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Abstract

A risk-averse insurance company controls its reserve, modelled as a perturbed
Cramér-Lundberg process, by choice of both the premium p and the deductible
K offered to potential customers. The surplus is allocated to financial investment
in a riskless and a basket of risky assets potentially correlating with the insurance
risks and thus serving as a partial hedge against these. Assuming customers differ
in riskiness, increasing p or K reduces the number of customers n(p,K) and in-
creases the arrival rate of claims per customer λ(p,K) through adverse selection,
with a combined negative effect on the aggregate arrival rate n(p,K)λ(p,K).
We derive the optimal premium rate, deductible, investment strategy, and div-
idend payout rate (consumption by the owner-manager) maximizing expected
discounted life-time utility of intermediate consumption under the assumption
of constant absolute risk aversion. Closed-form solutions are provided under
specific assumptions on the distributions of size and frequency claims.
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Email: rafael.serrano@urosario.edu.co.

1

bjchristensen@econ.au.dk
jparra@econ.au.dk
rafael.serrano@urosario.edu.co


1 Introduction

The optimal choice by an insurance company of strategies for dividend payout, in-
vestment in safe and risky financial assets, and reinsurance arrangements have been
studied heavily by means of stochastic control, see, e.g., Schmidli (2008). A further
control variable at the company’s disposal is the premium. In the non-life insurance
literature, this is typically set as the net premium, i.e., arrival rate times expected
size of claims, with an added safety loading based on the expected value principle,
standard deviation principle, variance principle, or similar. As an alternative to these
premium principles, Asmussen et al. (2013) consider the premium as a direct control,
chosen optimally to balance the trade-off between resulting portfolio size and aver-
age profit per customer. Analysis of the individual customer’s decision problem of
whether or not to insure at a given premium delivers both the dependence of portfolio
size on premium and, as in Rothschild and Stiglitz (1976), a further adverse selection
effect on the riskiness of the average customer. Thus, while a higher premium in-
creases revenue per customer and reduces portfolio size, it leads in addition to a higher
average claim arrival rate. Thøgersen (2016) extends this analysis by investigating
the dependence of the optimal premium on a fixed deductible, taken as given rather
than controlled by the company. In the present paper, we consider the combined
stochastic control problem faced by an insurance company simultaneously choosing
premium, deductible, safe as well as risky financial investments, and the resulting
residual dividend payout or consumption flow. The optimization criterion considered
is the expected discounted life-time utility from this latter flow. Our work provides a
unifying framework, combining and generalizing both the literature on optimal invest-
ment of the insurance company’s surplus and the optimal premium control literature.

We consider an infinitely-lived non-life insurance company that collects premiums
from policyholders in continuous time, and covers net (of deductible) claims arriving
according to a compound Poisson process. The contract offered is characterized by
the premium rate, pt > 0, and the deductible, Kt ≥ 0. The company decides on both
pt and Kt to control its exposure to the insurance risk stemming from its contrac-
tual obligations, taking into account the effects on the size of the insurance portfolio,
n(pt,Kt), and the average arrival rate of claims, λ(pt,Kt). Further, the company has
access to a risk-free asset and a basket of risky assets for investment of the surplus
from its insurance activities. Thus, it can enhance its risk management by partially
hedging its insurance risk exposure through a financial portfolio that exploits any cor-
relation between unexpected variations in surplus from the insurance business and
returns to assets in the investment opportunity set. Correlation between the com-
pany’s assets and liabilities can arise due to common dependence on the economic and
natural environment, including systemic risk and contagion between the financial and
insurance sectors. Despite the resulting hedging opportunity, the market remains in-
complete, since the risk arising from insurance claims cannot be completely eliminated
under any investment strategy. For simplicity, we assume that all financial assets offer
constant expected rates of return, volatilities, and correlations through time.

An early contribution to the premium control literature was by Martin-Löf (1983),
who proposed a linear feedback rule, setting the premium as a linear function of
the surplus (reserve) and expected claims. Vandebroek and Dhaene (1990) showed
that this is close to the optimal policy in a linear-quadratic control problem with
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the premium as control and the surplus as state. These papers did not consider
the dependence of portfolio size and claim arrival rate on the choice of premium,
and the linear nature of the premium policy stemmed from an assumption that the
quadratic objective penalized deviations in premiums and surplus levels from oth-
erwise unspecified target levels assumed to derive from ruin theory. Taylor (1986)
adopted a demand function specification for portfolio size as function of the premium,
with price elasticity depending on average (or market) premium. Several subsequent
studies have extended the deterministic discrete-time framework of Taylor. For ex-
ample, Emms et al. (2007) consider a stochastic continuous-time generalization, and
Pantelous and Passalidou (2017) consider a stochastic demand function (portfolio
size) in discrete time. However, none of these papers allows for adverse selection
effects of changes in premium on the riskiness of customers. Højgaard (2002) allows
the claim arrival rate or intensity to depend in an unspecified manner on a safety
loading, and hence the premium, assuming the expected value principle. In effect,
the optimization is with respect to the arrival rate, but this is assumed proportional
to portfolio size, and not separated from the average arrival rate per customer, i.e.,
adverse selection is still not accommodated. Joint determination of mutually consis-
tent portfolio size and arrival rate requires analysis of the customer’s problem, with
endogenous derivation of (rather than assumption about) the demand function and
average customer risk, following Asmussen et al. (2013), who assume no deductible,
and the extension to a fixed deductible in Thøgersen (2016). In the insurance indus-
try, a deductible may be introduced for a variety of reasons (see, e.g., Burnecki et al.,
2005). First, it avoids handling costs associated with a large number of small claims;
second, it prevents customers from making claims by sharing the cost of claims with
the company; third, it allows the company to reduce the premium rate. We focus on
a further strategic role of the deductible, namely, the insurance company can control
the size and risk composition of its portfolio through the choice of (pt,Kt), jointly.
Thus, we contribute to the optimal premium control literature by adding optimal
deductible control, as well as financial asset investment and hedging opportunities.

The second strand of literature that we build on is that on optimal investment
in safe and risky assets of an insurance company’s surplus. Browne (1995) allowed
correlation between the financial and insurance risks, as in our case, and derived
the optimal portfolio strategy of an insurance company taking the premium rate as
given, and facing an insurance risk process described by the diffusion approximation
to the classical Cramér-Lundberg model. Hipp and Plum (2000) and Yang and Zhang
(2005) studied the corresponding asset allocation problems in which the surplus from
the insurance business is instead modelled by a compound Poisson or jump-diffusion
process. Using dynamic programming techniques, they obtained closed-form expres-
sions for the optimal investment policy. Zheng et al. (2016) consider robust optimal
portfolio and reinsurance arrangements for an ambiguity-averse insurance company.
Zhou et al. (2017) consider optimal investment and premium control, but assume an
unspecified monotone relation between safety loading and claim arrival rate, as in
Højgaard (2002), i.e., no adverse selection, and they rely on a diffusion approxima-
tion to the surplus. With the exception of this paper, the investment literature takes
the premium as given, and none of the papers considers a deductible. We contribute
to the investment literature by adding the premium and deductible as further con-
trols, including the resulting adverse selection effects, and recognizing the compound
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Poisson component of the surplus process.

We assume that the surplus is driven by a perturbed Cramér-Lundberg process
that in addition to the premium flow and compound Poisson process includes a dif-
fusion component, following Gerber (1970). This perturbation captures any uncer-
tainty about premium income and additional (beyond the compound Poisson pro-
cess) uncertainty about aggregate claims (see Dufresne and Gerber, 1991, Furrer and
Schmidli, 1994, and Schmidli, 1995), possibly stemming from variations in admin-
istrative expenses, operational costs, economic environment, or business conditions
more generally. Specifically, we allow for correlation between the insurance and finan-
cial risk components of the company’s balance sheet through this perturbation term.
There are good reasons to expect such correlation to matter for insurance companies.
Besides general co-movements of administrative and operational costs with the state
of the economy and thus asset prices through the business cycle, correlation between
insurance claims and equities can arise due to the occurrence or anticipation of nat-
ural disasters, epidemics, financial crises, economic recession, etc. Examples abound,
e.g., Achleitner et al. (2002) consider the September 11, 2001, attack on the World
Trade Center and document strong correlation impacts on the relation between un-
derwriting and investment risks faced by property and casualty insurers, stemming
from the simultaneous shock to their assets and liabilities. During the financial crisis
of 2008, claims covered by credit insurance increased dramatically, while financial
markets tumbled. Global warming and climate change are expected to increase the
incidence of storms, droughts, floods, and thus property claims, and at the same
time lead to economic and social instability, hence inducing contagion between in-
surance and financial markets (Hainaut, 2017). A currently relevant example is the
ongoing coronavirus COVID-19 pandemic, which is generating massive claims from
travel insurance, event cancellation, and health policy holders, while simultaneously
depressing hotel, restaurant, tourism, entertainment, transportation, manufacturing,
and many other economic sectors, and thus asset prices. Ward and Zurbruegg (2000)
document co-movement between the insurance sector and the aggregate economy, and
Billio et al., 2012 provide statistical evidence of systemic risk and correlation between
the insurance and financial sectors. To accommodate such correlation in our model,
we assume that the prices of financial assets available to the insurance company are
driven by a vector of geometric Brownian motions, along the lines of Merton (1971),
that are potentially correlated with the insurance surplus through the perturbation
term, and we investigate the risk management implications of such correlation.

The insurance company’s objective function deserves some mention. We consider
expected discounted life-time utility from the running consumption or dividend flow
extracted from the insurance surplus and financial wealth process, assuming that
the instantaneous utility exhibits constant absolute risk aversion (CARA), following
Merton (1969, 1971). This reflects the idea that the company pays dividends to
a risk averse owner, who then consumes the running dividend, and that the com-
pany acts in the owner’s interest, including the financial investment decisions. An
alternative would be for the company to maximize expected discounted dividends,
without regard to risk aversion, and let the owner handle the optimization of the
consumption path, using the financial markets to smooth the dividend stream. For
example, in the diffusion case, with dividends as the only control, Radner and Shepp
(1996) and Asmussen and Taksar (1997) considered the maximization of expected
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dividends discounted at a constant rate. However, separation of company ownership
and management actually requires that the company maximize shareholder value.
With the insurance surplus correlated with financial markets, this is given by ex-
pected dividends discounted instead at a rate appropriately adjusted for systematic
or market risk, as in the Merton (1973) intertemporal capital asset pricing model
(CAPM), with a risk premium given by a quantity of risk, reflecting the correlation,
multiplied by the market price of risk, reflecting the risk aversion of the representative
agent. In the present case, the representative agent corresponds to the owner, and
rather than looking for a beta-adjustment in the discount rate for dividends along
these lines, we consider directly the optimization of the owner’s expected discounted
life-time utility, thus collapsing ownership and control, with risk aversion reflected
through the utility function rather than the discount rate. In economics and finance,
expected discounted CARA utility of running (intermediate) consumption has been
used widely, e.g., in applications to precautionary saving and incomplete markets,
see Kimball and Mankiw (1989), Caballero (1990), Svensson and Werner (1993), and
Wang (2004, 2006, 2009). In insurance, alternative criterions have been considered,
e.g., minimization of ruin probability in the premium control literature, Asmussen
et al. (2013), and in the investment literature either maximization of CARA utility
of terminal wealth (as opposed to running consumption), Yang and Zhang (2005),
or minimization of ruin probability, Hipp and Plum (2000). We do not explicitly
consider ruin, but focus instead on maximization of the expected discounted utility
stream with respect to premium, deductible, and investment.

