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Summary

We study the statistical properties of heterogeneous agent models. Using a Bewley-
Hugget-Aiyagari model we compute the density function of wealth and income and use
it for likelihood inference. We study the finite sample properties of the maximum
likelihood estimator (MLE) using Monte Carlo experiments on artificial cross-sections
of wealth and income. We propose to use the Kullback-Leibler divergence to inves-
tigate identification problems that may affect inference. Our results suggest that the
unrestricted MLE leads to considerable biases of some parameters. Calibrating weakly
identified parameters allows to pin down the other unidentified parameter without
compromising the estimation of the remaining parameters. We illustrate our approach
by estimating the model for the U.S. economy using wealth and income data from the
Survey of Consumer Finances.

Keywords: Heterogeneous agent models, Continuous-time, Fokker-Planck equations,
Kullback-Leibler divergence, Maximum likelihood.

JEL classification : C10, C13, C63, E21, E24.

∗This paper represents the author’s personal opinions and does not necessarily reflect the views of the
Deutsche Bundesbank. This version supersedes an earlier working paper entitled “Estimation and identifica-
tion of heterogeneous agent models: A likelihood approach” (CREATES WP 2017-35). The authors would
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1. Introduction

Heterogeneous agent models have become an extensively used tool in macroeconomics for

the study and evaluation of the welfare implications and desirability of business cycle sta-

bilization policies. They have also been used to address questions related to social security

reforms, the precautionary savings behavior of agents, employment mobility and wealth in-

equality. A comprehensive review of the developments made in the field during the last three

decades can be found in Rı́os-Rull (1995, 2001) and Heathcote et al. (2009). More recently,

they have been used for the study of the distributional implications of monetary and fiscal

policies (see Ozkan et al., 2016; Holm, 2018; Kaplan et al., 2018; Wong, 2019).

Currently, the main workhorse of household heterogeneity is based on the contributions

of Bewley (Undated), Huggett (1993) and Aiyagari (1994). Their theories are motivated by

the empirical observation that individual earnings, savings, wealth and labor exhibit much

larger fluctuations over time than per-capita averages, and accordingly significant individual

mobility is hidden within the cross-sectional distributions. These ideas have been formalized

with the use of dynamic and stochastic general equilibrium models of a large number of

rational consumers that are subject to idiosyncratic income fluctuations against which they

cannot fully insure due to market incompleteness.

The standard approach to study the quantitative properties of these models is based on

the calibration of their structural parameters. Hence, the parameter values are either fixed

to those for which there exists a wide consensus in the literature, or chosen in such a way

that they minimize the distance between a subset of moments obtained from the model and

the same moments computed from the data, or by a combination of both. Accordingly,

calibration can be classified as a partial or limited information approach in the sense that it

only makes use of a subset of the model cross-equation restrictions. Kydland and Prescott

(1982) introduced calibration into macroeconomics with subsequent developments made by

Prescott (1986), Cooley and Prescott (1995) and Gomme and Rupert (2007). Recent ex-

amples that combine both types of calibration approaches, conditional on estimated values

for the exogenous income process, can be found in Benhabib et al. (2019), Luo and Mongey

(2019), Abbott et al. (2019).

On the other hand, full information methods which rely on the entire probability distri-

bution of the model have received less attention. Given the increased quality and quantity

of household data, the first contribution of this paper is to provide a simple likelihood frame-

work that exploits the information content in microeconomic data to estimate the structural

parameters of macroeconomic models with heterogeneous agents. Our approach relies on the

ability to compute the model’s implied stationary probability density function which can be
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later used to build the likelihood function of the model. Likelihood-based methods impose

on the data the full set of restrictions implied by a particular economic model allowing the

econometrician: (i) to assess the uncertainty surrounding the parameter values which ulti-

mately provides a framework for inference and hypothesis testing, and (ii) to use standard

tools for model selection and evaluation.

