competing models generate further improvements in

predictive accuracy vis-à-vis the benchmark when the government imposes stringent mea-

sures to combat COVID-19.21

Overall, the results in Table 4 indicate that the information in the GT terms significantly

improves predictive accuracy during periods when COVID-19 creates greater social stress,

as captured by increases in UI relative to its pre-crisis level, increases in COVID-19 deaths,

and the imposition of stringent measures to mitigate COVID-19.22

21Using a χ2-statistic, the joint hypothesis that φ
(j)
0 = φ

(j)
1 = 0 (i.e., equal predictive ability) is always

rejected (at the 1% level) for all choices of zt.
22We also examine whether the inclusion of the following set of ten daily macro-financial variables in the

models further improves predictive accuracy: S&P 500 return; Chicago Board Option Exchange volatility
index (VIX); gold return; TED spread (difference between the three-month LIBOR and three-month Treasury
bill yields); term spread (difference between the ten-year Treasury bond and three-month Treasury bill
yields); expected five-year inflation rate (rate at which the five-year Treasury note and five-year TIPS
achieve the same yield); default spread (difference between Baa- and Aaa-rated corporate bond yields);
Wilshire US real estate investment trust return; Baker, Bloom, and Davis (2016) newspaper-based economic
policy uncertainty index; Baker et al. (2020) newspaper-based infectious disease equity market volatility
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6. Interpreting the Fitted Models

While the LASSO and ENet facilitate the interpretation of fitted linear models by performing

variable selection, fitted ANNs are black boxes that are difficult to interpret. In this section,

we use PDPs (Friedman 2001) and variable-importance measures (Greenwell, Boehmke, and

McCarthy 2018) to peer into the black box of the fitted ANNs and compare them to fitted

linear models.

6.1. Partial-Dependence Plots and Variable Importance

For ease of exposition, we gather the predictors in the 722× 1 vector,

x
(j)
t =

[
UIt−1(2) g

(j)
t

′
]′
. (6.1)

Furthermore, we denote the 722× T data matrix for the training sample by

X
(j)
T =

[
x
(j)
1 · · · x(j)

T

]
. (6.2)

Suppose that we are interested in analyzing the marginal effect of a given predictor, x
(j)
s ,

on the expected value of UIt for a fitted model. Letting x
(j)
C(s) = x(j) \ x(j)s , the partial

dependence for x
(j)
s is defined as

PD
(
x(j)s
)

= E
x
(j)
C(s)

[
f̂ (j)
(
x(j)s ,x

(j)
C(s)

)]
=

∫
x
(j)
C(s)

f̂ (j)
(
x(j)s ,x

(j)
C(s)

)
pC(s)(j)

(
x
(j)
C(s)

)
dxC(s)(j) ,

(6.3)

tracker. For both non-seasonally and seasonally adjusted UI, the inclusion of macro-financial variables offers
at best modest improvements in predictive accuracy; in many cases, predictive accuracy deteriorates. When
in comes to predicting UI, the daily GT terms thus appear to subsume the relevant information in the daily
macro-financial variables.
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where

pC(s)(j)

(
x
(j)
C(s)

)
=

∫
x
(j)
s

p
(
x(j)
)
dx(j)s , (6.4)

p
(
x(j)
)

is the joint probability density for x(j), and f̂ (j)
(
x(j)
)

is the prediction function for

the fitted model. Equation (6.3) gives the marginal relationship between the expected value

of the target and x
(j)
s . It is estimated via Monte Carlo integration using the training sample

X
(j)
T :

P̂D
(
x(j)s
)

=
1

T

T∑
t=1

f̂ (j)
(
x(j)s ,x

(j)
C(s),t

)
, (6.5)

where Equation (6.5) is evaluated at the training sample values of x
(j)
s (i.e., x

(j)
s,t for t =

1, . . . , T ) or a set of quantiles.

Of course, the PDP for a fitted linear model will have a constant slope, while it will be

a horizontal line for a predictor that is not selected by the LASSO or ENet. By comparing

the PDPs for the fitted ANNs to those for the fitted linear models, we can gauge the relative

importance of nonlinearities in the former.

