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Abstract

In this paper, we develop a generalized method of moments approach for joint estimation

of the parameters of a fractional log-normal stochastic volatility model. We show that with an

arbitrary Hurst exponent an estimator based on integrated variance is consistent. Moreover,

under stronger conditions we also derive a central limit theorem. These results stand even when

integrated variance is replaced with a realized measure of volatility calculated from discrete

high-frequency data. However, in practice a realized estimator contains sampling error, the

effect of which is to skew the fractal coefficient toward “roughness”. We construct an analytical

approach to control this error. In a simulation study, we demonstrate convincing small sample

properties of our approach based both on integrated and realized variance over the entire

memory spectrum. We show that the bias correction attenuates any systematic deviance in

the estimated parameters. Our procedure is applied to empirical high-frequency data from

numerous leading equity indexes. With our robust approach the Hurst index is estimated

around 0.05, confirming roughness in integrated variance.
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1 Introduction

Stochastic volatility (SV) models are pervasive in finance. Over the years, a variety of different

models—each with its own volatility dynamics—were developed such as the log-normal model (e.g.

Taylor, 1986), the square-root diffusion (e.g. Heston, 1993), or more complicated processes where

volatility is driven by a non-Gaussian pure-jump component, e.g. Barndorff-Nielsen and Shephard

(2001); Todorov and Tauchen (2011).

In this paper, we investigate the log-normal SV model, which has been extensively studied in

previous work, e.g. Alizadeh, Brandt, and Diebold (2002). This class is a promising starting point,

because the unconditional distribution of realized variance is close to log-normal (see e.g. Andersen,

Bollerslev, Diebold, and Ebens, 2001; Andersen, Bollerslev, Diebold, and Labys, 2003). However,

while there is general agreement that log-normal volatility offers a decent description of return

variation in financial asset prices, there is no consensus on the properties of the background driving

Gaussian process. In a standard setting, it is assumed to be a Brownian motion. The mean-reversion

and volatility-of-volatility parameters of the model then control both the local properties of volatility

and also determine its longer-run persistence. In this instance, there are multiple papers dealing

with estimation of the parameters of the log-normal SV model, for example using the method of

moments- or likelihood-based approaches (e.g. Taylor, 1986; Melino and Turnbull, 1990; Duffie and

Singleton, 1993; Harvey, Ruiz, and Shephard, 1994; Gallant, Hsieh, and Tauchen, 1997; Fridman

and Harris, 1998). In the context of generalized method of moments (GMM) estimation, Andersen

and Sørensen (1996) offer further advice on how to select moment criteria and the weighting matrix

in order to get good results in small samples.

When the driving process is a fractional Brownian motion, which does not have independent

increments, less is known. In this non-Markovian setting, part of the memory in volatility is

reallocated to the background driving process via an additional parameter, the fractal index or Hurst

exponent (after Hurst, 1951). Comte and Renault (1998) propose such a version of the log-normal

SV model, where the Hurst exponent is larger than one-half—as implied by a standard Brownian

motion—thus inducing positive serial correlation in the increments of the process. Bennedsen

(2016); Euch and Rosenbaum (2018); Gatheral, Jaisson, and Rosenbaum (2018), among others,

study roughness in volatility captured by a fractal index smaller than one-half, rendering volatility

anti-persistent and highly erratic at short time scales. The typical estimation approach in the

fractional setting is a semi-parametric two-stage procedure, where the Hurst index is pre-estimated,

before the other parameters are recovered. While this procedure may yield consistent parameter

estimates, it is generally inefficient and may be severely biased in finite samples.

In this paper, we extend the GMM procedure for joint estimation of the parameters of the log-

normal SV model with a general fractal index. We show that our proposed estimator is consistent

and asymptotically normal. An attractive feature of our procedure is that moment expressions are

derived in near closed-form facilitating the implementation without recourse to simulation-based

approaches. As in many papers before this one, we appeal to the time series properties of integrated

variance to construct our estimator, an idea pioneered by Bollerslev and Zhou (2002); Corradi and
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Distaso (2006); Todorov (2009).

In practice, the integrated variance is unobserved. Realized variance, which is computed from

high-frequency data, is a consistent estimator of integrated variance and can replace it in the calcu-

lations. In previous work, this is handled by showing convergence in probability of the parameter

estimator in a doubly-asymptotic in-fill and long-span setting, such that the volatility discretization

error is small enough to be ignored. In the subsequent applications, the volatility proxy then enters

directly in place of integrated variance.

Substitution of the latent volatility with a proxy, however, entails a measurement error. This

obfuscates the underlying integrated variance dynamics, which can be detrimental to the estimation

procedure if unaccounted for (e.g. Meddahi, 2002; Hansen and Lunde, 2014). In particular, the

imposed moment conditions for integrated variance are not valid for the proxy. Barndorff-Nielsen

and Shephard (2002) employ a state-space system and the Kalman filter to smooth out realized

variance prior to maximum quasi-likelihood estimation of their SV model, see also Meddahi (2003).

In this paper, we construct an analytic bias correction that controls for the measurement error.

Following Patton (2011) we introduce a high-level assumption employing a generic realized measure

to proxy for integrated variance. We show in the GMM setting that the additional sampling variation

is captured and corrected by adding the measurement error variance to the second moment of

integrated variance. Our main asymptotic theory is therefore long-span with time going to infinity

but high-frequency data sampled at a fixed frequency. As an aside, we complement the analysis by

deriving the double-asymptotic result, where the correction is immaterial.

We investigate our estimator in a simulation study, where various configurations of a fractional

log-normal stochastic volatility model with different Hurst parameters covering the rough and long-

memory setting are inspected. We note that our procedure is both unbiased and relatively accurate

for the unknown parameters, once the above bias correction is adopted. In an empirical application,

we study an extensive selection of major equity indexes and confirm roughness in the volatility

process, even after smoothing out the effect of noise in the volatility proxy. In those data we

consistently locate a roughness parameter around 0.05, in line with the findings of recent work by

Fukasawa, Takabatake, and Westphal (2019).

The rest of this paper is organized as follows. Section 2 presents the general log-normal SV model

and studies the properties of integrated variance within this framework. The GMM procedure is

introduced in Section 3, along with theoretical results of the estimation. Section 4 examines the

performance of our estimator in a Monte Carlo study. In Section 5, we apply the estimation

procedure to real data and compare our findings with the previous literature. We conclude in

Section 6 and leave some theoretical derivations to the Appendix.

2 The setting

We model the log-price of a financial asset, X = (Xt)t≥0, as an adapted continuous-time stochastic

process defined on a filtered probability space (Ω,F , (Ft)t≥0,P). We suppose a standard arbitrage-

2



free market, in which asset prices are of semimartingale form (e.g., Back, 1991; Delbaen and

Schachermayer, 1994). We assume X can be described by an Itô process:

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs, t ≥ 0, (1)

where X0 is F0-measurable, µ = (µt)t≥0 is a predictable drift process, σ = (σt)t≥0 is a càdlàg

volatility process and W = (Wt)t≥0 is a standard Brownian motion.

The spot variance σ2 = (σ2
t )t≥0 is given by:

σ2
t = ξ exp

(
Yt −

1

2
κ(0)

)
, t ≥ 0, (2)

where ξ ∈ Ξ ⊂ (0,∞) is a scale parameter, representing the unconditional mean of the stochastic

variance, while Y = (Yt)t≥0 is a zero-mean stationary Gaussian process with covariance function

κ(u) = cov(Y0, Yu) = κφ(u), u ≥ 0, parameterized by φ ∈ Φ ⊂ Rp. We assume Ξ and Φ are compact,

so that Θ = Ξ× Φ ⊂ Rp+1 is compact, and write θ = (ξ, φ) ∈ Θ.

Note that we do not restrict the model to a Markovian volatility process nor a semimartingale

setting.1 This is not a problem for absence of arbitrage and existence of an equivalent risk-neutral

probability measure (although it is not unique in our setup), since the volatility itself is not the

price of a tradable asset.2

To maintain a streamlined exposition, we exclude a jump component in X. The theory should

at least be robust to the addition of finite-activity jumps, but then one needs to pay attention to

the practical implementation.3

The integrated variance on day t is defined as:

IVt =

∫ t

t−1

σ2
sds, t ∈ N, (3)

and holds information on the parameters of the model. Our estimation procedure exploits this by

measuring integrated variance on daily basis and t indicates the end of a day. We later substitute

integrated variance with a realized measure of volatility computed from intraday high-frequency

data of X.

Note that we exploit the dynamics of integrated variance in this paper. This follows previous

work of Fukasawa, Takabatake, and Westphal (2019) on rough volatility, but is in contrast to the

1The log-normal distribution is invariant to (non-zero) power transformations. This implies that “volatility,” which

in financial economics is more often associated with the standard deviation—or the square-root of the variance—is

also log-normal if the variance is (and vice versa). Hence, volatility is applied loosely here to mean either variance

or standard deviation. The meaning should be apparent from the context and not cause much confusion in this

particular setting.
2In 2004, CBOE launched derivatives on the VIX index, which is a weighted average of implied volatility from

a basket of S&P 500 options, rendering volatility at least partially tradable (see, e.g., the white paper available at

https://www.cboe.com/micro/vix/vixwhite.pdf for an explanation of VIX products).
3In particular, the realized variance introduced below is not a consistent estimator for integrated variance in

the presence of jumps. In such instances, the bipower variation of Barndorff-Nielsen and Shephard (2004) can be

exploited. Below, we derive a bias correction term for bipower variation, which is practical for this purpose.
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application of spot variance in, e.g., Bennedsen, Lunde, and Pakkanen (2017a); Gatheral, Jaisson,

and Rosenbaum (2018). While spot variance is more ideal, it is associated with numerous pitfalls in

practice. First, spot variance estimation requires ultra high-frequency data, which may not readily

be available. Even if they are, sampling at the highest frequency may induce an accumulation of

microstructure noise that can distort the analysis (e.g., Hansen and Lunde, 2006). The calculation of

microstructure noise-robust estimators is complicated and they suffer from poor rates of convergence

(e.g., Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008; Jacod, Li, Mykland, Podolskij, and

Vetter, 2009; Zhang, Mykland, and Aı̈t-Sahalia, 2005). Secondly, intraday spot variance is driven

by a pronounced deterministic diurnal pattern, which needs to be controlled for if the properties

of the underlying stochastic process are to be uncovered (Andersen and Bollerslev, 1997, 1998b).

Working at the daily frequency sidesteps this problem. Thirdly, spot variance estimators converge

at a slow rate—relative to estimators of integrated variance—and, in the context of our model, often

lack associated CLTs. The smoothing entailed by integrating spot variance overcomes this issue.

2.1 Properties of integrated variance

In this section, we derive some basic properties of integrated variance in the framework of the

general log-normal SV model (1) – (2). This serves as the foundation for our GMM approach to

estimate the parameters.

Henceforth, we denote asymptotic equivalence with f(`) ∼ g(`) meaning that f(`)/g(`)→ 1 as

`→∞.

Theorem 2.1 Suppose that (1) – (2) hold. Then, the integrated variance process (IVt)t∈N is sta-

tionary with the following first and second-order moment structure:

E[IVt] = ξ,

E[IVtIVt+`] = ξ2

∫ 1

0

(1− y)
[

exp
(
κ(`+ y)

)
+ exp

(
κ(|`− y|)

)]
dy,

for ` ∈ N ∪ {0}. In addition, suppose the following conditions hold:

(a) lim`→∞ κ(`) = 0,

(b) there exists an integrable function φ : [−1, 1] → R such that
κ(`+ y)

κ(`)
→ φ(y) as ` → ∞ for

any y ∈ [−1, 1],

(c) lim sup
`→∞

sup
y∈[−1,1]

∣∣∣∣κ(`+ y)

κ(`)

∣∣∣∣ <∞.

Then, as `→∞:

E
[
(IVt − ξ)(IVt+` − ξ)] ∼ ξ2κ(`)

∫ 1

−1

(1− |y|)φ(y)dy. (4)
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The integral describing the second-order moments of integrated variance depends on Y . In many

realistic models, the integral does not possess an analytic solution and has to be either approximated

or solved numerically. Moreover, while moments of higher order can be expressed in this way as

well, increasing the order of integration by one makes the resulting expressions unwieldy to work

with in practice. Hence, our estimation procedure relies on low-order moments.

