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ABSTRACT

Econometric studies for global heating have typically used regional or global temperature
averages to show that they exhibit long memory properties. One typical explanation behind the
long memory properties of temperature averages is cross-sectional aggregation. Nonetheless,
the formal analysis regarding the effect that aggregation has on the long memory dynamics
of temperature data has been missing. Thus, this paper studies the long memory properties of
individual grid temperatures and compares them against the long memory dynamics of global
and regional averages. Our results show that the long memory parameters in individual grid
observations are smaller than the ones from regional averages. Global and regional long memory
estimates are found to be greatly affected by temperature measurements at the Tropics, where the
data is less reliable. Thus, this paper supports the notion that aggregation may be exacerbating
the long memory estimated in regional and global temperature data. The results are robust to
the bandwidth parameter, limit for station radius of influence, and sampling frequency.

Keywords Global Heating · Regional Temperature · Climate Econometrics · Long Memory · Aggregation

JEL Classification Q54; C22; C43; C14.

1 Introduction

From its inception, long memory models have been associated with the analysis of climate data. One of the first
works on long memory is due to Hurst (1956). The author studied the long-term capacity of reservoirs for the Nile
and recommended to increase the height of a dam to be built given his observations on cycles of highs at the river.
His analysis showed that a dam built based on a short memory model would be more prone to overflow, hence
increasing the risk of a catastrophic event, that one built based on a long memory model. That is, incorporating
long memory properties leads to a more accurate characterisation of climate data. Moreover, Hurst’s observations
served as inspiration for Mandelbrot’s work on fractional Brownian motion; see Mandelbrot (1967); Mandelbrot
and Van Ness (1968). The authors labelled this phenomenon the Joseph effect in reference to the account of
“seven years of great abundance” followed by “seven years of famine”.

In temperature data, Bloomfield (1992), and Bloomfield and Nychka (1992) are among the first to use long memory
models in the analysis. They noted that long memory should be incorporated in trend estimations for temperature
series. More recently, Baillie and Chung (2002), and Mills (2007) use fractionally differenced models to estimate
the long memory parameter, while Gil-Alana (2005) and Mangat and Reschenhofer (2020) use semiparametric
estimators in the frequency domain. They all conclude that temperature data possess long memory. Nonetheless,
they differ as to the degree of memory. The distinction is relevant given that a large degree of memory implies a
nonstationary process or even a process that does not revert to the mean.

Most articles have focused on analysing regional or global average temperature anomalies data. In this regard,
several authors have argued that aggregation may be the reason behind the presence of long memory in temperature
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data; see Baillie and Chung (2002); Mills (2007); Gil-Alana (2005). Nonetheless, to the best of our knowledge,
there is no formal analysis on whether aggregation may explain the long memory in the temperature data. Thus,
this paper looks to determine the role that aggregation has on the presence of long memory in temperature data.
The analysis relies on estimating the long memory parameter in the individual grid temperature series and compare
them against the estimates in regional and global averages.

We use data from the NASA Goddard Institute for Space Studies, the GISS Surface Temperature Analysis
(GISTEMP, hereinafter). The data is updated monthly and combines data from land and ocean surface temperatures
to estimate global temperature change; see Lenssen et al. (2019); GISTEMP Team (2020). A total of 16200
grid observations are reported in the data, along with several regional temperature averages. The data is publicly
available at data.giss.nasa.gov/gistemp/

The long memory parameters are obtained using semiparametric estimators in the frequency domain given the
results by Haldrup and Vera-Valdés (2017) on long memory by cross-sectional aggregation. The authors show that
cross-sectionally aggregated data does not imply the fractional difference operator. Thus, parametric estimators
based on the fractional difference operator are misspecified for aggregated data.

Our results show that the long memory parameters in individual grid observations are lower than for the regional
averages. Moreover, the long memory dynamics for the aggregated data seems to be greatly affected by the
measurements around the Tropics, where data is less reliable. Thus, our results support the notion that aggregation
may be exacerbating the long memory estimated in aggregated temperature data.

The results are robust to the bandwidth parameter, limit for station radius of influence, and sampling frequency.

This paper proceeds as follows: Section 2 presents the data used in the analysis. Section 3 discusses long memory
modelling, aggregation as a theoretical motivation for the long memory in the data, and semiparametric estimators
for long memory. Our main results are presented in Section 4, while Section 5 discusses limitations and further
work.