Greenwell, Boehmke, and McCarthy (2018) develop a variable-importance metric based

on Equation (6.5):

Î
(
x(j)s
)

=

 1

T − 1

T∑
t=1

[
P̂D
(
x
(j)
s,t

)
− 1

T

T∑
t=1

P̂D
(
x
(j)
s,t

)]2
0.5

. (6.6)

Equation (6.6) measures the importance of a predictor via the variation in the PDP around

its average value (i.e., the standard deviation). For a predictor with a horizontal PDP, the

expected value of the target does not vary with the predictor, so that its variable impor-

tance is zero. As the conditional expectation fluctuates more about its average value, the

variable importance measure increases. To facilitate comparison across predictors, we scale
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Equation (6.6) using the sum of the individual measures:

Ĩ
(
x(j)s
)

=
Î
(
x
(j)
s

)
∑P

p=1 Î
(
x
(j)
p

) , (6.7)

where P is the total number of predictors, so that Ĩ
(
x
(j)
s

)
ranges from zero to one.

6.2. Importance of Google Trends Terms

Figures 3 and 4 depict variable-importance measures based on Equation (6.7) for the top 25

predictors for linear models fitted via the LASSO and fitted NN2 models, respectively, for

non-seasonally adjusted UI. The left panels of the figures correspond to models fitted with

data through the end of 2019, before the start of the COVID-19 crisis; the right panels are

for models estimated using data through the last week of July 2020, so that the training

sample includes the crisis. Note that a given GT term can appear up to seven times in the

same plot, due to our mixed-frequency framework. To conserve space, we focus on fitted

models for the Monday, Tuesday, and Thursday nowcasts and Monday backcast (with data

overlaps of zero, one, three, and seven days, respectively).

For the pre-crisis sample, the lag of UI (lag) is the most important predictor for both

the LASSO and NN2 in Figures 3 and 4. For the linear models fitted via the LASSO in

Figure 3, the Ĩ
(
x
(j)
s

)
scores for lag range from approximately 0.25 to 0.45. Taken together,

the GT terms are more important in the fitted NN2 models in Figure 4. Nevertheless, lag

still predominates, with Ĩ
(
x
(j)
s

)
scores ranging from around 0.06 to 0.12.

The GT terms become substantively more important in the right panels of Figures 3

and 4 when we include data from the COVID-19 crisis. Although lag remains the most or

next-to-most important predictor for the Monday, Tuesday, and Thursday nowcasts across

both models, it drops out of the top 25 for the Monday backcast. In other words, when we

use the maximum data overlap in computing the predictions, the fitted models assign little

importance to the autocorrelation in UI, so that the GT terms dominate the AR component.

26



Table 5 provides additional information on the growing importance of the GT terms in

the sequence of now- and backcasts, especially for the sample that includes the COVID-19

crisis. The table reports the joint importance of the GT terms for each prediction-formation

day (for non-seasonally adjusted UI). For the linear models fitted via the LASSO and pre-

crisis sample in the third column, the GT terms grow in importance from around 0.60 for

the initial nowcasts to 0.75 for the later backcasts. When the training sample includes the

COVID-19 crisis (see the fourth column), the GT terms again grow in importance, but the

level is markedly higher for each prediction-formation day. For the Monday nowcast, the

joint importance score for the GT terms is 0.715. It reaches 1.000 for the Saturday nowcast

through the Wednesday backcast, so that the AR component becomes unimportant. A

similar pattern holds for the fitted NN2 models in the last two columns, with the joint

importance measures for the GT terms nearly always larger (often substantially so) than the

corresponding values in the third and fourth columns.

The increasing importance of the GT terms since the start of the COVID-19 crisis is

also evident in Figure 5, which shows the number of predictors selected by the LASSO and

ENet for rolling-window estimation of the linear predictive models underlying the Monday,

Tuesday, and Thursday nowcasts and Monday backcast. In general, the number of selected

predictors sharply increases in the fitted linear models with the advent of the crisis, with

spikes evident in the number of selected predictors for training samples ending in the third

week of March 2020. As expected, the ENet usually selects more predictors than the LASSO

in Figure 5.