As an illustration of Theorem 2.1, suppose there exists `0 > 0 such that

κ(`) = `−βe−ρ`L(`), ` ≥ `0, (5)

where β ≥ 0 and ρ ≥ 0 with min(β, ρ) > 0, and for some slowly varying function L : (0,∞) →

(0,∞), i.e. a function for which lim
x→∞

L(cx)

L(x)
= 1 for all c > 0. For example, if L(x) converges to

a strictly positive limit as x → ∞, then it is evidently slowly varying. Appealing to the uniform

convergence theorem for slowly varying functions (Bingham, Goldie, and Teugels, 1989, Theorem

1.5.2), condition (a)–(c) of the theorem can be verified with φ(y) = e−ρy.

2.1.1 Examples

Example 2.2 (Fractional SV (fSV) model) In a fSV model, the volatility process is driven by

a fractional Ornstein-Uhlenbeck (fOU) process:

Yt = ν

∫ t

−∞
e−λ(t−s)dBH

s , t ≥ 0, (6)

where ν, λ > 0, and BH = (BH
t )t≥0 is a fractional Brownian motion (fBm) with Hurst index,

H ∈ (0, 1).4 This model reduces to a standard log-normal SV model for H = 0.5. The fractional

version was introduced by Comte and Renault (1998) in a long-memory setting (H > 1/2) and

recently in a rough setting (H < 1/2) by Gatheral, Jaisson, and Rosenbaum (2018).

Below, we describe the covariance structure of the fSV model.

Lemma 2.3 If Y follows the fSV model, we deduce that:

κ(0) =
ν2

2λ2H
Γ (1 + 2H) ,

κ(`) = κ(0) cosh (λ`)− ν2|`|2H

2
1F2

(
1;H +

1

2
, H + 1;

λ2`2

4

)
, ` ≥ 0,

(7)

where pFq(a1, . . . , ap; b1, . . . , bq;x) is the generalized hypergeometric function with p parameters of

type 1 and q parameters of type 2.

4A fBm started at the origin (BH0 = 0) with Hurst exponent H ∈ (0, 1) can be constructed as a weighted infinite

moving average of past increments to a standard Brownian motion following the representation in Mandelbrot and

Van Ness (1968, Definition 2.1): BHt =
1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dBs +

∫ t

0

(t− s)H−1/2dBs

}
,

where Γ(·) is the Gamma function. This is also termed a fractional (or Weyl) integral of B. As readily seen, the

fBm reduces to a standard Brownian motion for H = 1/2.
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With H = 1/2, the above covariance function reduces to

κ(`) =
ν2

2λ
e−λ`, (8)

which is the standard formula the log-normal SV model with an exponentially decaying autocovari-

ance function.

Remark 2.4 In the fSV model, the second-order moment structure of integrated variance can be

approximated by the following expression for ` ≥ 1:

E
[
IV 2

t

]
≈ ξ2 exp(κ(0))

(
1− κ(0) +

2κ(0)

λ2
(cosh(λ)− 1)− c1F2

(
1;H +

3

2
, H + 2;

λ2

4

))
,

E [IVtIVt+`] ≈ ξ2 exp(κ(`))
(

1− κ(l) +
2κ(0)

λ2
cosh(λ`) (cosh(λ)− 1)

− ξ2 exp(κ(`))
c

2
(`+ 1)2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2(`+ 1)2

4

)
− ξ2 exp(κ(`))

c

2
(`− 1)2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2(`− 1)2

4

)
+ ξ2 exp(κ(`))c`2H+2

1F2

(
1;H +

3

2
, H + 2;

λ2`2

4

)
,

(9)

where c =
ν2

(2H + 1)(2H + 2)
.

Example 2.5 (Brownian semistationary (BSS) SV model) In this model, Y is a BSS pro-

cess, i.e. a Gaussian process constructed with a serial correlation that is locally equivalent to a fBm,

whereas the global dependence structure can differ a lot:

Yt = ν

∫ t

−∞
h(t− s)dBs, t ≥ 0, (10)

where ν > 0 and h : (0,∞) → R is a kernel function (subject to suitable regularity conditions).

A popular choice is the gamma kernel h(x) = xαe−λx with α > −1/2 and λ > 0 (Gamma-BSS).

This model has local properties that are quite similar to the fSV model, and while not formally

long-memory it does allow for substantial persistence in the process.

The fSV model conforms to (5) with β = 2(1 − H) and ρ = 0 for H ∈ (0, 0.5) ∪ (0.5, 1), by

Theorem 2.3 of Cheridito, Kawaguchi, and Maejima (2003), and with β = 0 and ρ = λ for H = 0.5.

The Gamma-BSS model does so with β = α and ρ = λ by Remark 4.4 in Bennedsen, Lunde,

and Pakkanen (2017a). We stress that L needs not be given in closed form, as the proof of (5)

amounts to checking that L(`) ≡ κ(`)
`−βe−ρ`

is slowly varying, based on the asymptotic behavior of κ(`)

as `→∞.

The precise covariance structure of the Gamma-BSS model was derived in Bennedsen, Lunde,

and Pakkanen (2017a) and given by the following result.
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Lemma 2.6 If Y follows the Gamma-BSS process of Example 2.5, κ(`) has the form:

κ(0) =
ν2

(2λ)2α+1
Γ(2α + 1),

κ(`) =
ν2Γ(α + 1)√

π

(
`

2λ

)α+ 1
2

Kα+1/2(λ`), ` > 0,

(11)

where Ka(x) is the Bessel function of the third kind. In addition, as `→∞, it follows that

E
[
(IVt − ξ)(IVt+` − ξ)

]
∼ ν2ξ2Γ(α + 1)(exp(λ)− 1)2

2α+1λα+2
`α exp(−λ(`+ 1)). (12)

3 GMM Estimation

In this section, for technical convenience we define all processes also for negative time indices.

3.1 Assumptions and Examples

As described above, the spot variance σ2 = (σ2
t )t∈R depends on the parameter vector θ = (ξ, φ) ∈ Θ.

The true value is denoted by θ0 ∈ Θ and is fixed. We write Pθ for the probability measure induced

by θ and Eθ is the corresponding expectation operator. Additionally, we denote by Fσ the σ-algebra

generated by σ2 or, equivalently, Y .

We now introduce our main assumption about Y .

Assumption 1 The Gaussian process Y and its covariance function κ satisfy the following condi-

tions:

(i) Y has continuous sample paths for any φ ∈ Φ,

(ii) (u, φ) 7→ κφ(u) is a continuous function.

Condition (i) is natural for stationary Gaussian processes, since if Y was discontinuous, its

sample paths would in fact be unbounded almost surely by a classical result of Belyaev (1961).

Condition (ii) is crucial below in ensuring that the moments of the model are continuous with

respect to θ. It is worth pointing out that neither these conditions nor the stationarity of Y say

much about the long-term behavior of volatility under this model. We return to this in Assumption

2 below.

Example 3.1 In the context of the fOU process used in the fSV model, condition (i) has been

shown, e.g., in Proposition 3.4 of Kaarakka and Salminen (2011), while condition (ii) follows from

the continuity of the hyperbolic cosine and the hypergeometric function 1F2 that appears in the

covariance function of the process.

A general result establishing condition (i) for BSS processes is derived in Bennedsen, Lunde,

and Pakkanen (2017b, Proposition 2.2). This also covers the Gamma-BSS process. Condition (ii)
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follows for the Gamma-BSS process by noting that the modified Bessel function of the second kind,

Kα, that appear in its covariance function is continuous.

As the main object of interest, integrated variance, is not observable in practice, it needs to be

estimated. We strive for a general framework applicable to realized measures at large, while still

remaining analytically tractable. We postulate that we observe a noisy proxy of IVt given by

ÎV t = IVt + εt, t ∈ Z, (13)

where εt is a random variable capturing the measurement error, which needs to adhere to a set of

stylized technical conditions given in Assumption 2. We remark that such a high-level approach to

describing measurement error between a realized measure and the corresponding integrated variance

is similar in spirit to what Patton (2011) uses for the analysis of noisy volatility proxies in the context

of forecast evaluation.

To formalize our assumptions about the process (εt)t∈Z, we require a filtration Fσ,εt = Fσt ∨ F εt ,

where F εt = σ
(
{εt, εt−1, . . .}

)
, t ∈ Z, is the σ-algebra generated by the errors up to time t. We also

introduce a key assumption about the joint long-term behavior of (IVt)t∈Z and (εt)t∈Z.

Assumption 2 The processes (IVt)t∈Z and (εt)t∈Z satisfy the following conditions:

(i) (IVt, εt)t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ,

(ii) θ 7→ c(θ) ≡ Eθ[ε2
1] is a finite-valued, continuous function on Θ,

(iii) Eθ[εt | Fσ,εt−1] = 0 for any t ∈ Z and any θ ∈ Θ.

Regarding condition (i), we remark that the Gaussian process Y is ergodic by the classical result

of Maruyama (1949) provided

κφ(u)→ 0, (14)

as u → ∞, which is evidently true for all models considered in this paper. The processes σ2 and

(IVt)t∈Z readily inherit the stationarity and ergodicity of Y . The joint ergodicity of (IVt, εt)t∈Z is a

more delicate matter, since even if (IVt)t∈Z and (εt)t∈Z are ergodic on their own right and mutually

independent, it does not follow that (IVt, εt)t∈Z is ergodic (see Lindgren, 2006, Exercise 5.13). But

if additionally (IVt)t∈N or (εt)t∈Z is weakly mixing, then their joint ergodicity holds (Lindgren,

2006, see Exercise 5.14). That said, in practical applications the mutual independence of (IVt)t∈Z

and (εt)t∈Z is too strong an assumption, since the level of measurement error typically depends

on the underlying level of volatility. Condition (iii) is a martingale-difference property for (εt)t∈Z,

which implies Eθ[εt] = 0, i.e. the proxy ÎV t is unbiased. This is obviously a somewhat stylized

assumption, which is not exactly satisfied by many realized measures. However, we can expect it

to hold approximately and, in any case, it is crucial for the analytical tractability of the setup.5

5Meddahi (2002, Section 4) studies the properties of the measurement error of realized variance under a class

of log-normal volatility models including drift. He finds that the mean of the measurement error is negligible at

5-minute sampling frequency.
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We now demonstrate that a particular structural form of the error term, εt, conveniently accom-

modates concrete realized measures as proxies in an approximate sense while satisfying Assumption

2. More specifically, let

εt = h
(
Zt, (σ

2
s+t−1)s∈[0,1]

)
, t ∈ Z, (15)

where Zt, t ∈ Z, are i.i.d. d-dimensional random vectors, for some d ∈ N, that are independent of

Fσ and h : Rd × C([0, 1])→ R is a continuous functional such that

Eθ[h(Z1, f)] = 0, (16)

for any θ ∈ Θ and f ∈ C([0, 1]). Then condition (i) in Assumption 2 can be proved using standard

ergodic theory arguments, see, e.g., Lindgren (2006, Section 5.4), while condition (iii) is readily

implied by (16). We can check condition (ii) on a case-by-case basis below by computing c(θ) =

Eθ[ε2
1] explicitly and invoking condition (ii) of Assumption 1 to establish its continuity in θ.

In the following examples, we construct εt and Zt only for t ∈ N, but we can extend them to

negative indices by stationarity.

Example 3.2 (Realized variance, CLT approximation) Suppose that we estimate the inte-

grated variance IVt with the realized variance (see, e.g., Andersen and Bollerslev, 1998a; Barndorff-

Nielsen and Shephard, 2002):

RV n
t =

n∑
i=1

(
Xt−1+ i

n
−Xt−1+ i−1

n

)2
, (17)

for any t ∈ N. Under standard technical conditions, the central limit theorem (CLT)

√
n(RV n

t − IVt)
dst−−−→

n→∞

√
2

∫ t

t−1

σ2
sdB

⊥
s , (18)

holds jointly for all t ∈ N, where
dst−→ denotes stable convergence in distribution and (B⊥s )s≥0 is a

Brownian motion independent of X and σ. Note that the limiting random variables
√

2
∫ t
t−1

σ2
sdB

⊥
s ,

t ∈ N, are conditionally independent given Fσ with

√
2

∫ t

t−1

σ2
sdB

⊥
s

∣∣∣∣Fσ ∼ N(0, 2IQt), t ∈ N, (19)

where

IQt =

∫ t

t−1

σ4
sds (20)

is the integrated quarticity. Thus the random variables

Zt =

∫ t
t−1

σ2
sdB

⊥
s

IQ
1/2
t

∼ N(0, 1), t ∈ N, (21)

are both mutually independent and independent of Fσ.