2 Temperature Anomalies

Figure 1 shows the temperature anomalies against the 1951-1980 baseline for August 2020.

Figure 1: Author’s own plot with data from GISTEMP. Smoothing radius of 1200km.

The figure shows the temperature anomalies at individual grids across the globe considering a 1200km smoothing
radius; that is, each grid considers stations located within 1200km from the specified grid point. A similar map
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can be plotted for each month since 1850. Furthermore, GISTEMP also presents data using a 250 smoothing
radius, which we will use in our analysis as part of our robustness exercises.

Given the vast amount of information contained in GISTEMP, regional and global temperature averages are
typically considered in climate econometrics research; see Section 1. Figure 2 shows the Global, Northern
Hemisphere, and Southern Hemisphere temperature anomalies data reported by GISTEMP. Moreover, the
figure shows the temperature anomaly series for the grid containing London, (51◦,−1◦). Also shown are their
autocorrelation functions. This paper estimates the long memory parameter for the temperature data at each grid
shown in Figure 1 and compares them against the long memory estimates in the regional temperature data shown
in Figure 2.

Figure 2: Temperature anomalies and sample autocorrelation functions for monthly regional temperatures
presented by GISTEMP. The temperature reported near London (51◦,−1◦) and its autocorrelation function is also
shown.

One obstacle of global temperature datasets is the number of missing observations. Almost all meteorological
stations undergo relocation or changes in instruments that result in missing observations; see Xu et al. (2013); Yan
et al. (2010). One way to deal with missing data is to impute them using previous observations and measurements
at nearby stations. Nonetheless, imputation intrinsically introduces further uncertainty into the analysis. Thus, our
analysis focuses on the most recent subsample without missing observations for each grid. We discard grids with
less than 50 observations in the last subsample without missing observations. A total of 219 grids out of 16200 are
removed from the analysis.

3 Methods

In this section, we detail the long memory property and its different definitions in the literature. Moreover, we
explain the aggregation argument behind the presence of long memory in real data and several semiparametric
estimators.
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3.1 Long Memory

The study of long memory in econometrics goes back to Granger’s (1966) research on the shape of the spectrum
of economic series near the origin. Granger found that the spectrum diverges to infinity as the frequency goes to
zero for many financial and economic series, what the author called “the typical shape”. This kind of behaviour
has led to several definitions of long memory. In this paper, we consider three of the most common definitions of
long memory; they are presented in the following definition.

Definition 1 Let xt be a time series with autocovariance function γx(k), and spectral density function fx(λ),
and let d ∈ R, then xt has long memory:

1. in the spectral sense if fx(λ) ∼ Cfλ−2d as λ→ 0 with Cf a constant;

2. in the self-similar sense if m1−2dCov
(
x

(m)
t , x

(m)
t+k

)
∼ Cmk

2d−1 as k,m → ∞ where x(m)
t =

(xtm−m+1 + · · ·+ xtm)/m, with m ∈ N, m/k → 0, and Cm is a constant;

3. in the covariance sense if γx(k) ∼ Cxk2d−1 as k →∞ with Cx a constant.

Above, Cov(x, y) is the covariance function between x and y, g(x) ∼ h(x) as x → x0 means that g(x)/h(x)
converges to 1 as x tends to x0, and d is called the long memory parameter. Furthermore, the process is shown to
be stationary if d < 1/2, and it reverts to its mean if d < 1.

Definition 1 is the feature discussed by Granger (1966) in his study of the typical spectral shape for economic
variables. The definition is based on the property that the spectral density for a long memory process has a pole
at the origin. The behaviour of the spectrum near the origin is also used in the construction of semi-parametric
estimators in the frequency domain, see Section 3.3.

Definition 2 is based on the work on fractals and self-similarity by Mandelbrot and Van Ness (1968). Self-similarity
implies that the degree of memory is asymptotically equivalent for different levels of temporal aggregation. Thus,
asymptotically, the long memory parameter is statistically the same whether we estimate it at different sampling
frequencies. This property is relevant for the study of temperature data given that the literature has used both
monthly and yearly data to test for long memory properties. Under self-similarity, the long memory parameter
estimates are statistically equivalent in both sampling frequencies. Nonetheless, the shortened sample size must be
taken into consideration when estimating the long memory parameter on yearly data.

