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1 Introduction

In this paper, we study the unstable relationship between exchange rates and macroeconomic
fundamentals. Using a model that relates foreign exchange rates with macroeconomic factors, we
show that allowing for time-varying loadings can increase the percentage of explained variation in
exchanges rates by an order of magnitude. In addition, taking the aforementioned instabilities into
consideration improves the relative out-of-sample predictive ability of the model globally, and yields
better forecast of sign changes in exchange rates.

It is intuitively plausible that countries’ exchange rates are related to their underlying macroeco-
nomic fundamentals. Indeed, theoretical models based on money demand functions or monetary
policy rules suggest fundamentals offer explanatory power (see Engel and West, 2005, for a survey
of such models). Nevertheless, the form and existence of such a relationship is contentious. Since
Meese and Rogoff’s (1983a) key finding that structural exchange rate models perform no better than
a random walk, arduous research work has been invested into this disconnect puzzle (Obstfeld and
Rogoff, 2000); however, often to no avail (Rossi, 2013). Crucially, any empirical investigation must be
based on a theoretical model that adequately captures the structural link to fundamentals. Survey
evidence of UK and US based foreign exchange (FX) traders finds that the weight they attach to
macroeconomic variables changes over time (Cheung and Chinn, 2001; Cheung et al., 2004). This
reflects an early hypothesis of Meese and Rogoff (1983a,b, 1988) that time-varying parameters could
be a reason behind the poor performance of structural models.1

The exchange rate model in this paper is also related to the scapegoat theory (Bacchetta and
van Wincoop, 2004, 2012, 2013). A scapegoat effect arises if there is uncertainty about the structural
parameters governing the exchange rate equation. It is the expectation of these parameters that
then determines the exchange rate. An observed fundamental becomes a scapegoat as a result of
an unobserved shock with which it is correlated, in which case investors rationally attribute the
observed exchange rate fluctuations to that specific fundamental. The expectation of the respective
parameter rises temporarily, meaning the fundamentals receive time-varying weights. Fratzscher et al.
(2015) are the first to present empirical support for this theory by examining a survey of FX traders
to obtain a measure of the scapegoat weights. Consistent with Bacchetta and van Wincoop (2004,
2013), they find fundamentals that are temporarily deviating from their long-term equilibrium to be
chosen as scapegoats. In the same vein, Pozzi and Sadaba (2020) construct parameter expectations
from survey data and use a Bayesian approach to determine the probability that variables are
scapegoats. They find inflation rates to be the most likely scapegoat candidate. A slightly different
explanation for the disconnect puzzle is offered by Bacchetta and van Wincoop (2006) who model the
relation of the exchange rate and order flows. In the short-run, the exchange rate is manly driven
by unobserved trades. Heterogeneously informed investors cannot disentangle whether variations
are caused by order flows or private signals about fundamentals. Bacchetta and van Wincoop’s
(2006) model suggests fundamentals only have explanatory power over long horizons while trades
matter in the short-run. It is empirically corroborated by Rime et al. (2010), who show that order

1Although several studies indicate such constant parameter models fail to predict exchange rates (e.g. Cheung et al., 2005;
Rossi, 2013) there are others that find support for them (e.g. Li et al., 2015; Molodtsova and Papell, 2009)
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flow aggregates information about fundamentals and can forecast exchange rate changes. Cao et al.
(2019) take a different approach and analyse the term structure of exchange rates by decomposing
them into carry-trade risk-premia and forward premium components. They find customer order
flows to be informative about the former, although a quarter of order-flow variation is driven by
scapegoat variables. Both studies demonstrate the importance of time-variation in exchange rate
models. The disconnect puzzle may, however, also be a product of inaccurate model selection, as
suggested by Sarno and Valente (2009): models would have to be altered frequently to optimally
capture the information embedded in fundamentals and this implies a high degree of time-variation
in their parameters. Kouwenberg et al. (2017) develop a dynamic model selection rule which they
find to produce better forecasts than several benchmark models. The reason behind this lies, again, in
the rule’s ability to incorporate time-variation. Further evidence for parameter instability in exchange
rate regressions is provided by Rossi (2006), Bekiros (2014), and Byrne et al. (2018).2 We demonstrate
how a time-varying relationship is theoretically consistent with – but not exclusively dependent on –
scapegoat effects and presents extensive empirical evidence for such instabilities.

In this paper, we specify a theoretical model in which exchange rate changes are described by a
stochastic difference equation that consists of a linear combination of observable and unobservable
fundamentals. The latter can be interpreted as transitory shocks that shift the weight investors
attribute to a particular fundamental away from its long-run equilibrium. These structural instabilities
manifest themselves in a time-varying derivative of exchange rate changes with respect to observable
fundamentals, that we write in state space form and estimate using the theoretical results of Mikkelsen
et al. (2019) who show that consistent estimates of the time-varying loadings can be obtained by
maximising the likelihood function of the model.3 To extract the factors serving as fundamentals, we
use the McCracken and Ng (2016) database of US macro-variables and merge it with a dataset of 171

macro series, compiled from the OECD database, yielding a novel dataset of 290 time series spanning
from 1994:12 to 2018:12. The information inherent in these series is extracted via principal components.
The model is tested for 14 different currencies vis-à-vis the US dollar and compared to a benchmark
model with constant loadings. The paper provides in-sample evidence that accounting for time-
variation improves the model fit considerably as demonstrated by an R2 ranging from 37% up to 88%.
It correctly matches an appreciation and depreciation up to 86% of the times, whereas the constant
loadings model can only explain a very small part of exchange rate variations, demonstrated by an
R2 between 1% and 14%. We expound how the time-varying loadings estimates can be interpreted
economically and how they may capture the effects of fundamentals during currency crises or on safe
haven currencies. In addition, we show that taking the aforementioned instabilities into consideration

2While most studies indicate that the link between exchange rates and fundamentals is unstable, Balke et al. (2013) suggest
the poor performance of constant parameter models is due to the relevant signals entailed in fundamentals being obscured by
noise.

3Several papers have been proposed recently to estimate time variations in large dimensional factor models. Examples
besides Mikkelsen et al. (2019) two-step maximum likelihood estimator are: Breitung and Eickmeier (2011) propose a Chow-
type tests for structural breaks in factor models that is asymptotically unaffected by the estimation error of the principal
components; Su and Wang (2017) consider a local principal component estimator for latent factors and smoothly changing
time-varying factor loadings; Barigozzi et al. (2020) introduce a generalised dynamic factor model, in which factors are loaded
with a time-varying filter; Barigozzi et al. (2018) propose a method to estimate high-dimensional factor models with multiple
(large) change points.

3



improves the relative out-of-sample predictive ability of the model globally, and yields better forecasts
of sign changes in exchange rates. Furthermore, it can improve forecasts locally during crises.

The paper is structured as follows: Section 2 presents the theoretical model of structural instabilities
between exchange rates and fundamentals. It also illustrates the relation of the model to the scapegoat
theory. In Section 3, the model is mapped into state space form, and the econometric approach is
described. Section 4 discusses the data, and in Section 5 we report the in-sample results, explore
the role of parameter instabilities, and finally present the out-of-sample forecast results. Section 6

concludes.

2 A Structural Model of Exchange Rate Instability

This section derives a model that explains how unobservable variables can lead to structural insta-
bilities in the relationship of exchange rates and macroeconomic fundamentals. The model belongs
to the same class as the ones examined by Engel and West (2005) and is derived from three basic
assumptions. We elaborate on the relation of the model to the scapegoat theory of exchange rates
(Bacchetta and van Wincoop, 2004, 2012, 2013).

2.1 Theoretical Framework

To introduce the theoretical framework, we specify an uncovered interest parity (UIP) condition:4

E[st+1|It]− st = it − i∗t + φt, (1)

where st is the log exchange rate measured as the domestic price per unit of foreign currency and it is
the nominal one-period interest rate. An asterisk denotes foreign variables. The period t information
set is denoted by It, and deviations from UIP are accounted for by the risk premium φt. In addition,
Relative Purchasing Power Parity (PPP) is assumed:

∆st = πt − π∗t =
1
µ

E[πt+1 − π∗t+1|It], (2)

with inflation being defined as the change in log price levels πt = pt − pt−1. µ > 1 is the discount fac-
tor in the economy. Finally, we use the following relationship of real interest rates and macroeconomic
fundamentals:

rt − r∗t = − f ′t (β + κt), (3)

where rt = it −E[πt+1|It] is the ex ante real interest rate. This equation states that the spread between
foreign and domestic real interest rates is negatively related to changes in observed and unobserved
macroeconomic fundamentals. The parameter vector β reflects the long-run equilibrium relationship
between observable fundamentals ft and real interest rates. It implies that there is a constant long-run

4See Engel (2014) for a survey of exchange rates and interest parity as well as the existence of the risk premium term.
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equilibrium between the two. However, in the short-run, stationary, mean-zero, unobserved shocks,
described by the vector κt = (κ1t, ..., κrt), disequilibrate real interest rates and fundamentals. Such
shocks can represent shifts in parameter expectations but also changing expectations about future
fundamentals, e.g. caused by macroeconomic news. One interpretation of (3) is that it reflects the
real interest rate channel of monetary policy, an intrinsic feature of New-Keynesian models. Due to
nominal rigidities, changes in the nominal interest rate (and other policy instruments) lead to shifts
in real interest rates that bring about fluctuations in economic variables.5 To illustrate that (3) not
only relates to the macroeconomic literature more broadly but also encompasses specific models, we
show in Appendx A.1 how this equation can be derived from a Taylor rule model which restricts the
specific variables included in ft = ( f1t, ..., frt).6 After substituting (2) into (3), one obtains an equation
similar to the one in Bacchetta and van Wincoop (2013):7

it − i∗t = µ∆st − f ′t (β + κt).

Combining this result with (1) leads to:

E[∆st+1|It] = µ∆st − f ′t (β + κt) + φt

∆st =
1
µ

{
f ′t (β + κt)− φt + E[∆st+1|It]

}
.

