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Predicting bond return predictability

Abstract

We document predictable shifts in bond return predictability. Bond returns are
predictable in high (low) economic activity (uncertainty) states, implying that the
expectations hypothesis of the term structure holds periodically. These predictable
performance differences, established using a new multivariate test for equal condi-
tional predictive ability, can be used in real-time to improve out-of-sample bond
risk premia estimates and investors’ economic value by means of a novel dynamic
forecast combination scheme. Consistent with standard financial theory, the resulting
forecasts are strongly countercyclical and peaks in recessions. The empirical findings
are explained within a non-linear term structure model.

Keywords: Bond excess returns, forecasting, state-dependencies, multivariate test, equal

conditional predictive ability
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1. Introduction

The expectations hypothesis (EH) of the term structure holds periodically. We establish

this fact with new evidence of periodic and predictable shifts in bond return predictability

related to economic activity and uncertainty. Specifically, our empirical findings suggest

that bond return predictability is associated with periods of high (low) economic activity

(uncertainty). These detectable shifts can be used in real-time to improve out-of-sample

risk premia estimates and investors’ economic utility. Existing evidence on bond return

predictability has traditionally been established using linear predictive regressions designed

to assess whether bond excess returns are predictable on average using time series that

span many diverse states of nature.1 If predictability shifts over time, as our results

suggest, then an unconditional approach may be misleading and lead to distorted inference.

For example, while in-sample evidence frequently points to predictability by means of

variables such as forward spreads (Fama and Bliss, 1987), yield spreads (Campbell and

Shiller, 1991), forward rates (Cochrane and Piazzesi, 2005), and macroeconomic variables

(Cooper and Priestley, 2009, Ludvigson and Ng, 2009, Cieslak and Povala, 2015, Eriksen,

2017), out-of-sample exercises often fail to deliver consistent evidence of predictability and

statistical and economic evaluations often disagree (Thornton and Valente, 2012, Sarno,

Schneider, and Wagner, 2016). Our findings suggest that these puzzling contradictions

can be explained by state-dependent bond return predictability.

We address the issue of time-varying bond return predictability by adopting a condi-

tional perspective on predictability and using observable state variables to identify methods

anticipated to be informative of future relative forecast performance in a new modeling

framework.2 Our contributions are fivefold. First, we provide new empirical evidence on

predictable state-dependencies in bond return predictability. We document that bond
1Early studies include Fama and Bliss (1987), Keim and Stambaugh (1986), Fama and French (1989),

and Campbell and Shiller (1991). More recent studies of bond return predictability includes Cochrane
and Piazzesi (2005), Cooper and Priestley (2009), Ludvigson and Ng (2009), Cieslak and Povala (2015),
Eriksen (2017), Ghysels, Horan, and Moench (2018), Gargano, Pettenuzzo, and Timmermann (2019),
Berardi, Markovich, Plazzi, and Tamoni (2020), and Bianchi, Büchner, and Tamoni (2020).

2Predictability of future relative forecast performance is even more relevant when viewed in the light
of the numerous studies that provide empirical evidence of model instabilities in predictive models.
Prominent examples include Pesaran, Pettenuzzo, and Timmermann (2006), Giacomini and Rossi (2009,
2010), Pettenuzzo and Timmermann (2011), Rossi (2013), and Pettenuzzo and Timmermann (2017).
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return predictability shifts over time for a range of standard bond predictors from the

literature including yield curve information and macroeconomic variables. We begin with

a traditional evaluation of out-of-sample forecasts using unconditional predictive ability

tests and find little evidence that individual predictors are able to reliably outperform

the EH. Importantly, however, this does not exclude the possibility that a given method

display superior predictability in certain states of the world. To facilitate a conditional,

state-dependent view of bond return predictability, we therefore develop a multivariate

generalization of the statistical test for equal (un)conditional predictive ability among two

or more forecasting methods presented in Giacomini and White (2006).3 We employ our

test to assess differences in conditional predictive abilities and find overwhelming evidence

favoring state-dependencies in bond return predictability.

Second, we show that the shifts in predictability are related to economic activity

and uncertainty measured using the Purchasing Manager’s Index (PMI) (see, e.g. Berge

and Jordà (2011) and Christiansen, Eriksen, and Møller (2014)) and the macroeconomic

uncertainty index (U) proposed in Jurado, Ludvigson, and Ng (2015), respectively.4 We

uncover a striking pattern in bond return predictability across states related to these

variables. Interpreting the expectations hypothesis (EH) as a no-predictability benchmark,

which is standard practice in the literature, we provide evidence that bond risk premia

are predictable in high (low) economic activity (uncertainty) states. Conversely, time

invariant risk premia as implied by the EH provides a reasonable approximation in low

(high) economic activity (uncertainty) states. Consistent with this, we find that out-of-

sample R2s (Campbell and Thompson, 2008) for individual predictors are mostly negative

in low (high) economic activity (uncertainty) states and positive in high (low) activity

(uncertainty) states. In short, albeit several predictors fail to provide valuable information

on average, many outperform the EH conditional on the state of the economy.

Third, we show that the predictable state-dependencies in bond return predictability
3The test further extends the (unconditional) multivariate Diebold-Mariano statistic (Diebold and

Mariano, 1995) proposed in Mariano and Preve (2012) by allowing for comparison of a mixture of nested
and non-nested models.

4A number of alternative measures of uncertainty have been proposed. The qualitative findings
presented in this paper remain unchanged if the Economic Political Uncertainty index by Baker, Bloom,
and Davis (2016) or the VXO index by CBOE are used in place of the index by Jurado et al. (2015).
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are exploitable for real-time forecasting purposes. Intuitively, a predictor should only

be used when it is anticipated to perform well. With this in mind, we propose a simple

dynamic ranking rule for identifying the set of forecasting methods that possess the best,

yet statistically indistinguishable, conditional predictive ability in real-time inspired by

the Model Confidence Set (MCS) approach of Hansen, Lunde, and Nason (2011). As

we shall see, our multivariate test for conditional predictability ability is instrumental in

identifying and eliminating inferior methods by informing us of state-dependent differences.

The rule is based on least squares predictions of relative forecasting performance and is

therefore straightforward to implement. Importantly, our method is based on expected

predictive ability, which sets it apart from methods relying on past performance (see, e.g.,

Aiolfi and Timmermann (2006), Samuels and Sekkel (2017), and Adämmer and Schüssler

(2020)). We show that this is key to correctly identify conditional predictability in our

setting. The best set of methods at any given point in time may then consists of a single

method, all methods, or any number in between. If more than one method is selected,

we perform equal-weighted forecast combination (Bates and Granger, 1969) among the

selected methods. It is well established that an equal-weighted combination strategy

among all initial methods is hard to beat (Timmermann, 2006) and performs well for

financial time series (Rapach, Strauss, and Zhou, 2010). Our approach can thus be viewed

as a data-driven and forward-looking way to select between dynamic model selection and

forecast combination. It further addresses an outstanding issue raised in Aiolfi, Capistrán,

and Timmermann (2011) that little attention has been paid to determining the optimal

set of models to combine given a potential pool of candidate predictors. Our dynamic

approach provides a natural way to select the methods expected to perform well and

dynamically trim those expected to perform poorly.5 We show that the implementation of

our forecast combination scheme with dynamic method selection delivers sizeable gains in

predictive accuracy relative to (i) the EH, (ii) a static equal-weighted forecast combination

strategy, and (iii) a dynamic combination strategy based on past (unconditional) average
5A large empirical literature documents gains from (statically) trimming the sets of forecast methods

prior to averaging. Notable examples include Aiolfi and Favero (2005), Aiolfi and Timmermann (2006),
Timmermann (2006), Stock and Watson (2004), Rapach et al. (2010), Bjørnland, Gerdrup, Jore, Smith,
and Thorsrud (2012), and Genre, Kenny, Meyler, and Timmermann (2013).
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predictability when evaluated using both standard statistical criteria and when measuring

the economic value from the utility viewpoint of a mean-variance investor that trades

in the Treasury bond market. This suggests that our conditional view of bond return

predictability offers a resolution to the puzzling contradiction between the statistical

and economic evidence typically documented in the literature (Thornton and Valente,

2012, Sarno et al., 2016). This is achieved within a standard framework and without

having to adapt Bayesian approaches with stochastic volatility (Gargano et al., 2019) or

computationally expensive machine learning methods (Bianchi et al., 2020).

Fourth, we document that our forecast combination scheme with dynamic method

selection generates out-of-sample bond risk premia estimates that are strongly counter-

cyclical and spikes in recessions. This is important as nearly all individual predictors

(except the Ludvigson and Ng (2009) factor) generates procyclical risk premia estimates.

Unlike the individual predictors, the dynamically combined forecasts are thus consistent

with standard finance theory, which expect risk premia to be high in bad economic times

due to heightened risk aversion (Campbell and Cochrane, 1999, Wachter, 2006, Buraschi

and Jiltsov, 2007), and support models with time-varying risk and risk prices (Bekaert,

Engstrom, and Xing, 2009, Creal and Wu, 2020). The simple equal-weighted combination

schemes, on the other hand, generates acyclical out-of-sample forecasts that display no

relation to the macroeconomy. The fact that our dynamic forecast combination scheme

delivers countercyclical out-of-sample risk premia forecasts that improve overall predic-

tive accuracy and economic value strongly supports our conclusion that the test reliably

identifies and exploits shifts in bond returns predictability.

Last, we show that our empirical findings are implied by a non-linear term structure

model that allows for state-dependencies in the yield curve. In particular, we consider a

one-factor version of the non-linear model presented in Feldhütter, Heyerdahl-Larsen, and

Illeditsch (2018) in which bond prices, short rates, and prices of risk can be viewed as linear

combination of the corresponding values in two artificial economics, which we interpret as

corresponding to two different states of the world. In the estimated model, the EH is found

to only hold during one of these states, thus implying that there are shifts in bond return
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predictability. Moreover, we find that the stochastic weight on the state of the economy

in which the EH holds is decreasing (increasing) with economic activity (uncertainty).

Thus, while the setup is stylized, it provides a clear illustration of a mechanism that can

rationalize our empirical findings. Moreover, this stochastic state weight can be shown

to be a measure of disagreement between agents in a reduced-form consumption-based

asset pricing model. Under this view, the model allows for an assessment of time-varying

differences in beliefs among agents, which Cujean and Hasler (2017) have shown can

generate state-dependent predictability in a theoretical framework.

In sum, we provide new empirical evidence of predictable state-dependencies in bond

return predictability that are linked to economic activity and uncertainty. We document

that these predictability shifts are exploitable in real-time and delivers sizable gains in

both predictive accuracy and economic value. The gains originate from our method’s

ability to correctly predict relative forecasting performance and that this leads to better

and economically meaningful out-of-sample bond risk premia estimates.

Related literature Our paper relates to several strands of literature. First, an extensive

literature studies the predictability of Treasury bond excess returns. This literature has

traditionally evaluated predictability from an unconditional perspective. We contribute

to this literature by offering a conditional perspective on bond return predictability.

Our paper is therefore closely related to a large and active literature on time-varying

predictability of asset returns. Rapach et al. (2010), Henkel, Martin, and Nardari (2011),

and Dangl and Halling (2012) find that stock return predictability is closely linked to

the business cycle and mostly present in recessions. Cujean and Hasler (2017) offer a

theoretical model for this observation based on time-varying disagreement among investors.

Farmer, Schmidt, and Timmermann (2019) show that predictability is mainly local in time

and consists of “pockets” with significant predictability. Gargano et al. (2019) argue that

bond predictability is stronger in recessions, but present in both states. A similar result

is found in Bianchi et al. (2020). Andreasen, Engsted, Møller, and Sander (2020) find

in-sample evidence for time-varying parameters in bond prediction models and show that

bond risk premia relate positively (negatively) to yield spreads in expansions (recessions).
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These findings are generally consistent with studies such as Hamilton (1988), Gray (1996),

and Ang and Bekaert (2002) who provide evidence of regime switches in interest rates

which are related to economic activity. We add to this literature by providing new evidence

on the real-time predictability of time-variations in out-of-sample forecasting performance

for a set of standard bond predictors. Our empirical evidence further contributes to our

understanding of bond market dynamics by demonstrating that bond return predictability

is stronger in high (low) economic activity (uncertainty) states and that exploiting this

using a dynamic forecast combination strategy yields highly countercyclical out-of-sample

forecasts in accordance with standard asset pricing theory. Although our results differ

from Gargano et al. (2019), a direct comparison is not possible as our results are based on

out-of-sample estimates, whereas their decomposition is based on full-sample estimates.

Moreover, our low (high) activity states are, like the pockets of Farmer et al. (2019), more

encompassing than the recession (expansion) periods defined by the NBER. We further

argue that adopting a conditional view of predictability offers a solution to the puzzling

contradiction between statistical and economic evaluations of predictability (Thornton

and Valente, 2012, Sarno et al., 2016).

Our paper is also related to a growing literature on forecast evaluation. Our multivariate

generalization of the Giacomini and White (2006) test provides forecasters with the

opportunity to test equal (un)conditional predictive ability among many forecast methods

without having to rely on multiple testing adjustments (Hubrich and West, 2010) or

non-standard and context-specific distribution often found in the literature (Clark and

McCracken, 2001, McCracken, 2007, Clark and McCracken, 2012, Gonçalves, McCracken,

and Perron, 2017).6 Our tests are applicable to a mixture of both nested and non-nested

models, hold for a general loss function, allow for non-stationarity in the data, and

permit comparison of a wider class of forecasting methods than those considered in this

paper, including linear, non-linear, Bayesian, and non-parametric methods.7 Finally,
6Moreover, our tests are generally invariant to any reordering of the forecasting methods under

comparison, ensuring that conclusions drawn from a single test is unaltered by any permutation of the
ordering of the forecasting methods. This alleviates the need for multiple testing adjustments.

7That the test allows for nested models is especially important in our setting as the EH is nested in all
of our predictive methods. This sets the test apart from those presented in Hubrich and West (2010),
Mariano and Preve (2012), and Clark and McCracken (2012).
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we contribute to the literature on forecast combination and dynamic method selection.

Early contributions include Makridakis and Winkler (1983) and more recent contributions

documenting the empirical benefits include Jose and Winkler (2008), Rapach et al. (2010),

Samuels and Sekkel (2017), Diebold and Shin (2019), and Adämmer and Schüssler (2020).

Samuels and Sekkel (2017) find that using the (unconditional) MCS as a trimming device

prior to constructing combined forecasts can greatly improve accuracy. Diebold and Shin

(2019) propose a LASSO-based procedure that sets some combining weights to zero and

shrinks the remaining weights toward equal-weighting. Adämmer and Schüssler (2020)

perform model selection or forecast combination by ranking multiple methods dynamically

based on their past predictability. Our approach differs from theirs by being rooted

in a formal multivariate test of equal conditional predictive ability and by focusing on

predicted performance (Timmermann and Zhu, 2017, Granziera and Sekhposyan, 2019)

rather than past (unconditional) performance. For comparison, we implement a version of

the unconditional dynamic method selection rule (Samuels and Sekkel, 2017, Adämmer

and Schüssler, 2020) and find that our conditional procedure provides superior predictive

ability and that, in our setting, the unconditional version does not improve upon the static

equal-weighed combination rule.

The remainder of the paper proceeds as follows. Section 2 outlines the setting and data.

Section 3 develops a multivariate tests for equal (un)conditional predictive ability and

introduces the procedure of dynamic forecast combination. Section 4 presents our main

empirical findings on state-dependencies in bond return predictability. Section 5 examines

the link between out-of-sample risk premia estimates and the real economy. Section 6

quantifies the economic value of predictable state-dependencies. Section 7 presents a

non-linear term structure model that generates state-dependent predictability. Finally,

Section 8 provides concluding remarks.

2. Bond return predictability

This section describes the predictive regression framework for bond excess returns and

provides summary statistics. We then outline the bond predictors used in the empirical
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analyses and discuss the state variables used to assess state-dependencies in bond return

predictability.

2.1. Predictive regression for bond returns

We consider a classic predictive regression model for bond risk premia

rx
(k)
t+τ = α(k) + β(k)xt + ε

(k)
t+τ , (1)

where rx(k)
t+τ = p

(k−τ)
t+τ − p

(k)
t − p

(τ)
t denotes the τ -month log excess holding period return on

a k-month zero-coupon Treasury bond and p(k)
t is the time-t log price of a bond with k

months to maturity. We are interested in determining whether a set of predictors xt can

improve the prediction of bond excess returns relative to the constant expected returns

benchmark β(k) = 0 (i.e. no predictability) implied by the EH. Our empirical analysis

focuses on monthly U.S. Treasury bond excess returns (τ = 1) over the period 1962 to

2018 constructed using the Gürkaynak, Sack, and Wright (2007) dataset and a one-month

Treasury bill obtained from the Center for Research in Security Prices (CRSP) as in

Gargano et al. (2019).8 By using monthly holding period returns, we avoid the issues

that the artificial persistence induced from using annual overlapping returns can have

on inference procedures (Bauer and Hamilton, 2018). Additionally, the higher return

frequency allows us to better capture short-lived dynamics in bond excess returns across

economic states (Farmer et al., 2019, Gargano et al., 2019).

[Insert Figure 1 About Here]

Figure 1 plots time series of excess returns for Treasury bonds with two, three, four,

and five years to maturity, respectively.9 Bond excess returns are notably more volatile

during the early 1980s, smaller and less variable since the 1990s, but visibly increasing in

size and variability during the 2000 and 2008 recessions.

[Insert Table 1 About Here]
8We detail the construction of monthly log yields and bond prices in the Internet Appendix. The data

are available at https://www.federalreserve.gov/data/nominal-yield-curve.htm.
9The same set of maturities are considered in, e.g., Fama and Bliss (1987), Cochrane and Piazzesi

(2005), Ludvigson and Ng (2009), Thornton and Valente (2012), Eriksen (2017), and Gargano et al. (2019).

9
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Panel A of Table 1 presents descriptive statistics for monthly bond excess returns.

Mean excess returns and volatilities are increasing with maturity, whereas Sharpe ratios

are declining from a high of 0.46 for the two-year bond to 0.35 for the five-year bond.

Short-term bonds exhibit higher skewness, kurtosis, and have somewhat more persistent

excess returns. Importantly, first-order autocorrelation coefficients for monthly bond

excess returns are substantially lower than those typically observed in studies using annual

overlapping bond excess returns (see, e.g., Cochrane and Piazzesi (2005) and Ludvigson

and Ng (2009)) and the first-order autocorrelation coefficient never exceeds 0.17 across

the maturity spectrum. Panel B of Table 1 provides contemporaneous bond excess return

correlation across maturities and confirms the well-known observation that bond excess

returns are strongly cross-sectionally correlated across maturities.

2.2. Predictor variables

Our empirical analysis centers on out-of-sample forecasts generated using predictive models

as in (1) with a variety of standard bond return predictors proposed in the literature.

