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Abstract

We study two cluster-robust variance estimators (CRVESs) for regression models
with clustering in two dimensions and give conditions under which ¢-statistics based
on each of them yield asymptotically valid inferences. In particular, one of the CRVEs
requires stronger assumptions about the nature of the intra-cluster correlations. We
then propose several wild bootstrap procedures and state conditions under which they
are asymptotically valid for each type of t-statistic. Extensive simulations suggest that
using certain bootstrap procedures with one of the t-statistics generally performs very
well. An empirical example confirms that bootstrap inferences can differ substantially
from conventional ones.
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1 Introduction

The disturbances (error terms) in regression models often appear to be correlated within
clusters. It is typically assumed that there is clustering in just one dimension, such as by
jurisdiction or by classroom. In such cases, it is now standard to use a cluster-robust variance
estimator, or CRVE, perhaps combined with the wild cluster bootstrap. There is a large
and rapidly growing literature on this topic; see the excellent survey of Cameron and Miller
(2015). More recent papers include Imbens and Kolesar (2016), Ibragimov and Miller (2016),
MacKinnon and Webb (2017, 2018), Carter, Schnepel, and Steigerwald (2017), Pustejovsky
and Tipton (2018), and Djogbenou, MacKinnon, and Nielsen (2019).

Methods for one-way clustering are sufficient in many cases, but clustering may also
plausibly occur in two or more dimensions. For example, for panel data, there may be
correlation both within jurisdictions across time periods and within time periods across
jurisdictions. Cameron, Gelbach, and Miller (2011) (CGM hereafter) proposes a method
to calculate standard errors that are robust to multiway clustering; see also Thompson
(2011), which proposes essentially the same method for the two-way case, and Davezies,
D’Haultfeeuille, and Guyonvarch (2018), which proposes a variant that is asymptotically
equivalent under certain conditions. CGM’s “multiway CRVE” is widely used in empirical
work, but CGM does not state the conditions under which it is asymptotically valid or provide
a formal proof. Moreover, simulations in CGM suggest that using a two-way CRVE does
not always work well, especially when the number of clusters in either dimension is small.

In Section 2, we discuss the linear regression model with disturbances that are clustered
in two dimensions and the two variants of the multiway CRVE. In Section 3, we prove that
t-statistics based on each variant of the multiway CRVE yield asymptotically valid infer-
ences for the case of two-dimensional clustering under precisely stated conditions. Varia-
tions of these CRVEs can handle clustering in more than two dimensions, and our proofs
could be extended to handle such cases. However, we do not attempt to analyze higher-
dimensional clustering, because the notation and analysis would be quite tedious. Moreover,
to our knowledge, empirical work with multiway CRVEs very rarely goes beyond the two-
dimensional case. Our proof of asymptotic validity builds upon the asymptotic distribution
theory with multiway clustering in Davezies et al. (2018) and Menzel (2018).

The second methodological contribution of this paper, discussed in Section 4, is to propose
several variants of the wild (cluster) bootstrap. These methods differ in how the bootstrap
disturbances are (one-way) clustered, i.e. by the first dimension, second dimension, intersec-
tion, or not at all (the ordinary wild bootstrap), by using either of the two multiway CRVEs,
and by using either restricted or unrestricted estimates. To our knowledge, this is the first
application of wild bootstrap methods to clustering in multiple dimensions. Under various
assumptions about the nature of the intra-cluster correlations, that vary across the CRVEs
and the methods, we prove which variants are asymptotically valid and which ones are not.

Next, in Section 5, we present the results of an extensive set of simulation experiments,
which suggest that wild bootstrap inference tends to be much more reliable than asymptotic
inference. Finally, in Section 6, we illustrate our results with an empirical example from
Nunn and Wantchekon (2011) where it is possible to cluster both by ethnicity and at different
geographic levels. Section 7 concludes. All proofs are given in the appendix.



2 The Model

Consider a linear regression model with two-way clustering written as
y=XB+u, (1)

where y and u are N x 1 vectors of observations and disturbances, X is an N x k matrix of
covariates, and 3 is a k X 1 parameter vector. The model is assumed to have two dimensions
of clustering, where the numbers of clusters in the two dimensions are G and H, respectively.
We can rewrite (1) as

ygh:Xgh,B—i—ugh, gzl,...,G, hzl,...,H7 (2)

where the vectors yg, and ug, and the matrix X, contain, respectively, the rows of y, u,
and X that correspond to both the ¢*" cluster in the first clustering dimension and the h'"
cluster in the second clustering dimension. The GH clusters into which the data are divided
in (2) represent the intersection of the two clustering dimensions.

We need notation for the number of observations in each cluster for each dimension. It
would be natural to use N for the g*" cluster in the first dimension and N for the h*" cluster
in the second dimension. However, to avoid excessive complexity, we omit the superscripts.
Thus we use N, to denote the number of observations in cluster g for the first dimension and
Ny, to denote the number of observations in cluster  for the second dimension, as well as N,
to denote the number of observations in the intersection of cluster g in the first dimension and
cluster A in the second dimension. In the theoretical context, there should be no ambiguity.

Similarly, we use y,, X,, and u, to denote vectors that contain the rows of y, X, and u
for the g* cluster in the first dimension, and vy, X5, and u;, to denote the corresponding
rows for the h'" cluster in the second dimension. Note that, in terms of the notation of (2),
the vector y, contains the subvectors y,; through y,x.

Since there are IV, observations in a typical cluster for the first dimension, IV}, observations
in a typical cluster for the second dimension, and N, observations in a typical cluster for
the intersection, the number of observations in the entire sample is

G H G H
N:ZNQZ ZNh:ZZNgh
g=1 h=1 g=1h=1

We assume that N, > 1 and N, > 1, but Ny, might well equal 0 for some values of g and h.
Under two-way clustering, the variance matrix of the scores,

G H
P=EX uu'X)= Y Y E(X  upnugXe),
g,9'=1h,h/=1
has the particular structure

E(XgT,h,ug/h/u;thh) =0 if g, 7é g and h, 7é h (3)

and arbitrary covariances if either ¢ = ¢’ or h = h’. The variance matrices for the subvectors
X;'u,g, X, uy,, and X;Iugh are respectively denoted

3, = BE(X, ugu) X,), ) = B(X, wpu, X3,), and By, = B(X ) uguy, Xen).  (4)
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With the structure in (3) and notation in (4), we write, by the inclusion-exclusion principle,
G H ¢ H
LSl L b W o S (5)
g=1 h=1 g=1h=1
As usual, the OLS estimator of 3 is
B=(X"X)'XTy.

In large samples, the variance matrix of B is given by (the limit of) Q 'T'Q~*, where Q is
defined as (GH) ™' 35, S0 X, Xgn = (GH) ' XTX, and T’ = (GH)*%. Based on (5),
the cluster-robust variance estimator, i.e. the multiway CRVE, suggested by CGM is

Vi=Ve+Vy—-V, V,=Q 'I,Q', me{G HGH}, (6)
where

& 1 G Ta T 2 1 u T A AT

g: =

(7)

R 1 G H A .
F[ = (GH)Q Zlhzlx;lughu;}lxgh,

g= =

and 4, Uy, and 4,4, denote various subvectors of the vector of OLS residuals. Note that Vm
is the one-way CRVE with clustering in dimension m. The subscript “3” on Vj in (6) em-
phasizes that this estimator has three terms. A two-term estimator will be discussed below.

In practice, the factor of (GH)™? in (7) is almost always omitted, and Q is replaced
by XTX. This leaves the value of V3 unchanged. Moreover, the three matrices in (7) are
usually, for example in Stata, multiplied by

G(N —1) H(N —1) L _GH(N-1) .
G-DIN -k H-DN-k) " (GH-DN -k (8)

respectively, by analogy with the scalar factor that is conventionally employed with the
one-way CRVE. We make use of the factors in (8) in our simulations, but for purposes of
asymptotic theory we omit them without loss of generality.

One important practical issue is that the matrix I's defined in (7) is not necessarily
positive definite in finite samples, which implies that the diagonal elements of Vi may not
all be positive. In fact, since the ranks of the three matrices in (7) cannot exceed G, H, and
G H, respectively, it seems likely that V5 will not be positive definite whenever the model
contains significantly more than min{G, H} regressors. Indeed, even when the number of
regressors is small relative to G and H, there may very well be samples for which V3 is not
positive definite; see Sections 5 and 6.

To deal with this problem, CGM suggests calculating the eigenvalues of Vg, say Aq, ..., Ag.
When any of them is not positive, V, is replaced by the eigendecomposition Vf =UAUT,
where U is the k x k matrix of eigenvectors and A" is a diagonal matrix with typical di-
agonal element max{A;,0}. The matrix V; is guaranteed to be positive semidefinite, so it
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could have diagonal elements that equal 0. It is impossible to use V3+ for inference about
the coefficients that correspond to those diagonal elements.

Even for the one-way CRVE, it is common to encounter singular variance matrices when
there are fixed effects. This problem is most easily dealt with by projecting the regressand
and regressors off the fixed effects before running the regression; see Pustejovsky and Tipton
(2018) and Djogbenou et al. (2019). That trick could also be used with the two-way CRVE.

An alternative to (6) is proposed in Davezies, D'Haultfeeuille, and Guyonvarch (2018)
based on the argument that, under the conditions in that paper, the third matrix in (7) is of
smaller order of magnitude than the first two matrices. This leads to the two-term CRVE;,

Vo = Vo + Vi (9)

Note that V3 is actually denoted Vi in Davezies et al. (2018). That paper proposes another
three-term estimator (there denoted V4), which subtracts twice the third term in (7). How-
ever, that estimator exacerbates the problem of lack of positive definiteness. It is therefore
not recommended in Davezies et al. (2018), and hence we do not consider it further.