Recursive substitution of ∆st, assuming no bubbles, yields a single stochastic difference equation:

∆st =
1
µ

{
∞

∑
j=0

(
1
µ

)j
E[ f ′t+j(β + κt+j)|It]−

∞

∑
j=0

(
1
µ

)j
E[φt+j|It]

}
, (4)

establishing the common result that the exchange rate equals the present value of expected future
macroeconomic fundamentals and the foreign exchange risk premium. Recall that κt are transitory
shocks of potentially differing origins. Two examples are large unobserved liquidity trades or the
anticipation of a dampened economic outlook that has not yet manifested itself in observable data. In
any case, (4) implies incomplete parameter information on the effect of fundamentals. Consequently,
the relative importance of fundamentals in determining the exchange rate is not time-invariant and
affected by κt. To derive the effect of changes in observed fundamentals on the exchange rate, consider
for simplicity the case of a single fundamental and assume that ft, κt, and φt follow AR(1) processes:

ft = ρ f ft−1 + vt, vt ∼ i.i.d.(0, σ2
f )

κt = ρκκt−1 + ut, ut ∼ i.i.d.(0, σ2
κ )

φt = ρφφt−1 + wt, wt ∼ i.i.d.(0, σ2
φ),

(5)

5This channel is covered by standard textbooks, such as Galí (2015).
6Imposing such restrictions introduces additional model uncertainty and resulting expressions have been tested by the

literature in extenso, often with limited success (e.g. Rossi, 2013).
7Bacchetta et al. (2010) derive the expression it − i∗t = µ∆st − µ∆(Ft + bt) from the monetary model of the exchange rate,

where bt are unobservable fundamentals and Ft = ftβ.
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where |ρ f |, |ρκ |, |ρφ| < 1. Clearly, E[ ft+j|It] = ρ
j
f ft and E[κt+j|It] = ρ

j
κκt. Assuming ft and κt are

uncorrelated, (4) becomes:

∆st =
1
µ

∞

∑
j=0

(
1
µ

)j
ρ

j
f ftβ +

1
µ

∞

∑
j=0

(
1
µ

)j
ρ

j
κ ftκt −

1
µ

∞

∑
j=0

(
1
µ

)j
ρ

j
φφt

= ft

(
1

µ− ρ f
β +

1
µ− ρκ

κt

)
− 1

µ− ρφ
φt.

(6)

The derivative of the exchange rate with respect to the observed fundamentals is:

∂∆st

∂ ft
=

(
1

µ− ρ f
β +

1
µ− ρκ

κt

)
. (7)

That is, the effect of variations in macroeconomic fundamentals on the exchange rate corresponds to a
constant part, 1

µ−ρ f
β, and a time-varying part, 1

µ−ρκ
κt. It can be seen that the presence of unobservable

fundamentals leads to on unstable relationship between observed fundamentals and the exchange
rate. Based on studies of equations similar to (4), one can expect that µ is close to one (Engel and
West, 2005). In that case, if the transitory shocks are highly persistent relative to the observable
fundamentals, the relationship between the latter and exchange rates is characterised by a greater
degree of instability.

2.2 Relation to the Scapegoat Theory

The model relates to Bacchetta and van Wincoop’s (2013) scapegoat theory in the sense that they
also consider a model based on a single stochastic difference equation like (4). In their framework,
fundamentals, too, display temporary changes in their weights; however, this is the result of investors
being unable to pin down the value of the structural parameters in β. If parameters were known,
their model simply implies ∂st

∂ fi,t
= βi. If parameters are unknown, on the other hand, agents form

their expectations of β over time by updating their beliefs about the impact of fundamentals which
takes the form f ′t β + bt. Here, bt are unobserved shocks that coincide with changes in fundamentals
and thus introduce time-variation. Investors can observe a large value of the signal f ′t β + bt but are
unable to distinguish whether this is due to β being greater than expected or a result of changes in
the unobservables bt. It becomes rational for agents to attribute at least some weight to a larger β,
thereby raising their expectations of the structural parameters. Consequently, the relationship between
fundamentals and the exchange rate becomes time-varying, in spite of the structural parameters being
constant. This manifests itself in the derivative of the exchange rate with respect to fundamentals:

∂st

∂ fi,t
= θβi + (1− θ)E[βi|It] + (1− θ) f ′t

∂E[β|It]

∂ fi,t
,

where the first two terms on the right-hand side are a weighted average of the true structural
parameters and their expectations. The time-varying last term reflects the gradual learning about
β. In Bacchetta and van Wincoop (2013), unobserved fundamentals can i.a. reflect macroeconomic
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news.8 However, while trying to explain the arising fluctuations rationally, heterogeneously informed
investors attribute these shocks to an observable fundamental which temporarily receives an exces-
sive weight as a result.9 Therefore, the Bacchetta and van Wincoop (2013) model leads to similar
relationship between fundamentals and the exchange rate as the model in this paper.

3 Modelling Parameter Instability

3.1 State Space Formulation

This subsection demonstrates how the theoretical model can be mapped into state space form. Focus
on the single factor case for illustrative purposes and combine (6) with the autoregressive processes
for the unobservable shocks to obtain the system:

κt = ρκκt−1 + ut,

∆st = ft

(
1

µ− ρ f
β +

1
µ− ρκ

κt

)
− 1

µ− ρκ
φt.

(8)

To estimate the relation of exchange rates to fundamentals, 1
µ−ρ f

β + 1
µ−ρκ

κt, write the system in the
following state space representation:

λt − λ̄ = b(λt−1 − λ̄) + ηt, ηt ∼ i.i.d.(0, σ2
η),

∆st = f ′t λt + εt, εt ∼ i.i.d.(0, σ2
ε ),

(9)

where the measurement error εt is an estimate of the risk premium,10 and the state vector λt estimates
the relation between macroeconomic fundamentals ft and the exchange rate st. By comparing (8) and
(9), it can be seen that λt =

1
µ−ρ f

β + 1
µ−ρκ

κt; hence, the parameters of the state space representation
(9) can be mapped to the parameters in (8):

λ̄ = E[λt] = E

[
1

µ− ρ f
β +

1
µ− ρκ

κt

]
=

1
µ− ρ f

β,

σ2
η

1− b2 = V[λt] = V

[
1

µ− ρ f
β +

1
µ− ρκ

κt

]
= V[κt] = ω2 σ2

u
1− ρ2

κ
,

where ω = 1
µ−ρκ

. The autocorrelation parameter ρκ of κt corresponds to the autocorrelation parameter
b of λt. Therefore, estimating state space system (9) will give estimates of the parameter vector 1

µ−ρ f
β

and estimates of the unobserved shock process scaled by ω. The state space representation (9) can

8Newly released information often coincides with other events which can obfuscate the origin of a shock.
9Consider the following example: On the same day new unemployment figures are released, a government official issues

an unrelated statement via social media that prompts a few large traders to re-balance their portfolio. Other investors may
associate the resulting fluctuations with the announced change in unemployment, leading to a higher weight being placed on
the observable fundamental.

10Specifically, we have ε = − 1
µ−ρφ

φt and σ2
ε =

σ2
φ

(µ−ρφ)2(1−ρ2
φ)

.
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easily be generalised to the multivariate case with r observed fundamentals ft = ( f1t, ..., frt)′ and
state vector λt = (λ1t, ..., λrt)′:

B(L)(λt − λ̄) = ηt, ηt ∼ i.i.d.(0, Q),

∆st = f ′t λt + εt, εt ∼ i.i.d.(0, σ2
ε ),

(10)

where B(L) = I − B0
t,1L− · · · − B0

t,qLq is a qth-order lag polynomial with roots outside the unit circle.
The covariance matrix of the state innovation, ηt, is E[ηtη

′
t] = Q.

3.2 A Factor Model with Time-Varying Loadings

To estimate the system (10) empirically, we specify a factor model with time-varying loadings. The
effect of fundamentals on the exchange rate in the presence of structural instabilities can be identified
by using two important theoretical results: (i) the principal component estimator gives consistent
factor estimates even in the presence of time-varying loadings (Bates et al., 2013). (ii) Maximising
the likelihood of a factor model with principal components as estimators of the unobservable factors
gives consistent estimates of stationary time-varying loadings (Mikkelsen et al., 2019).
We use a large panel of macroeconomic data series Xt = (X1t, ..., XNt)

′, t = 1, ..., T, whereby we
assume that Xit has an appropriate factor structure:

Xit = α′it ft + εit,

where ft is an r× 1 vector of common factors, αit are the corresponding time-varying factor loadings,
and εit are idiosyncratic errors. The appropriate factor structure allows the idiosyncratic errors to
have limited corss-sectional correlation. The number of factors, r, is considerably smaller than the
number of series, N, such that the information in the large number of macroeconomic variables is
condensed into the r-dimensional factors. That is, by extracting the first r principal components of Xt,
one can construct a set of macroeconomic indicators that represents the information contained in the
observable fundamentals. The principal components estimator treats the loadings as being constant
over time, i.e. αit ≡ αi, and solves the minimisation problem:

( f̃ , α̃i) = min
f ,αi

(NT)−1
N

∑
i=1

T

∑
t=1

(Xit − α′i ft)
2,

where f̃ is a T × r matrix of common factors, and α̃ is an r × 1 vector of factor loadings. By
concentrating out αi and imposing the normalisation constraint f ′ f /T = Ir, the minimisation problem
becomes equivalent to maximising tr( f ′(X′X) f ), where X is the T × N matrix of observations. The
resulting factor matrix is given by

√
T times the eigenvectors corresponding to the r largest eigenvalues

of the T × T matrix XX′. It follows from Bates et al.’s (2013) main result that the fundamentals in
(10) can be represented through the r principal component estimates, f̃t, in spite of the structural
instability underlying the state vector λt.
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Having obtained the principal component estimates, we estimate the parameters of the state space
model (10) by forming the likelihood function:

LT(∆s| f̃ ; θ) = −1
2

log(2π)− 1
2T

log |Σ| − 1
2T

(∆s−E[∆s])′ Σ−1 (∆s−E[∆s]) ,

where ∆s = (∆s1, ..., ∆sT)
′ with mean E[∆s] = f λ̄ and variance matrix V[∆s] = Σ. The parameter

vector θ = (B(L), λ̄, Q, σ2
ε ) is estimated as:

θ̃ = arg max
θ

LT(∆s| f̃ ; θ).

The likelihood can be computed efficiently with the Kalman filter as (10) is a linear state space
system. Mikkelsen et al. (2019) show that under standard assumptions and provided T/N2 → 0, the
maximum likelihood estimator is consistent for the parameters of the time-varying factor loadings
λt, i.e. θ̃

p−→ θ. Once θ̃ is obtained, the estimates of the factor loadings λ̃t for t = 1..., T are computed
with the state smoother. As emphasised in Mikkelsen et al. (2019), these estimates are consistent even
under missing factors.

In addition to the time-varying model, we estimate a constant parameter benchmark in order to
assess the relative contribution of time varying loadings in explaining exchange rate fluctuations. In
that case, (8) reduces to ∆st = ft

1
µ−ρ f

β− 1
µ−ρκ

φt, i.e. a present value model for exchange rates with
constant parameters. Therefore, the reduced form relation between fundamentals and exchange rates,

1
µ−ρ f

, can simply be estimated by regressing ∆st on the factors f̃t. We denote 1
µ−ρ f

β by λ̃OLS. Compar-
ing the in- and out-of sample fit of the two models determines if, indeed, the model of intertemporal
instabilities fares better at explaining the relationship of exchange rates and fundamentals.

