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Abstract

This paper presents a New Keynesian model to capture the link-

ages between macro fundamentals and the nominal yield curve. The

model explains bond yields with a low level of news in expected in-

�ation and plausible term premia. This implies that the slope of

the yield curve predicts future bond returns, and that risk-adjusted

historical bond returns satisfy the expectations hypothesis. A key

implication of the model is that U.S. bond yields are consistent with

demand shocks that are three times less in�ationary than implied by

a standard log-linearized New Keynesian model estimated without

bond yields.
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1 Introduction

The New Keynesian model is one of the most prominent models in macro-

economics to understand the dynamics of economic activity, in�ation, and

the monetary policy rate. The model also has implications for prices on

�nancial assets, although these prices often are ignored. The market for

nominal government bonds is of particular interest, because bond yields

contain information about expected future policy rates and term premia,

where the latter is determined by consumption and in�ation risk. But,

it is well-known that the model struggles to explain bond yields, because

its term premia are too low and too stable. This is obviously a concern,

because prices are the key device that ensure equilibrium in the model, as

emphasized by Cochrane (2007).

Much work has therefore been devoted to improving the New Keyne-

sian model along this dimension. Important contributions are Rudebusch

and Swanson (2012) and Kung (2015), which show that stationary produc-

tivity shocks and endogenous growth, respectively, allow a New Keynesian

model with recursive preferences to generate plausible term premia without

distorting macro fundamentals. These extensions imply that news about

expected in�ation is a key driver of bond yields. However, Du¤ee (2018)

shows that this implication is not consistent with U.S. data, and his �nding

therefore challenges the current speci�cation of bond yields and in�ation

in the New Keynesian model.

This paper modi�es the New Keynesian model to explain macro fun-

damentals and bond yields with a low level of news in expected in�ation.

The proposed model is also able to generate realistic term premia that have

the same level and variability as in reduced-form dynamic term structure

models (DTSMs). In addition, the model satis�es the two requirements in

Dai and Singleton (2002) for a correct speci�cation of term premia, which

serve as useful diagnostic tests given that term premia are unobserved. The

�rst requirement is that the di¤erence between long- and short-term bond

yields (i.e. the yield spread) predicts future bond returns as in Campbell

and Shiller (1991). This property of bond yields is evaluated on a long sim-

ulated sample and is therefore an unconditional test of term premia. The

second requirement is that historical bond returns satisfy the expectations
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hypothesis when these returns are adjusted using term premia from the

proposed model. This second requirement is therefore a conditional test of

term premia, in the sense that it requires reliable state and term premia

estimates for historical bond yields.

The key features of our model are recursive preferences and distur-

bances to the household�s utility function that capture demand shocks.

These shocks are widely used in macroeconomics, but also in �nance fol-

lowing Albuquerque et al. (2016). However, our speci�cation of demand

shocks is more �exible than seen previously, as we allow their conditional

variance to increase with the level of these shocks. This modi�cation has

two important e¤ects. First, it makes demand shocks less in�ationary, be-

cause even a small rise in uncertainty has a negative impact on in�ation

with recursive preferences. Second, this weak e¤ect on in�ation implies a

small response in the policy rate through the Taylor-rule, but the rise in

uncertainty increases bond risk premia and generates much larger reponses

in longer term yields and therefore a steepening of the yield curve. As a re-

sult, demand shocks can generate large variation in medium- and long-term

bond yields with only small changes in in�ation. This reduces the model�s

reliance on in�ation news to explain bond yields, and demand shocks there-

fore enable the model to generate in�ation variance ratios (as introduced

in Du¤ee (2018)) that are consistent with U.S. data. In contrast, when

the conditional variance in demand shocks is constant, we �nd much larger

responses in in�ation and the policy rate following demand shocks, but also

much smaller responses in medium- and long-term yields. As a result, the

model then implies counterfactually large in�ation variance ratios.

We show that this new uncertainty channel to explain bond yields is

consistent with several other properties of bond yields. First, the positive

association between term premia and the yield spread following demand

shocks is the key feature that makes the model consistent with the two

requirements for a correct speci�cation of term premia. In contrast, when

the conditional variance in demand shocks are constant, the yield spread

falls after a demand shock, and the model is therefore unable to pass the

two requirements for term premia. Second, the model-implied conditional

volatilities in bond yields remain consistent with U.S. data. In particular,

the model generates plausible Sharpe ratios and implies that the condi-

tional volatility of the ten-year yield predicts annual excess bond returns

as seen in the data. The conditional volatilities for U.S. bond yields are
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here measured by the EGARCH(1,1) model of Nielson (1991) applied to

the change in yields. Third, the nonlinear structure of our model generates

a lot of variation in key macro variables that is not explained in linear

regressions of these macro variables on bond yields. That is, the model en-

dogenously produces unspanned variation in macro variables as observed

in U.S. data, and it therefore avoids the critique of macro-�nance term

structure models raised in Joslin et al. (2014). Taking the analysis beyond

bond yields, we �nally show that the yield spread and the price-dividend

ratio predict excess returns in equities, as documented by Fama and French

(1989). As with bond returns, demand shocks with a time-varying condi-

tional variance are essential to explain these predictability results. Here,

and throughout we restrict relative risk aversion to ten, meaning that we

do not rely on extreme levels of risk aversion to explain asset prices from

macro fundamentals.

By linking �nancial markets to the macro economy we obtain new in-

sights for both �nance and macroeconomics. From a �nance perspective,

the key insight is that demand shocks are essential for understanding term

premia. That is, the asset pricing performance of the New Keynesian model

may be improved substantially by including demand shocks along with the

supply shocks highlighted in Rudebusch and Swanson (2012) and Kung

(2015). From a macroeconomic perspective, the main insight is that the

bond market is consistent with demand shocks that are three times less in-

�ationary than implied by a standard log-linearized New Keynesian model

estimated without bond yields.

The remainder of this paper is organized as follows. Section 2 presents

the New Keynesian model, while our estimation approach is described in

Section 3. The main empirical results are provided in Section 4 and robust-

ness is studied in Section 5. Additional model implications are discussed

in Section 6 and Section 7 concludes.

2 A New Keynesian Model

2.1 The Households

We consider an in�nitely lived representative household with recursive pref-

erences as in Epstein and Zin (1989) andWeil (1990). Using the formulation

3



in Rudebusch and Swanson (2012), the value function Vt is given by

Vt = ut + �
�
Et[V 1��t+1 ]

�1=(1��)
(1)

when the utility function ut > 0 for all t.1 Here, � 2 (0; 1) is the subjective
discount factor and Et [�] denotes the conditional expectation in period
t. The main purpose of � 2 R n f1g is to endow the household with

preferences for when uncertainty is resolved, unless � = 0 and (1) reduces to

expected utility. It follows from Kreps and Porteus (1978) that (1) implies

preferences for early (late) resolution of uncertainty if � > 0 (� < 0)

for ut > 0, whereas the opposite sign restrictions apply when ut < 0.

Andreasen and Jørgensen (2020) further argue that the size of this timing

attitude is proportional to �, meaning that numerically larger values of �

generate stronger preferences for early (late) resolution of uncertainty.

The utility function ut � u (ct; lt) is assumed to depend on the number
of consumption units ct bought in the goods market and the provided labor

supply lt to �rms. Following Andreasen and Jørgensen (2020), we also

include a constant u0 in the utility function to account for utility from goods

and services that are not acquired in the goods market. This could be utility

from government spending or utility from goods produced and consumed

within the household. As shown in Andreasen and Jørgensen (2020), the

reason for introducing u0 is to separately control the level of the utility

function to disentangle the timing attitude � from relative risk aversion

(RRA), which otherwise are tightly linked in the standard formulation of

recursive preferences.2 Using a power speci�cation to quantify the utility

from market consumption ct and similarly for leisure 1� lt, we let

u (ct; lt) = dt

"
1
1�� (ct � bct�1)

1�� + z1��t nt'0
(1� lt)1�

1
'

1� 1
'

+ u0z
1��
t

#
: (2)

The parameter b � 0 accommodates external consumption habits, which

are included to capture autocorrelation in consumption growth. The vari-

able dt introduces shocks to the utility function to temporally increase or

decrease the utility from a given level of ct and lt, implying that dt oper-

ates as a demand shock.3 The variable nt is also exogenous and temporally

1When ut < 0, Vt = ut� �Et[(�Vt+1)1��]
1

1�� as in Rudebusch and Swanson (2012).
2The Online Appendix shows that our results are robust to restricting u0 = 0 as in

the standard implementation of recursive preferences, provided we allow for high RRA.
3In the endowment models of Albuquerque et al. (2016) and Gomez-Cram and Yaron
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shifts the household�s incentive between ct and lt, meaning that nt may

be interpreted as a labor supply shock. Market consumption grows with

the rate of the productivity level zt, and it is therefore necessary to scale

the utility from leisure and nonmarket consumption by z1��t to ensure that

these terms do not diminish relative to 1
1�� (ct � bct�1)1�� along the bal-

anced growth path. This scaling is discussed and motivated further in

Rudebusch and Swanson (2012) and Andreasen and Jørgensen (2020).

The parameter � > 0 and the degree of habit formation b determine the

steady state intertemporal elasticity of substitution (IES) as
�
1� b��1z;ss

�
=�,

which measures the percentage change in market consumption growth for

a one percent change in the real interest rate when ignoring uncertainty.

The endogenous labor supply gives the household an additional margin to

absorb shocks and this modi�es existing expressions for RRA. Using the

results in Swanson (2018), it follows that RRA in the steady state is

RRA =
��

1� b
�z;ss

�
+ �' ~wss(1�lss)

~css

+
� (1� �)

(1� �)u0~c��1ss

�
1� b

�z;ss

��
+
�
1� b

�z;ss

�
+ 1��

1� 1
'

~wss(1�lss)
~css

where ~css = ct=ztjss and ~wss = wt=ztjss refer to the steady state (ss) of
market consumption and the real wage relative to the productivity level.

Given that the IES is determined by �, and � controls the strength of the

timing attitude, the level of the utility function u0 is the key parameter for

determining RRA.