Specifically, we consider (i) yields spreads (Campbell and Shiller, 1991, CS) computed as

the difference between the yield on a bond with k months to maturity and the implied

yield on a one-month Treasury bill obtained from CRSP, (ii) forward spreads (Fama

and Bliss, 1987, FB) computed as the difference between the k-month forward rate and

the one-month yield, (iii) the first three principal components (PC) of yields (Litterman

and Scheinkman, 1991) obtained using 12, 24, 36, 48, and 60 month yields, (iv) a linear

combination of forward rates (Cochrane and Piazzesi, 2005, CP) obtained from projecting

12, 24, 36, 48, and 60 month forward rates onto the mean excess bond return across the

maturity spectrum, and (v) a linear combination of macroeconomic factors (Ludvigson and

Ng, 2009, LN) obtained using the FRED-MD database (McCracken and Ng, 2016) and

estimated analogously to CP. All variables are constructed recursively in the out-of-sample

exercise. Section IA.C.2 in the Internet Appendix provides additional details on variable

construction and descriptive statistics.
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2.3. State variables

Conventional tests of the EH ask whether bond excess returns are predictable on average,

not if and when predictors exhibit predictive ability. We address this issue below by

developing a new method to gauge periodic, state-dependent predictability in a multivariate

setting that rests on the basic premise that even unconditionally poor predictors may

sharpen bond risk premia predictions in certain states of the world. To uncover such

states, we need to identity state variables that are likely to capture fluctuations in forecast

losses. We consider two variables well-known to the literature.10

The first state variable we consider is the Purchasing Managers’ Index (PMI) published

by the Institute of Supply Management. PMI is a closely watched barometer of business

conditions released on the first business day of every month and it is regarded as a prime

leading indicator of the business cycle (Berge and Jordà, 2011, Christiansen et al., 2014).11

Using a variable that tracks business cycle fluctuations to assess state-dependencies in

bond predictability is motivated by a natural link to time-varying risk aversion (Campbell

and Cochrane, 1999, Wachter, 2006, Creal and Wu, 2020) and a large literature that

documents differences in predictability connected to the business cycle (Rapach et al.,

2010, Henkel et al., 2011, Dangl and Halling, 2012, Andreasen et al., 2020).

The second state variable is the macroeconomic uncertainty index (U) proposed in

Jurado et al. (2015).12 Macroeconomic uncertainty has recently been identified as an

important contributor to business cycle fluctuations (Bloom, 2009, Ludvigson, Ma, and

Ng, 2019) and asset prices (Drechsler, 2013, Bali, Brown, and Tang, 2017, Borup and

Schütte, 2020). Moreover, it has recently been used to study state-dependent performance

of affine term structure models (Sarno et al., 2016). Last, uncertainty is likely to be linked

to risk aversion (Bekaert, Engstrom, and Xu, 2019), which bears direct influence on the

required compensation for bearing interest rate risk.

[Insert Figure 2 About Here]
10We provide additional details in Internet Appendix IA.C.3 along with descriptive statistics.
11Bloomberg, for example, offers a world map of business conditions based on PMI here:

https://www.bloomberg.com/graphics/global-pmi-tracker/.
12We focus on the index associated with h = 1 step ahead forecast errors to match the holding period

of the bond as well as the data frequency in general.
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Figure 2 displays the evolution of the state variables over time. To identify states

and to facilitate interpretation, we define periods of high (low) activity and uncertainty,

respectively, using the 80% (20%) quantiles of their time series. These states are represented

by green (yellow) shaded areas in the graph. We refer to the remaining periods as normal

activity and uncertainty states, respectively. The quantiles are chosen to represent extreme

states, while ensuring a reasonable number of observations for inference.13 PMI and U

both identify persistent states, where PMI (U) mostly takes on low (high) values in bad

times. The two series have a sample correlation of −0.48, suggesting that the series are

related, but not perfect substitutes.

3. Testing for state-dependent predictability

In this section, we develop a multivariate test for equal conditional predictive ability

that allows us to assess and identify state-dependencies in predictability in real-time. We

further propose a simple forecast combination scheme with dynamic method selection

designed to capitalize on predictable state-dependencies. The method nests the standard

equal-weighted combination among all forecasts as well as dynamic method selection.

3.1. Notation

To introduce a general notation, let wt ≡ (yt,xt)′ be an observed vector defined on the

probability space (Ω,F,P), where yt is the target object of interest and xt is a vector

of predictors. We consider a setting in which p + 1, p ≥ 1, methods are available for

forecasting τ periods into the future. We denote the forecast of yt+τ constructed at

time t by f̂ it+τ = f i
(
wt,wt−1, . . . ,wt−mi+1; θ̂it,mi

)
for i = 1, . . . , p + 1, where f i is a

measurable function. θ̂it,mi denotes the parameter estimates used to construct the forecast

for the ith forecasting method obtained using observations from the mi most recent

periods. For ease of exposition, and along the lines of Giacomini and White (2006), we

define m = max {m1, . . . ,mp+1} and require that m <∞. This allows for rolling window
13Similar approaches to identifying high/low and good/bad states can be found in, among others, Liew

and Vassalou (2000), Rapach et al. (2010), and Sarno et al. (2016). We note that our definition of low
activity is broader than simply a recession, which would roughly correspond to using a 10% quantile.
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estimators, but excludes expanding window forecasting schemes from our test. The number

of out-of-sample forecasts is T = N − (m+ τ − 1) for a total sample size of N (time series)

observations. In order to assess the forecasting ability of each forecasting method, we use

a real-valued loss function Lt+τ
(
Yt+τ , f̂

i
t+τ

)
. Important examples of L include economic

measures such as utility or profits (Granger and Machina, 2006) and statistical measures

such as the square or absolute value of the forecast errors (West, 2006), where forecast

errors are given by eit+τ = f̂ it+τ − yt+τ . To ease notation, we suppress the arguments of L

and write the ith loss function as Lit+τ for the remainder of the paper.

3.2. Rolling window forecasts

The empirical analysis is based on out-of-sample forecasts generated by predictive regression

models as in (1).14 We consider a set of p + 1 methods, indexed by i, defined by the

p predictors outlined in Section 2.2 in addition to the EH benchmark. We estimate

the predictive regression models by a rolling window OLS scheme, in accordance with

our assumptions, and generate forecasts at time t according to (suppressing maturity-

dependence for notational simplicity)

f̂ it+τ = α̂it + β̂itxit, (2)

for i = 1, . . . , p with θ̂it,mi =
(
α̂it, β̂

i

t

)′
. The benchmark EH forecast naturally includes no

predictors and is simply defined as f̂p+1
t+τ = α̂p+1

t , which is consistent with a no-predictability

interpretation implied by financial theory.

3.3. The hypothesis of equal conditional predictive ability

We are interested in formally evaluating whether a set of p+ 1, p ≥ 1, forecasting methods

display equal conditional predictive ability using some information set (σ-field), Gt. That
14We emphasize, however, that our econometric framework is not limited to such regressions, but

naturally includes a broader class of parametric, non-parametric, and Bayesian methods.
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is, we wish to test the null hypothesis that

H0: E
[
Lit+τ |Gt

]
= E

[
Li+1
t+τ |Gt

]
, i = 1, . . . , p, (3)

or, equivalently, that

H0: E [∆Lt+τ |Gt] = 0, (4)

where ∆Lt+τ =
(
∆L1

t+τ , . . . ,∆L
p
t+τ

)′
is a p-dimensional vector of loss differentials (i.e.

∆Lit+τ = Lit+τ − Li+1
t+τ for i = 1, . . . , p with Lit+τ being the loss function for the ith

method). The null hypothesis in (4) is empirically relevant for a number of financial and

macroeconomic applications and offers at least three main advantages.15 First, it allows

us to study not only if but also when there are detectable differences in the predictive

accuracy of two or more methods. This is distinctly different from the traditional approach

of assessing equal predictive accuracy on average and may facilitate the discovery of

predictive ability in certain states of the world as captured by Gt. An equivalent viewpoint

is that the null hypothesis implies that Gt is uninformative about the relative predictive

accuracy of one or more forecasting methods when forecasting the object of interest τ

periods into the future, whereas a rejection implies that the relative predictive accuracy

is predictable by Gt and potentially exploitable in a real-time forecasting environment.

Second, if Gt is set to the trivial σ-field, Gt = {∅,Ω}, then the null hypothesis reduces to

an unconditional test comparable to that considered in Mariano and Preve (2012) that

provides information about the average predictive ability of the forecasting methods as in

Diebold and Mariano (1995) and West (1996). Third, the loss functions depend explicitly

on the parameter estimates and not on their probability limits, leading to a test statistic

that takes into account estimation uncertainty. Importantly, by allowing for asymptotically

non-vanishing estimation uncertainty, the test can accommodate the empirically relevant
15The null nests the special case of studying predictability across recessions and expansions (see, e.g.,

Henkel et al. (2011) and Dangl and Halling (2012) for stocks and Gargano et al. (2019), Andreasen et al.
(2020), and Bianchi et al. (2020) for bonds), but is more general and allows for continuous state variables.
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case of nested models in the set of forecasting methods.16 This is key in our context as

the EH model is nested within all methods coming from the predictive framework in (1).

3.4. The multivariate test statistic

The null hypothesis in (4) can equivalently be stated as

H0: E
[
h̃t∆Lt+τ

]
= 0 (5)

for all Gt-measurable functions h̃t and Ft ⊆ Gt. We restrict attention to a subset of these

functions collected in the q-dimensional vector ht =
(
h̃

(1)
t , . . . , h̃

(q)
t

)′
. We refer to this

vector as a state function. Given a state function, we can then reformulate the multivariate

null hypothesis of equal conditional predictive ability as follows

H0,h: E [ht ⊗∆Lt+τ ] = 0, (6)

where the subscript h indicates the dependence on the state function and ⊗ denotes the

Kronecker product. The specification in (6) is a natural multivariate extension of the

null hypothesis considered in Giacomini and White (2006) and we indeed obtain their

econometric framework as a special case for p = 1.

As is common in the bond return predictability literature, we consider one-step ahead

predictions, τ = 1, as our leading example throughout, but provide theoretical results

for multi-step ahead forecasting, i.e. τ > 1, in the Internet Appendix along with our

assumptions that are adopted from Giacomini and White (2006). The information set Gt

contains the state variables discussed in Section 2.3. Finally, let dt+1 = ht ⊗∆Lt+1 and

consider the quadratic statistic

Sh = Td
′Σ̂−1

T d, (7)

16Technically, with Gt = {∅,Ω} and asymptotically vanishing estimation uncertainty, the standard
errors of differences in forecast performance between a set of nested models will equal zero, leading to
non-standard limiting distributions of the test statistics.
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where d ≡ T−1∑T
t=1 dt+1 and Σ̂T ≡ T−1∑T

t=1 dt+1d
′
t+1 is a (qp × qp) sample covariance

matrix that consistently estimates the variance of dt+1.17 That is, Sh is a natural Wald

statistic constructed for testing whether d is a zero vector. When formulating an alternative

hypothesis, it is important to take into account that the data may exhibit non-stationarity.

We provide a discussion in the Internet Appendix. For some c > 0, we formulate the

alternative in line with Giacomini and White (2006) as

HA,h: E
[
d
′]E [d] ≥ c, (8)

for all T sufficiently large. Under stationarity, the null and alternative hypothesis are

exhaustive. Under non-stationarity, this is not necessarily the case. If an important Gt-

measurable variable is omitted from the state function, it may happen that E
[
d
′]E [d] = 0

for a particular sample size due to, for instance, shifting means without the null hypothesis

being true. As an example, one could easily imagine a situation where one method

outperforms (some of) the other methods in certain states, while it performs worse than

those methods in other states. Therefore, the test has little power against alternatives

where the loss differentials are correlated with Gt-measurable random variables not included

in the state function. While this concern is important, it also highlights the flexibility of

the test statistic. As mentioned above, the econometrician chooses the state function to

include state variables relevant for disentangling the forecasting abilities of two or more

forecasting methods. The test, therefore, only provides power in situations when this is

possible. As a result, the test statistic changes with the choice of state function, which is

emphasized through the subscript in Sh.

The asymptotic properties of the test statistic are summarized in Theorem 1 and we

provide proofs and derivations in the Internet Appendix.

Theorem 1 (One-step multivariate conditional predictive ability test). Suppose

that Assumptions 1-3 hold (see the Internet Appendix for details). Then the test statistic
17We note that for large values of q and/or p, the dimension of ΣT and d may become large, potentially

leading to issues with statistical inference in finite samples. We propose remedies in Borup and Thyrsgaard
(2017), but note that our empirical analyses imply reasonable dimensions with one state variable and
p = 5 predictors plus the EH benchmark.
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has the following properties.

A. Asymptotic distribution under the null. For forecast horizon τ = 1, state

function sequence {ht}, m <∞, and under H0 in (4),

Sh
d−→ χ2 (qp) , as T →∞. (9)

B. Consistency under the alternative. For any c ∈ R+ and under HA,h in (8),

P [Sh > c]→ 1, as T →∞. (10)

C. Permutation invariance. Let L∗t+1 be an arbitrary permutation of the vector of

forecast losses, and define ∆L∗t+1 = DL∗t+1, where

D =



1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1


(11)

is a p × (p+ 1) matrix. Let d∗ = T−1∑T
t=1 d

∗
t+1 with d∗t+1 = ht ⊗ ∆L∗t+1 and

Σ̂∗T ≡ 1
T

∑T
t=1 d

∗
t+1d

∗′
t+1. Then,

S∗h ≡ Td
∗′
m

(
Σ̂∗T

)−1
d
∗
m = Sh, ∀T. (12)

We provide a corresponding result for the unconditional, possibly multi-step, case, in the

Internet Appendix. The unconditional case, in which we compare the average performance

of the methods over the out-of-sample window, is obtained by setting ht = 1 for all

t. The limiting distribution is then χ2 (p) for a test statistic that employs a HAC type

covariance matrix estimator to capture serial dependence. In the case of the conditional

test and multi-step forecast horizons, a χ2 (qp) limiting distribution is obtained when

using an appropriate HAC type covariance matrix estimator. Although any reordering of
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the forecasting methods alters the dynamics of dt+1, Theorem 1.C. shows that we obtain

the same value of the test statistics and the same limiting distribution under the null

hypothesis for each permutation (reordering) of the forecasting methods, regardless of

the null being true or not. This is important as it allows the researcher to perform just

a single test. Appendix IA.B provides Monte Carlo simulations confirming proper small

sample properties of the test in a setting that matches the empirical application below.

3.5. Understanding the test

This section provides an intuitive illustration of the test statistic. Consider the simple case

of p = 1, where the problem reduces to a comparison between a single pair of forecasting

methods. An unconditional test is equivalent to the regression

∆Lt+1 = ϕ0 + ηt+1, (13)

where the null hypothesis that ϕ0 = 0 can be tested using a standard t-test using an

appropriate HAC type of covariance estimator to account for serial correlation under the

null hypothesis. The conditional test augments the regression with a set of state variables.

Suppose that we consider a single state variable h̃t (as in the empirical analysis below

to facilitate economic interpretation), then the conditional test amounts to running the

extended regression

∆Lt+1 = ϕht + ηt+1 = ϕ0 + ϕ1h̃t + ηt+1, (14)

with ϕ = (ϕ0, ϕ1) and ht =
(
1, h̃t

)′
being the state function.18 In this case, we are

interested in testing jointly ϕ0 = ϕ1 = 0 using a Wald test and an appropriate estimator of

the covariance matrix. The limiting distribution under the null hypothesis is equivalent to

the ones provided in Theorem 1. From (14), it is clear that a rejection of ϕ1 = 0 indicates

that the state variable h̃t is informative about the future relative predictive ability of the

methods under consideration. That is, there is evidence of state-dependency. Importantly,
18Using multiple state variables, in addition to the constant, is then equivalent to running a multiple

regression and conducting joint inference on all parameters.
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the expression in (14) is nothing more than a full sample predictive regression similar in

spirit to (1) estimated over the out-of-sample window. The key difference is that (14)

predicts the future relative predictive ability among the candidate forecasting methods

using state variables whose values are observable at the construction of the forecast and

are picked by the researcher. We refer to them as state regressions in the following. These

ideas naturally extend to our case of p > 1, in which case the test statistic is akin to a

seemingly unrelated regression (SUR) framework. We will make use of this insight below

when formulating a simple decision rule to exploit rejections of the null hypothesis to

dynamically select or combine among forecasting methods with indistinguishable predicted

performance.

3.6. Ranking of forecasting methods

A rejection of the null hypothesis suggests that one or more forecasting methods exhibit

superior predictive ability in certain states, but it provides little guidance towards iden-

tifying the method(s) causing the rejection and in which states they exhibit (superior)

predictability. This identification is of both economic and practical interest. Central banks,

international organizations (e.g. IMF, OECD, and the World Bank), and professional

forecasters (SPF and Blue Chip) frequently generate forecasts that are widely followed

by market participants and policy makers. Designing routines that can identify forecasts

and/or forecasters predicted to do well in a given state of the world, therefore, is important.

To this end, we propose a simple algorithm to identify in real time the set of best methods

based on their predicted performance with respect to one or more state variables. The

resulting set may consist of a single method, all methods, or any number in between.

This procedure reveals potential fluctuations in predictive ability over time, similar in

spirit to the fluctuation test of Giacomini and Rossi (2010), but also suggests why these

fluctuation occurs due to the use of state variables. In formulating the algorithm, we

consider a MCS-type procedure (Hansen et al., 2011) to eliminate methods according to

an elimination rule and rank forecasting methods into a best set whose elements have

equal conditional predictive ability.
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We start by formulating a dynamic rule that facilitates the identification of the best

methods conditional on the realization of the state variable at the time of the forecast. To

do this, we divide the out-of-sample window into two parts. The first part has length T1

and is used for initially estimating the state regression. The second part has length T2, with

T1 +T2 = T , over which the forecast selection/combination procedure will be employed. In

order to introduce the ranking procedure, we need to introduce some additional notation.

First, for every time t we let Mt denote the set of forecasting methods available at time

t. The goal of the proposed procedure is to eliminate any inferior forecasting methods

from this set, thereby creating a set M∗
t of superior forecasting methods whose predictive

ability are indistinguishable in a statistical sense. The rule is formulated using a single

state variable (and a constant), but it can be extended directly to a setting with multiple

state variables. We then propose the following three-step ranking algorithm at each time

point t = m+ T1, . . . , N − 1.

Step 0: For all pairwise combinations of forecasting methods, j, i ∈ Mt, i 6= j

estimate by OLS the regression model

∆L(i,j)
s+1 = Lis+1 − L

j
s+1 = ϕjhs + ηs+1 (15)

with s = t− T1 + 1, . . . , t, i.e. using a rolling window of the past T1 forecast errors.

The conditional expectation E
[
∆Ljt+1|Gt

]
is estimated by ϕ̂jht = ϕ̂j0 + ϕ̂j1h̃t, which

measures the time t prediction of the future relative performance of method i and j

given the current information in the state variable. Based on those predictions, rank

all p+ 1 methods (using a normalization of one method). The forecasting method

with lowest predicted loss across all pairwise combinations is ranked first and the

method with highest predicted loss is ranked last.

Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M∗
t = Mt. Otherwise, eliminate the lowest

ranked forecasting method from Mt based on the ranking of predicted forecast losses.

Iterate Steps 1–2 until the null is no longer rejected.
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A few remarks are in order. First, the ranking rule exploits the state regression

interpretation of our test statistic and is, as such, strongly rooted in econometric theory.

Second, since the elimination of models is based on a state-specific ranking, the ranking

rule will capture the state-dependency of predictability over time. Third, the set of superior

forecasting methods at any given time t will not only depend on the states used, but

also on the choice of loss function. This leaves the researcher with some flexibility in

choosing how different types of forecast errors should be weighted. Fourth, since the

algorithm provides sets of equal predictive ability within each state, the ranking rule can

be viewed as a conditional MCS algorithm. Fifth, since the test is permutation invariant

(see Theorem 1), the test only needs to be carried out once each time Step 2 is conducted,

even when elimination alters the ordering of the methods. Sixth, note that the proposed

method is forward looking in the sense that M∗
t is comprised of the methods with lowest

expected future loss. This sets our method apart from others previously considered in

the literature (e.g. Aiolfi and Timmermann (2006) and Adämmer and Schüssler (2020)),

which have focused solely on ranking methods based on their past performance. Ranking

based solely on past or even the most recent performance is especially problematic if the

performance of the forecasting methods display abrupt shifts, e.g. according to states,

which our empirical evidence suggests is the case when it comes to forecasting the bond

risk premium. Finally, considering the constituents of M∗
t across time or states informs

about state-dependency in predictability, which we make use of in the empirical section

below to understand the success of this methodology and derive economic insight.

3.7. Forecast combination with dynamic trimming

The set of best methods, M∗
t , may consist of a singleton, some methods, or all methods,

which suggests that the elimination rule can be interpreted as a way to dynamically trim

the set of candidate predictors. Accordingly, we propose a simple combination forecast

f̂ ∗t+1 defined as

f̂ ∗t+1 = 1
|M∗

t |
∑
i∈M∗t

f̂ it+1, (16)
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where |M∗
t | denotes the number of elements in M∗

t . This definition is consistent with the

simple equal-weighting principle often found in the literature, but with the modification

that we dynamically trim the set of methods prior to combination based on the predicted

losses from the dynamic ranking rule.19 In that way, this methodology allows for selecting

a single method, combining among all methods, or any number of methods in between

dynamically in real time. Our approach can therefore be interpreted as a data-driven and

forward-looking way to select between dynamic model selection and forecast combination.

We refer to this strategy as dynamic forecast combination. The strategy complements the

static combination and trimming rules found, for instance, in Rapach et al. (2010) and

provides a formal routine to identify the optimal set of methods prior to combination (Aiolfi

et al., 2011).20 It also extends the procedure suggested in Adämmer and Schüssler (2020)

by combining among methods that are predicted to have the smallest future losses via the

use of (15) in Step 0, as opposed to those that have the smallest past losses. Moreover,

our selection of methods is rooted in a formal multivariate testing procedure, resembling a

conditional MCS. In the special case with only two methods, p = 1, our scheme reduces

to the switching rule provided in Giacomini and White (2006). Timmermann and Zhu

(2017) formally show that forecast improvements are guaranteed when state variables are

powerful and Granziera and Sekhposyan (2019) provide empirical evidence consistent with

this observation.

4. State-dependencies in bond return predictability

This section presents empirical evidence on predictable state-dependencies in bond excess

return predictability. While individual bond predictors fail to consistently deliver reliable

out-of-sample forecasts on average, our full sample test for equal conditional predictive
19The equal-weighted combination scheme has a long tradition in the forecasting literature and is

empirically hard to beat as it involves no estimation error in weights (Timmermann, 2006, Rapach et al.,
2010). Other combination schemes are naturally possible, e.g. using estimated least squares weights,
possibly with shrinkage to equal weights (Bates and Granger, 1969, Granger and Ramanathan, 1984,
Zellner, 1986, Diebold and Pauly, 1987). While one could possibly increase forecast performance further
by considering more complicated combination schemes, this is not the aim of our paper.

20Alternative suggestions include determining the optimal set based on past performance (Aiolfi and
Timmermann, 2006), the (unconditional) model confidence set (Samuels and Sekkel, 2017), and lasso-based
procedures (Diebold and Shin, 2019).
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ability strongly points to periodic, state-dependent predictability related to economic

activity and uncertainty. We show that a dynamic forecast combination strategy rooted in

these findings leads to substantial gains in forecast accuracy. These findings suggest that

the EH holds periodically.

4.1. Out-of-sample predictability

We begin by gauging the unconditional predictive ability of individual bond predictors using

a rolling window estimation scheme. We use the period January 1962 to December 1989

as our initial estimation period, similar to Gargano et al. (2019), the period from January

1990 to December 1999 as our initial testing period used in the dynamic ranking rule, and

the period from January 2000 to December 2018 as our evaluation period. We focus on

U.S. Treasury bonds with 24, 36, 48, and 60 months to maturity and consider models

based on the predictor variables outlined in Section 2.2. To evaluate the out-of-sample

performance of the predictive methods relative to the constant expected return benchmark

implied by the EH, we compute the Campbell and Thompson (2008) out-of-sample R2

statistic21

R2
OS,i,k = 1−

∑N
t=R+1

(
rx

(k)
t − r̂x

(k)
t,i

)2

∑N
t=R+1

(
rx

(k)
t − r̂x

(k)
t,EH

)2 , (17)

where r̂x(k)
t+1,i and r̂x

(k)
t+1,EH denote the forecast from the ith predictor model and the EH

benchmark, respectively, R = m+T1 denotes the end of the testing period, and N denotes

the total number of observations. The R2
OS statistic in (17) is equivalent to one minus the

ratio of mean squared prediction errors, i.e. R2
OS,i,k = 1− MSPE

(k)
i

MSPE
(k)
EH

. Consistent with this we

use the squared prediction error in place of Lt+1 when implementing our statistical tests on

predictive ability. An R2
OS > 0 implies that the MSPE of the ith predictor model is lower

than that of the EH benchmark model, indicating higher predictive accuracy. We interpret

the EH model as a no-predictability benchmark and test the null of no predictability(
R2
OS ≤ 0

)
against the one-sided alternative of predictability by the ith predictor model(

R2
OS > 0

)
using the Diebold and Mariano (1995) (DM) test for equal predictive ability.22

21See also Fama and French (1989) for a similar definition and use.
22Note that this is the unconditional version of the test statistic in Giacomini and White (2006) which

is nested within our framework for p = 1.
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[Insert Table 2 About Here]

Panel A of Table 2 reports R2
OS values and DM p-values for individual predictor models

across the maturity spectrum. The main conclusion is that no individual model is able to

reliably outperform the EH benchmark unconditionally for all maturities. The majority

of models deliver negative R2
OS values and those that are positive are far from being

significant at conventional levels.23 These results are in line with Gargano et al. (2019),

who similarly find few positive R2
OS values for linear predictive models.24 Panel B considers

a simple (static) equal-weighted forecast combination scheme (Bates and Granger, 1969,

Timmermann, 2006, Rapach et al., 2010). We denote this combined forecast by EW. The

combined forecast generates positive R2
OS values from 6.08% for the two-year bond to

4.58% for the five-year bond. These values are all significant according to the DM p-value

at the five percent level. That is, although no individual predictor is able to consistently

outperform the EH, a simple equal-weighted average of the individual forecasts is.

[Insert Figure 3 About Here]

Figure 3 plots the cumulative difference in squared prediction errors (CDSPE) between

the EH and the ith predictor model

CDSPE(k)
t,i =

t∑
l=R+1

(
rx

(k)
l − r̂x

(k)
l,EH

)2
−

t∑
l=R+1

(
rx

(k)
l − r̂x

(k)
l,i

)2
, (18)

where R + 1 denotes the time of the first forecast, and r̂x(k)
t+1,i and r̂x

(k)
t+1,EH denote the

forecast from the ith predictor model and the EH benchmark, respectively. This graphical

device is suggested by Goyal and Welch (2008) as a way to assess relative performance

over time (and is indirectly a visual inspection of state-dependencies). Figure 3 plots the

CDSPEs against economic activity and uncertainty states identified using PMI (left colum)

and U (right colummn), respectively, to assess the relation between relative forecasting
23We provide in-sample predictive regression results in the Internet Appendix, where we show that our

set of predictors are reliably related to bond risk premia.
24Our rolling window regression results for CP is poorer than in Gargano et al. (2019), indicating that

bond return predictability is sensitive to the forecasting setup. In unreported results, we indeed find that
many R2

OS values improve when considering a forecasting environment with an expanding window instead.
However, the main conclusions remain qualitative similar.
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performance and the state variables. The plots supports the use of conditioning variables

that tracks salient features of the business cycle as several swings in CDSPE for the

individual predictors is related to states associated with high and low values of economic

activity and uncertainty, respectively. Consistent with the positive R2
OS values in Table 2,

the equal-weighted forecast combination (EW) performs well over the majority of the

evaluation period.

4.2. Testing for equal conditional predictive ability

The previous section establishes that linear predictive methods are unable to reliably beat

the EH on average. However, this does not exclude the possibility that some methods

provide significantly better forecast in certain states of the world. We investigate this

possibility using our multivariate test for equal conditional predictive ability introduced in

Section 3. We entertain three specifications for the state regression. First, we consider the

information in PMI to examine if predictive ability is related to economic activity and

specify the state function as ht = (1,PMIt)′. Second, we specify ht = (1,Ut)′ to study

the effect of macroeconomic uncertainty. We also include an unconditional version of the

multivariate test in which we set ht = 1 for all t and denote the case by NONE.

[Insert Table 3 About Here]

Table 3 reports test statistics and corresponding p-values for our multivariate test

for equal (un)conditional predictive ability over the evaluation period using the three

specifications for the state regression discussed above. The implementation is based on a

sample covariance matrix as dictated by theory (see Section 3 and the Internet Appendix).25

We find strong rejections of the null hypothesis of equal conditional predictive ability across

all maturities for both specifications of ht that uses conditioning information, indicating

substantial evidence favoring state-dependencies in bond excess return predictability. The

unconditional test, on the other hand, fails to reject equal predictive abilities across all

maturities. In other words, our choice of state variables enables the detection of conditional
25We note that NONE should, in theory, by evaluated using a HAC estimator, but we use a sample

estimator here to ease comparison. However, results are both qualitative and quantitatively similar when
employing a Newey and West (1987) estimator with a bandwidth of 12 lags.
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differences in predictive accuracy, concluding that the individual methods are equally

accurate on average, yet statistically different conditional on states of economic activity or

uncertainty.

4.3. Ranking and elimination of models

Having established that relative bond return predictability shifts over time with state

variables tracking economic activity and uncertainty, we turn to a more detailed analysis of

the inherent state-dependencies. As a first step, we examine the ranking and elimination

of models over the out-of-sample period by employing our forecasting combination scheme

with dynamic method selection (see Section 3.6). The scheme enables us to identify the

best set of methods M∗
t with indistinguishable conditional predictive ability at each point

in time.26

Panel C of Table 2 presents the results for the dynamic forecast combination scheme

using PMI and U, respectively, as conditioning variables and using NONE as the un-

conditional alternative which we consider a natural and challenging benchmark. This

unconditional alternative is related to Samuels and Sekkel (2017) who suggest trimming

a given set of models using a recursive implementation of the unconditional MCS and

Adämmer and Schüssler (2020) who uses the set of models that, when combined, provides

the best past performance. That is, NONE uses average past predictability as an indi-

cator for future predictability. Our conditional alternative trims the set of forecasting

methods using a conditional MCS idea with the elimination based on the projected future

predictability of bond excess return using current information in state variables. Strikingly,

our dynamic forecast combination strategy delivers positive R2
OS values relative to the

EH across all conditioning variables and bond maturities that are economically large with

values between 5.11% and 7.98% for PMI and between 4.98% and 9.86% for U. Moreover,

these values always exceed those of the EW strategy with a considerable margin. All (most)
26In Appendix IA.D.5 we depict the size of M∗

t over time using PMI and U. This best set of models
varies considerably over time and includes situations in which the set include all models, leading to
forecasts equal to EW, and situations with a singleton (equivalent to dynamic method selection). That is,
at times there is no need for trimming of the full set of models and at other times we should only use
the forecasts from a single model. Importantly, this tells us why dynamic method selection may lead to
improvements over a static forecast combination.
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are significant relative to the EH (EW) at conventional levels when using either PMI or U,

whereas NONE does not deliver significant improvements against the EW. This suggests

that past relative predictive accuracy is not informative about future predictability relative

to just using all methods with equal weight. On the other hand, the state variables are

remarkably informative about future predictability in the simple manner suggested by our

multivariate test and the embedded state regressions, cf. (15).

[Insert Figure 4 About Here]

Figure 4 plots the CDSPE for the dynamic forecast combination strategies and the

unconditional alternative NONE relative to the EH. Overall, we find that relative forecasting

gains are mostly uniformly distributed across the out-of-sample evaluation period and

that no particular event or period drive the positive results, although we do observe a

particularly strong increase during the latest recession relative to the EH benchmark for

the five-year bond using PMI as the state variable.

[Insert Figure 5 About Here]

Figure 5 plots the CDSPE for the two dynamic forecast combination strategies and

NONE relative to EW. As above, the dynamic forecast combination strategy always

performs on par or better than EW. This is also reflected in Panel D of Table 2, where we

observe positive R2
OS values that are of economically meaningful magnitudes and most are

significant at conventional significance levels. These relative forecasting gains concentrate

in periods with low (high) economic activity (uncertainty). That is, our dynamic forecast

combination scheme delivers improvements in forecast accuracy in periods of turmoil,

exactly when investors arguably needs it the most. Moreover, we see that trimming the set

of candidate methods prior to combination using a dynamic rule rooted in our multivariate

test for equal conditional predictive ability delivers sizeable improvements. Lastly, the

CDSPE curve is almost completely flat for NONE, confirming that static equal-weighting

combination works as well.
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4.4. Understanding the sources of conditional predictability

This section studies the underlying sources of conditional predictability and the sizable

improvements in predictive accuracy established above. To facilitate interpretation we

classify the continuous state variables, PMI and U, into low, normal, and high economic

activity (uncertainty) states using the 20% and 80% quantiles similarly to, e.g., Rapach

et al. (2010). We then proceed in two steps. We begin by computing inclusion frequencies

for each forecasting method within the low, normal, and high economic activity and

uncertainty states, respectively. We then study how the individual methods perform in

each state and relate it to the overall performance.

4.4.1. Inclusion frequencies We compute inclusion frequencies for each forecasting method

and state variable using the low, normal, and high states for economic activity (PMI) and

uncertainty (U), respectively. Within each state, we then define the inclusion frequency of

the ith forecasting method as the fraction of months the model is included in the best set

relative to the total number of months in the given state.

[Insert Table 4 About Here]

Table 4 reports the inclusion frequencies when conditioning on PMI and U, respectively.

We uncover a striking pattern. The EH tends to be eliminated in high (low) economic

activity (uncertainty) states across the entire maturity spectrum. Interpreting the EH as

a no-predictability benchmark implies bond excess returns are predictable in high (low)

economic activity (uncertainty) states, but less so in other states. The EH, conversely,

provides a reliable anchor in periods with low (high) and to some degree normal economic

activity (uncertainty). In Appendix IA.D.3 we device a methodology that identifies

predictability within states seen over the full out-of-sample period, conditioning on low,

normal, and high PMI and U states, respectively. This strongly supports the striking

pattern that EH tends to be eliminated in high (low) economic activity (uncertainty)

states across the entire maturity spectrum.
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4.4.2. State-dependent predictability The inclusion frequencies are indicative of when

certain models are predicted to do well. In this section, we ask whether the inclusion

frequencies align with relative performance. That is, we ask whether the procedure

correctly identifies methods with good and bad relative performance.

[Insert Table 5 About Here]

Table 5 reports state-specific R2
OS values for the individual predictors relative to the

EH. The results are supportive of the procedure correctly identifying methods that do

well. We find that individual predictors are generally performing poorly (R2
OS < 0) in low

(high) economic activity (uncertainty) states and well (R2
OS > 0) in high (low) economic

activity (uncertainty) states.27 This is consistent with the inclusion frequencies of the

EH. Specifically, the procedure appears to correctly anticipate periods in which the EH

provides a reasonable anchor for expected bond excess returns and periods in which bond

risk premia are predictable. Moreover, there is also a close mapping between the inclusion

frequencies and the magnitudes of the R2
OS values, where models are more likely to be

included (excluded) in a given state the higher (lower) its R2
OS. That is, the gains in

predictive accuracy are coming from the rule’s ability to correctly predict predictability.

Overall, our empirical results are consistent with, and clearly points to, state-dependencies

in bond excess return predictability linked to economic activity and uncertainty. Bond

excess returns are predictable in states with high (low) economic activity (uncertainty),

whereas the EH serves as a reliable anchor in the remaining states of the world. Moreover,

these shifts in predictability can be successfully exploited via the methodology proposed

in this paper. It is relevant to relate those findings to Gargano et al. (2019) who identify

stronger predictability in recessions than outside recessions. Our findings contrast this

notion. The main difference is that they use a different set of models and Bayesian

methods, incorporating time-varying parameters and/or stochastic volatility, and not the

conventional univariate linear models considered in the present paper. Note, however, they
27One exception is for CP in low uncertainty states using U as state variable. This is mainly due to few,

yet notable, observations. Importantly, our procedures are able to capture this fact; within this state,
they eliminate CP as the first predictor across all bond maturities in the full out-of-sample ranking and
CP possesses lowest (together with EH) inclusion frequency in the dynamic ranking.
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do recover the pattern documented in this paper when they use FB as single predictor.

Interestingly, our out-of-sample forecasts for bond risk premia and their link to the real

economy remain fully consistent with the results in Gargano et al. (2019), which we analyse

in the following section.

5. Links to the real economy

In this section, we examine the link between our out-of-sample bond risk premia forecasts

and the real economy. Standard finance theory implies that investors demand compensation

for risks associated with recessions due to heightened risk aversion (Campbell and Cochrane,

1999, Wachter, 2006, Buraschi and Jiltsov, 2007) and risk premia should therefore be

countercyclical and peak in recessions.

[Insert Table 6 About Here]

We employ PMI as our measure of economic activity (Berge and Jordà, 2011) and report

in Table 6 the contemporaneous correlation among PMI and the risk premia estimates

from individual bond predictors, EW, and the dynamic forecast combinations generated

by PMI, U, and NONE. The results offer two main insights. First, yield-based variables

deliver risk premia estimates that are significantly positively correlated with real economic

activity. That is, these models imply procyclical risk premia, which sharply contrasts

canonical theory. LN, on the other hand, obtains a significant negative correlation of about

-38% across the maturity spectrum, which is consistent with countercyclical risk premia.