4 Data

4.1 Exchange Rate Data

We use monthly averages of the US dollar exchange rate vis-à-vis 14 currencies between 1999:12 and
2018:12. The considered exchange rates are: the Australian Dollar (AUD), the Brazilian Real (BRL),
the Canadian Dollar (CAD), the Danish Krone (DKK), the Indian Rupee (INR), the Mexican Peso
(MXN), the New Zealand Dollar (NZD), the Norwegian Krone (NOK), the South African Rand (ZAR),
the Swedish Krona (SEK), the Swiss Franc (CHF), the British Pound (GBP), and the Euro (EUR). The
data is compiled from the OECD database.11 Table 1 reports summary statistics for the first difference
of the 14 log exchange rates. Looking at the mean percentage changes, they are all either zero or
very close to zero with standard deviations ranging from 1.8% to 4%. In terms of fluctuations, the
Brazilian Real displays the largest downward movement with -24.2%, whereas the South African
Rand appreciated the most over one month with 15.2%. All currencies are positively autocorrelated
at one month, and, with the exception of the Japanese Yen, negatively at the second month. The

11Prior to 1999, the exchange rate for the ECU is used in place of the Euro, i.e. an weighted average of the Austrian Schilling,
Belgian and Luxembourg Francs, Finnish Markka, French Franc, German Mark, Irish Pound, Italian Lira, Netherlands Guilder,
Portuguese Escudo, and Spanish Peseta.
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Table 1. Summary Statistics Exchange Rates

Currency Mean Std.Dev. Min. Max. ρ̂(1) ρ̂(2) ρ̂(3) QBP

AUD -0.000 0.028 -0.180 0.073 0.345 -0.105 -0.011 0.001

CAD 0.000 0.018 -0.109 0.062 0.305 -0.035 -0.031 0.001

DKK -0.000 0.023 -0.078 0.062 0.312 -0.064 -0.129 0.001

JPY -0.000 0.026 -0.080 0.103 0.300 0.042 -0.092 0.001

MXN -0.006 0.034 -0.321 0.088 0.125 -0.003 -0.059 0.001

NZD 0.000 0.028 -0.106 0.074 0.305 -0.054 0.047 0.001

NOK -0.001 0.025 -0.131 0.057 0.352 -0.055 -0.068 0.001

SEK -0.001 0.025 -0.108 0.071 0.353 -0.057 -0.082 0.001

CHF 0.001 0.024 -0.112 0.081 0.187 -0.110 -0.091 0.001

BRL -0.005 0.040 -0.242 0.113 0.401 -0.055 -0.030 0.001

INR -0.003 0.017 -0.066 0.061 0.298 -0.075 0.089 0.001

ZAR -0.005 0.037 -0.190 0.152 0.294 -0.016 -0.138 0.001

GBP -0.001 0.020 -0.097 0.059 0.236 -0.006 -0.075 0.001

EUR -0.000 0.023 -0.078 0.062 0.309 -0.067 -0.127 0.001

Note: Sample Period: 1995:12 - 2018:12. ρ̂(m) denotes the autocorrelation at month m. QBP denotes the p-value of the
Box-Pierce QBP test.

Box-Pierce test implies that, across currencies, the first three autocorrelations are all statistically
significant.

4.2 Macroeconomic Fundamentals and Factors

Data – The factors are extracted from a large dataset of macroeconomic fundamentals. To this end, we
combine two different data sources. First, we use McCracken and Ng’s (2016) FRED-MD database
which contains 125 monthly time series of the US economy, categorised into: (1) Output & Income,
(2) Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7)
Prices, and (8) Stock Markets. Following McCracken and Ng (2016), 5 time series are removed to
balance the panel; in addition, we remove the 5 exchange rates in the dataset to exclude them from
the fundamentals. In order to ensure stationarity of all variables, we use the same transformation
as McCracken and Ng (2016) and refer to their paper for detailed descriptions of the data and the
transformations.

Second, we compile a dataset of 171 time series for the 14 remaining countries from the OECD
statistical database. Specifically, we compile 21 macro-variables, the availability of which differs
across countries. Table B-1 summarises which variables are available for each country, how they are
categorised in terms of McCracken and Ng’s (2016) classifications, and their original unit. Consistent
with McCracken and Ng (2016), the variables are transformed either by taking first log-differences or
first differences (see notes under Table B-1) to ensure stationarity. All series are available without
missing values between 1994:12 and 2018:12, but not every series is available for all countries. That is,
the dataset is balanced across time but unbalanced across countries. we combine the two datasets
into a T × N matrix of N = 290 variables, with T = 288 observations each.
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Figure 1. Marginal R2 between factors and macro series
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Note: R2 from regression of each series on first, second, and third factor. Series categorised as (1) Output & Income, (2)
Labour Market, (3) Housing, (4) Orders & Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock
Market.
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Factor Selection – In practice, the optimal number of factors describing Xit = α′it ft + εit is not
apparent, and multiple factor selection criteria for models where N and T are large exist. Let
V(k) = (NT)−1 ∑N

i=1 ∑T
t=1(Xit − α̃k

i
′ f̃ k

t )
2. While setting the number of factors in the model, k, equal

to N minimises V(k), it does not imply N corresponds to the optimal number of factors r. Bai and
Ng (2002) propose information criteria with a penalty function g(N, T) such that:

r = arg min
0≤k≤kmax

IC(k) = arg min
0≤k≤kmax

log(V(k)) + kg(N, T),

where kmax ∈N is a maximum number of factors chosen by the researcher (here: kmax = 9). Due to
the penalty term, r � N. Choi and Jeong (2019) compare the performance of different approaches
and suggest to use several criteria in combination. We follow their recommendation and first evaluate
Bai and Ng’s (2002) ICp2 and BIC3 which both pick r = 9 factors. Subsequently, we consider several
criteria with improved robustness to miss-specification that are found to perform well in Choi and
Jeong (2019). Alessi et al. (2010) propose modifications of the penalty functions in Bai and Ng (2002)
based around an arbitrary constant, c, as in Hallin and Liška (2007). We set c ∈ (0, 10] which leads
to the conclusion that the optimal number of factors is either 1 or 3. Kapetanios (2010) suggests a
criterion with improved robustness to cross-sectional dependence. When applying the Alessi et al.
(2010) modification to this criterion, the optimal number of factors is again found to be 1 or 3. In
accordance with the advice in Choi and Jeong (2019), we also considered the eigenvalue-based
approaches in Ahn and Horenstein (2013). Both the ER and GR test imply 2, suggesting that a low
number of factors is indeed a plausible choice. Therefore, 1 and 3 factors are deemed an appropriate
choice for the empirical estimation in this paper.12

Interpretation – Figure 1 depicts the squared correlation of the factors with each macro variable,
categorised as described above. The first factor exhibits strong correlations with measures of output,
labour market indicators as well as manufacturing orders and capacity utilisation. Therefore, we
interpret the first factor as an indicator of real economic activity. The second factor correlates solely
with long-term interest rates and inflation, wherefore it is deemed a monetary factor. In regards to the
third factor, it displays strong correlations with the US housing sector and US interest rates. Logically,
we interpret it as a housing factor which summarises the dynamics of the US housing market.

In Figure 2, the individual time series of the factors are plotted. For the first factor, the drop in
economic activity during the great recession is clearly visible and so is the burst of the dot-com
bubble, albeit less pronounced. The principal component is also reflecting the somewhat slower
recovery post-2009. Looking at the second factor, it implies a general co-movement between long-term
interest rates and inflation with a stark temporary divergence in 2008. Finally, the housing factor
exhibits a structural change after the subprime crisis and appears inversely related to the activity in
the US housing sector.

12As the results remain sensitive to tuning parameters, Appendix C also reports the results for 5 factors.
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Figure 2. Principal Components
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5 Empirical Results

This section presents the empirical results of estimating the state space model (10) by comparing the
constant and the time-varying parameter model. First, we discuss the fit of the models in-sample.
Second, we devote a subsection to the issue of parameter instability to link the results back to the
theoretical model; and third, we assess the out-of-sample performance of the two approaches.

5.1 In-Sample Comparison

The discussion of the in-sample results focuses on the GBP and the EUR while covering the remaining
exchange rates more succinctly. To conduct a comparison of the two models, we use the squared
correlation, R2, between the exchange rate and the in-sample predictions. Furthermore, we report
the hit rate (HR) of each model, i.e. the percentage of times the model matched the signs of the
exchange rate changes. The hit rate indicates how often a model correctly predicts a depreciation or
appreciation. The two criteria are shown in Table 2.

Table 2. In-Sample Performance

Currency
1 Factor 3 Factors

R2 Hit Rate R2 Hit Rate

TVL OLS TVL OLS TVL OLS TVL OLS
AUD 0.47 0.01 74.65 47.22 0.71 0.07 83.33 58.33

CAD 0.40 0.02 71.88 53.82 0.55 0.08 73.96 55.21

DKK 0.33 0.00 74.65 50.00 0.65 0.02 84.38 52.08

JPY 0.15 0.01 63.54 55.90 0.53 0.02 77.78 57.29

MXN 0.48 0.00 61.11 54.51 0.48 0.01 62.15 51.39

NZD 0.28 0.01 70.14 48.96 0.53 0.05 78.13 54.51

NOK 0.29 0.02 73.61 50.35 0.52 0.07 76.74 56.25

SEK 0.35 0.03 74.31 52.43 0.67 0.08 82.99 55.21

CHF 0.30 0.00 75.35 47.22 0.48 0.02 79.17 55.56

BRL 0.38 0.01 74.65 49.65 0.37 0.04 78.82 58.68

INR 0.51 0.01 70.14 51.04 0.88 0.02 86.81 49.31

ZAR 0.41 0.01 75.00 50.00 0.41 0.06 70.49 58.68

GBP 0.32 0.06 65.63 59.38 0.38 0.14 63.54 57.29

EUR 0.33 0.01 76.04 50.69 0.66 0.02 83.68 52.08

Note: The table reports measures of in-sample fit to compare the OLS and TVL model. Namely, both the squared correlations
between changes in the exchange rate and the in-sample prediction of the TVP & OLS model as well as the hit rate in %.
The latter being the times the sign of the fitted values corresponded to the sign of the realised values.