The two-term CRVE, VQ, has the computational advantage that it is guaranteed to
be positive semidefinite, and it therefore has merit. However, as we will see in the next
section, omitting the third term in (7) is valid only under certain conditions. Moreover,
V;, is not robust to the possibility that the data-generating process (DGP) does not in fact
have clustering in the two dimensions specified (for example, it could have independent
observations), whereas V; is robust to such situations. Addltlonally, in every case that we
study in Section 5, bootstrap methods perform better with Vg than with V5. Nevertheless,
in practice it may be useful to employ Vs in situations where Vj is not positive definite.

3 Asymptotic Theory

In this section, we derive the asymptotic limit theory for t-statistics based on the CRVEs Vs
and V3. We let By denote the true value of 8 and consider the cluster-robust ¢-statistic,

b= GT(B—ﬁo)

for testing the null hypothesis Hy: a'B = a'B, against either a one-sided or two-sided
alternative hypothesis. Here a is a known vector, which if we were testing a hypothesis
about one element of B would be a unit vector. We impose the normalization that a'a = 1.

The asymptotic theory for the cluster-robust ¢-statistic (10) has several precursors in the
literature on one-way clustering, although these are obtained under assumptions that are very
different from ours. In particular, White (1984, Ch. 6) assumes equal-sized, homogeneous
(same variance) clusters, and Hansen (2007) assumes equal-sized, heterogeneous clusters. In
contrast, our conditions below allow clusters to be heterogeneous in both size and variance.

More recently, Carter et al. (2017), Djogbenou et al. (2019), and Hansen and Lee (2019)
obtain results for one-way clustering that allow cluster heterogeneity. The first of these
papers invokes a primitive moment condition and makes some high-level assumptions about
cluster-size heterogeneity and interactions between regressors and disturbances. The latter

j {23}, (10)



two papers make weaker assumptions that allow for arbitrary dependence and correlation
within clusters. See Djogbenou et al. (2019) for a detailed comparison of these assumptions.

The asymptotic theory in the above papers is based on the insight that, under one-
way clustering, aT(B — Bo) can be written as a sum of independent random variables, say
Zle 24, so that a standard central limit theorem can be applied. However, that approach is
not applicable to multiway clustering, because any partitioning of the data according to one
dimension of clustering will be arbitrarily dependent due to the other dimension of clustering.
That is, a’ (,3 — Bo) cannot be written as Zle 2z, for any independent sequence, z,.

3.1 Exchangeability and Other Assumptions

A natural stochastic framework for the regression model with multiway clustered data is
that of separately exchangeable random variables, as pioneered in the clustering context by
Davezies, D’Haultfoeuille, and Guyonvarch (2018) and Menzel (2018). The asymptotic theory
for two-way clustering in this section makes use of key results in those papers.

In one dimension, two random variables, Z; and Z,, are exchangeable if the distribution
of (Z1, Z3) is the same as that of (Zs, Z1), denoted (71, Z5) 4 (Z3, Z1). Note that this does
not rule out the possibility that the variables are correlated. For example, if (77, Z;) has a
multivariate normal distribution with identical marginal distributions (common means and
variances), then Z; and Z, are exchangeable for any value of the covariance (and hence
correlation). In contrast, the sequence of random variables Z;,t > 1, generated by the
stationary autoregression 7, = aZ;_; + ¢, with ¢ ii.d. and |a| < 1, is not exchangeable.
More discussion and examples follow after stating the formal assumptions.

We next formalize the conditions for the asymptotic theory. After establishing the con-
ditions and notation, we give some additional comments and discussion. The conditions are
formulated at the intersection level, where, in particular, the infinite sequence of random
variables that generate the observations within intersection (g, h) is denoted

Sgh = (Sgh,i)zZl = (X;;L,iaugh,i)z—‘rzlv g= ]-7 h > L,

where X, denotes the i row of Xgn and ugp; denotes the ith element of ugy. The
observed data for intersection (g, h) are the realizations of the first Ny, random variables
from Sgp,, and the observed clusters are the realizations of the sequence Sy, for g =1,...,G
and h = 1,..., H. Following Davezies et al. (2018), the number of observations within each
intersection is randomly determined as the realization of the random variable N, (without
risk of confusion, we use the same notation Ny, for the random variable and its realization).

For any matrix M, let | M|| = (Tr(M " M))"/? denote the Euclidean (Frobenius) norm.
Assumption 1. E(X ju,,) = 0 and E((ZZN;’f ||Sgh,i||2>2) < 0.

Assumption 2. The regressors are such that Qo = E(X ;ngh) is non-singular.
Assumption 3. E(N,,) > 0.

Assumption 4. (N, S,p) is independent of (N, Sypy) if g # ¢’ and h # K.

Assumption 5. R = min{G,H} — oc.



Assumption 6. (Ng,, Syp) < (Nry(g)ma(h)> Sri(g)ma(h))» Where 71 () and 79 (+) are permutations
of N.

The conditions in the first five assumptions are very mild and nearly minimal. First,
Assumption 1 is a simple moment condition, where the existence of at least four moments
is assumed. Conditions like Assumption 2 are standard in linear regression models to rule
out perfectly collinear regressors. Assumption 3 trivially rules out datasets that are empty
almost surely, but it allows the possibility that some (or even many) intersections are empty.
Assumption 4 is the assumption of two-way clustering; c.f. (3). Assumption 5 sets up
the asymptotic framework under which the number of clusters tends to infinity along both
dimensions of clustering. Note that there is no restriction on the relative number of clusters
in the two dimensions; that is, there is no restriction on the ratio G/H other than the obvious
one that it be non-negative. For example, G and H can grow at different rates.

Finally, the crucial condition of separate exchangeability is formalized in Assumption 6.
In two dimensions, we can think of a matrix. The separate exchangeability condition in
Assumption 6 then means that the distribution of an entry of the matrix is invariant to re-
ordering of the rows (but keeping entire rows together) and invariant to re-ordering of the
columns (but keeping entire columns together). In more technical terms, this is invariance
under permutations of the rows and columns, separately. For example, consider a two-
dimensional array of random variables, say Z;; for ¢ > 1,j > 1, generated by

Zij :c+ai+bj+eij. (11)

When a;, b;, and e;; are i.i.d. across ¢ and j and mutually independent, (11) is the random
effects model. In that case, the Z;; are easily seen to be separately exchangeable. Note that
it is not required that the distribution be invariant under permutations of both rows and
columns simultaneously. The latter would be invariance under re-ordering of the entries of
the matrix, which is a stronger condition.

Thus, to interpret the separate exchangeability condition, it is important to consider the
distribution of the entire array, (Nyn, Syn)g>1.0>1- We illustrate the relevance of the above
points in a simple example. Consider a repeated cross-section clustered by state (¢) and year
(h). In the matrix analogy, we have states in each row and years in each column. A relevant
point in this example is that California is much larger than Rhode Island. Hence, Ngy, is
typically much larger for California than it is for Rhode Island, for all years h = 1,..., H.
Under the stronger type of exchangeability, this would not be possible. However, because
separate exchangeability keeps entire rows together, this type of data can occur when Ny, is
correlated across h for a given g.

We emphasize three additional important implications of Assumption 6. Although (N, Syn)
has the same marginal distribution for all g > 1 and A > 1, this is not as restrictive as it may
appear. First, there is no restriction on the correlation of both Ny, and S, across g and/or
h, where correlation, for example, can generate the behavior illustrated in the previous para-
graph. Second, individual elements within clusters, i.e. Xg,,; and ug,;, can have different
distributions for different ¢. Third, there is also no restriction on the correlation between N,
and Sy, which implies that, conditional on Ny, the covariance structure of Sy, may differ
across g and/or h. These three features thus allow for many types of cluster heterogeneity.
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3.2 Asymptotic Distribution

Analogously to each term in (5) and (7), we first define the asymptotic variance matrices

1 G H
g = lim G - ZE ; Wgtty Xg) = lim eTiE Zm;lE X g, Xow), (12)
g /
;= hm — Z Z E(X hughugthh) and (14)
g 1 h=1
FNC = hm*ZZZE Xghzughzungghz) (15)
g 1 h=11i=1

which are all finite and positive semidefinite under our assumptions. We also define

A = lim(m™'R) € [0,00) for m € {G, H, I},

V., =Q ', Q' formc {G,H I, NC}.
The matrices Vi, Vi, and V7, appropriately normalized, are the asymptotic variance matrices
of B under one-way clustering in the first dimension, in the second dimension, and at the in-
tersection level, respectively, while V¢ is the asymptotic variance of 8 without clustering.

In the first result, we establish the asymptotic normality of 8. This is given in Proposi-
tions 4.3 and 4.4 of Davezies et al. (2018) under the additional condition that

AoVo +AgVy >0, (16)

where “> 0” means positive definite. The condition (16) is an assumption that the DGP
does in fact have clustering in at least one of the two dimensions. If that is not the case, the
result will be different. Thus, we also give a result under the special case where there is no
clustering in the G and H dimensions, but there is clustering at the intersection level, i.e.,

(Ngh, S,n) is independent of (Nyp, Syps) if g # g’ or h # B (17)
In this case, the matrices I'g, I'y, I'; are identical after appropriate re-normalization, and
HV; =GVy =V; >0.