In general, the computation of the probability density function of the state variables

in heterogeneous agent models is not straightforward as it turns out to be a complicated

endogenous and nonlinear object that usually has to be numerically approximated either

by Monte Carlo simulation or functional approximation techniques (see Heer and Maussner

(2009) for a textbook treatment.). However, Bayer and Wälde (2010a,b, 2011), Achdou

et al. (2014), and Gabaix et al. (2016) have recently suggested the use of Fokker-Planck or

Kolmogorov’s Forward equations for the analysis of endogenous distributions in macroeco-

nomics. These partial differential equations describe the entire dynamics of any probability

density function in a very general manner without the need to impose any particular func-

tional form. When combined with the Hamilton-Jacobi-Bellman equation that describes the

optimal consumption-saving decisions of economic agents, they form a system of coupled

partial differential equations that can be numerically solved with high degree of accuracy

and computational efficiency on the entire state-space of the model using the finite difference

methods described in Candler (1999) and Achdou et al. (2020). It is the ability to compute

the model’s non-parametric probability density function via the Fokker-Planck equations, to-

gether with the increased efficiency in the computation of the model’s equilibrium provided by

finite difference methods, that makes our method novel and feasible for estimation purposes.

A condition for the maximum likelihood estimator to deliver consistent estimates of the

model parameters, and valid asymptotic inference is identification (see Newey and McFad-

den, 1986). Roughly speaking, identification refers to the fact that the likelihood function

must have a unique maximum at the true parameter vector and at the same time display

enough curvature in all of its dimensions. Lack of identification leads to misleading statis-

tical inference that may suggest the existence of some features in the data that are in fact

absent. Therefore, it is important to verify the identification condition prior to estimation.

The recent contributions of Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011)

and Rı́os-Rull et al. (2012) point out in that direction by providing tools that can be used

to assess the identifiability of parameters in structural macroeconomic models.

The second contribution of this paper is, therefore, to investigate whether it is possible,

and to what extent, to (locally) identify the structural parameters of heterogeneous agent

models in our likelihood-based framework. Checking for identification in practice is difficult

since the mapping from the structural parameters of the model to the objective function
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is highly nonlinear and usually not known in closed form. Therefore, the standard rank

and order conditions in Rothenberg (1971) for linear models cannot be applied. Instead,

we propose to use the Kullback-Leibler (KL) divergence between two distribution functions

(see Kullback and Leibler, 1951, Kullback, 1959 and McCulloch, 1989) to investigate the

identification power of our maximum likelihood estimator. The KL divergence is computed

for the model’s implied distribution and hence it is independent of the data. This allows

the researcher to analyze the sensibility of the model’s probability distribution function to

changes in the parameter values even before any estimation takes place. Lack of variability

along any dimension of the parameter space provides an early diagnosis for potential iden-

tification issues. In fact, irregular behavior in the density function found at this stage will

impact the estimator’s objective function and hence limit its ability to accurately identify

the parameters of the model using the likelihood of the data.

The estimation approach proposed in this paper differs from those used in Mongey and

Williams (2017), Williams (2017) and Winberry (2018). In particular, they employ Bayesian-

likelihood methods to estimate the parameters that govern the dynamics of aggregate exoge-

nous macroeconomic shocks, conditional on calibrated values for the preference parameters

which ultimately depend on the cross-sectional stationary distribution of individual states.

Therefore, their statistical methods do not make any use of the model’s implied probability

density function. Closer to our approach is the work by Challe et al. (2017) where a subset

of the preference parameters is included in the estimation step and hence some knowledge

of the cross-sectional probability density function is in principle required. However, in their

quantitative exercise they collapse the model’s density function to a single mass point and

therefore do not make use of the entire distribution function in the estimation process.

To illustrate our approach, Section 2 introduces a continuous-time version of an other-

wise standard Bewley-Hugget-Aiyagari model in which a large number of households face

idiosyncratic and uninsurable income risk in the form of exogenous shocks to their labor pro-

ductivity. We characterize and solve for the stationary competitive equilibrium which equip

us with a time-invariant joint probability distribution of wealth and income that can be

used for estimation and/or identification analysis. In Section 3 we show how to compute the

model’s likelihood function using the stationary joint density function from the model. While

our framework can be easily extended to include cross-sectional data on a number of addi-

tional endogenous variables, e.g. individual consumption, our general equilibrium approach

limits this possibility unless additional features, e.g. measurement errors, are considered.

Section 4 examines the finite sample properties of the maximum likelihood estimator

using a Monte Carlo experiment. We pay particular attention to the potential biases and

the precision of the estimates along different dimensions of the parameter space. Our results
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suggest that estimating the complete set of parameters using cross-sectional data on income

and wealth leads to considerable biases on the coefficient of relative risk aversion and on the

parameters describing the income process. The biases in these parameters persists in large

samples and their distributions tend to be wide and skewed. In Section 5 we compute the

KL divergence associated to the model’s implied distribution function and find that the poor

performance of the maximum likelihood estimator can be explained by the insensibility of

the wealth-income distribution to changes in this subset of parameters. On the other hand,

we find that cross-sectional data is very informative for parameters related to the supply

side, like the capital share in output and the depreciation rate.