Consider first the estimates for one factor, the real economy factor. Figure 3 shows the results
for the GBP and the EUR: the common component obtained from the time-varying model (blue),
the OLS model (red), and the actual exchange rate changes (black). Particularly during the great
recession, the time-varying model can capture the fluctuations in the exchange rate better. This is
reflected in the R2, according to which the model can explain 33% (32%) of the variation in the EUR
(GBP). It assigns accurate directional changes in 76% of the cases for the EUR and 66% for the GBP. In
contrast, the OLS model only has an R2 of 1% and 6%, respectively, i.e. it has almost no explanatory
power. With 51%, the hit rate of the EUR model is as good as random, while it is slightly higher for
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Figure 3. In-Sample Fit – Real Economy Indicator
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Note: The figure displays the results of a model estimated with only 1 factor, the real economy factor. The black line is the
FX change, the blue line is the TVL model fit, and the red line is the OLS model fit.

the GBP with 59%. It should be noted that the OLS results for the GBP are the highest out of the 14

exchange rates. The lowest are the ones for CHF and DKK where 0% of the fluctuations are explained.
Looking at the time-varying model it has the highest explanatory power for the INR with an R2 of
50%, and the lowest for the JPY (15%). Nevertheless, this is considerably greater than the best OLS
model (GBP with 6%). Therefore, the time-varying 1 factor model adds substantial explanatory power
over the model with constant coefficients. Across currencies, it consistently outperforms the OLS
model according to the two metrics.

In a next step, we also include the monetary and the housing factor into the model. The actual
and fitted values for the GBP and the EUR are presented in Figure 4. In particular for the EUR, the fit
of the time-varying model improves visibly – the model tracks the depreciation during the Euro-crisis
in 2010, 2012, and 2015 remarkably well. The same holds true for the early 2000s (see Figure 3 in
comparison). The fit for the GBP also appears to have improved, even though to a lesser extend. Note
that, as before, the GBP exhibits the second worst fit of all time-varying regressions with an R2 of 38%
followed by the BRL with 37%. Still, it manages to predict whether the exchange rate appreciates or
depreciates in 64% of all cases. Regarding the EUR, the explanatory power of the time-varying model
has doubled, amounting to an R2 of 66%, and the hit rate corresponds to 84%. On the other hand, the
OLS model only manages to explain 2% of the variations in the EUR and 14% in the GBP. The latter
being the highest value for any of the 14 currencies. Overall, the time-varying model of the INR has
the highest R2 and hit rate with 88% and 87%, respectively. Followed by AUD, SEK, EUR, and DKK
for which the explanatory power always exceeds 65%. Generally, we see an improvement in the R2

across exchange rates – the hit rate declines slightly for the GBP and the ZAR in the time-varying
framework but is close to 80% in most cases; however, looking at the OLS fit, it is still only marginally
better than 50%.
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Figure 4. In-Sample Fit – 3 Indicators
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Note: The figure displays the results of a model estimated with 3 factors. The black line is the FX change, the blue line is the
TVL model fit, and the red line is the OLS model fit.

For the remaining series, the 1 factor model is also able to capture exchange rate fluctuations
better around the financial crisis (see Figure C.1). As was the case with the EUR and the GBP, the 3

factor model substantiates the ability of the time-varying model to outperform the constant parameter
framework – notably so during currency or financial crises (Figure C.2). In the next subsection, we
explicate the reasons behind this and shed additional light on the importance of accounting for
structural instabilities in exchange rate regressions.

5.2 Parameter Instability

This subsection considers the role of parameter instability in greater detail. First, we revisit the GBP
and the EUR and discuss the time-varying loadings on the real economy factor. Subsequently, we
analyse instabilities in the 3 factor model by considering 3 major currency crises: (i) the Tequila-crisis
of 1994, (ii) the Samba-crisis of 1999, and (iii) the Rand-crisis of 2001. Furthermore, we scrutinise the
unstable effect of fundamentals on the CHF and the JPY, both of which are regarded as safe-havens
for investors.

Structural Instabilities in GBP and EUR

Figure 5 depicts the estimated factor loadings on the real economy indicator for the GBP and EUR.
The dashed red lines correspond to the confidence intervals of the OLS estimates. For both currencies,
we observe a high degree of variation in the time-varying loadings, especially in 2008-9. In the
GBP model, the loading rose first and then declined sharply; therefore, being considerably outside
the OLS confidence interval during the financial crisis. In the context of the theoretical model, an
interpretation of this phenomenon is that investors deemed it likely that the British economy, given its
large financial sector, was going to be disproportionately affected by the global financial crisis. Hence,
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Figure 5. In-Sample Fit – Real Economy Indicator
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Note: The figure displays the loadings on the real economy factor. The black line is the time-varying loading, the red line
the OLS estimate, and the dashed lines are the OLS confidence intervals.

the decline in world output was associated with a fall in the GBP that exceeded its intertemporal
equilibrium. Indeed, this is a consistent theme across exchange rates.13 The loading in the EUR model
crosses the least-squares confidence bands more often, displaying large fluctuations throughout the
sample period. However, the EUR least-squares estimate itself is insignificant. Contrary to the GBP,
the loading exhibits large negative spikes in the early 2000s, consistent with the EUR depreciation
vis-à-vis the dollar during that period.

Structural Instabilities During Currency Crises

Tequila-Crisis – In 1994/95, at the very start of the sample period, Mexico experienced a currency crisis
that lead to a financial and economic crisis. As part of a reform strategy the government introduced
in the 1980, the central bank was commissioned to ensure a peg of the MXN to the USD. This was
pared with increasing investor enthusiasm which, in hindsight, was unwarranted by fundamentals.14

In 1994, shifts in investor sentiment initiated a capital flight that continued throughout 1995.15

Eventually, this lead to a drastic depreciation of the MXN as the central bank had to abandon the peg,
an economic crisis, and a sharp increase in government debt which cumulated in an international
bail-out.16 Figure 6 (a) plots the loadings of the time varying model with three indicators for the MXN.
It becomes clear that the second and third factor loadings play a relatively minor role compared
to the real economy factor. The first loading captures the shift in investors’ expectations about the

13The plots of the first factor loading for the remaining 12 currencies can be found in the Appendix C.
14In 1993, a representative of Fidelity told the New York Times: "I am as convinced as I can be that the risk of an overnight major

devaluation is extremely small" (Uchitelle, 1993).
15Most likely, this was sparked by several interest hikes in the US and the assassination of high-profile Mexican politicians,

i.a. the president.
16Detailed discussions of the unfolding of the crisis can be found, for instance, in Whitt (1996) or Lustig (1995).
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Figure 6. Structural Instabilities: Currency Crises
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Note: The figure displays the loadings of the 3 factor model. The black line is the loading on the real economy factor, the
blue line the loading on the monetary factor, and the red line the loading on the housing factor.

Mexican economy which originally initiated the capital flight from the MXN.

Samba-Crisis – Figure 6 (b) depicts the loadings for the BRL model. The drastic drop of the first
loading in 1999 reflects Brazil’s currency crisis. In 1994, Brazil introduced a peg of the BRL to the
USD as part of a programme to tackle its four digit inflation rates. A mixture of high government
spending, a growing current account deficit, and the Asian financial crisis lead to capital outflows
from Brazil, despite it being amongst the 10 largest economies in the world. Eventually, the central
bank was forced to abandon its peg, leading to an economic crisis, an IMF bail-out, and a continuing
depreciation until 2002.17 The loading on the real economy factor correctly captures the initial shock
to investors’ expectations about Brazil’s economy that triggered these events.

Rand-Crisis – Contrary to the previous two examples, the 2001 Rand-Crisis was characterised
by relatively stable macroeconomic conditions in South Africa, in comparison to Brazil and Mexico.
Furthermore, the South African government abstained from interventions of the sort conducted in
the other two countries. However, the depreciation coincided with a drop in world economic activity
around the early 2000s, and weakening commodity prices.18 Hence, the loading on the first factor
in Figure 6 (c) is positive, suggesting investors believed these negative developments could have
repercussions for the South African economy that exceed the equilibrium impact of the cyclical
movements in the global real economy.

These findings imply that, in all three cases, it were unobservable shocks associated with real
economic conditions that occurred during – or translated into – a currency crisis. Plausible shocks in

17The NBER held a conference on the crisis in Brazil where these events and their implications were discussed in further
detail McHale (2000).

18An overview of the currency crisis can, for example, be found in Bhundia and Ricci (2006).
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line with the aforementioned circumstances are shifts in investors expectations about the business
cycle in each country, an interpretation that is consistent with the Scapegoat theory of parameter
expectations (Bacchetta and van Wincoop, 2013). The results do not suggest that monetary or housing
market shocks triggered the respective crises. Appendix C contains the loadings on the first three
factors for the remaining currencies. As Mikkelsen et al.’s (2019) methodology is robust to missing
factors, the first loading is always identical to the one in the 1 factor model.

Structural Instabilities in Safe-Havens

For safe haven currencies, however, the shocks are of a different nature. To illustrate this, consider first
the CHF: Figure 7 (a) shows the loadings of the 3 factor model. It can be seen that the most sizeable,
and thus important, fluctuations occur in the loading on the monetary factor. The CHF appreciated
strongly in the aftermath of the financial crisis in what can be perceived a flight to safety. In 2011,
as a response to a rising demand for CHF, the Swiss National Bank introduced a peg vis-à-vis the
EUR. This event is reflected in the the loading as well as a sudden depreciation of the CHF against
the dollar, likely due to an anticipated decline in demand. In 2015, the Swiss National Bank famously
abandoned its peg with the EUR, leading to a considerable appreciation against the latter. This event
is again visible in the loading, although the CHF was never pegged against the dollar; therefore, one
can interpret the shift in the loading as a monetary policy induced demand shock to the currency.
The second safe haven currency considered is the JPY. Although the JPY also appreciated against the
USD during the great recession for similar reasons as the CHF, it prior exhibited a strong continuing
depreciation. The loadings estimates in Figure 7 (b) suggest this was also due to monetary policy
shocks, reflected in the considerable fluctuations of the monetary factor loading.19 Indeed, the Bank
of Japan pioneered zero interest rate policies and quantitative easing measure around the 2000s, and
in subsequent years, which coincides with the spike of the associated loading. In both cases, CHF and
JPY, these findings suggest that the episodic appreciation/depreciation was not due to unobservable
shocks associated with the real economy, such as deteriorating investors’ expectations, but primarily
a result of monetary policy actions – contrary to the shocks during the currency crises discussed
above.20

5.3 Out-of-Sample Comparison

This section compares the performance of the two models out-of-sample, using the 3-factor model for
this forecasting exercise. First, we elaborate on the chosen forecast evaluation methods; and second,
assess the forecasting results. Specifically, we compare (i) the relative predictive ability of the two
models, (ii) their direction accuracy, i.e. how well they forecast an appreciation or depreciation, and
(ii) their relative performance over time.