The real budget constraint is ct + Et
�
Mt;t+1x

real
t+1

�
= xrealt =�t + wtlt +

Dt. That is, resources are spent on market consumption goods ct and

nominal state-contingent claims Xt+1, where xrealt+1 � Xt+1=Pt denotes the

real value of these claims that are priced using the nominal stochastic

discount factor Mt;t+1. The household�s income is given by the real value

of state-contingent claims bought in the previous period xrealt =�t, the real

wage income wtlt, and real dividend payments from �rms Dt. Here, �t
denotes the gross in�ation rate.

(forthcoming), shocks to the utility function a¤ect only asset prices and are therefore
referred to as capturing valuation risk. In production-based equilibrium models, shocks
to dt generate also endogenous variation in consumption, in�ation, etc., and this explains
why these shocks are referred to as demand shocks within these models.
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2.2 The Firms

Output yt is produced by a competitive representative �rm, which combines

di¤erentiated intermediate goods yt (i) using yt =
�R 1

0
yt (i)

��1
� di

� �
��1

with

� > 1. The demand for the ith good is given by yt (i) =
�
Pt(i)
Pt

���
yt, where

Pt �
�R 1

0
Pt (i)

1�� di
� 1
1��

denotes the aggregate price level and Pt (i) is the

price of the ith good.

Intermediate �rms produce slightly di¤erentiated goods using the pro-

duction function yt (i) = ztatk�
f

ss lt (i)
1��f , where kss and lt (i) denote capital

and labor services at the ith �rm, respectively. The variables at and zt cap-

ture transitory and permanent productivity shocks. Each intermediate �rm

can freely adjust its labor demand at the given market wage wt. Price stick-

iness is introduced as in Rotemberg (1982), where � � 0 controls the size of
�rms�real cost �

2
(Pt (i) = (Pt�1 (i)�ss)� 1)2 yt when changing Pt (i). As in

Rudebusch and Swanson (2012), each �rm uses �ksszt units of output for

investment to maintain a constant capital stock along the balanced growth

path.

2.3 The Central Bank

The central bank sets rt according to

rt = rss + �� log

�
�t
�ss��t

�
+ �c (�ct ��css) ; (3)

based on a desire to stabilize in�ation and economic activity as measured by

consumption growth �ct. To accommodate deviations in monetary policy

from a simple Taylor-rule, we follow the existing literature and introduce

an exogenous in�ation target ��t around the steady state in�ation rate �ss.
4

2.4 Bond Pricing

The price in period t of a default-free zero-coupon bond B(k)t maturing in

k periods with a face value of one dollar is B(k)t = Et
h
Mt;t+1B

(k�1)
t+1

i
for

k = 1; :::; N with B(0)t = 1. With continuos compounding, the yield to

4Unreported results show no evidence of interest rate smoothing in (3) when the
model is estimated using bond yields. This �nding is consistent with the results in
Rudebusch (2002).
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maturity is r(k)t = � 1
k
logB

(k)
t , where r

(1)
t � rt. Bond prices are therefore

determined by the nominal stochastic discount factor, which reads

Mt;t+1 = �
dt+1
dt

�
ct+1 � bct
ct � bct�1

���0@�Et �V 1��t+1

�� 1
1��

Vt+1

1A�

1

�t+1
(4)

when ut > 0 for all t. As in Rudebusch and Swanson (2012), the term pre-

mium TP (k)t is de�ned as the di¤erence between r(k)t and the corresponding

yield under risk-neutral evaluation er(k)t . That is, TP (k)t = r
(k)
t � er(k)t whereer(k)t = � 1

k
log eB(k)t and eB(k)t = e�rtEt

h eB(k�1)t+1

i
with eB(0)t = 1.

2.5 The Structural Shocks

We use standard speci�cations for four of the �ve shocks in the model, i.e.

log
�
�z;t+1=�z;ss

�
= ��z log

�
�z;t=�z;ss

�
+ ��z��z ;t+1

log nt+1 = �n log nt + �n�n;t+1

log ��t+1 = ��� log �
�
t + ������;t+1

log at+1 = �a log at + �a�a;t+1

(5)

with �z;t � zt=zt�1, where ��z ;t+1, �n;t+1, ���;t+1, and �a;t+1 are standard nor-
mally distributed andmutually independent across time, denotedNID (0; 1).
For demand shocks, the standard assumption of constant conditional vari-

ance has a strong impact in the model when households have recursive

preferences. This is because these shocks directly a¤ect the amount of un-

certainty in the stochastic discount factor, which is a key component for

determining term premia. This motivates our slightly more general speci-

�cation for demand shocks with conditional heteroskedasticity

log dt+1 = �d log dt + (1 + !d log dt)�d�d;t+1; (6)

where !d � 0 and �d;t+1 � NID (0; 1). Thus, the new parameter that

we introduce is !d, which controls the time-variation in the conditional

variance Vt [log dt+1] = (1 + !d log dt)2 �2d of this shock.5

5Note that the conditional distribution of log dt+1 is Gaussian, and that the condi-
tional variance in (6) is de�ned in terms of log dt and not dt, which ensures that the
standard stability condition j�dj < 1 applies. Heteroskedasticity plays a much smaller
role for the other shocks, and this explains why we use the standard speci�cation in (5).
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3 Estimation Methodology

3.1 Data and Model Solution

The model is estimated using quarterly U.S. data from 1961 Q2 to 2007

Q4, where we focus on the period before 2008 to avoid issues related to the

zero lower bound for the monetary policy rate. The dynamics of the macro

economy is represented by i) labor supply log lt, ii) consumption growth

�ct, and iii) in�ation.6 The ten-year nominal yield curve is represented by

the three-month, one-year, three-year, �ve-year, seven-year, and ten-year

bond yields. These yields are taken from Gürkaynak et al. (2007), except at

the three-month maturity where we use the implied rate on a three-month

Treasury Bill. These nine time series are placed in the vector yobst and are

expressed in annualized terms except for log lt.

The state vector for the model is xt = [ log dt�1 log ct�1 log �z;t �d;t

log nt log ��t log at ]
0. All the remaining variables appear in the vector

yt, including the labor supply, consumption, in�ation, and all bond prices.

The exact model solution is

yt = g (xt;�)

xt+1 = h (xt;�) + ��t+1
(7)

with �t =
h
��z ;t �d;t �n;t ���;t �a;t

i0
, which we solve by a third-order

perturbation approximation around the steady state.7

3.2 Robusti�ed Inference with Nonlinear Filtering

The approximated state space representation of the model includes nonlin-

ear terms with the unobserved states xt, implying that the Kalman �lter

cannot be used to estimate the model. Instead, we rely on the central dif-

ference Kalman �lter (CDKF) developed by Norgaard et al. (2000), which

is a nonlinear extension of the Kalman �lter. The CDKF accommodates

measurement errors in yobst , and we specify these errors vt to be uncorre-

lated Gaussian white noise, as typically assumed when estimating struc-

6The labor supply is measured by the total number of employees for total nonfarm
payrolls, which is detrended using the procedure in Hamilton (2018). The consumption
growth rate is calculated from real per capita nondurables and service expenditures.
In�ation is measured by the year-on-year growth rate in the consumer price index (CPI)
excluding food and energy prices for all urban consumers.

7All equilibrium conditions in the model are derived in the Online Appendix.
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tural macro models and reduced-form DTSMs. That is, vt s NID (0;Rv)

where Rv is a diagonal covariance matrix, implying that yobst = Syt + vt

for an appropriate selection matrix S.8

A likelihood function can be derived from the CDKF under the assump-

tion that the prediction errors for yobst are Gaussian. However, this distrib-

utional speci�cation does not hold exactly due to the nonlinear terms in the

model solution. The CDKF therefore only provides a quasi log-likelihood

function 1
T

PT
t=1 Lt (�), which can be used for a quasi maximum likelihood

(QML) estimation, as suggested in Andreasen (2013).

A possible limitation of any QML approach (as with standard maximum

likelihood) is its lack of robustness to model misspeci�cations other than

the distributional assumption of the prediction errors for yobst . An obvious

possible source of misspeci�cation in the New Keynesian model is that the

same structural parameter � determines the g- and the h-function. In con-

trast, the widely used reduced-form Gaussian DTSM basically allows these

two functions to be determined by separate parameters, which in these

models is essential to generate term premia dynamics that are not rejected

by historical data (see Dai and Singleton (2002)).9 In the context of the

New Keynesian model, the g-function is likely to prefer large and persistent

shocks, because this helps the model generate variation in term premia and

hence �t medium- and long-term bond yields. On the other hand, small

and less persistent shocks are typically needed in the h-function to �t the

state dynamics and ensure sensible unconditional properties of yobst . Given

the inclusion of several bond yields with relatively small measurement er-

rors in the estimation, our experience is that the g-function dominates the

QML estimates of the New Keynesian model. This typically implies a close

in-sample �t to yobst , but it comes at the expense of unconditional variances

for yobst that are too large compared to U.S. data.

Thus, a robusti�ed version of the standard QML estimator is required

to obtain reliable estimates of our New Keynesian model. The solution

8Unlike the more accurate particle �lter proposed in Fernández-Villaverde and Rubio-
Ramírez (2007), the updating rule for the states in the CDKF is linear, implying that
the recursive �ltering equations only depend on �rst and second moments. The CDKF
approximates these moments by a deterministic sampling procedure, and this makes
the CDKF computationally much faster than any particle �lter and generally also more
accurate than the well-known extended Kalman �lter.

