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Abstract. We propose a dynamic statistical model of the Global Carbon Budget as represented

in the annual data set made available by the Global Carbon Project, covering the sample period

1959–2019. The model connects four main objects of interest: atmospheric carbon dioxide (CO2)

concentrations, anthropogenic CO2 emissions, the absorption of CO2 by the terrestrial biosphere (land

sink), and by the ocean and marine biosphere (ocean sink). The model captures the global carbon

budget equation, which states that emissions not absorbed by either land or ocean sinks must remain in

the atmosphere and constitute a flow to the stock of atmospheric concentrations. Emissions depend on

global economic activity as measured by World Gross Domestic Product while sink activities depend

on the level of atmospheric concentrations and the Southern Oscillation Index. We use the model to

determine the time series dynamics of atmospheric concentrations, to assess parameter uncertainty,

to compute key variables such as the airborne fraction and sink rate, to forecast the Global Carbon

Budget components from forecasts of World Gross Domestic Product and Southern Oscillation, and

to conduct scenario analysis based on different possible future paths of global economic activity.
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1. Introduction

In this paper, we propose a dynamic statistical model for the time series collected in the annual

Global Carbon Budget (GCB), collated and maintained by the Global Carbon Project (Friedlingstein

et al., 2020). The model connects atmospheric CO2 concentrations, anthropogenic emissions, and

uptake by the terrestrial biosphere (land sink) and by the ocean and the marine biosphere (ocean

sink). It includes the global carbon budget equation as a cornerstone. The model further specifies

both sinks as linear in atmospheric concentrations, and it specifies emissions as a random walk with

drift, either as a constant or as determined by economic activity. The dynamics of concentrations

are determined by the global carbon budget equation. Since concentrations determine sinks activity

in turn, the model captures synchronicity in the determination of key variables.

The model allows for the data-driven study of the global carbon cycle employing a relatively small

model. By employing the GCB data set, it facilitates using observational data as well as the output

of several large-scale general circulation models (GCM). Parameter uncertainty can be evaluated by

way of statistical standard errors, in contrast to GCM or small-scale emulators. Parameter estimates

are based on the statistical analysis of past data. In order to capture changes in the fuel mix and

the dependence of emissions on economic activity in projections that extend far into the future, we

consider scenarios for time-varying coefficients in the emissions equation. The model is linear and

therefore incurs approximation errors, for example in the dependence of the sinks on concentrations.

We analyze the time series properties of the components of the GCB. The salient property of all

series is that they are upward trending. From a number of unit roots tests and from theoretical

relations, we extract a list of requirements that a statistical model of the data has to satisfy. The

model we propose satisfies these requirements, and from its system equations we derive the time series

dynamics of atmospheric CO2 concentrations. This result shows that atmospheric concentrations

follow single unit root dynamics that are, however, numerically quite close to a second unit root, and

that they approach a second unit root as atmospheric concentrations increase. This finding might

appear surprising at first sight, since the stock of atmospheric concentrations contains a cumulated

sum of the unit root emissions process; however, as we show below, the result obtains because of the

internal dynamics of the carbon cycle system.

We propose and compare two different specifications of the statistical model. Model I satisfies

the list of requirements and involves the global time series variables of the GCB. Model II further

includes a global variable of economic activity (World Gross Domestic Product, GDP) as a driver

of emissions and the Southern Oscillation Index (SOI) variable as a proxy for the El-Niño/Southern



4 M. BENNEDSEN, E. HILLEBRAND, AND S.J. KOOPMAN

Oscillation (ENSO) cycle in the sinks dynamics. In addition, we include a number of dummy variables

for specific unusual events in the relation of World GDP and emissions. We present the estimation

results that include parameter estimation uncertainty measures.

In simulations of our model, we show the small-sample properties of the statistical estimators

and their robustness to the model assumptions. We present and discuss the budget imbalance, the

airborne fraction, and the sink rate implied by the models. We conduct a validation experiment

where we compute the time series of the GCB using only data on World GDP and SOI for the last

ten years of the sample, and we show that the model can produce confidence intervals from these two

inputs that cover most observations of the GCB components. We nowcast and forecast emissions,

sinks activity, and atmospheric concentrations from forecasts of World GDP and SOI for the period

2020–2022. Finally, we present an analysis of different scenarios for the path of the GCB components

until the year 2050. The model proposed in this paper is well-suited for such scenarios analyses, since

it integrates the carbon cycle (through the GCB components) with economic activity (through World

GDP growth) and thus allows for a coherent way to construct projections of the dynamics of the

global carbon cycle, conditional on an economic scenario. By considering different future scenarios

for World GDP and for the dependence of emissions on GDP, we find that abatement levels needed to

limit the amount of future global warming are very sensitive to the path of future economic growth.

These findings highlight the need for decoupling emissions from economic growth (Haberl et al.,

2020) and can thus have implications for commitments made by the global community, such as those

arising from the Paris Agreement of 2015.

The remainder of the paper is organized as follows. Section 2 introduces the model, discusses

central assumptions, and derives a solution for atmospheric concentrations of CO2 from the system

model equations. Section 3 presents Monte Carlo simulation results for the model. Section 4 describes

the data set that we use and discusses time series properties of the data series. Section 5 presents

estimation results, discusses residual diagnostics, and introduces an extension of the basic model to

include World GDP and SOI, including estimation results and residual diagnostics for this extended

model. Section 5.5 discusses limitations of the model as well as the implied budget imbalance, the

airborne fraction, and the sink rate. Section 6 presents a validation analysis where the model is

estimated on the first 51 years of data and validated on the last 10 years, a forecast exercise for three

years out of sample, and scenario analyses until the year 2050. Section 7 concludes.
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2. A statistical dynamic model for the global carbon budget

The statistical global carbon budget model proposed in this study is designed for four variables:

atmospheric CO2 concentrations (C∗t ), anthropogenic emissions (E∗t ), CO2 uptake by the terrestrial

biosphere (land sink, S LND∗t ) and CO2 uptake by the ocean and marine biosphere (ocean sink,

S OCN∗t ). The flow series E∗t , S LND∗t , and S OCN∗t are measured in gigatons of carbon (GtC)

per year; the stock series C∗t is measured in GtC. The foundation of our statistical model is the global

carbon budget equation

G ATM∗
t+1 := C∗t+1 − C∗t = E∗t+1 − S LND∗t+1 − S OCN∗t+1,

where G ATM∗ represents the change in atmospheric concentrations in GtC per year. The budget

equation expresses that emissions not absorbed by either the land or ocean sink constitute a flow to

the stock of atmospheric concentrations. The budget equation further implies a dynamic process for

concentrations as given by

(1) C∗t+1 = C∗t + E∗t+1 − S LND∗t+1 − S OCN∗t+1.

The dynamic equations for the emission and sink variables are given next. The dynamic evolution

of emissions E∗ is assumed to follow a random walk process with drift as given by

(2) E∗t+1 = E∗t + d+XE
t ,

where d is the constant drift or growth term and XE
t is a stationary random innovation. The sinks

are assumed to be linear in atmospheric concentrations

S LND∗t+1 = c1 +
β1

C1750

C∗t+1,(3)

S OCN∗t+1 = c2 +
β2

C1750

C∗t+1,(4)

where ci, i = 1, 2, are constant intercepts, and the slopes βi/C1750 > 0 represent the fractions of

concentrations that are absorbed annually by the sinks. We discuss these linearity assumptions and

the scaling of the parameters by pre-industrial concentrations C1750 =593.43GtC or 279ppm in the

subsections below. See also the discussion of limitations in Section 5.5. We emphasize that XE
t is

the only source of randomness driving the state variables (1)–(4) which implies that the randomness

of the GCB is only due to XE
t .
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The observed time series for these four variables are denoted with the same variable indicator

but without the asterisk. Annual observations of the four variables at a global level are provided

by the Global Carbon Project (Friedlingstein et al., 2020) for the period 1959 through 2019. At-

mospheric concentrations are instrumental measurements. Emissions are computed from the use of

fossil energy carriers as reported by countries’ authorities. To compute our variable “anthropogenic

emissions”, we take fossil fuel emissions plus land use change emissions minus cement carbonation

sink. These observations are typically subject to measurement errors and other irregularities due to

data collection. The observations of the land and ocean sinks, on the other hand, are averages over

the output of several GCM / Earth system models selected by the Global Carbon Project. We treat

these observations statistically as data in our model. For the sink processes, the model should be

understood as an approximation to the more complex climate models, and it only captures parts of

the more detailed interrelations that are captured in the climatologically and mathematically more

involved climate models, see the discussions below.

The deviations of the observed variables (without asterisk) from the unobserved model variables

(with asterisk) are therefore a mix of measurement errors (in particular, for concentrations and

emissions) and approximation errors (in particular, for land and ocean sink variables). The statistical

treatment of GCM model output has recently been discussed in various contributions to the literature;

see, for example, Castruccio et al. (2013), Holden et al. (2015), Castruccio and Guinness (2017) and

Guinness and Hammerling (2018).

Given the dynamic specifications of the key four model variables, we complete the statistical model

for the observed variables with the so-called measurement equations as given by

Ct = C∗t +X1,t,(5)

S LNDt = S LND∗t +X2,t,(6)

S OCNt = S OCN∗t +X3,t,(7)

Et = E∗t +X4,t,(8)

where X1,t and X4,t, associated with Ct and Et, can be mainly regarded as measurement errors and

can be treated in the usual way as disturbances, and where X2,t and X3,t, associated with S LNDt

and S OCNt, mainly represent processes that are not captured by our statistical model.

Under normality assumptions for the innovations in the Xi,t, i = 1, . . . , 4, and XE
t processes, the

model variable and measurement equations constitute a multivariate linear Gaussian state space
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model; see the discussion in Appendix A. The dynamics of the four unobserved model variables

(with asterisks) are placed in the state vector and are driven by the single random innovation term

XE
t . We define autoregressive processes for the dynamic processes Xi,t, i = 1, . . . , 4, and XE

t , and

place them in the state vector as well. We further allow for correlation between the innovations

that are driving the processes Xi,t and Xj,t, denoted as rij, for selected pairs (i, j). The state

space framework facilitates the estimation of the parameters by the method of maximum likelihood,

where the likelihood is evaluated by the Kalman filter, and its maximization relies on a numerical

opimization method. The predicted, filtered, and smoothed estimates for the entries of the state

vector are obtained by the Kalman filter and related methods; see Durbin and Koopman (2012) for

a treatment. In Section 3, we verify the accuracy of our proposed estimation approach in a Monte

Carlo study, both under correct and incorrect model specifications.

In the remaining part of this section, we discuss the linearity assumptions in (3) and (4), and

we derive the dynamics of atmospheric concentrations C∗ as the solution of the system of equations

given by (1), (2), (3), and (4). These subsections refer to the ∗-processes throughout, but we suppress

the superscript for notational ease.