Of course, the two cases (16) and (17) are not exhaustive, and there exist some degenerate
cases in between in which B may not even be asymptotically normally distributed; see Menzel
(2018, Example 1.7). Finally, there is also the possibility that there is no clustering at all in
the DGP, so that all observations are independent:

Syh,i is independent across g, h, 7. (18)

Although asymptotic results for B in this special case are well known, we consider (18)
because it illustrates interesting consequences of using a multiway CRVE when not needed.
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Theorem 1. Suppose Assumptions 1-6 are satisfied and the true value of B is given by By.
(1) If (16) is true, then it holds that

RY2(B — By) -5 N(0, \a Vs + A V). (19)

(ii) If (17) is true, then it holds that
(GH)'*(B — By) 4 N(0, V7). (20)

(iii) If (18) is true, then it holds that
(GH)'(B — Bo) = N(0, Vive). (21)

An important consequence of the results in Theorem 1 is that the relevant notion of sam-
ple size in models that have a cluster structure is not in general the number of observations,
N. This is seen clearly in the rate of convergence of 8 in (19), which is R~/2 instead of
the usual N~1/2. However, because of assumption (16), the rate of convergence in (19) is
based on the premise that clustering is present in the DGP in at least one of the two dimen-
sions. When the DGP in fact only has clustering at the intersection level, the rate of con-
vergence is instead given by (GH)~'/2, as may be seen in (20). Indeed, this is why Carter
et al. (2017), Djogbenou et al. (2019), and Hansen and Lee (2019), among others, consider
asymptotic limit theory only for studentized (or self-normalized) quantities.

3.3 Variance Estimation and ¢-tests

In the next result, we present the limit theory for both the two-term and three-term CRVEs
for each of the three cases considered in Theorem 1.

Theorem 2. Suppose Assumptions 1-0 are satisfied.
(i) If (16) is true, then it holds that

RVs L5 \aVe + MV and RV -5 AaVe + Ay Vi
(i) If (17) is true, then it holds that
GHVy, 252V, and GHV; V.
(iii) If (18) is true, then it holds that
GHV, 25 2Vye and GHV; -5 Vie.

Comparing the results in Theorems 1 and 2, it is immediate that only the three-term
CRVE, ‘A/fg, is consistent in all three of the cases considered. In contrast, V, is consistent only
in the first case. In the other cases, it is not even valid asymptotically. Instead, it would
yield standard errors that are too large, asymptotically, by a factor of v/2.

The asymptotic distributions of the ¢-statistics in (10), i.e. ¢, 2 and ¢, 3, follow immediately
from Theorems 1 and 2, and we state these as a corollary.
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Corollary 1. Suppose Assumptions 1-6 are satisfied and the null hypothesis, Hy, is true.
(i) If (16) is true, then it holds that

tas — N(0,1) and t.s - N(0,1).
(i) If either (17) or (18) is true, then it holds that
taz —5 N(0,1/2) and t.s — N(0,1).

The result in Corollary 1 shows the fundamental problem with the two-term CRVE,
namely, that it is not robust to cases where the assumed cluster structure is in fact not
present in the DGP. In such situations, shown in case (ii) of Corollary 1, a t-test based on
tq2 and critical values from the N(0,1) distribution is not valid, even asymptotically. On
the other hand, a t-test based on ¢, 3 is valid in all cases considered. This may or may not
outweigh the numerical advantages of the two-term CRVE discussed earlier, depending on
how close the (unknown) DGP is to the special cases in (17) and (18).

More generally, the results in Corollary 1 justify the use of critical values and P values
from a normal approximation to perform t-tests and construct confidence intervals based on
the three-term CRVE, V5. However, results in Bester, Conley, and Hansen (2011) suggest
that it will often be more accurate to use the (G — 1) distribution in the one-way case; see
Cameron and Miller (2015) for a discussion of this issue. In the two-way case, CGM suggests
using the t(R — 1) distribution (recall from Assumption 5 that R = min{G, H}), and we do
this in Sections 5 and 6 below.

4 Asymptotic Validity of the Wild (Cluster) Bootstrap

In the context of one-way clustering, it is now well known (e.g., Djogbenou et al. 2019) that
asymptotic t-tests often suffer from large size distortions, and that the wild bootstrap, or WB,
and in particular the wild cluster bootstrap, or WCB (Cameron, Gelbach, and Miller 2008),
can provide more reliable inference. In this section, we therefore consider inference based on
several variants of the WB and WCB as alternatives to the t-tests justified in Theorem 1.
For the wild bootstrap, the bootstrap disturbance vectors u* are obtained by multiplying
each residual, either 4, ; (restricted) or @y ; (unrestricted), by independent draws v’

h.i rom
an auxiliary random variable v* that satisfies the condition:

Assumption 7. v* is independent of (N, Syr,), with E(v*) = 0, E(v*?) = 1, and E(v**) < ooc.

A popular choice is the Rademacher random variable, which takes the values 1 and —1
with equal probabilities; see Davidson and Flachaire (2008). Thus, for the WB, each boot-
strap sample uses N draws from the auxiliary distribution.

For the wild cluster bootstrap, the number of draws from the auxiliary distribution is
equal to the number of clusters instead of the number of observations. For the two-way model
(2), there are three natural ways to cluster the bootstrap disturbances. We can cluster by
the first dimension, by the second dimension, or by their intersection. The number of draws
would then be G, H, or GH (actually, if any of the possible intersections of the two dimensions
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were empty, the number of draws would be less than GH, but for simplicity we ignore this
possibility). For each bootstrap sample, every residual within each cluster in the appropriate
dimension is multiplied by the same draw from v*. When the total number of draws is small,
roughly less than 10, using a two-point distribution can cause problems; see Webb (2014).

The idea of the WCB is that the bootstrap samples should preserve the pattern of corre-
lations within each cluster. This idea works well for one-way clustering. When clustering is
in two dimensions, the best the WCB can do is to preserve some of the intra-cluster corre-
lations. Of course, this does not imply that the WCB will fail when clustering is in multiple
dimensions, because we are bootstrapping a pivotal statistic. For example, the subcluster
wild bootstrap (MacKinnon and Webb 2018) and the WB are both valid in the context of
the one-way clustered model, even though they do not replicate the intra-cluster correlation
structure; see Djogbenou, MacKinnon, and Nielsen (2019).

Because the WCB cannot replicate multiway clustering, it is impossible to achieve an
asymptotic refinement. Nevertheless, there is still some theoretical rationale for applying
the bootstrap. For example, in the context of heteroskedasticity and autocorrelation robust
testing, Gongalves and Vogelsang (2011) show theoretically that the i.i.d. bootstrap is more
accurate than the standard normal approximation, even when data are serially correlated,
as long as the test statistic is calculated in the same way for the bootstrap data and the
original data. In our context, bootstrap tests may yield more accurate inferences than ¢-tests
if the mistakes made in obtaining, say, Vg* for the bootstrap samples are similar to the ones
made in obtaining V; for the actual sample, even if the dependence structure in the data
cannot be replicated by the bootstrap DGP. It is thus of considerable interest to investigate
wild cluster bootstrap tests, and below we give results on the asymptotic validity or failure
of several versions of the WCB.

We next describe the algorithms for all variants of the WB and WCB in detail. Both
the WB and WCB may be implemented using either restricted (henceforth WR and WCR)
or unrestricted (WU and WCU) estimates in the bootstrap DGP. All these procedures are
implemented in the (computationally very efficient) Stata package boottest; see Roodman,
MacKinnon, Nielsen, and Webb (2019). To unify notation, we introduce 4 and 3, which
will represent either restricted or unrestricted quantities as appropriate.

Multiway Wild (Cluster) Bootstrap Algorithms.

1. Regress y on X by OLS to obtain 8, @, and V; for j € {2,3} defined in (6) and (9).
Check whether V; is positive semidefinite, and replace it by V;’ if necessary; see Sec-
tion 2. For WR and WCR, additionally re-estimate model (1) subject to the restric-
tion a' B = a' By so as to obtain restricted estimates B and restricted residuals .

2. Calculate the cluster-robust t-statistic ¢, ;, given in (10), for Hy: a"8 = a'By.
3. For each of B bootstrap replications, indexed by b:

(a) Generate a new set of bootstrap disturbances given by w*®. For the wild bootstrap,

set u;?” = u;,l;iugh,i. For the wild cluster bootstrap, set uzz = v;ngh, or uzb =

vitity, or u;’ = v'iy,, depending on the level of bootstrap clustering.

(b) Generate the bootstrap dependent variables according to y** = X B+ u.
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(¢) Obtain the bootstrap estimates 87 = (X T X )1 X Ty*, the bootstrap residuals

'ff*b, and one of the bootstrap variance matrix estlmates V = V V
Vit = Vb + Vb — V*b, with V** = Q-'I'**Q~! for m € {G, H, I}, where

A 1 1

F*b XT A*b ~ *bTX F*b XT ~ *b A*bTX

¢ (GH Z (GH)? Z "
(22)
Iy = ZZXEA*ZA*ZTX h
GH (I 2 e g g g g

and each term in (22) should be multiplied by the appropriate factor in (8) if
the corresponding term in Vs or Vg, is multiplied by it. If V*b is not positive
semidefinite, replace it by V*I’Jr which is the bootstrap analog of V}, )

(d) Calculate the bootstrap t-statistic

t*b _ a’T(/é*b - /8>

a,j =~ .
\/aTVj*ba

4. Depending on whether the alternative hypothesis is Hi: a'8 < a'By, Hg: a'B >
a'By, or Hy: a'B # a' By, compute one of the following bootstrap P values:

1 & . 1 & . 1 &
:Ezﬂ(tzb<ta)7 Pﬁzﬁzﬂ(tzb>ta) or PEZEZH(|th|>|ta|)7

where I(-) denotes the indicator function. If the alternative hypothesis is Hy, then the
symmetric P value P could be replaced by the equal-tail P value, 2min(P;, Py).

The above algorithm presents the steps needed to implement the WR, WCR, WU, and
WCU bootstraps for testing the hypothesis Hy. If interest focuses on confidence intervals
for a' B, there are two approaches. Studentized bootstrap confidence intervals based on
WU or WCU can easily be constructed by calculating lower-tail and upper-tail quantiles
of the t* instead of P values; see Davidson and MacKinnon (2004, Sec. 5.3). Restricted
studentized bootstrap confidence intervals that usually have better finite-sample properties
can be obtained by inverting equal-tail bootstrap tests based on WR or WCR, as discussed
in Hansen (1999) and MacKinnon (2015). Unless GH is very large, the implementation of
these tests in boottest is so computationally efficient that test inversion is feasible even for
extremely large data sets; see Roodman et al. (2019).