9The only link between the g- and h-functions in the reduced-form Gaussian DTSM
is the conditional covariance matrix of the states, but the e¤ect of this covariance matrix
on the g-function is typically very small.
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we propose is to shrink the QML estimator to the unconditional �rst and

second moments of yobst , because this is a simple and transparent way to

increase the weight assigned to the h-function in the estimation. We denote

the shrinkage moments by 1
T

PT
t=1mt in the sample and by E [m (�)] in the

model. The applied estimator is given by

�̂ =argmax
�2�

1

T

PT
t=1 Lt (�)� �f1:T (�)

0Wf1:T (�) ; (8)

where � is the feasible domain of �, f1:T (�) � 1
T

PT
t=1 ft (�) with ft (�) �

mt�E [m (�)], andW is a diagonal weighting matrix containing the inverse

of the standard errors for the shrinkage moments.10

The nature of the estimator in (8) is determined by � � 0, which con-
trols the weight assigned to the shrinkage moments relative to the sample

average of Lt (�). We obviously recover the standard QML estimator when
� = 0, while �̂ converges to the generalized methods of moments (GMM)

estimator in Hansen (1982) when � becomes su¢ ciently large. We con-

sider a small amount of shrinkage by letting � = T , which in our setting

implies that shrinkage constitutes a fairly small part of the objective func-

tion, typically about 5% to 10%. Our results are not particularly sensitive

to increasing the degree of shrinkage further, although we do �nd notable

e¤ects of shrinkage when compared to the standard QML estimator.11

To obtain closed-form expressions for the model-implied shrinkage mo-

ments, we apply the pruning scheme of Andreasen et al. (2018) when setting

up the state space system for the approximated version of the model.12 This

implies that the estimator in (8) can be implemented without resorting to

simulation and belongs to the general class of extremum estimators. Its

asymptotic properties are therefore easily derived in the Online Appendix.

We use two classes of shrinkage moments. The �rst class contains �rst

and second unconditional moments of yobst , except for the mean of de-

10Another possibility is to use the optimal weigthing matrix, but this version of (8)
is not considered to avoid well-known small-sample distortions from estimating large
covariance matrices in moment-based estimators.
11Note also that (8) belongs to the class of Laplace type or quasi-Bayesian estimators of

Chernozhukov and Hong (2003), where a potentially misspeci�ed log-likelihood function
(as considered in our case) may be used within a Bayesian setting. When this estimator
is combined with the endogenours prior speci�cation in Christiano et al. (2011) using a
pre-sample of length T �, we obtain the objective function in (8) with � = T �=2.
12The pruning scheme is not essential in our case, because the proposed model has

only one endogenous state (i.e. log ct�1), and partly for this reason appears to be fairly
stable when simulated without pruning.
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trended labor supply that is approximately zero. These moments help to

robustify the QML estimates, which is illustrated in a Monte Carlo study in

the Online Appendix. Here we show that shrinkage towards these moments

give smaller parameter biases and more reliable inference than standard

QML when the model is misspeci�ed with the g- and h-functions deter-

mined by di¤erent structural parameters. On the other hand, without any

model misspeci�cation, we unexpectedly �nd no bene�t of shrinkage, which

mainly reduces the e¢ ciency of the standard QML estimator that is nearly

unbiased and provides reliable inference in this case. We benchmark these

results to using an extreme degree of shrinkage with � = 106, which corre-

sponds to estimating the structural parameters by GMM and obtaining the

states afterwards by the CDKF. The Monte Carlo study shows that these

GMM estimates display notable biases in �nite samples and are clearly

less e¢ cient compared to the standard QML estimator (� = 0) and the

proposed estimator (with � = T ), both with and without model misspec-

i�cation. These imprecise GMM estimates of the structural parameters

also imply less accurate state estimates when compared to the proposed

estimator with � = T .

The second class of moments we include contain information about term

premia as captured by the regression of Campbell and Shiller (1991). That

is,

r
(k�m)
t+m � r(k)t = �k + �k

m

k �m

�
r
(k)
t � r(m)t

�
+ ut+m;k; (9)

where ut+m;k is an error term and m = 4 to obtain yearly changes in

bond yields. The expectations hypothesis implies �k = 1, but empirical

estimates of the regression loadings �k are negative and decreasing with

maturity, which is evidence of time-varying term premia. This implies that

bond returns are predictable, because (9) is equivalent to the predictability

regression rx(k)t+m = ~�k + ~�k

�
r
(k)
t � r(m)t

�
+ "t+m;k, where rx

(k)
t+m is excess

returns and ~�k � m
4
(1� �k). We consider �k at the three-, �ve-, seven-

, and ten-year maturity to assign more weight to the evidence against

the expectations hypothesis than implied by the considered panel of bond

yields used to compute the quasi log-likelihood function. These loadings are

represented in the shrinkage moments by including Cov(r(k�m)t+m �r(k)t ; r
(k)
t �

r
(m)
t ) and V ar(r(k)t � r(m)t ) related to �k at the four considered maturities.
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3.3 Calibrated Parameters

Not all parameters in the New Keynesian model are well-identi�ed from

yobst , and they are therefore determined by standard calibration arguments.

Hence, we let � = 0:025, lss = 0:33, and �
f = 0:4 as typically assumed for

the U.S. economy. We also consider an average price markup of 20% with

� = 6, and we set the ratio of capital to output in the steady state to 2:5 as

in Rudebusch and Swanson (2012). The value of �z;ss is set to match the

mean of consumption growth, implying that �z;ss = 1:0055. Most micro

estimates of the Frisch labor supply elasticity for males are in the range

from 0:10 to 0:40 according to Keane (2011). To help the New Keynesian

model generate low variability in the labor supply, we consider a Frisch

elasticity in the lower part of this interval by letting ' = 0:075, which

implies a Frisch elasticity of ' (1=lss � 1) = 0:15 in the steady state.
Given this calibration of ' and our �nding below that � is larger than

one, the utility function in (2) is negative. Hence, the parameter � char-

acterizing the recursive preferences in (1) must be negative to generate

preferences for early resolution of uncertainty. The model�s goodness of

�t generally improves the more negative � gets, but the performance gain

trails o¤ when � gets below �40 in our case.13 We therefore simply let

� = �40, which also ensures a low and plausible level of the timing pre-
mium as introduced in Epstein et al. (2014). We �nally set the constant

u0 to get a steady state RRA of ten as in Bansal and Yaron (2004).

The size of the measurement errors in yobst have a relatively small e¤ect

on the estimates, and we therefore simply assume that 10% of the variation

in the three macro variables is due to measurement errors. This implies

measurement errors with standard deviations of i) 27 basis points for the

labor supply, ii) 17 basis points for consumption growth, and iii) 27 basis

points for in�ation. The standard deviation for the measurement errors in

all bond yields is set to 5% of the average standard deviations in the six

considered yields, which corresponds to 13 basis points.

4 Estimation Results

This section presents the main results for the proposed model. We proceed

by discussing the estimated parameters and the �t in Section 4.1 to Section

13Rudebusch and Swanson (2012) report a similar property in their model.
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4.3. The following three subsections explore how well the model matches

key moments of bond yields that are not included in the estimation. The

key mechanisms in the model are explained in Section 4.7.

4.1 Estimated Parameters and Model Fit

The �rst column in Table 1 reports the estimated parameters in our pre-

ferred version of the model. This model is denoted MM;CS, where the

superscripts indicate that shrinkage is applied based on the considered

�rst and second unconditional moments of yobst (by "M") and the selected

Campbell-Shiller moments (by "CS"). The results for the other versions

of the model, denotedMM andM, will be discussed below in Section 5.1.

For our preferred modelMM;CS, we �nd a moderate degree of habit forma-

tion with b̂ = 0:21. This generates autocorrelation in consumption growth

with corr (�ct;�ct�1) = 0:24, which is close to the corresponding sample

moment of 0:40. For the curvature parameter in the utility function, we

�nd �̂ = 4:19, which together with the estimate of b imply an IES of 0:19.

This relatively low IES is consistent with Hall (1988) and Yogo (2004),

who estimate the IES to between zero and 0:2. To aid the interpretation

of the price adjustment parameter �, Table 1 reports the corresponding

Calvo parameter �̂Calvo that gives the same slope of the aggregate supply

relation as �̂ when linearizing this relation.14 We �nd �̂Calvo = 0:75, which

corresponds to an average duration for prices of four quarters. The central

bank assigns more weight to stabilizing in�ation than economic activity

with �̂� = 5:85 and �̂�c = 0:23. Although this is a common �nding, the

value of �� is somewhat higher than typically reported in the literature

but also estimated very imprecisely in our case, where �̂� has a standard

error of 1:52. Thus, in the Online Appendix we show that the implications

fromMM;CS are basically una¤ected when reducing �� to three, which is

more standard when using a third-order approximation (see, for instance,

Andreasen et al. (2018)).

Permanent productivity shocks and the in�ation target are found to be

highly persistent (�̂�z= 0:965 and �̂�� = 0:988) and with small innovations

(�̂�z = 3:3 � 10�4 and ��� = 7:8 � 10�4), meaning that �z;t and ��t cap-
ture real and nominal long-run risk as in Bansal and Yaron (2004) and

14The mapping between � and �Calvo is � =
(1��+��)(��1)�Calvo

(1��Calvo)(1��)
 
1��Calvo��

1� 1
 

z;ss

! .
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Table 1: The Structural Parameters

This table shows the estimated structural parameters using data from 1961 Q2 to 2007
Q4, with asymptotic standard errors provided in parenthesis. The �rst four observations
are used to initialize the CDKF. When shrinkage is applied in the estimation, as denoted
by the superscripts M and CS on the model object M, an equal weighting between
moments related to the three macro variables (i.e. log lt, �ct, and �t) and moments
related to the yield curve (i.e. six bond yields and eight moments to capture the four
Campbell-Shiller loadings) is targeted by correcting for the number of included moments.
Hence, forMM;CS the weights assigned to each of the macro moments are upscaled by
four, whereas they are upscaled by 2.5 for MM . No standard error is provided for �
when this parameter is at the upper bound of 0.9995. The timing premium is evaluated
at the steady state and computed as in Andreasen and Jørgensen (2020).