Returning to Figures 3 and 4, for the prediction-formation days where the GT terms

matter the most—most notably, the Monday backcast—there is a tendency for both the

fitted linear and NN2 models to place more weight on recently available search queries. For

example, the Monday backcast attaches the greatest importance to GT terms for Saturday

and Friday (recall the two-day lag in the availability of the GT data). To explore this

issue further, Figure 6 shows heatmaps for the joint importance of the GT terms organized
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according to the day of the week. For the pre-crisis sample in the left panels, there is no

discernible pattern in the importance of the GT terms across the days of the week. For the

sample that includes the COVID-19 crisis in the right panels, a strong pattern is evident:

with the exception of the Wednesday backcast, the now- and backcasts attach relatively

high importance to GT terms for the most recent day of available data. This is most evident

for the Monday backcast, which uses the maximum data overlap of seven days, where the

collective importance of GT terms for Saturday is 0.73 (0.46) for the linear model fitted via

the LASSO (fitted NN2 model). This highlights the usefulness of mixed-frequency GT data

for anticipating UI during the COVID-19 crisis.

Looking back to Figures 3 and 4, an interesting pattern emerges in the types of GT

terms that appear important across the two samples. For the fitted linear and NN2 models,

the pre-COVID-19 sample is characterized by a wide variety of search queries (e.g., some

geographical terms and some generic terms like workers compensation). For the sample

that includes the COVID-19 crisis, there appears to be greater emphasis on search queries

related to the application process for unemployment insurance benefits (e.g., how to file for

unemployment, unemployment application, and unemployment office).

6.3. Nonlinearities

To get a sense of the strength of the nonlinearities in the fitted ANNs, we investigate PDPs

for some of the most relevant predictors. We again report results for linear models fitted via

the LASSO and fitted NN2 models for training samples that exclude and include the COVID-

19 crisis. Figure 7 presents PDPs for the AR component (lag), how to file for unemployment,

and unemployment office illinois. The figure reports results for the Thursday nowcast and

Monday backcast (for non-seasonally adjusted UI). The two GT terms are for the most

recently available day of GT data. The first GT term, how to file for unemployment, is

included because it is the most important predictor in the fitted linear and NN2 models for

the Monday backcast during the sample that includes the crisis. We include unemployment
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office illinois because it provides an example of an important geographical search query that

enters the top 25 for the Monday backcast.23 Note that Figure 7 uses different scales for

the different training samples, as average UI is much higher for the sample that includes the

COVID-19 crisis.

By construction, the PDPs are linear for the linear models fitted via the LASSO. For the

Thursday nowcast, the predictive relationships for the AR component (lag) are quite close

to linear for the fitted NN2 models. In other words, although the NN2 allows for nonlinear

relationships, when we train the model using available data, the relationship involving the

AR component is essentially linear. For the Monday backcast, there is more evidence of a

nonlinear relationship for the NN2 model fitted using the sample that includes the COVID-19

crisis, with the slope becoming flatter for higher values of lag.

With respect to how to file for unemployment and unemployment office illinois in Fig-

ure 7, nonlinearities are evident for the fitted NN2 models when the training sample includes

data from the COVID-19 crisis, especially for the Monday nowcast. Specifically, for the

fitted NN2 models based on data that include the crisis in the lower panels, the slopes of the

PDP curves become notably steeper for large values of the GT terms, so that the response

of non-seasonally adjusted UI to the GT terms becomes stronger for more extreme values

for the latter.24

7. Conclusion

We show that the information in high-dimensional daily internet search-volume data can

be used to substantially improve predictions of weekly UI in anticipation of its Thursday

release by the Department of Labor. We construct a sequence of now- and backcasts that are

formed ten days to one day ahead of the UI release on Thursday of each week. To effectively

23At the end of August 2020, Illinois had the sixth (seventh) highest number of confirmed cases (deaths)
across US states (https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html).