Definition 3 is concerned with the behaviour of the autocorrelation function for large lags. It was one of the
motivations behind the ARFIMA class of models due to Granger and Joyeux (1980), and Hosking (1981). They
proposed to use the fractional difference operator to induce long memory properties. Fractionally differenced
processes are given by:

(1− L)dxt = εt, (1)

where εt is a white noise process, and d ∈ R. Using the standard binomial expansion, we can decompose the
fractional difference operator, (1− L)d, in a series with coefficients φj = Γ(j + d)/(Γ(d)Γ(j + 1)) for j ∈ N,
and where Γ(j) is the gamma function. Using Stirling’s approximation, it can be shown that these coefficients
decay at a hyperbolic rate (φj ∼ jd−1 as j →∞), which in turn translates to slowly decaying autocorrelations.
Figure 2 shows the sample autocorrelation functions for global and regional temperature anomalies, as well as for
the temperature anomaly at the London grid (51◦,−1◦). Note that all autocorrelation functions show hyperbolic
decay. In particular, the autocorrelations are statistically significant even after 100 lags. That is, temperature data
seems to exhibit long memory in the covariance sense. Furthermore, the degree of memory seems to be larger
for the regional and global averages than for the individual temperature grid. This analysis relies on properly
estimating these degrees of memory.

The fractional difference operator remains to be the most popular mechanism to model and generate long memory
even though, to the best of our knowledge, there are no theoretical arguments for its occurrence in real data. In this
regard, the next section presents cross-sectional aggregation, one of the most predominant theoretical explanations
for the presence of long memory in real data.
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3.2 Cross-sectional aggregation

Granger (1980) showed that long memory can result from the cross-sectional aggregation of short memory
processes. The author considered the process defined by:

xt =
1√
N

N∑
j=1

xj,t, (2)

where j = 1, · · · , N ∈ N, and each xj,t is an independent autoregressive process with random coefficient given
by:

xj,t = αjxj,t−1 + εj,t (3)
where εj,t is an independent identically distributed process with E[εj,t] = 0, and E[ε2j,t] = σ2, ∀t ∈ Z.
Furthermore, α2

j is sampled from the Beta distribution, independent from εj,t, with the following density:

B(α; a, b) =
1

B(a, b)
αa−1(1− α)b−1 for α ∈ (0, 1),

with a, b > 0, and where B(a, b) is the Beta function.

Granger (1980) showed that taking a large number in the cross-sectional dimension, the resulting process will
exhibit hyperbolic decay instead of the standard geometric one. Moreover, Haldrup and Vera-Valdés (2017)
showed that cross-sectionally aggregated processes are long memory according to all definitions considered in this
analysis.

The aggregation argument is illustrated in Figure 3. The figure shows the autocorrelation functions for four autore-
gressive processes with different autoregressive parameter, (3). Moreover, the figure shows the autocorrelation
function for the aggregated process, (2).

Figure 3: Autocorrelation functions for individual AR(1) processes with different autoregressive coefficient. Also
shown, the autocorrelation function of the aggregated process.

As argued by Granger (1980), and later shown by Zaffaroni (2004), the degree of memory of the aggregated
process is determined by the behaviour of the Beta density function near one. That is, the more probability mass
around one, the greater the degree of memory. An example of this argument can be seen in Figure 3. Note that the
long-term behaviour of the aggregated process is influenced by combining three autoregressive processes with
coefficient away from one, with one autoregressive process with a near-unity coefficient. In this regard, the more
autoregressive processes with coefficients near unity, the greater the degree of memory in the aggregate.

The cross-sectional aggregation result has been extended in several directions, including to allow for general
ARMA processes, as well as to other distributions; see Linden (1999), Oppenheim and Viano (2004), and
Zaffaroni (2004), to name a few. Furthermore, Vera-Valdés (2020) has shown via simulations that the fractional
difference operator produces well performing forecasts for aggregated processes.

In economic data, cross-sectional aggregation plays a significant role in the generation of long memory. For
example, cross-sectional aggregation has been cited as the source of long-range dependence for inflation, output,

5



TEMPERATURE ANOMALIES, LONG MEMORY, AND AGGREGATION

and volatility; see Balcilar (2004), Diebold and Rudebusch (1989), Altissimo et al. (2009), and Osterrieder et al.
(2019). As pointed in Section 1, aggregation has been cited as the explanation behind the presence of long memory
in temperature data given its reliance on temperature aggregates.