(1) (2) (3)
MM;CS MM M

� 0:9995
�

0:9995
�

0:9992
(0:003)

b 0:214
(0:070)

0:220
(0:071)

0:465
(0:009)

� 4:193
(0:634)

4:728
(0:968)

6:861
(0:031)

�Calvo 0:747
(0:041)

0:735
(0:04)

0:541
(0:017)

�� 5:846
(1:517)

5:566
(0:918)

3:479
(0:037)

��c 0:227
(0:130)

0:273
(0:143)

0:391
(0:035)

��z 0:965
(0:011)

0:947
(0:008)

0:945
(0:004)

�d 0:954
(0:005)

0:945
(0:006)

0:961
(0:002)

�n 0:987
(0:009)

0:986
(0:008)

0:996
(0:002)

��� 0:988
(0:007)

0:982
(0:004)

0:992
(0:003)

�a 0:988
(0:037)

0:982
(0:013)

0:985
(0:002)

�ss 1:015
(0:002)

1:016
(0:001)

1:032
(0:002)

��z � 100 0:033
(0:006)

0:042
(0:007)

0:037
(0:002)

�d 0:051
(0:002)

0:054
(0:002)

0:049
(0:002)

�n 0:042
(0:011)

0:046
(0:012)

0:092
(0:007)

��� � 100 0:078
(0:024)

0:090
(0:017)

0:124
(0:029)

�a 0:003
(0:001)

0:004
(0:001)

0:015
(0:001)

!d 0:653
(0:152)

0:716
(0:265)

0:367
(0:064)

Timing Premium 11% 10% 7%
IES 0.19 0.17 0.08
RRA 10 10 10
u0 -9.8 -11.3 -264.4

Rudebusch and Swanson (2012), respectively. The demand shocks are also

fairly persistent with �̂d = 0:954, and they display heteroskedasticity with

!̂d = 0:653, which clearly is signi�cantly di¤erent from zero. Thus, the
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Table 2: Goodness of Insample Fit

Panel A shows the full sample estimate of the standard deviations of the measurement
errors when reported in annualized basis points. The numbers in parenthesis refer to an
alternative estimate of these standard deviations robust to outliers, where observations
below the 2.5 and above the 97.5 percentiles are removed. Both standard deviations are
computed using the posterior state estimates from the CDKF. Panel B shows a decom-
position of the objective function L � LCDKF+QGMM , where LCDKF � 1

T

PT
t=1 Lt (�)

and QGMM � ��f1:T (�)0Wf1:T (�).

(1) (2) (3)
MM;CS MM M

Panel A: Measurement errors
std

�
l̂t

�
30:0
(22:1)

28:0
(20:5)

29:0
(9:9)

std (�ct) 12:7
(7:4)

11:4
(6:6)

14:4
(4:7)

std (�t) 28:4
(18:7)

23:0
(15:3)

59:0
(25:4)

std (rt) 30:1
(17:6)

28:8
(15:7)

187:3
(59:6)

std
�
r
(4)
t

�
22:8
(16:4)

22:3
(16:1)

49:8
(18:5)

std
�
r
(12)
t

�
14:8
(12:5)

13:8
(11:7)

18:5
(7:7)

std
�
r
(20)
t

�
8:5
(7:1)

10:2
(8:3)

14:3
(6:4)

std
�
r
(28)
t

�
7:3
(5:3)

7:9
(5:2)

10:0
(4:6)

std
�
r
(40)
t

�
13:0
(11:4)

15:4
(13:4)

9:7
(8:4)

Panel B: Objective function
LCDKF 30:7 31:8 36:1
QGMM �2:4 �0:8 0
L 28:4 31:0 36:1

proposed extension of demand shocks in (6) is strongly supported by the

data. We also �nd a realistic timing premium of 11%, meaning that the

household is willing to give up 11% of total lifetime consumption to have

all uncertainty resolved in the following period.

Table 2 reports the standard deviations of the measurement errors vt
and reveals a close �t to the three macro variables and the six bond yields

despite using only �ve shocks in the model. These standard deviations

are between 8 and 30 basis points for bond yields, or when abstracting

from outliers between 5 and 18 basis points, as seen from the �gures in

parenthesis. The bottom panel in Table 2 further shows that the applied

shrinkage inMM;CS has a small e¤ect on the optimal value of the objective

function, where the GMMmoment conditions due to shrinkage only account

for about 8% (i.e. 2:4=28:4) of its value.
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4.2 Unconditional Stylized Moments

Table 3 explores the ability ofMM;CS to match the unconditional means

and standard deviations in yobst as included when estimatingMM;CS. The

�rst column in Table 3 shows U.S. sample moments (and their bootstrapped

95% con�dence bands), while the second column shows the corresponding

population moments inMM;CS. We �rst note thatMM;CS reproduces the

mean level of in�ation and all bond yields. For instance, the level of the

three-month yield is 5:68% vs. 5:59% in the data, and the level of the

ten-year bond yield is 6:97% vs. 6:99% in the data. This implies that the

average yield spread is 129 basis points inMM;CS compared to 140 basis

points in historical data.

The model is also successful in matching the standard deviation of la-

bor supply (3:04% vs. 2:73% in the data), consumption growth (1:88%

vs. 1:72% in the data), and in�ation (2:66% vs. 2:65% in the data).

The standard deviations of bond yields are also well matched, where the

model captures the negative association between these standard deviations

and maturity. Thus,MM;CS explains both the level and variability of the

data.15

4.3 Ordinary Campbell-Shiller Loadings

Next, we explore whetherMM;CS can match the empirical pattern in the

ordinary Campbell-Shiller loadings �k from (9), which we include in the

estimation at the three-, �ve-, seven-, and ten-year maturity. Figure 1

plots these loadings in the sample along with their bootstrapped 95% con-

�dence bands. A very encouraging �nding is thatMM;CS generates ordi-

nary Campbell-Shiller loadings that are negative and tract the empirical

loadings remarkably well inside their 95% con�dence bands. This shows

that the model satis�es the �rst requirement for a correct speci�cation of

term premia. In contrast, imposing !d = 0 in MM;CS generates positive

Campbell-Shiller loadings around two.

15Following the work of Piazzesi and Schneider (2007), the correlation between �t
and �ct has also attrated some attention in the literature. We �nd corr(�t;�ct) =
0:03 in MM;CS and corr(�t;�ct) = �0:27 in our sample from 1961 Q2 to 2007 Q4.
However, a negative correlation between �t and �ct is not a robust feature of U.S.
data as emphasized by Benigno (2007). For instance, extending the sample to 2019 Q3
implies corr(�t;�ct) = �0:12, while corr(�t;�ct) = 0:10 in a sample from 1985 Q1 to
2019 Q3.
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Table 3: Unconditional First and Second Moments

The data moments are for the U.S. from 1961 Q2 to 2007 Q4 with 95% con�dence
bands stated below. These bands are computed using a block bootstrap with 100,000
bootstrap samples using blocks of 60 observations. The model-implied moments are
computed in closed form based on Andreasen et al. (2018). All means and standard
deviations are stated in annualized percent, except for the standard deviation of l̂t
which is not annualized.

(1) (2) (3) (4)
Data MM;CS MM M

Means
�ct 2:20

[1:90;2:49]
2.20 2.20 2.20

�t 4:25
[2:30;6:19]

4.35 4.31 6.78

rt 5:59
[3:72;7:46]

5.68 5.64 7.52

r
(4)
t 6:11

[4:06;8:15]
5.96 5.90 7.78

r
(12)
t 6:47

[4:43;8:52]
6.49 6.37 7.51

r
(20)
t 6:68

[4:66;8:70]
6.78 6.65 7.36

r
(28)
t 6:83

[4:84;8:82]
6.92 6.82 7.36

r
(40)
t 6:99

[5:04;8:95]
6.97 6.97 7.51

Stds
l̂t 2:73

[2:24;3:22]
3.04 3.07 10.45

�ct 1:72
[1:44;2:01]

1.88 1.90 3.71

�t 2:65
[1:45;3:86]

2.66 2.55 6.11

rt 2:71
[1:72;3:71]

3.03 3.25 9.30

r
(4)
t 2:82

[1:83;3:80]
3.02 3.18 7.11

r
(12)
t 2:65

[1:68;3:63]
3.04 3.10 6.48

r
(20)
t 2:55

[1:58;3:52]
3.02 3.03 6.18

r
(28)
t 2:48

[1:51;3:45]
2.97 2.91 5.93

r
(40)
t 2:41

[1:46;3:37]
2.82 2.67 5.60

4.4 Risk-Adjusted Campbell-Shiller Loadings

Next, we study moments that are not included in the estimation ofMM;CS.

A correct speci�cation of term premia should imply that historical risk-

adjusted bond yields satisfy the expectations hypothesis. Dai and Singleton

(2002) show that this corresponds to testing whether the loading �Adjk is
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Figure 1: Ordinary Campbell-Shiller Loadings
This �gure shows the ordinary Campbell-Shiller regression loadings �k for m = 4. The
empirical values are computed using U.S. data from 1961 Q2 to 2007 Q4. The shaded
area denotes the 95 percent con�dence interval for these estimates, computed using a
block bootstrap where the regressand and the regressor in (9) are sampled jointly in
blocks of 10 observations in 100,000 bootstrap samples. The model-implied Campbell-
Shiller loadings are computed in closed form using the results in Andreasen et al. (2018).
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equal to one in the following version of the Campbell-Shiller regression

r
(k�m)
t+m � r(k)t �

�gTP (k�m)t+m �gTP (k�m)t

�
+

m

k �mTP
fwd;(k�m)
t (10)

= �Adjk + �Adjk

m

k �m

�
r
(k)
t � r(m)t

�
+ uAdjt+m;k;

where term premia are subtracted from long-term yields. Here, gTP (k)t =

r
(k)
t � 1

k

Xk�1

i=0
Et [rt+i] is another commonly used de�nition of term pre-

mium, that only di¤ers from TP
(k)
t by including a small convexity term.

The variable TP fwd;(k)t = ft;k�Et [rt+k] is the term premium in the forward
rate ft;k � � log

�
B
(k+1)
t =B

(k)
t

�
and uAdjt+m;k is an error term.

Figure 2 uses term premia fromMM;CS to compute risk-adjusted Campbell-

Shiller loadings �Adjk and their 95% con�dence bands on the historical sam-

ple from 1961 Q2 to 2007 Q4. Very encouragingly, we �nd that all these

loadings are close to one, and that the 95% con�dence bands for these

estimates always contain the desired value of one. This shows that term

premia from our model are not rejected by the data, implying that it also

passes the second requirement for a correct speci�cation of term premia.