2.1. The land sink as a linear function of atmospheric concentrations. Bacastow and Keeling

(1973) suggest that the relationship between S LNDt and atmospheric CO2 concentrations Ct follows

S LNDt = β log(Ct/C1750),(9)

where β is a constant and C1750 = 593.43 GtC is the pre-industrial atmospheric concentration. This

formula captures the fertilization effect, whereby increased CO2 concentrations lead to increased net

primary production of plants. A second-order Taylor expansion of this formula around C1750 yields

S LNDt ≈
β

C1750

(Ct − C1750)− β

2C2
1750

(Ct − C1750)2.(10)

If Ct − C1750 is small relative to C1750, the second-order term is small, and a linear relation between

S LNDt and Ct is a good approximation. If Ct is large relative to C1750, the second-order term

becomes important. We can rewrite the Taylor expansion as

S LNDt ≈ cL + kL(Ct)Ct,(11)

where

cL = −3

2
β, kL(Ct) =

2β

C1750

− β

2C2
1750

Ct,
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and kL(Ct) is decreasing in Ct. At the beginning of the sample, the atmospheric concentration is

C1959 = 670.83GtC. The time series of concentrations is then given from the data by

Ct = C1959 +
t∑

τ=1959

G ATMτ ,

ending in C2019 = 874.83GtC. Therefore, in the beginning of the sample, kL(C1959) = 0.0024β, and at

the end, kL(C2019) = 0.0021β. The assumption of a land sink that grows linearly in concentrations,

kL(Ct) = kL, is thus not unreasonable on the sample. The linearity assumption was suggested already

in Bacastow and Keeling (1973, p. 94) and it is discussed and applied, for example, in the context

of the airborne fraction and sink rate of CO2, in Raupach et al. (2014), Raupach (2013), Gloor et al.

(2010), Canadell et al. (2007b), and Bennedsen et al. (2019b).

An alternative expression for the fertilization effect was put forward in Gifford (1993):

S LNDt = NPPt −NPP1750 =
a(Ct − Cb)

1 + b(Ct − Cb)
− a(C1750 − Cb)

1 + b(C1750 − Cb)
,

where NPP is net primary production and Cb is the atmospheric concentration where net primary

production is zero (Cb = 65.9GtC or 31ppm in Gifford (1993)). The parameter a plays a comparable

role to the parameter β in the Bacastow-Keeling formula. A Taylor expansion of the formula to

second order in the point Ct = C1750 yields:

S LNDt ≈
a

(1 + b(C1750 − Cb))2
(Ct − C1750)− ab

(1 + b(C1750 − Cb))3
(Ct − C1750)2

≈ kG(Ct)(Ct − C1750),

and

kG(Ct) =
a

(1 + b(C1750 − Cb))2
− ab(Ct − C1750)

(1 + b(C1750 − Cb))3

decreasing in Ct. Using a typical parameter configuration employed in Gifford (1993), a = 0.461

and b = 0.005, we get kG(C1959) ≈ 0.08 and kG(C2019) ≈ 0.06. Thus, the Gifford formula has more

curvature for typical parameter values, and the linear approximation is less accurate than for the

Bacastow-Keeling specification.

Both the Bacastow-Keeling and the Gifford formulae imply that a regression of S LND on Ct/C1750

and a constant should yield estimated intercepts and regression coefficients that are equal in mag-

nitude with opposite signs, of course up to small sample error. (For the Bacastow-Keeling formula,

the first-order term decomposes into −β plus β Ct /C1750, analogously for the Gifford formula.) Ta-

ble 1 shows that the estimated coefficients are numerically similar in magnitude. Indeed, the null
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hypothesis that intercept plus slope equal zero cannot be rejected for S LND. The conclusion from

the hypothesis test is not sensitive to whether or not a heteroskedasticity adjustment is applied.

Table 1. Simple linear regressions of the sinks series on normalized atmospheric con-
centrations Ct/C1750. Standard errors in parentheses. F is the F -statistic for a test
that intercept plus slope equal zero. C1750 = 593.43GtC. The Durbin-Watson statistic
indicates first-order serial correlation when it deviates from the benchmark value of 2.

Series intercept Ct/C1750 Durbin-Watson F
S LND -6.72 (1.12) 7.12 (0.88) 2.02 2.37 (p=0.13)
S OCN -4.86 (0.24) 5.18 (0.18) 0.66 36.62 (p=1e-7)

2.2. The ocean sink as a linear function of atmospheric concentrations. As in the case of

the land sink, linearity of the ocean sink in atmospheric concentrations has been employed in the

literature, see for example Raupach et al. (2014), Raupach (2013), Gloor et al. (2010), Canadell et

al. (2007b), and Bennedsen et al. (2019b). For the CO2 flux from atmosphere to ocean, Joos et al.

(1996) and Joos et al. (2001) specify the relation

S OCNt = kO,ppm(pCO2at − pCO2st),

where pCO2at and pCO2st are the partial pressures of CO2 in the atmosphere at sea level and in

the ocean surface layer, respectively. The coefficient kO,ppm determines the gas exchange between

the atmosphere and the ocean surface layer. The atmospheric partial pressure at sea level is simply

a linear transformation of the atmospheric CO2 concentration. The partial pressure of CO2 in the

surface layer of the ocean is specified as

pCO2st =(
pCO2s0 + δ1Φ(L)S OCNt + δ2[Φ(L)S OCNt]

2 + . . .+ δ5[Φ(L)S OCNt]
5
)

exp(γ(Tt − T0)),

where pCO2s0 is initial partial pressure in the surface ocean (equal to pre-industrial atmospheric par-

tial pressure assuming equilibrium of the pre-industrial era ocean surface layer with the atmosphere).

Since dissolution of CO2 in the surface ocean depends on temperature, the coefficients δi = δi(T0)

depend on the initial temperature T0, and the expression in parentheses is multiplied by an expo-

nential evaluated in the temperature difference Tt − T0 between time t and time 0, multiplied by a

coefficient γ. The lag polynomial Φ(L) is a time-invariant linear filter that describes the dissolution

of carbon from the atmosphere in the surface ocean over time:

Φ(L)S OCNt = φ1S OCNt−1 + φ2S OCNt−2 + . . .+ φt−1S OCN1.
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We present the model for an annual sampling frequency. It is specified in Joos et al. (1996) and

Joos et al. (2001) for higher resolutions as well, with different Φ(L) filters for subannual responses,

but we abstract from this due to the nature of the data. This model for the ocean sink is employed,

for example, in the widely used MAGICC model (Meinshausen et al., 2011). It is clearly a highly

nonlinear description of the uptake and dissolution process and how it depends on the pressure

differential, the temperature, and temporal dynamics. The key features of the specification for the

purposes of our statistical analysis are:

a) After suitable unit conversions, the model can be written in the form

(12) S OCNt = kO,GtC [Ct − C1750 − f(Φ(L)S OCNt)],

that is, with a leading linear term in current atmospheric CO2 concentrations.

b) When we approximate equation (12) as

(13) S OCNt ≈ cO + kOCt,

lags of S OCNt, and hence lags of Ct, enter into the approximation error both linearly and

non-linearly up to fifth powers through function f . This introduces serial correlation (linear

terms) and memory in higher moments (non-linear terms). We show in Section 4 that on the

data sample, this memory can be sufficiently captured with a linear first-order autoregressive

filter, such that the residuals appear as Gaussian white noise.

c) The linear specification in concentrations (13) is similar to the linearized specification for

the land sink (11). In particular, estimating a linear regression on Ct/C1750, we expect an

estimated intercept of the same magnitude as the regression coefficient, with opposite sign.

Table 1 shows that the coefficients are numerically similar in magnitude, but the F test rejects

the null hypothesis that their sum is zero. The conclusion does not depend on whether or

not a heteroskedasticity adjustment is applied, which is the case here. The Durbin-Watson

statistic in the table shows evidence for serial correlation.

2.3. The dynamics of atmospheric concentrations. We assume sinks linear in concentrations,

S LNDt = cL + kLCt + stationary error, and S OCNt = cO + kOCt + stationary error. We employ

a random walk with drift for emissions Et = d + Et−1 + XE
t = E0 + dt + xt, where E0 are initial

emissions, d is the drift term, xt =
∑t

τ=1X
E
τ , and XE

t is a stationary process. Using the GCB
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equation

G ATMt = Ct − Ct−1 = Et − S LNDt − S OCNt

= c+ dt+ xt − kLCt − kOCt + stationary error,

where c = E0 − cL − cO, and denoting q = 1/(1 + kL + kO), we arrive at a first-order difference

equation

(1− qL)Ct = qc+ qdt+ qxt + qεt,

where εt collects the stationary and serially correlated error terms from the two sinks. The deter-

ministic trend and the I(1) process xt dominate. The difference equation for Ct admits the following

solution, where C0 are initial concentrations,

Ct = qt
[
C0 −

cq

1− q
+

dq2

(1− q)2

]
+

[
cq

1− q
− dq2

(1− q)2

]
+

dq

1− q
t+

t−1∑
j=0

qj+1xt−j +
t−1∑
j=0

qj+1εt−j(14)

= o(1) +O(1) +O(t) + I(1) + I(0) = O(t) + I(1).

Note that the variance of an I(1) process is O(t). The estimated coefficients kL and kO are small,

from Table 1 we obtain k̂L = 7.12/C1750 ≈ 0.012 and k̂O ≈ 5.18/C1750 = 0.009. Thus, the first-order

polynomial

(15) 1− qz ≈ 1− 1

1 + 0.012 + 0.009
z

has its root z0 = 1+kL+kO close to, but above, unity. The lag polynomial 1−qL is a stationary filter,

but close to simple first differences 1−L. Therefore, the term
∑
qj+1xt−j is an I(1) process, but close

to I(2). Note that the coefficient of the linear trend is dq/(1− q) = d/(kL+kO). This means that the

drift dt from emissions is divided by approximately 0.02. This is the reason why the trend appears

dominant in the graph of Ct (see panel [A] of Figure 3 for a plot of the atmospheric concentration

time series), even though it is linear. If the lag polynomial was equal to first differences,

(1− L)C ′t = c+ dt+ xt + εt,

the solution would be

C ′t = C0 +

[
c+

d

2

]
t+ dt2 +

t∑
τ=1

xτ +
t∑

τ=1

ετ ,

that is a sum of a linear trend, a quadratic trend, an I(2) process, and an I(1) process. In other

words, the orders of integration of the terms of the solution (14) would increase by one.
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Note that as Ct increases, and thus the distance Ct−C1750 from pre-industrial concentrations, the

increasingly negative second-order terms in the sink processes move the root of the lag polynomial

(15) closer to unity (compare Equations (11) and (13)). As terrestrial plants saturate and the ocean

acidifies, they take up less CO2 than at concentrations close to pre-industrial levels (Raupach et al.,

2014; Bennedsen et al., 2019b). Therefore, the higher the level of atmospheric concentrations, the

closer they get to explosive I(2) dynamics.