Following Asmussen et al. (2013), we consider the possibility that potential cus-
tomers are heterogeneous, and not equally risky to the insurance company. In partic-
ular, they exhibit different arrival rates of claims. In a complete information version
of the model, the individual customer knows its own arrival rate. However, there is
asymmetric information between the customer and the insurance company, and the
latter only knows the distribution of arrival rates across customers. This feature of
the approach accommodates adverse selection. In the sequel, we consider an incom-
plete or partial information extension of the model, in which individual customers are
uncertain about their own arrival rates. Using these assumptions in the analysis of
the customer’s problem, we endogenously derive mutually consistent functional forms
of n(pt,Kt) and λ(pt,Kt), which enter into the company’s optimization problem.

We find that the optimal contract to be offered by the insurance company is char-
acterized by a premium rate and a deductible that are inversely related and constant
through time in our setting. Optimal investment in risky assets is similarly constant,
and includes both a speculative component and a hedge against insurance risk. The
optimal consumption (dividend) rate is not constant through time, but fluctuates with
wealth in an affine fashion, with marginal propensity to consume out of current wealth
given by the interest rate, and the level of consumption depending in addition on the
discount rate and risk aversion of the company, as well as on the risk characteristics of
potential customers. The optimal premium exceeds the expected net premium, which
would correspond to standard insurance pricing without safety loading, or to the ex-
pected reservation premium of hypothetical risk-neutral customers. It even exceeds
the expected reservation premium after accounting for the risk aversion of customers,
even though this level is shown to replace the average or market premium of Taylor
(1986) and Emms et al. (2007) in the demand function. The excess of the optimal pre-
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mium beyond the risk-adjusted expected reservation premium depends on the relative
valuation of net claims by company and customer, thus reflecting that the company
is risk averse, too, and exerts market power to protect itself against risky customers,
i.e., the adverse selection aspect. In the particular case of exponentially distributed
arrival rates of claims, we provide a closed form expression for the optimal premium
rate, as function of the optimal deductible, and a semi-closed form characterization of
the optimal deductible. For exponentially distributed claim sizes, optimal premium
and deductible are both given in closed form, as are optimal financial investments and
dividends (consumption). For more general situations, we provide theoretical charac-
terizations and numerical examples to illustrate the optimal controls. We investigate
how the optimal premium and deductible interact with investment and consumption
decisions. In a sensitivity analysis, we explore the impact on the four optimal con-
trols of variations in the parameters governing systemic risk and contagion in our
model, i.e., the correlation between the surplus from the insurance business and the
financial market risks, and the degree of perturbation to the surplus process. For the
special case of a fixed deductible, we provide a closed-form expression for the optimal
premium, thus complementing the result by Thøgersen (2016) of existence for ruin
probability minimization, without explicit solution for the optimal premium.

The paper is organized as follows. The optimization problem faced by the insur-
ance company is introduced in Section 2. Section 3 studies the optimal premium, de-
ductible, investment, and dividend strategies maximizing expected discounted utility
of intermediate consumption. The closed-form solution to the company’s Hamilton-
Jacobi-Bellman equation is derived, and the conditions for the verification theorem
guaranteeing the existence of an optimal strategy are established. Section 4 charac-
terizes the optimal premium and deductible for the case of random arrival rates of
claims, with complete information on the customer’s side, and asymmetric informa-
tion between customer and insurance company. Section 5 presents some results for
the extension to partial information on the customer’s side. The average arrival rate
of claims for this case is derived in the Appendix. Section 6 concludes.

2 The model

Consider a company that at time t = 0 allocates an initial endowment w0 > 0 be-
tween a risk-free asset and a bundle of risky assets, and starts an insurance business
by selling insurance contracts. Thereafter, at each instant t > 0, the company (i)
receives premiums from policyholders; (ii) pays to policyholders when claims occur;
(iii) rebalances portfolio holdings by buying or (short-)selling units of its financial
assets; and (iv) consumes part of its wealth. Such consumption may be viewed as
dividend payments to the owner-manager. The company is therefore subject to insur-
ance risk arising from the insurance policies written and market risk arising from its
investment strategy. Throughout, we assume that the financial market is frictionless,
and therefore all securities can be traded continuously over time without transaction
costs or taxes.

For a mathematical formulation of the problem faced by the company, let (Ω,P,F)
be a complete probability space endowed with a filtration F = {Ft}t≥0, representing
the information available to the company at time t. There are I ≥ 1 risky assets with
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price processes Sit , i = 1, . . . , I. The price of the risk-free asset, or money market
account, is denoted by S0

t . For each i = 0, 1, . . . , I, we denote by θit the number of
units of asset i held by the company at time t ≥ 0. Thus, the financial wealth of the
company at time t is defined by the market value of the financial portfolio,

W θ
t := θt · St =

I∑
i=0

θitS
i
t , t ≥ 0 ,

where St =
(
S0
t , . . . , S

I
t

)>
and θt = (θ0

t , . . . , θ
I
t )
>. The cumulative gains/losses to the

financial investment portfolio associated with trading strategy θt are therefore given
by

Gθt :=

∫ t

0
θτ · dSτ , t ≥ 0 .

In addition, the company holds an insurance portfolio. At each instant t ≥ 0, the
portfolio includes as many policies as the company can attract in the insurance mar-
ket, given the premium rate pt ≥ 0 and deductible Kt ≥ 0. Let n(pt,Kt) represent the
number of customers in the insurance portfolio from a total population of N potential
customers. The arrival rate of claims from a typical insured individual is assumed
to be a positive-valued measurable function of pt ≥ 0 and Kt ≥ 0, denoted λ(pt,Kt).
Hence, pt and Kt are the quantities the company can use to control its exposure to in-
surance risk. As each of the n(pt,Kt) customers pays the premium pt, the cumulative
gains/losses to the insurance portfolio are given by the reserve or surplus process

Rp,Kt :=

∫ t

0
n(ps,Ks)ps ds−Xp,K

t , t ≥ 0 , (2.1)

where Xp,K
t is the aggregate insurance risk process, reflecting customer claims, as

specified below.

A strategy (θ, p,K) is said to be self-financing if w0 + Gθt + Rp,Kt ≥ W θ
t , for all

t ≥ 0. The company pays out any residual wealth w0 +Gθt +Rp,Kt −W θ
t ≥ 0 as divi-

dends, for consumption by the owner-manager. We say that a self-financing strategy
(θ, p,K) is admissible if the cumulative consumption process

Cθ,p,Kt := w0 +Gθt +Rp,Kt −W θ
t , t ≥ 0 ,

is differentiable with respect to t ≥ 0. The process cθ,p,Kt := d
dtC

θ,p,K
t is the instan-

taneous consumption rate. Focusing on admissible strategies, the budget constraint
of the company can be written in differential form as

dW θ,p,K
t = θt · dSt + n(pt,Kt)pt dt− dXp,K

t − cθ,p,Kt dt , W θ,p,K
0 = w0 . (2.2)

Throughout, we assume the following dynamics for the financial and insurance mar-
kets. First, on the financial side, the price processes of the ith risky asset, Sit , and
the risk-free asset, S0

t , are governed by the standard Black-Scholes model,

dSit = Sit

[
µi dt+

I∑
j=1

σij dBj
t

]
, Si0 > 0 , i = 1, . . . , I , (2.3)

dS0
t = rS0

t dt , S0
0 = 1 , (2.4)
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where Bt = (B1
t , . . . , B

I
t )> is an I-dimensional vector of independent standard Brow-

nian motions with respect to F; r > 0 is the continuously compounded risk-free
rate; µ = (µ1, . . . , µI)> ∈ RI is the vector of expected returns to the risky assets;
and σ =

(
σij
)

1≤i,j≤I ∈ R
I×I is the volatility or diffusion matrix, with associated

variance-covariance matrix Σ := σσ>.

Secondly, on the insurance side, given a progressively measurable process (p,K) =
{(pt,Kt)}t≥0 with values in R2

+, representing premium and deductible choices, the

aggregate insurance risk process Xp,K
t is given by the jump-diffusion process

dXp,K
t = n(pt,Kt)bdBt + dJp,Kt , X0 = 0 , (2.5)

with (Jp,Kt )t≥0 the compound Poisson process

Jp,Kt =

Np,K
t∑
m=1

(Ym −Kτm)+ (2.6)

aggregating the net (of deductible) claims (Ym−Kτm)+ to be paid. Here, (Np,K
t )t≥0

is an adapted point process with intensity n(pt,Kt)λ(pt,Kt) counting the total num-
ber of claims, τm are the jump times of Np,K , and Ym ∈ (0,∞) are i.i.d. random
claim sizes with distribution F (dy), independent of (Np,K

t )t≥0. For concreteness, we
focus in (2.6) on the case of a fixed amount deductible. Other types include franchise,
proportional, limited proportional, and disappearing deductibles (see, e.g., Burnecki
et al., 2005). The perturbation process Bt is a one-dimensional standard Brownian
motion with respect to F, accounting for additional uncertainty in the aggregate in-
surance risk process and assumed independent of the number and sizes of claims. The
coefficient b ≥ 0 in (2.5) captures the magnitude of the perturbation per insurance
contract. Finally,

〈
Bi, B

〉
t

= ρit, where ρi ∈ (−1, 1) is the correlation coefficient be-

tween the log-price of the ith risky asset and the perturbation shocks to the aggregate
insurance risk process.

Systemic or contagion risk corresponds to the perturbed case, b > 0, combined
with negative insurance-finance correlation, ρi < 0, i.e., a positive shock to B (crisis,
pandemic, etc.) reduces reserves, while a negative shock to Bi reduces the ith asset
price, for a loss on both the insurance and finance sides of the business. For modelling
purposes, the perturbation process can be easily constructed as

B := ρ ·B +

√
1− ‖ρ‖2BI+1,

for ρ = (ρ1, . . . , ρI)> a correlation vector satisfying ‖ρ‖2 =
∑I

i=1(ρi)2 ≤ 1, and
BI+1 a one-dimensional standard Brownian motion with respect to F, independent
of B. In the unperturbed case, b = 0, the definition in (2.5) reduces the company’s
insurance business surplus (2.1) to the classical Cramér-Lundberg process, at least
for (ps,Ks) constant. On the other hand, for b > 0, the company can construct
investment strategies in the financial markets to manage the risks arising from the
insurance activities. However, the latter cannot be completely eliminated, because
market incompleteness remains, even for ‖ρ‖2 = 1, due to the unspanned risks arising
from the insurance claims. In this case, the modelling of the surplus corresponds to
a perturbed Cramér-Lundberg process.
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Remark 2.1. In an insurance portfolio with n outstanding (independent) contracts
and zero deductible, the total number of claims up to time t is given by

n∑
l=1

N l
t∑

m=1

Y l
m ,

where Y l
m are i.i.d. random variables with distribution F (dy), and N l independent

Poisson processes with arrival rates λl, say, with N l
t representing the number of claims

by customer l up to time t. It is straightforward to show that this sum of independent
compound Poisson processes has the same distribution as a compound Poisson pro-
cess with arrival rate nλ and claims with distribution F (dy), where λ = (1/n)

∑n
l=1 λ

l

is the average arrival rate across customers, see, e.g., Proposition 3.3.4 in Mikosch
(2004). Since our goal is to maximize the expected value of a function of the wealth
process, this equivalence in law justifies the use of the compound Poisson process
with arrival rate nλ as a model of total claims in the aggregate risk process. �

For each t ≥ 0, let Ait = θitS
i
t denote the amount of financial wealth invested in

the ith risky asset. The remaining financial wealth is invested in the risk-free asset.
Using At = (A1

t , . . . , A
I
t )
> as control variable, the budget constraint (2.2) transforms

into the controlled stochastic differential equation (SDE)

dW c,p,K,A
t = [rWt − ct] dt+ A>t [(µ− r1) dt+ σ dBt]

+ n (pt,Kt)
(
pt dt− bdBt

)
−
∫
R+

(y −Kt)
+Np,K(dy,dt) , W c,p,K,A

0 = w0 , (2.7)

where 1 = (1, . . . , 1)> ∈ RI . Here, Np,K(dy,dt) denotes a (random) jump measure
with compensator n(p,K)λ(p,K)F (dy) dt.