On the other hand, imposing !d = 0 inMM;CS implies values of �Adjk that
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Figure 2: Risk-Adjusted Campbell-Shiller Loadings
The �gure shows the risk-adjusted Campbell-Shiller regression loadings �Adjk for m = 4
in U.S. data from 1961 Q2 to 2007 Q4 when using the term premium fromMM;CS . The
shaded area denotes the 95 percent con�dence interval for these estimates, computed
using a block bootstrap where the regressand and the regressor in (10) are sampled
jointly in blocks of 10 observations in 100,000 bootstrap samples.
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are negative and signi�cantly di¤erent from one.

4.5 In�ation News in Bond Yields

Du¤ee (2018) shows that the quarterly news in bond yields ~r(k)t = r
(k)
t �

Et�1
h
r
(k)
t

i
is much more volatile than the quarterly news in expected in-

�ation �(k)�;t = Et
h
1
k

Pk
i=1 �t+i

i
�Et�1

h
1
k

Pk
i=1 �t+i

i
. The in�ation variance

ratio V R(k)� = V[�(k)�;t ]=V[~r
(k)
t ] is therefore only around 0:15 in the U.S.,

whereas this ratio often exceeds one in various versions of the New Keyne-

sian model (see Du¤ee (2018)). However, the time series for ~r(k)t and �(k)�;t in

the U.S. display clear evidence of time-varying volatility, and Gomez-Cram

and Yaron (forthcoming) therefore re�ne the estimates in Du¤ee (2018)

by correcting for heteroskedasticity. This increases V R(k)� to 0:23, 0:22,

and 0:19 at the one, three, and �ve year maturity, as shown in Table 4.16

The proposed model MM;CS implies that the standard deviation in news

to expected in�ation is only about 0:3 and hence substantially lower than

the standard deviation in news to bond yields of about 0:6. The model

therefore implies fairly low in�ation variance ratios of 0:32, 0:28, and 0:25

16We are grateful to Roberto Gomez-Cram for sharing these data moments.
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Table 4: News to In�ation and Bond Yields

This table reports the annualized standard deviation of quarterly news in expected in�a-

tion �(k)�;t = Et
h
1
k

Pk
i=1 �t+i

i
� Et�1

h
1
k

Pk
i=1 �t+i

i
in percent, the annualized standard

deviation of quarterly news in bond yields ~r(k)t = r
(k)
t � Et�1

h
r
(k)
t

i
in percent, and the

in�ation variance ratio V R(k)� = V[�(k)�;t ]=V[~r
(k)
t ]. The data moments are from Gomez-

Cram and Yaron (forthcoming) (supported material provided by R. Gomez-Cram) with
a correction for heteroskedasticity. These estimates are from 1962 Q1 to 2018 Q4, where
the standard deviations in bond yields news use martingale forecasts, and the standard
deviations in expected in�ation news are obtained using the GDP de�ator and surveys
on current-quarter in�ation. Figures in parenthesis denote the 90 percent credibility
interval. The corresponding model-implied moments are computed for the indicated
versions of the New Keynesian model. News to expected in�ation �(k)�;t and news in bond

yields ~r(k)t are computed directly by the third-order perturbation approximation, while
the unconditional standard deviations of �(k)�;t and ~r

(k)
t are obtained using the closed form

expression provided in Andreasen et al. (2018).

(1) (2) (3) (4)
Data MM;CS MM M

Std of in�ation news
1-year 0:22

[0:19;0:25]
0:36 0:42 0:76

3-year 0:21
[0:18;0:24]

0:34 0:39 0:68

5-year 0:20
[0:18;0:23]

0:33 0:36 0:65

10-year - 0:29 0:30 0:59

Std of yield news
1-year 0:46

[0:41;0:51]
0:64 0:86 2:81

3-year 0:44
[0:40;0:50]

0:65 0:83 1:55

5-year 0:46
[0:41;0:51]

0:66 0:81 1:30

10-year - 0:62 0:71 1:05

In�ation variance ratio
1-year 0:23

[0:16;0:32]
0:32 0:24 0:07

3-year 0:22
[0:16;0:32]

0:28 0:22 0:20

5-year 0:19
[0:14;0:27]

0:25 0:20 0:25

10-year - 0:22 0:18 0:31

at the one, three, and �ve year maturity, respectively, which all are within

the reported 90% uncertainty bands for the corresponding data moments

in Table 4. This shows that the proposed New Keynesian model is able

to address the recent critique of Du¤ee (2018). As with the risk-adjusted

Campbell-Shiller loadings in Section 4.4, we emphasize that the model�s

ability to explain the in�ation variance ratios is an out-of-sample test, in

the sense that �Adjk and V R(k)� are not included in the model estimation.
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4.6 Term Premia

The ten-year term premium implied byMM;CS is shown at the top of Fig-

ure 3, where the shaded bars denote NBER recessions. The �gure reveals

that the model generates the same overall pattern for nominal term premia

as found in the �exible �ve-factor model of Adrian et al. (2013), which is

a standard reduced-form Gaussian DTSM without any economic structure

imposed on the stochastic discount factor. The correlation between the

two measures of term premia is 85%, with the similarities being particu-

larly strong after the mid 1980s.17 Note also that both measures generally

increase during NBER recessions and hence capture the counter-cyclical

nature of bond risk premia. The summary statistics for term premia are

also very similar across the two models, as the ten-year nominal term pre-

mium inMM;CS has a mean of 172 basis points and a standard deviation

of 139 basis points, while the corresponding moments are 180 and 125 basis

points, respectively, in the model of Adrian et al. (2013).

The bottom of Figure 3 reports a shock decomposition of the ten-year

term premium, exploiting that TP (k) is linear in the states for our approx-

imation. We �nd that demand shocks explain 65% of the variation of this

term premium, while permanent productivity shocks �z;t account for 16%

of its variation. Shocks to the in�ation target also account for 16% and

contribute mainly to the elevated level of term premia from the mid 1970s

to the mid 1980s.

4.7 Understanding the KeyMechanisms in theModel

At this point, we have shown that the proposed model i) explains histor-

ical bond yields, ii) matches unconditional properties of the data, iii) is

consistent with the level of news in expected in�ation, and iv) passes the

two requirements for a correct speci�cation of term premia. Most of these

features are also matched by reduced-form DTSMs, but these models o¤er

little insights into the economic mechanisms that determine bond yields

and especially term premia. The model we propose provides such a struc-

tural explanation, and this section analyzes the key mechanisms inMM;CS

that drive term premia. Our discussion is structured around Table 5, which

17In line with this �nding, the Online Appendix further shows that MM;CS also
matches the short-rate expectations Et [rt+1] and Et [rt+4] in the Survey of Professional
Forecasts.
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Figure 3: The Ten-year Term Premia
The top �gure shows the ten-year term premium in annualized basis points fromMM;CS

and the model by Adrian et al. (2013). The bottom �gure shows how each of the
structural shocks inMM;CS contributes to the variation in the ten-year term premium.
The percentage of the total variation in the term premium explained by each shock,
denoted pct(�TPt), is computed based on the absolute variation in the series. The gray
shaded bars denote NBER recessions, and term premium is expressed in annualized
basis points.
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shows how unconditional moments and Campbell-Shiller loadings (both or-

dinary and risk-adjusted) are a¤ected when omitting one of the �ve shocks

in the model.

First, permanent productivity shocks have a large e¤ect on bond yields.

This is seen clearly from the unconditional means in Table 5, where omit-

ting variation in �z;t (i.e. ��z = 0) generates a strong steepening of the

yield curve. For instance, the three-month bond yield falls from 5:68% to

2:61% and the ten-year bond yield increases from 6:97% to 10:53%. That
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Table 5: Decomposing the E¤ects of the Structural Shocks

This table reports unconditional moments for MM;CS when all structural shocks are
present in column (1), and when each of the structural shocks are omitted in columns
(2) to (6). The model-implied moments are computed in closed form based on Andreasen
et al. (2018). All means and standard deviations are stated in annualized percent, except
for the standard deviation of l̂t which is not annualized.

(1) (2) (3) (4) (5) (6)
MM;CS ��z = 0 �d = 0 �n = 0 ��� = 0 �a = 0

Means
�ct 2.20 2.20 2.20 2.20 2.20 2.20
�t 4.35 3.83 6.50 4.38 4.35 4.38
rt 5.68 2.61 18.21 5.83 5.68 5.82
r
(4)
t 5.96 3.62 17.49 6.11 5.96 6.10
r
(12)
t 6.49 5.88 15.77 6.63 6.50 6.62
r
(20)
t 6.78 7.63 14.32 6.91 6.80 6.91
r
(28)
t 6.92 9.00 13.09 7.04 6.96 7.04
r
(40)
t 6.97 10.53 11.58 7.08 7.04 7.07

Stds
l̂t 3.04 3.07 3.00 1.43 2.99 2.85
�ct 1.88 1.81 1.86 1.53 1.76 1.49
�t 2.66 2.54 2.84 2.66 0.60 2.66
rt 3.03 1.82 4.05 2.99 2.17 2.99
r
(4)
t 3.02 1.90 3.90 2.99 2.16 2.99
r
(12)
t 3.04 2.13 3.57 3.01 2.20 3.00
r
(20)
t 3.02 2.28 3.29 3.00 2.22 2.99
r
(28)
t 2.97 2.34 3.05 2.94 2.20 2.94
r
(40)
t 2.82 2.32 2.76 2.79 2.09 2.79

Ordinary
CS loadings
�12 -1.04 -1.31 0.83 -1.04 -1.07 -1.04
�20 -1.06 -1.48 0.85 -1.07 -1.11 -1.07
�28 -1.04 -1.67 0.86 -1.04 -1.12 -1.04
�40 -0.89 -1.99 0.88 -0.90 -1.05 -0.90

Adjusted
CS loadings
�Adj12 0.71 0.89 -1.34 0.97 0.56 0.78
�Adj20 0.77 1.05 -1.85 1.07 0.70 0.82
�Adj28 0.76 1.11 -2.32 1.08 0.79 0.80
�Adj40 0.62 1.05 -2.97 0.92 0.79 0.65

is, a permanent productivity shock generates a negative term premium.