One important distinction regarding long memory generated by aggregation is that it does not belong to the
class of processes generated using the fractional difference operator; see Haldrup and Vera-Valdés (2017). Thus,
parametric estimators based on the fractional difference operator are misspecified for long memory processes by
cross-sectional aggregation. Nonetheless, given that aggregated processes are long memory in the spectral sense,
we can consistently estimate the long memory parameter in the frequency domain. The next section presents the
semiparametric estimators of long memory in the frequency domain.

3.3 Semiparametric estimators of long memory

The semiparametric estimators in the frequency domain are based on the long memory definition in the spectral
sense, see 1. The idea is to evaluate the periodogram of the time series, an estimator of the spectral density, in a
vicinity of the origin, where the spectral density, fX(λ), is driven by the long memory parameter.

The semiparametric estimators are typically divided between the log-periodogram regression method suggested by
Geweke and Porter-Hudak (1983), and the local Whittle approach developed by Künsch (1987).

On the one hand, the log-periodogram regression [GPH, henceforth] is given by:
log(I(λk)) = c− 2d log(λk) + uk, k = 1, · · · ,m, (4)

where I(λk) is the periodogram of xt, λk = ei2πk/T are the Fourier frequencies, c is a constant, uk is the error
term, andm is a bandwidth parameter that grows with the sample size. Note that the zero frequency is not included
in (4), making the estimator robust to the specification of the mean.

The consistency and asymptotic normality of the log-periodogram regression have been proved by Robinson
(1995b); Velasco (1999b, 2000). Denote d̂GPH to the estimate of the long memory parameter via the log-
periodogram regression, the authors show that:

√
m(d̂GPH − d) −→

d
N

(
0,
π2

24

)
, (5)

where m is the bandwidth as before, and −→
d

denotes convergence in distribution.

Andrews and Guggenberger (2003) [AG, hereinafter] proposed to replace the constant in (4) with a polynomial in
λ2
k to reduce the bias. Note that the polynomial only considers even degrees given that odd degrees do not help in

reducing the bias. In classical bias-variance trade-off, the reduction in bias comes at the cost of an increase in
the variance, which depends on the degree of the polynomial used for estimation. For our analysis, we add one
polynomial term in (4), which results in the variance of the estimate of 2.25 times the one shown in (5).

On the other hand, Künsch (1987) used a likelihood approach in the so-called local Whittle estimator of the long
memory parameter. The author proposed to estimate the parameter as the minimiser of the local Whittle likelihood
function given by:

R(d) = log

(
1

m

m∑
k=1

λ2d
k I(λk)

)
− 2d

m

m∑
k=1

log(λk), (6)

where I(λk) is the periodogram of xt, λk = ei2πk/T are the Fourier frequencies, and m is the bandwidth
parameter.

The consistency and asymptotic normality of the local Whittle estimator have been proved for regions of d that are
empirically relevant in most application by Robinson (1995a); Velasco (1999a); Phillips and Shimotsu (2004).
Denote d̂LW to the estimate of the long memory parameter via the local Whittle estimator, the authors show that:

√
m(d̂LW − d) −→

d
N

(
0,

1

4

)
, (7)

where m is the bandwidth as before. In particular, note that the local Whittle estimator has less variance than both
estimators by log-periodogram regression above.

A further refinement to the local Whittle approach was suggested by Shimotsu and Phillips (2005). The authors
proposed the exact local Whittle estimator as the minimiser of the function given by:

R(d) = log

(
1

m

m∑
k=1

I∆d(λk)

)
− 2d

m

m∑
k=1

log(λk),
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where I∆d(λk) is the periodogram of (1 − L)dxt, λk = ei2πk/T are the Fourier frequencies, and m is the
bandwidth parameter. The estimator was later extended to allow for nonzero means and time trends in the so-called
feasible exact local Whittle (FELW, hereinafter); see Shimotsu (2010). Furthermore, the author shows that the
consistency and asymptotic normality of the FELW are the same as for the local Whittle estimator.

Our preferred method uses the mean-squared error optimal bandwidth of m = T 4/5, where T is the sample size,
for all the estimators. The optimal bandwidth was obtained by Hurvich et al. (1998). Nonetheless, we consider the
commonly used bandwidth of m = T 1/2 to allow for easy comparisons to other research, and as a robustness
exercise.

Furthermore, note that the variances of the semiparametric estimators of long memory only depend on the
bandwidth, which directly depends on the sample size; see (5) and (7). Thus, estimates using the same bandwidth
and approximately the same sample size will exhibit similar uncertainty. Moreover, analysis using yearly
observations may suffer from increased uncertainty in the estimates, given the reduced sample size. However,
following the self-similar property of long memory processes, they are asymptotically equivalent, see Definition 2.