A control policy described by the process (c, p,K,A) with values in R+×R2
+×RI

at time t ≥ 0 is an admissible policy if it is adapted to F and the expected discounted
lifetime utility derived from consumption,

V (c, p,K,A) := E

[∫ ∞
0

e−δtU(ct) dt
∣∣∣W0 = w0

]
, (2.8)

subject to the budget constraint (2.7), is finite for all initial wealth levels w0. Here,
company (owner-manager) preferences are characterized by (δ, η), with δ > 0 the
discount rate, i.e., the subjective rate of time preference, or impatience, and η =
−U ′′/U ′ > 0 the constant absolute risk aversion (CARA) coefficient, with U(x) =
− 1
ηe
−ηx the instantaneous utility (see Pratt, 1964). This utility function plays a

prominent role in insurance mathematics and actuarial practice, as it ensures that
the principle of “zero utility” yields a fair premium, independent of the level of re-
serves (see Goovaerts et al., 1990, Section II.6). In what follows, we denote the set
of admissible policies by A. The objective of the company is to find the strategy
(c, p,K,A) that maximizes V (c, p,K,A) over all admissible policies.

3 The Hamilton-Jacobi-Bellman equation

The optimal time-homogeneous value function is written as

ϑ(w0) = sup
(c,p,K,A)∈A

V (c, p,K,A) ,
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with V (·) given in (2.8). The associated transversality condition is

lim
T→∞

e−δTE[ϑ(WT )] = 0 .

The problem is amenable to analysis using stochastic dynamic programming and the
appropriate form of Itô’s lemma for jump-diffusion processes, together with standard
time-homogeneity arguments for optimal Markov policies for infinite-horizon prob-
lems. If ϑ(·) is sufficiently differentiable and satisfies the transversality condition,
then, for any level of financial wealth w ∈ R, it satisfies the non-linear second-order
integro-differential equation, usually referred to as Hamilton-Jacobi-Bellman (HJB)
equation (see Section III.7 of Fleming and Soner, 2006, and Sennewald, 2007),

− δϑ(w) + sup
(c,p,K,A)∈A

{
U(c) + [Lc,p,K,Aϑ](w)

}
= 0 , (3.1)

where Lc,p,K,A is the operator

[Lc,p,K,Aϑ](w) =
[
rw + A>(µ− r1) + n(p,K)p− c

]
ϑ′(w)

+
1

2

[∥∥∥σ>A
∥∥∥2

+ n(p,K)2b2 − 2n(p,K)bA>σρ
]
ϑ′′(w)

+ n(p,K)λ(p,K)

[∫ ∞
0

ϑ(w − (y −K)+)F (dy)− ϑ(w)

]
.

Assuming F (dy) is absolutely continuous, we conjecture that a solution to the HJB
equation (3.1) takes the form

ϑ(w) = βe−rηw , (3.2)

with β < 0. Finding an interior solution to the HJB equation for this conjecture
requires maximizing

U(c) + crηβe−rηw (3.3)

over c ∈ R+, and

rη[n(p,K)p+ A>(µ− r1)]

− (rη)2

2

[ ∥∥∥σ>A
∥∥∥2

+ n(p,K)2b2 − 2n(p,K)bA>σρ
]

− n(p,K)λ(p,K)q(K) (3.4)

over (p,K,A) ∈ R2
+ ×RI , with

q(K) := E
[
erη(Y−K)+

]
= e−rηK

∫ ∞
K

erηy F (dy)− F̄Y (K)

= e−rηKE
[
erηY |Y ≥ K

]
P(Y ≥ K)− F̄Y (K) (3.5)

representing a certain expected valuation of net claims (Y − K)+, using the nota-
tion that F (dy) has density fY (y), cumulative distribution function (c.d.f.) FY (y) =
P(Y ≤ y), and complementary c.d.f. F̄Y (y) = 1 − FY (y). We assume throughout
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that E[erηY ] < ∞, so that q(K) is well defined for all K ≥ 0. Note that (3.4) is
independent of the level of wealth w and strictly concave in A.

The first-order necessary optimality conditions for maximization with respect to c
and A are, respectively,

e−ηc + rηβe−rηw = 0 , (3.6)

rη(µi − r)− (rη)2([σσ>A]i − nb[σρ]i) = 0 , i = 1, . . . , I . (3.7)

Solving (3.6) for c yields the candidate for optimal consumption ĉt = ĉ(Wt),

ĉ(w) := rw − 1

η
ln(−βrη) , (3.8)

with ĉ(w) a stationary Markov control policy. Thus, optimal consumption is affine in
wealth, reflecting interest income, and positive as long as wealth remains above the
suitable lower bound Wt >

1
rη ln(−βrη) for all t (see Merton, 1969).

Solving the system (3.7) yields candidates for optimal amounts of financial wealth
to be invested in risky assets,

Â = Σ−1

[
1

rη
(µ− r1) + n(p,K)bσρ

]
.

For σ invertible, this simplifies to

Â = (σ−1)>
[

1

rη
ψ + n(p,K)bρ

]
, (3.9)

where ψ = σ−1(µ − r1) is the I-vector of market prices of risk. Without systemic
or contagion risk, i.e., if b = 0 or ρ = 0, (3.9) reduces to the speculative or myopic
demand for risky assets, cf. Merton (1969). In this case, there is complete separation
between the financial and insurance markets, and thus the insurance risk is com-
pletely unspanned. In the perturbed case with insurance–finance correlation, b > 0
and 0 < ‖ρ‖2 ≤ 1, optimal demand for risky assets involves an additional hedging
component, the second term in (3.9), proportional to the size of the insurance portfo-
lio, n(p,K), as the company is using the the financial markets to manage its exposure
to insurance risk.

Substitution of the optimal investment strategy (3.9) into (3.4) produces the par-
tially maximized or profile Hamiltonian criterion for (p,K),

Q(p,K) :=
1

2
‖ψ‖2 + rηn(p,K)

(
bρ>ψ + p

)
− 1

2

(
rηbn(p,K)

)2 (
1− ‖ρ‖2

)
− n(p,K)λ(p,K)q(K). (3.10)

Thus, the optimal premium p and deductible K are obtained as the interior solution
to the maximization of (3.10) over (p,K) ∈ R2

+.

Proposition 3.1. Suppose that the diffusion matrix σ is invertible and that there
exists a pair of constants (p̂, K̂) that maximizes Q(p,K) in (3.10). Then the strategy
(ĉ(·), p̂, K̂, Â) is optimal, with Â given by (3.9), also constant, and ĉ(w) given by
(3.8), with

β̂ = − 1

rη
exp

(
1− 1

r

[
δ +Q(p̂, K̂)

])
< 0 .
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Proof. The wealth process Ŵ controlled by the strategy (ĉ(w), p̂, K̂, Â) is a jump-
diffusion process with differential

dŴt =
1

η
ln(−βrη) dt+ Â>[(µ− r1) dt+ σ dBt]

+ n(p̂, K̂)(p̂dt− bdBt)−
∫
R+

(y − K̂)+N p̂,K̂(dy,dt) .

Note that E[ϑ(Ŵt−)] is finite for all t ≥ 0 since E[e−rηY ] ≤ 1. Applying Itô’s lemma,

compensating the integrals with respect to N p̂,K̂(dy,dt), and taking expected values,
we get that f(t) := E[ϑ(Ŵt)] satisfies the ordinary differential equation (ODE)

f ′(t) = −
[
r ln(−rηβ) +Q(p̂, K̂)

]
f(t), f(0) = ϑ(w0) .

That is, E[ϑ(Ŵt−)] = ϑ(w0) exp(−[r ln(−rηβ) +Q(p̂, K̂)]t). Inserting the guess (3.2)
together with the strategy (ĉ(w), p̂, K̂, Â) into the HJB equation (3.1), we get

−δ + r − r ln(−rηβ)−Q(p̂, K̂) = 0 ,

yielding the optimal value of β̂. Moreover, the transversality condition

e−δTE[ϑ(ŴT )] = e−rTϑ(w0)→ 0, as T →∞

holds. Thus, the conditions for the Verification Theorem linking the solution to the
HJB equation (3.1) with sufficient conditions for existence of optimal strategies are
satisfied, and the desired result follows (see Theorem 9.1 in Section III.9 of Fleming
and Soner, 2006). �

The joint determination of optimal financial asset holdings, Â, as in the investment
literature, and optimal premium rate, p̂, as in the premium control literature, repre-
sents a unifying framework. As a further generalization, the optimal deductible, K̂,
is characterized, as well, and the optimal consumption (dividend payout) rate ĉ(w)
follows. Under further conditions, closed-form solutions are given in Section 4.

By Proposition 3.1, if there exists a pair (p,K) that maximizes the profile Hamil-
tonian Q(p,K) in (3.10), then the optimal premium, deductible, and investments in
risky assets, (p̂, K̂, Â), are independent of the level of financial wealth, and constant
through time. Therefore, and as a result of the CARA assumption, the fraction of
wealth invested in risky assets falls as the company accumulates more wealth, with
all wealth invested in the money market account in the limit Wt →∞. Since Q(p,K)
does not depend on the company’s discount rate, δ, neither do (p̂, K̂, Â). Optimal
consumption (3.8) is not constant, but fluctuates with income from interest on wealth.
Although the level depends on the discount rate, through β̂ from Proposition 3.1, the
marginal propensity to consume depends on neither δ nor wealth, ĉ′(w) = r.

Remark 3.1. The mean returns µ and volatility matrix σ in the dynamics of the
risky assets (2.3) could be functions of the price processes, in which case St remains
a Markov process, and the verification theorem still applies, with the HJB equation
modified accordingly. In this case, optimal investments Â, premium rate p̂, and
deductible K̂ are feedback controls, depending on the prices of the risky assets. �
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To be able to access the calculus, we henceforth treat the insurance exposure n(p,K)
as continuous and differentiable in (p,K), which should apply to a reasonable degree
of approximation for moderate to large market size, N . Accordingly, n(p,K)/N rep-
resents the fraction of potential customers purchasing insurance. In this case, the
first-order necessary optimality conditions for maximizing Q(p,K) in (3.10) are

∂n(p,K)

∂p

[
rη
(
p+ b

[
ρ>ψ − rηb(1− ‖ρ‖2)n(p,K)

])
− λ(p,K)q(K)

]

+ n(p,K)

[
rη − q(K)

∂λ(p,K)

∂p

]
= 0 , (3.11)

∂n(p,K)

∂K

[
rη
(
p+ b

[
ρ>ψ − rηb(1− ‖ρ‖2)n(p,K)

])
− λ(p,K)q(K)

]

+ n(p,K)

[
rηλ(p,K)F̄Y (K) + q(K)

(
rηλ(p,K)− ∂λ(p,K)

∂K

)]
= 0 , (3.12)

using q′(K) = −rη(1− FY (K) + q(K)) for q(K) from (3.5). In general, it is difficult
to state conditions under which a critical point (p̂, K̂) satisfying the first order con-
ditions (3.11) and (3.12) indeed maximizes Q(p,K). The main difficulty lies in the
characterization of the effect of the control variables on the trade-off between port-
folio size and profit per customer. Therefore, the next step is to identify appropriate
forms of n(p,K) and λ(p,K).