To understand why, observe from Figure 4 that a positive shock to �z;t
increases consumption and raises in�ation.18 We therefore see a fall in the

18This increase in in�ation is due to the high persistence of the shock and the induced
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nominal stochastic discount factorMt;t+1 that coincides with an increase in

the long-term bond yield r(40)t , and hence a fall in the bond price B(40)t . As

shown in Rudebusch and Swanson (2012), a positive comovement between

Mt;t+1 and B
(40)
t over the lifetime of the bond generates a negative term pre-

mium, and this explains why permanent productivity shocks help to �atten

the yield curve. Table 5 also shows that permanent productivity shocks ac-

count for much of the variation in bond yields. For instance, the standard

deviation in rt falls from 3:03% to 1:82% and from 2:82% to 2:32% in r(40)t

when letting ��z = 0. We also �nd that ordinary Campbell-Shiller loadings

decrease without permanent technology shocks, for instance from �0:89 to
�1:99 for r(40)t . This shows that permanent productivity shocks do not help

to generate bond return predictability. The risk-adjusted Campbell-Shiller

loadings are less a¤ected by letting ��z = 0 and remain close to one when

omitting permanent productivity shocks.

Figure 4: A Permanent Productivity Shock
This �gure shows the e¤ects of a positive one-standard deviation shock to �z;t computed
at the ergodic mean of the states using the results in Andreasen et al. (2018). Except
for the nominal stochastic discount factor Mt;t+1, all impulse response functions are
expressed in percentage deviations from the steady state (i.e. scaled by 100), with
consumption expressed in deviations from the balanced growth path and all bond yields
and in�ation measured in annualized terms.
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Second, demand shocks generate an upward sloping yield curve inMM;CS,

as the third column in Table 5 shows that we get a strongly inverted yield

strong wealth e¤ect. Hence, when ��z = 0, a positive shock to �z;t reduces in�ation.
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curve without these shocks (i.e. �d = 0). In contrast, demand shocks of-

ten generate a downward sloping yield curve in other versions of the New

Keynesian model (see, for instance, Nakata and Tanaka (2016)). To under-

stand this implication ofMM;CS, consider the impulse response functions

(IRFs) in Figure 5 for a positive demand shock in period t + 1 computed

at the ergodic mean of the states (the unmarked lines). We �nd that the

demand shock increases consumption and in�ation, but it also raises the

long-term bond yield r(40)t , which is equivalent to a fall in B(40)t . Despite

these responses, we see a large temporary increase in the nominal stochastic

discount factor in the �rst period, because dt+1=dt > 1 and, more impor-

tantly, because dt+1 also scales the constant u0 in the utility function. The

latter generates a large increase in the value function Vt+1, which trans-

lates into a positive spike in Mt;t+1 through the term
�
Et
�
V 1��t+1

�� �
1�� =V �t+1

in (4). From the second period and onwards, this "surprise e¤ect" inMt;t+1

is no longer present, andMt;t+1 therefore falls slightly below its steady state

level. However, the large positive spike in Mt;t+1 in period one dominates

the covariance between Mt;t+1 and the bond price B
(40)
t over the lifetime

of the bond, implying that demand shocks carry a positive term premium

inMM;CS. This ability of demand shocks to generate an upward sloping

yield curve is unrelated to conditional heteroskedasticity in these shocks,

as we �nd the same comovement between Mt;t+1 and r
(40)
t when !d = 0, as

shown by the dotted lines in Figure 5.19

Third, demand shocks are crucial for generating large and negative ordi-

nary Campbell-Shiller loadings, as we �nd a large increase in these loadings

when imposing �d = 0. For instance, �40 increases from�0:89 to 0:88 when
omitting demand shocks. The risk-adjusted Campbell-Shiller loadings are

also strongly a¤ected and far from one, suggesting that term premia in

MM;CS no longer can explain deviations from the expectations hypothe-

sis. We do not observe a similar large change in either the ordinary or

the risk-adjusted Campbell-Shiller loadings when abstracting from any of

the other shocks, implying that demand shocks are the main driver behind

return predictability in MM;CS. To understand why demand shocks are

crucial for matching the Campbell-Shiller loadings, consider once again the

impulse response functions after a positive shock to dt in Figure 5 at the

ergodic mean of the states. We �nd higher consumption but only a small

19The Online Appendix shows that the same mechanism is present even when u0 = 0,
because dt a¤ects the utility of consumption and leisure in (2).
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Figure 5: A Demand Shock
This �gure shows the e¤ects of a positive one-standard deviation shock to dt computed
using the results in Andreasen et al. (2018). Unless stated otherwise, the impulse re-
sponses are computed at the ergodic mean of the states. Except for the nominal stochas-
tic discount factor Mt;t+1, all impulse response functions are expressed in percentage
deviations from the steady state (i.e. scaled by 100), with consumption expressed in
deviations from the balanced growth path and all bond yields and in�ation measured in
annualized terms.
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increase in in�ation, which through the Taylor-rule generates a small pos-

itive response in the policy rate rt. The average e¤ect on in�ation relative

to the absolute change in consumption following the �rst eight periods af-

ter the shock (i.e.
Pk

j=1 IRF� (j) =
Pk

j=1 jIRFc (j)j) is only 0:27 inMM;CS,

whereas it is 0:84 in the corresponding log-linearized version of the model

estimated without the yield curve. This shows that bond yields are consis-

tent with demand shocks that are three times less in�ationary when using

information from the yield curve. Figure 5 also plots the ten-year bond

yield, which displays a much larger increase than the policy rate due to a

rise in the term premium TP
(40)
t , and we therefore see an increase in the

yield spread r(40)t �r(4)t . This coincides with a fall in the expected change in
the ten-year yield Et

h
r
(36)
t+4

i
� r(40)t , implying that demand shocks generate

a negative comovement between Et
h
r
(36)
t+4

i
�r(40)t and r(40)t �r(4)t as required

to get a negative Campbell-Shiller loading.

To understand the contribution from conditional heteroskedasticity in

demand shocks, consider the di¤erence between the unmarked lines (i.e.
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the full model) and the dotted lines with !d = 0 in Figure 5. We see that

higher uncertainty reduces the labor supply, consumption, in�ation, and

bond yields. These well-known negative e¤ects of higher uncertainty are

due to precautionary behavior, which encourage the household to consume

less and work more if possible. With sticky prices, the lower consump-

tion demand reduces output, which leads �rms to demand less labor with

higher uncertainty. In equilibrium, the price markup increases and the wage

level falls (not shown), where the latter reduces marginal costs and hence

in�ation, as explained by Basu and Bundick (2017). Importantly, when

uncertainty does not increase following a demand shock (i.e. !d = 0),

in�ation and the policy rate rt increase strongly, and we see a smaller in-

crease in r(40)t due to a more muted response in term premia. As a result,

the yield spread r(40)t �r(4)t falls after a demand shock, and we therefore get

an undesirable positive comovement between Et
h
r
(36)
t+4

i
�r(40)t and the yield

spread when !d = 0. This shows that demand shocks only help to gen-

erate negative Campbell-Shiller loadings because we allow for conditional

heteroskedasticity in these shocks.

We have so far only discussed IRFs at the ergodic mean, but these re-

sponses generally depend on the state of the economy. This is illustrated

in Figure 5, where we also show IRFs when the in�ation target ��t is one

standard deviation above its steady state level (the lines marked by stars),

while the remaining states are at the ergodic mean. In such a high in�a-

tion environment where �t > �ss, an increase in in�ation raises the output

loss due to price stickiness �
2

�
�t
�ss
� 1
�2
yt. A positive demand shock there-

fore leads to a fall in consumption and a higher labor supply, whereas the

responses in in�ation and all bond yields are very similar to those dis-

cussed previously. Thus, in a high in�ation environment, a demand shock

generates a negative comovement between consumption and term premia,

implying that demand shocks help to capture the stylized notion of counter-

cyclical bond risk premia. By contrast, in a low in�ation environment with

�t < �ss as seen around the ergodic mean, higher in�ation reduces the

output loss due to price stickiness �
2

�
�t
�ss
� 1
�2
yt, and this explains why

a demand shock increases consumption and reduces labor supply in this

case. Importantly, these radically di¤erent responses in consumption and

labor supply are only present in a nonlinear model solution, and therefore

not captured by the widely used log-linear approximation.

Finally, the last columns in Table 5 show that i) labor supply shocks nt
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explain much of the variation in the labor supply, ii) shocks to ��t control

much of the variation in in�ation and bond yields, and that iii) stationary

productivity shocks at help to explain the variation in consumption growth.

5 Robustness Analysis

The results presented so far are obtained when shrinking the traditional

QML estimates of the structural parameters towards some stylized empir-

ical moments for yobst . Given that this estimator is new to the literature,

Section 5.1 explores the e¤ects of gradually eliminating this form of shrink-

age. In the Online Appendix, we further show that the results in Section 4

are robust to i) omitting r(4)t , r
(12)
t , and r(28)t from the estimation, ii) dou-

bling the standard deviations for the measurement errors, iii) decreasing �

in the utility function to �60, iv) increasing shrinkage to � = T � 10, and
v) expanding the sample to include the zero lower bound period, which

only has a small e¤ect on the structural parameters as in Atkinson et al.

(Forthcoming). The Online Appendix also shows, that our results are not

robust to omitting heteroskedasticity in demand shocks with !d = 0, as the

model then becomes unable to jointly generate plausible in�ation variance

ratios and pass the two requirements for a correct speci�cation of term

premia.

5.1 The E¤ects of Shrinkage

To assess the impact of shrinkage, we �rst re-estimate the model when

only shrinking the QML estimates to the �rst and second unconditional

moments of yobst and not to the ordinary Campbell-Shiller loadings. This

version of the model is denotedMM . We �nd that this modi�cation has a

small e¤ect on the structural parameters in Table 1, the model �t in Table

2, and the unconditional means and standard deviations in Table 3. The

standard deviations of news to in�ation and bond yields increase slightly,

but the implied in�ation variance ratios remain consistent with the data,

as shown in Table 4. We further �nd that MM generates bond return

predictability with ordinary Campbell-Shiller loadings between �0:8 and
�0:4, although these loadings are somewhat lower (in absolute terms) than
in MM;CS and the data. The risk-adjusted Campbell-Shiller loadings for

MM fall slightly compared toMM;CS, but their 95% con�dence bands still
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include the desired value of one.