4 Results

In this section, we show the results from estimating the long memory parameter using semiparametric estimators
in temperature anomalies data. We consider temperature anomalies in individual grids and compare them against
regional and global averages. Our preferred method uses the optimal bandwidth and the larger monthly datasets.
As robustness exercises, we consider yearly data, different smoothing radius, and values for the bandwidth
parameter.

4.1 Monthly data with 1200km smoothing radius and optimal bandwidth

Table 1 presents the long memory estimates from the monthly regional and global temperature averages computed
by GISS, as well as for temperature at the London grid for the 1200km smoothing radius dataset; that is, the
data presented in Figure 3. We use the optimal bandwidth of T 4/5, with T the sample size. The table shows that
the long memory parameter is statistically larger for the regional and global averages than in the London grid.
In particular, all estimates from the regional and global averages are more than four standard deviations apart
from the estimates at the London grid. That is, the confidence intervals do not intersect, and are thus statistically
different.

Moreover, long memory estimates for regional and global averages imply that they follow a nonstationary process;
that is, d > 0.5. Nonetheless, all long memory estimates imply processes that revert to the mean, d < 1.

Series GPH AG LW FELW Sample Size
Global 0.6332 0.7475 0.6682 0.6304 1688
North Hem. 0.5429 0.6247 0.5765 0.5584 1688
South Hem. 0.6407 0.6904 0.6430 0.6159 1688
London (51◦,−1◦) 0.2346 0.2388 0.2288 0.2354 1688
Std. Dev. 0.0328 0.0492 0.0256 0.0256

Table 1: Long memory estimates for monthly regional temperature anomalies using the optimal bandwidth. For
the London grid, we use the 1200km smoothing radius dataset.

As previously mentioned, GISTEMP contains individual temperature data for 16200 grids. It will be unwieldy to
present a table with long memory estimates for the temperature at all grids. Thus, Figure 4 presents the results
for all individual grid points in a global map for each estimator considered. The figure presents some interesting
findings.

First, note that the degree of memory seems to be smaller for land than for ocean surface temperature. Moreover,
the degree of memory decreases as we move away from the Equator. There are two possible explanations for this
result. The small number of long stations records in Africa and South America could make the results less reliable
there; see (Hansen et al., 2010). Moreover, temperature around the Tropics is influenced by El Niño cycle of ocean
temperature.

Second, long memory estimates at individual land grids seem to be in the stationary range of d < 0.5, particularly
for grids away from the Tropics. Thus, long memory estimates at near all individual land grids seem to be
significantly smaller than the global and regional averages.

7
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Figure 4: Long memory estimates for monthly individual grid observations of temperature anomalies. We use the
optimal bandwidth and the 1200km smoothing radius dataset.

Third, besides a few ocean grid temperatures using the LW and FELW estimators, all long memory estimates are
in the mean-reverting range, d < 1.

Overall, the results from Figure 4 suggest that the long memory dynamics for the global and regional averages
are greatly affected by aggregation, particularly due to the influence of ocean temperature at the Tropics. The
estimates from the less reliable temperature measurements at the Tropics, and particularly at the Oceans, propagate
due to aggregation to the global and regional long memory estimates.

To shed light on the influence that the temperature data at the Tropics has on the long memory estimates, Table 2
presents averages from the long memory estimates in individual grid stations for selected regional subsamples.
The table shows mean values for the long memory estimates for all grids, the Global estimate; and for grids in
the Northern and Southern Hemispheres. Furthermore, the table shows long memory estimate averages for grids
located in the Tropics, the Arctic, and the Antarctic; that is, those between latitudes −30◦ and 30◦, 67◦ and 90◦,
and −67◦ and −90◦, respectively.

Series GPH AG LW FELW Sample Size
Global 0.3427 0.2951 0.3540 0.3738 1463
North Hem. 0.3236 0.3082 0.3389 0.3539 1560
South Hem. 0.3624 0.2817 0.3695 0.3942 1364
Tropics 0.4855 0.4103 0.5019 0.5216 1642
Arctic 0.2164 0.2588 0.2404 0.2525 1286
Antarctic 0.1174 0.0874 0.1084 0.1401 681

Table 2: Regional long memory averages for monthly temperature anomalies. We use the optimal bandwidth and
the 1200km smoothing radius dataset. The bar on top denotes averages.