4 Random claim arrival rates

The result from Proposition 3.1 yields optimal investment and consumption, provided
an optimal premium and deductible pair maximizing the profile Hamiltonian Q(p,K)
in (3.10) can be found. Further analysis of the existence and properties of such a pair
(p̂, K̂) requires determining suitable forms of the portfolio size n(p,K), the claim ar-
rival rate λ(p,K), and the expected net claim valuation function q(K) in (3.5), all of
which enter Q(p,K). We derive these three functions from a simple model of the be-
havior of individual customers, thus ensuring that they are mutually consistent. First,
we consider directly the decision problem faced by each potential customer of whether
or not to insure at the terms (p,K) offered by the company. Next, we assume that cus-
tomers are not equally risky. Specifically, while each knows its own claim (casualty)
arrival rate, Λ, the insurance company does not have this information. It only knows
the distribution across customers, and therefore treats the arrival rate of each poten-
tial customer as a random variable. This approach, following ideas from Asmussen
et al. (2013) and Thøgersen (2016), delivers the three functions required, thus paving
the way for an analysis of optimal (p̂, K̂), and by implication optimal investment and
consumption, too. The asymmetric information between customer and insurance
company implies adverse selection. Because Λ is assumed known to the customer,
we say that the customer has complete information. This is relaxed in Section 5.

The individual customer’s problem is whether or not to insure at terms (p,K).
Without insurance, claims Ym arriving at rate Λ must be paid by the customer.
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With insurance, premiums are paid at rate p per period, and claims are only paid
up to the deductible, i.e., payments are given by the uninsurable risks min{Ym,K},
again arriving at rate Λ. Thus, the flow of Ym at rate Λ is compared to the flows of
min{Ym,K} at rate Λ and p. Writing the additional payments that the customer is
liable for if uninsured, compared to if insured, as Ym−min{Ym,K} = (Ym−K)+, i.e.,
the net (of deductible) claims, it is reasonable to compare p to the flow of (Ym−K)+

arriving at rate Λ. Specifically, when a claim Ym arrives, the customer always pays the
portion min{Ym,K}, whether insured or not, and the issue is whether the customer
or the insurance company should cover the remainder, (Ym − K)+. The customer
insures if doing so is preferred over paying the net claims as they arrive, at rate Λ.

Under risk neutrality, the customer insures if this choice is the cheapest, on av-
erage, i.e., if p < p0(K) := ΛE

[
(Y −K)+]. Thus, the reservation premium, i.e.,

the maximum premium that a customer is willing to pay for insurance with a given
deductible, is for a risk-neutral customer given by the arrival rate, Λ, times

E
[
(Y −K)+] =

∫ ∞
K

yF (dy)−KF̄Y (K), (4.1)

the expected net claim.

Under risk aversion, the reservation premium is naturally higher. In the sequel,
we consider specific examples of how to allow for risk aversion on the part of the
customer. In these cases, the reservation premium takes the more general form
pa(K) = Λa(K), with a(K) the customer’s risk-adjusted expected net claim. Thus,
a potential customer buys insurance if and only if

p < pa(K) = Λa(K) . (4.2)

This reservation premium policy summarizes customer behavior. Regarding company
behavior, we first analyze this for arbitrary a(K), then turn to specific forms of this.

While the insurance company does not know each potential customer’s value of Λ,
the individual arrival rate of claims, it knows the distribution of this in the popu-
lation. A standard approach in insurance is to let the company merely provide risk
sharing, i.e., as Λ is unknown to the company, the premium charged to customers
is given by the net premium, namely, expected frequency times size of net claims,
E[Λ]E

[
(Y −K)+] = E[p0(K)], also recognized as the expected risk-neutral reser-

vation premium. A safety loading can be added to this. Allowing for risk averse
customers leads to an expected reservation premium E[pa(K)] = E[Λ]a(K) instead,
based on (4.2). For this to be considered as a candidate premium to be charged to
customers, viability of the insurance market requires it exceed the net premium, i.e.,
a(K) > E

[
(Y −K)+]. It does for a risk averse customer. However, E[pa(K)] is

only adjusted for customer risk aversion. It ignores both risk aversion on the part of
the insurance company and adverse selection, i.e., that the company knows the form
of the insurance participation constraint (4.2), and takes into account that only the
riskier (higher Λ) potential customers will insure.

For concreteness, let Λ be i.i.d. in the population, with absolutely continuous dis-
tribution function G(z), and density function g (z). For given premium rate p and
deductible K, the company attracts

n(p,K) = NP (Λ > α(K)p) = N [1−G (α(K)p)] (4.3)
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customers out of the total population of size N , where α(K) := 1/a(K). The average
arrival rate of claims across insured customers is

λ(p,K) = E [Λ |Λ > α(K)p ] =
E
[
Λ1{Λ>α(K)p}

]
1−G(α(K)p)

=

∫∞
α(K)p z G(dz)

1−G(α(K)p)
, (4.4)

and the aggregate arrival rate for the collective insurance portfolio is given by the
product of (4.3) and (4.4),

n(p,K)λ(p,K) = N

∫ ∞
α(K)p

zg(z) dz .

Henceforth, we assume that the risk-adjusted expected net claim a(K) is dif-
ferentiable and decreasing, a′(K) < 0. This holds trivially under risk neutrality,
a(K) = E

[
(Y −K)+], and is natural under risk aversion, cf. Example 4.1 below.

Thus, α′(K) > 0, so α(K)p is increasing in both p and K. It follows that while the
portfolio size n(p,K) in (4.3) is decreasing in both p and K, the average claim rate
E [Λ |Λ > α(K)p ] in (4.4) is increasing in both. In particular,

∂λ(p,K)

∂p
> 0 , and

∂λ(p,K)

∂K
> 0 .

This is adverse selection, cf. Rothschild and Stiglitz (1976). Only the riskier cus-
tomers will continue to purchase insurance if premium or deductible is raised. Thus,
the company faces a trade-off in the maximization of (3.10). To illustrate, consider
the unperturbed case, b = 0, i.e.,

Q(p,K) =
1

2
‖ψ‖2 + rηn(p,K)p− n(p,K)λ(p,K)q(K) . (4.5)

An increase in p or K reduces portfolio size n(p,K), and this multiplies on rηp −
λ(p,K)q(K), with λ(p,K) increasing in p and K due to adverse selection, q(K) either
increasing or decreasing in K, and the sign of the derivatives of (4.5) therefore inde-
terminate with respect to both p and K without further restrictions. The derivatives
of n(p,K)λ(p,K) with respect to both p and K can be signed, but still not those of
(4.5), due to the presence of q(K) and the product n(p,K)p. This leaves scope for
finding interior maximizers. Of course, in the perturbed case, b > 0, the analysis is
further complicated.

For general perturbation of the reserve process, b ≥ 0, the company’s first order
conditions (3.11) and (3.12) reduce to

rηḠ(α(K)p) + αg(α(K)p)

{
α(K)q(K)p

+
(

1− ‖ρ‖2
)(
rηb
)2
NḠ(α(K)p)− rη

[
bρ>ψ + p

]}
= 0 ,

g(α(K)p)α(K)′p

{
α(K)q(K)p+

(
1− ‖ρ‖2

)(
rηb
)2
NḠ(α(K)p)

− rη
[
bρ>ψ + p

]}
+ rηλ(p,K)Ḡ(α(K)p)

[
F̄Y (K) + q(K)

]
= 0 ,
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with Ḡ = 1−G, and where we have used the partial derivatives

∂n(p,K)

∂p
= −Ng(α(K)p)α(K) < 0 ,

∂ (n(p,K)λ(p,K))

∂p
= −Nα(K)2g(α(K)p)p < 0 ,

∂n(p,K)

∂K
= −Ng(α(K)p)α′(K)p < 0 ,

∂ (n(p,K)λ(p,K))

∂K
= −Nα(K)α′(K)g(α(K)p)p2 < 0 .

(4.6)

Example 4.1 (Reservation premium using certainty equivalent). Following Asmussen
et al. (2013), the reservation premium under risk aversion, pa(K) = Λa(K) in
(4.2), may be determined by assuming that the risk-adjusted expected net claim
a(K) is given by the certainty equivalent of the net claim (Y −K)+, as opposed
to the expected net claim (4.1). Recall that for a strictly increasing and strictly
convex cost function ϕ, the certainty equivalent Zϕ of a random variable Z sat-
isfies ϕ(Zϕ) = E [ϕ(Z)]. By Jensen’s inequality, E [ϕ(Z)] > ϕ(E [Z]), and thus
ϕ(Zϕ) > ϕ(E [Z]). As ϕ is increasing, we have Zϕ > E [Z]. Thus, with this speci-
fication, a(K) = (Y −K)+

ϕ > E
[
(Y −K)+], i.e., the risk adjustment increases the

reservation premium beyond the net premium. In more detail,

a(K) = ϕ−1
(
E[ϕ((Y −K)+)]

)
= ϕ−1

(∫ ∞
K

ϕ(y −K)F (dy) + ϕ(0)FY (K)

)
,

and if ϕ is differentiable, with limy→∞ ϕ(y)fY (y) = 0, we obtain

ϕ′(a(K))a′(K) =
d

dK
ϕ(a(K)) = −

∫ ∞
K

ϕ′(y −K)fY (y) dy ,

using implicit differentiation and Leibniz’s rule. As ϕ′(·) > 0, this verifies the main-
tained assumption a′(K) < 0 in the certainty equivalence case, and thus α′(K) > 0, so
the derivatives of portfolio size and aggregate claim rate with respect to premium and
deductible are signed as in (4.6). A concrete specification is given by the quadratic
cost function ϕ(z) = ϕ0 + ϕ2z

2, with ϕ2 > 0. In this case,

Zϕ =
(
E
[
Z2
])1/2

=
(

(E [Z])2 + Var [Z]
)1/2

> E [Z] ,

as long as Z is non-degenerate. The risk-adjusted expected net claim is

a(K) =
(
E[(Y −K)21{Y≥K}]

)1/2
=

(∫ ∞
K

y2 F (dy)− 2K

∫ ∞
K

y F (dy) +K2[1− FY (K)]

)1/2

, (4.7)

and the customer’s reservation premium is pa(K) = Λa(K), cf. (4.2). Further, using
(4.1),

α′(K) = a(K)−3

[∫ ∞
K

yF (dy)−KF̄Y (K)

]
= α(K)3E

[
(Y −K)+] , (4.8)

i.e., proportional to the expected net claim. Asmussen et al. (2013) considered the
case K = 0, no deductible. �
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Example 4.2 (Reservation premium using principle of equivalent utility). As an
alternative to the certainty equivalent method, risk aversion may be introduced into
the customer’s problem using the principle of equivalent utility. According to this,
the customer’s reservation premium equates the expected utilities of wealth with and
without insurance (see Gerber and Pafum, 1998). In this case, assuming the customer
may invest wealth in the risk-free asset at interest rate r, and has preferences over
financial wealth of CARA type with constant absolute risk aversion ζ > 0, Thøgersen
(2016) approximates the reservation premium as

pã(K) ≈ Λã(K) = Λ

(
E[(Y −K)+] +

rζ

2
E[(Y −K)21{Y≥K}]

)
= Λ

(
E[(Y −K)+] +

rζ

2
a(K)2

)
. (4.9)

Thus, the risk-adjusted expected net claim a(K) from the certainty equivalence prin-
ciple, (4.7), is replaced by ã(K). Instead of adjusting the expected net claim up,
using the cost function ϕ as in the certainty equivalence case, a second-moment term
is added to it, in analogy with the variance premium principle. In fact, the added term
is proportional to the square of the certainty equivalent, a(K), from Example 4.1. �

In further analysis below, we use the certainty equivalence approach from Example
4.1, along with assumptions on the distributions characterizing the size and frequency
of claims, Y and Λ, to derive explicit formulae for portfolio size, claim arrival rate,
and expected net claim valuation. A parallel analysis could be carried out based
on the principle of equivalent utility from Example 4.2, or other approaches to risk
aversion in the customer’s problem.