3. Monte Carlo simulation study

To validate the maximum likelihood estimation procedure for the unknown parameters in our

model, we conduct a Monte Carlo simulation study. We consider the basic model as set out in

equations (1) to (8) in the previous section. Given this model specification and with a choice of

parameter values, which we regard as the “true” model and the “true” parameter values, we simulate

data for the four time series variables {Ct, S LNDt, S OCNt, Et} from the basic model. We notice

that before we can simulate the four “observed” time series, we first need to simulate paths for the

“unobserved” variables C∗t and E∗t from their dynamic model equations in (1) and (2), respectively.

Our Monte Carlo study consists of M simulations. For each simulation, we estimate the parameters

in the basic model using the set of the four simulated time series (see Section 5 for further details

on the estimation procedure). In this way, we obtain a collection of M estimates for the parameter

vector. We assess the accuracy of the estimates by comparing the estimated parameter values with

their corresponding “true” values. In Table 2 we report the sample bias and sample standard error

for all parameters. Our Monte Carlo study is based on M = 1, 000 simulations and on three different

time series lengths T = 30, T = 60 and T = 120. In our empirical study, we have T = 61.

First, we study the performance of the maximum likelihood estimation method for correct model

specification: we consider the same model for simulation as for estimation. The “true” parameter

values in this Monte Carlo study are chosen so that they resemble the estimated parameter values

in the empirical study of Section 5. Given that our model is linear and Gaussian, and given that

the exact maximum likelihood estimation method has generally good finite sample properties, we

expect a good performance overall. However, for the small sample cases (e.g. T = 30 and T = 60),

it is possible that the variances for latent components such as Xi,t, for i = 1, . . . , 4, can be subject

to the “pile-up” problem which refers to the case that a high number of estimated variances are

equal to the boundary value of zero, see the discussions in Shephard (1993) and Stock and Watson

(1996). In particular, the “true” variance for X4,t equals the relatively small value of 0.001 and a
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Table 2. Results of Monte Carlo Study. Sample mean bias and sample standard errors (in
parentheses) are reported for the parameter estimates based on M = 1, 000 simulations from the
basic model specification (1) to (8) where X2,t, X4,t and XE

t are Gaussian noise variables with zero
mean and variance σ2

η2, σ2
η4 and σ2

η5, respectively, where X1,t and X3,t are autoregressive processes of

order 1 with zero mean, variance σ2
η1 and σ2

η3, and autoregressive coefficient φ1 and φ3, respectively,
and where r12 and r13 are the correlations for the pairs (X1,t, X2,t) and (X1,t, X3,t), respectively. The
parameter values are selected to be close to those obtained in the empirical study of Section 5. Results
are presented for different model specifications which are described in the main text.

true par. correct spec. set β1,2 = 0 set φ1,3 = 0 set r12,13 = 0 br GATM br Var(ηt)
T = 30

c1 -7.22 .2672 (6.17) 3.664 (136.) .0356 (.965) -.1726 (8.54) 0.137 (6.92) .2612 (6.34)

c2 -4.93 .1153 (4.10) 2.887 (107.) -.0192 (.440) -.1531 (6.32) 0.062 (5.23) .1339 (5.47)

β1 7.0 -.0268 (1.00) −− -.0374 (.938) -.0134 (.990) -0.026 (.921) -.0557 (1.43)

β2 5.5 .0208 (.456) −− .0187 (.423) .0236 (.449) 0.019 (.415) .0327 (.671)

d 0.14 -.0009 (.033) -.0009 (.033) -.0009 (.033) -.0009 (.033) 0.061 (.033) -.0010 (.033)

φ1 0.8 -.0813 (.167) -.0261 (.150) −− -.0795 (.159) -0.081 (.168) -.0979 (.177)

φ3 0.7 -.1124 (.184) -.0445 (.168) −− -.1120 (.178) -0.112 (.184) -.1331 (.196)

σ2
η1 0.90 -.0469 (.265) -.0035 (.271) -.0208 (.249) -.0641 (.229) -0.052 (.266) .7847 (.487)

σ2
η2 0.70 -.0158 (.189) -.0062 (.187) -.0159 (.188) -.0238 (.165) -0.016 (.188) .6964 (.404)

σ2
η3 0.01 -.0007 (.003) -.0003 (.003) -.0003 (.003) -.0008 (.003) -0.001 (.003) .0093 (.006)

σ2
η4 0.001 .0018 (.004) .0019 (.004) .0018 (.004) .0018 (.004) 0.006 (.011) .0027 (.005)

σ2
η5 0.03 -.0042 (.011) -.0042 (.011) -.0042 (.011) -.0042 (.011) 0.096 (.030) -.0036 (.012)

r12 -0.65 .0061 (.117) .0043 (.113) .0140 (.114) −− 0.004 (.118) .0163 (.127)

r13 -0.15 -.0096 (.162) -.0086 (.157) -.0007 (.150) −− -0.011 (.162) -.0085 (.185)

T = 60
c1 -7.22 -.0285 (.446) -0099 (.216) -.0181 (.335) -.0043 (.758) -.0214 (.377) -.0338 (.836)

c2 -4.93 .0005 (.317) -0093 (.167) .0029 (.208) .0179 (.549) .0041 (.256) .0035 (.620)

β1 7.0 .0194 (.287) −− .0157 (.271) .0186 (.286) .0179 (.264) .0300 (.410)

β2 5.5 -.0048 (.178) −− -.0028 (.167) -.0047 (.177) -.0041 (.164) -.0065 (.258)

d 0.14 -.0006 (.023) -0006 (.023) -.0006 (.023) -.0006 (.023) .0293 (.023) -.0006 (.023)

φ1 0.8 -.0359 (.091) -0111 (.085) −− -.0356 (.089) -.0361 (.091) -.0424 (.099)

φ3 0.7 -.0474 (.112) -0171 (.103) −− -.0457 (.111) -.0474 (.112) -.0594 (.121)

σ2
η1 0.90 -.0276 (.168) -0104 (.168) -.0152 (.167) -.0387 (.145) -.0296 (.168) .9031 (.385)

σ2
η2 0.70 -.0076 (.127) -0049 (.127) -.0069 (.128) -.0150 (.114) -.0076 (.127) .7351 (.295)

σ2
η3 0.01 -.0003 (.002) -0002 (.002) -.0002 (.002) -.0003 (.002) -.0003 (.002) .0100 (.004)

σ2
η4 0.001 .0014 (.003) 0015 (.003) .0014 (.003) .0014 (.003) .0028 (.005) .0024 (.004)

σ2
η5 0.03 -.0027 (.008) -0028 (.008) -.0028 (.008) -.0027 (.008) .0464 (.015) -.0023 (.009)

r12 -0.65 -.0026 (.077) -0010 (.077) .0017 (.077) −− -.0034 (.077) .0010 (.088)

r13 -0.15 -.0008 (.103) -0004 (.102) .0008 (.099) −− -.0012 (.103) -.0032 (.113)

T = 120
c1 -7.22 -.0034 (.123) -.0008 (.030) -.0045 (.126) -.0036 (.129) -.0029 (.123) -.0013 (.166)

c2 -4.93 -.0013 (.107) .0005 (.027) -.0003 (.102) -.0018 (.106) -.0014 (.102) -.0049 (.135)

β1 7.0 .0017 (.079) −− .0021 (.076) .0017 (.078) .0014 (.074) -.0001 (.113)

β2 5.5 .0009 (.066) −− .0005 (.062) .0013 (.065) .0010 (.062) .0036 (.094)

d 0.14 -.0003 (.016) -.0003 (.016) -.0003 (.016) -.0003 (.016) .0144 (.016) -.0003 (.016)

φ1 0.8 -.0173 (.050) -.0075 (.048) −− -.0169 (.049) -.0176 (.050) -.0208 (.056)

φ3 0.7 -.0242 (.073) -.0113 (.068) −− -.0244 (.072) -.0243 (.073) -.0309 (.082)

σ2
η1 0.90 -.0090 (.116) -.0024 (.117) -.0033 (.115) -.0131 (.103) -.0097 (.116) .9506 (.270)

σ2
η2 0.70 .0041 (.089) .0052 (.088) .0042 (.088) .0011 (.080) .0041 (.089) .7603 (.209)

σ2
η3 0.01 -.0002 (.001) -.0001 (.001) -.0001 (.001) -.0002 (.001) -.0002 (.001) .0104 (.003)

σ2
η4 0.001 .0007 (.002) .0008 (.002) .0007 (.002) .0007 (.002) .0012 (.003) .0016 (.002)

σ2
η5 0.03 -.0015 (.006) -.0016 (.006) -.0015 (.006) -.0015 (.006) .0227 (.008) -.0011 (.006)

r12 -0.65 -.0008 (.054) .0002 (.054) .0008 (.053) −− -.0010 (.053) -.0008 (.059)

r13 -0.15 .0005 (.069) .0004 (.069) .0013 (.069) −− .0004 (.069) -.0013 (.080)
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strong pile-up is evidenced by the relatively large bias and large standard error, especially for the

two smaller sample sizes. All other model parameters show good performances with small biases

and small standard errors. The bias is measured as the sample mean over the set of M parameter

estimates, minus the “true” parameter value. The standard error is obtained from the corresponding

sample variance.

Next, we extend the Monte Carlo study and assess the estimation accuracy to cases where the

“true” model for the data generation process (DGP) and the model for estimation are different in

specific ways. We start by considering cases where we set particular values for the β, φ and rij

parameters in the DGP. However, during the subsequent estimation process, we restrict a particular

set of parameters to zero, as if they are not present in the model. The remaining parameters are

estimated as usual. We expect that the estimation of the other parameters will be affected in this

erroneous setting: the estimates of the remaining parameters are subject to the incomplete model

specification. The results in Table 2 confirm that model misspecification affects the estimation

accuracy, especially when sample sizes are smaller. However, the model is sufficiently flexible to

provide an overall good fit at the cost of increased inaccuracies in the estimation of related parameters.

Finally, we also present results for cases where the DGP model is distorted. We consider the case

of a structural break in the growth term in C∗t , located in the middle of the time series and specied as

a one-off change (dummy) in G ATMt of 10 units. In another case we distort the DGP model in the

middle of the time series with a change in the variance of Xi,t for i = 1, . . . , 4; in the second half of

the time series, all variances are multiplied by
√

10. For these additional two misspecification cases in

the DGP, the parameters are estimated using the original model specification (ignoring the breaks).

These estimation results are also presented in Table 2. The reported biases for these cases show that

the break in variance leads to more severe distortions in estimation accuracy for all measurement

variances and to some extent also for the β coefficients. The break in the growth term has most

impact on the estimation accuracy for the growth term coefficient d itself which is to be expected.

Other parameter estimates are not heavily affected by the severe breaks in the DGP. This last point

provides some evidence of our flexible and robust modeling framework.