19The plots for the remaing currency can be found in Appendix C
20Although central banks responded to the currency crises in Mexico, Brazil, and South Africa, their policies did not prompt

the initial capital flights, as outlined above.
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Figure 7. Structural Instabilities: Safe-Haven Currencies
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Note: The figure displays the loadings of the 3 factor model. The black line is the loading on the real economy factor, the
blue line the loading on the monetary factor, and the red line the loading on the housing factor.

Forecast Construction and Evaluation

To forecast ∆st+h, where h is the forecast horizon, we divide the sample into in-sample and out-
of-sample portions. We denote the total number of observations by T, the number of in-sample
observations by R, and the number of out-of-sample predictions by P− h + 1, so T = R + P. To
remain consistent with the theoretical model, we generate direct h-step ahead forecast:21

∆st+h|t = f ′t+h|tλt+h|t + et+h|t

where t = R, ..., T− h and et+h|t is the forecast error. We set h = 1, i.e. to one-step-ahead forecasts, and
use a rolling window to compute P predictions. Forecasts for the loadings, λ̂t+h|t, are easily obtained
as the one-step-ahead predictions of the Kalman filter. For the constant parameter benchmark, λ does
not need to be forecasted as it simply corresponds to the OLS estimates at each iteration. Regarding
the factors, consistent with the theoretical assumptions, we fit a VAR(1) to the in-sample estimates
at each of the P steps and use the coefficients to forecast f̂t+h|t. One then obtains the out-of-sample
estimates as ∆̂st+h|t = f̂ ′t+h|tλ̂t+h|t and ∆̃st+h|t = f̂ ′t+h|tλ̂OLS.

Relative Predictive Ability – Selecting adequate tests of predictive ability is of paramount importance
in out-of-sample evaluation. As the evaluation in this paper is a comparison of nested models, the
Diebold and Mariano (1995) test is unsuitable to assess which model produces better forecasts. In
spite of its popularity in the exchange rate forecasting literature, the Diebold and Mariano (1995)
test was never intended for model comparison (Diebold, 2015). The properties of tests for nested
models are different because their forecast errors converge asymptotically (Clark and McCracken,

21See Boivin and Ng (2005) for a comparison of different approaches to generating factor-based forecasts. An alternative –
inconsistent with the theoretical model – is to use ∆st+h = f ′t λt + et+h|t to generate forecasts. This approach is found in Engel
et al. (2014), among others.
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2001). Furthermore, window choice is an important determinant in forecast evaluation. A large P
provides more forecast information, while a large R improves parameter accuracy. In fact, Mikkelsen
et al. (2019) show through Monte-Carlo simulations that in order for the bias in the autoregressive
parameters of the loadings to be below 10%, the estimation sample should be R ≥ 200. However,
a litmus test for every exchange rate forecast is the financial crisis. To put the model to this test,
the forecasts need to be evaluated using a criterion that is robust to in-sample estimation errors,
as one would have R < 200 for a prediction window starting prior to the crisis. While the Diebold
and Mariano (1995) test depends on the probability limits of the parameters, Giacomini and White
(2006) propose a test of conditional predictive ability that introduces estimation error under the null
hypothesis:

H0 : E
[
Lt+h(∆st+h, f̂ ′t+h|tλ̂t+h|t)−Lt+h(∆st+h, f̂ ′t+h|tλ̂OLS)|Ft

]
= 0

Where L(·) is a forecast loss function and Ft is the time-t information set. As the asymptotic proper-
ties of this test are derived for R < P → ∞, it is well-suited in this application. we choose P = 150
and R = 133 as the baseline horizon and report additional forecasts in the appendix.

Direction Accuracy – Leitch and Tanner (1991) argue that, while one model may produce a smaller
forecasting error than another model, it can still perform worse when it comes to predicting sign
changes. In case of exchange rates, a desirable feature of a model is its ability to forecast an ap-
preciation or depreciation. To assess this statistically, we use Pesaran and Timmermann’s (1992)
nonparametric test of predictive performance. The test compares the signs of the predicted and
realised values and, in doing so, uses no additional information. Thus, it does not require knowledge
of the underlying probability distribution of the forecast. Although the test does not put two models
in relation to one another, it indicates which model is able to identify a higher number of predictable
relationships.

Forecast Evaluation under Instabilities – Given the structural instabilities in the exchange rate
regression, it may well be the case that the relative forecasting performance of the models is itself
unstable. Indeed, Rossi (2013) finds that the forecasting power of many exchange rate models
breaks down over time. Notably, however, parameter instability itself does not necessarily engender
unstable relative forecast performance.22 While the Giacomini and White (2006) test selects the best
global model, Giacomini and Rossi (2010) propose a fluctuation test that compares the performance
of the two competing models at each point in time and allows for nested models by adopting
the same asymptotic framework as Giacomini and White (2006). Let {∆Lt( f̂ ′t λ̂t, f̂ ′t λ̂OLS)}T

t=R+h =

{L(∆st, f̂ ′t λ̂t)− L(∆st, f̂ ′t λ̂OLS)}T
t=R+h be the loss differential. The test statistic is computed over a

rolling window and equal to:

GRt,m = σ̂−1m−1/2
t+m/2−1

∑
j=t−m/2

∆Lj( f̂ ′j,Rλ̂j,R, f̂ ′j,Rλ̂OLS)

22For a detailed discussion of forecasting under instabilities, see Rossi (2020).
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where t = R + h + m/2, ..., T−m/2+ 1, σ̂ is the HAC estimator of the variance of the loss differential,
and m is the size of the rolling window over which it is computed.

Forecast Results

Focusing foremost on GBP and EUR, we now discuss the forecasting results. Figure 8 depicts the
time-varying and OLS forecasts for the two currencies as well as the realised values. At first glance, it
appears the time-varying model performs slightly better for the GBP during the financial crisis – and
for the EUR also during the subsequent years. Figure 9 plots the forecasts of the remaining series
which paint a similar picture; in particular the INR (Figure 9 (f)) is forecasted remarkably well.

Figure 8. Rolling Window Forecast I
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Note: This figure plots the out-of-sample, one-step-ahead, rolling window forecasting results of the time-varying (blue line)
and the constant loadings (red line) model. The black line corresponds to the actual exchange rate.

The first two columns of Table 3 report the Root Mean Square Error (RMSE) of the forecasts,
and the third column indicates whether the difference between them is negative (i.e. the OLS model
exhibits a larger RMSE) or positive (i.e. the OLS model has a smaller RMSE). This latter case only
materialises itself for three of the 14 currencies. Columns 5 and 6 show the results of the Giacomini
and White (2006) test using a quadratic loss function. The test rejects the null hypothesis of equal
predictive ability at the 5% level for BRL, NOK, and AUD and at the 10% level for the DKK – always
in favour of the time-varying model. Farther, we perform the Giacomini and White (2006) test using
the absolute forecast loss. As columns 7 and 8 report, the test rejects the null hypothesis for EUR,
BRL, NOK, DKK, AUD (all at the 10% level) and for the SEK at the 5% level. As the loss function
differential is negative in all 6 cases, the results demonstrate the improved global predictive ability
of the time-varying relative to the constant model. The last four columns evaluate the two models
individually through the Pesaran and Timmermann (1992) direction accuracy test. Regarding the
time-varying model, we reject the null hypothesis of no predictable relationships 7 times: at the 1%
level for the JPY, at the 5% level for ZAR and GBP, and at the 10% level for AUD, CAD, MXN, and
INR. In contrast, for the constant loadings model, the null hypothesis is only rejected 4 times: for the
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Figure 9. Rolling Window Forecast II
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Note: This figure plots the out-of-sample, one-step-ahead, rolling window forecasting results of the time-varying (blue line)
and the constant loadings (red line) model. The black line corresponds to the actual exchange rate.

23



Table 3. Forecast Statistics

Giacomini-White Pesaran-Timmermann

RMSE L: Quadratic L: Absolute TVL OLS

Currency TVL OLS ∆ p-val Stat. p-val Stat. p-val Stat. p-val. Stat.

AUD 0.028 0.031 - 0.041** 6.389 0.098* 4.640 0.051* 1.635 0.523 -0.057

CAD 0.020 0.021 - 0.270 2.618 0.626 0.937 0.085* 1.372 0.069* 1.484

DKK 0.022 0.023 - 0.097* 4.657 0.099* 4.630 0.468 0.080 0.505* -0.013

JPY 0.023 0.024 - 0.358 2.056 0.645 0.876 0.010*** 2.337 0.033** 1.835

MXN 0.030 0.029 + 0.500 1.384 0.679 0.774 0.071* 1.467 0.213 0.794

NZD 0.028 0.029 - 0.319 2.287 0.103 4.543 0.684 -0.478 0.955 -1.694

NOK 0.026 0.027 - 0.050** 6.010 0.046* 6.148 0.125 1.149 0.461 0.097

SEK 0.025 0.026 - 0.101 4.588 0.014** 8.560 0.677 -0.459 0.711 -0.555

CHF 0.024 0.024 + 0.644 0.879 0.382 1.927 0.855 -1.057 0.793 -0.818

BRL 0.036 0.038 - 0.018** 8.045 0.082* 5.006 0.206 0.822 0.745 -0.660

INR 0.021 0.020 + 0.866 0.287 0.981 0.038 0.079* 1.413 0.952 -1.666

ZAR 0.039 0.039 - 0.626 0.938 0.770 0.522 0.021** 2.039 0.229 0.741

GBP 0.021 0.022 - 0.166 3.586 0.729 0.631 0.011** 2.306 0.006*** 2.542

EUR 0.023 0.023 - 0.117 4.297 0.097* 4.658 0.600 -0.252 0.634 -0.341

Note: The table reports the Root Mean square Error (RMSE) of the forecasts and the sign of the difference between them.
A (-) indicates that the OLS model has a greater RMSE. It also reports results of the Giacomini and White (2006) test for
conditional predictive ability using a quadratic and an absolute loss function. The sign of the average of the quadratic loss
function differential necessarily corresponds to the one of the RMSE difference. This is not necessarily true for the absolute
loss function where the difference is negative for the CHF and positive for the ZAR. The test is insignificant for both, hence
the table only reports the sign of the RMSE differential. Further it reports the reports of the Pesaran and Timmermann
(1992) nonparametric direction accuracy test.
∗ ∗ ∗: p ≤ 0.01, ∗∗: p ≤ 0.05, ∗: p ≤ 0.1

GBP (1% level), for the JPY (5% level), and for CAD and DKK (10% level). All in all, the time-varying
model has better global out-of-sample predictive ability, and withal better forecasts exchange rate
changes.