9



Informally, the CLT (18) says that, for any t ∈ N,

RV n
t

d
≈ IVt +

(
2

n
IQt

)1/2

Zt (22)

for large n, where “
d
≈” denotes approximate equality in distribution, as used, e.g., in Zhang, Myk-

land, and Aı̈t-Sahalia (2005, Section 1.2). Thus, for any t ∈ N, the proxy ÎV t = IVt + εt with

εt =
(

2
n
IQt

)1/2
Zt approximates RV n

t for large n. Such a proxy is analogous to what Fukasawa,

Takabatake, and Westphal (2019) employ in their estimation framework. We can represent the

error term as εt in the form (15) using the continuous functional

h(z, f) =

(
2

n

∫ 1

0

f(s)2ds

)1/2

z, z ∈ R, f ∈ C([0, 1]). (23)

Then (16) holds given that Z1 ∼ N(0, 1). We can compute c(θ) explicitly using Tonelli’s theorem.

The expression is reported in Table 1 and θ 7→ c(θ) is evidently continuous under Assumption 1.

Example 3.3 (Realized variance, no drift or leverage effect) In general, the measurement

error RV n
t − IVt is analytically hard to analyze unless we resort to asymptotic approximation with

n→∞ as in Example 3.2 (see also Remark 3.4 below). However, in a simple specific case, we can

actually work with the exact error εt = RV n
t − IVt, that is ÎV t = RV n

t , without losing analytical

tractability.

Namely, suppose that the log-price X = (Xt)t≥0 of the asset follows a drift-free Itô process

Xt = X0 +

∫ t

0

σsdWs, t ≥ 0, (24)

where W = (Wt)t≥0 is a standard Brownian motion independent of Fσ, i.e. ruling out any depen-

dence between W and the spot variance process σ2, stemming from the leverage effect for instance

(e.g., Christie, 1982). Then, for any t ∈ N,

RV n
t − IVt =

n∑
i=1

((∫ i
n

+t−1

i−1
n

+t−1

σsdWs

)2

−
∫ i

n
+t−1

i−1
n

+t−1

σ2
sds

)

=
n∑
i=1

(Z2
t,i − 1)

∫ i
n

i−1
n

σ2
s+t−1ds,

(25)

where

Zt,i =

∫ i
n

+t−1
i−1
n

+t−1
σsdWs( ∫ i

n
+t−1

i−1
n

+t−1
σ2
sds
)1/2

, t ∈ N, i = 1, . . . , n. (26)

Since W is independent of Fσ, conditional on Fσ the random variables Zt,i, t ∈ N, i = 1, . . . , n,

are mutually independent and follow a standard normal distribution. Consequently, they are i.i.d.

standard normal also unconditionally and independent of Fσ.
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Thanks to (25), we can represent the measurement error εt = RV n
t − IVt in the form (15) via

the functional

h
(
(z1, . . . , zn), f

)
=

n∑
i=1

(z2
i − 1)

∫ i
n

i−1
n

f(s)ds, (z1, . . . , zn) ∈ Rn, f ∈ C([0, 1]), (27)

and i.i.d. random vectors

Zt = (Zt,1, . . . , Zt,n), t ∈ N, (28)

with components given by (26), so that d = n. The property (16) then holds, while an integral func-

tional representation of c(θ) is given in Table 1 and its continuity in θ follows from the dominated

convergence theorem under Assumption 1.

Remark 3.4 The moments of the measurement error εt = RV n
t − IVt can be analyzed under the

leverage effect using Malliavin calculus and chaos expansions, see, e.g., Peccati and Taqqu (2011).

However, the resulting formulae are not very convenient for numerical use, which is why we do not

pursue this approach here.

Example 3.5 (Bipower variation, CLT approximation) In the context of Example 3.2, the

realized variance can be substituted with the bipower variation estimator of Barndorff-Nielsen and

Shephard (2004), which is defined as:

BV n
t =

π

2

n∑
i=2

∣∣Xt−1+ i
n
−Xt−1+ i−1

n

∣∣∣∣Xt−1+ i−1
n
−Xt−1+ i−2

n

∣∣, n ∈ N, (29)

for any t ∈ N. Under standard technical conditions

√
n(BV n

t − IVt)
dst−−−→

n→∞

√
π2

4
+ π − 3

∫ t

t−1

σ2
sdB

⊥
s , (30)

jointly for all t ∈ N, where the structure of the limit is identical to the one in (18). BV n
t is then

approximated for large n by the proxy ÎV t = IVt+εt with error term εt =
(
π2

4
+π−3

n
IQt

)1/2

Zt, where

Zt, t ∈ N, are as in Example 3.2. Retracing the arguments in Example 3.2, we can then show that

εt can be cast in the form (26) so Assumption 2 holds.

3.2 Consistency

Turning to the consistency result for our GMM estimator, we introduce the moment structure of

the IVt process, which is defined by:

g
(1)
0 (θ) = E[IVt(θ)], g

(2)
0 (θ) = E[IV 2

t (θ)], g`(θ) = E[IVt(θ)IVt−`(θ)], ` ∈ Z, θ ∈ Θ, (31)

for a fixed k ∈ N, which we collect in the vector

G(θ) =
(
g

(1)
0 (θ), g

(2)
0 (θ), g1(θ), . . . , gk(θ)

)
, θ ∈ Θ. (32)
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Table 1: Formulae for c(θ) = Eθ[ε2
1].

Proxy Setting c(θ) = c(ξ, φ)

Realized variance CLT approximation (Example 3.2) 2ξ2

n
exp

(
κφ(0)

)
No drift or leverage (Example 3.3) 4ξ2

n

∫ 1

0
(1− y) exp

(
κφ( y

n
)
)
dy

Bipower variation CLT approximation (Example 3.5)

(
π2

4
+π−3

)
ξ2

n
exp

(
κφ(0)

)
Note. In the case of Example 3.3, we use Theorem 2.1 to derive the expression.

We also define

IVt = (IVt, IV
2
t , IVtIVt−1, . . . , IVtIVt−k

)
, t ∈ Z,

ÎVt =
(
ÎV t, ÎV

2

t , ÎV tÎV t−1, . . . , ÎV tÎV t−k
)
, t ∈ Z,

(33)

which by condition (i) of Assumption 2 are stationary and ergodic processes.

By conditions (ii)-(iii) of Assumption 2, we find that for any θ ∈ Θ, t ∈ Z and ` ∈ Z:

Eθ
[
ÎV t

]
= g

(1)
0 (θ),

Eθ
[
ÎV tÎV t−`

]
=

g
(2)
0 (θ) + c(θ), ` = 0,

g`(θ), ` 6= 0.

(34)

The expressions in (34) show that application of a noisy proxy ÎV t leads to biased estimation of

a single moment: the variance of integrated variance, g
(2)
0 (θ). The other moments are unbiased,

because the errors are mean zero and serially uncorrelated. In principle, we can thus avoid the

negative impact of measurement errors by excluding g
(2)
0 (θ) from the selected second-order moments.

More generally, however, it is often preferable to add the variance or absolute value to the moment

conditions, because low-order moments are highly informative about the parameters of SV models

(Andersen and Sørensen, 1996). To avoid any systematic deviance in the estimated values of the

parameters, it is then necessary to correct the appropriate entries in the moment vector as detailed

above (dealing with the measurement error is of course much more complicated for the absolute

value than for the square).

We therefore propose to compare the sample moments of ÎV t to a corrected moment function

Gc(θ) = G(θ) +
(
0, c(θ), 0, . . . , 0

)
, θ ∈ Θ, (35)

to ensure an unbiased and consistent GMM estimator. We define a random function:

m̂T (θ) =
1

T

T∑
t=1

ÎVt −Gc(θ), θ ∈ Θ, (36)

which, in view of (34), has

Eθ0
[
m̂T (θ)

]
= Gc(θ0)−Gc(θ) (37)
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so that

Eθ0
[
m̂T (θ0)

]
= 0. (38)

Our GMM estimator is then defined as:

θ̂T = arg minθ∈Θ m̂T (θ)′WT m̂T (θ), (39)

where WT is a random (k + 2)× (k + 2) weight matrix.

We need additional conditions for the consistency of θ̂T . Firstly, we introduce a standard as-

sumption about the limiting behavior of the weight matrix.

Assumption 3 WT = A′TAT for a random (k+ 2)× (k+ 2) matrix AT , which under Pθ0 converges

almost surely to a non-random matrix A as T →∞.

Note that any weight matrix WT , which is a continuous function of the sample statistic

1

T

T∑
t=1

w
(
ÎVt

)
, (40)

where w : Rk+2 → Rd′ is a measurable function such that Eθ0
[∥∥w(ÎVk+1

)∥∥
Rd′

]
< ∞, for some

d′ ∈ N, fulfills the convergence criterion in Assumption 3 by the stationarity and ergodicity of(
ÎVt

)
t∈Z.

Secondly, we assume that the parameter θ is identifiable.

Assumption 4 A(Gc(θ) − Gc(θ0)) = 0 if and only if θ = θ0, where A is the limiting matrix in

Assumption 3.

Assumption 4 is an identifying condition, which is equivalent to AEθ0 [m̂T (θ)] = 0 if and only if

θ = θ0. It is difficult to check this in practice, because there are no closed-form expressions for the

moments of our model, i.e. for the components of Gc(θ).

Theorem 3.6 Suppose Assumptions 1 – 4 hold. As T →∞

θ̂T
a.s.−→ θ0. (41)

In the above, our analysis assumed that the number of observations per day, n, is fixed and then

relies on the noisy proxy idea. Now, following, e.g., Bollerslev and Zhou (2002); Corradi and Distaso

(2006); Todorov (2009), we also cover the theory of the GMM estimator in a double asymptotic

setting with T →∞ and n→∞.

To this end, we denote with V n
t some consistent realized measure of integrated variance (e.g.,

realized variance, bipower variation, or the pre-averaging estimator). For fixed k ∈ N, we denote

Vn
t =

(
V n
t , (V

n
t )2, V n

t V
n
t−1, . . . , V

n
t V

n
t−k
)
, t ∈ Z, (42)
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with associated sample moments

m̃n,T (θ) =
1

T

T∑
t=1

Vn
t −G(θ), (43)

where we employ the moments of G(θ) instead of the corrected version Gc(θ), which is of no

consequence for the following result since n→∞.

Then,

θ̃n,T = arg minθ∈Θ m̃n,T (θ)′WT m̃n,T (θ), (44)

is our GMM estimator.

In this setting, we replace Assumption 2 with the following requirement.

Assumption 5 The processes (IVt)t∈Z and (V n
t )t∈Z,n∈N admit the following:

(i) (IVt)t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ,

(ii) supt∈Z E[(V n
t − IVt)2]→ 0 as n→∞.

Theorem 3.7 Suppose Assumptions 1 and 3 – 5 hold. As T →∞ and n→∞

θ̃n,T
P−→ θ0. (45)

This result is related to Theorem 1 (and Corollary 1) in Todorov (2009) and Theorem 1 in Corradi

and Distaso (2006).

Remark 3.8 In Appendix A.8, we show that under mild assumptions

sup
t∈Z

E[(RV n
t − IVt)2] ≤ Cn−1, (46)

for some C > 0, hence Assumption 5 holds for RV n
t .