Interestingly, the EW combination strategy produces risk premia estimates with virtually

zero correlation with the real economy. That is, even though the EW combination produces

significantly more accurate forecasts, cf. Table 2, they are acyclical and unrelated to the

state of the economy. The acyclicality is likely caused by the divergent cyclicalities being

washed out in the equal-weighted combination scheme. The dynamic combination strategy,

which selects individual methods for subsequent combination based on information in the

state variables, produces markedly negative and statistically significant correlations with

the real economy. Dynamically trimming the candidate set of methods prior to combining
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based on predicted performance yields both economically meaningful risk premia estimates

that are strongly countercyclical as well as substantial improvements in overall forecast

accuracy.28

[Insert Figure 6 About Here]

Supporting this, Figure 6 depicts our dynamic combination forecasts using PMI and U

as state variables, along with recession periods as defined by the NBER. We see a clear

tendency for the risk premia estimates to increase during recessionary periods and decline

during expansionary periods, resembling a countercyclicality with business cycles. These

findings altogether demonstrate the importance of appropriately selecting among plausible

models, as done in the present paper. Our empirical findings are consistent with recent

evidence similarly documenting countercyclical bond risk premia (Gargano et al., 2019,

Andreasen et al., 2020, Bianchi et al., 2020) and models with time-varying risk (Bekaert

et al., 2009, Creal and Wu, 2020).

6. Economic value

This section quantifies the economic value attainable from employing forecast combination

with dynamic method selection for bond excess return predictions. Specifically, we consider

the asset allocation decision of an investor with mean-variance preferences and relative

risk aversion γ that chooses the weight ω(k)
t to invest in a k-period bond and the weight(

1− ω(k)
t

)
to invest in a one-period safe bond (Marquering and Verbeek, 2004).29 The

resulting portfolio return is then

r
(k)
p,t+1 = y

(1)
t + ω

(k)
t rx

(k)
t+1, (19)

28Other types of business cycle indicators can naturally be entertained. We report in the Internet
Appendix contemporaneous correlations among generated forecasts and each of the macroeconomic
uncertainty (U), recession probabilities of Chauvet and Piger (2008), the Chicago Fed National Activity
Index (CFNAI), and logarithmic growth rates to industrial production growth. It stands out that our
dynamic forecasting combination technique leads to much stronger countercyclical bond risk premia than
all yield-based variables and EW.

29Assuming that investors have mean-variance preferences in asset allocation exercises has a long
tradition in predictability studies and similar approaches can be found in, among many, Campbell and
Thompson (2008), Goyal and Welch (2008), Wachter and Warusawitharana (2009), Thornton and Valente
(2012), Sarno et al. (2016), Eriksen (2017), Ghysels et al. (2018), and Gargano et al. (2019).
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where rx(k)
t+1 denotes monthly bond excess returns for a Treasury bond with k months to

maturity. Denoting moments conditional on Gt by subscript t, we assume that the investor

has a utility function U
(
r

(k)
p,t+1

)
of the form

U
(
r

(k)
p,t+1

)
= Et

[
r

(k)
p,t+1

]
− 1

2γVart
[
r

(k)
p,t+1

]
, (20)

where γ is a measure of relative risk aversion. Solving the maximization problem yields

the optimal portfolio weights

ω
(k)
t = 1

γ

Et
[
rx

(k)
t+1

]
Vart

[
rx

(k)
t+1

] , (21)

where Et
[
rx

(k)
t+1

]
is estimated using the ith predictive method and Vart

[
rx

(k)
t+1

]
is computed

using a rolling window of past bond excess return realizations.30 We winzorize weights

according to reasonable shorting and leverage constraints, similarly to Thornton and

Valente (2012) and Gargano et al. (2019), such that ω(k)
t ∈ [−1, 2] for all maturities. Using

the sequence of portfolio weights, we compute average utility, or certainty equivalent return

(CER), for each forecast method using (20). We similarly compute the CER for the EH

benchmark prediction in lieu of the predictive models. The CER gain is then the difference

between the CER for the predictive models and the CER for the EH benchmark. We

annualize the CER gain so that it can be interpreted as the annual portfolio management

fee that an investor would be willing to pay to have access to the information in the

predictive forecast relative to the EH benchmark.31 Thus, this setup enables a direct

assessment of the economic value associated with the increased forecasting precision.

6.1. Certainty equivalent returns

Table 7 reports annualized CER gains for all individual bond predictors (for comparison)

relative to the EH in Panel A, for EW in Panel B, and for our dynamic forecast combination

strategy relative to the EH and the equal-weighted combination strategy in Panels C and

D, respectively. In our main results, we set γ = 10 as in Eriksen (2017), but show in the
30We always use the same variance estimated over the same period as the forecasts for all models so

that the optimal portfolio weights only differ because of differences in the excess bond return forecast.
31Trading costs are generally small in U.S. Treasury bond markets (Adrian, Fleming, and Vogt, 2017).
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Internet Appendix that our results are qualitatively similar for other reasonable values of

relative risk aversion, e.g. γ = 5. In order to evaluate the statistical significance of the

CER gains, we follow Eriksen (2017) and Gargano et al. (2019) and conduct a conventional

t-test on the mean of the time series of realized utility differences. Standard errors are

obtained using a Newey and West (1987) estimator.

[Insert Table 7 About Here]

Overall, we find little evidence that individual predictive models generate economic

value. The exception is LN that generally do remarkably well utility-wise, something

that starkly contrast the statistical results, yet is consistent with the literature that often

find disagreeing economical and statistical results. Overall, we find little evidence that

predictable deviations from the EH can be exploited to generate economic value on average

when considering individual methods. EW (Panel B), on the other hand, obtains positive

CER gains for all maturities, indicating that combination forecasts may improve the

economic value.

Panel C considers the CER gains for our dynamic forecast combination scheme for

PMI, U, and the unconditional benchmark NONE. Consistent with our statistical results,

we obtain positive CER gains in all instances and all are reliably different from zero.

The PMI-based dynamic forecast scheme delivers positive CER gains between 0.39 and

1.43, which are significantly different from zero at conventional significance levels for all

maturities. The U-based dynamic forecast scheme similarly delivers positive values that

are significant on conventional significance levels for all maturity bonds except the 2-year

bond. NONE always deliver less economic value than using PMI and U, yet all are positive,

close to that of the EW, and the 4- and 5-year bonds deliver statistically significant gains

on a five percent level. As such, the overall message is clearly supportive of the notion that

taking state-dependencies in bond return predictability into account leads to substantial

improvements in forecasting accuracy and that these improvement translates into better

investment performance for a mean-variance investor that trades in the U.S. Treasury

bond market.

Panel D confirms this conclusion by documenting positive CER gains for the dynamic
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forecast combination strategies relative to EW. Moreover, those increases are all statistically

significant at conventional significance levels except in one case. We stress that this strongly

supports the idea that dynamically trimming the set of models prior to combining can

substantially improve forecast performance and the resulting economic value. That is,

eliminating forecasting methods predicted to perform poorly and only maintaining methods

with best, yet indistinguishable conditional predictive ability delivers both statistical as

well as economic value.

[Insert Figure 7 About Here]

[Insert Figure 8 About Here]

Figures 7 and 8 plots the cumulative realized utilities for our dynamic forecast combi-

nation strategies relative to the EH and the EW, respectively. Overall, we note that utility

gains are enjoyed uniformly over the out-of-sample period relative to the EH. This is re-

markable as our approach is not designed to capture utility, but statistical predictability.32

This finding is also important in light of the puzzling contradiction between the statistical

and economic evidence typically documented in the literature (Thornton and Valente, 2012,

Sarno et al., 2016). That is, our conditional view of bond return predictability resolves

the puzzle in a simple manner, adding to the findings in Gargano et al. (2019).

6.2. State-dependent utility

Analogous to Section 4.4.2, Table 8 reports state-dependent CER gains for the individual

predictors relative to the EH.

[Insert Table 8 About Here]
32In Appendix IA.D.5 we report resulting improvements in the Sharpe ratio earned by an active investor

exploiting predictive information (summarized by the R2
OS) over the Sharpe ratio earned by a buy-and-hold

investor, following Gu, Kelly, and Xiu (2020). The results show that individual predictors almost always
lead to Sharpe ratio reductions and if any gain is achieved it is generally small. On the other hand, EW
provides notable Sharpe ratio improvements, yet our dynamic forecast combination is superior for all
bond maturities. For instance, the buy-and-hold Sharpe ratio of a 2-year bond, which is 0.90 in our
out-of-sample period, can be improved with 0.48 (0.59) using PMI (U) as state variable. Improvements
for NONE are almost identical to EW.
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We find that individual predictors generally deliver negative CER gains in low (high)

economic activity (uncertainty) states and positive CER gains in high (low) economic

activity (uncertainty) states. This is fully consistent with the results from the statistical

evaluation and suggests that PMI and U predict not only statistical performance, but

economic value as well. The only difference is LN, which generally delivers positive CER

gains across all states and maturities. That is, although it looks poor overall from a

statistical point of view, it is superior from an economic point of view. We also note that

those findings interestingly contrast those of Sarno et al. (2016) who document positive

(negative) economic value relative to the EH during times of high (low) macroeconomic

uncertainty. Their setting is, however, quite different as predictions are derived from affine

term structure models.

7. A model for time-varying predictability

Our empirical findings imply that (i) bond return predictability is state-dependent, (ii) the

EH should hold periodically in some states, but not in others, and (iii) the states should

be related to economic activity and/or uncertainty such that the EH holds in low (high)

economic activity (uncertainty) states. In this section, we show that these findings can be

explained within a non-linear term structure model that allows for state-dependencies in

the yield curve. Specifically, we consider a version of the non-linear model presented in

Feldhütter et al. (2018). Furthermore, we also draw upon the theoretical insights of Cujean

and Hasler (2017). We focus on a one-factor specification to illustrate the predictions of

the model in a simple setting. The notation used is similar to that of Feldhütter et al.

(2018). Appendix IA.E provides further details on the model and the estimation procedure

using a square-root unscented Kalman filter.

7.1. The model

The model is an arbitrage-free dynamic term structure model in which the short rate

and market prices of risk are non-linear functions of a Gaussian state variable X (t) with
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dynamics

dX(t) = κ (θ −X (t)) dt+ ΣdW (t), (22)

where κ, θ, and Σ are constants, and W (t) is a standard Brownian motion. The model

assumes a functional form for the stochastic discount factor (SDF)

M (t) = M0 (t)
(
1 + γe−βX(t)

)
= M0 (t) +M1 (t) , (23)

where M1(t) = M0(t)γe−βX(t), γ > 0 and β are constants, and M0 (t) is a strictly positive

stochastic process that follows the dynamics

dM0 (t) = −r0 (t)M0 (t) dt− Λ0 (t)M0(t)dW (t), (24)

where r0(t) is the short (risk-free) rate, and Λ0(t) the market price of risk. Note that

M0(t) and M1(t) can be viewed as the SDFs corresponding to two artificial economies,

referred to as economy 0 and economy 1. We will interpret these artificial economies as

corresponding to different states of the world. The short rate and market price of risk in

the two states are given by

ri (t) = ρi,0 + ρi,XX (t) , i = 1, 2 (25)

Λi(t) = λi,0 + λi,XX (t) , i = 1, 2 (26)

λ1,0 = λ0,0 + Σβ, (27)

λ1,X = λ0,X , (28)

ρ1,0 = ρ0,0 + βκθ − 1
2β

2Σ2, (29)

ρ1,X = ρ0,X − κβ − λ0,XΣβ, (30)

where all parameters are scalars due to one-dimensionality of X(t). The price of a

zero-coupon bond is then a linear combination of the prices in two artificial economies

P (t, T ) = s(t)P0 (t, T ) + (1− s(t))P1 (t, T ) , (31)
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where Pi (t, T ) denotes the zero-coupon bond price in the ith economy and the stochastic

weighting between the two states is determined by s(t) = 1
1+γe−βX(t) ∈ [0, 1]. If either γ = 0

or β = 0, then the model collapses to a Gaussian term structure model. Provided that the

short rate is affine in economy 0, the short rate is also affine in economy 1, implying that

Pi (t, T ) is exponential affine for both i = 0, 1. From Duffie and Kan (1996), we then have

that Pi (t, T ) = eAi(τ)+Bi(τ)X(t) for i = 0, 1. The expected log excess return of buying a

zero-coupon bond with k years to maturity and a holding period of τ in the ith economy is

Et
[
rx

(k)
t+τ

]
=Ai (k − τ) +Bi (k − τ)Et [X(t+ τ)]

− Ai (k)−Bi (k)X (t)− Ai (τ)−Bi (τ)X (t) (32)

where Ai (T − t) and Bi (T − t) are the solutions to some ordinary differential equations.

If the EH holds in economy i, then (32) must be a constant, and, hence, independent of

X(t). This restriction is satisfied if Bi (t) = 0 for all t and implies, in the ith economy,

that the short rate ri (t) = ρi,0 + ρi,XX(t) must be independent of X(t) and equal to a

constant, i.e. ρi,X = 0.

7.2. Estimating the model

In estimating the model, we follow Sarno et al. (2016) and base our estimates on both

zero-coupon yields and excess holding period returns. More specifically, we include zero-

coupon yields with k = {12, 24, 36, 48, 60} months to maturity as well as monthly excess

returns for bonds with a maturity of k = {24, 36, 48, 60} months. The parameters are

estimated over the out-of-sample period (i.e. from January 1990 to December 2018) and

we use a square-root unscented Kalman filter. To ensure identification of the parameters

when s(t) is close to zero or one, γ = 0, or β = 0, we impose the normalization proposed

in Dai and Singleton (2000), as do Feldhütter et al. (2018).

7.3. Results

The implications described above translate into the following three testable hypotheses:
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H(1): State-dependency requires that both γ and β must be different from zero and

that γ is not too large,

H(2): The EH holding periodically requires that either ρ0,X or ρ1,X is equal to zero,

H(3): The state weight s(t) must be related to U and/or PMI and the EH should

hold in low (high) PMI (U) states.

[Insert Table 9 About Here]

Panel A of Table 9 presents parameter estimates and p-values from an asymptotic t-test for

γ, β, and ρ0,X . First, both γ and β are, consistent with H(1), statistically significant. Hence,

nonlinearity is important for explaining yields and excess returns and state-dependency

is present.33 Second, ρ0,X is economically and statistically insignificant and numerically

close to zero, implying that the model identifies economy 0 to correspond to a state of

the world in which the EH holds. Moreover, since the estimated β 6= 0, the short rate

in economy 1 is strongly related to X(t) and we conclude that the EH does not hold in

economy 1. That is, the two economies are distinctly different and consistent with the

hypothesis H(2) that the EH holds periodically.

[Insert Figure 9 About Here]

The final testable hypothesis from the model is whether the weighting between states

s(t), i.e. between economy 0 (EH) and economy 1, is related to economic activity and

uncertainty (our conditioning variables). Figure 9 plots s(t) against NBER recession dates

and 20% and 80% percentiles of PMI and U, respectively. To interpret the figure, note

that increases (decreases) in s(t) correspond to larger weights on economy 0 (economy

1). We highlight three observations: (i) s(t) increases during recessions, (ii) s(t) increases

(decreases) during periods with low (high) values of PMI, and (iii) s(t) increases (decreases)

during periods with high (low) values of U. This is fully consistent with our empirical

results and H(3). To further quantify this relation, Panel B of Table 9 reports correlations
33In unreported results, we perform two likelihood-ratio tests to test for γ = 0 and γ = 100. These

two hypotheses correspond to s(t) being equal to zero or one for all periods, respectively. We reject both
hypotheses and conclude that the two tests confirm the importance of state-dependencies.
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between changes in s(t) and our conditioning variables with p-values for the null of zero

correlation. The negative (positive) sign with PMI (U) and magnitude of the correlation

coefficients are in line with the figures and our results and both are significantly different

from zero at a 5% significance level.

These findings suggests that zero-coupon bond prices (and excess returns) are mainly

set in a way consistent with the EH in states of low (high) economic activity (uncertainty),

yet vary with X(t) in the others. This implies state-dependent predictability of bond

excess returns and demonstrates that our empirical findings regarding state-dependencies

in bond return predictability are consistent with the predictions of a non-linear term

structure model that allows for state-dependencies in yields.

When combined with the theoretical insights of Cujean and Hasler (2017), the model

provides a natural explanation for the observed state-dependency of predictability. Our

applied model can be viewed as a reduced-form consumption-based asset pricing model in

which two agents with different beliefs co-exist. They agree to disagree about the stance of

the economy (consumption growth rate), and the disagreement is captured by the stochastic

state weight s(t). If s(t) = 0.5 the agents have no differences in beliefs. Disagreement

occurs whenever s(t) deviates from 0.5 and increases in the deviation. Considering the

estimated s(t) as depicted in Figure 9 and the findings in Table 9, disagreement is generally

increasing in bad states (low (high) economic activity (uncertainty)) and remains elevated

or increases during normal times. Importantly, at the onset of good times (high (low)

economic activity (uncertainty)) disagreement is at its highest and then starts tapering

off. Cujean and Hasler (2017) theorize in a two-agent economy that predictability is

generated in exactly those periods where disagreement is at its highest and subsequently

decays, with predictability persisting during a short period following the spikes. This

aligns perfectly with our high (low) economic activity (uncertainty) states and how they

relate to the estimated s(t) in our model, thus providing a coherent explanation of our

empirical findings of state-dependent predictability.
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8. Concluding remarks

We study predictable state-dependencies in bond return predictability and provide empirical

evidence that bond return predictability is state-dependent and closely related to economic

activity and macroeconomic uncertainty. We show that bond risk premia are predictable

in times of high (low) economic activity (uncertainty) states identified using the the

Purchasing Managers’ Index (PMI) and the uncertainty index proposed in Jurado et al.

(2015), whereas the EH implication of constant risk premia (no-predictability) provides

a reasonable anchor in low (high) economic activity (uncertainty) states. A dynamic

forecast combination strategy, that averages across forecasting methods predicted to do

well, delivers substantially more informative forecasts than both its individual constituents

and a simple, static equal-weighted forecast combination scheme. The conclusion hold both

across standard statistical evaluation metrics and when considering the economic value to

a mean-variance investor. We provide evidence that the improved forecast performance

originates from the state variables ability to correctly predict periods in which individual

predictors are likely to perform well. These forecasts are strongly countercyclical in

contrast to most individual predictors’ forecasts and the static (equal-weighted) and

dynamic unconditional benchmarks. Last, we show that these findings are implied by

a non-linear term structure model that allows for state-dependencies in yields. The

model allows for an assessment of time-varying differences in beliefs among agents, which

through the theoretical explanation of Cujean and Hasler (2017) explains the generation

of state-dependent predictability documented in this paper.