4. The data set and its time series properties

Figure 1 displays the time series data set related to the GCB that we employ in our study,

both in levels and in first differences. All series are annual, observed from 1959 to 2019, and are

taken from the global file of Friedlingstein et al. (2020), available at https://www.icos-cp.eu/

https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020
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Figure 1. GCB annual time series, from 1959 to 2019. E FF: fossil fuel emissions, E LUC: land-

use change emissions, E: anthropogenic emissions (E=E FF+E LUC), G ATM: growth of atmospheric

concentrations, S LND: land sink, S OCN: ocean sink.

(a) E FF (b) E LUC (c) E

(d) First differences E FF (e) First differences E LUC (f) First differences E

(g) G ATM (h) S LND (i) S OCN

(j) First differences G ATM (k) First differences S LND (l) First differences S OCN

https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020
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science-and-impact/global-carbon-budget/2020. All series are measured in gigatons of carbon

(GtC) per year. Panel [A] in Figure 1 presents fossil fuel emissions E FF, which are calculated

including cement carbonation from the global file. Panel [B] shows land-use change emissions E LUC,

which are the average of three series prepared by Houghton and Nassikas (2017), Hansis et al. (2015),

and Gasser et al. (2020). Panel [C] shows the sum of E FF and E LUC, labeled anthropogenic

emissions E. Panels [D] through [F] show the first differences of the series above. Panel [G] shows

growth in atmospheric concentrations; these are the first differences of the so-called Keeling curve of

atmospheric concentrations (Dlugokencky and Tans, 2020). Panel [H] shows the land sink, which is

the mean of the output of 17 different models (Haverd et al., 2018; Melton et al., 2020; Yuan et al.,

2014; Lawrence et al., 2019; Tian et al., 2015; Meiyappan et al., 2015; Delire et al., 2020; Mauritsen

et al., 2019; Sellar et al., 2019; Smith et al., 2014; Poulter et al., 2011; Lienert and Joos, 2018; Zaehle

and Friend, 2010; Vuichard et al., 2019; Walker et al., 2017; Kato et al., 2013; Yue and Unger, 2015).

Panel [I] shows the ocean sink, which is the mean of the output of 9 different models (Buitenhuis et

al., 2013; Schwinger et al., 2016; Paulsen et al., 2017; Berthet et al., 2019; Law et al., 2017; Hauck et

al., 2020; Liao et al., 2020; Doney et al., 2009; Aumont et al., 2015) and evaluated using Landschützer

et al. (2016); Rödenbeck et al. (2014); Denvil-Sommer et al. (2019); Gregor et al. (2019); Watson et

al. (2020). Panels [J] through [L] show the first differences of the series above.

Figure 2 displays the time series that are used to extend the model in Section 5. Panel [A] shows

World GDP in constant 2010 USD obtained from World Bank (2021b). The year-to-year differences of

World GDP in Panel [B] are employed as drift in the random walk model for emissions. The Southern

Oscillation Index (Panel [C]) is used as an explanatory variable for the sinks processes and obtained

from Climatic Research Unit (2021); Ropelewski and Jones (1987). The Southern Oscillation Index

is the studentized measure of differences in atmospheric pressure at sea level between Tahiti and

Darwin, Australia. Positive (negative) values correspond to La Niña (El Niño) phases.

The most conspicuous feature of the time series variables E FF, E, G ATM, S LND, and S OCN

in Figure 1 is the upward trend, whereas the variable E LUC is not trending. We conduct augmented

Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS)

tests for unit roots to determine the order of integration of the series and whether stationarity can

be achieved by either de-trending or by differencing. We keep the notation of the original sources for

each test.

The test results are presented in Table 3: all tests do not reject the unit root hypothesis for the

E FF time series, including the ADF test that allows for a drift term. In case of the variable E LUC,

https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020
https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020
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Figure 2. Annual time series, from 1959 to 2019, of World Gross Domestic Product (GDP, con-

stant 2010 USD), in levels and in first differences, and the Southern Oscillation Index (SOI)

(a) World GDP (b) World GDP differences (c) South. Oscillation Idx

the tests are not unanimous: the ADF and PP tests point towards stationarity while the KPSS test

rejects the stationarity hypothesis. Anthropogenic emissions E inherit the agreement of the tests

on E FF and clearly exhibit a unit root, with drift term according to ADF. All tests agree that

G ATM, S LND, and S OCN are trend-stationary and that SOI as well as the budget imbalance

BIM=E-G ATM-S LND-S OCN are stationary. All tests agree that atmospheric concentrations C

contain a unit root, and G ATM, which are first differences of C, are unanimously identified as trend-

stationary. One might be tempted to conclude from these results that C has a dominant quadratic

trend, but this would ignore the important system aspect of the series that we discussed in Section

2.3. First differences of World GDP are found to be trend-stationary by all tests.

It may be counter-intuitive that G ATM, S LND, and S OCN are trend-stationary with upward

trends since, according to the global carbon budget, the main driver of the system are emissions E,

which follow a random walk with drift according to the tests. The drift term in E is then a linear

trend, but the deviations from this linear trend follow a random walk, not a stationary process. The

key to understanding this finding is that even though emissions E are cumulated in concentrations, the

sinks are subtracted, which are linear in concentrations. This leads to the rich dynamics in equation

(14) from which it follows that Ct is O(t) + I(1), and thus ∆Ct = G ATMt is indeed stationary. The

deterministic trend dt/(kL+kO) is, however, so dominant in Ct due to the near second unit root that

on a relatively small sample of 61 observations, it looks nearly indistinguishable from a quadratic

trend, and there still seems a linear trend in first differences.
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5. Parameter estimation by the maximum likelihood method

The analyses of the dependence of the sink processes on atmospheric concentrations in Sections

2.1 and 2.2, together with the unit root analyses of the constituents of the global carbon budget in

Section 4, imply that a statistical model of the GCB should have the following properties:

a) Emissions Et follow a random walk process with a drift.

b) Land and ocean sinks depend linearly on atmospheric concentrations Ct. Since concentrations

are monotonically increasing in time, are smooth, and are only slightly convex on the sample

(see Figure 3 [A]), they constitute the “trend” as detected in the unit root tests of Section 4.

c) The stationary residual processesX2, X3 of the linear relations of the sinks with concentrations

should allow for serial correlation, which is in particular expected to be present in the ocean

sink, see Table 1.

d) Atmospheric concentrations Ct follow a deterministic trend plus I(1) dynamics through the

global carbon budget equation.

The model specified in equations (1) to (8), and summarized in the appendix in equation (25),

satisfies these properties. In this section, we estimate the model on the Global Carbon Project data

set. We discuss residual diagnostics and parameter estimates. We then extend the model to include

El-Niño/Southern Oscillation dynamics in the sinks, World GDP changes in emissions, and a number

of dummy variables for outliers in the equation for emissions. We show that extending the model

along these three directions improves the goodness-of-fit while the residual diagnostics demonstrate

that the model describes the data well.

5.1. Details of parameter estimation. Model (1) to (8) is presented in a linear state space

form in equation (25) in the appendix. The parameters in the model are estimated by maximum

likelihood using state space methods (Durbin and Koopman, 2012). The state vector contains the

dynamic (stationary and non-stationary) features of the model and the linear regression effects. The

stationary elements of the state vector (Xi,t for i = 1, . . . , 4) are initialized based on corresponding

unconditional moments while the non-stationary elements and fixed coefficients are subject to diffuse

initial conditions. The state equation disturbance vector is given by ηt = (η1,t, . . . , η5,t)
′ where ηi,t

corresponds to the disturbance in the autoregressive processes Xi,t, for i = 1, . . . , 4 and where η5,t

is the disturbance in the autoregressive process XE
t . We assume that the disturbances are mutually

independent with the exception of having a non-zero covariance for η1,t (C) on the one hand and for

η2,t (S LND) and η3,t (S OCN) on the other hand. Hence, the corresponding correlations, as indicated
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by r12 and r13, are non-zero. We also have considered other correlations between disturbances being

treated as non-zero. However, such more elaborate versions of the model have resulted in estimated

correlations that are close to zero and insignificant.

The 13× 1 parameter vector is given by

ψ = (β1, β2, φ1, φ3, φ4, φE, σ
2
η1
, σ2

η2
, σ2

η3
, σ2

η4
, σ2

η5
, r12, r13)′.

while the fixed coefficients c1, c2 and d are placed in the state vector, see Appendix A. The estimation

of ψ is based on maximizing the log-likelihood function that is evaluated by an augmented Kalman

filter in order to account for the diffuse conditions in the state vector (Durbin and Koopman, 2012,

p. 173).

Alternatively, we can consider the standard Kalman filter that is initialized as indicated but the

diffuse conditions are replaced by a mean zero and variance K, with K a large value, say K = 107.

This so-called big-K method yields very similar results. The coefficients c1, c2, and d are added to

the state vector, with transition equations that enforce constancy (a random walk process without

innovations). In this way, we concentrate out these unknown fixed coefficients from the log-likelihood

function. Their estimates and standard errors are returned by the Kalman filter as filtered state values

and the square root of the filtered state variances, respectively.

5.2. Model I: Results and residual diagnostics. Table 4 displays the estimated parameter values

and their standard errors. Figure 3 presents the smoothed states, together with the time series data

of C, G ATM, E, S LND and S OCN. The intercepts c1, c2 and slopes β1, β2 coefficients for the sinks

equations are estimated with the same order of magnitude (with opposite signs). These results can

be compared with those in Table 1 obtained from simple regressions. Figure 3 shows in panels [D]

and [F] that the sinks processes are upward trending with slight positive curvature since they are

scaled concentrations (panel [A]). The sinks data exhibit stationary variations around these trends.

This is the reason why the unit roots tests in Section 4 identified these time series as trend-stationary.

The serial correlation in the error process X1,t (in C) and X3,t (in S OCN) is reflected in the esti-

mated autoregressive parameters φ̂1 = 0.86(0.08) and φ̂3 = 0.67(0.10), respectively. These estimates

imply substantial serial correlation, but they are far from unity, and thus these are clearly stationary

processes. The smoothed values of the processes are shown in panels [B] and [G] of Figure 3, where

the memory in the series can be seen. The process X2,t, on the other hand, is indistinguishable

from white noise, and the diagnostics on S LND show that this is a sufficient description of the data

(Table 5). A version of the model with an additional parameter φ2 shows a small and insignificant
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Figure 3. Smoothed values for state vector elements of model (1) to (8)

(a) Ct (b) X1,t (c) G ATMt

(d) S LNDt (e) X2,t

(f) S OCNt (g) X3,t

(h) Et (i) XE
t (j) X4,t
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Table 4. Parameter estimates for model (1) to (8). We indicate standard error by “std err”
and filtered estimate for an element of the state vector by “filt.”.