3.3 Asymptotic normality

To establish asymptotic normality of our GMM estimator, for technical reasons we assume that

under Pθ0 the Gaussian process Y admits a causal moving average representation

Yt =

∫ t

−∞
K(t− u)dBu, t ∈ R, (47)

for a two-sided standard Brownian motion B = (Bt)t∈R and measurable kernel function K :

(0,∞) → R such that
∫∞

0
K(u)2du < ∞. We can extend K to the entire real line by setting

K(u) = 0 for u ≤ 0 when necessary. (47) is not very restrictive, since a stationary Gaussian

process admits such a representation under weak conditions. In particular, the moving average

structure exists if and only if Y satisfies a mild, albeit somewhat technical, condition known as pure

non-determinism, see Karhunen (1950, Satz 5) and Dym and McKean (1976, Section 4.5). The
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SV models incorporated in this paper adhere to this form. The BSS model is already expressed

in this way, while the fractional Ornstein-Uhlenbeck process also has such a representation (e.g.,

Barndorff-Nielsen and Basse-O’Connor, 2011).

In the above, it is the asymptotic behavior of K(u) as u → ∞ that governs the long-term

memory of Y . To derive the asymptotic normality of our GMM estimator, we need to constrain

that memory, which we do by the following:

Assumption 6 K(u) = O(u−γ) as u→∞ for some γ > 1.

The Gamma-BSS model achieves Assumption 6 in the entire parameter space. Moreover, Gar-

nier and Sølna (2018) showed that the kernel K(u) in the moving average representation of the fOU

process is asymptotically, as u→∞, proportional to uH−3/2. Thereby, the fSV model requires the

restriction H < 1/2 to be covered by Assumption 6, allowing for rough volatility to be included but

ruling out the long-memory version.

We believe the constraint in Assumption 6 is nearly optimal in the sense that if K(u) is asymp-

totically proportional to u−γ for γ ∈ (0, 1), e.g. with the fSV model for H > 1/2, then asymptotic

normality ceases to hold. In this case, we can show that the expression for the asymptotic covari-

ance matrix in our central limit theorem (Proposition 3.9) does not converge. It is possible that

a non-central limit theorem with non-standard scaling holds, a common phenomenon in the realm

of long-memory processes, see, e.g., Taqqu (1975). Proving such an extension is rather non-trivial,

however, and beyond the scope of the present paper.

Additionally, we introduce stronger assumptions about the error process (εt)t∈Z. In what follows,

we write ‖X‖L2(Pθ) = EPθ
[
X2
]1/2

for any square integrable random variable X and work with the

filtrations F ÎV
t = σ

{
ÎVt, ÎVt−1, . . .

}
, t ∈ Z, and FB,εt = σ{εt, εt−1, . . .} ∨ σ{Bu : u ≤ t}, t ∈ Z.

Assumption 7 The processes B and (εt)t∈Z satisfy the following conditions:

(i) E[ε4
1] <∞,

(ii)
∥∥∥Eθ0[ε2

r | F ÎV
0

]
− Eθ0 [ε2

1]
∥∥∥
L2(Pθ0 )

= O(r−γ+1/2) as r →∞,

(iii) B has independent increments with respect to (FB,εt )t∈Z (i.e., for any t ∈ Z the process (Bu−
Bt)u≥t is independent of FB,εt ).

Condition (ii) constrains the memory in the squared measurement error. In the high-frequency

setting, the measurement error usually depends on volatility (as exemplified in Example 3.2, 3.3,

and 3.5 above). So here Assumption 6 implies condition (ii), see Proposition A.6 in Appendix A.9.

Condition (iii) ensures that the measurement error does not anticipate future increments of the

driving Brownian motion W , which is not very restrictive anyway. It is evidently true in the above

examples.

The next result presents the central limit theorem for the sample mean of our statistic.
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Proposition 3.9 Suppose that Assumptions 1, 2, 6, and 7 hold. Then, as T →∞, under Pθ0,

T 1/2m̂T (θ0)
d−→ N

(
0,ΣÎV

)
, (48)

where ΣÎV =
∑∞

`=−∞ ΓÎV(`) with ΓÎV(`) = Eθ0
[
(ÎV1 −Gc(θ0))(ÎV1+` −Gc(θ0))′

]
, ` ∈ Z.

A final assumption for the CLT of our GMM estimator is presented next. Here, we introduce the

function g : Rk+2 ×Θ→ R via g(x, θ) = x−Gc(θ).

Assumption 8 We have

(i) θ0 is an interior point of Θ.

(ii) G′WG is non-singular, where G = E
[
∇θg(ÎV1, θ0)

]
and W = A′A.

(iii) The function θ 7→ g(x, θ) is continuously differentiable. In addition, E[‖g(ÎV1, θ0)‖2] < ∞
and E[supθ∈Θ ‖∇θg(ÎV1, θ)‖] <∞.

Now, we are ready to present the asymptotic distribution of θ̂T .

Theorem 3.10 Suppose Assumptions 1 – 8 hold. As T →∞,

√
T (θ̂T − θ0)

d−→ N
(
0, (G′WG)−1G′WΣÎVWG(G′WG)−1

)
. (49)

To finish this section, we also study the CLT of our GMM estimator in the double-asymptotic

setting, where T →∞ and n→∞, such that the discretization error is negligible.

Assumption 9 The processes (IVt)t∈Z and (V n
t )t∈Z,n∈N satisfy the following conditions:

(i) (IVt)t∈Z is a stationary and ergodic process under Pθ for any θ ∈ Θ,

(ii) T supt∈Z E[(V n
t − IVt)2]→ 0 as n→∞, T →∞.

Theorem 3.11 Suppose Assumptions 1, 3 – 9 hold. As T →∞ and n→∞,

√
T (θ̃n,T − θ0)

d−→ N
(
0, (G̃′WG̃)−1G̃′WΣÎVWG̃(G̃′WG̃)−1

)
, (50)

where ΣIV =
∑∞

`=−∞ ΓIV(`) with ΓIV(`) = Eθ0
[
(IV1 − Gc(θ0))(IV1+` − Gc(θ0))′

]
, ` ∈ Z, and G̃ =

E[∇θg(IV1, θ0)].
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4 Simulation study

In the above, we developed a full-blown large sample GMM framework for estimation of the log-

normal fSV model with a general Hurst index. We now review the finite sample properties of our

approach. The aim is to assess the accuracy of the procedure in a realistic setup. We inspect both

the infeasible setting where estimation is based on integrated variance and a feasible implementation

relying on realized variance. For the latter, we gauge the performance both with and without the

quarticity correction in (35).

We assume the log-price, Xt, evolves as a driftless Itô process:

dXt = σtdWt, t ≥ 0, (51)

with initial condition X0 ≡ 0. Here, σt is the spot volatility and Wt is a standard Brownian motion.

The log-variance, Yt = ln(σ2
t ), is a fOU process:

dYt = −λ(Yt − η)dt+ νdBH
t , (52)

where BH
t is a fbM. We assume W ⊥⊥ BH , so there is no leverage effect.

We draw 500 independent replications of this model with a path length of T = 4,000 days as

a default. In each simulation, the log-variance process is started at random from its stationary

distribution, Y0 ∼ N
(
η, var(Yt)

)
, where var(Yt) =

ν2

2λ2H
Γ(1 + 2H). To get an almost continuous-

time realization of the processes and minimize the discretization bias, we partition [t − 1, t], for

t = 1, . . . T , into N = 23,400 discrete points of length ∆ = 1/N . In the US equity market, this

roughly amounts to a 16-year sample of the stock price recorded every second in a 6.5-hour trading

day. We then discretize X via an Euler scheme.

The SDE in (52) is solved to get a more convenient expression for Y :

Yt = η + (Yt−∆ − η)e−λ∆ + ν

∫ t

t−∆

e−λ(t−s)dBH
s .

6 (53)

The stochastic integral is approximated as
∫ t
t−∆

e−λ(t−s)dBH
s ' e−λ∆/2

∫ t
t−∆

dBH
s meaning that in-

crements to a discretely sampled fBm are required. These can be produced in many ways to get an

exact discretization, e.g. Cholesky factorization or circulant embedding (see Asmussen and Glynn,

2007). While the former has complexity O([TN ]3), the latter entails a markedly lower budget of

O(TN log(TN)) and is our preferred algorithm.

Our procedure is inspected on several distinct sets of parameters to gauge its robustness.

Throughout, we set η = ln(ξ) − 0.5var(Yt), where ξ = E(σ2
t ) = 0.0225. This ensures that the

unconditional mean of the variance process is identical across settings and implies that the annual-

ized standard deviation σt is about 15% on average, close to the aggregate level of volatility in the

6The ploy is as always to use Itô’s Lemma with the integrating factor eλtYt. The math is a bit more involved

here though, since we are dealing with a fractional Brownian motion, where a stochastic calculus may not exist.

Nevertheless, it goes through in this particular instance, see, e.g., Cheridito, Kawaguchi, and Maejima (2003).
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Figure 1: Sample path of spot and integrated variance.

Panel A: log(spot variance). Panel B: log(integrated variance).
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Note. In Panel A, we simulate a sample path of the log-spot variance for a single day as a function of H. In Panel B, we show the

associated integrated variance dynamics over 250 trading days.

data analyzed in Section 5. As we are particularly attentive to estimation of the Hurst index, we

choose H = [0.1, 0.3, 0.5, 0.7] as in Fukasawa, Takabatake, and Westphal (2019), thus covering both

the rough, standard and long-memory case. We calibrate λ and ν by equating std(IVt) = 0.05,

which is on par with the corresponding attribute of the bipower variation of the .SPX equity (that

is, the S&P 500 index) in the empirical part. This effectively locks in ν/λH for each H, and as

an identifying restriction we match the lag 100 autocovariance of integrated variance to the sample

autocovariance of .SPX bipower variation.

The parameters are presented in Table 2. A realization of the spot and integrated variance

processes from each model are plotted in Figure 1. While the pathwise properties of volatility are

notably different at a microscopic scale, they are much harder to discriminate after we integrate

them up to the daily horizon.

In addition to integrated variance we also collect realized variance with n = 78, i.e. with 5-

minute data. The advantage of this choice is that there is no concern about microstructure noise

at this sampling frequency in practice. The input to the optimizer is therefore either (IVt)
T
t=1 or

(RV n
t )Tt=1. We restrict the description of the implementation details below to the feasible setting

with realized variance.

The unknown parameter vector is θ0 = (ξ, λ, ν,H), which we estimate with the non-gradient-

based Nealder-Mead algorithm available via fminsearch in MatLab. That function does not accept

boundary conditions, so we reparameterize the model by log-transforming ν and λ, while H is

bounded by the logistic function. We launch the engine at initial values determined as follows: ξ is

started at the unconditional mean of realized variance, i.e. RV = T−1
∑T

t=1RV
n
t . To set H and ν

we exploit the auxiliary two-stage procedure proposed in Gatheral, Jaisson, and Rosenbaum (2018),
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which relies on the scaling law:

γh ≡ E
[
|Yt+h − Yt|q

]
→ Kqν

q|h|qH , (54)

as h → 0, where Kq = 2q/2
Γ( q+1

2
)

√
π

is the q’th moment of the absolute value of a standard normal

random variable. This entails a log-linear relationship between γh and |h|: ln (γh) = ln (Kqν
q) +

qH ln (|h|). We employ RV n
t as a proxy for the instantaneous variance and substitute the left-hand

side of (54) by the sample mean:

γ̂h =
1

T −m

T−m∑
t=1

|ln(RV n
t+h)− ln(RV n

t )|q, (55)

for h = 1, . . . ,m. H and ν are then estimated by OLS with q = 2 and m = 6. The results are rather

robust against this configuration. At last, λ is pre-estimated such that the theoretical variance of

Yt equals the sample variance of ln(RV n
t ).

As shown in Table 2, the initial values display very low variation between replications, but they

are often highly biased. For instance, using IVt the starting point of H increases with the true

value, but as expected it is too high on average, whereas for RV n
t it is largely unaffected by the

actual roughness of the model.

As such, there is still a lot of work left for the GMM procedure. We match the `’th sample

autocovariance of RV n
t with the approximate second-order moment structure of IVt—available in

closed-form from Remark 2.4—with ` = [0, 1, 2, 5, 10, 20, 50].7 The weight matrix, WT , is a data-

driven Newey and West (1987) HAC-type estimator computed with a Bartlett kernel and a lag

length equal to [T 1/3].