Another possibility is to abstract from any shrinkage and simply use

QML for the estimation. We refer to this version of the model asM. This

modi�cation gives somewhat larger changes in the structural parameters -

especially in b, �, �Calvo, ��, and !d (see Table 1). Also the changes in the

labor supply shocks nt and the in�ation target shocks ��t are noteworthy, as

they become more persistent and have higher conditional standard devia-

tions. Table 2 shows that these estimates unexpectedly give a higher value

of the quasi log-likelihood function when compared to MM;CS and MM .

However, this does not necessarily translate into smaller measurement er-

rors, becauseM struggles to �t the evolution in in�ation and short-term

bond yields during the late 1970s and early 1980s. An even more disturbing

shortcoming of not applying shrinkage is shown in Table 3, as M gener-

ates too much volatility in the observables yobst with all standard deviations

exceeding their 95% con�dence bands. This implies that the standard de-

viations of news in expected in�ation and bond yields are much larger than

in the data according to Table 4. Thus, the standard QML estimates dis-

play signs of over�tting, as the improved value of the quasi log-likelihood

function compared toMM;CS andMM comes at the cost of distorting the

�t to several unconditional properties of the model. This also distorts esti-

mates of term premia inM, as its ordinary Campbell-Shiller loadings are

close to one as implied by the expectation hypothesis.

6 Additional Model Implications

This section studies three additional implications of MM;CS that are not

included in the estimation, and hence can be considered as representing

over-identi�ed restrictions. First, demand shocks are a key driver behind

bond risk premia in the model, but these shocks have also a direct e¤ect on

uncertainty when !d > 0. Thus, one way to explore the plausibility of the

proposed uncertainty channel is to study the conditional volatility in bond

yields. This is done in Section 6.1. Second, the in�uential paper by Joslin

et al. (2014) criticizes a wide class of macro-�nance term structure models

because they are unable to address the so-called "spanning puzzle". We

summarize the arguments of Joslin et al. (2014) in Section 6.2 and explore

whetherMM;CS can explain this puzzle. Third, the ability of the model to

match key moments for equity returns are �nally discussed in Section 6.3,
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although the model has not been constructed for this purpose.20

6.1 Conditional Volatilities

Figure 6 plots the historical evolution in the quarterly volatilities and their

95% con�dence bands at the tree-, �ve-, and ten-year maturity when esti-

mated by the EGARCH(1,1) model of Nielson (1991) applied to the change

in yields.21 For the New Keynesian model, we simulate bond yields one

quarter forward at each estimated state by the CDKF and report the stan-

dard deviations. Figure 6 shows that these model-implied volatilities gen-

erally tract the empirical volatilities fairly closely with correlations between

0.7 and 0.8. The main exception is in the early 1980s, where the New Key-

nesian model is unable to generate a su¢ ciently large increase in volatility.

Table 6 summarizes some stylized moments for the conditional volatil-

ity at the ten-year maturity, where the model-implied moment are ob-

tained from a simulated sample of 10; 000 observations. Panel A shows

that the empirical volatilities for the short rate �̂(1)t and the ten-year yield

�̂
(40)
t display a strong positive correlation of 0:75. The same holds in our

model where the corresponding correlation is 0:88. Panel B reveals that
�̂
(40)
t is strongly correlated with the level of ten-year bond yield (0:91), and

that we �nd the same correlation in the New Keynesian model. We further

see from Panel C that the yield spread does not predict the volatility in the
ten-year yield �̂(40)t , both in the data and in the model. The ability of �̂(40)t

to forecast annual excess returns at the ten-year maturity rx(40)t when con-

trolling for the yield spread is considered in Panel D. We �nd that �̂(40)t has

predictive power for rx(40)t with a slope coe¢ cient of 13:66, which is statisti-

cal signi�cant at a 1% level with a t-statistic of 2:64. However, the presence

of estimation noise in �̂(40)t implies that the second moment of �̂(40)t exceeds

the second moment of the true (but infeasible) volatility �(40)t , implying

that this slope coe¢ cient is biased towards zero. A simple way to correct

for this bias is to generate S sample paths of U.S. volatility by using the as-
20The modelMM;CS generates also an upward sloping real yield curve and a positive

in�ation risk premium as typically found for the U.S. economy. These e¤ects are due to
demand shocks and arises for the same reason as described above for the nominal yield
curve. We therefore delegate this analysis to the Online Appendix.
21Unreported results show that the EGARCH(1,1) model is better than the widely

used GARCH(1,1) model to capture the conditional volatilities in bond yields, in part
because the imposed parameter restrictions in the GARCH(1,1) model to ensure non-
negative volatililty and stability are binding.
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Figure 6: Historical Plots of Conditional Volatility in Bond Yields

This �gure shows the implied one-step ahead conditional volatilities in bond yields.
The volatilities in the data are measured by the EGARCH(1,1) model of Nelson (1991)
applied to the change in bond yields. The shaded area denotes the 95 percent con�dence
interval for the volatility estimate in this model. For the New Keynesian modelMM;CS ,
we condition on a given estimated state from the CDKF, simulate 2,000 realizations of
bond yields, and report their standard deviations.
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ymptotic distribution for the parameters in the EGARCH(1,1) model and

estimate the bias by B̂� =
PS

s=1

PT
t=1

�
�
(40)
t;s

�2
=S �

PT
t=1

�
�̂
(40)
t

�2
. The

bias-adjusted OLS estimator is then given by (X0X � B)�1X0Y, where

X �
h
1T r

(40)
1:T � r

(4)
1:T �̂

(40)
1:T

i
is the T � 3 data matrix for the regressors,

Y is the T � 1 data matrix for the dependent variable, and B = 0 except
for B (3; 3) = B̂�.22 The bottom part of Table 6 shows that this adjustment

increases the slope coe¢ cient for �̂(40)t to 16:61 and raises its t-statistic to

3:27. The model-implied slope coe¢ cient is 23:1 and hence well inside the

95% con�dence interval [6:7; 26; 5] for the bias-adjusted empirical slope co-

e¢ cient. Note also that imposing !d = 0 in the model implies a too low

slope coe¢ cient for �(40)t of 3:90, in addition to a negative e¤ect of the yield

spread on excess bond returns.

Another and more indirect way to evaluate the plausibility of the con-

ditional volatility in bond yields is to compute quarterly Sharpe ratios.

22A similar correction is applied to the Newey-West standard errors reported in Table
6.
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Table 6: Stylized Properties of Conditional Volatility

This table reports stylized moments for the one-step ahead conditional volatility in the
ten-year bond yield, denoted �̂(40)t . The conditional volatility in the data is measured by
the EGARCH(1,1) model of Nelson (1991) applied to the change in the ten-year bond
yield. In the New Keynesian model, conditional volatility at a given state xt is com-
puted as the standard deviation of 2,000 bond yields simulated one period forward. The
reported moments for the New Keynesian model are computed using a simulated sample
of 10,000 observations for the conditional volatility and bond yields. The reported mo-
ments are for the slope coe¢ cient. In Panel A and B, the regressand and the regressors
are normalized to have a zero mean and a unit variance. Figures in parenthesis for the
data moments refer to Newey-West standard errors computed using one lag in Panel
A to Panel C and �ve lags in Panel D. Signi�cance at the 10 and 5 percent level are
denoted by ** and *, respectively.

Data Model
MM;CS MM;CS

with !d = 0
Panel A: Comovement between volatilities
�̂
(40)
t = �+ ��̂

(1)
t + ut 0:75��

(0:12)
0:88 0:93

Panel B: Volatility and its level
�̂
(40)
t = �+ �r

(40)
t + ut 0:91��

(0:06)
0:91 0:85

Panel C: Volatility predictability
�̂
(40)
t+1 = �+ �

�
r
(40)
t � r(4)t

�
+ ut+1 �0:02

(0:03)
0:02 �0:02

Panel D: Bond return predictability
rx

(40)
t+4 = �+ �

�
r
(40)
t � r(4)t

�
+ ��̂

(40)
t + ut+4

� 3:48��
(0:97)

1:57 �0:52

� 13:66��
(5:18)

23:09 3:90

� with bias-adjustment 3:50��
(0:96)

- -

� with bias-adjustment 16:61��
(5:07)

- -

For a k-period bond at time t, the conditional Sharpe ratio is de�ned as

SR
(k)
t � Et

h
R
(k)
t+1 �R

(1)
t+1

i
=

r
Vt
h
R
(k)
t+1 �R

(1)
t+1

i
, where R(k)t+1 � P

(k�1)
t+1 =P

(k)
t .

To compute SR(k)t in the New Keynesian model, we �rst simulate a sample

of 10; 000 states, i.e. fxtg10;000t=1 . At a given state xt, we then simulate 2; 000

realizations of bond yields and excess returns to compute SR(k)t . The mean

of these conditional Sharpe ratios are 0:31, 0:21, 0:15, and 0:08 at the one-,

three-, �ve-, and ten-year maturity. Their overall level are thus consistent

with the empirical evidence in Pilotte and Sterbenz (2006), and so is the

decreasing pattern in SR(k)t with maturity.
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Thus, the conditional volatility in bond yields are well matched by

MM;CS, although none of these volatilities are included directly in the

estimation.

6.2 The Yield Curve and Spanned Macro Variation

Many DTSMs with macro variables imply that bond yields are a linear

combination of latent factors and observed macro variables. This linear

mapping can (up to knife-edge restrictions) be inverted to express macro

variables as a function of bond yields. All variation in macro variables is

therefore spanned (i.e. explained) by bond yields. However, this impli-

cation is heavily criticized by Joslin et al. (2014) because regressions of

macro variables on linear combination of bond yields (i.e. the principal

components) typically generate R2 values substantially below one. This

constitutes the "spanning puzzle", which leads Joslin et al. (2014) to chal-

lenge the usefulness of most equilibrium models - including the standard

New Keynesian model. The model we propose also implies that bond yields

depend on macro variables, but this relation is not linear. Thus, the nonlin-

ear structure of our model may generate what may appear to be unspanned

variation in macro variables and hence resolve the spanning puzzle.