24The PDPs for the fitted ANNs for seasonally adjusted UI show little evidence of nonlinearities, so that
a linear specification appears adequate for modeling the predictive relationships between the GT terms and
seasonally adjusted UI.
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utilize the information in a large number of daily GT terms related to unemployment, we

estimate the predictive models underpinning the now- and backcasts using machine-learning

techniques in a mixed-frequency framework. The mixed-frequency framework allows us to

incorporate daily GT data as they become available, thereby providing us with more timely

information for predicting weekly UI, while machine-learning methods are appropriate for

our high-dimensional setting. Our mixed-frequency approach also allows us to measure the

predictive power of each additional day of information. In a simulated out-of-sample exercise,

now- and backcasts based on daily GT terms substantially outperform an AR benchmark in

terms of RMSE. As the sequence of now- and backcasts incorporates more recent daily GT

data, predictive accuracy generally improves, leading to reductions in RMSE of up to 63%

vis-à-vis the AR benchmark.

We detect strong links between the daily GT terms and COVID-19 crisis. The daily

GT terms are especially useful for improving the accuracy of the now- and backcasts near

the advent of the crisis. We also find that the predictive accuracy of models that include

the GT terms improves significantly relative to that of the AR benchmark model as social

conditions associated with the crisis worsen. Variable-importance measures for the fitted

models reveal that the GT terms become more relevant when the training samples include

data from the crisis. Variable-importance measures also show that GT terms for the most

recently available day are typically the most germane in the fitted models, highlighting the

value of our mixed-frequency approach.

We are in the process of creating a website that will provide updated, real-time now-

and backcasts of UI on a daily basis using the methods developed in this paper.25 We are

also in the process of using our methodology to generate now- and backcasts of weekly UI

for individual US states, as well as predictions of similar measures of unemployment benefit

claims for a number of European countries.

25Available at https://www.uinowcast.org/.
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Table 1: GT terms

unemployment unemployment benefits nj to file for unemployment

unemployment benefits unemployment insurance benefits how to file unemployment

unemployment office unemployment benefits california file unemployment claim

unemployment insurance unemployment benefits new york file for unemployment benefits

file for unemployment unemployment benefits florida how apply for unemployment

apply for unemployment unemployment florida to apply for unemployment

unemployment claim nys unemployment how to apply for unemployment

how to file for unemployment florida unemployment benefits apply for unemployment benefits

unemployment application office of unemployment texas unemployment

unemployment compensation the unemployment office unemployment in florida

unemployment number state unemployment office unemployment file claim

unemployment online unemployment ky file unemployment

unemployment rate ky unemployment office wisconsin unemployment

pa unemployment unemployment ca oregon unemployment

claim unemployment ca unemployment office edd online

unemployment nys employment office edd

unemployment ny employment my ui

ohio unemployment unemployment office nj application for unemployment

unemployment texas unemployment nj unemployment iowa

florida unemployment unemployment pa wi unemployment

nj unemployment unemployment il pa unemployment compensation

unemployment oregon unemployment office pa workers compensation

california unemployment unemployment office illinois florida unemployment compensation

unemployment california unemployment illinois unemployment compensation benefits

new york unemployment state unemployment insurance pennsylvania unemployment
compensation

unemployment washington california unemployment insurance ohio unemployment compensation

unemployment wisconsin unemployment insurance ny pennsylvania unemployment

unemployment indiana ny unemployment unemployment ohio

unemployment nc unemployment health insurance federal unemployment

ca unemployment unemployment insurance nys unemployment alabama

texas unemployment benefits unemployment insurance new york unemployment phone number

texas benefits unemployment insurance tax number for unemployment

ny unemployment benefits unemployment insurance claim filing unemployment online

unemployment benefits texas unemployment insurance nj

claim unemployment benefits unemployment insurance office

The table lists the 103 Google Trends (GT) terms used to construct now- and backcasts of weekly unemploy-
ment insurance initial claims.