The results are presented in Table 2. We report the mean parameter estimate (standard error in

parenthesis) both for the initial and final value, where all calculations are done across simulations.

The left-hand side shows the outcome based on integrated variance, whereas the right-hand side is

for realized variance with and without the correction in (35). Several interesting findings emerge.

Firstly, the setting with integrated variance leads to parameter estimates that are generally close

to their population counterparts across models, thus verifying the robustness and accuracy of our

procedure. Secondly, we record a significant deterioration in the estimation ofH for realized variance

without the quarticity adjustment. As explained, realized variance is a noisy proxy for integrated

variance and this translates to additional roughness in the (RV n
t )Tt=1 process. In that case, we further

note ν increases, while λ decreases in order to “compensate” for the spurious loss of memory, even

as H is decreasing. Including the bias correction leads to a huge improvement in the estimates that

are surprisingly accurate also for small H. While a marginal downward bias is retained, the typical

estimate is nevertheless within about a standard error of the true value and very much in line with

the infeasible results recovered using the benchmark integrated variance.

7In a robustness check, and to better capture the persistence of log-variance with H = 0.7, we also attempted to

include lag 100 and 200. However, the results did not change much. This is consistent with Andersen and Sørensen

(1996), who note that estimation of SV models does not always improve by adding more information.
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5 Empirical application

The log-normal fSV model is estimated from empirical high-frequency data covering a compre-

hensive selection of asset return series. We downloaded version 0.3 of the Oxford-Man Institute’s

“realized library” via: https://realized.oxford-man.ox.ac.uk/. The website tracks thirty-one

leading stock indexes covering major financial markets. At the end of each trading day, the li-

brary is refreshed with information from Thomson Reuters DataScope Tick History and several

non-parametric volatility estimators are calculated and appended to the database. We here employ

the daily bipower variation defined in (29). This is a consistent and jump-robust measure of inte-

grated variance with avar
[√
n(BV n

t − IVt)
]

= 2.6E
[ ∫ t

t−1
σ4
sds
]
. In line with our comments above,

a 5-minute sampling frequency corresponding to n = 78 has been set to suppress microstructure

noise.

An overview of the data is presented in Table 3. It reports the starting date of each index and

the sample size. We include information up to 31 July 2019 and exclude .KSE og .STI from our

investigation, as there are sizable gaps in their data series.

The GMM estimation of the model parameters follows the setup from the simulation section.

The right-hand side of Table 3 shows the outcome for individual stock indexes, where the bottom

row presents the cross-sectional average of each parameter. The ξ̄ = 0.0214 estimate corresponds

to about 14.49% annualized volatility in the aggregate stock market.

The reported Hurst exponents suggest a very rough volatility process with an average level of

H̄ = 0.035. This is on par with Bayer, Friz, and Gatheral (2016) and Fukasawa, Takabatake, and

Westphal (2019) but slightly smaller compared to Bennedsen, Lunde, and Pakkanen (2017a) and

Gatheral, Jaisson, and Rosenbaum (2018). A possible reason for this discrepancy is that the latter

employ realized variance as a proxy for spot variance. However, the former is a consistent estimator

of the integrated variance, which is much smoother than instantaneous variance (see Figure 1). This

ought to bias their H estimates upwards. Our procedure does not suffer from that problem here,

as we directly compare bipower variation to the dynamics of integrated variance in the fSV model,

so the averaging “cancels out.”

Looking at the table, the results are remarkably stable across assets. We do observe a minor

deviation for the Finnish .OMXHPI index. On manual inspection of the data, we found that its

sample autocorrelation function (acf) differs notably from the other stock indexes. This can possibly

be explained by the fact that its evolution has for a large portion of our sample been dominated by

a single stock, following the rise and fall of Nokia.

To gauge the statistical fit of the model, we calculate a J -test for overidentifying restrictions.

The test statistic has an asymptotic χ2-distribution with four degrees of freedom under H0. The

results appear in the last column of Table 3. Overall, the P -values are relatively high, so the fSV

process does a good job in describing the data.

As an illustration of our findings we zoom in at .SPX, which represents the S&P 500 index

and is therefore related to developments in the US stock market. In Panel A of Figure 2, we show

the bipower variation of .SPX (the raw estimator has been converted to standard deviation per
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Figure 2: Properties of .SPX bipower variation.

Panel A: Time series. Panel B: Autocorrelation function.
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Note. In Panel A, we plot the bipower variation of .SPX converted to standard deviation per annum. In Panel B, we show the sample

acf of bipower variation with a 95% white noise confidence band. We compare this to the theoretical acf of the log-normal fSV model

implied by the estimated parameter vector θ̂GMM, where the latter is reported with and without bias correction from (35).

annum for convenience). It displays the customary volatility clustering present in most financial

asset return series. In Panel B, we plot the first 400 lags of the associated acf of BV n
t together with

a Bartlett one-sided 95% white noise confidence band. The slow decay is consistent with significant

memory in integrated variance. As a comparison, we superimpose the model-implied acf recovered

from the GMM parameter estimation, where the latter is shown both with and without the bias

correction in (35). The acf of the uncorrected estimator tracks the sample counterpart based on

bipower variation closely both at the short and long end. Meanwhile, the effect of the bias correction

is to lift the acf higher, indicating a larger amount of memory in integrated variance. Note that

this was to be expected, since the impact of measurement error in a time series is to attenuate the

acf (e.g., Hansen and Lunde, 2014). Meanwhile, it retains the impression of an exponential decline,

which suggests that short-memory components are driving the serial correlation, in contrast to a

hyperbolic decay symptomatic of true long-memory, where the latter entails a Hurst exponent above

0.5.8

In sum, our empirical results point toward a very erratic volatility process in line with—or

even exceeding—previous research. As these findings are not induced by microstructure noise nor

discretization error, we are bound to conclude there is roughness in integrated variance.

8We also estimated the fSV model with a driving standard Brownian motion, i.e. pre-imposing H = 0.5. The

remaining parameters were (ξ̂, λ̂, ν̂) = (0.016, 0.612, 1.048), which broadly aligns with previous studies, e.g., Tegnér

and Poulsen (2018). Intuitively, to fit the sample acf of bipower variation the GMM procedure has to select a larger

mean-reversion parameter λ to compensate for the extra memory induced by forcing H to one-half.
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6 Conclusion

We propose a GMM framework for estimation of the log-normal stochastic volatility model governed

by a general fractional Brownian motion. Our procedure is built from the dynamic properties of

integrated variance in this model, but it employs a generic realized measure of volatility computed

from high-frequency as a noisy proxy. We explicitly account for the inherent measurement error in

the selected estimator by adjusting an appropriate moment condition. We prove consistency and

asymptotic normality our estimator in a classical long-span setting. A Monte Carlo study shows

our proposed routine is capable of recovering the parameters of the model across the entire memory

spectrum. We implement the approach on a vast array of high-frequency data from leading equity

market indexes and confirm the presence of substantial roughness in the stochastic variance process,

as consistent with recent findings in the literature.

In future work, we envision our theoretical results can be extended to other classes of fSV models.

The Heston (1993) model, for example, has been studied in both rough and long-memory form (e.g.,

Comte, Coutin, and Renault, 2012; Guennoun, Jacquier, Roome, and Shi, 2018). With its affine

structure and appeal to option pricing (Duffie, Pan, and Singleton, 2000; Euch and Rosenbaum,

2018), it should be interesting to adapt the GMM estimation routine outlined in this paper to the

generalized fractional version of that model. We leave that for another endeavour.
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A Proofs

A.1 Auxiliary Result

To prove Theorem 2.1, we need the following auxiliary result that enables to express certain two-

dimensional integrals in a one-dimensional form.

Lemma A.1 Assume f : [0,∞)→ R is a continuous function and let k ∈ N. Then,∫ k

k−1

∫ 1

0

f(|s− t|)dsdt =

∫ 1

0

(1− y)
(
f(|k − 1− y|) + f(k − 1 + y)

)
dy.

Proof. Write ∫ k

k−1

∫ 1

0

f(|s− t|)dsdt =

∫∫
[k−1,k]×[0,1]

f(|s− t|)dsdt

and introduce the linear (bijective) change of variables:[
s

t

]
=

1

2

[
(u+ v)

(−u+ v)

]
=

1

2

[
1 1

−1 1

]
︸ ︷︷ ︸

≡A

[
u

v

]
≡

[
ϕ1(u, v)

ϕ2(u, v)

]
≡ ϕ(u, v).

Applying this to the inequalities k − 1 ≤ s ≤ k and 0 ≤ t ≤ 1, we find they are equivalent to

v ≤ 2k − u, v ≥ 2(k − 1)− u, v ≥ u, and v ≤ u+ 2.

Therefore, the set

B = {(u, v) ∈ R2 : v ≤ 2k − u, v ≥ 2(k − 1)− u, v ≥ u, and v ≤ u+ 2}

is mapped by ϕ to [k − 1, k]× [0, 1]. Note also that B = B1 ∪B2, where

B1 ≡ {(u, v) ∈ R2 : k − 2 ≤ u < k − 1 and 2(k − 1)− u ≤ v ≤ u+ 2}

B2 ≡ {(u, v) ∈ R2 : k − 1 ≤ u ≤ k and u ≤ v ≤ 2k − u}

are disjoint. Now, the Jacobian (Dϕ)(u, v) of ϕ equals A for any (u, v) ∈ R2, whereby

| det(Dϕ)(u, v)| = | det(A)| = 1

2
,

and since s− t = ϕ1(u, v)−ϕ2(u, v) = 1
2
(u+ v)− 1

2
(−u+ v) = u, we get by multivariate integration

by substitution:∫∫
[k−1,k]×[0,1]

f(|s− t|)dsdt =

∫∫
ϕ(B)

f(|s− t|)dsdt

=

∫∫
B

f(|ϕ1(u, v)− ϕ2(u, v)|)| det(Dϕ)(u, v)|dudv

=
1

2

(∫∫
B1

f(|u|)dudv +

∫∫
B2

f(|u|)dudv

)
.
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Firstly, ∫∫
B1

f(|u|)dudv =

∫ k−1

k−2

(∫ u+2

2(k−1)−u
f(|u|)dv

)
du = 2

∫ k−1

k−2

(
u− (k − 2)

)
f(|u|)du

= 2

∫ 1

0

(1− y)f(|k − 1− y|)dy,

via the substitution y = k − 1− u. Secondly,∫∫
B2

f(|u|)dudv =

∫ k

k−1

(∫ 2k−u

u

f(|u|)dv
)

du = 2

∫ k

k−1

(k − u)f(u)du

= 2

∫ 1

0

(1− y)f(k − 1 + y)dy,

by substituting y = u− (k − 1) and noting u ≥ k − 1 ≥ 0. Thus, the asserted formula follows. �

A.2 Proof of Theorem 2.1

To prove the first part of the theorem, we note that since the variance process (σ2
t )t≥0 is stationary,

Fubini’s Theorem yields that

E[IVt] =

∫ t

t−1

E
[
σ2
s

]
ds = E

[
σ2

0

]
= ξ.

We proceed with the second-order moments of IVt by noting that

E[σ2
t σ

2
s ] = ξ2E

[
exp

(
Yt + Ys − κ(0)

)
]

= ξ2 exp
(
κ(|t− s|)

)
,

where the last equation follows from Yt + Ys ∼ N(0, 2κ(|t− s|) + 2κ(0)). We deduce that

E[IV1IV1+`] =

∫ `+1

`

∫ 1

0

E
[
σ2
sσ

2
t

]
dsdt

= ξ2

∫ `+1

`

∫ 1

0

exp(κ(|t− s|))dsdt

= ξ2

∫ 1

0

(1− y)
[

exp(κ(|`− y|)) + exp(κ(`+ y))
]
dy,

as a consequence of Lemma A.1.