4.1 Exponentially distributed arrival rate

A plausible assumption, e.g., in automobile or fire insurance (cf. Bühlmann and
Gisler, 2005, and Denuit et al., 2007) is that Λ is exponentially distributed across

customers, with density function g (z) = 1
λ0
e
− z
λ0 , so that E [Λ] = λ0. Henceforth, we

adopt this assumption. Thus, (4.3) and (4.4) become

n(p,K) = Ne
−α(K)

λ0
p
, and λ(p,K) = λ0 + α(K)p. (4.10)

The demand function is the negative exponential, with premium elasticity ε(p,K) =
∂ log n(p,K)/∂ log p = α(K)p/λ0, and λ(p,K) = λ0(1 + ε(p,K)). Taylor (1986) and
Emms et al. (2007) considered the negative exponential demand function, as well,
with elasticity proportional to p/p̄, interpreting p̄ as an average (or market) pre-
mium, and not accommodating adverse selection. In contrast, the arrival rate or
average riskiness of customers λ(p,K) in our analysis increases with the premium in
an affine fashion, with slope α(K). Thus, the adverse selection adjustment of the
arrival rate, relative to the standard model with constant rate λ0, is given precisely
by the term α(K)p in (4.10), or ε(p,K) in the equivalent multiplicative representa-
tion. Further, (4.10) shows that the demand function and the arrival rate are tied
in a subtle manner via α(K) in our analysis. In the demand function, p̄ is replaced
by λ0/α(K) = E[λ0]a(K) = E[pa(K)], the expected reservation premium for a risk
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averse customer, cf. (4.2). However, this cannot be interpreted as an average market
premium. We show next that the optimizing company charges more, due to its own
risk aversion and adverse selection.

Let K? := sup {K ≥ 0 : α(K)q(K) ≥ rη} , with q(K) the expected net claim valu-
ation function from (3.5), and define

m(K) := − α
′(K)

α(K)2
rη + [q(K) + F̄Y (K)][2rη − q(K)α(K)] . (4.11)

We have the following result.

Theorem 4.1. Assume that b = 0, and that α(K) and q(K) satisfy

q(K) , α(K)q(K)→ 0 as K →∞ . (4.12)

If there exists a unique positive K̂ ≥ K? such that m(K̂) = 0, with m(K) < 0 for
K > K̂, then the pair (p̂, K̂) is optimal, with

p̂ =
rηλ0

α(K̂)[rη − q(K̂)α(K̂)]
. (4.13)

Proof. Under the assumptions on Λ and b, the profile Hamiltonian (4.5) reduces to

Q(p,K) =
1

2
‖ψ‖2 +Ne

−α(K)p
λ0

(
[rη − α(K)q(K)]p− λ0q(K)

)
. (4.14)

For some K > 0 sufficiently large, Q(p,K) is strictly positive for all p ≥ 0, so if K̂
maximizes Q(p,K), then rη > α(K̂)q(K̂). Thus, it suffices to maximize Q(p,K) over
p ≥ 0 and K ≥ 0 satisfying

rη > α(K)q(K) . (4.15)

Differentiating with respect to p, we get

∂Q(p,K)

∂p
= Ne

−α(K)p
λ0 κ(p,K) ,

with

κ(p,K) := rη − α(K)

λ0
[rη − α(K)q(K)]p .

Therefore, given K > 0 satisfying (4.15), the premium rate

p(K) =
rηλ0

α(K)[rη − q(K)α(K)]

satisfies the first-order condition ∂Q(p,K)/∂p = 0. Since ∂Q(0,K)/∂p = Nrη > 0,
and κ(·,K) decreases strictly to −∞ as p → +∞, Q(·,K) is strictly increasing on
[0, p(K)] and decreasing on [p(K),+∞). This implies that the critical point p(K)
in fact maximizes Q(·,K), so the profile criterion for the remaining variable K is
Q(p(K),K). Differentiating this yields

∂Q(p(K),K)

∂K
= N exp

(
− rη

rη − α(K)q(K)

)
rη

rη − α(K)q(K)
m(K) ,
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i.e., m(K̂) = 0 implies that K̂ is a critical point, som(·) is an essential profile gradient,
in this sense. From the definition of K∗ and the assumptions on K̂, it follows that
∂Q(p(K),K)/∂K is positive on the interval (K∗, K̂) and negative for K > K̂. Hence,
K̂ maximizes Q(p(K),K), and the desired result follows from Proposition 3.1. �

Thus, given an optimal deductible K̂, the optimal premium p̂ in this case admits
the closed form representation (4.13), and the optimal deductible the semi-closed
form characterization m(K̂) = 0. Optimal consumption (dividend) and investment
follow from (3.8) and (3.9), respectively, using Proposition 3.1.

Using that α(K) = a(K)−1, it is possible to interpret the optimal premium (4.13)
in more detail. Thus, since (4.15) applies at the optimum, we have

p̂ =
1

1− q(K̂)/[rηa(K̂)]
λ0a(K̂) > λ0a(K̂) > λ0E

[(
Y − K̂

)+
]
. (4.16)

The last expression in (4.16) is the net premium, without safety loading, evaluated at
the optimal deductible, K̂, as selected by the company. It coincides with E[p0(K̂)],
the expected reservation premium for a risk-neutral customer. The last inequality
in (4.16) reflects the fact that the expected reservation premium for a risk averse
customer, E[pa(K̂)] = λ0a(K̂), is higher. This is the factor replacing the average or
market premium p̄ from Taylor (1986) and Emms et al. (2007) in our demand function
(4.10). Nevertheless, the optimal premium p̂ in our setting is even higher, as reflected
in the first inequality in (4.16). The expected reservation premium for a risk averse
customer is scaled up further by a factor exceeding unity, by (4.15). This additional
adjustment captures the feature that beside the customers, the company (owner-
manager) is risk averse, too, and accounts for customer behavior in the optimization.
Thus, the scaling factor involves company risk aversion, η, and, in particular, the
relative valuation by company and customers of net claims, q(K̂)/a(K̂). If customers
are very risk averse, so that the denominator dominates, and q(K̂)/[rηa(K̂)] is close
to zero, then the scaling factor is near unity, and (4.16) shows that the company sets
a premium basically determined by the very risk averse customers’ expected reserva-
tion premium. In contrast, if the company is relatively more risk averse, and hence
more concerned about future net claims, reflected in a high value of q(K̂) from (3.5),
then the scaling factor can be larger. In this case, the company exerts its market
power to charge more than customers’ expected reservation premium, thus protecting
itself from the riskier customers, i.e., the adverse selection aspect.

Both (4.11) and (4.13) involve the functions α(K) and q(K), which in turn depend
on the claim size distribution. We consider illustrative examples of this.

Example 4.3 (Gamma distributed claim size). Consider the case that the random
claim Ym follows a gamma distribution with density

F (dy) =
γθ

Γ(θ)
yθ−1e−γy dy ,

with shape parameter θ > 0, (inverse) scale parameter γ, and where Γ(x) is the
gamma function. Hence, E [Ym] = θ/γ and Var [Ym] = θ/γ2. We subsequently as-
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sume γ > rη. In this case, the truncated moments are∫ ∞
K

erηy F (dy) =

(
γ

γ − rη

)θ Γ(θ, (γ − rη)K)

Γ(θ)
, (4.17)∫ ∞

K
yn F (dy) =

Γ(n+ θ, γK)

γnΓ(θ)
, (4.18)

with Γ(s, x) the upper incomplete gamma function. Using (4.18) with n = 1 and 0
in (4.1) yields the expected net claim

E
[
(Y −K)+] =

Γ(1 + θ, γK)

γΓ(θ)
−KΓ(θ, γK)

Γ(θ)
.

By the recurrence relation Γ(s+ 1, x) = sΓ(s, x) + xse−x, this is compactly recast as

E
[
(Y −K)+] =

1

γΓ(θ)

[
Γ(θ, γK)(θ − γK) + (γK)θe−γK

]
. (4.19)

Using the certainty equivalent based on the quadratic cost function ϕ from Exam-
ple 4.1 for risk adjustment, substitution of (4.18) with n = 2, 1, 0 into (4.7) allows
calculating the customer’s risk-adjusted expected net claim explicitly,

a(K) =

{
Γ(2 + θ, γK)

γ2Γ(θ)
− 2K

Γ(1 + θ, γK)

γΓ(θ)
+K2 Γ(θ, γK)

Γ(θ)

}1/2

. (4.20)

By one more iteration in the recurrence relation, α(K) = a(K)−1 satisfies

α(K) =

{
1

γ2Γ(θ)

[
Γ(θ, γK)[(θ − γK)2 + θ] + e−γK(γK)θ[1 + θ − γK]

]}−1/2

.

(4.21)
Thus, the risk adjustment amounts to the difference between a(K), i.e., the recipro-
cal of (4.21), and (4.19). For the derivative of α(K), combination of (4.8) and (4.19)
yields

α′(K) =
α(K)3

γΓ(θ)

[
Γ(θ, γK)(θ − γK) + (γK)θe−γK

]
> 0 ,

and a′(K) < 0, reconfirming the maintained assumption. Moreover, substituting
(4.17) into (3.5), the company’s expected net claim valuation is given explicitly as

q(K) = e−rηK
(

γ

γ − rη

)θ Γ(θ, (γ − rη)K)

Γ(θ)
− Γ(θ, γK)

Γ(θ)
. (4.22)

With α(K) and q(K) from (4.21) and (4.22) in hand, substitution in (4.11) yields
a concrete characterization m(K̂) = 0 of the optimal deductible K̂, and in (4.13) a
closed-form solution for p̂, as function of K̂. �

A number of numerical illustrations are provided in this and the following sections,
using parameter values chosen with a time unit of one year in mind. Figure 1 sheds
light on the behavior of the functions Q(p,K) and m(K) in Theorem 4.1, i.e., the pro-
file Hamiltonian (4.14) and essential gradient (4.11), for gamma distributed claims, as
in Example 4.3. Two cases are considered, with common mean claim, E [Y ] = θ/γ =
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Figure 1. Theorem 4.1 for gamma distributed claims. The figure shows the contours
of the profile Hamiltonian Q(p,K) and the essential gradient m(K) for arrival rate of claims
Λ ∼ Exp(0.5). Left exhibits are for Y ∼ Gamma(0.5, 0.5), and right exhibits for Y ∼
Gamma(2, 2). A dot indicates the critical point (p̂, K̂) = (p(K̂), K̂), at which m(K̂) = 0.
The remaining parameters are (r, η, λ0, N) = (0.05, 3, 0.5, 100).