In addition to selecting a model based on relative global predictive ability, it is interesting to
examine how the relative predictive ability of two models changes over time. Figure 10 plots the
results of the Giacomini and White (2006) fluctuation test for GBP and EUR. The blue line represents
the test statistic at each point in time and the red lines represent the 5% critical values. The results
are obtained using a rolling window of m = 20 and a quadratic loss function. When the test statistic
lies below the critical value, the null hypothesis of equal predictive ability is rejected in favour of the
time-varying model. This is the case for the GBP during the financial crisis. Although the Giacomini
and White (2006) test did not provide evidence that the time-varying model is globally more accurate
in case of the GBP (see Table 3), the Giacomini and Rossi (2010) fluctuation test rejects the null
hypothesis of equal predictive ability during the financial crisis. Figure 11 shows the results for the
remaining currencies. Apart from the GBP, the fluctuation test also rejects the null hypothesis for
AUD, BRL, JPY, NOK, NZD, and SEK.23 The Giacomini and White (2006) test only rejected the null
hypothesis of equal predictive ability at the 5% level for AUD, NOK, and BRL (Table 3). That is, for an
additional 4 currencies, we find evidence that accounting for structural instabilities leads to improved
local predictive ability during the financial crisis. The test statistic never attains the positive critical
value, meaning the null hypothesis is never rejected in favour of the constant parameter model.

23The NZD test statistic exceeds the critical value by a very small margin.
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Figure 10. Giacomini-Rossi Fluctuation Test I
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Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The solid blue line is the test statistic,
the dotted red lines are the 5% critical values. The results are based on a rolling window of m = 20 and a quadratic loss
function.

5.4 Robustness and Critical Assessment

As discussed above, several factor selection criteria suggested a low number of factors, no higher than
3, is an appropriate choice given the dataset. Nevertheless, to further underpin the robustness of the
in-sample findings, we re-estimate the model using 5 factors. The results are reported in Appendix
D.1. While the R2 for the OLS model improves, it remains considerably lower than the one of the
time-varying model across all currencies. The same holds true for the hit-rate which ranges between
70% and 90% for the time-varying and 50% to 65% for the OLS model. Regarding the out-of-sample
findings, we use the 1 factor model to generate forecasts over the same horizon as above and report
the statistical evaluation in Appendix D.2. The results are equally – if not more – affirmative. Neither
the Giacomini and White (2006) nor the Pesaran and Timmermann (1992) test find any predictive
ability on the part of the constant parameter model (see Table D-2). In addition, Appendix D.2
contains the forecast evaluation for the 3 factor model over different prediction horizons (P = 100
and P = 180). In all cases, the evidence stands clearly in favour of the time-varying model. The
computational complexity of the algorithm does not allow for the use of forecast evaluation criteria as
in Rossi and Inoue (2012) that are robust to estimation window size. However, the robustness checks
in conjunction with the three different forecast evaluation criteria should eliminate concerns that the
out-of-sample results are driven by window size.

6 Conclusions

In this paper, we studied the unstable relationship between exchange rates and macroeconomic
fundamentals. Using a model that relates foreign exchange rates with macroeconomic factors, we
showed that allowing for time-varying loadings increases the percentage of explained variation in
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Figure 11. Giacomini-Rossi Fluctuation Test II
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Note: This figure plots the results of the Giacomini and Rossi (2010) fluctuation test. The solid blue line is the test statistic,
the dotted red lines are the 5% critical values. The results are based on a rolling window of m = 20 and a quadratic loss
function.
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exchanges rates by an order of magnitude. In addition, taking the aforementioned instabilities into
consideration improves the relative out-of-sample predictive ability of the model globally, and yields
better forecast of sign changes in exchange rates.

We extracted macroeconomic fundamentals from a dataset of 290 variables spanning from 1994:12

to 2018:12 and estimate the unobservable shocks using a time-varying factor model (Mikkelsen et al.,
2019). The model is applied to 14 currencies vis-à-vis the US Dollar and the results show that failure
to account for the instabilities between exchange rates and fundamentals is by no means innocuous.
In-sample, the R2 improves between 24 and up to 86 percentage points, depending on the currency.
By discussing how the time-varying loadings estimates align with economic developments, we set the
empirical findings into theoretical context. We showed that out-of-sample, the time-varying model
exhibits either significantly better forecast accuracy, or performs at least as good as the constant
parameter model. When evaluating the forecasts individually, the time-varying model outperformed
the benchmark at predicting directional exchange rate changes, i.e. an appreciation or depreciation. To
consider potentially unstable forecasting performance, we evaluated the relative predictive accuracy
of the forecasts using the Giacomini and Rossi (2010) fluctuation test. In addition to higher global
forecast accuracy, including unobserved transitory shocks that impact the equilibrium relation
between exchange rates and fundamentals, improved forecasts locally around the financial crisis.
This paper provides strong evidence that the relationship between macroeconomic fundamentals and
exchange rates is highly unstable.

At the time of writing, the SARS-Cov-2 pandemic is ongoing and for many macroeconomic
variables data availability is still limited and measurement errors may be pervasive – particularly
in non-OECD countries. Highly preliminary estimations, using the data available thus far, suggest
the conclusions drawn in this paper remain unaltered. However, especially the local out-of-sample
performance during the pandemic is difficult to examine as the data only reflects the start of the
crisis. It remains to be seen whether the transformations applied in McCracken and Ng (2016) and
this paper remain adequate to ensure stationarity in light of the extreme fluctuations observed in
2020. Revisiting the role of structural instabilities once the pandemic has abated and reliable data
is widely available may provide additional insights. Some conventional econometric models, such
as VARs, may be unable to handle the extreme observations recorded in 2020 (Lenza and Primiceri,
2020). However, the methodology applied in this paper could proof to be a useful forecasting tool,
as it can be extended to allow for different, non-stationary dynamics of the factors. In light of the
improved predictive ability of the time-varying model, future research could explore its performance
in comparison to different exchange rate models, especially time-varying VAR models.

Acknowledgements

We are grateful to Lucio Sarno and Ian Marsh for helpful comments. We thank seminar participants
at CREATES, the University of Maastricht, the Tinbergen Institute, and Oxford University for very
helpful comments and suggestions on a previous version of the paper. However, the usual disclaimer
applies. J.G. Mikkelsen and E. Hillebrand acknowledge support from The Danish Independent
Research Fund. We also acknowledge financial support from the Centre for Econometric Analysis.

27



References

Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica,
81(3):1203–1227.

Alessi, L., Barigozzi, M., and Capasso, M. (2010). Improved penalization for determining the number
of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Bacchetta, P. and van Wincoop, E. (2004). A scapegoat model of exchange-rate fluctuations. American
Economic Review P&P, 94(2):114–118.

Bacchetta, P. and van Wincoop, E. (2006). Can information heterogeneity explain the exchange rate
determination puzzle? American Economic Review, 96(3):552–576.

Bacchetta, P. and van Wincoop, E. (2012). Modeling exchange rates with incomplete information. In
James, J., Marsh, I. W., and Sarno, L., editors, Handbook of Exchange Rates, pages 375–390. John Wiley
& Sons, Inc.

Bacchetta, P. and van Wincoop, E. (2013). On the unstable relationship between exchange rates and
macroeconomic fundamentals. Journal of International Economics, 91(1):18–26.

Bacchetta, P., van Wincoop, E., and Beutler, T., editors (2010). Can Parameter Instability Explain the
Meese–Rogoff Puzzle?, volume 6 of NBER International Seminar on Macroeconomics. Univ. of Chicago
Press.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica,
70(1):191–221.

Balke, N. S., Ma, J., and Wohar, M. E. (2013). The contribution of economic fundamentals to movements
in exchange rates. Journal of International Economics, 90(1):1–16.

Barigozzi, M., Cho, H., and Fryzlewicz, P. (2018). Simultaneous multiple change-point and factor
analysis for high-dimensional time series. Journal of Econometrics, 206(1):187–225.

Barigozzi, M., Hallin, M., Soccorsi, S., and von Sachs, R. (2020). Time-varying general dynamic factor
models and the measurement of financial connectedness. Journal of Econometrics, (forthcoming).

Bates, B. J., Plagborg-Møller, M., Stock, J. H., and Watson, M. W. (2013). Consistent factor estimation
in dynamic factor models with structural instability. Journal of Econometrics, 177(2):289–304.

Bekiros, S. D. (2014). Exchange rates and fundamentals: Co-movement, long-run relationships and
short-run dynamics. Journal of Banking & Finance, 39:117–134.

Bhundia, A. J. and Ricci, L. A. (2006). The rand crises of 1998 and 2001: What have we learned? In
Nowak, M. and Ricci, L., editors, Post-Apartheid South Africa : The First Ten Years, volume 1, pages
156–173. International Monetary Fund.

28



Boivin, J. and Ng, S. (2005). Understanding and comparing factor-based forecasts. International Journal
of Central Banking, 1(3):117–151.

Breitung, J. and Eickmeier, S. (2011). Testing for structural breaks in dynamic factor models. Journal
of Econometrics, 163(1):71–84.

Byrne, J. P., Korobilis, D., and Ribeiro, P. J. (2018). On the sources of uncertainty in exchange rate
predictability. International Economic Review, 59(1):329–357.

Cao, S., Huang, H., Liu, R., and MacDonald, R. (2019). The term structure of exchange rate pre-
dictability: Commonality, scapegoat, and disagreement. Journal of International Money and Finance,
95:379–401.

Cheung, Y.-W. and Chinn, M. D. (2001). Currency traders and exchange rate dynamics: a survey of
the us market. Journal of International Money and Finance, 20:439–471.

Cheung, Y.-W., Chinn, M. D., and Marsh, I. W. (2004). How do uk-based foreign exchange dealers
think their market operates? International Journal of Finance & Economics, 9(4):289–306.

Cheung, Y.-W., Chinn, M. D., and Pascual, A. G. (2005). Empirical exchange rate models of the
nineties: Are any fit to survive? Journal of International Money and Finance, 24(7):1150–1175.

Choi, I. and Jeong, H. (2019). Model selection for factor analysis: Some new criteria and performance
comparisons. Econometric Reviews, 38(6):577–596.

Clarida, R., Galí, J., and Gertler, M. (2000). Monetary policy rules and macroeconomic stability:
evidence and some theory. Quarterly Journal of Economics, 115(1):147–180.

Clark, T. E. and McCracken, M. W. (2001). Test of equal forecast accuracy and encompassing for
nested models. Journal of Econometrics, 105:85–110.

Diebold, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on
the use and abuse of diebold–mariano tests. Journal of Business & Economic Statistics, 33(1):1–9.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic
Statistics, 13(3):253–265.