We end by emphasizing that our econometric methodology of conditional predictive

ability is not confined to studies of the Treasury bond market, but may find many and

diverse applications across the fields of economics and finance. For example, it would

be natural to study the conditional predictive ability of the Goyal and Welch (2008) set

of predictors in a multivariate setting as a complement to the large literature on their

unconditional performance and relation to the business cycle (Henkel et al., 2011, Dangl

and Halling, 2012). Similarly, the approach is likely to be useful in evaluating inflation
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predictability and identifying periods in which variables such as unemployment rates

provides useful information. Finally, we also envision its use in comparing professional

forecasters and, in particular, to determine if some forecasters are better than others

conditional on being in a certain state. We leave these considerations for future research.
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Table 1: Descriptive statistics
This table presents descriptive statistics for monthly excess bond returns. Panel A reports
mean, standard deviation, skewness, kurtosis, Sharpe ratios, and first-order autocorrelation
(AC(1)) of bond excess returns for two- to five-year bond maturities. Bond returns are in
excess of the implied yield on a one-month Treasury bill. Gross returns do not subtract
the one-month implied Treasury bill yield. Monthly bond excess returns are constructed
using end-of-month Treasury yield data from Gürkaynak et al. (2007). Panel B reports
contemporaneous correlations between the excess bond return series. The sample period
is January 1962 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Descriptive statistics

Mean 1.29 1.60 1.85 2.06
Mean (Gross) 5.73 6.04 6.29 6.50
Std. dev. 2.80 3.92 4.95 5.93
Skewness 0.57 0.25 0.08 0.03
Kurtosis 16.68 11.76 8.58 7.05
Sharpe ratio. 0.46 0.41 0.37 0.35
AR(1) 0.17 0.15 0.13 0.12

Panel B: Correlations

2-year bond 1.00
3-year bond 0.99 1.00
4-year bond 0.96 0.99 1.00
5-year bond 0.93 0.97 0.99 1.00
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Table 2: Out-of-sample results
This table reports out-of-sample R2

OS values for various linear predictive models for bond
excess return. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the out-of-
sample R2 from Campbell and Thompson (2008) and the associated Diebold and Mariano
(1995) p-value in parenthesis for the null of no predictability implied by the EH (Panels A,
B, and C) and against the static (equal-weighted) forecast combination strategy (Panel
D). PMI denotes the Purchasing Managers Index published by the Institute for Supply
Management and U is the macroeconomic uncertainty index from Jurado et al. (2015).
The out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -2.73 -0.53 0.67 1.38
(0.70) (0.56) (0.40) (0.27)

FB -0.02 1.31 1.72 1.78
(0.50) (0.29) (0.22) (0.23)

PC -9.86 -7.64 -5.91 -4.83
(0.92) (0.93) (0.92) (0.90)

CP -6.63 -5.29 -4.27 -3.43
(0.96) (0.96) (0.94) (0.90)

LN -7.61 -0.48 1.93 2.43
(0.73) (0.52) (0.42) (0.39)

Panel B: Static forecast combination against EH

EW 6.08 5.28 4.89 4.58
(0.03) (0.02) (0.02) (0.02)

Panel C: Dynamic forecast combination against EH

PMI 7.98 5.64 5.11 6.16
(0.01) (0.02) (0.02) (0.01)

U 9.86 6.77 6.09 4.98
(0.01) (0.00) (0.00) (0.01)

NONE 6.66 5.31 5.25 4.81
(0.02) (0.02) (0.01) (0.02)

Panel D: Dynamic forecast combination against EW

PMI 2.02 0.39 0.23 1.66
(0.01) (0.24) (0.33) (0.06)

U 4.02 1.58 1.26 0.42
(0.02) (0.00) (0.00) (0.22)

NONE 0.62 0.04 0.38 0.24
(0.21) (0.47) (0.16) (0.32)
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Table 3: Testing for equal (un)conditional predictive ability
This table reports full sample multivariate test statistics for equal (un)conditional predictive
ability using three different conditioning variables. PMI refers to the case of ht = (1,PMIt)′
that is designed to capture business cycle fluctuations. U refers to the case of ht = (1,Ut)′
that is chosen to study the effect of macroeconomic uncertainty. NONE refers to an
unconditional version of the tests in which ht = 1 for all t. PMI is the Purchasing
Managers’ Index and UNC is the macroeconomic uncertainty index of Jurado et al. (2015).
p-values are presented in parenthesis. The full sample test period runs from January 1990
to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

PMI 31.36 34.65 29.76 26.73
(0.00) (0.00) (0.00) (0.00)

U 27.03 27.95 26.16 26.22
(0.00) (0.00) (0.00) (0.00)

NONE 8.07 5.68 5.10 5.77
(0.15) (0.34) (0.40) (0.33)
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Table 4: Inclusion frequencies across states
This table reports the inclusion frequencies of the predictor models in three different states
of the world identified using the 20% and 80% quantiles of the Purchasing Managers’
Index (PMI). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. The out-of-sample evaluation periods runs from January 2000 to
December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS 1.00 1.00 1.00 1.00 0.25 0.64 0.64 0.57
FB 0.94 1.00 0.88 0.76 0.25 0.64 0.64 0.57
PC 0.45 0.36 0.42 0.42 1.00 1.00 0.93 1.00
CP 0.88 0.91 1.00 1.00 0.25 0.57 0.54 0.46
LN 0.73 0.67 0.70 0.64 0.96 1.00 1.00 1.00
EH 0.97 1.00 1.00 1.00 0.18 0.50 0.57 0.46

Panel B: Normal activity Panel E: Normal uncertainty

CS 0.86 0.90 0.94 0.98 0.69 0.88 0.86 0.84
FB 0.90 0.98 0.98 0.95 0.79 0.93 0.88 0.76
PC 0.51 0.41 0.47 0.50 0.43 0.53 0.54 0.58
CP 0.65 0.68 0.68 0.62 0.62 0.71 0.63 0.51
LN 0.71 0.79 0.87 0.86 0.83 0.85 0.90 0.92
EH 0.70 0.84 0.85 0.82 0.63 0.83 0.85 0.75

Panel C: High activity Panel F: High uncertainty

CS 0.58 0.75 0.85 0.93 0.95 1.00 1.00 0.98
FB 0.65 0.80 0.88 0.83 0.95 1.00 0.98 0.95
PC 0.83 0.74 0.78 0.88 0.49 0.51 0.44 0.28
CP 0.53 0.53 0.45 0.08 0.95 1.00 0.98 0.98
LN 1.00 1.00 1.00 0.95 0.72 0.98 0.95 1.00
EH 0.33 0.45 0.45 0.48 1.00 1.00 1.00 0.98
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Table 5: Out-of-sample R2 across states
This table reports out-of-sample R2

OS values for various linear predictive models for bond
excess return conditional on states identified by the Purchasing Manager’s Index (PMI)
and the the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We
consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. For each model, we report the out-of-sample R2 from
Campbell and Thompson (2008) relative to the expectations hypothesis. High (low)
states are identified using the 80% (20%) quantiles of the time series of PMI and U. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -19.73 -10.56 -6.41 -3.85 14.33 9.87 7.79 6.40
FB -13.17 -6.09 -3.43 -2.22 15.19 8.57 5.00 3.03
PC -37.08 -26.84 -20.98 -17.02 24.53 16.39 12.09 10.05
CP -13.30 -7.27 -3.54 -0.83 -83.09 -42.16 -23.01 -12.28
LN -23.94 -15.44 -12.03 -11.24 14.05 10.04 7.52 5.73

Panel B: Normal activity Panel E: Normal uncertainty

CS 2.16 1.68 1.95 2.20 -2.64 -0.51 0.61 1.28
FB 4.26 3.25 2.90 2.62 1.09 1.78 2.00 2.00
PC -5.04 -5.29 -4.19 -3.26 -4.86 -4.46 -3.44 -2.74
CP -6.09 -6.42 -6.06 -5.61 -1.03 -2.14 -2.56 -2.90
LN -2.58 3.8 5.78 6.25 -2.15 4.31 6.44 7.16

Panel C: High activity Panel F: High uncertainty

CS 6.86 5.32 5.38 5.78 -4.29 -2.03 -0.67 0.30
FB 4.44 3.79 3.83 4.02 -2.82 -0.55 0.50 0.98
PC 20.26 12.96 9.43 7.36 -19.49 -16.08 -13.96 -12.51
CP 9.32 7.30 6.43 6.00 -7.19 -4.90 -3.26 -1.81
LN -8.41 -2.57 0.26 2.18 -18.80 -11.59 -8.99 -8.73
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Table 6: Correlations between forecasts and economic activity
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A), the static (equal-weighted) forecast combination
strategy (Panel B), and the dynamic forecast combination strategy (Panel C) and economic
activity as measured by the Purchasing Managers’ Index (PMI). We report p-values for
the null of no correlation in parenthesis. The out-of-sample evaluation period runs from
January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS 0.36 0.31 0.27 0.23
(0.00) (0.00) (0.00) (0.00)

FB 0.27 0.19 0.14 0.09
(0.00) (0.00) (0.01) (0.08)

PC 0.33 0.36 0.36 0.35
(0.00) (0.00) (0.00) (0.00)

CP 0.15 0.16 0.16 0.16
(0.01) (0.00) (0.00) (0.00)

LN -0.38 -0.38 -0.38 -0.38
(0.00) (0.00) (0.00) (0.00)

EH 0.07 0.14 0.16 0.17
(0.17) (0.01) (0.00) (0.00)

Panel B: Static forecast combination

EW 0.01 0.01 0.00 -0.01
(0.88) (0.87) (0.98) (0.90)

Panel C: Dynamic forecast combination

PMI -0.39 -0.40 -0.39 -0.35
(0.00) (0.00) (0.00) (0.00)

U -0.40 -0.36 -0.37 -0.39
(0.00) (0.00) (0.00) (0.00)

NONE -0.29 -0.26 -0.27 -0.28
(0.00) (0.00) (0.00) (0.00)
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Table 7: Economic Value
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model,
we report the CER gains relative to the expectations hypothesis (Panels A, B and C)
and a static (equal-weighted) forecast combination strategy (Panel D). PMI denotes the
Purchasing Managers’ Index published by the Institute for Supply Management and U is
the macroeconomic uncertainty index from Jurado et al. (2015). CER gains are based on
an investor with mean-variance preferences and a relative risk aversion of γ = 10. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.64 -0.35 0.10 0.45
(0.90) (0.75) (0.43) (0.20)

FB -0.43 -0.12 0.32 0.58
(0.84) (0.62) (0.24) (0.17)

PC -1.65 -1.78 -1.65 -1.44
(0.98) (0.96) (0.93) (0.89)

CP -0.66 -0.83 -0.76 -0.48
(0.96) (0.95) (0.87) (0.73)

LN 0.85 1.75 2.32 2.74
(0.00) (0.00) (0.00) (0.00)

Panel B: Static forecast combination against EH

EW 0.10 0.34 0.86 1.07
(0.36) (0.16) (0.03) (0.02)

Panel C: Dynamic forecast combination against EH

PMI 0.39 0.59 1.05 1.43
(0.08) (0.06) (0.02) (0.00)

U 0.26 0.60 1.17 1.18
(0.16) (0.05) (0.01) (0.02)

NONE 0.17 0.33 0.92 1.16
(0.26) (0.19) (0.03) (0.02)

Panel D: Dynamic forecast combination against EW

PMI 0.28 0.25 0.19 0.37
(0.01) (0.04) (0.09) (0.03)

U 0.16 0.25 0.31 0.12
(0.06) (0.02) (0.01) (0.27)

NONE 0.06 -0.02 0.06 0.09
(0.13) (0.56) (0.24) (0.26)
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Table 8: CER gains across states
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return conditional on states identified by the Purchasing Manager’s
Index (PMI) and the the macroeconomic uncertainty index (U) proposed in Jurado
et al. (2015). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gain
relative to the expectations hypothesis. High (low) states are identified using the 80%
(20%) quantiles of the time series of PMI and U. CER gains are based on an investor
with mean-variance preferences and a relative risk aversion of γ = 10. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -3.22 -2.41 -2.04 -2.05 0.02 0.08 1.29 1.68
FB -2.44 -1.82 -1.83 -2.70 0.01 0.16 0.98 0.86
PC -7.17 -7.06 -6.92 -6.77 0.02 0.94 2.28 2.76
CP -2.42 -1.85 -0.91 -0.05 0.08 0.78 2.13 2.70
LN 1.22 2.47 2.05 0.25 0.02 0.41 1.30 1.55

Panel B: Normal activity Panel E: Normal uncertainty

CS -0.19 0.01 0.32 0.48 -0.36 -0.21 0.03 0.24
FB -0.10 0.04 0.13 -0.01 -0.32 -0.21 0.01 0.07
PC -1.00 -1.20 -0.96 -0.72 -0.66 -0.72 -0.58 -0.49
CP -0.35 -0.78 -1.03 -1.02 -0.58 -0.80 -0.68 -0.69
LN 0.82 1.32 1.50 1.78 0.90 1.47 1.72 1.94

Panel C: High activity Panel F: High uncertainty

CS 0.51 0.57 1.43 1.82 -1.41 -0.57 -0.06 -0.18
FB 0.25 0.23 1.17 1.38 -0.82 -0.38 -0.55 -1.69
PC 1.75 2.44 2.84 2.56 -5.19 -5.62 -5.67 -5.60
CP 0.34 0.80 1.61 1.86 -0.74 -1.14 -1.98 -1.42
LN 0.59 1.34 1.99 1.88 1.16 2.30 1.71 0.29
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Table 9: Non-linear term structure model
This table reports parameter estimates and test for relevant restrictions for the non-linear
one-factor model of Feldhütter et al. (2018). Panel A reports relevant parameters with
associated p-values from a t-test with asymptotic standard errors. Panel B provides
correlations between the stochastic weighting s(t) and our conditioning variables (PMI
and U) with corresponding p-values for the null of no correlation in parentheses. All
estimates are based on yield and excess return data using our out-of-sample observations
(i.e. January 1990 to December 2018). The bond maturities are ranging between one and
five years for the yields while we consider the excess return of maturities between two and
five years with a holding period of one month. The model is estimated using a square-root
unscented Kalman filter.

Panel A: Parameters Panel B: Correlations

ρ0,X 1.04e−06 PMI Ut

(1.00) ∆s(t) -0.16 0.12
γ 1.14 (0.00) (0.03)

(0.00)
β -0.93

(0.00)
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Figure 1: Bond excess returns
This figure plots times series of monthly bond excess returns (in percentage) for Treasury
bonds with maturities ranging from two to five years. Shaded areas represent NBER
recession dates. Monthly bond returns are in excess of the implied yield on a one-month
Treasury bill rate. Yield data are end-of-month and have been obtained from Gürkaynak
et al. (2007) over the period January 1962 to December 2018.
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Figure 2: Conditioning variables
This figure shows times series of the Purchasing managers’ index (PMI) published by the
Institute for Supply Management and the macroeconomic uncertainty (U) index from
Jurado et al. (2015). Green (yellow) shaded ares represent periods of (high) low activity
and uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. The sample period covers January 1962 to December 2018.
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Figure 3: Relative forecasting performance
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the ith predictor model over the out-of-sample
evaluation period. We consider five different predictors: yield spreads (Campbell and
Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields
(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor,
and the Ludvigson and Ng (2009) macroeconomic factor. We also consider a simple equal-
weighted combination of the individual forecasts. A positive (negative) slope indicates that
the predictive model delivers more (less) accurate forecasts than the EH benchmark. Green
(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively,
where activity is measured using the Purchasing Managers’ Index (PMI) (left column)
and uncertainty (right column) is the index developed by Jurado et al. (2015). High (low)
episodes are identified using the 80% (20%) quantiles of their time series. White areas are
normal times. The out-of-sample evaluation period runs from January 2000 to December
2018.
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Figure 4: Dynamic forecast combinations
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the dynamic forecast combination forecast for
each of the tree conditioning cases. We consider the Purchasing Managers’ Index (PMI)
and the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 5: Dynamic versus static forecast combination
This figure plots the recursively updated cumulative difference in the squared prediction
errors from a static equal-weighted forecast combination benchmark and the dynamic
forecast combination forecast for each of the tree conditioning cases. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.

2002 2004 2006 2008 2010 2012 2014 2016 2018

-2

0

2

4

6

8

2002 2004 2006 2008 2010 2012 2014 2016 2018

-2

0

2

4

6

8

2002 2004 2006 2008 2010 2012 2014 2016 2018

-2

0

2

4

6

8

65



Figure 6: Bond risk premia forecasts for dynamic combination strategy
This figure illustrates the time series behavior of bond risk premia forecasts originating
from our dynamic forecast combination strategy. Shaded areas represent NBER recession
dates. PMI is the Purchasing Managers’ Index published by the Institute for Supply
Management and U is the macroeconomic uncertainty index proposed in Jurado et al.
(2015). The out-of-sample forecasting periods runs from January 2000 to December 2018.
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Figure 7: Dynamic forecast combinations: CER gains
This figure plots the recursively updated cumulative difference in realized utility from
the dynamic forecast combination forecast for each of the tree conditioning cases and
the EH benchmark model. We consider the Purchasing Managers’ Index (PMI) and
the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 8: Dynamic versus static forecast combination: CER gains
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the dynamic forecast combination forecast for each of the tree conditioning
cases and a static equal-weighted forecast combination benchmark. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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Figure 9: Stochastic weights on economy 0
The figure illustrates the time series of the stochastic weights s(t) on economy 0 in the
non-linear model term structure model. s(t) = 1 corresponds to an economy in which the
expectation hypothesis (EH) holds. Grey shaded areas represent NBER recessions. Green
(yellow) shaded areas represent periods of high (low) activity and uncertainty, respectively,
where high (low) episodes are identified using the 80% (20%) quantiles of their time series.
White areas are normal times. The model is estimated using data from January 1990 to
December 2018.
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IA.A. Theoretical results, assumptions, and proofs

This section explains the adopted Giacomini and White (2006) assumptions used in

Theorem 1 along with its proof. The outline of several of the proofs follows Giacomini and

White (2006), making the necessary adjustments to account for the multivariate nature

of our tests. We also provide theoretical results with associated proofs for the case of

multi-step ahead forecasting, τ > 1, and the unconditional case, Gt = {∅,Ω}.

IA.A.1. One-step ahead forecasting and Giacomini and White (2006) assumptions

In the one-step ahead case, τ = 1, we impose the following assumptions that are adopted

from Giacomini and White (2006).

Assumption 1. {ht} and {wt} are φ-mixing with φ(t) = O
(
t−r/(2r−1)−ι

)
, r ≥ 1, or

α-mixing with α(t) = O
(
t−

r
r−1−ι

)
, r > 1, for some ι > 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure and het-

erogeneity of data. We do not impose the stricter and common (covariance) stationarity

assumption as used in for instance Diebold and Mariano (1995) and Mariano and Preve

(2012). Specifically, data may exhibit arbitrary structural changes, which is a common

feature found in many empirical studies within macroeconomic prediction (see e.g. Stock

and Watson (2003) and Schrimpf and Wang (2010)), stock return prediction (see e.g. Fama

and French (1997) and Paye and Timmermann (2006)), and exchange rate prediction (see

e.g. Giacomini and Rossi (2010)), to name a few, and is especially relevant in our context

of possible instabilities.

Assumption 2. E[|dt+1,i|2(r+δ)] <∞ for some δ > 0, i = 1, . . . , qp, and for all t, where

subscript i indicate the ith element of dt+1.

Assumption 3. ΣT ≡ T−1∑T
t=1 E[dt+1d

′
t+1] is uniformly positive definite.