8
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The table broadly confirms the results from the individual grid temperatures. That is, the degree of memory seems
to be smaller as we move away from the Tropics. Moreover, only the average degree of memory at the Tropics
seems to fall into the nonstationary range, and only for the LW and FELW estimators. This suggests that it is the
temperature at a few grids around the Tropics that seems to be increasing the degree of memory at the global and
regional temperature averages.

Figure 5: Histograms and probability density estimates of long memory estimates for monthly individual grid
observations of temperature anomalies. We use the optimal bandwidth, the 1200km smoothing radius dataset, and
the AG estimator.

The effect that the memory estimates around the Tropics have on the regional aggregates is illustrated in Figure
5. The figure shows histograms and estimated probability densities for the estimates of the memory in several
regions. Note that the density for the estimates around the Tropics puts more weight to the nonstationary range
than the densities for the other regions. Using an analogous argument to the one in Figure 3, this larger weight to
nonstationary values results in a larger degree of memory for the regional average. Furthermore, the same effect
can be observed in all regions. In particular, both the Arctic and Antarctic regional estimates assign almost no
weight to the nonstationary region, which results in an average degree of memory well inside the stationary range.

The results above suggest that aggregation plays a role in the larger degree of long memory estimated for the
global and regional temperature anomalies. They show that the region around the Tropics is associated with
temperature anomalies with larger degrees of memory. These larger degrees of memory are then propagated to the
global and regional averages through aggregation.

Given the increased uncertainty in ocean temperature measurements, and as a robustness exercise, next section
analyses the effect that the smoothing radius has on the results. That is, next section analyses the dataset for the
250km smoothing radius.

4.2 Monthly data with 250km smoothing radius and optimal bandwidth

Figure 6 presents the results for all individual grid points for the 250km smoothing radius dataset using the optimal
bandwidth, while Figure 7 shows their histograms and probability density estimates. Note that, given the smaller
smoothing radius, Figure 6 shows several missing observations around the Tropics, particularly in the Oceans.

Figures 6 and 7 show that the long memory estimates are smaller for the smaller smoothing radius. In particular,
almost all long memory estimates are in the stationary range. This once again points to the effect that aggregation
has on the long memory estimates.

9
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Figure 6: Long memory estimates for monthly individual grid observations of temperature anomalies. We use the
optimal bandwidth and the 250km smoothing radius dataset.

Figure 7: Histograms and probability density estimates of long memory estimates for monthly individual grid
observations of temperature anomalies. We use the optimal bandwidth, the 250km smoothing radius dataset, and
the GPH estimator.

10
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Furthermore, Figure 7 shows that long memory estimate averages for regions away from the Tropics put no weight
to the nonstationary range. Following the aggregation argument, this smaller weight translates into smaller degrees
of memory for all regional averages, particularly for the Arctic and Antarctic, as can be seen in Table 3.

Series GPH AG LW FELW Sample Size
Global 0.2279 0.2406 0.2277 0.2626 895
North Hem. 0.2179 0.2286 0.2315 0.2596 1106
South Hem. 0.2452 0.2615 0.2209 0.2678 528
Tropics 0.3308 0.3406 0.3315 0.3786 732
Arctic 0.2009 0.2259 0.2248 0.2678 845
Antarctic 0.1680 0.2005 0.1205 0.1633 284

Table 3: Regional long memory averages for monthly temperature anomalies. We use the optimal bandwidth and
the 250km smoothing radius dataset. The bar on top denotes averages.

4.3 Robustness exercises

This section presents the results from some of the robustness exercises considered in this study. In particular,
Tables 4 and 5 show results using yearly data for the 250km smoothing radius dataset. Table 4 presents the results
using the optimal bandwidth, while Table 5 uses the commonly used bandwidth given by T 1/2, where T is the
sample size.

Series GPH AG LW FELW Sample Size
Global 0.4051 0.4278 0.3458 0.5573 78
North Hem. 0.3784 0.5079 0.3621 0.5218 94
South Hem. 0.4542 0.2802 0.3159 0.6225 47
Tropics 0.4621 0.5088 0.4074 0.6608 66
Arctic 0.3166 0.4880 0.3083 0.4939 77
Antarctic 0.4682 0.1177 0.2578 0.6449 24

Table 4: Regional long memory averages for yearly temperature anomalies. We use the optimal bandwidth and the
250km smoothing radius dataset. The bar on top denotes averages.