Engel, C. (2014). Exchange rates and interest parity. In Gopinath, G., Helpman, E., and Rogoff, K.,
editors, Handbook of International Economics, volume 4, pages 453–522.

Engel, C., Mark, N. C., and West, K. D. (2014). Factor model forecasts of exchange rates. Econometric
Reviews, 34(1-2):32–55.

Engel, C. and West, K. D. (2005). Exchange rates and fundamentals. Journal of Political Economy,
113(3):485–517.

Fratzscher, M., Rime, D., Sarno, L., and Zinna, G. (2015). The scapegoat theory of exchange rates: The
first tests. Journal of Monetary Economics, 70:1–21.

29



Galí, J. (2015). Monetary Policy, Inflation, and the Business Cycle: an Introduction to the New Keynesian
Framework and its applications. Princeton University Press.

Giacomini, R. and Rossi, B. (2010). Forecast comparisons in unstable environments. Journal of Applied
Econometrics, 25(4):595–620.

Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6):1545–
1578.

Hallin, M. and Liška, R. (2007). Determining the number of factors in the general dynamic factor
model. Journal of the American Statistical Association, 102(478):603–617.

Kapetanios, G. (2010). A testing procedure for determining the number of factors in approximate
factor models with large datasets. Journal of Business & Economic Statistics, 28(3):397–409.

Kouwenberg, R., Markiewicz, A., Verhoeks, R., and Zwinkels, R. C. J. (2017). Model uncertainty and
exchange rate forecasting. Journal of Financial and Quantitative Analysis, 52(1):341–363.

Leitch, G. and Tanner, J. E. (1991). Economic forecast evaluation: Profits versus the conventional error
measures. American Economic Review, 81(3):580–590.

Lenza, M. and Primiceri, G. E. (2020). How to estimate a VAR after March 2020. NBER Working Paper,
(27771).

Li, J., Tsiakas, I., and Wang, W. (2015). Predicting exchange rates out of sample: Can economic
fundamentals beat the random walk? Journal of Financial Econometrics, 13(2):293–341.

Lustig, N. (1995). The mexican peso crisis: The foreseeable and the surprise. Brookings Inst. Report,
pages 1–27.

McCracken, M. W. and Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research.
Journal of Business & Economic Statistics, 34(4):574–589.

McHale, J. (2000). Brazil in the 1997-1999 financial turmoil. Fourth Country Meeting of NBER Project on
Exchange Rate Crises in Emerging Market Countries.

Meese, R. and Rogoff, K. (1983a). Empirical exchange rate models of the seventies. Journal of
International Economics, 14:3–24.

Meese, R. and Rogoff, K. (1983b). The out-of-sample failure of empirical exchange rate models:
Sampling error or misspecification? Exchange Rates and International Macroeconomics, pages 67–112.

Meese, R. and Rogoff, K. (1988). Was it real? the exchange rate-interest differential relation over the
modern floating-rate period. The Journal of Finance, 43(4):933–948.

Mikkelsen, J. G., Hillebrand, E., and Urga, G. (2019). Consistent estimation of time-varying loadings
in high-dimensional factor models. Journal of Econometrics, 208(2):535–562.

30



Molodtsova, T. and Papell, D. H. (2009). Out-of-sample exchange rate predictability with taylor rule
fundamentals. Journal of International Economics, 77(2):167–180.

Obstfeld, M. and Rogoff, K. (2000). The six major puzzles in international macroeconomics: Is there a
common cause? NBER Macroeconomics Annual, 15:339–412.

Pesaran, M. H. and Timmermann, A. (1992). A simple nonparametric test of predictive performance.
Journal of Business & Economic Statistics, 10(4):461–465.

Pozzi, L. and Sadaba, B. (2020). Detecting scapegoat effects in the relationship between exchange
rates and macroeconomic fundamentals: A new approach. Macroeconomic Dynamics, 24(4):951–994.

Rime, D., Sarno, L., and Sojli, E. (2010). Exchange rate forecasting, order flow and macroeconomic
information. Journal of International Economics, 80(1):72–88.

Rossi, B. (2006). Are exchange rates realls random walks? some evidence robust to parameter
instability. Macroeconomic Dynamics, 10:2038.

Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4):1063–1119.

Rossi, B. (2020). Forecasting in the presence of instabilities: How do we know whether models predict
well and how to improve them. Journal of Economic Literature, forthcoming.

Rossi, B. and Inoue, A. (2012). Out-of-sample forecast tests robust to the choice of window size.
Journal of Business & Economic Statistics, 30(3):432–453.

Sarno, L. and Valente, G. (2009). Exchange rates and fundamentals: footloose or evloving relationship.
Journal of the European Economic Association, 7(4):786–830.

Su, L. and Wang, X. (2017). On time-varying factor models: Estimation and testing. Journal of
Econometrics, 198(1):84–101.

Uchitelle, L. (1993). High mexican interest rates are luring wall street cash. The New York Times, (April
22):1.

Whitt, JR., J. A. (1996). The mexican peso crisis. Economic Review, Federal Reserve Bank of Atlanta:1–20.

Appendices

A Derivation of Real Interest Rates and Fundamentals

Recall (3):

r∗t − rt = − f ′t (β + κt)
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To see how this equation relates to known models of fundamentals, consider a monetary policy rule
of the form in Clarida et al. (2000):

ĩt = ψ̃0,t + ψ1(πt − π̃]) + ψ2(yt − ỹt)

where ĩt is the target interest rate, ψ̃0,t is the neutral interest rate, and yt − ỹt is the output gap, i.e.
the deviation of output growth from its potential. Inflation as well as output and its potential are
denoted as log differences, i.e. ln(Pt/Pt−1), ln(Yt/Yt−1), and ln(Ỹt/Ỹt−1). The central bank aims to
balance interest rates such that the output gap is closed and inflation is aligned with the inflation
target. The central bank conducts interest rate smoothing to close the gap between its rule-implied
interest rate and the past level:

it = (1− θ)ĩt + θit−1

Which we can rearrange to

rt = (1− θ)ĩt + θit−1 −E[πt+1]

Equal rules are assumed for the foreign country.24 After substituting the target interest rate rule into
the equation for the real interest rate, we obtain:

rt = (1− θ){(ψ̃0,t − ψ1π̃ + ψ1πt + ψ2(yt − ỹt)} −Et[πt+1] + θit−1

Rearranging yields:

rt ≈ (β0 + (1− θ)ψ̃0,t) + πt

[
β1 −

ln(1 + Et[πt+1])

ln(1 + πt)

]
+ yt

[
β2 − β2

ln(1 + ỹt)

ln(1 + yt)

]
+ θit−1

= (β0 + κ0,t) + πt [β1 − κ1,t] + yt [β2 − κ2,t] + θit−1

= f ′t (β + κt)

where the long-run equilibrium relationships are defined by: β0 = (1− θ)ψ1π̃, β1 = (1− θ)ψ1, and
β2 = (1− θ)ψ2 as well as θ. So β = (β0, β1, β2, θ). The fundamentals are: ft = (1, πt, yt, it−1), where
the first term is an intercept. The unobserved shocks are κ0,t = (1− θ)ψ̃0,t, κ1,t =

ln(1+Et [πt+1])
ln(1+πt)

, and

κ2,t = β2
ln(1+ỹt)
ln(1+yt)

. Consequently, κt = (κ0,t, κ1,t, κ2,t, 0); clearly, there are no unobserved shocks to past
interest rates. After subtracting the equivalent foreign rule, we obtain (3), where the respective foreign
variables populate the three vectors (β, ft, κt) with opposite signs. Changes in inflation expectations
or the potential level of output – both unobservable – relative to actual inflation and output constitute
an unobserved shock that alters the short-run relationship of output or inflation with real interest
rates.

24Assuming a different set-up still yields (3).
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B Data Summary

Table B-1. Data Summary

Series Cat. Unit AUD CAD DKK JPY MXN NZD NOK SEK CHF GBP EUR BRL INR ZAR

Industrial production 1 Idx. 7 X X X X 7 X X 7 X X X X 7
Total manufacturing 1 Idx. 7 X X X X 7 X X 7 X X X X X
Construction 1 Idx. 7 X 7 X X 7 7 X 7 X X X 7 X
Retail trade (Volume) 4 Idx. 7 X X X X 7 X X X X X X 7 X
Passenger car registrations 4 Idx. X X X X 7 X X X X X X 7 X X
Permits issued for dwellings 3 Idx. X X 7 7 7 X X X 7 7 X 7 7 X
Manufacturing - Confidence indicator 1 % 7 7 X 7 X† 7 7 X 7 X X X 7 7

Consumer confidence indicator 4 % X 7 X X X 7 7 X 7 X X X† 7 7

Employment; all persons 2 Lvl. X X 7 X 7 7 7 7 7 7 7 X 7 7
Unemployment rate: all persons 2 % X X X X X 7 X X 7 X X 7 7 7
Hourly earnings: manufacturing 2 Idx. 7 X 7 X X 7 7 X 7 X 7 7 7 7
Producer prices - Manufacturing 7 Idx. 7 X X 7 7 7 X X X X X 7 7 7
Consumer prices: all items 7 Idx. 7 X X X X 7 X X X X X X X X
Narrow money 5 Idx. X X X X X‡ X X X X X X X X X
Broad money 5 Idx. X X X X X‡ X X X X X X X X X
Goods Exports 1 $ X X X X X X X X X X X X X X
Goods Imports 1 $ X X X X X X X X X X X X X X
3-month yield 6 % 7 7 7 7 X 7 7 X 7 7 7 7 7 X
6-month yield 6 % 7 7 7 7 X 7 7 7 7 7 7 7 7 X
2-year yield 6 % 7 7 7 7 7 7 7 X 7 7 7 7 7 X
10-year yield 6 % X X X X X X 7 X X X X∗ 7 X X

Note: A Xindicates consistent availability for the respective country, a 7 indicates no consistent availability. Consistent means there are no missing values between 1994:12

and 2018:12. Cat. refers to McCracken and Ng (2016) categories into which each series is sorted: (1) Output & Income, (2) Labour Market, (3) Housing, (4) Orders &
Inventories, (5) Money & Credit, (6) Interest Rates, (7) Prices, and (8) Stock Markets. Unit refers to original unit in OECD database. Idx. stands for Index (2015=100), %
denotes annualised percentages, Lvl. number of 1000 persons, and $ stands for US-$ billions. All variables not in % are transformed using first log differences (∆log),
variables in % are transformed using first differences ∆, consistent with McCracken and Ng (2016).
† Unit of variable is Index. Transformation is ∆log.
‡ Unit of variable is Mexican Peso. Transformation is ∆.
∗ Euro area benchmark yield is typically German 10-year bond. To capture the fiscal situation of other Euro member states, we also include Finland, France, Ireland, Italy,
the Netherlands, and Spain.
Source: All OECD, as of May 2020. Raw data available upon request.
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C Additional Results