1, but different claim size dispersions. Left exhibits are for Y ∼ Gamma(0.5, 0.5),
which implies Var [Y ] = θ/γ2 = 2, and right exhibits for Y ∼ Gamma(2, 2), so
Var [Y ] = 0.5. In addition to θ and γ, the functions Q and m involve the interest
rate, r, set at 5%, and company risk aversion, η, set at 3. Further, Q involves λ0, set
at 0.5, i.e., two years between casualties at mean frequency, and N , normalized at
100, so that n(p,K) represents the percentage of customers insuring. The parameter
values correspond to those used in the sensitivity analysis in Section 4.3. For these
values, conditions (4.12) and (4.15) are satisfied, with α(K) from (4.21) and q(K)
from (4.22). Further, K? = 0.22 in the low claim size dispersion case, K? = −∞ in
the high. Although Q in (4.14) involves the market prices of risk, ψ, these affect nei-
ther the choice of p and K, nor the contours in Figure 1. A dot in the figure indicates
the critical point (p̂, K̂) = (p(K̂), K̂) maximizing Q(p,K), hence implying m(K̂) = 0.
The optimal premium rate and deductible are (p̂, K̂) = (0.51, 2.87) in the high claim
dispersion case, and (0.23, 1.69) in the low. Thus, greater uncertainty about size of
future claims leads the insurance company to increase both premium and deductible.
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From the figure, Q is well behaved and, in particular, m has a unique zero. The
orientation of the axes of the approximately elliptic contours indicates that p and
K are negatively related around the optimum, i.e., lower deductible implies more
insurance and hence higher premium. The risk-adjusted expected net claim a(K̂)
based on (4.21) is 0.74 in the high claim dispersion case, and 0.33 in the low. This
is compared to expected net claims of 0.23 and 0.09, based on (4.19), i.e., the risk
adjustment amounts to 122% and 267% in the high and low claim dispersion cases,
respectively. For comparison, the alternative ã(·) specification in (4.9), based on the
principle of equivalent utility, combines the already calculated expected net claims
with and without risk adjustment, amounting to 0.27 and 0.10 in the high and low
dispersion cases, i.e., much less risk adjustment, assuming the same CARA coefficient
for customers as for the company, ζ = η = 3. The expected reservation premiums
for a risk-neutral customer are 0.12 and 0.05 for the two claim dispersion cases, com-
pared to 0.37 and 0.17 if accounting for customer risk aversion, henceforth focussing
on the certainty equivalence case, with a(K̂) based on (4.21). Thus, the latter pre-
miums, which replace p̄ from the literature in the demand function, are higher than
the premiums under risk neutrality and no safety loading, but lower than the optimal
p̂, which in addition accounts for risk aversion of the company, by 38% and 35% for
the two dispersion levels. Adjustments for both company and customer risk aversion
(first and second inequality in (4.16)) constitute large portions of the premium, with
the latter adjustment largest in the example.

Company net claim valuations q(K̂) are 0.031 and 0.014 in the two dispersion cases,
and although clearly measured on a different scale than the customer valuations a(K̂)
of 0.74 and 0.33 (i.e., utility rather than monetary units), the ratios q(K̂)/a(K̂) mat-
ter for optimal pricing, and (4.15) is satisfied in each case. Substituting a(K̂) and p̂
in the demand function (4.10) shows that 25% and 24% of potential customers insure
in the two cases, i.e., in the example, the company adjusts the contract offered so
as to maintain a roughly constant portfolio size, regardless of customer risk. The
relatively modest share of potential customers purchasing insurance is indicative of
the market power exercised by the optimizing company.

The calculations concern the unperturbed case, b = 0, as in Theorem 4.1, i.e.,
insurance controls (p̂, K̂) are chosen separately from risky asset investments. Nev-
ertheless, (p̂, K̂) matter for optimal consumption (dividend payout) in (3.8) through
the optimized Q(p̂, K̂) in β̂ from Proposition 3.1, and the latter further involves the
company’s discount rate, δ. To illustrate, set δ = 5%. Further, Q(p̂, K̂) includes
ψ, and we consider for simplicity I = 1 risky asset, with expected return µ = 8%
and volatility σ = 20%. In this case, the market price of risk is 0.15, and optimal
investment in the risky asset (3.9) is 5.0. Substitution of Q(p̂, K̂) into Proposition
3.1 yields β̂ = −1.85 × 10−8 and −0.0015 in the high and low dispersion cases. If,
for example, initial wealth is w0 = 100, then the optimal consumption path (3.8)
starts out at 11.57 in the high and 7.79 in the low claim size dispersion case. The
computations illustrate the general point, namely, we provide a unifying framework,
with optimal investment, premium, deductible, and payout determined jointly.

Figure 2 illustrates the impact of insurance risk perturbation b, using numeri-
cal analysis of Q(p,K) from (3.10) to go beyond Theorem 4.1. Focusing on the
high claim size dispersion case, Var [Y ] = 2, with the remaining parameters as be-
fore (except that δ does not enter Q), the optimal premium and deductible are
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Figure 2. The Q(p,K) function. The figure shows the function Q(p,K) and its con-
tours for different degrees of insurance risk perturbation b. The arrival rate of claims
is Λ ∼ Exp(0.5), and claim sizes Y ∼ Gamma(0.5, 0.5). A dot indicates the critical
point (p̂, K̂) maximizing Q(p,K). The remaining parameters are (r, η, I, µ, σ, ρ, λ0, N) =
(0.05, 3, 1, 0.08, 0.2,−0.5, 0.5, 100).

(p̂, K̂) = (0.51, 2.87) for b = 0 (as in the previous figure), (0.71, 2.56) for b = 0.2,
and (1.09, 2.22) for b = 0.5. Here, the results for b > 0 require a value for the
insurance-finance correlation, and we set ρ = −0.5, thus illustrating a systemic risk
or contagion case, i.e., insurance risk and financial market losses tend to coincide.
The results in the figure show that in case of increased perturbation, i.e., higher b,
the company optimally uses the financial markets to hedge the portion of the insur-
ance risk that does not depend on the deductible K, so K can be lowered (note that
axes differ), and the premium increased, reflecting both the better insurance product
(lower deductible) and the greater uncertainty faced by the company regarding its
insurance business. Numerical results (not in the figure) show that this response
pattern applies for all non-zero ρ ∈ (−1, 1). Further, optimal risky investment (3.9)
indicates short-selling, at −3.41 for b = 0.2 and −5.51 for b = 0.5, in spite of the
long myopic or speculative position 5.0, shared with the unperturbed case. Thus,
hedging demand is negative, at −10.51 and −8.41 in the high and low contagion
cases, reflecting the negative insurance-finance correlation. As before, the optimal
consumption path could similarly be characterized, for given values of δ and w0. In
effect, the calculations illustrate the general Proposition (3.1), and the interaction
between investment, premium, and deductible in optimum.

Example 4.4. (Exponentially distributed claims). For θ = 1 in Example 4.3, the
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truncated moments of the claim size distribution reduce to∫ ∞
K

erηy F (dy) =
γe−(γ−rη)K

γ − rη
, (4.23)∫ ∞

K
yn F (dy) =

n!

γn
e−γK

n∑
j=0

(γK)j

j!
. (4.24)

Substituting (4.24) for n = 1, 0 in (4.1) yields the expected net claim E
[
(Y −K)+] =

e−γK/γ. Using the certainty equivalent based on the quadratic cost function ϕ from
Example 4.1, the customer’s risk-adjusted expected net claim a(K), the reciprocal
α(K) = a(K)−1, and its derivative can be found from

α(K) =
γ√
2
e
γ
2
K , and α′(K) =

γ2

2
√

2
e
γ
2
K . (4.25)

From (4.23) and (3.5), the company’s expected net claim valuation satisfies

q(K) + F̄Y (K) = e−rηK
∫ ∞
K

erηy F (dy) =
γe−γK

γ − rη
,

which together with (4.25) implies that

q(K)α(K) =

[
γe−γK

γ − rη
− e−γK

]
γ√
2
e
γ
2
K = rη

γe−
γ
2
K

√
2(γ − rη)

−→ 0 as K →∞,

and hence condition (4.12) holds. Inserting these calculations in (4.11) yields the
essential gradient

m(K) = rηe−
3γ
2
K

{
− 1√

2
eγK +

2γ

γ − rη
e
γ
2
K − γ2

√
2(γ − rη)2

}
.

Using the change of variables k = e
γ
2
K , the condition m(K) = 0 is equivalent to the

quadratic equation B2k
2 +B1k +B0 = 0, with coefficients

B2 = − 1√
2
, B1 =

2

1− rη/γ
, B0 = − 1√

2(1− rη/γ)2
,

and the two real-valued roots

k(±) =
1

1− rη/γ
(
√

2± 1) .

It follows that k(+) > 1, and thus K(+) = 2 ln k(+)/γ > 0. Moreover, in this case we
have

K∗ =

{
0 , if γ > rη/(1− 1/

√
2),

2
γ ln

[
1√

2(1−rη/γ)

]
, otherwise,

which is only strictly less than K(+). Since the parabola B2k
2 +B1k+B0 opens down-

ward, the critical point K(+) is the optimal deductible, as it satisfies the conditions
of Theorem 4.1. �
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For the exponential distribution case from Example 4.4, we have the following
sharpening of Theorem 4.1.

Corollary 4.1. Assume that the arrival rate Λ and size Ym of claims have exponen-

tial distributions with densities g(z) = 1
λ0
e
− z
λ0 and fY (y) = γe−γy, with γ > rη, and

that customers’ risk-adjusted expected net claim is given by the certainty equivalent
(y−K)+

ϕ based on the quadratic loss function ϕ(y) = ϕ0 +ϕ2y
2. Then, the deductible

K̂ =
2

γ
ln

[
1 +
√

2

1− rη/γ

]

and the premium rate

p̂ = λ0
2(1− rη/γ)

γ(1 +
√

2)

are optimal.

Proof. Inserting

α(K(+)) =
γ√
2
k(+) =

γ(1 +
√

2)√
2(1− rη/γ)

and

rη − α(K(+))q(K(+)) = rη
1 +
√

2

2 +
√

2

into (4.13) yields the optimal premium rate. The desired result follows from Theorem
4.1. �

The corollary illustrates that our approach can deliver closed-form solutions for
both optimal premium and optimal deductible, and thus for optimal investments and
consumption (dividends), too, using Proposition 3.1. The analytical results make the
nature of the optimal policy very transparent. By the corollary,

p̂ =
λ0

γ/2
e
− γ

2
K̂ , (4.26)

showing that
∂p̂

∂K̂
= −λ0e

− γ
2
K̂ = −γ

2
p̂ < 0 , (4.27)

i.e., premium and deductible are inversely related at the optimum, with a higher
deductible (less insurance) commanding a lower premium. This analytical result is
consistent with the indications from the contour diagrams in Figures 1 and 2 for more
general cases.

The explicit expressions in the present case allow an analytical investigation of pa-
rameter dependence. First, while the optimal deductible K̂ depends on the company’s
interest rate r and risk aversion η, as well as the parameter γ governing the claim size
distribution, which is natural, it does not depend on the mean claim frequency λ0. In
contrast, the optimal premium p̂ depends on all four parameters, (r, η, λ0, γ). Thus,
the company sets the deductible, in essence a truncation of the claim distribution, as
a function of the latter, and of company parameters (r, η), but not of the frequency of
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claims, which is instead compensated for via the optimal premium, in a proportional
fashion. Therefore, we have

∂K̂

∂λ0
= 0 , and

∂p̂

∂λ0
=

p̂

λ0
> 0 , (4.28)

i.e., more accidents imply higher premium, not higher deductible.