Table 2: Information flow

(1) (2) (3) (4) (5) (6)

Data Latest
Prediction Backcast/ Google Trends used overlap available
formation nowcast for prediction (days) j UI release

Mondayt Nowcast Sundayt−1 to Saturdayt−1 0 7 Week t− 2

Tuesdayt Nowcast Mondayt−1 to Sundayt 1 6 Week t− 2

Wednesdayt Nowcast Tuesdayt−1 to Mondayt 2 5 Week t− 2

Thursdayt Nowcast Wednesdayt−1 to Tuesdayt 3 4 Week t− 1

Fridayt Nowcast Thursdayt−1 to Wednesdayt 4 3 Week t− 1

Saturdayt Nowcast Fridayt−1 to Thursdayt 5 2 Week t− 1

Sundayt+1 Backcast Saturdayt−1 to Fridayt 6 1 Week t− 1

Mondayt+1 Backcast Sundayt to Saturdayt 7 0 Week t− 1

Tuesdayt+1 Backcast Mondayt to Sundayt+1 6 −1 Week t− 1

Wednesdayt+1 Backcast Tuesdayt to Mondayt+1 5 −2 Week t− 1

The table reports the information flow for daily Google Trends data and data releases of
unemployment insurance initial claims (UI) used for now- and backcasts of week-t UI. The
first column provides the prediction-formation day, where the subscript denotes the week
when the prediction is made. The second column provides the classification as a nowcast
or backcast of week-t UI. The third column provides the range of daily Google Trends
terms used for prediction. The fourth column provides the number of days of overlap
between the Google Trends terms in the third column and week-t UI. The fifth column
provides the value for j in Equation (4.1) The sixth column provides the latest release of
UI available at the time of prediction formation.



Table 3: RMSE ratios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Linear ANN Ensemble

Prediction Nowcast/ AR
formation backcast RMSE LASSO ENet NN1 NN2 NN3 Linear ANN All