We explore this possibility in Table 7 by regressing each of the three

macro variables included in the estimation of the model on the �rst K

principal components of bond yields. The modelMM;CS has �ve structural

shocks, suggesting that at least �ve principal components are required to

span variation in the macro variables. The �rst column in Table 7 shows

that U.S. bond yields only explain a fairly small proportion of the varia-

tion in the labor supply l̂t (19:2%) and consumption growth �ct (22:2%),

whereas in�ation �t displays some evidence of spanning with an R2 of

60:3%. The results for the New Keynesian model are largely consistent

with these regressions according to the second column in Table 7, where

the corresponding values of the R2 are 4:1% for l̂t, 8:4% for �ct, and 70:1%

for �t. These �gures are computed using a simulated sample of 100; 000

observations that include the same measurement errors vt as applied when

estimatingMM;CS. Measurement errors help to generate unspanned varia-

tion, as emphasized in Bauer and Rudebusch (2017), and we therefore omit

these errors in the third column of Table 7. The R2 values then increase

slightly to 9:3% for l̂t and 20:2% for �ct, while in�ation now basically is
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Table 7: Regression Evidence on the Spanning Hypothesis

This table shows the R2 in percent from the regression mt = �+ �
0pca

(K)
t + ut, where

mt refers to a macro variable and pca
(K)
t of dimension K � 1 contains the �rst K prin-

cipal components of bond yields. The R2s in the data are provided in column (1) and
computed on U.S. data from 1961 Q2 to 2007 Q4, with the 95 percent con�dence inter-
val (shown below the estimate) computed using a block bootstrap, where the regressand
and the regressors are sampled jointly in blocks of 50 observations in 10,000 bootstrap
samples. The corresponding R2s implied by the New Keynesian model MM;CS are
computed using a simulated sample of 100,000 observations. The simulated sample in
column (2) is obtained using the nonlinear model solution (i.e. third order perturba-
tion) and with measurement errors for macro variables and bond yields of the same size
as considered in the estimation. The same nonlinear model solution is used in column
(3), but no measurement errors are added to the macro variables and bond yields. The
simulated sample in column (4) uses a simpli�ed third-order perturbation approxima-
tion, where all terms that are quadratic and cubic in the states are omitted to get a
risk-adjusted linear approximation without measurement errors.

(1) (2) (3) (4)
Data Nonlinear model & Nonlinear model Linear model

Measurement errors
K = 5

l̂t 19:2
[9:2;68:9]

4.1 9.3 24.7

�ct 22:2
[7:2;44:2]

8.4 20.2 83.7

�t 60:3
[41:1;82:9]

70.1 95.5 99.7

K = 6

l̂t 19:5
[9:4;70:3]

4.1 13.7 100.0

�ct 22:4
[7:4;44:2]

8.4 21.2 100.0

�t 60:5
[40:5;83:4]

70.1 96.2 100.0

spanned with an R2 of 95:5%.

To evaluate the degree of unspanned variation that is generated by the

nonlinear structure of the New Keynesian model, the fourth column in Ta-

ble 7 reports the R2 values when using a risk-adjusted linear solution to the

model. This solution is computed by omitting terms in the approximation

of the g- and h-functions that are quadratic and cubic in the states. The

R2 values now increase to 24:7% for l̂t, 83:7% for �ct, and 99:7% for �t. We

do not achieve perfect spanning (i.e. R2 = 1) in this case because consump-

tion habits and conditional heteroskedasticity in dt introduce log ct�1 and

log dt�1, respectively, as endogenous states. The last part of Table 7 shows

that an additional principal component with K = 6 allows us to capture

the information in these endogenous states and achieve perfect spanning.
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Accordingly, the nonlinear structure of the New Keynesian model im-

plies that bond yields only explain a fairly small proportion of the variation

in l̂t (13:7%) and �ct (21:2%), which is in line with U.S. data. For in�a-

tion, the nonlinearities in the model have a somewhat smaller e¤ect, and

measurement errors are therefore needed to achieve a su¢ ciently low R2 of

70:1% that lies well within the 95% con�dence interval for the explained

variation in U.S. in�ation. Thus, the proposed model is to a large extent

able to resolve the spanning puzzle. This result may also serve as a more

theoretical motivation for imposing the restrictions in Joslin et al. (2014),

because these restrictions make their reduced-form DTSM more consistent

with an equilibrium model of the type proposed in this paper.

6.3 Equity Returns

We de�ne the market return rmt as a claim on �rm dividends Dt. This

implies that the real market price Pmt is given by 1 = Et
�
M real
t;t+1e

rmt+1
�
,

where er
m
t+1 =

�
Dt+1 + P

m
t+1

�
=Pmt , M

real
t;t+1 = Mt;t+1�t+1, and Dt = yt �

wtlt � 1
2
� (�t=�ss � 1)2 yt � zt�kss. To account for leverage as present in

the data, excess market returns are modeled as rext = !lev
�
rmt � rrealt

�
with

!lev = 2 as in Croce (2014). In MM;CS, rext has a mean of 6:2% and a

standard deviation of 19:7%. This is very similar to the corresponding

moments for the U.S. of about 6% and 20% (see, for instance, Beeler and

Campbell (2012) and Croce (2014)).

Another set of stylized properties for equity returns relate to their

predictability. Panel A in Table 8 shows that the ten-year yield spread

r
(40)
t � r(4)t in the U.S. predicts signi�cant higher excess equity returns two

and three years in the future. The second column in Table 8 shows that

this predictability result is captured by MM;CS, which generates regres-

sion coe¢ cients and values of the R2 that match those obtained in the

data. The presence of conditional heteroskedasticity in demand shocks is

here essential, as imposing !d = 0 inMM;CS generates forecasts with the

wrong sign. The last column in Table 8 further shows that it is demand

shocks that enable the yield spread to predict equity returns inMM;CS, as

omitting these shocks (�d = 0) generate R2 values in these predictability

regressions that are basically zero.

Following the work of Fama and French (1989), Panel B in Table 8

uses both the yield spread and the log-transformed price-dividend ratio pdt

35



Table 8: Return Predictability in Equity Returns

Panel A shows the regression coe¢ cients and the R2 in percent when regressing future
excess equity returns on the slope of the yield curve. Panel B extends this regression
with the price-dividend ratio (pdt). For the empirical data moments, these regressions
are computed on U.S. data from 1961 Q2 to 2007 Q4, where the price-dividend ratio
and the excess equity return are computed as in Beeler and Campbell (2012). Figures
in parenthesis for the data moments refer to Newey-West standard errors computed
using j + 1 lags. Signi�cance at the 10 and 5 percent level are denoted by ** and *,
respectively. The corresponding moments in the model are computed on a simulated
sample of 100,000 observations using the estimates for MM;CS , except when stated
otherwise. All variables in the two regressions are demeaned and scaled to have a unit
standard deviation.

Model: MM;CS

(1) (2) (3) (4)
Data Full version !d = 0 �d = 0

Panel A:
jP
i=1

rext+i = �j + �j

�
r
(40)
t � r(4)t

�
+ �t+j

�4 0:31
(0:23)

0.33 -0.15 0.04

�8 0:52��
(0:20)

0.61 -0.27 0.08

�12 0:75��
(0:23)

0.84 -0.38 0.13

R24 2:6 3.0 0.6 0.0
R28 4:0 5.2 1.0 0.1
R212 6:4 7.0 1.3 0.1

Panel B:
jP
i=1

rext+i = �j + �j

�
r
(40)
t � r(4)t

�
+ �jpdt + �t+j

�4 0:42�
(0:23)

0.18 -0.12 0.15

�8 0:72��
(0:29)

0.33 -0.23 0.30

�12 1:01��
(0:29)

0.46 -0.34 0.44

�4 �0:42
(0:27)

-0.39 -0.03 -0.19

�8 �0:71
(0:48)

-0.73 -0.04 -0.37

�12 �0:90�
(0:50)

-1.01 -0.05 -0.53

R24 6:8 6.5 0.6 0.6
R28 10:7 11.5 1.0 1.2
R212 14:3 15.6 1.3 1.6

to forecast future equity returns. A higher price-dividend ratio forecasts

negative future equity returns, as typically found in the literature, although

this e¤ect is not strongly signi�cant in our sample. The model matches

this predictability result with regression loadings for pdt that closely match
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those in our sample and hence basically produces the same R2 values as

in the data. Again, demand shocks with heteroskedasticity are key for

obtaining these results, as seen from the two last columns in Table 8.

Thus, the proposed New Keynesian model matches several stylized

properties of equity returns, although these moments are not included in

the estimation. We showed in Section 4.7 that demand shocks dt enable

the yield spread to match ordinary Campbell-Shiller loadings and predict

excess bond returns, and this section shows that these shocks also allow the

yield spread to predict excess equity returns. Our model therefore ratio-

nalizes the old conjecture in Fama and French (1989) that the yield spread

forecasts future bond and equity returns due to shocks to the discount rate,

as captured by variation in dt within our model.

7 Conclusion

This paper addresses a long-standing ambition in the literature by for-

mulating a New Keynesian model to provide a structural explanation for

variation in bond yields and their risk premia. The key innovation is to

introduce demand shocks, where the conditional variance increases with

the level of these shocks. This uncertainty channel reduces the in�ationary

e¤ect of a demand shock and generates bond yields with a low level of news

in expected in�ation. These demand shocks also enable the model to pass

two requirements for a correct speci�cation of term premia and explain

several unconditional properties of bond yields. It is obvious that we have

only scratched the surface when it comes to analyzing the macroeconomic

implications of no longer ignoring �nancial assets. For instance, studying

optimal monetary and �scal policy responses in a setting with properly

speci�ed risk corrections seem particularly promissing, as these policies de-

pend strongly on higher-order terms in the model solution. We leave these

and other applications for future work.
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