Secondly, the optimal premium only depends on the company parameters (r, η)
through their effect on the optimal deductible, as evident from (4.26). Defining the
parameter function φ = 2/ [γ(γ − rη)] > 0, we have

∂K̂

∂r
= ηφ > 0 , and

∂K̂

∂η
= rφ > 0 , (4.29)

i.e., the company protects itself through higher deductible in case of higher risk aver-
sion or borrowing cost. Using (4.27), (4.29), and the chain rule, we immediately get

∂p̂

∂r
= −γ

2
p̂ηφ < 0 , and

∂K̂

∂η
= −γ

2
p̂rφ < 0 , (4.30)

of opposite sign, compared to (4.29), reflecting the negative trade-off between pre-
mium and deductible. Further, by direct differentiation of K̂ in Corollary 4.1,

∂K̂

∂γ
= −1

γ
(K̂ + rηφ) < 0 , (4.31)

i.e., higher γ implies lower mean 1/γ and variance 1/γ2 of claim sizes, and thus lower
deductible.

Finally, as expected, the effect of the claim size distribution on the optimal pre-
mium is more complicated, since the reduced exposure (lower mean and dispersion)
points to lower premium, and the reduced deductible (4.31) to higher. Specifically,
in (4.26), it is necessary to account both for the direct effect of γ on p̂, and for the
indirect effect of γ via K̂. The combined result is

∂p̂

∂γ
= λ0

2(1− 2rη/γ)

γ2(1 +
√

2)
, (4.32)

and although the maintained assumption γ > rη guarantees a positive premium p̂ in
Corollary 4.1, this does not necessarily imply γ > 2rη. Consequently, as the only one
of the eight relevant parameter derivatives of (p̂, K̂), the sensitivity of the premium
with respect to the claim size distribution in (4.32) can take on either sign, depending
on parameter values. If γ > 2rη, e.g., for sufficiently low risk aversion η, the com-
pany must compensate for the reduced deductible (better insurance offered) in (4.31)
through an increased premium, reflecting the negative premium-deductible trade-off
in (4.27). However, if rη < γ < 2rη, e.g., for high risk aversion, the company values
the improvement in claim distribution (reduction in mean and dispersion) so much
that it lowers premium and deductible in tandem.

As optimal investment and consumption are given in closed form, too, their depen-
dence on parameters (the same four, as well as the discount rate δ and parameters
of the investment opportunity set) can be investigated along similar lines, although
this is left out here, for space considerations.

26



4.2 Fixed deductible

Our framework accommodates the special case of a fixed deductible, taken as given
and not controlled by the company. The explicit sufficient conditions for the exis-
tence of an optimal premium rate are summarized in the following result, for arbitrary
degree of insurance risk perturbation, b ≥ 0.

Theorem 4.2. Let the deductible be fixed at K = K. Suppose that α(K) and q(K)
satisfy rη > α(K)q(K), and that

1 +
bα(K)

λ0

[
rηbN(1− ‖ρ‖2)− ρ>ψ

]
> 0 . (4.33)

Then there exists a unique p̂ > 0 for which L(p̂) = 0, with

L(p) := rη

[
1− bα(K)

λ0
ρ>ψ

]
− α(K)

λ0
(rη − α(K)q(K))p

+
α(K)

λ0
(rηb)2(1− ‖ρ‖2)Ne

−α(K)
λ0

p
,

and this premium rate p̂ is optimal.

Proof. Consider Q(p,K) in (3.10) as a function of p, only, and note that Q′(p,K) =
n(p)L(p). Condition (4.33) implies that L(0) > 0, and L(p) decreases strictly to −∞
as p→ +∞. Thus, there exists a unique p̂ such that L(p̂) = 0, which is also a critical
point of Q(p,K), and it is in fact optimal, since L(p) (and hence Q′(p,K)) is positive
if and only if p < p̂. �

Remark 4.1. In the unperturbed case, b = 0, and under the assumptions of The-
orem 4.2, the optimal premium rate is given by (4.13) with K̂ replaced by K. In
case of gamma distributed claims, as in Example 4.3, this provides a closed-form
solution for the optimal premium rate, using (4.21) for α(·) and (4.22) for q(·). This
complements the result in Thøgersen (2016) on existence of an optimum premium
rate for given fixed deductible under minimization of ruin probability, but with no
closed-form solution for the premium. �

Figure 3 illustrates the properties of the essential gradient L(p) (i.e., L(p) = 0
implies Q′(p,K) = 0) from Theorem 4.2 for different degrees of insurance risk per-
turbation b and different values of the fixed deductible K. Claim sizes follow the
high dispersion case Y ∼ Gamma(0.5, 0.5) considered in the previous numerical ex-
amples, and the values of the remaining parameters follow those examples, too. A
dot indicates the optimal premium p̂, satisfying L(p̂) = 0. From the figure, a lower
deductible implies a better insurance contract, hence more customers and higher pre-
mium, a demand side effect. Stronger perturbation implies greater uncertainty about
the reserve process, and the insurance company protects itself by charging a higher
premium, i.e., a supply side effect.

4.3 Sensitivity analysis

Here, we consider the systemic risk or contagion case in more detail. We provide
a numerical illustration of the impact of the correlation between the financial and
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Figure 3. The L(p) function. The figure shows the essential gradient L(p) for different
degrees of insurance risk perturbation, b, and different values of the fixed deductible, K.
A dot indicates the optimal premium p̂, i.e., the critical point satisfying L(p̂) = 0. The
arrival rate of claims is Λ ∼ Exp(0.5), and claim sizes Y ∼ Gamma(0.5, 0.5). The remaining
parameters are (r, η, I, µ, σ, ρ, λ0, N) = (0.05, 3, 1, 0.08, 0.2,−0.5, 0.5, 100).

insurance sides of the business, ρ, and the degree of perturbation to the reserve, b,
on the optimal premium rate, deductible, asset portfolio allocation, and consumption
(dividend) rate. We focus on the high claim size dispersion case from the previous
numerical examples, and set the remaining parameters as in those.

Figure 4 shows the results. Naturally, in the unperturbed case, b = 0, none of the
four controls depends on ρ, as indicated by the solid horizontal line in each exhibit.
Next, the negative relation between optimal premium and deductible is confirmed.
For given ρ, stronger insurance risk perturbation, b, implies greater uncertainty about
a portion of the reserve that is unrelated to the deductible and can be hedged, so
the deductible can be lowered, and the premium increased, reflecting both the lower
deductible (more insurance) and greater uncertainty. The magnitude of the impact of
such an increase in perturbation on the optimal premium and deductible is reduced as
the hedging opportunities offered by the financial markets increase, i.e., as ρ increases
in magnitude, hence inducing an (inverted) U-shape of optimal (p) K as function of ρ,
for given b. The financial hedge is established through a lower position in the risky as-
set (selling short, if necessary) for ρ < 0, i.e., allocating more of the financial wealth to
the money market account in this insurance-finance contagion case, and a higher posi-
tion for ρ > 0 (borrowing in the money market, if necessary). Thus, risky asset invest-
ments are monotonic in ρ, and these hedging demands are more pronounced (steeper
in ρ) for stronger perturbation, b. At ρ = 0, hedging demands vanish, regardless the
value of b, and investments reduce to the myopic or speculative demand Â = 5.0, cf.
(3.9), so the curves corresponding to different b intersect at this level for ρ = 0.
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Figure 4. Optimal policies. The figure shows the optimal premium rate, p, deductible, K,
risky asset investment, A, and initial consumption, c0, for different values of the insurance-
finance correlation, ρ, and degree of insurance risk perturbation, b. The arrival rate of claims
is Λ ∼ Exp(0.5), and claim sizes Y ∼ Gamma(0.5, 0.5). The remaining parameters are
(r, δ, η, I, µ, σ, λ0, N) = (0.05, 0.05, 3, 1, 0.08, 0.2, 0.5, 100).

Finally, as expected, the response of optimal consumption to variation in (ρ, b) is
more complicated. The figure shows the initial consumption rate, c0 = ĉ(w0). For
moderate to strong perturbation (b ≥ 0.2 in the figure), initial consumption is mini-
mal at a certain level of the insurance-finance correlation, ρc(b), say, around −0.25 in
the figure, corresponding well with the negative systemic risk or contagion scenario for
ρ considered in Figures 1 and 2. As ρ increases beyond ρc(b), and the company invests
larger amounts in the risky asset (reduces the short positions used to hedge insur-
ance risk), consumption increases, because µ > r, i.e., the equity premium is positive,
and the investment strategy now earns a higher expected return (cf. Merton, 1971).
For given ρ, consumption is lower for stronger perturbation b, at least for b above
a certain level, bc(ρ), say (e.g., for b ≥ 0.05 at ρ = 0.5 in the figure). However, the
increase in the consumption (dividend) rate with the magnitude of ρ (more precisely,
the magnitude of the deviation in ρ from ρc(b)) is greater if hedging opportunities
are more important, as captured by the perturbation or contagion parameter b.

5 Customers with partial information

The results in the previous section assume that the customers have complete in-
formation in the sense that they know with certainty their frequency of casualty
occurrences. In practice, however, customers can be overly optimistic or pessimistic
regarding own risk. Following Asmussen et al. (2013), we allow for this possibility by
assuming that customers assessment of their own arrival rate takes the form ΛS, with
S a random variable independent of Λ, representing the optimism/pessimism of the
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customer. The decision by a potential customer of whether or not to buy insurance
is now based upon ΛS rather than the true Λ, so customers have partial information,
only. Assuming the distribution of S is i.i.d. across customers and inverse gamma,
1/S has a gamma distribution, with density f1/S(x) = (ζτ/Γ(τ))xτ−1e−ζx, with shape
parameter τ and (inverse) scale parameter ζ. Finite mean, E [S] <∞, requires τ > 1,
and finite variance, Var [S] < ∞, requires τ > 2. We assume τ > 1, i.e., customers
can be considered optimistic or pessimistic on average according to whether E [S]
is below or above unity. Then, for a given premium rate, p, and deductible K, the
company attracts

n(p,K) = NP(ΛS > α(K)p) = NP
(

Λ >
α(K)p

S

)
= N

(
λ0ζ

λ0ζ + α(K)p

)τ
(5.1)

customers, using that P
(

Λ > x
S

)
= E

[
e
− x
λ0S

]
. Thus, the demand function is now

generalized hyperbolic, as opposed to the negative exponential demand function in
(4.10). Under partial information, the average arrival rate of claims is given by

λ(p,K) = E[Λ |ΛS > α(K)p] = λ0 +
λ0α(K)τp

λ0ζ + α(K)p
, (5.2)

in which the last term, excess expected arrivals beyond λ0, is a combined adverse
selection and partial information effect (see the Appendix for the derivation). Un-
der the maintained assumption that the customer’s risk-adjusted expected net claim
a(K) is differentiable with a′(K) < 0, it follows that

∂n(p,K)

∂p
= −τα(K)n(p,K)

λ0ζ + α(K)p
< 0 ,

∂n(p,K)

∂K
= −τα

′(K)n(p,K)p

λ0ζ + α(K)p
< 0 ,

∂λ(p,K)

∂p
=

λ2
0α(K)τζ

(λ0ζ + α(K)p)2
> 0 ,

∂λ(p,K)

∂K
=

λ2
0α
′(K)τζp

(λ0ζ + α(K)p)2
> 0 .

Similarly to the complete information case, the number of customers, n(p,K), falls
with increases in the premium rate and the deductible, while the average frequency of
claims, λ(p,K), increases due to adverse selection. Using these results, it is straight-
forward to show that the expected arrival rate of claims from the aggregate insur-
ance portfolio, n(p,K)λ(p,K), will again decline as the premium rate or deductible
is raised.