The asymptotic validity of the WB and WCB tests is investigated in our next results,
where we derive the properties of the bootstrap test statistics, ¢; ;. We use an asterisk to
denote the bootstrap probability measure and associated expectation and variance, noting
that these are different depending on the choice of bootstrap; c.f. step 3(a).

To state the asymptotic results for the bootstrap test statistics, we need to consider
not only the cases (16)—(18) but also intermediate cases where there is clustering along one
dimension, but not the other. Specifically, we sometimes divide condition (16) into the
additional two conditions,

(23)

Ve >0, (24)
Vi > 0 and also (Nyp, S,p) is independent of (Nyp, Syps) if b # R, (25)
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The condition in (24) guarantees that there is clustering in the first (G) dimension, but it is
silent about whether or not there is clustering in the second (H) dimension. On the other
hand, under (25), there is no clustering in the first dimension, but there is clustering in the
second dimension (ensured by the condition Viz > 0). The reverse case is symmetric.

The following theorem is the bootstrap analog of Corollary 1. It establishes the asymp-
totic distribution of the WB and WCB t-statistics.

Theorem 3. Suppose Assumptions 1-7 are satisfied and that Hy is true.

(i) Suppose the bootstrap DGP in step 3(a) is clustered along the first (G) dimension
(results for bootstrap clustering along the second dimension are symmetric).

(a) If (24) holds, so that the DGP is clustered along the first dimension, then
tno 3 N(0,1)  and ths %5 N(0,1), in probability.

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

. 0" ‘)‘/12 >1/2 . 4" < ‘/]/12 )1/2
tr, — Z d tt, — | =——— A
o2 (Wf +Wy+a"Via an a,3 W2+ W, ’

in probability, where Z, W2, and Wy are mutually independent random variables
satisfying Z ~ N(0,1), W2 > 0 almost surely, and E(Wy) = 0.

(c¢) If either (17) or (18) holds, so that the DGP is clustered by intersections or not
clustered at all, then

tho < N(0,1/2) and t,; N N(0,1), in probability.
(i7) If the bootstrap DGP in step 3(a) is either clustered by intersections or is the WB, then

tho N N(0,1/2) and t,; < N(0,1), in probability.

Note that, as usual, all the results in Theorem 3 are conditional on the original sample,
and hence also conditional on ¢, ;. This implies that the results in Theorem 3 hold for any
possible realization of the original sample, and therefore also any possible realization of ¢, ;,
which is the crucial requirement for asymptotic validity of the bootstrap.

It is well-known that, by Polya’s theorem and the triangle inequality, if the asymptotic
distribution of the bootstrap t-statistic #; ; in (23) correctly replicates that of the original
sample t-statistic ¢, ; in (10), then the bootstrap is asymptotically valid in the sense that

sup ]P*(t;j <x)— P(te; < )| = 0p(1), (26)
where P(t,; < z) denotes the cumulative distribution function (CDF) of ¢, ; and P*(-) the
corresponding bootstrap CDF. When (26) holds, the P values computed in step 4 of the

WB and WCB algorithms are asymptotically valid, as are studentized bootstrap confidence
intervals. The cases in which (26) holds are summarized in Table 1.
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Table 1: Asymptotic validity of bootstrap tests

WCBg WCBy, WB
DGP clustering [P s tho  ths tho  Tos
By first dimension (G), (24) valid valid OR  valid OR  valid
By second dimension (H) only, (25) see text see text OR  valid OR  valid
By intersections () only, (17) valid valid valid valid valid  valid
Independent observations, (18) valid valid valid valid valid  valid

Notes: WCB¢g and WCB; denote the WCB with bootstrap clustering along the first (G) dimension and
by intersections, respectively, and WB denotes the ordinary wild bootstrap; c.f. step 3(a). The results for
WCBy are symmetric to those of WCBg. “valid” indicates that (26) holds, “OR” denotes asymptotic over-
rejection, and “see text” refers to case (i)(b) of Theorem 3 discussed in the main text.

From Theorem 3 and Table 1, we see that the distribution of the bootstrap t-statistic
correctly replicates that of the original sample ¢-statistic in many cases. If so, the bootstrap
test is asymptotically valid. This essentially follows from the fact that the t-statistic is
asymptotically pivotal. Even though a' B * does not have the same variance as a " ﬁ, as shown
in Theorems A.1 and A.2 in the appendix, this does not cause a failure of the bootstrap,
because ¢; ; still has the correct asymptotic distribution in those cases.

In other cases, however, most notably for bootstrap tests based on t, 9, the distribution
of the bootstrap t-statistic does not coincide with that of the original sample t-statistic. In
several cases, t,2 is asymptotically distributed as N(0, 1), while the bootstrap distribution of
t% 5 is asymptotically N(0,1/2). Conducting inference based on the distribution of ¢} , then
leads to over-rejection, and these cases are indicated by “OR” in Table 1.

A particularly challenging situation arises in case (i)(b) in Theorem 3, which is labelled
“see text” in Table 1. In this case, both ¢ , and ¢, 5 are asymptotically mixed normal, and the
conditional variances are the random variables given in the large parentheses in case (i)(b)
in Theorem 3. There are several interesting remarks. First, the conditional variance of 7, , is
always less than that of ¢ ; because of the positive term, a'V;a, in the denominator. Thus,
asymptotically, the bootstrap test based on ¢} , rejects more often than the one based on ¢} ;.

Second, although both conditional variances can in principle be either greater than or
less than one, for ¢} , it seems unlikely to be greater than one because of the additional
positive term in the denominator. Specifically, when a'V;a is large relative to the zero-
mean random variable Wy, the conditional variance of ¢; , will be less than one, leading to
over-rejection of the bootstrap test based on ¢} ,. However, when the conditional variance
is centered at one, the bootstrap test will tend to under-reject, because the mixed normal
distribution has heavier tails than the standard normal distribution.

Third, the random variable W} is an infinite weighted sum of centered x? distributions.
When the weights are approximately equal (which happens when the clusters are not too
heterogeneous), W, is well approximated by a normal distribution with mean zero. In such
situations, the conditional variance of ¢ ; has median equal to one, and the bootstrap test
based on ¢ 5 is nearly valid in the sense that the mixed normal distribution of ¢} ; has
conditional variance with the correct median, although the test will still under-reject because
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the mixed normal distribution has heavier tails than the normal distribution.

It is generally desirable that a bootstrap DGP should replicate the key features of the
true (unknown) DGP. In the context of cluster-robust inference, this means that in step 3(a)
the bootstrap DGP should replicate the clustering structure to the extent possible. With
the WCB considered in this paper, it is impossible to replicate multiway clustering, but it
is possible to replicate clustering in one dimension. This consideration would tend to favor
either WCBg or WCBy, which replicate as much as possible of the clustering structure in
the DGP. However, there is to some extent a tradeoff between the desire to replicate the
DGP clustering structure and the asymptotic validity results summarized in Table 1. We
investigate this issue via extensive Monte Carlo simulations in Section 5.

Similarly, it is generally desirable to impose the null restrictions on the bootstrap DGP
(Davidson and MacKinnon 1999), and there is compelling evidence in MacKinnon and Webb
(2017) and Djogbenou et al. (2019) that, for one-way clustering, the restricted versions
of both the WB and WCB, and particularly the latter, outperform the unrestricted ones.
However, in the context of multiway clustering, it is not clear which variant of the WCB in
step 3(a) is likely to perform best in any given case, or even whether any variant is likely to
outperform the WB or the asymptotic ¢-test. This undoubtedly depends on G, H, 3, and
so on. We use Monte Carlo simulations to investigate these issues in Section 5.

5 Simulation Experiments

We performed an extensive set of simulation experiments and report the most interesting

results in this section. The objectives of these experiments are to confirm the theoretical

predictions made in Sections 3 and 4 and to guide choices among the numerous ways in which

inferences can be made when there is two-way clustering, including the choice of bootstrap.
In the experiments that we report, the DGP is

Yghi = Bo + B1Xghi + Ughis  Ughi = O1Vg + T2V + Oc€gh iy (27)

where vy, vy, and €4, ; are mutually independent standard normals. The values of o4, 09, and
o. are chosen so that the correlation between any two disturbances that belong to the same
cluster in the G (or H) dimension is p; (or py). This implies that the correlation is p; + po
for disturbances that belong to the same cluster in both dimensions, and zero for ones that
do not belong to the same cluster in either dimension.

The regressor X, ; is lognormally distributed to avoid the risk that our results may be
artifacts of an experimental design in which both the regressor and the disturbances are
normally distributed. Specifically, log(Xgs ;) is generated in the same way as ug;, but
with correlations ¢, and ¢9. If Xy ; were normally distributed, many tests would perform
somewhat better, but the overall pattern of the results would not change.

In our experiments, we replaced Vs by ‘73+ when necessary, as discussed in Section 2.
When G = H = 10, V; quite often had negative eigenvalues, in extreme cases as much as a
quarter of the time. Negative eigenvalues were much less common for larger values of G and
H. Even when G = H = 10, we only very rarely encountered cases in which the standard
error of Bl based on V;’ was not positive. In those rare cases, we set the standard error to a
small number such that ¢, 3 was very large. We did the same thing when calculating bootstrap
test statistics. This happened so rarely that it should have a negligible effect on the results.
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Figure 1: Rejection frequencies for six forms of ¢-statistic
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Notes: There are 400,000 replications. All tests are at the 5% nominal level. Parameter values are p; = 0.05,
p2 = 0.15, ¢1 = 0.40, and ¢ = 0.40. V,, for m = G, H, and I denote one-way CRVEs with clustering by G,
by H, and by intersection, respectively. Ve denotes the heteroskedasticity-consistent variance matrix called
HC; in MacKinnon and White (1985), which is the default in Stata. Rejection frequencies for ¢, 2, t4,3, and

the ¢-statistics that use Vi and Vy are based on the t(G —1) = t(H —1) distribution. For the t-statistics that
use Vi and V¢, they are based on the ¢(GH — 1) distribution and the ¢(N — 2) distribution, respectively.