Coefficients Variances
estimate std err estimate std err

c1 (filt.) -7.22 0.05 σ2
η1

0.93 0.26
c2 (filt.) -4.93 0.04 σ2

η2
0.46 0.08

β1 7.48 0.97 σ2
η3

0.012 0.002
β2 5.22 0.41 σ2

η4
0.001 0.027

d (filt.) 0.14 0.02 σ2
η5

0.024 0.032
φ1 0.86 0.08 r12 -0.68 0.07
φ3 0.67 0.10 r13 -0.20 0.11
φ4 0.76 0.20
φE 0.06 0.26

estimate for this coefficient. The process X4,t in the measurement equation of E is estimated to be

essentially zero, as shown in Figure 3 (panel [J]). It can be concluded that the random walk with

drift and stationary error XE for E∗ in equation (2) is a sufficient description of the data, and X4

can be omitted. The average growth in emissions is d̂ = 0.14 GtC/year. There is a strong correlation

between the innovations in the X1 residual process in C and in the X2 residual process in S LND.

This may reflect that within the climate models the generation of S LND is calibrated to agree with

the concentration measurements (Friedlingstein et al., 2020).

Table 5 presents the diagnostic statistics for the standardized prediction residuals for the model

where the parameters are replaced by their corresponding maximum likelihood estimates. The resid-

uals for the four dependent variables are presented in Figure 4, together with their correlograms. The

Ljung-Box statistics indicate that there is no first-order serial correlation in the residuals of any of

the four series. However, the Durbin-Watson test statistic for the residuals of the C equation shows

some distance from the benchmark value of two, indicating some serial correlation. On the other

hand, the correlograms in Figure 4 for both C and E do not show any strong evidence of residual

serial correlation. The Jarque-Bera test for the null of normally distributed residuals is strongly

rejected for the E equation, caused by both strong skewness and high leptokurtosis. There is no

serial correlation left in the residual from E, on the other hand, as the diagnostic statistics show.

The diagnostic statistics for the residuals of the S LND and S OCN equations show a good fit in

Table 5, but the correlogram in Figure 4 shows some marginally significant spikes at higher lags for

the S LND equation.

5.3. Model II: Extension with World GDP and SOI variables. Although the residual diag-

nostics for the sink equations in the Model I do not provide much evidence of model misspecifications
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Figure 4. Standardized prediction residuals for model (1) to (8), ACF autocorrelation
function, PACF partial autocorrelation function. Note that the ACF shows the value
for lag zero (equal to one by definition), while the PACF does not.

(a) Std. residuals C (b) ACF (c) PACF

(d) Std. residuals E (e) ACF (f) PACF

(g) Std. residuals S LND (h) ACF (i) PACF

(j) Std. residuals S OCN (k) ACF (l) PACF
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Table 5. Residual diagnostics for standardized prediction residuals from model (1) to (8). We
present sample mean, standard deviation “std dev”, skewness “skew”, kurtosis “kurt”, Jarque-Bera
test for normality “JB”, Ljung-Box test statistic for first-order autocorrelation “LB(1)”, Durbin-
Watson statistic “DW”, and significance at 0.01-level “***”.

Residual mean std dev skew kurt JB LB(1) DW
C -0.183 0.964 0.205 2.765 0.568 1.607 1.653
E -0.033 1.009 -1.448 8.506 98.38∗∗∗ 0.073 2.060
S LND 0.061 1.022 0.047 2.615 0.399 0.054 2.037
S OCN 0.093 0.978 0.377 2.988 1.447 0.116 1.908

and likewise show a reasonable goodness-of-fit, the proposed model that reduces them to scaled con-

centrations seems simple. Since the sink time series are not measurements but calibrated model

output, the variations around the trend given by concentrations are meaningful. A statistical model

such as (1) to (8) is not designed to capture the rich dynamics of the dynamic global vegetation

models or Earth system models behind the S LND series. One major determinant of the dynam-

ics beyond concentrations is the El Niño/Southern Oscillation (ENSO) cycle, however, and there

are observational data available for this cycle (Climatic Research Unit, 2021; Ropelewski and Jones,

1987). We include a measure of ENSO in the sinks processes, and we opt for the Southern Oscillation

Index (SOI). We have also estimated versions that include Niño 3.4 and Oceanic Niño Indices, and

the results were very similar, likely because our model is specified for an annual sampling frequency,

where the differences between the indices do not matter as much.

In Bennedsen et al. (2021), we have shown that U.S. CO2 emissions can be modeled effectively by

industrial production indices, leading to accurate forecasts. Friedlingstein et al. (2020) and earlier

vintages of the GCB (Friedlingstein et al., 2019; Le Quéré et al., 2018, 2017) model and forecast

emissions by measures of gross domestic product (GDP), following Raupach et al. (2007). The energy

economics literature has discussed the relation of energy consumption and macroeconomic activity

at length (e.g., Stern, 1993, 2000; Oh and Lee, 2004; Lee, 2005; Zhang and Cheng, 2009; Ozturk,

2010). Motivated by this, we replace the constant drift d in equation (2) for E by a coefficient

times differences in the World Bank’s World GDP series in trillion (1012) constant 2010 Dollars

(Series ID NY.GDP.MKTP.KD). Simply adding a coefficient times changes in World GDP to the

constant drift d results in an insignificant estimated constant of d̂ = 0.007 with a standard error

of 0.03 and a significant estimated coefficient on differences of World GDP of 0.11 with a standard

error of 0.02. The mean difference of World GDP on the sample is 1.22 trillion dollars per year,

thus 1.22 ∗ 0.11 ≈ 0.13 corresponds to the magnitude of d̂ in Table 4. The data thus clearly prefer

differences of World GDP as the time-varying drift in the random walk for E.
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We include three dummy variables in the state and measurement equations and one in the variance

of the innovation ε5,t of the stationary error XE
t for emissions E∗t . The selection of the dummies was

conducted using a variety of methods and criteria. The point of departure was a purely data-driven

search with AutoMetrics (Doornik, 2009; Pretis et al., 2018). The set of selected dummies was

modified by a search with the following criteria: (i) The number of dummies should be minimal. (ii)

The dummies should have an identifying event or narrative. (iii) The dummies should be statistically

significant at least at the 10% level. (iv) The numerical maximum likelihood should be reasonably

close to the highest value we saw in all of our experiments. (v) The residual diagnostics as well as

the filtered and smoothed states and disturbances should be reasonable.

The final set of dummy variables contains: (1) 1991 in the state equation for G ATM captures the

Pinatubo minimum (Bousquet et al., 2000; Angert et al., 2004). (2) 1991 in the state equation for

E∗: The collapse of the Soviet Union, the 1990 oil price shock, and the first Gulf War in 1991 are

associated with a decrease in emissions. The relation between oil price crises, energy consumption,

and macroeconomic activity has been discussed at length in the econometrics and energy economics

literature, see, e.g., Hamilton (1983); Perron (1989); Hamilton (1996, 2003); Barsky and Kilian (2004);

Kilian (2008, 2009); Stern and Kander (2012). (3) 1997 in the measurement equation for E: There

is a strong spike in levels of E in 1997 due to burning of South East Asian peatlands (Houghton and

Nassikas, 2017). (4) 1996 in variance: Panels [D], [E], and [F] of Figure 1 show that first differences

of E inherit an increase in variance from first differences of E LUC in 1996. This change in variance

in E LUC is displayed in all three source time series (Houghton and Nassikas, 2017; Hansis et al.,

2015; Gasser et al., 2020).

Given these considerations, we propose the following specification for Model II

C∗t+1 = C∗t +G ATM∗
t+1, G ATM∗

t+1 = E∗t+1 − S LND∗t+1 − S OCN∗t+1 + β7I1991,(16)

E∗t+1 = E∗t + β5∆GDP2010,t+1 + β8I1991 +XE
t ,(17)

S LND∗t+1 = c1 +
β1

C0

C∗t+1 + β3SOIt+1, S OCN∗t+1 = c2 +
β2

C0

C∗t+1 + β4SOIt+1.(18)

The measurement equations (5) to (7) remain unchanged while (8) is amended as Et = E∗t +β6I1997

so that the X4,t process is removed from the equation for E based on the results in the Model I. The

remaining disturbance processes Xi,t, for = 1, 2, 3, and XE
t remain while the latter is subject to a

break in its error variance, that is XE
t+1 = φEX

E
t + η4,t with η4,t ∼ N(0, σ2

η4
× (s2

E It≥1996)), which

captures the change in variance in the E residuals from 1996 onwards.
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The additional new coefficients βj, for j = 3, . . . , 9, can all be concentrated out of the log-likelihood

functions by including them as constants in the state vector of the state space representation of the

model. The scale coefficient sE is added to the parameter vector ψ while σ2
η5

and φ4 are removed

from ψ. The estimation of this 12× 1 parameter vector is done by maximum likelihood as described

above.

Table 6. Residual diagnostics for standardized prediction residuals from Model II, see Table 5
for details.

Residual mean std dev skew kurt JB LB(1) DW
C -0.140 0.979 0.167 3.272 0.471 0.350 1.840
E 0.004 0.983 -0.269 3.095 0.759 0.062 1.928
S LND 0.164 0.995 0.285 2.530 1.387 0.223 2.111
S OCN 0.120 0.951 0.440 3.394 2.360 0.648 2.191

5.4. Model II: Results and residual diagnostics. In Table 6 and Figure 5 we present the residual

diagnostics from Model II. There is no evidence of non-normality remaining in the standardized

prediction residuals, and no evidence of serial correlation. The correlograms in Figure 5 show no

evidence of serial correlation, except from two marginally significant spikes in the PACF of the C

equation at higher lags. All autocorrelation coefficients for the sinks processes, in particular, are far

below the significance bands. We conclude that Model II provides a good statistical description of

the data.

Table 7 reports the parameter estimates of Model II and Figure 6 shows the corresponding

smoothed states, together with the data series for comparison, where available. In Table 7, the

basic patterns we have described above for Table 4 remain. The coefficients pertaining to SOI in

the sink processes are highly significant. They are of opposite sign: La Niña phases (positive SOI)

correspond to higher land uptake whereas they correspond to lower ocean uptake. This is to be

expected, see, for example, Feely et al. (1999) and Haverd et al. (2018). The increase in variance of

η4 = ηE in 1996 is highly significant and more than quintuples the pre-1996 variance. The dummy

variables are all of the expected sign. Figure 6 shows that the inclusion of SOI in the sinks makes

them much more dynamic, tracing the data better. G ATM inherits the enhanced dynamics and

also presents a better fit.

5.5. Discussion of empirical results.

5.5.1. Limitations. Section 2 discussed common models for the sink processes and how they can be

approximated by specifications that are linear in concentrations (Bacastow and Keeling, 1973; Gifford,
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Figure 5. Standardized prediction residuals for Model II, ACF autocorrelation func-
tion, PACF partial autocorrelation function. Note that the ACF shows the value for
lag zero (equal to one by definition), while the PACF does not.