Assumptions 2–3 are mainly technical assumptions ensuring (uniformly) bounded moments

of data and positive definiteness of the asymptotic variance. Both assumptions are

commonly found in the forecast evaluation literature.
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IA.A.1.1. Proof of Theorem 1 The proof of part A. and B. adopts the necessary steps

in Giacomini and White (2006). We start by proving part A. Let dt+1 = ht ⊗∆L+1 and

write

dt+1d
′
t+1 = g (ht,wt+1, . . . ,wt−m) (IA.A.1)

for some measurable function g. Since m < ∞, and {ht} and {wt} are mixing of the

same size according to Assumption 1, it follows from Theorem 3.49 in White (2001) that

{dt+1d
′
t+1} is mixing of the same size as {ht} and {wt}.

By Assumption 2, there exists a C ∈ R+ and δ > 0 such that E[|dm,t+1,i|2(r+δ)] < C <∞

for i = 1, . . . , qp and for all t, where subscript i indicates the ith element in dt+1. Hence,

by the Cauchy-Schwartz inequality, one obtains

E[|dt+1,idt+1,j|r+δ] ≤ E[|d2
t+1,i|r+δ]1/2E[|d2

t+1,j|r+δ]1/2 < C (IA.A.2)

for i, j = 1, . . . , qp and for all t. By Corollary 3.48 in White (2001), it then follows

that Σ̂T −ΣT
P−→ 0. Furthermore, by Assumption 2, it follows that ΣT is finite and, by

Assumption 3, that it is uniformly positive definite.

Next, let λ ∈ Rqp with λ′λ = 1 and consider

λ′Σ−1/2
T

√
Tdt+1 = T−1/2

T−1∑
t=1
λ′Σ−1/2

T dt+1. (IA.A.3)

Let λ̃i denote the ith element of the product λ′Σ−1/2
T , such that λ′Σ−1/2

T dt+1 = ∑qp
i=1 λ̃idt+1,i.

Hence, under the null hypothesis

E[λ′Σ−1/2
T dt+1|Gt] = E

[ qp∑
i=1
λ̃idt+1,i|Gt

]
=

qp∑
i=1
λ̃iE[dt+1,i|Gt] = 0, (IA.A.4)

by measurability of λ̃i, such that the sequence {λ′Σ−1/2
T dt+1,Gt} is an MDS. The asymp-
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totic variance is

σ2
d = Var[λ′Σ−1/2

T

√
Td]

= λ′Σ−1/2
T Var[

√
Td]Σ−1/2

T λ

= λ′Σ−1/2
T ΣTΣ−1/2

T λ

= 1 (IA.A.5)

for sufficiently large T . Furthermore, since Σ̂T −ΣT
P−→ 0 it follows by the Continuous

Mapping Theorem that

1
T

T∑
t=1
λ′Σ−1/2

T d′t+1dt+1Σ−1/2
T λ− σ2

d

= λ′Σ−1/2
T Σ̂TΣ−1/2

T λ− λ′Σ−1/2
T ΣTΣ−1/2

T λ
P−→ 0. (IA.A.6)

Lastly, we need to check that λ′Σ−1/2
T dt+1 has absolute 2 + δ moment. By Minkowski’s

inequality and Assumption 2 we obtain

E[|λ′Σ−1/2
T dt+1|2+δ] = E

[∣∣∣∣ qp∑
i=1
λ̃idt+1,i

∣∣∣∣2+δ
]

≤
( qp∑
i=1
λ̃iE

[
|dt+1,i|2+δ

]1/(2+δ)
)2+δ

<∞. (IA.A.7)

Consequently, we can apply the CLT for MDS and deduce that λ′Σ−1/2
T

√
Td

d−→ N(0, 1).

By the Cramér-Wold device it then follows that

Σ−1/2
√
Td

d−→ N(0, Iqp). (IA.A.8)

Since Σ̂T −ΣT
P−→ 0, we deduce that

√
T
(
Σ̂−1/2
T d̄

)′√
TΣ−1/2

T d = Td
′Σ̂−1

T d = Sh
d−→ χ2(qp), (IA.A.9)

as T →∞.
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We now prove part B. By the same arguments as in the proof for part A., it follows that the

sequence {dt+1} is mixing of the same size as {wt} and {ht}. Furthermore, Assumption 2

ensures that each element of dt+1 is bounded uniformly in t such that

d− E[d] P−→ 0 (IA.A.10)

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists η > 0

such that E[d′m]E[dm] > 2η for T sufficiently large. It follows that

P[d′d > η] ≥ P[d′d− E[d′]E[d] > −η]

≥ P[|d′md− E[d′]E[d]| < η]→ 1, (IA.A.11)

where the convergence to unity is due to (IA.A.10). By identical arguments as the proof

of part A., d′t+1dt+1 is mixing with the same size as {wt} and each element is uniformly

bounded in t. Corollary 3.48 in White (2001) can then be applied, and it follows that Σ̂T

is a consistent estimator of ΣT . By Assumption 3, ΣT is uniformly positive definite. Let

c ∈ R+. It then follows from Theorem 8.13 in White (1994) that

P[Sh > c]→ 1, as T →∞. (IA.A.12)

Last, we prove part C. Let L∗t+1 be an arbitrary permutation of the forecasting losses,

i.e. L∗t+1 = PLt+1, where P is a (p + 1) × (p + 1) permutation matrix and Lt+1 =

(L1
t+1, . . . , L

p+1
t+1 )′. Define the p× (p+ 1) matrix D by

D =



1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1


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such that ∆L∗t+1 = DL∗t+1 = DPLt+1. In total, the number of permutations of the

forecast losses at each point of time t is (p+1)!. Mariano and Preve (2012) show that there

always exists a nonsingular matrix B of dimension p × p such that B∆Lt+1 = ∆L∗t+1.

Consequently, define the qp × qp matrix A = (Iq ⊗B), where Iq is the q × q identity

matrix. By standard properties of the Kronecker product A is nonsingular, and we have

that

d∗t+1 = ht ⊗∆L∗t+1 = (Iqht)⊗ (B∆Lt+1) = (Iq ⊗B)(ht ⊗∆Lt+1) = Adt+1.

(IA.A.13)

Since the null hypothesis implies that the asymptotic variance can be estimated consistently

by the sample variance, it follows that

Σ̂∗T ≡
1
T

T∑
t=1
d∗t+1d

∗′
t+1 = 1

T

T∑
t=1
Adt+1d

′
t+1A

′ = AΣ̂TA
′.

Due to the nonsingularity of A and Σ̂T , it follows that

d
∗′
t+1(Σ̂∗T )−1d

∗
t+1 = d′t+1A

′(AΣ̂TA
′)−1Adt+1

= d′t+1Σ̂
−1
T dt+1,

which shows that the test is invariant to a permutation of the ordering of the forecast

losses.

IA.A.2. Unconditional and multi-step predictive ability tests

In both the unconditional, Gt = {∅,Ω}, and multistep conditional case the loss series are

no longer martingale difference sequences under the null hypothesis. Thus, the sequence

{ht ⊗ ∆Lt+τ} may be serially autocorrelated.34 In the conditional setting, the null

hypothesis imposes a particular structure on the serial correlation, namely that it can

be at most order τ − 1. However, in the unconditional case no such restriction exists.

Consequently, we can no longer rely on the sample variance under the null for estimating
34Note that that in the unconditional case ht = 1 for all t.
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the covariance matrix as was the case in the one-step conditional setting considered in the

previous section. Instead, we consider a HAC-type estimator (see, e.g., Newey and West

(1987) and Andrews (1991)) with a bandwidth choice guided by the implications of the

null hypothesis. The estimator is given by

Σ̃T = 1
T

[ T∑
t=1
dt+τd

′
t+τ

+
bT∑
j=1

κ(j, bT )
T∑

t=1+j

(
dt+τd

′
t+τ−j + dt+τ−jd′t+τ

) ]
, (IA.A.14)

where {bT} is an integer-valued truncation point sequence satisfying bT →∞ as T →∞

and bT = o(T ) (Newey and West, 1987) in the unconditional case, and bT = τ − 1 in the

conditional case. Furthermore, κ(·, ·) is a real-valued kernel weight function satisfying

the condition that κ(j, bT ) → 1 as T → ∞ for each j = 1, . . . , bT (Andrews, 1991), and

κ(j, bT ) = 0 for j > bT . We refer to Clark and McCracken (2013) for a recent review of

data driven bandwidth selection methods.

Along the lines of the construction of the conditional test with τ = 1, we construct the

following Wald statistic which can be used in testing either unconditional or multi-step

conditional equal predictive ability. The test statistic is given by

Sh,τ = TdΣ̃−1
T d, (IA.A.15)

where d = T−1∑T
t=1 dt+τ . Before turning the properties of the proposed test statistic, we

will need a slight modification of the assumptions from the previous section on one-step

ahead forecasting.

Assumption 1∗. {ht} and {wt} are φ−mixing with φ(t) = O
(
t−r/(2r−2)−ι

)
, r ≥ 2, or

α−mixing with α(t) = O
(
t−

r
r−2−ι

)
, r > 2, for some ι > 0.

Assumption 2∗. E[|dt+τ,i|r+δ] < ∞ for some δ > 0, i = 1, . . . , qp, and for all t, where

subscript i indicates the ith element of dt+1.

Assumption 3∗. ΣT ≡ T−1∑T
t=1 E[dt+τd′t+τ ] + T−1∑bT

j=1
∑T
t=1+j

(
E[dt+τd′t+τ−j]

+ E[dt+τ−jd′t+τ ]
)
is uniformly positive definite, where bT = τ − 1 in the conditional case
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and bT = T − 1 in the unconditional case.

Analogues to Theorem 1, Sh,τ is asymptotically chi-squared distributed with qp degrees

of freedom under the null hypothesis, has power under the alternative hypothesis, and is

permutation invariant. We summarize these results in Theorem 2 below.

Theorem 2 (Multistep multivariate predictive ability tests). Suppose that Assump-

tions 1*-3* hold.

A. Asymptotic distribution under the null. Suppose that either Gt = {∅,Ω} and

τ ≥ 1 or Ft ⊆ Gt and τ > 1. For any test function sequence {ht}, m <∞, and under H0

in (4),

Sh,τ
d−→ χ2(qp), as T →∞. (IA.A.16)

B. Consistency under the alternative. For any c ∈ R+ and under HA,h in (8),

P[Sh,τ > c]→ 1, as T →∞. (IA.A.17)

C. Permutation invariance. Let L∗t+τ be an arbitrary permutation of the forecast

losses, and define ∆L∗t+τ = DL∗t+τ , d
∗ = T−1∑T

t=1 d
∗
t+τ with d∗t+τ = ht ⊗∆L∗t+τ and Σ̃∗T

be the associated covariance estimator defined in (IA.A.14). Then,

S∗h,τ ≡ Td
∗′
m(Σ̃∗T )−1d

∗ = Sh,τ (IA.A.18)

for all T .

Consequently, a multivariate test for equal conditional multistep predictive ability or (mul-

tistep) unconditional predictive ability can be conducted by rejecting the null hypothesis

whenever Sh,τ > z1−α,qp, noting that the unconditional test has q = 1. The permutation

invariance result in Theorem 2 for the unconditional case is similar to Proposition 2 in

Mariano and Preve (2012), but holds under the milder Assumptions 1*–3*, and hence
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also applies in a setting with non-stationary data, inclusion of nested models, and explicit

account of estimation uncertainty.

IA.A.2.1. Proof of Theorem 2 We start by proving part A. We proceed by a similar

procedure as in the proof of Theorem 1, however with modifications due to the dependency

in dt+τ under the null hypothesis. First, by Assumptions 2* and 3*, ΣT is finite and

uniformly positive definite. Let λ ∈ Rqp with λ′λ = 1 and consider λ′Σ−1/2
T

√
Td =

T−1/2∑T
t=1 λ

′Σ−1/2
T dt+τ . Furthermore, identical arguments as in Theorem 1 imply that

{λ′Σ−1/2
T dt+τ} being mixing of the same size as {ht} and {wt}. Moreover, the asymptotic

variance satisfies σ2
d = Var[λ′Σ−1/2

T

√
Td] = λ′Σ−1/2

T ΣTΣ−1/2
T λ = 1 for all T sufficiently

large. By Minkowski’s inequality and computations as in (IA.A.7), λ′Σ−1/2
T dt+τ has

absolute 2 + δ moment for some δ > 0. Then, by Corollary 3.1 in Wooldridge and White

(1988) we deduce that λ′Σ−1/2
T

√
Td

d−→ N(0, 1). Hence, by the Cramér-Wold device it

follows that Σ−1/2
T

√
Td

d−→ N(0, Iqp).

It remains to be shown that Σ̃T −ΣT
P−→ 0. Consider

Σ̃T −ΣT = 1
T

T∑
t=1

(
dt+τd

′
t+τ − E[dt+τd′t+τ ]

)

+ 1
T

bT∑
j=1

κ(j, bT )
T∑

t=1+j

(
dt+τd

′
t+τ−j − E[dt+τd′t+τ−j]

+ dt+τ−jd′t+τ − E[dt+τ−jd′t+τ ]
)
. (IA.A.19)

By Theorem 3.49 in White (2001), {dt+τd′t+τ−j} is mixing of the same size as {ht} and

{wt} for each j = 0, . . . , bT . Moreover, each of its elements are bounded uniformly in t

by Assumption 2*. Hence, since κ(j, bT ) → 1 as T → ∞ and κ(0, bT ) = 1 it follows via

Corollary 3.48 in White (2001) that

1
T
κ(j, τ)

T∑
t=1+j

(
dt+τd

′
t+τ−j − E[dm,t+τd′t+τ−j]

) P−→ 0,

for each j = 0, . . . , bT . Combined with (IA.A.19), this implies that Σ̃T −ΣT
P−→ 0 (see also

Andrews (1991)). Hence, we can deduce via similar steps as in (IA.A.9) that Sh,τ d−→ χ2(qp)
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as T →∞.

We now prove part B. The result follows by arguments similar to those in the proof of

Theorem 1. Hence, {dt+τ} is mixing with the same size as {ht} and {wt} and each

element in dt+τ is bounded uniformly in t by Assumption 2*. Then it follows by Corollary

3.48 in White (2001) that d̄ − E[d̄] P−→ 0, and consequently similar computations as in

(IA.A.11) applies. By arguments identical to those in the proof of part A., Σ̃T −ΣT
P−→ 0,

where ΣT is positive definite by Assumption 3*. Theorem 8.13 in White (1994) then

implies that under HA,h in (8) and for any constant c ∈ R+, P[Sh,τ > c]→ 1 as T →∞.

Last, we prove part C. Due the arguments in the proof of Theorem 1, it suffices to show

that Σ̃T∗ = AΣ̃TA
′, where A = Iq ⊗B. Thus, let

Σ̃T (b) ≡ 1
T

T∑
t=1+b

dt+τd
′
t+τ−b,

for b = 0, 1, 2 . . .. It then follows that

Σ̃T (b)∗ ≡ 1
T

T∑
t=1+b

d∗t+τd
∗′
t+τ−b = 1

T

T∑
t=1+b

Adt+τd
′
t+τ−bA

′ = AΣ̃T (b)A′.

Consequently, it follows that Σ̃∗T = AΣ̃TA
′, which completes the proof.
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IA.B. A check of size and power properties

To check the finite sample properties of our tests, we perform a Monte Carlo study. We

focus on the size and power properties of the test in a setting that corresponds to our

empirical analyses in both a full out-of-sample analysis and when used in the dynamic

ranking rule.35

We examine a situation where the forecasts have equal predictive ability unconditionally,

but conditional on some state variable h̃t at least one of the forecasts are more (or less)

accurate than the others. The data-generating process is set to

∆Lt+1 = µ
(
h̃t − %

)
+ εt+1, (IA.B.20)

where P
[
h̃t = 1

]
= % and P

[
h̃t = 0

]
= 1− %. To allow for the presence of estimation error

(approximately) asymptotically, as delineated by our theoretical setting, we re-sample

with replacement from de-meaned loss differentials from our empirical analysis when

generating εt+1. In this way, they retain the influence of the estimation coming the

forecasting models as well as ensuring simulated time series that exhibit realistic empirical

behavior. Note also that E[∆Lt+1] = 0, together with E[∆Lt+1|h̃t = 1] = µ(1− %) and

E[∆Lt+1|h̃t = 0] = −µ%. That is, the unconditional null hypothesis is true, whilst the

conditional one is not necessarily so, depending on the value of (the elements in) µ and %.

We consider three sample size lengths: short, medium, and long. The medium size

equals the length of our full out-of-sample window, T = 348, the short size equals the

sample length used in the dynamic ranking rule in the application, T1 = 120, and the long

size is set to 1,000 observations. Consistent with our empirical analysis, we set p = 5 as the

number of models under comparison less one due to the computation of loss differentials.

Since our ranking rules eliminate a model sequentially until it no longer rejects, we consider

the full range p = 1, . . . , 5. When p < 5, we randomly sample without replacement (in any

random order) among our full set of models and subsequently reconstruct loss differentials
35We refer to Borup and Thyrsgaard (2017) for extensive Monte Carlo evidence for all test statistics

with remedies for large dimensions and power enhancement techniques.
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based on the selected models. Note that any reshuffling of the order of models has no

influence on the test statistic due to its permutation invariance, presented in Theorem 1,

such that it has no influence on the performance of the test statistic within a fixed p. To

obtain (samples of) εt+1, we consider the empirical loss differentials coming from forecasting

the 2-year and the 5-year bond, respectively, as illustrative cases. We set % = 0.4, since

this links to our findings below that documents notable superior predictability of at least

one model in each of the high and low economic activity or uncertainty states, and less

differences in predictive accuracy within the normal state. We use 10,000 Monte Carlo

replications.

IA.B.1. Size properties

To examine the size properties of our test, we set µ = 0 such that both the unconditional

and conditional null hypothesis are true. We consider two implementations of the test.

The first is unconditional and uses ht = 1 for all t, whereas a conditional implementation

uses ht = (1, h̃t)′. The results are reported in Table IA.1 for a significance level of 5%.

Conclusions are identical using a 1% and 10% significance level, and relevant tables are

available upon request.

[Insert Figure IA.1 About Here]

It is clear that both the conditional and unconditional tests are well-sized, showing

negligible deviations from the nominal significance level. Those minor deviations generally

decrease in sample size and increase in number of models under comparison. It is comforting

to note that the tests maintain good size properties for the short sample size used in the

dynamic ranking rule. There is no notable difference when sampling from loss differentials

associated with the 2-year or 5-year bonds, except from in the short sample case where

the 5-year bond loss differentials lead to a slight undersizing.

IA.B.2. Power properties

To examine the power properties of our test, we let the first element of µ deviate from

zero, and set the remaining elements equal to zero, similarly to Mariano and Preve (2012).
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Denote this first element by µ1. The deviation is anchored in the empirical loss differentials,

making it realistic in the context of the present paper. Specifically, we compute the average

absolute loss differentials across all models within the low and high economic activity states

using PMI defined in the empirical section of the main paper, denoting it by η̂. We then set

µ1 = cη̂ where c ∈ [0, 2.5].36 Given the specification in (IA.B.20) and % = 0.4, this allows

µ1 to deviate at most 1.5 times the empirical value of average absolute loss differentials.