Using these partial derivatives and factoring out n(p,K), the company’s first order
conditions (3.11) and (3.12) reduce to

rη
(
λ0ζ + α(K)p

)2
− rητα(K)

(
λ0ζ + α(K)p

)[
bρ>ψ + p

]
+
(

1− ‖ρ‖2
)(
rηb
)2
τα(K)n(p,K)

(
λ0ζ + α(K)p

)
+ q(K)λ0α(K)2τ(τ + 1)p = 0 , (5.3)

− rητα′(K)p
(
λ0ζ + α(K)p

)[
bρ>ψ + p

]
+
(

1− ‖ρ‖2
)(
rηb
)2
τα′(K)n(p,K)p

(
λ0ζ + α(K)p

)
+ rηλ0

(
F̄Y (K) + q(K)

)(
λ0ζ + α(K)p

)[
λ0ζ + α(K)(1 + τ)p

]
+ α(K)α′(K)q(K)λ0(1 + τ)τp2 = 0 . (5.4)
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Figure 5. The Q(p,K) function under partial information. The top exhibit shows
contours of the profile Hamiltonian Q(p,K). The bottom exhibits illustrate the first order
conditions with respect to the premium rate p and deductible K. Dots indicate the critical
points p̂ and K̂ for which ∂Q(p̂,K)/∂p = ∂Q(p, K̂)/∂K = 0. The arrival rate of claims
is Λ ∼ Exp(0.5), the customer’s partial information variable S ∼ Inverse-Gamma(4, 4),
and claims sizes Y ∼ Gamma(0.5, 0.5). The remaining parameters are (r, η, b, λ0, N) =
(0.05, 3, 0, 0.5, 100).

Figure 5 illustrates the properties of the profile Hamiltonian Q(p,K) from (3.10),
now using (5.1) for portfolio size n(p,K) and (5.2) for average arrival rate λ(p,K).
The figure further illustrates the associated first order conditions (5.3) and (5.4).
Customers’ beliefs about their own claim arrival rate are characterized by S ∼
Inv-Gamma(4, 4), implying that E[S] = 1.33, i.e., a case of pessimistic customers,
on average, and Var [S] = 0.88. The values of the remaining parameters can be found
in the caption below the figure. As in the complete information case, α(K) follows
from (4.21), and q(K) from (4.22). A dot indicates the optimal premium p̂ and de-
ductible K̂ maximizing Q(p,K). The optimal values are (p̂, K̂) = (1.12, 1.70). Again,
optimal asset holdings and consumption follow from Proposition 3.1. Compared to
the left exhibits of Figure 1, i.e., the corresponding complete information case, where
(p̂, K̂) = (0.51, 2.87), then on average, pessimistic customers in the partial informa-
tion extension are liable to purchase more insurance, thus leading the optimizing
company to increase the premium, and at the same time reduce the deductible, con-
sistent with the overall negative premium-deductible trade-off.

The analysis illustrates the flexibility and generality of the approach to accom-
modate alternative portfolio size and claim frequency specifications, and still obtain
jointly optimal premium, deductible, investment, and consumption (dividend) con-
trols.
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5.1 Fixed deductible

Consider again the special case in which the company does not control the deductible,
which is fixed at K = K. In this case, the first order condition (5.3) can be compactly
written as

M(p,K) := M2(K)p2 +M1(K)p+M0(K) +
(rηb)2(1− ‖ρ‖2)(λ0ζ)τNτα(K)

(λ0ζ + α(K)p)τ−1
= 0 ,

(5.5)
with

M2(K) := rηα(K)2(1− τ) ,

M1(K) := λ0α(K)[α(K)q(K)τ(1 + τ) + rηζ(2− τ)]− α(K)2τrηbρ>ψ ,

M0(K) := rηλ0ζ[λ0ζ − α(K)τbρ>ψ] .

We have the following result, for arbitrary perturbation to the reserve process, b ≥ 0.

Theorem 5.1. Suppose that

λ0ζ + rηb2(1− ‖ρ‖2)Nτα(K) > α(K)τbρ>ψ , (5.6)

and that there exists a unique p̂ > 0 such that M(p̂,K) = 0. Then p̂ is optimal.

Proof. Consider Q(p,K) in (3.10) and M(p,K) in (5.5) as functions only of p. If
M(p̂,K) = 0, then p̂ is a critical point of Q(p,K). Moreover, M(0,K) > 0 under
(5.6). Then M(p,K), and hence Q′(p,K), is positive only for p ≤ p̂, which implies
that p̂ is optimal. �

Remark 5.1. If p̂ > −1
2

(
M1(K)

M2(K)

)
, then M ′(p,K) is negative for p > p̂, and so is

M(p,K). �

Since M0(K) and M1(K) involve the market price of risk ψ for b > 0, so does
the optimal premium p̂ in Theorem 5.1. Again, optimal investment and consump-
tion follow from Proposition 3.1. Finally, for b = 0, the optimal premium admits a
closed-form representation, as stated in the following result.

Corollary 5.1. Assume b = 0. Then M(p,K) in (5.5) is a quadratic equation in p.
Under the assumptions of Theorem 5.1, the optimal premium rate is

p̂(K) =
λ0

2rηα(K)(1− τ)

[
M̃1(K) +

√
M̃1(K)2 + 4(rηζ)2(τ − 1)

]
,

with M̃1(K) = α(K)q(K)τ(1 + τ) + rηζ(2− τ).

For gamma distributed claims, α(K) and q(K) are given by (4.21) and (4.22), so
in this case, for given fixed deductible K, the corollary provides the closed-form solu-
tion for the optimal premium, p̂, and hence for optimal investment and consumption
(dividend), too. For general claim size distributions, α(K) = a(K)−1 and q(K) in
the corollary are determined from (4.7) and (3.5).
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6 Conclusion

Systemic risk and contagion between financial and insurance markets is a very real-
istic and relevant phenomenon, and should be accounted for in the management of
insurance companies. Our analysis provides a unifying framework for financial in-
vestment and premium control, with simultaneous optimal choice of the deductible,
as well as optimization of the path for consumption, or dividend payout to the owner-
manager, assuming the latter exhibits constant absolute risk aversion. Optimal risky
asset holdings reflect both speculative financial investments and a hedge against in-
surance risk. Insurance demand reflects risk aversion on the customer side, too, as
well as adverse selection, i.e., an increase in either premium or deductible reduces
portfolio size and increases the riskiness of the average customer. Premium rate and
deductible are inversely related around the optimum. The optimal premium exceeds
the net premium, namely, expected frequency time size of net (of deductible) claims,
which would correspond to standard insurance pricing, i.e., risk sharing, but with-
out safety loading, and also to the expected reservation premium of hypothetical
risk-neutral customers. The optimal premium further exceeds the higher expected
reservation premium of customers after appropriately accounting for their risk aver-
sion, although this is the level replacing the average or market premium from the
literature in the demand function. The extent of the excess of the optimal premium
beyond customers’ expected risk-adjusted reservation premium reflects the company’s
risk aversion, the relative valuation of net claims by company and customers, and the
market power exerted by the company to protect itself against risky customers, i.e.,
the adverse selection aspect. Closed-form solutions for optimal investment, premium,
deductible, and payout are obtained under specific assumptions on the distributions
of size and frequency of claims.

Overall, the results should encourage insurance companies to manage risks stem-
ming from the financial and insurance sides of their businesses in an active manner,
and jointly. Future research could investigate (i) alternative utility functions, e.g.,
constant relative risk aversion; (ii) separation of ownership and control of the insur-
ance company; (iii) accounting explicitly for the possibility of ruin, possibly using
minimization of ruin probability as an alternative criterion; (iv) different types of
deductibles, e.g., the proportional deductible; (v) using the principle of equivalent
utility rather than the certainty equivalent for the reservation premium, cf. Exam-
ples 4.1 and 4.2; and (vi) competition from other insurance companies. Although
beyond the scope of the present paper, all these variations offer exciting avenues for
further investigation.
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Appendix

Average arrival rate of claims under partial information

Let 1/S have a gamma distribution with density ζτ

Γ(τ)y
τ−1e−ζy and let Λ be exponen-

tially distributed with E[Λ] = λ0. The law of total probability yields

E[Λ |SΛ > x] =
E[Λ1{SΛ>x}]

P(SΛ > x)
=

∫∞
0 E[Λ1{Λ>x/S} |S = s]fS(s) ds

P(SΛ > x)
.

Using the moment generating function of 1/S, we get

P(SΛ > x) = P
(

Λ >
x

S

)
= E

[
e
− x
λ0

1
S

]
=

(
ζ

ζ + x
λ0

)τ
.

and thus the demand function (5.1). Now observe that

E[Λ1{Λ>x/S} |S = s] = E
[
Λ1{Λ>x

s}
]

= E
[
Λ |Λ >

x

s

]
P
(

Λ >
x

s

)
=

(
λ0 +

x

s

)
e
− x
λ0s .

It follows that∫ ∞
0
E[Λ1{Λ>x/S} |S = s]fS(s) ds = E

[(
λ0 +

x

S

)
e
− x
λ0

1
S

]
.

Using the change-of-variable z = (ζ + x
λ0

)y and the identity Γ(τ + 1) = τΓ(τ), we get

E

[
1

S
e
− x
λ0

1
S

]
=

ζτ

Γ(τ)

∫ ∞
0

ye
− x
λ0
y
yτ−1e−ζy dy

=
ζτ

Γ(τ)

1

(ζ + x
λ0

)1+τ

∫ ∞
0

zτe−z dz

=
τζτ

(ζ + x
λ0

)1+τ
.

Therefore,

E[Λ |SΛ > x] = λ0 + x
τζτ

(ζ + x
λ0

)1+τ

(
ζ

ζ + x
λ0

)−τ
= λ0 +

xτ

ζ + x
λ0

,

which is the average arrival rate of claims in (5.2).
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Denuit, M., X. Maréchal, S. Pitrebois, and J.-F. Walhin (2007): Actuar-
ial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-malus
Systems, Chichester: John Wiley & Sons.

Dufresne, F. and H. U. Gerber (1991): “Risk Theory for the Compound Poisson
Process that is Perturbed by Diffusion,” Insurance: Mathematics and Economics,
10, 51–59.

Emms, P., S. Haberman, and I. Savoulli (2007): “Optimal Strategies for Pricing
General Insurance,” Insurance: Mathematics and Economics, 40, 15–34.

Fleming, W. H. and H. M. Soner (2006): Controlled Markov Processes and
Viscosity Solutions, New York: Springer.

Furrer, H. J. and H. Schmidli (1994): “Exponential Inequalities for Ruin Prob-
abilities of Risk Processes Perturbed by Diffusion,” Insurance: Mathematics and
Economics, 15, 23–36.

Gerber, H. U. (1970): “An Extension of the Renewal Equation and its Application
in the Collective Theory of Risk,” Scandinavian Actuarial Journal, 1970, 205–210.

Gerber, H. U. and G. Pafum (1998): “Utility Functions: From Risk Theory to
Finance,” North American Actuarial Journal, 2, 74–91.

36



Goovaerts, M. J., R. Kaas, A. Van Heerwaarden, and T. Bauwelinckx
(1990): Effective Actuarial Methods, Amsterdam: North-Holland.

Hainaut, D. (2017): “Contagion Modeling Between the Financial and Insurance
Markets with Time Changed Processes,” Insurance: Mathematics and Economics,
74, 63–77.

Hipp, C. and M. Plum (2000): “Optimal Investment for Insurers,” Insurance:
Mathematics and Economics, 27, 215–228.

Højgaard, B. (2002): “Optimal Dynamic Premium Control in Non-life Insurance.
Maximizing Dividend Pay-outs,” Scandinavian Actuarial Journal, 4, 225 – 245.

Kimball, M. S. and N. G. Mankiw (1989): “Precautionary Saving and the Timing
of Taxes,” Journal of Political Economy, 97, 863–879.
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