Panel A: Non-seasonally adjusted UI

Mondayt Nowcast 569,418 0.745 0.755 0.697 0.841 0.763 0.749 0.758 0.747

Tuesdayt Nowcast 569,418 0.682 0.684 0.629 0.683 0.729 0.681 0.657 0.660

Wednesdayt Nowcast 569,418 0.626 0.619 0.658 0.628 0.583 0.620 0.602 0.603

Thursdayt Nowcast 352,507 0.648 0.642 0.705 0.523 0.627 0.644 0.547 0.588

Fridayt Nowcast 352,507 0.601 0.573 0.677 0.607 0.597 0.587 0.577 0.577

Saturdayt Nowcast 352,507 0.552 0.543 0.677 0.433 0.678 0.546 0.475 0.504

Sundayt+1 Backcast 352,507 0.580 0.587 0.436 0.475 0.450 0.583 0.421 0.492

Mondayt+1 Backcast 352,507 0.497 0.481 0.383 0.368 0.554 0.487 0.389 0.434

Tuesdayt+1 Backcast 352,507 0.496 0.491 0.393 0.463 0.619 0.493 0.442 0.463

Wednesdayt+1 Backcast 352,507 0.533 0.540 0.447 0.554 0.607 0.536 0.482 0.501

Panel B: Seasonally adjusted UI

Mondayt Nowcast 642,032 0.829 0.811 0.974 0.912 0.813 0.820 0.886 0.842

Tuesdayt Nowcast 642,032 0.715 0.718 0.866 0.923 0.748 0.714 0.819 0.757

Wednesdayt Nowcast 642,032 0.677 0.670 0.748 0.742 0.834 0.672 0.734 0.690

Thursdayt Nowcast 445,565 0.675 0.660 0.975 0.689 0.761 0.665 0.774 0.712

Fridayt Nowcast 445,565 0.603 0.617 0.758 0.630 0.643 0.606 0.638 0.618

Saturdayt Nowcast 445,565 0.492 0.513 0.600 0.576 0.720 0.501 0.589 0.532

Sundayt+1 Backcast 445,565 0.465 0.527 0.549 0.559 0.597 0.491 0.526 0.504

Mondayt+1 Backcast 445,565 0.454 0.517 0.535 0.537 0.605 0.483 0.528 0.502

Tuesdayt+1 Backcast 445,565 0.464 0.474 0.497 0.534 0.602 0.461 0.517 0.485

Wednesdayt+1 Backcast 445,565 0.460 0.495 0.441 0.538 0.686 0.474 0.496 0.483

The table reports out-of-sample results for now- and backcasts of weekly unemployment insurance initial claims
(UI) formed on the day indicated in the first column, where the subscript denotes the week when the prediction
is made. The third column reports the root mean squared error (RMSE) for an autoregressive (AR) benchmark
model. The fourth through eleventh columns report the RMSE ratio for the model in the column heading vis-à-vis
the AR benchmark. The competing models incorporate the information in daily search volumes for Google Trends
terms related to unemployment. The fourth and fifth columns are for linear models fitted via the LASSO and
elastic net (ENet), respectively. The sixth through eighth columns are for fitted artificial neural networks (ANNs)
with one (NN1), two (NN2), and three (NN3) hidden layers, respectively. The ensemble in the ninth (tenth)
column is an average of the predictions in the fourth and fifth (sixth through eighth) columns. The ensemble in
the eleventh column is an average of the predictions in the fourth through eighth columns. The out-of-sample
period begins in the first week of January 2015 and ends in the first week of August 2020. Bold indicates the
prediction with the lowest RMSE.



Table 4: Relative performance and the COVID-19 crisis

(1) (2) (3) (4) (5) (6) (7) (8) (9)

UI minus Change in
pre-crisis COVID-19 Stringency Workplace
average deaths index index