(a) Std. residuals C (b) ACF (c) PACF

(d) Std. residuals E (e) ACF (f) PACF

(g) Std. residuals S LND (h) ACF (i) PACF

(j) Std. residuals S OCN (k) ACF (l) PACF
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Table 7. Parameter estimates for Model II, see Table 4.

Coefficients Variances
estimate std err estimate std err

c1 (filt.) -6.70 0.04 σ2
η1

0.66 0.13
c2 (filt.) -4.63 0.03 σ2

η2
0.32 0.06

β1 7.12 0.49 σ2
η3

0.01 0.002
β2 4.99 0.29 σ2

η4
0.004 0.001

β3 (filt.) 0.57 0.09 r12 -0.60 0.09
β4 (filt.) -0.06 0.02 r13 -0.01 0.12
β5 (filt.) 0.11 0.01 sE 2.28 0.51
β6 (filt.) 0.39 0.06
β7 (filt.) -2.04 0.66
β8 (filt.) -0.29 0.06
φ1 0.77 0.08
φ3 0.62 0.12
φE 0.39 0.12

1993). This means, on the other hand, that there is approximation error in the sink processes in

Equations (3) and (4). The residual diagnostics are encouraging in the sense that there is little

evidence of serial correlation remaining, but this may change as new data with higher atmospheric

concentrations are observed, which will increase the influence of second-order terms in the Taylor

approximations in equations (10) and (13). Also, dependence in higher moments cannot be detected

with these measures of linear dependence.

Since model parameters are estimated on the historical sample, they necessarily reflect the techno-

logical conditions that prevailed during the sample period. Forecasts or scenario analyses conducted

with the model write these technological conditions forth through the use of the estimated param-

eters. This holds in particular for the fuel mix that is behind emissions E (e.g., Friedlingstein et

al., 2020). Hence, Model II cannot shed any light on the effects of changes in the energy mix to,

say, higher shares of renewable sources. Note that while this is a limitation of Model II, it is not a

limitation of the state space model class or the general modeling strategy followed in this paper. One

could specify a model that instead of emissions uses consumption quantities of fossil and renewable

energy carriers as exogenous drivers. Then, observations, forecasts, and scenarios of changes in the

consumption quantities of different energy carriers could be employed as input to the model instead

of emissions. We have decided not to pursue this avenue since we wanted to engage the time series of

the GCB, including emissions. Emissions are in essence linear combinations of the consumed energy

carrier quantities, weighted by the physical coefficients that specify how much CO2 is released by

consumption of one unit of the respective carriers (Marland and Rotty, 1984). Note that because of

this definition of emissions, it is not feasible to specify fuel mix variables as explanatory variables
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Figure 6. Smoothed estimates for state vector elements from Model II.

(a) Ct (b) X1,t (c) G ATMt

(d) S LNDt (e) X2,t (f) S OCNt

(g) X3,t (h) Et (i) XE
t

on the right-hand side of the E equation, since this will lead to definitional overlap on the left-hand

and right-hand side variables. The construction of emissions data is, on the other hand, independent

of macroeconomic national accounting and the construction of World GDP data, so that there is no

definitional overlap in our specification of the E equation. To conduct scenario analysis in Section 6,

we shall make use of the versatility of the state space model framework and specify a time-varying

slope coefficient for the emissions equation in order to capture changes in the fuel mix that are

projected to decouple emissions from economic growth (Haberl et al., 2020).
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Figure 7. Budget imbalance BIM, smoothed values, one-year ahead predictions, and
components

(a) Smoothed
−(∆X1+X2+X3)+
β6I1997− β7I1991

(b) One-year ahead
predictions

(c) Components
−∆X1, −X2, −X3

5.5.2. Budget Imbalance. The model facilitates the study of quantities of interest that have been

discussed in the literature. For example, Friedlingstein et al. (2020) define and discuss the budget

imbalance BIM, which is the residual of the GCB equation. The budget imbalance is an important

time series in its own right. For instance, it can be used to assess whether the different GCB data

sources are internally consistent (Friedlingstein et al., 2020). Moreover, it has recently been suggested

that the future budget imbalance may be used to detect potential misreportings of global CO2

emissions (Peters et al., 2017). Hence, accurate modelling and prediction of the budget imbalance is

an important endeavour.

Model II implies BIM∗ = E∗ −G ATM∗ − S LND∗ − S OCN∗ = 0 by way of the equation for

G ATM∗. The corresponding measure of the imbalance in Model II is

BIMt = Et −∆Ct − S LNDt − S OCNt,

= E∗t −G ATM∗
t − S LND∗t − S OCN∗t + β6I1997− (X1,t −X1,t−1)−X2,t −X3,t,

= β6I1997− β7I1991−∆X1,t −X2,t −X3,t.

Figure 7 [A] shows the smoothed values of this process together with the data. There is perfect

overlap: Since the state processes E∗-G ATM∗-S LND∗-S OCN∗ yield zero by definition of the equa-

tion for G ATM∗, all data variation in BIM must be absorbed by the X-processes, which are freely

competing for the data variation in the estimation. Note that X4,t in equation (8) for E was found

to be insignificant, indicating that there is no stationary variation in emissions that contributes to
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BIM. From the estimation of the X-processes we can conclude that BIM is stationary, since it is a

linear combination of processes that were all tested to be stationary.

Table 8. Empirical covariance matrix of the smoothed values of the components of BIM

∆X1 X2 X3

∆X1 0.767 -0.258 0.001
X2 ? 0.313 0.010
X3 ? ? 0.015

Variance decomposition 0.85 0.11 0.04

Figure 7 [B] shows the one-year ahead prediction for BIM obtained from the one-year ahead

predictions of the X-processes, together with 90% pointwise confidence intervals. Figure 7 [C] shows

the individual components −∆X1, −X2, and −X3. The panel indicates visually that most of the

variation originates in −∆X1 and −X2. Table 8 reports the empirical variances and covariances

of the smoothed component processes −∆X1, −X2, and −X3 of BIM. The variance decomposition

confirms the visual inspection of the components: −∆X1 (G ATM) contributes 85% and X2 (S LND)

11% to the total variation of BIM. The contribution of X3 (S OCN) is smallest at 4%.

Figure 8. Airborne fraction and sink rate, their smoothed estimates from both Model II and
Model I, with the data for comparison

(a) Airborne fraction (b) Sink rate

5.5.3. Airborne fraction and sink rate. Figure 8 shows the airborne fraction in panel [A] and the sink

rate in panel [B]. The airborne fraction

AF =
G ATM

E
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is the part of emissions that remains in the atmosphere. On the sample, this fraction is on average

0.44, but is shows substantial variation in the data. The sink rate

SR =
S LND + S OCN

C

is a measure of the capacity of the sinks to absorb atmospheric CO2. Whether or not the airborne

fraction is increasing and/or the sink rate is decreasing has been subject of debate (Canadell et al.,

2007a; Raupach et al., 2008; Knorr, 2009; Le Quéré et al., 2009; Gloor et al., 2010; Raupach et al.,

2014; Rayner et al., 2015; Ballantyne et al., 2015; Bennedsen et al., 2019b).

Figure 8 shows, however, that by calculating AF ∗ and SR∗, the versions of the ratios with ∗-

processes in the numerators and denominators, we obtain new estimates of these variables that

focus on a few key relations of the sinks, and thus they show much less variation. Raupach et al.

(2014) and Bennedsen et al. (2019b) show that there is no evidence of an increase in the airborne

fraction but that there is evidence of a decline in the sink rate. In Figure 8 this can be seen with

the naked eye, in particular for the results from model (1) to (8) that reduces the sinks to linear

regressions on concentrations. The figure also shows confidence intervals for both models obtained

from simulation smoothing (Durbin and Koopman, 2002). Note that these confidence intervals

should not be interpreted such that the data should fall within the boundaries with a certain coverage

probability. Rather, their correct interpretation is that if we were given a large number of trajectories

sampled from the models, and if we were to extract the smoothed state variables and compute the

airborne fraction and the sink rate from these trajectories, the confidence bands will cover these

imputed variables 90% of the time.

6. Validation, forecasting and future scenarios

The exogenous drivers of Model II are World GDP changes and SOI. Based on given trajectories

of these two exogenous variables, all other model variables, being emissions E, land sink S LND,

ocean sink S OCN, growth of atmospheric concentrations G ATM, and atmospheric concentrations

C, can be determined when ignoring the Gaussian random processes. This facilitates three lines of

inquiry: (1) validation, (2) forecasting, and (3) scenario analysis. In validation exercises, the model

is estimated on an estimation subsample, and conditional on the data for the exogenous elements, the

model is employed to produce implied values for the endogenous variables on a validation subsample

that can then be compared to the observations. In forecasting exercises, forecasts of the exogenous

drivers are obtained, either by specifying forecast models for them or by getting them from external



GLOBAL CARBON BUDGET MODEL 33

sources, and they are plugged into the system for generating forecasts of the endogenous variables. In

scenario analyses, usually for long-term projections, artificial trajectories for the exogenous drivers are

assumed that are converted, via the model, to corresponding artificial trajectories for the endogenous

variables. We discuss these three approaches in the following subsections.

The presented results are all obtained from the Kalman smoother, which is applied to the state

space specifications of Models I and II. The smoothed estimates of the state vector are obtained

together with the corresponding variances, and the unknown parameters are replaced by their maxi-

mum likelihood estimates; the details are provided in (Durbin and Koopman, 2012, Chapter 4). The

projections for out-of-sample periods are computed by treating the observations for these periods

as missing. It is well established that the Kalman filter and related methods can treat missing val-

ues without further complications. In all the three lines of inquiry, the results are obtained by the

application of these methods.

6.1. Validation. We conduct a validation exercise on the last 10 years of the sample, that is, the

validation subsample extends from 2010 to 2019. The parameters are estimated for the period 1959–

2009. Using the estimated parameters and the values of ∆GDP2010,t and SOIt for the validation

sample 2010–2019, the implied values of the system are computed for these 10 years. This results in

implied values both for the measurement and for the state variables.

Figure 9 shows the results for the four variables S LND, S OCN, E, and G ATM∗. Note that the

first three variables are in the measurement equation while G ATM∗ is a state variable. We have

chosen to present G ATM∗ instead of C because there are more interesting dynamics in changes of

C, and the differences between the models are easier to distinguish than in levels of C.

The validation is performed on both Model I (black) as well as Model II (blue); the pointwise

90% confidence intervals are based on Model II. In panels [A] to [C], the benchmarks all lie within

the point-wise 90% confidence bands. For G ATM∗, the 2010 data point falls outside the confidence

bands. Note, however, that confidence bands for state processes should not actually be compared

against data points but against the estimated state process given the whole sample. This is plotted in

the dashed green curve, which does fall within the confidence bands. Black and blue lines show that

Model II captures more of the dynamics in the benchmark (and in the data) than Model I, equations

(1) to (8). For E, there is little difference in the fitted values from either model, indicating that

the enriched dynamics of Model II are due to the dependence on SOI. For the sink states, there is a

marked difference between the models (panels [A] and [B]), with the extended specification capturing

the data substantially better.
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Figure 9. Validation exercise on subsample 2010–2019 for Models I and II.