Series GPH AG LW FELW Sample Size
Global 0.5947 0.8443 0.5343 0.6429 78
North Hem. 0.6276 1.0159 0.5650 0.6364 94
South Hem. 0.5342 0.5284 0.4777 0.6549 47
Tropics 0.6718 0.8727 0.6115 0.6725 66
Arctic 0.5528 1.2723 0.4883 0.5924 77
Antarctic 0.4133 0.4156 0.3766 0.6872 24

Table 5: Regional long memory averages for yearly temperature anomalies. The bandwidth is given by m = T 1/2,
with T the sample size. We use the 250km smoothing radius dataset. The bar on top denotes averages.

The results from the robustness exercise broadly agree with the results from our preferred method. That is, the
degree of memory decreases as we move away from the Tropics. Nonetheless, note that the reduced sample size
increases the variance of all estimates, making them less reliable.

Moreover, note from (5) and (7) that decreasing the bandwidth also increases the variance of the estimates. In this
regard, the degrees of memory estimated in Table 5 are even more uncertain. However, as argued before, they
point to the same conclusion as the one from the larger dataset.

Finally, note that the results from Table 5 are in line with the ones from Mangat and Reschenhofer (2020). Using
the same sampling frequency and bandwidth, the authors find that global and regional temperature series fall
into the nonstationary range. Furthermore, the authors find some of the long memory estimates for regional
temperature series to imply processes that do not revert to the mean; that is, d ≥ 1. Our results suggest that these
results may come from the small bandwidth and sample size.
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Additional robustness exercises considering all combinations of the sampling frequency, smoothing radius, and
bandwidth point broadly in the same direction, and they are available upon request.

5 Discussion

As recognised by Hurst in one of the first studies on long memory, assessing the long memory properties of natural
phenomena can have major repercussions in policy design. Under the current climate emergency, assessing the
long memory properties of temperature data can help to properly evaluate the pace of global heating and its likely
repercussions. In a recent analysis, Calel et al. (2020) show that uncertainty plays a major role in computing the
economic costs of climate change. The authors show that an analysis that does not incorporate all uncertainties
can vastly underestimate the economic costs. Furthermore, they argue that long memory properties in temperature
data can result in estimates of even greater economic damages; thus, they appeal for a proper characterisation of
the long-term dynamics of temperature data.

In the econometric literature, most climate econometrics studies have focused on analysing regional or global
average temperature data given the vast amount of information in temperature datasets. In this regard, they have
shown that global and regional temperature anomalies possess long memory properties. While several authors
have pointed to aggregation as a possible explanation behind the long memory in the data, to the best of our
knowledge, no analysis has focused on determining if aggregation can indeed be the long memory generating
mechanism for temperature data.

Thus, this paper looks to determine if aggregation is behind the presence of long memory in regional temperature
data. The analysis relies on estimating the long memory parameter in the individual grid temperature series and
compare them against the estimates in regional and global averages. We consider several regional averages in
addition to the ones commonly used in the literature. Furthermore, the long memory parameters are obtained using
semiparametric estimators in the frequency domain, given that the fractional difference operator is misspecified
for aggregated processes.

Our results show that the long memory parameters at individual grid observations are lower than the regional
averages. Furthermore, the degrees of memory of the aggregates seem to be greatly influenced by the long term
dynamics of temperature anomalies in the Tropics, where data is less reliable. Thus, our results support the notion
that aggregation may be exacerbating the long memory estimated in temperature data. Our results are robust to the
frequency sampling, smoothing radius, and bandwidth parameter.

Nonetheless, our analysis relies on temperature anomalies at individual grids. Global datasets for temperature
analysis already incorporate some level of aggregation at all levels. In light of the results of this paper, an additional
analysis should be considered for temperature data at individual stations where the data may be obtained.

Furthermore, our analysis showed that temperature at the Tropics plays a major role in determining the long
memory properties of global and regional temperature data. A robust analysis of temperature data around the
Tropics that considers measurement uncertainties and El Niño effect should be considered.
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GISTEMP NASA Goddard Institute for Space Studies Surface Temperature Analysis
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AG Andrews and Guggenberger bias reduced log-periodogram estimator
LW Local Whittle estimator
FELW Feasible Exact Local Whittle estimator
Std. Dev. Standard deviation
Prob. Density Est. Probability density estimate
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