Model φ̂
(j)
0 φ̂

(j)
1 φ̂

(j)
0 φ̂

(j)
1 φ̂

(j)
0 φ̂

(j)
1 φ̂

(j)
0 φ̂

(j)
1

Panel A: Non-seasonally adjusted UI

LASSO 5.46 18.16∗∗∗ 14.36 0.13∗∗∗ 0.07∗∗∗ 246.60∗∗ 0.07∗∗∗ 398.29∗∗

ENet 5.75 17.78∗∗∗ 14.37 0.13∗∗∗ 0.08∗∗∗ 246.84∗∗ 0.09∗∗∗ 398.61∗∗

NN1 5.67 16.26∗∗∗ 14.06 0.10∗∗∗ 0.16∗∗∗ 230.31∗∗ 0.16∗∗∗ 371.94∗∗

NN2 6.45 17.79∗∗∗ 15.29 0.12∗∗∗ 0.15∗∗∗ 266.67∗∗ 0.15∗∗∗ 412.93∗∗

NN3 7.18 21.00∗∗∗ 17.15 0.16∗∗∗ 0.12∗∗∗ 296.55∗∗ 0.15∗∗∗ 479.34∗∗

Ensemble-Linear 5.61 17.97∗∗∗ 14.37 0.13∗∗∗ 0.07∗∗∗ 246.72∗∗ 0.08∗∗∗ 398.45∗∗

Ensemble-ANN 6.43 18.35∗∗∗ 15.50 0.13∗∗∗ 0.14∗∗∗ 260.84∗∗ 0.14∗∗∗ 421.40∗∗

Ensemble-All 6.02 18.16∗∗∗ 14.93 0.13∗∗∗ 0.11∗∗∗ 253.78∗∗ 0.11∗∗∗ 409.93∗∗

Panel B: Seasonally adjusted UI

LASSO 5.46 18.16∗∗∗ 14.36 0.13∗∗∗ 0.07∗∗∗ 246.60∗∗ 0.07∗∗∗ 398.29∗∗

ENet 5.75 17.78∗∗∗ 14.37 0.13∗∗∗ 0.08∗∗∗ 246.84∗∗ 0.09∗∗∗ 398.61∗∗

NN1 5.67 16.26∗∗∗ 14.06 0.10∗∗∗ 0.16∗∗∗ 230.31∗∗ 0.16∗∗∗ 371.94∗∗

NN2 6.45 17.79∗∗∗ 15.29 0.12∗∗∗ 0.15∗∗∗ 266.67∗∗ 0.15∗∗∗ 412.93∗∗

NN3 7.18 21.00∗∗∗ 17.15 0.16∗∗∗ 0.12∗∗∗ 296.55∗∗ 0.15∗∗∗ 479.34∗∗

Ensemble-Linear 5.61 17.97∗∗∗ 14.37 0.13∗∗∗ 0.07∗∗∗ 246.72∗∗ 0.08∗∗∗ 398.45∗∗

Ensemble-ANN 6.43 18.35∗∗∗ 15.50 0.13∗∗∗ 0.14∗∗∗ 260.84∗∗ 0.14∗∗∗ 421.40∗∗

Ensemble-All 6.02 18.16∗∗∗ 14.93 0.13∗∗∗ 0.11∗∗∗ 253.78∗∗ 0.11∗∗∗ 409.93∗∗

The table reports ordinary least squares parameter estimates for the regression model, d
(j)
t = φ

(j)
0 +φ

(j)
1 zt +

e
(j)
t , pertaining to the Monday backcast for different zt variables, where d

(j)
t is the adjusted loss differential.

The adjusted loss differential corresponds to the week-t loss for a prediction of unemployment insurance
initial claims (UI) based on the model in the first column relative to that for an autoregressive benchmark
model. The competing models incorporate the information in daily search volumes for Google Trends
terms related to unemployment. LASSO and ENet are linear models fitted via the LASSO and elastic net
(ENet), respectively. NN1, NN2, and NN3 are fitted artificial neural networks (ANNs) with one (NN1), two
(NN2), and three (NN3) hidden layers, respectively. Ensemble-Linear (Ensemble-ANN) is an average of the
predictions based on the LASSO and ENet (NN1, NN2, and NN3) models; Ensemble-All is the average of
the predictions based on the LASSO, ENet, NN1, NN2, and NN3 models. The zt variable for the regression
is given at the top of the table. UI minus pre-crisis average is week-t UI minus its average value for the first
week of January 2005 through the second week of March 2020. Change in COVID-19 deaths is based on data
from the European Centre for Disease Prevention and Control. Stringency (workplace) index is an indicator
variable that takes a value of one when the government imposes stringent measures to mitigate COVID-
19 according to the Oxford COVID-19 Government Response Tracker stringency index (workplace closure
sub-index) and zero when such measures are not in place or easing. *, **, and *** indicate significance
at the 10%, 5%, and 1% levels, respectively, based on t-statistics computed using heteroskedasticity- and
autocorrelation-robust standard errors (Newey and West 1987).

https://www.ecdc.europa.eu/en
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker


Table 5: Importance of GT terms

(1) (2) (3) (4) (5) (6)

Data
Prediction overlap LASSO excluding LASSO including NN2 excluding NN2 including
formation (days) COVID-19 crisis COVID-19 crisis COVID-19 crisis COVID-19 crisis

Mondayt 0 0.570 0.715 0.920 0.941

Tuesdayt 1 0.652 0.740 0.892 0.948

Wednesdayt 2 0.654 0.761 0.891 0.834

Thursdayt 3 0.670 0.753 0.895 0.973

Fridayt 4 0.577 0.771 0.892 0.844

Saturdayt 5 0.542 1.000 0.865 0.991

Sundayt+1 6 0.569 1.000 0.862 0.989

Mondayt+1 7 0.774 1.000 0.949 0.992

Tuesdayt+1 6 0.789 1.000 0.966 1.000

Wednesdayt+1 5 0.730 1.000 0.966 0.994

The table reports joint variable-importance measures for all of the daily Google Trends (GT) terms
in fitted linear models estimated via the LASSO and fitted artificial neural networks with two hidden
layers (NN2). The second column provides the number of days of overlap between the daily Google
Trends terms and week-t unemployment insurance initial claims. The third and fifth (fourth and sixth)
columns report results for training samples excluding (including) the COVID-19 crisis. Results pertain
to non-seasonally adjusted unemployment insurance initial claims.
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Figure 1: UI and GT terms