(a) S LND (b) S OCN

(c) E (d) G ATM∗

In summary, the validation exercise shows that Model II provides a good statistical description of

the GCB data. On a validation sample of 10 years, it can generate implied values and confidence

bands from parameters estimated on the first 50 years and from data on ∆GDP and on SOI such

that the data and the smoothed states obtained from the full sample lie reasonably within confidence

bounds.

6.2. Forecasting. Given the data sample period from 1959 to 2019, we carry out a forecast/nowcast

analysis based on Models I and II, for the periods 2020 to 2022. This necessitates forecasting World

GDP changes and the Southern Oscillation Index (SOI).

For World GDP growth, we resort to the forecasts regularly provided and updated by the Interna-

tional Monetary Fund (IMF) and the World Bank (WB). Table 9 shows hindcasts for 2020, reported
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in IMF (July 2019) and World Bank (June 2019), and nowcasts and forecasts for 2021 and 2022,

respectively, reported in IMF (June 2020) and World Bank (June 2020).

Table 9. Forecasts of World GDP growth provided by International Monetary Fund
and World Bank (in percent). All hindcasts, nowcasts, and forecasts are from IMF
(Jan 2021) and World Bank (Jan 2021a). Data are from World Bank (2021b).

2020 2021 2022
IMF -3.5% 5.5% 4.2%

World Bank -4.3% 4.0% 3.8%

We forecast the monthly Southern Oscillation Index (SOI) obtained from Climatic Research Unit

(2021) and Ropelewski and Jones (1987) using the structural time series model of Harvey (1989).

This unobserved components time series model consists of a level component, a monthly seasonal

component, a second-order stochastic cycle (with the cycle-period being estimated as close to 4

years), and a first-order autoregressive component; similar specifications are adopted in Durbin

and Koopman (2012, Section 3.2) and Azevedo et al. (2006). Further details of the model and the

estimation results are presented in Appendix B. This model is used for the generation of the forecasts

for SOI.

Table 10. Forecasts for C, G ATM , E, S LND, and S OCN from Models I and II, given
forecasts of World GDP growth and SOI. Forecast standard errors in parentheses.

2020 2021 2022
Model II Model I Model II Model I Model II Model I

IMF WB IMF WB IMF WB
C (GtC) 879.15

(0.829)
879.07
(0.829)

879.80
(0.964)

883.76
(1.097)

883.47
(1.097)

884.82
(1.303)

889.07
(1.329)

888.53
(1.329)

889.86
(1.556)

G ATM (GtC/Yr) 4.462
(0.149)

4.388
(0.149)

5.082
(0.155)

4.721
(0.253)

4.510
(0.253)

5.100
(0.224)

5.389
(0.337)

5.136
(0.337)

5.118
(0.275)

E (GtC/Yr) 11.212
(0.152)

11.136
(0.152)

11.663
(0.159)

11.721
(0.261)

11.505
(0.261)

11.786
(0.231)

12.129
(0.351)

11.865
(0.351)

11.908
(0.286)

S LND (GtC/Yr) 4.015
(0.686)

4.014
(0.569)

3.793
(0.675)

4.243
(0.569)

4.240
(0.569)

3.854
(0.675)

3.895
(0.569)

3.889
(0.569)

3.915
(0.675)

S OCN (GtC/Yr) 2.647
(0.097)

2.647
(0.097)

2.707
(0.108)

2.701
(0.115)

2.698
(0.115)

2.776
(0.130)

2.811
(0.121)

2.807
(0.121)

2.838
(0.140)

Table 10 and Figure 10 show the forecasts together with estimates of the forecast uncertainty

(forecast standard errors in Table 10 and 90% point-wise confidence bands in Figure 10). Figure 10

only shows the forecast from the IMF forecasts of World GDP. On the three points of the forecast

sample, the forecasts from the two models are distinct in a number of ways. In forecasting atmospheric

concentrations C, Model II generates lower forecasts due to the effects of the Covid pandemic. This is

also reflected in lower forecasts of emissions E and subsequent changes in atmospheric concentrations

G ATM. The SOI is predicted to switch from a La-Niña period (positive numbers) in 2020 and 2021

to an El-Niño period (negative numbers) in 2022. These dynamics are reflected in the forecasts of
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Figure 10. Forecasts for C, G ATM , E, S LND, and S OCN for Model II (blue) and for
Model I (black), with 90% pointwise confidence intervals. Model II employs forecasts of SOI generated
from the model described in Appendix B and forecasts of World GDP changes from the World Bank
and the IMF.

(a) C - IMF (b) G ATM∗ - IMF (c) E - IMF

(d) S LND - IMF (e) S OCN - IMF

G ATM∗, E, S LND, and S OCN: Model II forecasts G ATM to decrease in 2020, to increase some in

2021 and then substantially in 2022. The forecast implied by the IMF’s GDP forecast reaches 2019

G ATM levels again in 2022; the forecast implied by the World Bank’s numbers falls short of that

level by about 0.3 GtC/Year. The sink processes are forecast to react moderately to these changes

in the exogenous variables, and the differences from the GDP forecasts are very small. Model I does

not take any of this information into account and simply extrapolates from the 1959-2019 dynamics.

6.3. Scenario analysis. In this section, we conduct scenario analyses based on assumed paths

for World GDP and we present long-term projections of emissions, sinks activity, and atmospheric

concentrations for the period 2020–2050. In all scenarios, SOI is set to zero, implying that we are

not using scenarios for the ENSO cycle. Given an assumed GDP path for the period up to 2050, we

treat the other variables as missing for this future period and obtain estimates of the model variables

using the Kalman smoother.
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Figure 11. Scenario analysis for different World GDP growth paths with decreasing
emission intensity of GDP and without additional emission reductions

(a) E∗ (b) S LND∗ (c) S OCN∗

(d) G ATM∗ (e) C∗

We consider four scenarios for World GDP growth 2020–2050: (1) constant annual growth of 0.01,

(2) constant annual growth equal to the historical mean of 0.034 during the 1959–2019 period, (3)

constant annual growth equal to 0.05, and (4) a growth scenario employed in Piketty (2014) of 0.034

until 2030 and 0.03 until 2050.

The emissions equation (17) is defined to be broadly consistent with the Kaya identity in first

differences (Kaya and Yokobori, eds, 1997; Raupach et al., 2007). Therefore, the parameter β5 can be

interpreted as the emission intensity of World GDP. For the purpose of scenario analysis, we assume

that this emission intensity declines linearly to zero between 2020 and 2050. This assumption reflects

the finding that the emission intensity has been decreasing for many countries (Friedlingstein et al.,

2020; Andrew, 2021) and that it is an important policy goal in the transition to more sustainable

growth (Haberl et al., 2020). The linear decline to zero by 2050 is motivated by the scenarios

discussed in Masson-Delmotte et al. (2018). It is a simplification that abstracts from complexities

such as negative emissions or rebound effects (Brockway et al., 2021; Bruns et al., 2021).
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Figure 12. Scenario analysis for emission reductions consistent with 1.5 degree warming

(a) E∗ (b) S LND∗ (c) S OCN∗

(d) G ATM∗ (e) C∗ (f) Emission reductions

We conduct two different sets of scenario analyses. In the first set, the only process working

towards more sustainability is the decreasing emission intensity. In particular, there are no further

emission reductions. In the second set of scenarios, in addition to the declining emission intensity

we consider emission reductions that are consistent with 1.5 degree global warming targets, similar

to the scenarios laid out in Masson-Delmotte et al. (2018) and summarized in UNFCCC (2021).

The results of the first set of scenarios are shown in Figure 11. Emissions follow three clearly

separated cones for the three constant growth scenarios, and the Piketty scenario is close to the 0.034

scenario, as to be expected. Towards the end of the projection period close to 2050, emissions level

out. This happens because the emission intensity is near zero and World GDP is essentially decoupled

from emissions. Changes in atmospheric concentrations G ATM∗ reach a maximum around 2045 in

the 0.034 and 0.05 scenarios and decline thereafter. This is because emissions level out while the

sinks remain highly active according to their linear dependence on the high level of concentrations.

The concave shape of G ATM∗ with a maximum thus depends on the assumption that the sinks do

not saturate. The mean implied atmospheric concentrations in 2050 for the four scenarios are (1)
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1015GtC (477ppm) for the 0.01 scenario, (2) 1100GtC (517ppm) for the 0.034 scenario, (3) 1176GtC

(552ppm) for the 0.05 scenario, and (4) 1092GtC (514ppm) for the Piketty scenario.

The results of the second set of scenarios are shown in Figure 12. Here, the path for emissions

is set to decline from 2020 to 2050 linearly to zero, broadly in line with the recommendations set

forth in Masson-Delmotte et al. (2018) to keep global warming to 1.5 degrees over the pre-industrial

level. We impose this path on the emissions variable in the measurement equation (8) and run the

Kalman recursions. The Kalman smoother gives the implied paths for the sinks and the growth of

atmospheric concentrations. Note that the paths are actually plotted for all four growth scenarios

with their confidence bands, but since the emission path is given deterministically, there is little

room for variation or uncertainty. Most uncertainty remains in the sinks activity, but even this is

very limited. The sinks and the atmospheric concentrations peak in 2030, and decline thereafter.

Atmospheric concentrations reach a maximum of 899GtC (422ppm) in 2030 and decline to a level of

834GtC (392ppm) by 2050.

Since, in this model, economic activity generates CO2 emissions, economic growth will result in

a greater mitigation burden than that implied by the ostensibly required yearly mitigation target

given by Et − Et−1. In effect, as long as the economy has not been fully decoupled from emission

generating activities, economic activity will work against other emission mitigation efforts. In this

scenario exercise, this is captured by the process XE
t = Et−Et−1−β5∆GDPt, which precisely denotes

the necessary level of emissions reductions needed to accommodate the emissions path Et, shown in

panel [A] of Figure 12, after taking into account emissions from economic activity, here captured

by changes in World GDP. Thus, in this scenario exercise, the term XE
t measures the mitigation

burden implied by the imposed E path (panel [A]) and the scenario of future economic activity

(GDP growth). Similarly to the other state variables, the Kalman smoother can also be applied to

extract the implied path of XE
t on the interval 2020-2050, which is shown in the last panel of Figure

12. It is evident that the magnitude of the required reductions depends heavily on future economic

activity, with higher growth rates of World GDP implying the need for larger emissions reductions

from 2020 to 2050. For instance, even in the present case, where we optimistically assume that

emissions become completely decoupled from economic activity in 2050, there is still an almost 100%

increase in the mitigation burden when comparing the low growth to the high growth scenario. These

findings highlight the role of future economic activity in the context of emissions mitigation efforts.

In particular, we see how economic growth will, at least in the short term, work against mitigation
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efforts and thus affect the societal adjustments needed to reach prescribed emissions targets, such as

those implied by the Paris Agreement.