We have also implemented a version that lets all elements of µ deviate from zero with a

fraction c of each respective element’s average absolute loss differentials within the low

and high activity states. The power is uniformly stronger in this case, and results are

available upon request. Note also that, in both versions, the unconditional null hypothesis

remains true. We therefore set ht = (1, h̃t)′ and examine the power of the conditional

version of our equal predictability test. The power curves for a 5% significance level are

depicted in Figure IA.1. Conclusions are identical using a 1% and 10% significance level,

and the results are available upon request.

[Insert Figure IA.1 About Here]

In line with the theoretical power result in Theorem 1, the test is consistent under the

(local) alternative considered, as power increases to unity for stronger deviations from the

null. It correctly exhibits empirical rejections equal to the nominal size at c = 0. Power is

stronger for fewer model comparisons, as expected, but the difference is not substantial.

Similar to size properties, it is comforting that the test exhibits good power properties

even for the relatively short sample length. To put this into context, for c = 1/% = 1.67,

we recover the empirical value of the mean absolute values of loss differentials obtained

in the empirical analysis when using (IA.B.20). In this case, the power exceeds 0.94 for

the smallest sample size and p = 5, showing very desirable power properties. There is

no notable difference when sampling from loss differentials associated with the 2-year or

5-year bonds.

36We also ran the simulation using U as state variable, yielding similar conclusions, yet somewhat
stronger power.
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IA.C. Bond data

IA.C.1. Bond risk premia

We use the Gürkaynak et al. (2007) dataset from 1962:M1 to 2018:M12. The time t log

yield on a k-period bond is computed using the methods developed in Nelson and Siegel

(1987) and Svensson (1994) as

y
(k)
t = β0,t + β1,t

1− exp
(
− n
κ1,t

)
n
κ1,t

+ β2,t

1− exp
(
− n
κ1,t

)
n
κ1,t

− exp
(
− n

κ1,t

)
+ β3,t

1− exp
(
− n
κ2,t

)
n
κ2,t

− exp
(
− n

κ2,t

) , (IA.C.21)

where we use parentheses in the superscript to distinguish maturity from exponentiation

and n = k
m

and m denotes, respectively, the bond maturity in years and the number of

periods per year.

Let p(k)
t = −

(
k
m

)
y

(k)
t be the log price of a k-period bond at time t. The log forward

rate at time t for loans between t+ k − 1 and t+ k is defined as

f
(k)
t = p

(k−1)
t − p(k)

t = −k−1
m
y

(k−1)
t + k

m
y

(k)
t . (IA.C.22)

The excess return to purchasing a k-period bond today and selling it as a k − 1 period

bond after one month is

rx
(k)
t+1 = p

(k−1)
t+1 − p(k)

t − p
(1)
t = −k−1

m
y

(k−1)
t+1 + k

m
y

(k)
t − 1

m
y

(1)
t , (IA.C.23)

where y(1)
t denotes the risk-free one-period rate that we proxy using the implied yield on a

one-month Treasury bill obtained from the Center for Research in Security Prices (CRSP)

as in Gargano et al. (2019).37

37For k = 1, we have that f (1)
t = y

(1)
t and that y(k−1)

t = y
(0)
t = 0 due to p(0)

t being zero (log of terminal
payoff of one is zero).
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IA.C.2. Predictor variables

We consider a set of standard bond predictors from the extant literature. In particular,

we consider yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss,

1987), principal components of yields (Litterman and Scheinkman, 1991), forward rates

(Cochrane and Piazzesi, 2005), and macroeconomic factors (Ludvigson and Ng, 2009).

In particular, the Campbell-Shiller (CS) yield spreads are computed as

ys
(k)
t = y

(k)
t − y

(1)
t , (IA.C.24)

where y(k)
t denotes the time t log yield on a bond with k periods to maturity and y

(1)
t

denotes the safe one-period return measured using the implied yield on a one-month

Treasury bill obtained from CRSP. The Fama-Bliss (FB) forward spreads are computed

similarly as

fs
(k)
t = f

(k)
t − y

(1)
t , (IA.C.25)

where f (k)
t denotes the forward rate for loans between t+ k − 1 and t+ k. The principal

component (PC) of yields are computed from bond with 12, 24, 36, 48, and 60 months left

to maturity and we focus on the first three components often referred to as level, slope,

and curvature. These components account for almost all of the variation in yields. The

Cochrane-Piazzesi (CP) single factor is formed from a linear combination of forward rates

using the projection

rxt+1 = δ + γ1f
(12)
t + γ2f

(24)
t + γ3f

(36)
t + γ4f

(48)
t + γ5f

(60)
t + εt+1, (IA.C.26)

where rxt+1 = 1
4
∑5
i=2 rx

(i×12)
t+1 can be viewed as the excess return on a portfolio of Treasury

bonds with different maturities. The CP factor is then obtained as CPt = δ̂ + γ̂ft, with

γ̂ = (γ̂1, γ̂2, γ̂3, γ̂4, γ̂5) and f t = (f (12)
t , f

(24)
t , f

(36)
t , f

(48)
t , f

(60)
t )′. Last, the Ludvigson-Ng

(LN) factor is based on a T ×M panel of macroeconomic variables, x, that we assume can
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be adequately described by a static factor model, i.e.

xi,t = κigt + νi,t,, (IA.C.27)

where gt is an s×1 vector of common factors with s�M that we estimate using principal

component analysis. We use the dataset from McCracken and Ng (2016). Following

Ludvigson and Ng (2009), we build a single factor as a linear combination of a subset of

the principal components. We determine the subset using the BIC and obtain the factor

from a projection of rxt+1 onto the set of selected macroeconomic factors.

[Insert Table IA.2 About Here]

Table IA.2 presents descriptive statistics for the set of predictors (Panel A) along with

contemporaneous correlations (Panel B). All variables are constructed using the full range

of available observations here, but are constructed recursively in the out-of-sample exercise.

Yield spreads and forward spreads are fairly persistent with first-order autocorrelations

between 0.82 and 0.92 and are heavily cross-correlated. Unsurprisingly, PC2 — the slope

component of the yield curve — is strongly related to both yield and forward spreads. CP

and LN are similarly positively correlated with the spread variables and also positively

correlated with each other. Last, we note that CP and LN are relatively less persistent

compared to the remaining variables.

IA.C.3. Additional details on state variables

This section provides additional details on the state variables used in the empirical analyses

to address state-dependencies in bond return predictability.

The Purchasing Managers’ Index (PMI) is a leading economic indicator constructed

from monthly surveys of the manufacturing sector and is released on the first business day

of every month. The survey covers senior purchasing executives (or similar) at around 400

manufacturing companies. The PMI is a weighted average of the following five indices:

New Orders (30%), Output (25%), Employment (20%), Suppliers’ Delivery Times (15%)

and Stocks of Purchases (10%). For the PMI calculation, the Suppliers’ Delivery Times
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Index is inverted so that it moves in a comparable direction to the other indices. For more

details, we refer to IHS Markit’s product page (https://ihsmarkit.com/products/pmi.html).

The index ranges from 0 to 100 and is specifically designed to capture the state of the

economy with values above (below) 50 indicating an overall increase (decrease) compared

to the previous month. We have collected the index from Global Financial Data.

The macroconomic uncertainty index (U) of Jurado et al. (2015) measures a common

component in the time-varying volatilities of h-step ahead forecast errors across a large

number of macroeconomic series that include categories such as real activity, prices, and

financial assets. The idea build on the premise that what matters for economic decision

making is not whether particular economic indicators have become more or less variable

or disperse per se, but rather whether the economy has become more or less predictable.

The index is therefore associated with the variance of the unpredictable components

of macroeconomic variables. The index is obtained from Sydney Ludvigson’s website

(https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes).

[Insert Table IA.3 About Here]

Table IA.3 presents full sample descriptive statistics for our two state variables that

captures economic activity and uncertainty, respectively: the Purchasing Managers’ Index

(PMI) and the macroeconomic uncertainty index of Jurado et al. (2015). The series are

both highly persistent with autocorrelation coefficients well above 0.9. Most importantly,

we note that the series obtains a negative contemporaneous correlation of −0.48 in the data,

suggesting that they capture part of the some features, but are not perfect substitutes.
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IA.D. Additional empirical results

IA.D.1. In-sample predictive regressions

Table IA.4 presents full sample least squares estimation results to facilitate comparison

with the extant literature. Specifically, we estimate predictive regressions of the form

presented in (1) with the risk premium on a Treasury bond with k-periods to maturity

rx
(k)
t+1 as the dependent variable. We focus on bonds with 24, 36, 48, and 60 months to

maturity and consider models based on the predictor variables outlined in Section 2.2. We

stress that these results are not available to a real-time investor, but they are useful for

gauging the mechanisms of the predictive models.

[Insert Table IA.4 About Here]

The slope coefficients for CS and FB are all positive and increasing with maturity and

are all statistically significant at conventional levels.38 We note that these positive slope

coefficients imply negative slopes for the companion regression of yield or forward spreads

on future yield changes as documented in Campbell and Shiller (1991). Thus, both yield

and forward spreads contain useful information about future bond excess returns over the

full range of available observations. Turning to the principal components, we find that

PC1 has a constant slope coefficient across maturities, PC2 increases monotonically, and

PC3 displays an inverse U-shape. PC1 and PC3 are mostly insignificant, whereas PC2

is significant for the longer maturities. This mirrors the results for CS, but shows that

maturity-specific spreads are more informative than the common slope factor. Last, CP

and LN both display monotonically increasing slope coefficients that are highly significant.

Of all the models, LN appears to explain the largest fraction of bond risk premia, closely

followed by CP and yield spreads. Overall, in-sample results points to predictive relation

between all our candidate predictors.
38Bauer and Hamilton (2018) show that statistical test of predictive regression in full sample analyses

are subject to serious small sample distortions when using 12-month overlapping returns. However, we
use one-month non-overlapping returns here and are therefore not affected by their results. See also the
discussion in Gargano et al. (2019).
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IA.D.2. Decision rule and model selection

Figure IA.2 illustrates the models selected for the best set of models using the decision

rule over time using PMI and U as conditioning variables, respectively. Green (yellow)

shaded aras indicate high (low) states identified using the 20% and 80% quantiles of the

series. A “+” indicates inclusion.

[Insert Figure IA.2 About Here]

[Insert Figure IA.3 About Here]

Figures IA.3 illustrates the size of the set of best models selected over time using the

decision rule using PMI and U as conditioning variables, respectively. We note that the

best set of models varies considerably over time and includes situations in which the set

include all models, leading to forecasts equal to EW, and situations with a singleton.

That is, at times there is no need for trimming of the full set of models and at other

times we should only use the forecasts from a single model. Importantly, this tells us why

dynamically trimming leads to improvements over a simple, static forecast combination

rule.

IA.D.3. Full out-of-sample period ranking

We here device a rule that uses the full out-of-sample period for ranking all forecasting

methods based on their predictive accuracy conditional on the state variable. We formulate

the rule using a single state variable (and a constant), but note that the rule can be

extended directly to a setting with multiple state variables. Since h̃t may be continuous,

we assume that it can be classified into a finite set of A discrete, non-empty, states sa,

a = 1, . . . ,A. For example, the state variable can be a measure of economic growth, which

may be classified into recessionary or expansionary states, or a measure of macroeconomic

uncertainty, which may be classified into low, medium, and high uncertainty states.

Let M0 denote the set of p+ 1 forecasting methods under consideration and M∗
a a set

of best forecasting methods in terms of some loss function within the ath state. We then

consider the following three-step procedure.
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Step 0: Set Ma = M0 for a = 1, . . . ,A. For all pairwise combinations of of

forecasting methods, j, i ∈Mt, i 6= j, estimate by OLS the regression model

∆Li,jt+1 = Lit+1 − L
j
t+1 = ϕjht + ηt+1 (IA.D.28)

over the entire out-of-sample period. The conditional expectation of the loss differ-

entials within each state, E
[
∆Ljt+τ |s = sa

]
= ϕj0 + ϕj1E

[
h̃t|s = sa

]
, a = 1, . . . ,A, is

approximated by ϕ̂j0 + ϕ̂j1µ̂
a

h̃
, where µ̂a

h̃
is the sample average of the state variable

h̃t in state sa. Based on the estimated conditional means, rank all p+ 1 methods

(using a normalization of one method) in all states. The forecasting method with

lowest predicted loss across all pairwise combinations is ranked first and the method

with highest predicted loss is ranked last.

Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M∗
a = Ma. Otherwise, eliminate the lowest

ranked forecasting method from Ma based on the ranking that associates with state

a. Iterate Steps 1–2 until the null is no longer rejected for all A states.

Concluding the algorithm leads to a set M∗
a for each state sa that contains the best

forecasting methods statistically indistinguishable in terms of predictive ability.

To facilitate interpretation and consistent with the empirical analysis in the main

paper, we classify the continuous state variables, PMI and U, into low, normal, and high

economic activity (uncertainty) states using the 20% and 80% quantiles as discussed in

Section 2.3.

[Insert Figure IA.4 About Here]

Figure IA.4 illustrates the full out-of-sample elimination order of the predictive models

determined by the ranking rule discussed in Section 3 when conditioning on low, normal,

and high PMI and U states, respectively, using a 10% significance level. We uncover a

striking pattern over the full sample. In particular, the EH tends to be eliminated in

high (low) economic activity (uncertainty) states across the entire maturity spectrum.
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Interpreting the EH as a no-predictability benchmark implies that bond risk premia are

predictable when economic activity (uncertainty) is high (low). Conversely, the consistent

inclusion of EH in low (high) economic activity (uncertainty) states suggests a lack of

predictability. Overall, we argue that our empirical results are consistent with, and clearly

points to, state-dependencies in bond excess return predictability linked to economic

activity and uncertainty. Bond excess returns are predictable in states with high (low)

economic activity (uncertainty), whereas the EH serves as a reliable anchor in the remaining

states of the world.

IA.D.4. Links to uncertainty

Table IA.6 presents contemporaneous correlations among U and the risk premia estimates

from the set of individual models, EW, and the dynamic forecast combinations generated

by PMI, U, and NONE.

[Insert Table IA.6 About Here]

We find that most forecasts are positively correlated with uncertainty, implying that

investors higher risk premia in periods with heightened uncertainty. The exception is CS

and FB for the shorter maturities, where we observe negative correlations. As for our

main results concerning the relation to economic activity (see Table 6), we find that LN

displays the highest correlation with U among the individual predictors and EW. Turning

to the dynamic forecast combination estimates in Panel B, we find that both PMI and U

trimming delivers forecasts that are tightly linked to uncertainty. That is, not only do

they produce countercyclical risk premia estimates, they only procedure forecasts closely

linked to uncertainty.

IA.D.5. Additional results for economic value

Figure IA.5 plots the cumulative CER gains for the individual predictor variables along

with the equal-weighted forecast (EW). The results largely mirrors those in Table 7 in the

main paper and illustrate that most individual predictors fail to deliver economic value on

a consistent basis. The exception being LN.
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[Insert Figure IA.5 About Here]

[Insert Table IA.7 About Here]

Table IA.7 reconstructs the results from Table 7 in the main paper using instead a

coefficient of relative risk aversion of γ = 5 to verify that our results are robust to other,

and lower, values of risk aversion. The table clearly demonstrates that this is the case.

As another test of the improvement in economic value we assess how the predictive

content in our models under consideration maps into Sharpe ratio improvements. We

follow the approach by Gu et al. (2020) and use that the Sharpe ratio (SR∗i,k) earned by an

active investor that utilizes predictive information (summarized by the R2
OS,i,k) for model

i and bond maturity k is given by

SR∗i,k =

√√√√SR2
k + R2

OS,i,k

1− R2
OS,i,k

,

where SRk is the Sharpe ratio earned by a buy-and-hold investor on a k-maturity bond. We

then report annualized Sharpe ratio improvements for each method,
√

12
(
SR∗i,k − SRk

)
,

in the cases where R2
OS,i,k ≥ 0. These are collected in Table IA.8.

[Insert Table IA.8 About Here]

It is clear that individual predictors almost always lead to Sharpe ratio reductions

and if any gain is achieved it is generally small. On the other hand, EW provides notable

Sharpe ratio improvements, yet our dynamic forecast combination is superior for all bond

maturities. For instance, the buy-and-hold Sharpe ratio of a 2-year bond, which is 0.90

in our out-of-sample period, can be improved with 0.48 (0.59) using PMI (U) as state

variable. Improvements for NONE are almost identical to EW.

IA.E. Description of the non-linear model and estimation

IA.E.1. The model

We consider a one-factor version of the model in Feldhütter et al. (2018). In the model,

uncertainty is driven by an one-dimensional Brownian motion W (t). There is then an
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one-factor gaussian factor X (t) with dynamics

dX(t) = κ(θ −X(t))dt+ ΣdW (t), (IA.E.29)

where θ, κ and Σ are constants. In the absence of arbitrage, there exist a stochastic

discount factor (SDF) given by

M(t) = M0(t)
(
1 + γe−βX(t)

)
, (IA.E.30)

where γ is a non-negative constant, β is a constant, and M0 (t) is a strictly positive

process. This implies that M(t) is strictly positive. Note that (IA.E.30) is a departure

from standard term structure models in that this model specify the functional form of

the SDF directly rather than pinning it down from short rate and market price of risk

specifications.

The price P (t, T ) of a zero-coupon bond at time t that matures at T is given by

P (t, T ) = s(t)P0 (t, T ) + (1− s(t))P1 (t, T ) , (IA.E.31)

where

s(t) = 1
1 + γe−βX(t) , (IA.E.32)

Pi (t, T ) = eAi(T−t)+Bi(T−t)X(t). (IA.E.33)
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The coefficients Ai (T − t) and Bi (T − t) solve the set of ordinary differential equations

dBi (T − t)
d(T − t) = − (κ+ Σλi,X)Bi (T − t)− ρi,X , (IA.E.34)

dAi (T − t)
d(T − t) = 1

2Σ2Bi (T − t)2 +Bi (T − t) (κθ − Σλi,0)− ρi,0, (IA.E.35)

λ1,0 = λ0,0 + Σβ, (IA.E.36)

λ1,X = λ0,X , (IA.E.37)

ρ1,0 = ρ0,0 + βκθ − 1
2β

2Σ2, (IA.E.38)

ρ1,X = ρ0,X − κβ − λ0,XΣβ. (IA.E.39)

For identification, we follow Feldhütter et al. (2018) and set θ = 0 and Σ = 1. If β = 0

or γ = 0, then the model collapses to a standard Gaussian term structure model. We

consider essentially affine market prices of risk.

IA.E.2. Estimation procedure

We estimate the one-factor version of the non-linear term structure model by maximum

likelihood using Kalman filtering, shifting notation for expositional reasons to using

subscript for time indicators. We cast the model into a state space form with a transition

equation that describes the dynamics of the state factor, Xt, and a measurement equation

that describes the relationship between Xt and both yields and excess returns.