As for the second part of Theorem 2.1, note that from condition (a) there exists `0 > 0 such

that |κ(u)| ≤ 1 for any u ≥ `0 − 1. Denoting γ`+1,1 = E[IVtIVt+`]− ξ2, we thus find that

γ`+1,1 = ξ2

∫ 1

0

(1− y)
(

exp
(
κ(|`− y|)

)
− 1 + exp

(
κ(`+ y)

)
− 1
)
dy.
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Introducing r(x) ≡ exp(x)− 1− x, x ∈ R allows to further write

γ`+1,1

ξ2κ(`)
=

∫ 1

0

(1− y)

(
κ(`− y)

κ(`)
+
κ(`+ y)

κ(`)

)
dy︸ ︷︷ ︸

≡I1

+

∫ 1

0

(1− y)

(
r(κ(`− y))

κ(`)
+
r(κ(`+ y))

κ(`)

)
dy︸ ︷︷ ︸

≡I2

,

for any ` ≥ `0.

As |r(x)| ≤ 3x2, x ∈ [0, 1], it follows that

|I2| ≤ 3 sup
y∈[−1,1]

∣∣∣∣κ(`+ y)

κ(`)

∣∣∣∣ ∫ 1

0

(1− y)(|κ(|`− y|)|+ |κ(`+ y)|)︸ ︷︷ ︸
≡v`(y)

dy,

where for any y ∈ [0, 1] : 0 ≤ v`(y) ≤ 1, while v`(y) → 0, as ` → ∞ by (2.1). Applying the

dominated convergence theorem and condition (c) implies that:

lim sup
`→∞

|I2| ≤ 3 lim sup
`→∞

sup
ȳ∈[−1,1]

∣∣∣∣κ(`+ ȳ)

κ(`)

∣∣∣∣ lim
`→∞

∫ 1

0

v`(y)dy = 0.

Finally, for y ∈ [0, 1] the integrand u`(y) ≡ (1− y)
(
κ(`−y)
κ(`)

+ κ(`+y)
κ(`)

)
in I1 is bounded uniformly in `

by some constant from condition (c), while

lim
`→∞

u`(y) = (1− y)(φ(−y) + φ(y)), y ∈ [0, 1],

by condition (b). Thus, by dominated convergence

lim
`→∞

I1 =

∫ 1

0

(1− y)(φ(−y) + φ(y))dy =

∫ 1

−1

(1− |y|)φ(y)dy,

which concludes the proof. �

A.3 Proof of Lemma 2.3

In view of Remark 2.4 in Cheridito, Kawaguchi, and Maejima (2003), for any ` ≥ 0

κ(`) =
ν2Γ (2H + 1) sin(πH)

2π

∫ ∞
−∞

ei`z
|z|1−2H

λ2 + z2
dz.

Appealing to Euler’s formula eix = cos(x)+ i sin(x) and the cosine (sine) function being even (odd),

we further conclude that:

κ(`) =
ν2Γ(2H + 1) sin(πH)

π

∫ ∞
0

cos(`z)
z1−2H

λ2 + z2
dz

=
ν2Γ(2H + 1) sin(πH)

π

∫ ∞
0

cos(`λx)
λ1−2Hx1−2H

λ2(1 + x2)
λdx

=
ν2Γ(2H + 1) sin(πH)

λ2Hπ

∫ ∞
0

cos(`λx)
x1−2H

1 + x2
dx.
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To compute the variance term (` = 0), this expression is evaluated using Gradshteyn and Ryzhik

(2007), formula 8.380 (3), 8.384 (1) and 8.334 (3):

κ(0) =
ν2Γ(2H + 1) sin(πH)

λ2Hπ

∫ ∞
0

x1−2H

1 + x2
dx

=
ν2Γ(2H + 1) sin(πH)

2λ2Hπ
B(1−H,H)

=
ν2

2λ2H
Γ(2H + 1),

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the Beta function.

Now, we proceed to compute the covariance, i.e. ` > 0. In view of Gradshteyn and Ryzhik

(2007), formula 3.773 (4) [with µ = 1 and ν = 1/2−H], this reduces to:∫ ∞
0

cos(`λx)
x1−2H

1 + x2
dx =

1

2
B(1−H,H) 1F2

(
1−H; 1−H, 1

2
;
`2λ2

4

)
+

√
π(`λ)2H

4H+1/2

Γ(−H)

Γ(H + 1
2
)

1F2

(
1;H +

1

2
, H + 1;

`2λ2

4

)
=
π cosh(`λ)

2 sin(πH)
−
√
π(`λ)2H

22H+1H

Γ(1−H)

Γ(H + 1
2
)

1F2

(
1;H +

1

2
, H + 1;

`2λ2

4

)
=
π cosh(`λ)

2 sin(πH)
− (`λ)2H

2Γ(2H + 1)

π

sin(πH)
1F2

(
1;H +

1

2
, H + 1;

`2λ2

4

)
,

where we used the identity Γ(z)Γ(1−z) = π/ sin(πz) and the duplication formula Γ(z)Γ(z+1/2) =

21−2z
√
πΓ(2z). This yields

κ(`) =
ν2Γ(2H + 1) sin(πH)

λ2Hπ

∫ ∞
0

cos(`λx)
x1−2H

1 + x2
dx

=
ν2Γ(2H + 1) cosh(`λ)

2λ2H
− ν2`2H

2
1F2

(
1;H +

1

2
, H + 1;

`2λ2

4

)
,

and we are done. �

A.4 Derivation of Remark 2.4

We start with the variance. By a standard linear Taylor approximation exp(x) ≈ 1 + x and setting

x = κ(y)− κ(0), it follows that

E[IV 2
t ] = 2ξ2

∫ 1

0

(1− y) exp(κ(y))dy

≈ 2ξ2 exp(κ(0))

∫ 1

0

(1− y)(1 + κ(y)− κ(0))dy

= ξ2 exp(κ(0))
(

1− κ(0) + 2κ(0)

∫ 1

0

(1− y) cosh(λy)dy
)
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− ξ2 exp(κ(0))ν2

∫ 1

0

(1− y)y2H
1F2

(
1;H +

1

2
, H + 1;

λ2y2

4

)
dy.

The first integral is calculated as∫ 1

0

(1− y) cosh (λy) dy =
cosh(λ)− 1

λ2
.

To handle the second integral, the substitution x = y2 is done, and hereafter we apply Gradshteyn

and Ryzhik (2007), formula 7.512 (11) twice [with µ = 1, ν = H + 1 and then µ = 1, ν = H + 1
2
],∫ 1

0

(1− y)y2H
1F2

(
1;H +

1

2
, H + 1;

λ2y2

4

)
dy

=
1

2

∫ 1

0

(xH−1/2 − xH)1F2

(
1;H +

1

2
, H + 1;

λ2x

4

)
dx

=
Γ(H + 1

2
)

2Γ(H + 3
2
)

1F2

(
1;H +

3

2
, H + 1;

λ2

4

)

− Γ(H + 1)

2Γ(H + 2)
1F2

(
1;H +

1

2
, H + 2;

λ2x

4

))

=
1

2

(H + 1)1F2

(
1;H + 3

2
, H + 1; λ

2x
4

)
− (H + 1

2
)1F2

(
1;H + 1

2
, H + 2; λ

2

4

)
(H + 1

2
)(H + 1)

=
1F2

(
1;H + 3

2
, H + 2; λ

2x
4

)
(2H + 1)(2H + 2)

,

where the property Γ(z+1) = zΓ(z) is applied repeatedly along with the definition of the generalized

hypergeometric function. At last, setting c =
ν2

(2H + 1)(2H + 2)
completes the derivation of the

variance term.

For each ` ≥ 1, we approximate the covariance as:

E[IVtIVt+`] ≈ ξ2 exp(κ(`))

∫ 1

0

(1− y) (2 + κ(`+ y)− κ(`) + κ(`− y)− κ(`)) dy

= ξ2 exp(κ(`))

(
1− κ(`) +

∫ 1

0

(1− y)
(
κ(`+ y) + κ(`− y)

)
dy

)
= ξ2 exp(κ(`))

(
1− κ(l) + κ(0)

∫ 1

0

(1− y)
(

cosh(`+ y) + cosh(`− y)
)
dy

)
− ξ2 exp(κ(`))ν2/2

∫ 1

0

(1− y)(`+ y)2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`+ y)2

4

)
dy

− ξ2 exp(κ(`))ν2/2

∫ 1

0

(1− y)(`− y)2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`− y)2

4

)
dy.

We calculate each of the above integrals in turn. First,

I1 =

∫ 1

0

(1− y) cosh
(
λ(l + y)

)
dy +

∫ 1

0

(1− y) cosh
(
λ(l − y)

)
dy
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=
cosh

(
λ(l + 1)

)
− cosh(λl)− λ sinh(λl)

λ2
+

cosh
(
λ(l − 1)

)
− cosh(λl) + λ sinh(λl)

λ2

=
cosh

(
λ(l + 1)

)
− 2 cosh(λl) + cosh

(
λ(l − 1)

)
λ2

=
2

λ2
cosh(λl)(cosh(λ)− 1).

Secondly,

I2 =

∫ 1

0

(1− y)(`+ y)2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`+ y)2

4

)
dy

=

∫ `+1

`

(1 + `− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

=

∫ `+1

0

(1 + `− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

−
∫ `

0

(1 + `− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx.

Thirdly, we express the last integral as

I3 =

∫ 1

0

(1− y)(`− y)2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`− y)2

4

)
dy

=

∫ `

`−1

(1− `+ x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

=

∫ `

0

(1− `+ x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

−
∫ `−1

0

(1− `+ x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx.

Hence,

I2 + I3 =

∫ `+1

0

(1 + `− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

− 2

∫ `

0

(`− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

+

∫ `−1

0

(`− 1− x)x2H
1F2

(
1;H +

1

2
, H + 1;

λ2x2

4

)
dx

= (`+ 1)2H+2

∫ 1

0

(1− z)z2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`+ 1)2z2

4

)
dz

− 2`2H+2

∫ 1

0

(1− z)z2H
1F2

(
1;H +

1

2
, H + 1;

λ2`2z2

4

)
dz

+ (`− 1)2H+2

∫ 1

0

(1− z)z2H
1F2

(
1;H +

1

2
, H + 1;

λ2(`− 1)2z2

4

)
dz.
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At this stage, we proceed as for the variance term and apply Gradshteyn and Ryzhik (2007), formula

7.512 (11). This leads to the evaluation

I2 + I3 =
(`+ 1)2H+2

(2H + 1)(2H + 2)
1F2

(
1;H +

1

2
, H + 1;

λ2(`+ 1)2

4

)
− 2`2H+2

(2H + 1)(2H + 2)
1F2

(
1;H +

1

2
, H + 1;

λ2`2

4

)
+

(`− 1)2H+2

(2H + 1)(2H + 2)
1F2

(
1;H +

1

2
, H + 1;

λ2(`− 1)2

4

)
.

Plugging the terms into the original expression results in the claimed approximation. �

A.5 Proof of Lemma 2.6

Recall that κ(`) = cov(Yt, Yt+`), where for the Gamma-BSS process:

κ(`) = ν2

∫ ∞
0

h(x)h(x+ `)dx.

Inserting the Gamma kernel, h(x) = xαe−λx, we deduce the identity:

κ(0) = ν2

∫ ∞
0

x2α exp(−2λx)dx

= ν2(2λ)−2α−1

∫ ∞
0

z2α exp(−2z)dz

= ν2(2λ)−2α−1Γ(2α + 1).

Now, for each ` > 0,

κ(`) = ν2 exp(−λ`)
∫ ∞

0

xα(x+ `)α exp(−2λx)dx

=
ν2Γ(α + 1)√

π

(
`

2λ

)α+ 1
2

Kα+1/2(λ`),

where the last equality follows from Gradshteyn and Ryzhik (2007), formula 3.383 (8).

As κ(`) adheres to (5), Theorem 2.1 applies with∫ 1

−1

(1− |y|)φ(y)dy =

∫ 1

−1

(1− |y|) exp(−λy)dy =
exp(−λ)(exp(λ)− 1)2

λ2
,

so it follows that

γ`+1,1 ∼ F (`;α, λ, v, ξ), `→∞,

where

F (`;α, λ, v, ξ) ≡ v2ξ2Γ(α + 1)(exp(λ)− 1)2

2α+1λα+2︸ ︷︷ ︸
>0

`α exp(−λ(`+ 1))

for ` > 0, α > −1
2
, λ > 0, v > 0 and ξ > 0. �
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A.6 Proof of Theorem 3.6

We apply Theorem 2.1 of Hansen (1982), the sufficient conditions of which are implied by our

Assumptions 1 – 4. It remains to verify Gc(θ) is continuous in θ, which also renders the random

function m̂T (θ) continuous in θ. Next, note that the moduli of continuity of m̂T (θ) and Gc(θ)

coincide, so Gc(θ) being continuous readily implies the so-called first moment continuity of m̂T (θ),

see Hansen (1982, Definition 2.2).