7. Conclusions and directions for further research

We proposed a statistical model for the global carbon budget, consisting of the time series vari-

ables: atmospheric CO2 concentrations, anthropogenic CO2 emissions, and land and ocean CO2

uptake (sinks). The cornerstone of the model is the budget equation, which ensures that the fraction

of emissions that is not absorbed by the terrestrial biosphere and the ocean constitutes an annual

flow to the stock of atmospheric concentrations. We discussed the central assumptions of random

walk with drift dynamics for anthropogenic emissions and linear dependence of sinks on atmospheric

concentrations. The model equations then allow for a closed-form solution for atmospheric concen-

trations that reveal stochastic integration of order one with a second near unit root. This shows

that the deterministic trend in concentrations is linear, but will on finite samples appear quadratic

due to the second near unit root. We also discussed that the second root moves closer to unity with

increasing atmospheric concentrations.

In a Monte Carlo study we showed that parameter estimation by maximum likelihood (facilitated

by Kalman filter methods) has good properties even on finite samples. In a empirical study for

the global carbon budget data set as provided by the Global Carbon Project, we presented the

model parameter estimates, residual diagnostics, and projections of the model variables. Based on

this model analysis, we decomposed the variation in the budget imbalance into contributions from

concentrations, land sink, and ocean sink. We discussed the airborne fraction and sink rate implied

by our model.

We presented a number of out-of-sample exercises and pseudo-out-of-sample exercises. First, we

re-estimated the model parameters using the first 50 years of data and validated these on the last 10

years of data. Second, we adopted the model, together with external forecasts of World GDP and

SOI, to forecast anthropogenic emissions, atmospheric concentrations, land sink, and ocean sink for

three years (one year of nowcasts, two years of forecasts). Finally, we conducted two sets of scenario

analyses with different assumptions on declining emission intensity of World GDP and emission

reductions and show the implied paths for sinks and atmospheric concentrations.

We plan several directions for extending the model. Given the current model structure, it is

conceptually straightforward to include individual ensemble members rather than the averages of

them for S LND and S OCN The model structure is also conducive for increasing the resolution on
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the macroeconomic sphere. For example, we can replace World GDP in emissions by factors obtained

from large macroeconomic data sets. The mechanics of the global carbon cycle can be extended to

include elements of widely used small-scale climate models. The model structure can be extended

by energy balance modules to provide a modeling connection to global temperatures.
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Appendix A. System matrices

Motivated by the findings in Section 4, which are summarily listed in the beginning of Section 5,

we specify the Xi and XE processes as follows.

X1,t+1 = φ1X1,t + η1,t+1,(19)

X2,t+1 = η2,t+1,(20)

X3,t+1 = φ3X3,t + η3,t+1,(21)

X4,t+1 = η4,t+1, ,(22)

XE
t+1 = φEX

E
t + η5,t+1,(23)

where φ1,3 ∈ (−1, 1). Defining the measurement vector as yt = (Ct, Et, S LNDt, S OCNt)
′ and the

state vector as αt = (C∗t , G ATM∗
t , S LND∗t , S OCN∗t , X1,t, X2,t, X3,t, X4,t, X

E
t , E

∗
t )
′, the model can

be represented as

yt = Zαt,

Bαt+1 = c̃+ T̃αt + η̃t,(24)

where the matrix B contains the contemporary relations: G ATM depending on concurrent E,

S LND, and S OCN, the sinks depending on concurrent C.

Pre-multiplying the state equation with B−1 transforms model (24) to standard state space form:

yt = Zαt,

αt+1 = c+ Tαt + ηt.(25)

Explicitly, (25) is given by the measurement equation


Ct

Et

S LNDt

S OCNt

 =


1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0





C∗t
G ATM∗

t

S LND∗t
S OCN∗t
X1,t

X2,t

X3,t

X4,t

XE
t

E∗t



.
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The state equation is

1 −1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 −1

− β1
C0

0 1 0 0 0 0 0 0 0

− β2
C0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1





C∗t+1

G ATM∗
t+1

S LND∗t+1

S OCN∗t+1

X1,t+1

X2,t+1

X3,t+1

X4,t+1

XE
t+1

E∗t+1



=



1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 φ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 φ3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 φE 0

0 0 0 0 0 0 0 0 1 1





C∗t
G ATM∗

t

S LND∗t
S OCN∗t
X1,t

X2,t

X3,t

X4,t

XE
t

E∗t



+



0

0

c1

c2

0

0

0

0

0

d



+



0

0

0

0

η1,t

η2,t

η3,t

η4,t

η5,t

0



.

It holds that

1 −1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 −1

− β1
C0

0 1 0 0 0 0 0 0 0

− β2
C0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



−1

=



1
c

1
c

−1
c

−1
c

0 0 0 0 0 1
c

−(β∗
1+β∗

2 )

c
1
c

−1
c

−1
c

0 0 0 0 0 1
c

β∗
1

c

β∗
1

c

1+β∗
2

c

−β∗
1

c
0 0 0 0 0

β∗
1

c

β∗
2

c

β∗
2

c

−β∗
2

c

1+β∗
1

c
0 0 0 0 0

β∗
2

c

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



,

where

β∗1 =
β1

C0

, β∗2 =
β2

C0

, c = 1 + β∗1 + β∗2 .
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Then,
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c
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0 0 0 0 0 0 0 0 0 1





1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 φ1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 φ3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 φE 0

0 0 0 0 0 0 0 0 1 1



=
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

.
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The covariance matrix Q of the errors ηt in the state equation is given by zeros except the entries

in rows and columns 5 to 9, which are

Q[5 : 8, 5 : 8] =



σ2
η1

r12ση1ση2 r13ση1ση3 0 0

r12ση1ση2 σ2
η2

0 0 0

r13ση1ση3 0 σ2
η3

0 0

0 0 0 σ2
η4

0

0 0 0 0 σ2
η5


.

Appendix B. Forecast model for Southern Oscillation Index

The forecast model for monthly data on the Southern Oscillation Index (SOI) covering the period

Jan-1866 to Dec-2020, obtained from Climatic Research Unit (2021) and Ropelewski and Jones

(1987), is a basic structural time series model as outlined in (Durbin and Koopman, 2012, Section

3.2). The model is

SOIt = ψt +
6∑
j=1

γj,t + εt,(26)

εt = φεt−1 + ηt,

where ψt is a cycle component defined below, ηt ∼ N(0, σ2
η), and |φ| < 1. The monthly seasonal

component is defined as

γj,t = γ̃j cosλjt+ γ̃∗j sinλjt,(27)

γj,t = −γ̃j sinλjt+ γ̃∗j cosλjt,(28)

and

λj =
2πj

12
.

A chi-square test for seasonality strongly rejects the null of no seasonality (29.322, with p-value

0.002). Specifying a stochastic version of the seasonal component, where equation (27) contains a

random error variable, resulted in an estimated variance indistinguishable from zero, and thus the

deterministic form displayed above was adopted here.

The cycle component ψt is defined as ψt = ψ
(2)
t , where ψ

(j)
t+1

ψ
∗(j)
t+1

 =

 cosλ sinλ

− sinλ cosλ

 ψ
(j)
t

ψ
∗(j)
t

+

 ψ
(j−1)
t

ψ
∗(j−1)
t

 , j = 1, 2,
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with

ψ
(0)
t = κt ∼ N(0, σ2

κ) and ψ
∗(0)
t = κ∗t ∼ N(0, σ2

κ).

This is a second-order stochastic trigonometric cycle component with period 2π/λ (Azevedo et al.,

2006). The frequency is estimated as λ̂ = 0.129, translating to an estimated period of 48.7 months

or about 4 years.

Including a local linear form of a trend and intercept term in (26) in addition to the AR-error and

the seasonal structure,

µt = µt−1 + νt−1 + ξt−1, ξt ∼ N(0, σ2
ξ ),

νt = νt−1 + ζt−1, ζt ∼ N(0, σ2
ζ ),

resulted in estimated variances σ2
ξ and σ2

ζ indistinguishable from zero, and thus the deterministic

form µ+ νt was tested next. The estimation resulted in insignificant coefficients µ and ν, consistent

with the cyclical nature of El-Niño and La-Niña phases, and so the specification (26) with cycle,

season, and AR(1) error was chosen.

Figure 13 shows the SOI data in the upper left panel, the smoothed cycle component E
(
ψ̂t

∣∣∣YT) in

the upper right panel, the smoothed seasonal component E
(∑6

j=1 γ̂j,t

∣∣∣YT) in the middle left panel,

the smoothed AR(1) component E ( ε̂t|YT ) in the middle right panel, and the smoothed residual

E ( η̂t|YT ) in the lower left panel. Here, YT is the data on the entire sample.

Figure 13. Fitted forecast model for SOI
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Figure 14 shows the standardized residuals from the one-step-ahead prediction in the upper left

panel, the estimated sample autocorrelation function of the residuals in the upper right panel, a

smoothed periodogram of the residuals in the bottom left and a histogram of the residuals in the

bottom right panel.

Figure 14. Residuals from forecast model for SOI
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The Durbin-Watson statistic of the residuals is 2.00; the R2 of the regression is 0.26. The Ljung-

Box statistics for the first 12 lags of residuals are not significant at the 95% confidence level, despite

the high number of observations (T = 1860).

The estimated parameters of the forecast model are reported in Table 11. The forecast values for

Jan-2021 through Dec-2022 are shown in Table 12. These forecast values were used to produce the

annual forecasts of SOI used in the forecast of the global carbon budget system in Model II displayed

in Figures 10 and Table 10. These annual forecasts are the averages of the monthly values and are

0.598 for 2021 and -0.124 for 2021.

Table 11. Estimated parameters for model (26).

φ λ σ2
κ γ1 γ∗1 γ2 γ∗2 γ3 γ∗3 γ4 γ∗4 γ5 γ∗5 γ6

Estimate 0.39 0.129 0.01 -0.03 1e-4 0.02 -0.03 -0.03 0.04 0.05 -0.02 0.07 -0.03 0.03
std.err. 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
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Figure 15. Forecasts for SOI
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Table 12. Forecasts of SOI Aug-2020 through Dec-2021.

Jan 2021 1.131 Jan 2022 0.191
Feb 2021 0.890 Feb 2022 0.015
Mar 2021 0.752 Mar 2022 -0.113
Apr 2021 0.835 Apr 2022 -0.024
May 2021 0.745 May 2022 -0.097
Jun 2021 0.537 Jun 2022 -0.271
Jul 2021 0.689 Jul 2022 -0.070
Aug 2021 0.341 Aug 2022 -0.355
Sep 2021 0.476 Sep 2022 -0.149
Oct 2021 0.250 Oct 2022 -0.297
Nov 2021 0.236 Nov 2022 -0.228
Dec 2021 0.289 Dec 2022 -0.092

2021 0.598 2022 -0.124
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