Our experiments cover a much wider range of cases than those of CGM, and they differ
from the latter in two important respects. CGM’s DGP has two regressors, each correlated
in just one dimension, instead of one regressor that is correlated in both dimensions. In
addition, the values of p; and p, in our experiments are generally smaller than the values of
¢1 and ¢9. That is because, in our experience, intra-cluster correlations for residuals tend to
be small, while intra-cluster correlations for at least some regressors can be large. A number
of our experiments deal with cases in which p; and/or py is zero, which are of great interest
in view of Theorem 2 and the practical possibility that we may be (multiway) clustering even
when it is not needed. In contrast, CGM implicitly sets p; = p, = 1/3 in many experiments.

Figure 1 illustrates that it is essential to use two-way clustered standard errors when
there actually is two-way clustering. It shows rejection frequencies for six different ¢-tests.
The t-statistics ¢, and t,3 were defined in (10) and use two-way clustering. The others
use either one-way clustering or no clustering at all. With the exception of ¢, 3, all methods
over-reject more severely as IV increases. This is most apparent for the t-test that makes no
allowance for clustering, which rejects over 90% of the time for the largest sample sizes when
G = H = 10. The t-test based on clustering by intersection also over-rejects very severely
for large N, even more so when there are 40 clusters in each dimension than when there
are only 10. This makes sense, because the intersections become smaller as the number of
clusters increases. It is also not surprising that the t-test based on clustering by G performs
much worse than the one based on clustering by H. Because ps > p;, the correlations that
are ignored by the former test statistic are larger than the ones ignored by the latter. If we
had set p; = pa, these tests would have had the same rejection frequencies, because the data
would have been completely symmetric in the G and H dimensions.

16



Figure 2: Rejection frequencies for two-way t-tests
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Notes: There are 400,000 replications, and the sample size N is always 6400. All tests are at the 5% nominal
level. Rejection frequencies are based on the 0.975 quantile of the ¢(R — 1) distribution.

The t-statistics based on two-way clustering clearly outperform all the others in Figure 1,
especially in large samples, because they are the only ones that are asymptotically valid.
tq2 always rejects less often than ¢,3, because VQ equals ‘A/f)) minus a positive semidefinite
matrix; see (6). The difference between the rejection frequencies for ¢, and ¢, is much
greater in Panel (a) than in Panel (b), because the intersections contain more observations
in the former case. In both panels, this difference diminishes as N increases.

The most important implication of Figure 1 is that failing to use two-way clustering when
there is actually correlation in two dimensions can lead to very severe errors of inference,
and these errors become more severe as the sample size increases. In the remainder of this
section, we therefore focus exclusively on tests based on the statistics ¢,2 and ?,3. Even
though two-way t-tests work less badly than other methods in Panel (a), and reasonably
well in Panel (b), they still over-reject and do not yield particularly reliable inferences.
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Figure 3: Rejection frequencies for wild cluster bootstrap tests
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Notes: There are 100,000 replications, and N = 6400. All bootstrap tests use B = 399 and reject whenever
]55 < 0.05. In all cases, 1 = ¢o = 0.40. For each method and each pair of G, H values, the top of the
vertical line shows the largest observed rejection frequency across the cases p; = po = 0.01,0.02,...,0.10,
the bottom of the line shows the smallest one, and the mean over the ten frequencies is shown by a symbol.

Figure 2 has four panels that differ in the number of clusters (G, H) and in the intra-
cluster correlations of the regressor (¢1, ¢2). One striking result in all four panels is that ¢, -
under-rejects very severely when there is no correlation of the disturbances in either one or
both dimensions. This is predicted in case (ii) of Corollary 1, where ¢, asymptotically has
a variance of 1/2. This implies that tests based on it reject 0.56% of the time at the 5% level
when they use the asymptotic critical value 1.96, and even less often when they use critical
values from various ¢ distributions. In fact, rejection frequencies for ¢, o vary between 0.0074
and 0.0166 when p; = po = 0 and between 0.0092 and 0.0266 when p; = 0 and p, = 0.05. As
the asymptotic theory suggests, these rejection frequencies decline as either G or H increases.

In contrast, tests based on t,3 always over-reject, and they do so particularly severely
when there is no or little correlation of the disturbances in either one or both dimensions. As
must be the case, tests based on t,3 always reject more often than ones based on t,5. The
difference is most pronounced when there is little correlation of the disturbances in either one
or both dimensions, and it diminishes as either G' or H increases. Tests based on ¢, 5 also over-
reject except for small values of the correlation coefficients. For both test statistics, the over-
rejection diminishes in Panels (a)—(c) when we increase either G = H or only H. The same is
true for ¢, 5 in Panel (d), when we increase H but not G. However, for the tests based on ¢,9
in Panel (d), increasing H when G is fixed at 10 actually causes over-rejection to increase.

Finite-sample distortions may arise from two main sources. The first is inaccuracy in the
central limit theorem approximation to the sampling distribution of B . The second is the
bias and sampling variability of the CRVE. Because the disturbances in our simulation DGP
(27) are normal, although the regressors are lognormal, the CLT approximation is probably
accurate. Therefore, the mediocre performance of the two-way t-tests in Figure 2 likely
reflects the fact that, in many cases, neither Vs nor V; provides a good estimate. As discussed
previously, because the mistakes made in obtaining, say, ‘73* for the bootstrap samples are
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similar to the ones made in obtaining V; for the actual sample, it is of considerable interest
to investigate wild cluster bootstrap tests. We study six of them: WCRg, WCRpy, and
WCR; (wild cluster restricted with bootstrap clustering by G, by H, and by intersection),
WCUgq, WCUyg, and WCU; (wild cluster unrestricted with the same three forms of bootstrap
clustering). Because the wild bootstraps (WR and WU) are expensive to compute and tend
to yield results similar to WCR; and WCU;, we do not report results for them. Also, to
keep the figures readable, we do not always report results for all six WCB tests.

Figure 3 shows rejection frequencies for five wild cluster bootstrap tests for each of ¢, 3
and t, in Panels (a) and (b), respectively. In Panel (a), we see that WCR ¢ and WCRy
based on t,3 always work extremely well. Note that, when G = H in this figure, the only
differences between the two reflect simulation randomness. The other four tests do not
perform as well. WCUg and WCUy (not shown) always over-reject, which is expected for
WCU tests; see Djogbenou et al. (2019). The two tests that cluster the bootstrap samples by
intersection, WCR; and WCUj, do not perform well in most cases, except for WCU; when
G = H = 10. This case seems to be an accident. We conjecture that the tendency of all the
WCU tests to over-reject just happens, in this case, to offset a tendency for bootstrapping
by intersection to under-reject. Note that, because N = 6400, WR and WU are identical to
WCR; and WCU; when G = H = 80.

Panel (b) of Figure 3, which deals with WCB tests based on t, 2, looks very different from
Panel (a). All of the bootstrap tests now over-reject in every case. Even the best of them,
WCR g, never performs particularly well. Interestingly, it performs best when G < H. The
two tests that bootstrap by intersection, which almost always under-reject in Panel (a), now
over-reject more severely than any of the other tests. Their performance is also very sensitive
to the values of p; and ps. They perform much better for small values of those coefficients
than for large ones. The figure intentionally omits the case in which p; = ps = 0, where these
tests reject very close to 5% of the time. This case will be discussed below in the context
of Figure 5. For the cases studied here, it is rarely worthwhile to bootstrap t,.. Rejection
frequencies for t-tests based on the t distribution are often closer to 0.05 than those for any
of the bootstrap tests. We provide more evidence on this issue later in this section.

In Figure 3, the values of p; and p, are always the same, and the values of ¢; and ¢ are
always 0.40. In Figure 4, we relax both these constraints as detailed in the notes to the figure.
Not surprisingly, the large set of parameter values across the 60 experiments means that the
vertical lines are generally longer than their counterparts in Figure 3. In Panels (a) and (c)
of Figure 4, we present results for ¢, 3 bootstrapped in various ways. There are no results
for bootstrapping by H in Panel (a) because, with G = H, these methods are equivalent to
bootstrapping by G. There is not a lot to choose among the various procedures in Panel (a),
except that the vertical line tends to be longer for WCUg. The only surprising result is that
WCUg under-rejects in a number of cases, although it always over-rejects on average.

In Panel (c¢), we do show results for WCRy and WCUy, and we omit the ones for WCU;
to save space. The best methods are WCR s and WCRp, although the latter rejects a bit
more often than the former, and it always has a larger range of outcomes. Thus, as in
Figure 3, there appears to be modest evidence in favor of bootstrapping by the dimension
with the smallest number of clusters. However, this might not be the right thing to do if,
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Figure 4: Rejection frequencies for wild cluster bootstrap tests
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Notes: There are 100,000 replications, and N = 6400. All bootstrap tests use B = 399 and reject whenever
]55 < 0.05. There are 60 cases: for i = 1,2 and j = 2,1, p; = 0.05, p; = 0.00,0.02,...,0.10, ¢; = 0.30, and
¢; = 0.00,0.15,...,0.60. For each method and each pair of G, H values, the top of the vertical line shows
the largest observed rejection frequency across the 60 cases, the bottom of the line shows the smallest one,
and the mean over the 60 frequencies is shown by a symbol.

for example, the other dimension had substantially more intra-cluster correlation.