The figure depicts non-seasonally adjusted (NSA, upper panels) and seasonally adjusted (SA,
lower panels) weekly unemployment insurance initial claims (UI, left axis) at their release
date and (standardized) daily search volume for two Google Trends (GT) terms (right axis):
file for unemployment (left panels) and unemployment office (right panels). The sample
period spans the first week of January 2020 through the first week of August 2020.
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Figure 2: Predictions at the advent of COVID-19

The figure depicts predictions of weekly unemployment insurance initial claims (UI) based
on fitted autoregressive (AR) benchmark models (upper panels), linear models fitted via the
LASSO (middle panels), and fitted two-layer artificial neural networks (NN2, lower panels).
The models in the middle and lower panels incorporate the information in daily search
volumes for Google Trends terms related to unemployment. Each panel contains results for
four prediction-formation days: Monday nowcast, Tuesday nowcast, Thursday nowcast, and
Monday backcast. The blue bars show the realized values of UI. Results are reported for
non-seasonally adjusted (NSA, left panels) and seasonally adjusted (SA, right panels) UI.
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Figure 3: Variable-importance measures for fitted linear models

The figure depicts variable-importance measures for the top 25 predictors for linear models
fitted via the LASSO. Results are reported for Monday, Tuesday, and Thursday nowcasts and
the Monday backcast. The training sample for the left (right) panels ends in the last week
of December 2019 (first week of August 2020), thereby excluding (including) the COVID-
19 crisis. Results are reported for non-seasonally adjusted (NSA) weekly unemployment
insurance initial claims.
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Figure 4: Variable-importance measures for fitted artificial neural networks

The figure depicts variable-importance measures for the top 25 predictors for fitted artificial
neural networks with two hidden layers (NN2). Results are reported for Monday, Tuesday,
and Thursday nowcasts and the Monday backcast. The training sample for the left (right)
panels ends in the last week of December 2019 (first week of August 2020), thereby excluding
(including) the COVID-19 crisis. Results are reported for non-seasonally adjusted (NSA)
weekly unemployment insurance initial claims.
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Figure 5: Number of predictors selected by the LASSO and ENet

The figure depicts the number of predictors selected by the LASSO and elastic net (ENet) for
rolling-window estimation of linear models used to generate out-of-sample predictions, where
each model can include up to 722 predictors. Results are reported for Monday, Tuesday,
and Thursday nowcasts and the Monday backcast. Results are reported for non-seasonally
adjusted (NSA, upper panels) and seasonally adjusted (SA, lower panels) weekly unemploy-
ment insurance initial claims. The out-of-sample period spans the first week of January 2015
through the first week of August 2020.
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Figure 6: Day-of-the-week effects

The figure depicts heatmaps for joint variable-importance measures of Google Trends terms
grouped by the day of the week. The results are for linear models fitted via the LASSO and
fitted artificial neural networks with two hidden layers (NN2). The fitted models underpin
the now- and backcasts indicated on the vertical axis. The training sample for the left
(right) panels ends in the last week of December 2019 (first week of August 2020), thereby
excluding (including) the COVID-19 crisis. Results are for non-seasonally adjusted (NSA)
weekly unemployment insurance initial claims.
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Figure 7: Partial-dependence plots

The figure depicts partial-dependence plots for the autoregressive component (lag) and two
Google Trends terms (how to file for unemployment and unemployment office illinois) in
linear models fitted via the LASSO and fitted artificial neural networks with two hidden
layers (NN2). The values on the horizontal axis are normalized to lie between zero and one.
Results are reported for the Thursday nowcast (left panels) and Monday backcast (right
panels). The training sample ends in the last week of December 2019 (first week of August
2020), thereby excluding (including) the COVID-19 crisis. Results are for non-seasonally
adjusted weekly unemployment insurance initial claims.
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