To establish continuity of Gc(θ) in θ = (ξ, φ), note that c(θ) is continuous by Assumption 2,

whereby it suffices to prove the continuity of G(θ). The first component of G(θ) is g
(1)
0 (θ) = ξ, which

is evidently continuous, while the remaining components are given in integral form in Theorem 2.1.

Their continuity is then a consequence of the dominated convergence theorem, given condition (ii)

of Assumption 1. �

A.7 Proof of Theorem 3.7

We introduce the notation:

Q̃n,T (θ) = m̃n,T (θ)′WT m̃n,T (θ),

Q(θ) = m(θ)′Wm(θ).

where m(θ) = G(θ0)−G(θ) and W = A′A. The claim then follows under the conditions of Theorem

2.1 of Newey and McFadden (1994):

(i) Q(θ) is uniquely minimized at θ0,

(ii) Θ is compact,

(iii) θ → Q(θ) is continuous, and

(iv) supθ∈Θ |Q̃n,T (θ)−Q(θ)| P−→ 0.

We note that condition (i) is implied by Assumption 4, since for θ 6= θ0:

Q(θ) = (Am(θ))′Am(θ) > 0 = Q(θ0).

Condition (ii) is immediate. We already showed condition (iii) in the proof of Theorem 3.6. Now,

we pass to the last condition (iv). In view of the Cauchy-Schwarz inequality,∣∣Q̃n,T (θ)−Q(θ)
∣∣ ≤ ∣∣(m̃n,T (θ)−m(θ))′WT (m̃n,T (θ)−m(θ))

∣∣+
∣∣m(θ)′(WT + W′T )(m̃n,T (θ)−m(θ))

∣∣
+
∣∣m(θ)′(WT −W)m(θ)

∣∣
≤ ||m̃n,T (θ)−m(θ)||2 ||WT ||+ 2 ||m(θ)|| ||WT || ||m̃n,T (θ)−m(θ)||

+ ||m(θ)||2 ||WT −W||.
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Then, in view of Assumption 3, it suffices to prove that

sup
θ∈Θ
||m̃n,T −m(θ)|| P−→ 0, as T →∞ and n→∞.

Let mT (θ) = T−1
∑T

t=1

[
IVt − G(θ)

]
. Since the convergence supθ∈Θ ||mT (θ) − m(θ)|| P−→ 0 was

already covered by the proof of Theorem 3.6 (setting εt = c(θ) = 0), it remains to show

sup
θ∈Θ
||m̃n,T (θ)−mT (θ)|| P−→ 0, as T →∞ and n→∞.

To this end, we observe that

||m̃n,T (θ)−mT (θ)|| ≤ 1

T

T∑
t=1

||Vn
t − IVt||

≤ 1

T

T∑
t=1

[
|V n
t − IVt|+

k∑
j=0

|V n
t V

n
t−j − IVtIVt−j|

]

≤ 1

T

T∑
t=1

|V n
t − IVt|(1 + |V n

t |+ IVt)

+
1

T

T∑
t=1

k∑
j=1

|V n
t − IVt||V n

t−j|+ IVt|V n
t−j − IVt−j|.

From Assumption 5 and the Cauchy-Schwarz inequality, we deduce that:

E
[

sup
θ∈Θ
||m̃n,T (θ)−mT (θ)||

]
→ 0, as T →∞ and n→∞.

which was to be shown. �

A.8 Derivation of Remark 3.8

Suppose that sups∈R E[µ4
s] + sups∈R E[σ4

s ] <∞. Then, there exists a constant C such that

sup
t∈Z

E
[
(RV n

t − IVt)2
]
≤ Cn−1.

To see this, we apply Itô’s Lemma to get

(
Xt−1+ i

n
−Xt−1+ i−1

n

)2
= 2

∫ t−1+ i
n

t−1+ i−1
n

(Xs −Xt−1+ i−1
n

)dXs +

∫ t−1+ i
n

t−1+ i−1
n

σ2
sds.

Consequently,

RV n
t − IVt = 2

∑
i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs −Xt−1+ i−1
n

)dXs
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= 2
n∑
i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs −Xt−1+ i−1
n

)µsds+ 2
n∑
i=1

∫ t−1+ i
n

t−1+ i−1
n

(Xs −Xt−1+ i−1
n

)σsdWs.

In turn, this combined with Cauchy–Schwarz and Jensen’s inequality leads to

E
[
(RVt − IVt)2] ≤ 4

n∑
i=1

∫ i
n

i−1
n

E[(Xs −X i−1
n

)2µ2
s]ds+ 4

n∑
i=1

∫ i
n

i−1
n

E[(Xs −X i−1
n

)2σ2
s ]ds

≤ Cn−1,

where in the last inequality we exploited sups≥0 E[µ4
s] + sups≥0 E[σ4

s ] <∞ along with Burkholder’s

inequality: sup
s∈
[
i−1
n
, i
n

] E[(Xs −X i−1
n

)4] ≤ Cn−2. �

A.9 Proof of Proposition 3.9

The proof relies on a martingale approximation central limit theorem of Peligrad and Utev (2006)

and requires some preparation. First, we state and prove a couple of generic, elementary lemmas.

Lemma A.2 Suppose X is a random variable such that E[X2] <∞ and let F and G be σ-algebras

such that F ⊂ G. Then,

‖E[X | F ]‖L2(P) ≤ ‖E[X | G]‖L2(P).

Proof. Since F ⊂ G, we get by the tower property of conditional expectations,

‖E[X | F ]‖2
L2(P) = E

[
E[X | F ]2

]
= E

[
E[E[X | G] | F ]2

]
.

Applying Jensen’s inequality for conditional expectations,

E
[
E[X | G] | F

]2 ≤ E
[
E[X | G]2 | F

]
.

Hence,

E
[
E[E[X | G]|F ]2

]
≤ E

[
E[E[X | G]2|F ]

]
= E

[
E[X | G]2

]
= ‖E[X | G]‖2

L2(P).

�

Lemma A.3 Suppose that X ∼ N(µ, λ2) for some µ ∈ R and λ > 0. Then,

E
[
(eX − 1)2

]
≤
(
eµ+λ2 + 1

)2(
8|µ|+ 6λ2

)
.

Proof. Note that

E
[
(eX − 1)2

]
= e2(µ+λ2) − 2eµ+ 1

2
λ2 + 1 ≤ e2(µ+λ2) + 2eµ+λ2 + 1 = (eµ+λ2 + 1)2,

while

e2(µ+λ2) − 2eµ+ 1
2
λ2 + 1 = e2(µ+λ2) − 1 + 2(1− eµ+ 1

2
λ2) ≤ 8|µ|+ 6λ2 ≤ (eµ+λ2 + 1)2︸ ︷︷ ︸

≥1

(8|µ|+ 6λ2),

for |µ|+λ2 < 1
2

due to the elementary inequality |ex−1| ≤ 2|x|, for |x| ≤ 1. However, if |µ|+λ2 ≥ 1
2
,

then 8|µ|+ 6λ2 ≥ 1, so the inequality holds also unconditionally. �
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Secondly, we exploit these results to prove the following two technical lemmas that estimate the

memory of integrated variance and its noisy proxy.

Lemma A.4 Suppose that Assumptions 1 and 6 hold. Moreover, suppose that (Ft)t∈R is a filtration

such that B is adapted and has independent increments with respect to it (cf. condition (iii) in

Assumption 7). Then, for any p > 0, 0 ≤ s ≤ t and 0 ≤ s′ ≤ t′,

(i)
∥∥∥Eθ0[ ∫ t+rs+r

σpudu | F0

]
− Eθ0

[ ∫ t
s
σpudu

]∥∥∥
L2(Pθ0 )

= O(r−γ+1/2),

(ii)
∥∥∥Eθ0[ ∫ t+rs+r

σpudu
∫ t′+r
s′+r

σpu′du
′ | F0

]
− Eθ0

[ ∫ t
s
σpudu

∫ t′
s′
σpu′du

′
]∥∥∥

L2(Pθ0 )
= O(r−γ+1/2),

as r →∞.

Proof. We only prove (ii) as the proof of (i) is analogous. In explicit terms, Assumption 6 says

that there exist constants u0 ≥ 0 and c > 0 such that

|K(u)| ≤ cu−γ, u ≥ u0. (56)

Without loss of generality, assume r ≥ u0 from now on. By Tonelli’s theorem,

Eθ0
[ ∫ t+r

s+r

σpudu

∫ t′+r

s′+r

σpu′du
′ | F0

]
− Eθ0

[ ∫ t

s

σpudu

∫ t′

s′
σpu′du

′
]

=

∫ t

s

∫ t′

s′

(
Eθ0 [σ

p
u+rσ

p
u′+r | F0]− Eθ0 [σpuσ

p
u′ ]
)
dudu′,

(57)

where

σpvσ
p
v′ = ξpe−

p
2
κ(0) exp

(∫ ∞
−∞

K+(v, v′, τ)dBτ

)
with K+(v, v′, τ) =

p

2

[
K(v−τ)+K(v′−τ)

]
for any v, v′ ≥ 0 (recall we set K(v) = 0 for any v ≤ 0).

Subsequently,

Eθ0 [σpuσ
p
u′ ] = ξpe−

p
2
κ(0) exp

(
1

2

∫ ∞
−∞

K+(u, u′, τ)2dτ

)
,

while, by the assumed properties of the Brownian motion B,

Eθ0 [σ
p
u+rσ

p
u′+r | F0]

= ξpe−
p
2
κ(0) exp

(∫ 0

−∞
K+(u+ r, u′ + r, τ)dBτ

)
E
[

exp

(∫ ∞
0

K+(u+ r, u′ + r, τ)dBτ

)]
= ξpe−

p
2
κ(0) exp

(∫ 0

−∞
K+(u, u′, τ − r)dBτ +

1

2

∫ ∞
0

K+(u, u′, τ − r)2dτ

)
,

using the property K+(u+ r, u′ + r, τ) = K+(u, u′, τ − r).
Therefore,

Eθ0 [σ
p
u+rσ

p
u′+r | F0]− Eθ0 [σpuσ

p
u′ ] = ξ2e−

p
2
κ(0) exp

(
1

2

∫ ∞
−∞

K+(u, u′, τ)2dτ

)(
exp(Y u,u′

r )− 1
)
, (58)

35



with

Y u,u′

r =

∫ 0

−∞
K+(u, u′, τ − r)dBτ −

1

2
K
u,u′

(r) ∼ N

(
− 1

2
K
u,u′

(r), K
u,u′

(r)

)
(59)

and K
u,u′

(r) =
∫ −r
−∞K

+(u, u′, τ)2dτ =
∫ 0

−∞K
+(u, u′, τ − r)2dτ . Applying Tonelli’s theorem and

Jensen’s inequality to (57), we conclude that:

Eθ0

[(
Eθ0
[ ∫ t+r

s+r

σpudu

∫ t′+r

s′+r

σpu′du
′ | F0

]
− Eθ0

[ ∫ t

s

σpudu

∫ t′

s′
σpu′du

′
])2

]

≤ (t− s)(t′ − s′)
∫ t

s

∫ t′

s′
Eθ0
[
(Eθ0 [σ

p
u+rσ

p
u′+r | F0]− Eθ0 [σpuσ

p
u′ ])

2
]
dudu′,

where, by (58) – (59) and Lemma A.3,

Eθ0
[
(Eθ0 [σ

p
u+rσ

p
u′+r | F0]− Eθ0 [σpuσ

p
u′ ])

2
]

= ξ2pe−pκ(0) exp

(∫ ∞
−∞

K+(u, u′, τ)2dτ

)
Eθ0
[
(exp(Y u,u′

r )− 1)2
]

≤ 14ξ2pe−pκ(0) exp

(∫ ∞
−∞

K+(u, u′, τ)2dτ

)(
e

3
2
K
u,u′

(r) + 1
)2

K
u,u′

(r)

≤ 14ξ2pe

(
p2

2
−p
)
κ(0)
(
e

3p2

4
κ(0) + 1

)2

K
u,u′

(r),

after observing that

K
u,u′

(r) ≤
∫ ∞
−∞

K+(u, u′, τ)2dτ ≤ p2

2

∫ ∞
0

K(τ)2dτ =
p2

2
κ(0).