In Panels (b) and (d) of Figure 4, we see once again that bootstrapping ¢, » almost always
leads to over-rejection, which can be very severe. The cases in which WCR s and WCRy
do not over-reject are typically ones in which there is no intra-cluster correlation for the
dimension by which we do not bootstrap. In contrast, over-rejection tends to be very severe
when there is a lot of intra-cluster correlation in the dimension by which we do not bootstrap.

In Figures 2 and 4, we saw that extreme results for ¢, » and its bootstrapped counterparts
tend to occur in the important special case in which there is no correlation in one dimension.
In this case, a multiway CRVE has been applied even though it is in fact not needed. Figure 5
deals with this case in more detail. In both panels, p; = 0 and p, varies from 0.00 to 0.10.
Thus, the leftmost point in each panel corresponds to case (iii) of Theorems 1 and 2, where the
disturbances are independent. In Panel (a), we see that ¢-tests based on ¢, 3 are prone to over-
reject, while ¢-tests based on ¢, » under-reject in this case, at least for large values of G = H.
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Figure 5: Rejection frequencies for t-tests and wild cluster bootstrap tests

(a) t-tests, p1 =0 (b) Bootstrap tests, p1 =0

Rej. rate Rej. rate
0.20 0.20
7 -+ WCRg ta2 (10,10) (80,80) ------------
0.18 0.184 WCR; tq5 (10,10) ——=s— (80,80)--6----:o:
0.16 0.16
-1 ta,3 (10,10) T
0149 ™ 0.14
012 T-des (20.20) 0.12
0109 4,5 (80,80) 0.10+
0.08- T 0.08 -
0.06 taz2 (10,10) —— o -e-mmomtoT 0.06 |
0.04 TR (20200 0.04
1 /77 T 5 (80,80 7
0.029 277 e 2 (80,80) 0.024 WCRg¢ ta3 (10,10) (IR 0) p—
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0.00 T T T T T T T T T rP2 0.00 4 T T T T T T T T T P2
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Notes: There are 100,000 replications, and N = 6400. All bootstrap tests use B = 399 and reject whenever
P¢ < 0.05. In all cases, ¢1 = ¢ = 0.40, and p; = 0.

Panel (b) of Figure 5 shows that using WCRg or WCR; with either t-statistic works
perfectly when there is actually no correlation in either dimension. However, as soon as py
exceeds zero, the rejection frequencies for ¢, 5 increase sharply. The rejection frequencies for
tq,3 also become worse as py increases, but only very slightly. Thus, in this case (and all
other cases, at least for WCR(), bootstrapping ¢, 3 yields reasonably accurate results, but
bootstrapping t, 2 yields very inaccurate ones.

The performance of the tests varies with the numbers of clusters in each dimension and
the four parameters of the DGP (27). To provide an overall summary, Table 2 reports the
average, over the 70 cases in Figures 3 and 4, of the absolute error in rejection percentage.
For the tests based on %,2, the table reports results only for the ¢-test and the WCRg
test, which is always the best of the bootstrap tests for ¢,2. In most cases, the former test
outperforms the latter, although not always and not for larger values of G and H. In fact,
the ¢-test based on ¢, performs worse for (80, 80) than for any other values of G and H.

For the tests based on t,3, Table 2 reports results for the t-test and all six WCB tests.
As in Figures 2 and 5, the t-test performs poorly and is clearly the worst test, often by a
substantial margin. This is rather worrying in light of the fact that it is, at time of writing,
by far the most commonly used procedure in empirical work. In contrast, at least some of the
bootstrap tests always perform well. The best test in almost every case is WCR ¢ based on
tq,3, which is identical to WCR g when G = H and always outperforms it, at least by a little,
when G < H. The two WCU tests and the two tests that bootstrap by intersection generally
have little to recommend them, except for G = H = 10, where WCU; works slightly better
than WCR . But, as explained above, this seems to be an aberration. Overall, based on the
extensive simulation evidence summarized in Table 2, we comfortably recommend general
use of WCR ¢ based on ¢, 3; that is, bootstrap clustering by the dimension with the smallest
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Table 2: Average absolute error in rejection percentage for various tests

Method \ G,H 10,10 10,20 10,40 20,20 20,40 40,40 40,80 80,80

tao t(R—1) 183 131 129 129 121 128  1.62  2.04
tes WCR¢ 335 210 123 226 128 165 095  1.26
tas t(R—1) 922  6.09 464 567 421 362 287 236
tas WCR¢ 054 034 030 028 030 021 021 0.14
tas WCRy 054 047 058 028 033 021 024  0.14
tas WCUg 166 1.60 193 127 126 067 064  0.29
tas WCUy 1.66 127 097 127 079 067 041  0.29
tas WCR; .77 200 181 175 152 112 074 051
tas WCU; 052 077 102 102 103 087 062  0.46

Notes: Results for each G, H pair are based on the 10 cases in Figure 3 and the 60 cases in Figure 4; see the
notes to these figures for details. The reported numbers in the table are in percentages.

number of clusters, based on the three-term CRVE and restricted parameter estimates.

6 Empirical Example

To illustrate the effects of using different methods of inference with multiway clustering, we
consider an empirical example from Nunn and Wantchekon (2011), hereafter NW. This paper
investigates whether current trust levels among different ethnic groups in several African
countries are related to historical slave exports. NW studies the relationship between the
volume of slave exports and current levels of trust between ethnicities using the equation

trusteqc = o + Bexports, + X;dcqbl + X;lr b2 + XJ¢3 + Eiede; (28)

where, using NW’s notation, 7, e, d, and ¢ indicate individual, ethnicity, district, and country,
respectively. The outcome variable is trust;.q., which is the level of trust an individual has to-
wards their neighbors. We multiply the outcome variable by 1000 to avoid three leading zeros.

The coefficient of interest in (28) is 8, which measures the extent to which historical
slave exports of a given ethnicity affect trust levels for an individual of the same ethnicity
today. On the right-hand side, a. is a vector of country-level fixed effects, X, 4. contains
control variables such as age, gender, and education, X, contains two district-level variables
which may influence an ethnic group’s current levels of trust, and X, contains ethnicity-level
variables to control for the degree of colonization and other historical differences. The trust
variable comes from surveys for the Afrobarometer, conducted in 2005, which covered either
1200 or 2400 individuals in each of 17 countries. Survey respondents were asked to indicate
the level of trust they had for their neighbors. For slave exports, NW use data from Nunn
(2008) for the trans-Atlantic and Indian Ocean slave trades from 1400 to 1900. The final
sample consists of N = 20,027 observations from 16 countries.

NW uses two-way clustered standard errors, where the clustering dimensions are geog-
raphy at the district level and ethnicity. In the terminology of Abadie, Athey, Imbens,
and Wooldridge (2017), NW takes a “model-based” approach rather than a “design-based”
approach, implicitly treating (28) as a DGP that draws clusters at random from a meta-
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Table 3: OLS estimates of the determinants of trust in neighbors

Dependent variable slave exports slave exports
Trust of neighbors x 1000 district country
3 —0.6791 —0.6791
Vi (geo.) s.e. and t(G — 1) P value 0.0822  (.0000)  0.2051  (.0048)
Vi (eth.) s.e. and t(H — 1) P value 0.1422  (.0000)  0.1422  (.0000)
V, (eth. & geo.) s.e. and t(R — 1) P value 0.1643  (.0001)  0.2496  (.0158)
Vi (eth. & geo.) s.e. and t(R — 1) P value 0.1449  (.0000)  0.2078  (.0052)
ta,? ta,3 ta,2 ta,3
WCR¢ (geography) bootstrap P values .0000 .0006 .1190 .1394
WCRy (ethnicity) bootstrap P values .0020 .0019 0115 0741
WCR; (ethnicity x geography) bootstrap P values .0000 .0002 .0120 .0681
WR (individual) bootstrap P values .0000 .0005 .0084 0246
Number of clusters, G' (geography) 1257 16
Number of clusters, H (ethnicity) 185 185
Number of intersections, I (ethnicity X geography) 3225 223

Notes: This example is taken from Nunn and Wantchekon (2011, Table 1, column 1). All bootstrap P values
are symmetric and based on the Rademacher distribution with B = 9,999. Stata .do files to replicate this
table may be found at the authors’ websites.

population. Because the independent variable of interest (exports) is invariant within eth-
nicities, it is impossible to use ethnicity fixed effects, even though it seems likely that social
attitudes towards trust are correlated with ethnicity. Thus it surely makes sense to cluster
by ethnicity (Moulton 1986).

The fact that many of the control variables are observed only at the district level provides
justification for geographic clustering at that level. However, it seems plausible that the
disturbances may be correlated at the country level in addition to the district level, for two
reasons. First, the Afrobarometer survey frames some questions at the country level, and
second, trust might well be influenced by country-level factors such as the rule of law or level
of corruption. We therefore consider two levels of clustering (1257 districts or 16 countries)
in the geographical dimension, G. The number of clusters in the ethnic clustering dimension,
H, is always 185. There are either 3225 or 223 intersection-level clusters.

Table 3 reproduces and extends the results in NW’s Table 1, column 1. NW uses three
different variables for the key regressor. We focus on exports, but the results for exports/area
and exports/(historical population) follow a broadly similar pattern. Table 3 presents the
results from OLS estimation of (28). The first row of results presents the coefficient estimate.
Following it, the top panel presents standard errors and P values clustered by three different
one-way clustering variables, namely, geography at either the district or country levels, and
ethnicity. All of these P values are extremely small.

The second panel of Table 3 presents two-way clustered standard errors and P values
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based on the t(R — 1) distribution with clustering by both geography (either district or
country) and ethnicity. As expected, the two-term CRVE standard errors are noticeably
larger than the three-term ones, and therefore the P values as well. However, all the P values
suggest that the null hypothesis can be rejected at the 2% level.