Let Yt denote a vector of yields and excess returns, then the measurement equation is

specified as

Yt = z (Θ, Xt) + εt, εt ∼ N (0,Σmeasurement) (IA.E.40)

where z (·) is the pricing function, Θ is a vector of model parameters, and εt is vector of

i.i.d. Gaussian pricing errors with covariance matrix Σmeasurement. To reduce the number

of parameters, we assume that pricing errors for all yields have the same variance σ2
yields

and that all pricing errors for excess returns have the same variance σ2
excess.
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The transition equation for the dynamics of the state variable Xt have the form

Xt+τ = C +DXt + ηt+τ , ηt+τ ∼ N (0, Q) (IA.E.41)

where D = e−κτ , C = (1− e−κτ )θ, and Q denotes the conditional variance of Xt+τ given

Xt. The latter is constant provided that Xt is Gaussian. We refer to Fackler (2000) for a

closed-form solution. Similarly, the expected variance is given as

Σx,t+τ |t = D′Σx,t|tD +Q. (IA.E.42)

In the non-linear model, the pricing function z (·) is nonlinear both for yields and excess

returns. The unscented Kalman filter seems to be the standard approach for gauging

such non-linearities (see, among others, Cieslak and Povala (2016), Filipović, Larsson, and

Trolle (2017) and Feldhütter et al. (2018)). We follow Christoffersen, Dorion, Jacobs, and

Karoui (2014) and implement the square-root unscented Kalman filter of Van Der Merwe

and Wan (2001) that is numerically more stable than the standard unscented Kalman

filter.

The unscented Kalman filter evaluates the measurement equation in a set of sigma

points rather than linearizing it as in the standard Kalman filter. These sigma point

vectors are given by

χ0 = Xt+τ |t, (IA.E.43)

χi = Xt+τ |t +
(√

(N + λ)
√

Σx,t+τ |t

)
i

for i = 1, . . . , N, (IA.E.44)

χi = Xt+τ |t −
(√

(N + λ)
√

Σx,t+τ |t

)
i−N

for i = N + 1, . . . , 2N, (IA.E.45)

where N is the number of state factors in the state-space system. The number of sigma

points is, therefore, equal to 2N + 1. Last, λ is a scaling factor determined by

λ = α2 (N − κ)−N. (IA.E.46)
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We follow Van Der Merwe and Wan (2001) and set κ=0 and α = 10−3, where α is

intended to minimize higher-order effects. The first moment of the measurement equation

is approximated by

Y t+τ |t ≈
2N∑
i=0

W µ
i Mi (IA.E.47)

where Mi = z (Θ, χi). The variance of the measurement equation is

Sy = cholupdate
(
qr
[√
W σ

1 (M1:2N −M0) chol (H)
]
,M0 − Y t+τ |t,W

σ
1

)
, (IA.E.48)

Ft+τ |t = SyS
′
y, (IA.E.49)

where qr (·) is the orthogonal-triangular decomposition such that A = qr, where q is a

orthogonal matrix and r is a upper triangular matrix. The function returns the r matrix.

The function “chol” is the cholesky decomposition such that if B = chol (A) then BB′ = A.

The function “cholupdate (A,B,C)” updates the cholesky decomposition A such that

cholupdate (A,B,C) = chol (AA′ + CBB′). In the case where C is a matrix, then the

procedure is performed column by column.

The weights W µ
i and W σ

i are given by

W µ
0 = λ

N + λ
, (IA.E.50)

W σ
0 = λ

N + λ
+ 1− α2 + β, (IA.E.51)

W µ
i = W σ

i = λ

2 (N + λ) , for i = 1, . . . , 2N. (IA.E.52)

When Xt is Gaussian, setting β = 2 is optimal (Van Der Merwe and Wan, 2001). The

next step is to use these to predict the measurement equation using the updating step.

The Kalman gain is

Kt+τ =
(
Pxy/S

′
y

)
/Sy. (IA.E.53)
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The update step is then performed by

Xt+τ |t+τ = Xt|t−1 +Kt+τ
(
Yt+τ − Y t+τ |t

)
(IA.E.54)

Σx,t+τ |t+τ = Σx,t+τ |t − ΣxyF
−1
t+τ |tΣxy. (IA.E.55)

To initialize the Kalman filter, we setX0|0 and Σx,0|0 equal to, respectively, the unconditional

mean and variance of Xt. We can then construct the loglikelihood function as

l (Θ) =
T∑
t=1
−N2 log (2π)−

log
(
| Ft|t−1 |

)
2 − 0.5

(
Y (t)− Y t|t−1

)′
F−1
t|t−1

(
Y (t)− Y t|t−1

)
(IA.E.56)

The estimates Θ̂ can then be obtained by maximizing (IA.E.56) with respect to the

parameters, Θ. We follow Cieslak and Povala (2016) and maximize the loglikelihood

function using the differential evolution algorithm. The optimization is repeated with

multiple plausible initial starting values.
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Table IA.1: Empirical size properties
This table reports the rejection frequency (empirical size) of the multivariate test for equal
predictive ability with a nominal size of 5%, data-generating process given by (IA.B.20)
with µ = 0, and 10,000 Monte Carlo replications. We implement an unconditional test
that sets ht = 1 for all t and a conditional test that sets ht = (1, h̃t)′, and use three
samples sizes referred to as short (120 observations), medium (348 observations) and long
(1,000 observations). Panel A (B) reports results where εt+1 in (IA.B.20) is sampled from
the empirical loss differentials when forecasting the 2-year (5-year) bond. The value of p
indicates the dimension of the test arising from the number of comparing models less one.

Unconditional Conditional

Short Medium Long Short Medium Long

Panel A: 2-year bond

p=1 5.22 5.08 4.84 5.48 4.82 5.08
p=2 4.65 4.99 5.09 4.85 5.27 4.98
p=3 4.82 5.34 4.88 5.33 5.38 5.17
p=4 4.91 5.12 5.03 4.84 5.27 5.14
p=5 5.22 4.61 4.76 4.62 5.10 5.29

Panel B: 5-year bond

p=1 4.73 4.87 5.26 3.96 4.53 4.99
p=2 4.36 4.56 4.99 4.07 4.48 4.92
p=3 4.05 4.47 4.99 3.79 4.56 4.78
p=4 4.38 4.24 4.96 3.69 4.34 5.11
p=5 4.30 4.59 5.02 3.22 4.50 4.89
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Table IA.3: Conditioning variables
This table presents descriptive statistics for the state variables used in the empirical analysis.
PMI is the Purchasing Managers’ Index published by the Institute for Supply Managers
and U is the macroeconomic uncertainty index developed in Jurado et al. (2015). The
table reports mean, standard deviation, skewness, kurtosis, and first-order autocorrelation
(AC(1)) of each state variable. We also report the contemporaneous correlation between
the variables. The sample period is January 1962 to December 2018.

PMI U

Mean 52.61 0.66
Std. dev. 6.37 0.09
Skewness -0.61 1.63
Kurtosis 4.37 5.79
AR(1) 0.94 0.99
Correlation -0.48
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Table IA.4: In-sample regressions
This table reports full sample least squares estimates of the slope coefficients for various
linear predictive models for bond excess return. We consider five different predictors: yield
spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal
components of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005)
forward rate factor computed from a projection of average excess bond returns on two-,
three-, four-, and five-year forward rates, and the Ludvigson and Ng (2009) macroeconomic
factor computed as a projection of average excess bond returns on factors obtained from
a large panel of macroeconomic variables. For each model, we report slope coefficients,
Newey and West (1987) t-statistics using a bandwidth of twelve lags in parenthesis, and
the adjusted R2 in square brackets. The sample period is January 1962 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Campbell-Shiller

CS 2.02 2.36 2.75 3.15
(2.67) (2.64) (2.85) (3.17)
[2.55] [2.32] [2.42] [2.61]

Panel B: Fama-Bliss

FB 1.20 1.41 1.69 1.99
(2.20) (2.30) (2.79) (3.38)
[1.80] [1.68] [1.90] [2.14]

Panel C: Principal components

PC1 0.01 0.01 0.01 0.01
(1.43) (1.04) (0.76) (0.56)

PC2 0.13 0.21 0.29 0.37
(1.72) (2.10) (2.46) (2.77)

PC3 0.23 0.31 0.24 0.09
(0.66) (0.63) (0.39) (0.13)
[1.05] [1.09] [1.19] [1.30]

Panel D: Cochrane-Piazzesi

CP 0.65 0.88 1.11 1.36
(4.60) (4.30) (4.12) (4.08)
[2.37] [2.16] [2.17] [2.30]

Panel E: Ludvigson-Ng

LN 0.65 0.90 1.12 1.33
(3.68) (3.96) (4.25) (4.46)
[6.62] [6.47] [6.33] [6.15]
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Table IA.5: Correlations between forecasts and macroeconomic uncertainty
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A), the static (equal-weighted) forecast combination
strategy (Panel B), and the dynamic forecast combination strategy (Panel C) and economic
uncertainty as measured by the the macroeconomic uncertainty index (U) from Jurado et al.
(2015). We report p-values for the null of no correlation in parenthesis. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS -0.09 -0.04 0.01 0.05
(0.10) (0.41) (0.92) (0.39)

FB -0.04 0.07 0.12 0.15
(0.49) (0.21) (0.02) (0.00)

PC 0.03 0.04 0.05 0.06
(0.57) (0.5) (0.34) (0.23)

CP 0.12 0.11 0.10 0.10
(0.02) (0.04) (0.06) (0.07)

LN 0.44 0.46 0.47 0.48
(0.00) (0.00) (0.00) (0.00)

EH 0.43 0.38 0.34 0.32
(0.00) (0.00) (0.00) (0.00)

Panel B: Static forecast combination

EW 0.31 0.34 0.35 0.35
(0.00) (0.00) (0.00) (0.00)

Panel C: Dynamic forecast combination

PMI 0.54 0.53 0.50 0.50
(0.00) (0.00) (0.00) (0.00)

U 0.59 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.54 0.47 0.46 0.47
(0.00) (0.00) (0.00) (0.00)
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Table IA.6: Alternative proxies for economic activity
This table reports correlation coefficients between forecasts and alternative proxies for
economic activity. We use the Chicago Fed National Activity Index (Panel A), recession
probabilities from Chauvet and Piger (2008) (Panel B), and log growth rates to industrial
production (Panel C). We report p-values for the null of no correlation in parenthesis. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Chicago Fed National Activity Index (CFNAI)

CS 0.10 0.04 -0.01 -0.05
(0.07) (0.40) (0.89) (0.35)

FB 0.04 -0.06 -0.13 -0.16
(0.46) (0.25) (0.02) (0.00)

PC 0.19 0.18 0.15 0.12
(0.00) (0.00) (0.01) (0.03)

CP -0.10 -0.09 -0.08 -0.07
(0.05) (0.10) (0.15) (0.17)

LN -0.48 -0.49 -0.50 -0.51
(0.00) (0.00) (0.00) (0.00)

EH -0.20 -0.17 -0.16 -0.15
(0.00) (0.00) (0.00) (0.01)

EW -0.26 -0.29 -0.30 -0.32
(0.00) (0.00) (0.00) (0.00)

PMI -0.51 -0.55 -0.54 -0.51
(0.00) (0.00) (0.00) (0.00)

U -0.56 -0.54 -0.54 -0.57
(0.00) (0.00) (0.00) (0.00)

NONE -0.53 -0.49 -0.49 -0.50
(0.00) (0.00) (0.00) (0.00)

Panel B: Recession probabilities (Chauvet and Piger, 2008)

CS -0.01 0.02 0.05 0.08
(0.89) (0.72) (0.33) (0.13)

FB 0.03 0.09 0.14 0.16
(0.64) (0.09) (0.01) (0.00)

PC -0.05 -0.05 -0.03 -0.01
(0.37) (0.35) (0.57) (0.86)

CP 0.10 0.08 0.06 0.05
(0.08) (0.16) (0.26) (0.32)

LN 0.56 0.57 0.58 0.59
(0.00) (0.00) (0.00) (0.00)

EH 0.18 0.13 0.11 0.09
(0.00) (0.01) (0.05) (0.09)

EW 0.37 0.38 0.38 0.38
(0.00) (0.00) (0.00) (0.00)

PMI 0.51 0.54 0.53 0.53
(0.00) (0.00) (0.00) (0.00)

U 0.55 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.58 0.53 0.51 0.52
(0.00) (0.00) (0.00) (0.00)

Panel C: Log industrial production growth

CS 0.07 0.06 0.03 0.01
(0.16) (0.28) (0.55) (0.86)

FB 0.07 0.01 -0.03 -0.05
(0.16) (0.79) (0.61) (0.33)

PC 0.16 0.15 0.14 0.13
(0.00) (0.00) (0.01) (0.02)

CP -0.08 -0.07 -0.07 -0.07
(0.16) (0.17) (0.18) (0.18)

LN -0.26 -0.27 -0.28 -0.28
(0.00) (0.00) (0.00) (0.00)

EH -0.09 -0.10 -0.10 -0.10
(0.11) (0.08) (0.07) (0.06)

EW -0.12 -0.14 -0.15 -0.16
(0.03) (0.01) (0.01) (0.00)

PMI -0.23 -0.25 -0.27 -0.23
(0.00) (0.00) (0.00) (0.00)

U -0.28 -0.25 -0.25 -0.27
(0.00) (0.00) (0.00) (0.00)

NONE -0.25 -0.22 -0.21 -0.21
(0.00) (0.00) (0.01) (0.01)



Table IA.7: Economic Value: γ = 5
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model,
we report the CER gains relative to the expectations hypothesis (Panels A, B, and C)
and a static (equal-weighted) forecast combination strategy (Panel D). PMI denotes the
Purchasing Managers Index published by the Institute for Supply Management and U is
the macroeconomic uncertainty index from Jurado et al. (2015). CER gains are based
on an investor with mean-variance preferences and a relative risk aversion of γ = 5. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.91 -0.88 -0.52 -0.25
(0.94) (0.87) (0.74) (0.62)

FB -0.62 -0.68 -0.55 -0.34
(0.88) (0.86) (0.80) (0.67)

PC -2.06 -2.46 -2.41 -2.36
(0.99) (0.96) (0.93) (0.9)

CP -0.80 -1.20 -1.31 -1.36
(0.96) (0.94) (0.91) (0.87)

LN 0.61 1.39 2.41 3.24
(0.01) (0.01) (0.00) (0.00)

Panel B: Static forecast combination against EH

EW 0.03 0.25 0.70 1.08
(0.46) (0.32) (0.13) (0.07)

Panel C: Dynamic forecast combination against EH

PMI 0.28 0.59 1.07 1.47
(0.19) (0.14) (0.05) (0.02)

U 0.19 0.53 1.22 1.60
(0.27) (0.14) (0.02) (0.01)

NONE 0.12 0.30 0.76 1.07
(0.34) (0.28) (0.10) (0.07)

Panel D: Dynamic forecast combination against EW

PMI 0.25 0.34 0.37 0.39
(0.02) (0.04) (0.05) (0.03)

U 0.16 0.28 0.52 0.52
(0.08) (0.02) (0.00) (0.02)

NONE 0.09 0.04 0.06 -0.01
(0.15) (0.35) (0.28) (0.52)
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Table IA.8: Sharpe ratio improvements
This table reports certainty Sharpe ratio improvements for various linear predictive models
for bond excess return. We consider five different predictors: yield spreads (Campbell and
Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields
(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor,
and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the
Sharpe ratio improvement relative to that earned by a buy-and-hold investor. PMI denotes
the Purchasing Managers Index published by the Institute for Supply Management and U

is the macroeconomic uncertainty index from Jurado et al. (2015). If R2
OS < 0 we do not

report a value. The out-of-sample evaluation period runs from January 2000 to December
2018.

2-year 3-year 4-year 5-year

SR 0.90 0.83 0.78 0.74
Panel A: Individual bond predictors

CS - - 0.05 0.11
FB - 0.10 0.13 0.14
PC - - - -
CP - - - -
LN - - - -

Panel B: Static forecast combination

EW 0.38 0.35 0.34 0.33

Panel C: Dynamic forecast combination

PMI 0.48 0.37 0.35 0.43
U 0.59 0.44 0.41 0.36
NONE 0.41 0.35 0.36 0.35
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Figure IA.1: Empirical power curves
This figure shows the rejection frequency (empirical power) of the multivariate test for
equal predictive ability with a nominal size of 5% and data-generating process given by
(IA.B.20) with the first element in µ deviating and the remaining elements are set to zero.
The first element of µ is set to cη̂ where η̂ is the average absolute loss differentials across
all models within the low and high economic activity states defined in the empirical section
and c ∈ [0, 2.5]. We use 10,000 Monte Carlo replications. We implement a conditional test
that sets ht = (1, h̃t)′, and use three samples sizes referred to as short (120 observations),
medium (348 observations) and long (1,000 observations). The left (right) panel depicts
results where εt+1 in (IA.B.20) is sampled from the empirical loss differentials when
forecasting the 2-year (5-year) bond. The value of p indicates the dimension of the test
arising from the number of comparing models less one.
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Figure IA.2: Inclusion plots across states
This figure displays the inclusion of each predictive model into the best set of models.
Green (yellow) shaded ares represent periods of high (low) states of the Purchasing
Managers’ Index (PMI) (left) and the Jurado et al. (2015) macroeconomic uncertainty
index (U) (right) identified using the 20% and 80% quantiles of the series. White areas are
normal times. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. Inclusion of a predictive model is marked with +. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure IA.3: Size of the set of best models
This figure illustrates the size of the set of best predictive models for each of the four bond
maturities and conditioning variables. Green (yellow) shaded ares represent periods of
high (low) activity and uncertainty, respectively, where activity is measured using the
Purchasing Manager’s Index (PMI) published by the Institute for Supply Management
and uncertainty is the macroeconomic uncertainty index (U) proposed in Jurado et al.
(2015). High (low) episodes are identified using the 80% (20%) quantiles of their time
series. White areas are normal times. The out-of-sample evaluation periods runs from
January 2000 to December 2018.
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Figure IA.4: Full sample elimination order
This figure displays the full sample elimination order of predictive model in high, normal,
and low states separately for the Purchasing Managers’ Index (PMI) (left graphs) and the
macroeconomic uncertainty index (U) of Jurado et al. (2015) (right graphs) using the 20%
and 80% quantiles of their time series. White squares denote models included in the best
set of models and numbered tiles denotes eliminated models and their elimination order.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. The out-of-sample evaluation periods runs from January
2000 to December 2018.
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Figure IA.5: Relative certainty equivalent returns
This figure plots the recursively updated cumulative difference in realized utility from the
EH benchmark model and the ith predictor model over the out-of-sample evaluation period.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. We also consider a simple equal-weighted combination of
the individual forecasts. A positive (negative) slope indicates that the predictive model
delivers more (less) utility than the EH benchmark. Green (yellow) shaded ares represent
periods of high (low) activity and uncertainty, respectively, where activity is measured
using the Purchasing Managers’ Index (PMI) (left column) and uncertainty (right column)
is the index developed by Jurado et al. (2015). High (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation period runs from January 2000 to December 2018.
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