Moreover, if τ ≤ −r then −τ ≥ r ≥ u0, whereby u − τ ≥ u0 and u′ − τ ≥ u0 since u ≥ s ≥ 0 and

u′ ≥ s′ ≥ 0. Thus, by (56),

K
u,u′

(r) =
p2

4

∫ −r
−∞

(
K(u− τ) +K(u′ − τ)

)2
dτ

≤ c2p2

2

∫ −r
−∞

(
(u− τ)−2γ + (u′ − τ)−2γ

)
dτ

≤ c2p2

∫ ∞
r

τ−2γdτ =
c2p2

1− 2γ
r−2γ+1.

Consequently,∥∥∥∥Eθ0[ ∫ t+r

s+r

σpudu

∫ t′+r

s′+r

σpu′du
′ | F0

]
− Eθ0

[ ∫ t

s

σpudu

∫ t′

s′
σpu′du

′
]∥∥∥∥

L2(Pθ0 )

≤ (t− s)(t′ − s′)
(

14

1− 2γ

)1/2

ξpe

(
p2

4
− p

2

)
κ(0)
(
e

3p2

4
κ(0) + 1

)
cpr−γ+1/2

= O(r−γ+1/2),

as r →∞, which concludes the proof of (ii). �
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Lemma A.5 If Assumptions 1 – 2 and 6 – 7 hold, then

∞∑
r=1

r−1/2
∥∥Eθ0[ÎVr | F ÎV

0

]
−Gc(θ0)

∥∥
L2(Pθ0 )

<∞.

Proof. Let r ≥ 1. First, we consider:

Eθ0
[
ÎV r | F ÎV

0

]
− g(1)

0 (θ0) = Eθ0
[
IVr | F ÎV

0

]
− Eθ0 [IV1] + Eθ0

[
εr | F ÎV

0

]
,

where

Eθ0
[
εr | F ÎV

0

]
= Eθ0

[
Eθ0 [εr | F

σ,ε
r−1] | F ÎV

0

]
= 0

by Assumption 2 and the tower property of conditional expectations, which is applicable since

F ÎV
0 ⊂ F

σ,ε
r−1. Therefore,∥∥Eθ0[ÎV r

∣∣F ÎV
0

]
− g(1)

0 (θ0)
∥∥
L2(Pθ0 )

= ‖Eθ0
[
IVr | F ÎV

0

]
− Eθ0 [IV1]‖L2(Pθ0 )

≤ ‖Eθ0
[
IVr | FW,ε0

]
− Eθ0 [IV1]‖L2(Pθ0 )

= O(r−γ+1/2), r →∞,

(60)

which follows by Lemma A.2, again since F ÎV
0 ⊂ F

W,ε
0 , and Lemma A.4(i).

Secondly,

Eθ0
[
ÎV

2

r | F ÎV
0

]
− g(2)

0 (θ0)− c(θ0)

= Eθ0
[
IV 2

r | F ÎV
0

]
− Eθ0 [IV 2

1 ] + 2Eθ0
[
εrIVr | F ÎV

0

]
+ Eθ0

[
ε2
r | F ÎV

0

]
− Eθ0 [ε2

1],

where

Eθ0
[
εrIVr | F ÎV

0

]
= Eθ0

[
Eθ0
[
εr | Fσ,εr−1

]
IVr | F ÎV

0

]
= 0,

by the tower property, since F ÎV
0 ⊂ F

σ,ε
r−1, and Assumption 2. By virtue of condition (7) in Assump-

tion 7 and Minkowski’s inequality:∥∥Eθ0[ÎV 2

r | F ÎV
0

]
− g(2)

0 (θ0)− c(θ0)
∥∥
L2(Pθ0 )

= ‖Eθ0
[
IV 2

1 | F ÎV
0

]
− Eθ0 [IV 2

1 ]‖L2(Pθ0 ) +O(r−γ+1/2)

≤ ‖Eθ0
[
IV 2

r | F
W,ε
0

]
− Eθ0 [IV 2

1 ]‖L2(Pθ0 ) +O(r−γ+1/2)

= O(r−γ+1/2),

(61)

as r →∞, by Lemma A.2 and A.4(ii).

Lastly, for ` = 1, . . . , k (assuming r > k without loss of generality):

Eθ0
[
ÎV rÎV r−` | F ÎV

0

]
− g`(θ0) = Eθ0

[
IVrIVr−` | F ÎV

0

]
− Eθ0 [IV1IV1−`]

+ Eθ0
[
εrIVr−` | F ÎV

0

]
+ Eθ0

[
IVrεr−` | F ÎV

0

]
+ Eθ0

[
εrεr−` | F ÎV

0

]
,
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where

Eθ0
[
εrIVr−` | F ÎV

0

]
= Eθ0

[
Eθ0
[
εr | Fσ,εr−1

]
IVr−` | F ÎV

0

]
= 0,

Eθ0
[
IVrεr−` | F ÎV

0

]
= Eθ0

[
IVrEθ0

[
εr−` | Fσ,εr−`−1

]
| F ÎV

0

]
= 0,

Eθ0
[
εrεr−` | F ÎV

0

]
= Eθ0

[
Eθ0
[
εr | Fσ,εr−1

]
εr−` | F ÎV

0

]
= 0,

from tower property, because F ÎV
0 ⊂ F

σ,ε
r−`−1 ⊂ Fσ,εr , and Assumption 2. Thus, applying yet again

Lemma A.2, we get∥∥Eθ0[ÎV rÎV r−` | F ÎV
0

]
− g`(θ0)

∥∥
L2(Pθ0 )

= ‖Eθ0
[
IVrIVr−` | F ÎV

0

]
− Eθ0 [IV1IV1−`]‖L2(Pθ0 )

≤ ‖Eθ0
[
IVrIVr−` | FW,ε0

]
− Eθ0 [IV1IV1−`]‖L2(Pθ0 )

= O(r−γ+1/2),

(62)

as r →∞, due to Lemma A.4(ii).

Combining (60) – (62), we deduce that

r−1/2
∥∥Eθ0[ÎVr | F ÎV

1

]
−Gc(θ0)

∥∥
L2(Pθ0 )

= r−1/2O(r−γ+1/2) = O(r−γ),

as r →∞, whereby the result follows since γ > 1. �

Proof of Proposition 3.9. By the Cramér–Wold device, we can reduce the multivariate conver-

gence in (48) to a univariate problem. To this end, fix arbitrary a ∈ Rk+2 and set ST =
∑T

t=1 ξt,

where ξt = a′
(
ÎVt −Gc(θ0)

)
, t ∈ Z, so that

T−1/2ST = T 1/2a′m̂T (θ0).

Note that (ξt)t∈Z inherits the stationarity and ergodicity of
(
ÎVt

)
t∈Z. Moreover, Eθ0 [ξ1] = 0 and

Eθ0 [ξ2
1 ] < ∞ under the present assumptions. As the natural filtration F ξt = σ{ξt, ξt−1, . . .}, t ∈ Z,

of (ξt)t∈Z has F ξt ⊂ F ÎV
t for any t ∈ Z, then by Lemmas A.2 and A.5,

∞∑
r=1

r−1/2‖E[ξr | F ξ0 ]‖L2(Pθ0 ) ≤ ‖a‖Rk+2

∞∑
r=1

r−1/2
∥∥E[ÎVr

∣∣F ÎV
0

]
−Gc(θ0)

∥∥
L2(Pθ0 )

<∞.

Appealing to Theorem 1 and Corollary 2 of Peligrad and Utev (2006),

T−1/2ST
L−−−→

T→∞
N

(
0,

∞∑
`=−∞

Eθ0 [ξ1ξ1+`]

)
,

with long-run variance

∞∑
`=−∞

Eθ0 [ξ1ξ1+`] =
∞∑

`=−∞

Eθ0
[
a′(ÎV1 −Gc(θ0))(ÎV1+` −Gc(θ0))′a

]
= a′ΣIVa,

and the proposition is verified. �
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Proposition A.6 Suppose that Assumptions 1 and 6 hold. Then condition (ii) of Assumption 7

applies in Examples 3.2, 3.3, and 3.5.

Proof. The error terms in Examples 3.2 and 3.5 differ only by scaling factor, so it suffices to look

at the former. Then,

εt =

(
2

n

∫ t

t−1

σ4
udu

)1/2

Zt, t ∈ Z,

so that, using the filtration FB,Zt = σ{Zt, Zt−1, . . .} ∨ σ{Bu : u ≤ t}, t ∈ Z:

Eθ0
[
ε2
r | F

B,Z
0

]
− Eθ0 [ε2

1] =
2

n

(
Eθ0
[ ∫ r

r−1

σ4
udu | F

B,Z
0

]
− Eθ0

[ ∫ 1

0

σ4
udu

])
, r ≥ 1,

since
∫ r
r−1

σ4
udu and Zr are conditionally independent on FB,Z0 . We can then apply Lemma A.4(i)

and A.2 to show the conjecture of this part.

In Example 3.3,

εt =
n∑
i=1

(Z2
t,i − 1)

∫ t−1+ i
n

t−1+ i−1
n

σ2
udu, t ∈ Z,

whereby for any r ≥ 1,

Eθ0
[
ε2
r | F

B,Z
0

]
− Eθ0 [ε2

1] = 2
n∑
i=1

(
Eθ0
[(∫ r−1− i

n

r−1+ i−1
n

σ2
udu

)2

| FB,Z0

]
− Eθ0

[(∫ i
n

i−1
n

σ2
udu

)2])
.

Applying Minkowski’s inequality and Lemmas A.4(i) and A.2 concludes the proof. �

A.10 Proof of Theorem 3.10

We set QT = m̂T (θ)′WT m̂T (θ) and note that QT attains its minimum value at θ̂T . Combining this

with the mean value theorem yields that

0 = ∇θQT (θ̂T ) = ∇θQT (θ0) +∇2
θθQT (θ̄T )(θ̂T − θ0),

where θ̄T lies between θ̂T and θ0. Now,

∇θQT (θ) = 2∇θm̂T (θ)′WT m̂T (θ),

∇2
θθQT (θ) = 2∇θθm̂T (θ)′WT m̂T (θ) + 2∇θθm̂T (θ)′WT∇θm̂T (θ)

This leads to: √
T (θ̂T − θ0) =

(
∇2
θθQT (θ̄T )

)−1
2∇θm̂T (θ0)′WT

√
Tm̂T (θ0). (63)

Invoking the assumptions of the theorem, it follows that θ̄T
P−→ θ as T → ∞. In addition, and

recalling Proposition 3.9, we deduce that as T →∞:
√
Tm̂T (θ0)

d−→ N
(
0,ΣÎV

)
,

∇θm̂T (θ0)
P−→ G,

∇2
θθQT (θ̄T )

P−→ G′WG,

where the last part uses that m̂T (θ0)
P−→ 0. Then, Slutsky’s theorem finishes the proof. �
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A.11 Proof of Theorem 3.11

Proceeding as above, and denoting Q̃n,T = m̃n,T (θ)′WT m̃n,T (θ), we find that

√
T (θ̃n,T − θ0) =

(
∇2
θθQ̃n,T (θ̌n,T )

)−1
2∇θm̃n,T (θ0)′WT

√
Tm̃n,T (θ0).

Then, as T →∞ and n→∞,

√
Tm̃n,T (θ0)

d−→ N(0,ΣIV),

∇θm̃n,T (θ0)
P−→ G̃,

∇2
θθQ̃n,T (θ̌n,T )

P−→ G̃′WG̃,

To wrap up, we again exploit Slutsky’s theorem. �
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