The third panel of Table 3 shows bootstrap P values for both t,, and ¢,3. When
clustering is by district in the geography dimension, all bootstrap tests are significant at the
1% level. However, when clustering is by country in that dimension, three of the ones based
on t, 3 are not significant at the 5% level. When the bootstrap clustering is also by country,
which the experiments of Section 5 suggest may be the most reliable method, we do not
reject even at the 10% level. Thus, based on the results for ¢,3, the evidence against the
null hypothesis seems to be quite weak when geographic clustering is at the country level.

The bootstrap P values based on ¢, tell a different story. When we move from district-
level to country-level clustering, they still increase, but the increases are far less dramatic,
except for WCR . Moreover, again with that one exception, all the tests reject the null
hypothesis at the 2% level. However, because bootstrap tests based on t, 2 often over-reject
severely in the experiments of Section 5, we are not inclined to believe these results.

7 Conclusion

We study variance estimation and bootstrap inference for regression models with two-way
clustering. We consider two different cluster-robust variance estimators (CRVEs), one that
involves three terms proposed in Cameron et al. (2011) and Thompson (2011), and one that
involves two terms proposed in Davezies et al. (2018). In Section 3, we prove that t-tests
based on both CRVE variants yield asymptotically valid inferences under precisely stated,
but different, conditions. The two-term CRVE is consistent under less general conditions
than the three-term one. The former is not consistent when the disturbances are independent
or are clustered only at the level of the intersections of the two dimensions.

In Section 4, we propose several variants of the wild (cluster) bootstrap, each of which
can be combined with either of the CRVEs. These appear to be the first such methods for
least squares regression with multiway cluster-robust standard errors. The methods differ
in the clustering imposed on the bootstrap disturbances, in the CRVE applied, and in using
either restricted or unrestricted estimates. None of these bootstrap methods is capable of
matching the two-dimensional nature of the clustered disturbances, and they do not all yield
valid inferences in all cases. Nonetheless, we give precise conditions, that vary by bootstrap
method, under which each method is valid or not valid.

In Section 5, we provide extensive simulation evidence. Using a one-way CRVE when
there is actually two-way clustering can lead to extremely severe errors of inference, especially
when the sample size is large. The conventional approach of comparing multiway cluster-
robust t-statistics to quantiles from the ¢ distribution can also lead to serious errors of
inference, especially when the number of clusters in either dimension is small. Specifically,
t-tests based on the three-term CRVE always seem to over-reject, while those based on the
two-term CRVE may either under-reject or over-reject. In almost all the cases that we study,
bootstrap methods based on t-statistics that use the three-term CRVE yield (much) more
accurate inferences than the conventional approach of using the ¢ distribution. In contrast,
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bootstrapping t-statistics that use the two-term CRVE often yields inferences that are less
accurate than comparing them to the ¢ distribution.

Overall, the method of inference with the lowest error in rejection percentage throughout
our extensive set of simulations is the restricted wild cluster bootstrap based on the three-
term CRVE coupled with a bootstrap DGP that is clustered along the dimension with the
smallest number of clusters. Such a DGP preserves the intra-cluster correlations for the
dimension where the clusters are, on average, largest.

In Section 6, we illustrate several of our results using the data and one of the models
of Nunn and Wantchekon (2011). We find that inferences can change substantially as the
level of clustering in one of two dimensions changes. The P values, especially the bootstrap
P values based on the three-term CRVE, become larger when the number of clusters in the
geographical dimension is reduced, because clustering in that dimension is coarser. This
is consistent with our simulation results, which suggest that it is particularly important to
employ the wild cluster bootstrap when there are few clusters in either dimension.

Supplementary Appendix: Proofs of Main Results
A.1 Proof of Theorem 1

The result in (19) is an immediate consequence of Propositions 4.3 and 4.4 of Davezies et al.
(2018), where (16) is assumed. Under (17), there is clustering only at the intersection level,
and under (18) there is no clustering. Both of these are special cases of one-way clustering,
so that (20) and (21) follow from Djogbenou et al. (2019) after noting that our assumptions
imply that the cluster sizes Ny, are bounded almost surely.

A.2 Proof of Theorem 2

The results of the theorem follow directly from the definitions of V3 and V3 in (9) and (6),
respectively, and application of Lemma A.1, which is proven in the next subsection. For
example, under (16) it follows from this lemma that

R(Vs — Vi) = RV} = Op((GH)'R) = 0.

Lemma A.1. Suppose Assumptions 1-6 are satisfied.
(a) If (24) holds, so that the DGP is clustered along the first dimension, then

GVe 25V and GHV; 25 v,

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GHa"Vga -5 W? and GHV; 25 v,
where W2 is a random variable satisfying W2 > 0 almost surely.

(¢) If (17) holds, so that the DGP is clustered by intersections, then

GHV,, 25V, form e {G, H,I}.
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(d) If (18) holds, so that the DGP is not clustered, then
GHV,, 25V, forme {G, H,I}.

A.3 Proof of Lemma A.1

Proof for cases (a) and (b): The results in case (a) and the second result in case (b) are
given in Proposition 4.4 in Davezies et al. (2018). For the ﬁrst result in case (b), we use
the decomposition g, = g, — Xgn(8 — Bo) such that S hugh = >l X pug, —
(GH) ' SH | X, XQ ' X T, where, under (25), H' S| X[, Xy, - Qo and Q = Qy;

see Assumption 2. Thus, for any arbitrary n, we write

R 1 1 G H 2
GHn'T'yn = G Z (H‘l/2 Z nTXghugh) =3 Z (H_1/2 Z zgh> +op(1),
g=1 g=1 h=1

where, for any (fixed) g, 2z, = nTXgThugh — G~ ' X, uy, is i.i.d. across h with mean zero
and finite variance. For fixed G, it follows that the random vector H Y2311 (z1p, ..., zan) |
is asymptotically normal as H — oo with mean zero and finite G x G variance matrix, say
Jg. Still for fixed G, it follows that G=' S5 (H Y2 3L, 2g,)? L GISM vl 222,
as H — oo, where (v, ) denote the eigenvalues and eigenvectors of Jg, M < G is the
number of non-zero eigenvalues, and Z,, denote i.i.d. standard normal random variables.
Next, G vy ||lpm|* — w2, € [0,00) for all m > 1, where w,, > 0 for at least one m.
Hence, G™' S5 (H Y200 20)? 4y v w? 72 which is a (scaled) weighted sum of
x3-distributions.

Proof for cases (¢) and (d): Under (17), we can apply the results of Djogbenou et al.
(2019), for the same reason as in the proof of (20), to conclude that each term in (7), multi-
plied by GH, converges in probability to I'r defined in (14). The convergence in probability
of Vi and V3, normalized by GH, follows. Similarly, under (18), each term in (7), multiplied
by GH, converges in probability to I';.

A.4 Proof of Theorem 3

To prove Theorem 3 we first present the bootstrap equivalents of Theorems 1 and 2. These
are given in Theorems A.1 and A.2, the proofs of which are in the next subsections.

Theorem A.1. Suppose Assumptions 1-7 are satisfied and that Hy is true. Let m €
{G,H,1,NC} denote bootstrap clustering by the first dimension, the second dimension, in-
tersections, and individual observations, respectively; c.f. step 3(a). Then it holds that

(aTVma)’l/zaT(B* —B) &, 7, in probability,
where Z ~ N(0,1).

Theorem A.2. Suppose Assumptions 1-7 are satisfied and that Hy is true.

(i) Suppose the bootstrap DGP in step 3(a) is clustered along the first (G) dimension
(results for bootstrap clustering along the second dimension are symmetric).
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(a) If (24) holds, so that the DGP is clustered along the first dimension, then

A

G(Vy = Vg) 250 and G(Vg* - Vo) N 0, in probability.

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GHa' (Vi —Vi—V))a L Wo  and GHa' (Vi—Vg)a -5 Wy, in probability,

where Wy is a zero mean random variable that is independent of Z in Theorem A.1.
(c¢) If (17) holds, so that the DGP is clustered by intersections, then

GH(Vy — Vg —V)) 250 and GH(Vy — Vi) %50, in probability.
(d) If (18) holds, so that the DGP is not clustered, then
GH(VQ* — Ve -V 50 and GH(V; — Vo) £, 0, in probability.
(ii) If the bootstrap DGP in step 3(a) is clustered by intersections, then
GH(Vy —2V;) 250 and GH(Vy — V) %50, in probability.
(iii) If the bootstrap DGP in step 3(a) is the WB, then
GH(Vy —2V;) 50 and GH(Vy — V) %0, in probability.

Let m € {G,H,I, NC'} denote bootstrap clustering by the first dimension, the second
dimension, intersections, and individual observations, respectively; c.f. step 3(a). We then
decompose the bootstrap t-statistic as

A . .. _|_ . 1/2 _I_ ,\* o .
=20 =P _ (a8 Vua)Ta (B-B) (. g (A1)
N ( TV-*a)1/2 CLTV}*(Z (aTVma)1/2 »J

say. From Theorem A.1 we find that B}, L 7~ N(0,1), in probability, for all m.
For the first term on the right-hand side of (A.1), the result follows by direct application

of Lemma A.1 and Theorem A.2. In particular, for cases (i)(a),(c), and (ii), A* i) q,

m,j

in probability, where ¢ = 1 / 2 or ¢ = 1 is the variance of the limit distribution of ¢ ;. For

case (i)(b), we write A% =1 — (V* Vg)/V* and apply Lemma A.1 and Theorem A.2.
Note that, because Hy is true the results of Lemma A.1 also apply to the variance estimators
imposing the null, i.e. all V in Lemma A.1 can be replaced by V. The random variable
W2 may then be different, but since the explicit form of W7 is not needed, that is not an
issue. Finally, Z and W, are generated by the bootstrap measure and are both therefore
independent of W?.
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A.5 Proof of Theorem A.1

We give the proof only for the case where the bootstrap is clustered along the first dimension;
that is, uy = wugv;. The proofs for the other cases are entirely analogous. First note that

(a"Vga)?a™ (B* — B) = Zzg, zy = (aTVGa)_l/QaT(XTX)_ngqugv;.

g

Because vy is independent across g with mean zero and variance one, it follows that zj
is independent across g with E*(z;) = 0 and Var® (X9, 28 = Z?Zl Var®(z;) = 1. The

g=1 g
Lyapunov condition is satisfied (with P-probability converging to one) because

Zmz ' < B (a Vea) 2 |Q | ZH X, i

- op<1><avvga>—2(0;m > x| 0

regardless of the clustering structure in the DGP. To see this, suppose first that (24) holds, in
which case the DGP is clustered along the first (G) dimension. Then X 4ty = X411 X J,dign
is of order Op(H) and GV - Vi > 0; see Davezies et al. (2018) and Lemma A.1. How-
ever, if the DGP is not clustered along the first dimension (under (17), (18), or (25)), then
X iy = Op(H"?) and V' = Op(GH); see also Djogbenou et al. (2019) and Lemma A.1.
In either case, Y5 E*|2]|* = Op(G™Y).