Figure C-1. In-sample Fit – Real Economy Indicator
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Note: The figure displays the results of a model estimated with only 1 factor, the real economy factor. The black line is the
FX change, the blue line is the TVL model fit, and the red line is the OLS model fit.
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Figure C-2. In-sample Fit – 3 Indicators
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Note: The figure displays the results of a model estimated with 3 factors. The black line is the FX change, the blue line is the
TVL model fit, and the red line is the OLS model fit.
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Figure C-3. Loadings – Real Economy Indicator
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Figure C-4. Loadings – 3 Indicators
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Note: The figure displays the loadings of the 3 factor model. The black line is the loading on the real economy factor, the
blue line the loading on the monetary factor, and the red line the loading on the housing factor.
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D Internet Appendix: Robustness Checks

D.1 5 Factor Model

Table D-1. In-Sample Performance 5 Factor Model

Currency R2 Hit Rate

TVL OLS TVL OLS
AUD 0.81 0.19 87.50 65.28

CAD 0.59 0.18 72.57 59.72

DKK 0.83 0.10 87.85 60.42

JPY 0.54 0.06 75.69 60.76

MXN 0.67 0.05 70.49 51.39

NZD 0.84 0.17 86.46 60.07

NOK 0.75 0.18 82.99 62.85

SEK 0.80 0.20 84.72 62.50

CHF 0.76 0.06 86.46 61.46

BRL 0.53 0.08 79.17 61.46

INR 0.87 0.06 87.50 58.68

ZAR 0.50 0.13 69.79 58.33

GBP 0.61 0.21 71.88 61.46

EUR 0.87 0.10 89.58 59.72

Note: The table reports measures of in-sample fit to compare the OLS and TVL model. Namely, both the squared correlations
between changes in the exchange rate and the in-sample prediction of the TVP & OLS model as well as the hit rate in %.
The latter being the times the sign of the fitted values corresponded to the sign of the realised values.

Figure D-1. GBP & EUR In-Sample Fit – 5 Factor Model
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Figure D-2. In-sample Fit – 5 Factor Model
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Figure D-3. Loadings – 5 Factor Model
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Figure D-4. GBP & EUR Loadings – 5 Factor Model

(a) GBP & Model Fit
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D.2 Forecast Robustness

Table D-2. Forecast Statistics: 1 Factor Model

Giacomini-White Pesaran-Timmermann

RMSE L: Quadratic L: Absolute TVL OLS

Currency TVL OLS ∆ p-val Stat. p-val Stat. p-val Stat. p-val. Stat.

AUD 0.029 0.031 - 0.023
∗∗

7.541 0.047
∗∗

6.118 0.077
∗

1.429 0.955 -1.692

CAD 0.020 0.021 - 0.080
∗

5.056 0.064
∗

5.497 0.361 0.355 0.748 -0.669

DKK 0.022 0.023 - 0.071
∗

5.299 0.045
∗∗

6.192 0.218 0.777 0.961 -1.757

JPY 0.023 0.024 - 0.513 1.334 0.756 0.560 0.257 0.651 0.166 0.971

MXN 0.029 0.029 + 0.376 1.956 0.680 0.771 0.017
∗∗

2.111 0.448 0.130

NZD 0.028 0.030 - 0.179 3.442 0.099
∗

4.620 0.431 0.173 0.995 -2.602

NOK 0.026 0.027 - 0.019
∗∗

7.916 0.012
∗∗

8.907 0.077
∗

1.424 0.890 -1.226

SEK 0.025 0.026 - 0.027
∗∗

7.241 0.001
∗ ∗ ∗

13.267 0.004
∗ ∗ ∗

2.654 0.785 -0.789

CHF 0.024 0.024 + 0.343 2.138 0.520 1.309 0.732 -0.619 0.959 -1.735

BRL 0.036 0.038 - 0.105 4.506 0.107 4.465 0.371 0.328 0.996 -2.641

INR 0.020 0.020 - 0.495 1.408 0.408 1.793 0.183 0.903 0.978 -2.006

ZAR 0.037 0.039 - 0.385 1.908 0.333 2.198 0.455 0.112 0.695 -0.510

GBP 0.021 0.022 - 0.118 4.279 0.307 2.362 0.049
∗∗

1.657 0.096
∗

1.307

EUR 0.023 0.023 - 0.080
∗∗

5.059 0.046
∗∗

6.179 0.272 0.607 0.961 -1.757

Note: The table reports the Root Mean square Error (RMSE) of the forecasts and the sign of the difference between them.
A (-) indicates that the OLS model has a greater RMSE. It also reports results of the Giacomini and White (2006) test for
conditional predictive ability using a quadratic and an absolute loss function. The sign of the average of the quadratic
loss function differential necessarily corresponds to the one of the RMSE difference. This is not necessarily true for the
absolute loss function where the difference is negative for the CHF and positive for the ZAR. The test is insignificant for
both, hence the table only reports the RMSE differential. Further it reports the reports of the Pesaran and Timmermann
(1992) nonparametric direction accuracy test.
∗ ∗ ∗: p ≤ 0.01, ∗∗: p ≤ 0.05, ∗: p ≤ 0.1
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Table D-3. Forecast Statistics: 3 Factor Model (P = 100)

Giacomini-White Pesaran-Timmermann

RMSE L: Quadratic L: Absolute TVL OLS

Currency TVL OLS ∆ p-val Stat. p-val Stat. p-val Stat. p-val. Stat.

AUD 0.022 0.023 - 0.212 3.106 0.062
∗

5.563 0.085
∗

1.375 0.240 0.705

CAD 0.017 0.018 - 0.159 3.678 0.150 3.792 0.216 0.785 0.276 0.595

DKK 0.019 0.020 - 0.276 2.577 0.918 0.172 0.246 0.687 0.296 0.536

JPY 0.022 0.022 - 0.427 1.700 0.782 0.491 0.007
∗ ∗ ∗

2.445 0.162 0.986

MXN 0.027 0.027 - 0.617 0.967 0.232 2.920 0.145 1.056 0.177 0.927

NZD 0.024 0.024 + 0.718 0.662 0.908 0.194 0.757 -0.697 0.832 -0.964

NOK 0.022 0.023 - 0.068
∗

5.367 0.101 4.593 0.227 0.748 0.210 0.805

SEK 0.021 0.022 - 0.304 2.384 0.060
∗

5.623 0.253 0.665 0.711 -0.555

CHF 0.022 0.022 + 0.456 1.573 0.657 0.840 0.590 -0.226 0.700 -0.523

BRL 0.039 0.036 + 0.287 2.496 0.297 2.425 0.122 1.167 0.609 -0.277

INR 0.019 0.019 - 0.979 0.042 0.538 1.240 0.105 1.256 0.466 0.085

ZAR 0.032 0.033 - 0.021
∗∗

7.693 0.280 2.545 0.042
∗∗

1.728 0.380 0.305

GBP 0.019 0.019 - 0.787 0.479 0.599 1.026 0.024
∗∗

1.971 0.004
∗ ∗ ∗

2.615

EUR 0.019 0.020 - 0.196 3.257 0.831 0.369 0.328 0.446 0.394 0.268

Note: The table reports the Root Mean square Error (RMSE) of the forecasts and the sign of the difference between them.
A (-) indicates that the OLS model has a greater RMSE. It also reports results of the Giacomini and White (2006) test for
conditional predictive ability using a quadratic and an absolute loss function. The sign of the average of the quadratic
loss function differential necessarily corresponds to the one of the RMSE difference. This is not necessarily true for the
absolute loss function where the difference is negative for the CHF and positive for the ZAR. The test is insignificant for
both, hence the table only reports the RMSE differential. Further it reports the reports of the Pesaran and Timmermann
(1992) nonparametric direction accuracy test.
∗ ∗ ∗: p ≤ 0.01, ∗∗: p ≤ 0.05, ∗: p ≤ 0.1

Table D-4. Forecast Statistics: 3 Factor Model (P = 180)

Giacomini-White Pesaran-Timmermann

RMSE L: Quadratic L: Absolute TVL OLS

Currency TVL OLS ∆ p-val Stat. p-val Stat. p-val Stat. p-val. Stat.

AUD 0.028 0.030 - 0.046
∗∗

6.168 0.138 3.958 0.076
∗

1.429 0.102 1.272

CAD 0.020 0.021 - 0.181 3.414 0.463 1.539 0.275 0.598 0.086
∗

1.364

DKK 0.023 0.023 - 0.110 4.421 0.084
∗

4.964 0.383 0.298 0.588 -0.221

JPY 0.051 0.023 + 0.355 2.073 0.563 1.150 0.657 -0.404 0.318 0.473

MXN 0.027 0.027 - 0.938 0.129 0.774 0.513 0.498 0.005 0.187 0.890

NZD 0.028 0.029 - 0.468 1.519 0.247 2.799 0.780 -0.773 0.580 -0.202

NOK 0.025 0.027 - 0.067
∗

5.409 0.109 4.425 0.106 1.246 0.159 1.000

SEK 0.026 0.026 - 0.635 0.910 0.570 1.124 0.662 -0.419 0.716 -0.570

CHF 0.024 0.024 + 0.445 1.621 0.335 2.184 0.933 -1.498 0.603 -0.262

BRL 0.038 0.037 + 0.725 0.643 0.830 0.372 0.255 0.659 0.841 -1.000

INR 0.019 0.019 + 0.591 1.050 0.749 0.579 0.641 -0.362 0.764 -0.720

ZAR 0.041 0.040 + 0.565 1.142 0.492 1.418 0.279 0.585 0.113 1.211

GBP 0.022 0.022 - 0.146 3.844 0.448 1.605 0.117 1.188 0.065
∗

1.518

EUR 0.044 0.023 + 0.220 3.028 0.105 4.512 0.272 0.605 0.700 -0.523

Note: The table reports the Root Mean square Error (RMSE) of the forecasts and the sign of the difference between them.
A (-) indicates that the OLS model has a greater RMSE. It also reports results of the Giacomini and White (2006) test for
conditional predictive ability using a quadratic and an absolute loss function. The sign of the average of the quadratic
loss function differential necessarily corresponds to the one of the RMSE difference. This is not necessarily true for the
absolute loss function where the difference is negative for the CHF and positive for the ZAR. The test is insignificant for
both, hence the table only reports the RMSE differential. Further it reports the reports of the Pesaran and Timmermann
(1992) nonparametric direction accuracy test.
∗ ∗ ∗: p ≤ 0.01, ∗∗: p ≤ 0.05, ∗: p ≤ 0.1
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