A.6 Proof of Theorem A.2

In all cases, the factors Q! in the definitions of V* are functions only of the original data
and satisfy Q i Qo > 0. Hence, these factors have no impact on the proofs. We therefore
prove most results for the corresponding I ; see (7) and (22). Specifically, we prove the

m?

following lemma, which suffices for the theorem.

Lemma A.2. Suppose Assumptions 1-7 are satisfied and that Hy is true.

(i) Suppose the bootstrap DGP in step 3(a) is clustered along the first (G) dimension
(results for bootstrap clustering along the second dimension are symmetric).

(a) If (24) holds, so that the DGP is clustered along the first dimension, then

A

Gy —Tg) 250 and GH(IA‘? -1y N 0, in probability,
Var*(GH (I — I'7)) = Op(1).

(b) If (25) holds, so that the DGP is not clustered along the first dimension, but it is
clustered along the second dimension, then

GH(f‘*G —T¢) 50 and GH(f‘? -1 =, 0, in probability,
GHCLT(VI;‘; ~Vi)a N Wy, in probability,

where Wy is a zero mean random variable that is independent of Z in Theorem A.1.
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(c¢) If (17) holds, so that the DGP is clustered by intersections, then
GH(IL—T¢) 250 and GH(I* —T) 50, in probability, for m € {H,I}.
(d) If (18) holds, so that the DGP is not clustered, then
GH(L—T¢) 250 and GH(* —T) 50, in probability, for m € {H,I}.
(i7) If the bootstrap DGP in step 3(a) is clustered by intersections, then
GH(I —1';) £5 0, in probability, form € {G, H,I}.
(7ii) If the bootstrap DGP in step 3(a) is the WB, then
GH(I* —1T) 0, in probability, form € {G,H,1}.

A.7 Proof of Lemma A.2

We prove convergence in mean square. That is, we show that the second moment (conditional
on the sample) converges to zero (in P-probability). Let n be an arbitrary conforming vector.
Proof for case (i): First, using the decomposition @} = 1, v; — X (8% — B), we find that

n' (L5 —Te)n = G 2 > n' X, gty X,n(v,* — 1) (A2)
(Gif)Q Z UTXTug(IB 5)TXTX977@ (A.3)
! (GH)‘z ; (n" X, X,(8" - 8)) (A4.4)

Because ('U;‘2 — 1) is independent and identically distributed across g with mean zero and

finite variance, the conditional second moment of (A.2) is

1

E'(A2)) = g

i B (0 = 1)) Yo (' X iy Xm)?.

Under (24), where the DGP is clustered along the first (G) dimension, X 1, = >4, X ), dign
is of order Op(H). However, if the DGP is not clustered along the first dimension (under
(17), (18), or (25)), then X di, = Op(H'?). This shows the results for (A.2) for case (i).
The conditional second moment of (A.3) is

4
(GH)?

2
E ((A 3)) < Z nTXTumu X (XTX>_1X;;X9177091 92)’

g1,92=1

where we note that expanding the square results in four summations, but two of these are
eliminated because vy is independent across g, so that the summation indexes must be equal
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in pairs. Using this together with the aforementioned orders of magnitude of XgT'i),g and the
facts that (X' X)™' = Op((GH) ") and X ] X, = Op(H) (Davezies et al. 2018) yields the
desired results for (A.3) for case (i). Finally, (A.4) is a non-negative random variable, and
noting that Var® (ﬂ* — B) = Vg, its conditional mean is

1
(GH)?

E*((A4)) = Z "X X,VeX ) Xn = O0p(G7| Vo).

The results for (A.4) for case (i) then follow by application of Lemma A.1.
Next, we find that

GHn' (I -T)n = n' X, gy, Xgnm(v;? — 1) (A.5)

o[-
T
Ma

2l gl
Il

(@)
N~—
P
>
~N =

Q
Il
Me 1=

H
S 0" X i (BT — B) X Xmv] (A.6)

Ma
M=

_|_

(n" X, X0 (8"~ B)). (A7)

Il
—_
i

The proofs for each of the terms (A.
and they are therefore omitted.
For I'}; we find that

are nearly identical to those for (A.2)—(A.4),

" 1 R . A . \2
GHn'Tym = G 4 (n' X, 4, = CH £ Z ( "X up, — X(B° - ﬁ))
_ b

( "X up)? + A (A.8)

i Mm i Mm

GH }

where E*|A*| = Op(G||V4||), in probability, by application of Lemma A.1 and the Cauchy-
Schwarz inequality, because

1 H
B (g 0 XIX8 = B) = 30X XV Xum = 0G| V)

This shows that A* is of the required order of magnitude in part (a) and is negligible in
parts (b)—(d). Noting that X,/ uj = 35 X J, 40}, the main term in (A.8) satisfies

1 & 1
CH > (' X, u; — GHn'T'm = GH Z Z nTXThughugthhn( - 1) (A.9)
h=1

hlgl

Z Zn Xg1h'u’glhugth92hnvg1 92" <A'10>

h 1 91792

By independence of (v;* — 1) across g, it is easily seen that E*((A.9)?) = Op(G™), showing
the results for (A.9) for case (i). Similarly,

2
E*((A. 10) H)? Z (ZnTXThdglhugghX zhn)

g17#92 ~ h=
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which is Op(1) in part (a) and op(1) in parts (c) and (d), showing the results for (A.10) for
those parts. Thus, only part (b) remains for (A.10). For any fixed h, as G — oo,

1 1 & Ty T . x dF .1 & T
ciz" "X up = i ggln X Ugnv, — N<07822G gzl( Xghugh) ), (A.11)
in probability. Moreover, for fixed hy # hg, as G — oo,
E (GnTXthuhlnTXhzum) = Zn XghlughlughQXghQn Lso0. (A.12)

It follows from (A.11), (A.12), and the contlnuous mapping theorem that, for fixed H, as

G — o0,
H a

* 1
Z (n" X, u}) —>d Z <phmG Z(nTXgThﬁ,gh)Q) 73, in probability,
h=1 G—o0 g= 1

where Z, ~ 1.0.d.N(0,1) for h = 1,..., H. Because (GH)~ ZgG L (T X g ) £
1n' ' < oo by Lemma A.1, it follows that
1 H
= (
GH =
where Z,,, ~ i.i.d.N(0, 1) for m=1,2,.... The rlght—hand side of (A.13) is a weighted sum

of x3-distributions, where the weights satisfy 3-°°_, v2, = ' T'tn. Hence, using Q RN Qo
and combining (A.8), (A.9), (A.10), and (A 13) we find for part (b) that

TX ] ur)? - Z v2 72 . in probability, (A.13)

GHa' ( ~WVa LN Z — 1) = Wy, in probability,
m=1
where the Weights Tm are derived from v,, by setting n = Q;'a in the latter and the 7, thus
satisfy %°_, 72 = a' Vja. Fmally, Wy is mdependent of Z because
1 2 _

9= g2=
using Lemma A.1, independence of vy across g (to eliminate the summation over gs), and
the fact that X i, = Op(H'?) under (25).

Proof for case (ii): F irst we find that

GHn' (I, —T1)n = G i Z Z n' X gy iigntig, X gnm(vyy — 1) (A.14)
g=1h=1
1 & ul T T
+ GiH 231 h%;h n Xghl 'u’gh1’u’gh2Xgh2nUgh1 gha (A15)
g=1hizFh2
2 s z T T T T
g=1h1,h2=1
1 & & oy s s a s
_'_Gin:lh; 177 Xgh1 gh1</6* _IB>(/6* _/8) XghQXghQIr’U;hlv;hQ‘
g=1 hi,ho=

(A.17)
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The proofs for (A.14), (A.16), and (A.17) are nearly identical to those for (A.2)-(A.4), and
are therefore omitted. For (A.15) we find

G H H
Z Z Z t(gla 92, h17 hlla h27 h/2)E*(U;1h1U21h3022h2022h§)7 (A18)

91,92 h1#h! ha#hl

E*((A.15)%) = G

where t(g1, go, h1, b}, ho, hYy) = nTX;h1
tion only of the original data and is Op(1). By independence of vy, across both g and h,
the right-hand side of (A.18) is non-zero only if g1 = ¢» and either hy = hy, b} = h} or
hy = Ry, b = hs. In either situation, one summation over g and two summations over h are
eliminated, so that (A.18) is at most Op(G~'), which proves the result for I',.

The proof for f";{ is identical to that for fg after interchanging the g and h subscripts
throughout. Finally, GHn' (' — I';)n is equal to the sum of (A.14), (A.16), and (A.17),
with h; = ho in the latter two, so we have already proven the required result for this term.

Proof for case (iii): The proofs for case (iii) are nearly identical to those for case (ii) and

are therefore omitted.

. ..T T T . ..T .
uglhluglhlnglhllnn ngh2ug2h2Uth'2ngh’277 is a func-
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