A standard practice in applied macroeconomics when identification problems arise is to

fix the parameters that are believed to be unidentifiable to arbitrary values, and estimate the

remaining ones. In Section 6 we investigate the consequences of following such an strategy

and find that even in cases where some parameters are mis-calibrated the maximum likeli-

hood estimator, conditional on some parameters being calibrated, improves the finite sample

properties of the parameters being estimated. Section 7 provides an empirical illustration of

our proposed framework by estimating the parameters of a Bewley-Hugget-Aiyagari model

for the U.S. economy using individual data on wealth and income from the 2013 Survey of

Consumer Finances. Section 8 concludes.

2. A prototypical heterogeneous agent model

For our study we consider a prototypical heterogeneous agent model á la Bewley-Hugget-

Aiyagari following Achdou et al. (2020). In our economy there is no aggregate uncertainty

and we assume that all aggregate variables are constant an equal to their steady-state val-

ues, while at the individual level households face idiosyncratic uninsurable risk and variables

change over time in a stochastic way.

2.1 Households

Consider an economy with a continuum of unit mass of infinitely lived households where

decisions are made continuously in time. Each household consists of one agent, and we will

speak of households and agents interchangeably. Household i, with i ∈ (0, 1), has standard

preferences over streams of consumption, ct, defined by

U0 ≡ E0

∫ ∞
0

e−ρtu(ct)dt, u′ > 0, u′′ < 0, (2.1)
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where ρ > 0 is the subjective discount rate, and where the instantaneous utility function is

given by

u (ct) =

{
c1−γt

1−γ for γ 6= 1

log (ct) for γ = 1.

Here, γ > 0 denotes the coefficient of relative risk aversion (or the inverse of the elasticity

of intertemporal substitution, EIS). At time t = 0, the agent knows his initial wealth and

income level and chooses the optimal path of consumption {ct}∞t=0 subject to

dat = (rat + wet − ct)dt, a0 ∈ A, (2.2)

where at ∈ A ⊂ R denotes the household’s wealth per unit of time and r the interest rate.

Wealth increases if capital income, rat, plus labor income, wet, exceeds consumption, ct.

At every instant of time, households face uninsurable idiosyncratic and exogenous shocks

to their endowment of efficiency labor units, et ∈ E , making their labor income stochastic

(see Castañeda et al., 2003). The latter could also be interpreted as productivity shocks (see

Heer and Trede, 2003). Finally, w denotes the wage rate per efficiency unit which is the same

across households and determined in general equilibrium together with the interest rate. The

fact that there are no private insurance markets for the household specific endowment shock

can be explained, for example, by the existence of private information on the employee side,

like his real ability, that could give rise to adverse selection and moral hazard problems.

This would prevent private firms to provide insurance against income fluctuations. However,

the wealth accumulation process in (2.2) creates a mechanism used by agents to self-insure

themselves against labor market shocks and allows for consumption smoothing.

Following Huggett (1993), the endowment of efficiency units can be either high, eh, or

low, el. The endowment process follows a continuous-time Markov Chain with state space

E = {eh, el} described by

det = −∆edq1,t + ∆edq2,t, ∆e ≡ eh − el and e0 ∈ E , (2.3)

where ∆e can be interpreted as the labor efficiency gap. The Poisson process q1,t counts

the frequency with which an agent moves from a high to a low efficiency level, while the

Poisson process q2,t counts how often it moves from a low to a high level. As an individual

cannot move to a particular efficiency level while being in that same level, the arrival rates

of both stochastic processes are state dependent. Let φ1 (et) ≥ 0 and φ2 (et) ≥ 0 denote the

demotion and promotion rates respectively, with

φ1(et) =

{
φhl et = eh
0 et = el

, and φ2(et) =

{
0 et = eh
φlh et = el.
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Finally, households in this economy cannot run their wealth below a, where an ≤ a ≤ 0,

and an = −wel/r defines the natural borrowing constraint implied by the non-negativity of

consumption. Hence, A = [a,∞).

2.2 Production possibilities and macroeconomic identity

Aggregate output in this economy, Y , is produced by identical firms owned by the households.

The representative firm combines aggregate capital, K, and aggregate labor, L, through a

constant return to scale production function Y = KαL1−α, with α ∈ (0, 1), in order to

maximize its profits.

We assume that the aggregate capital stock in the economy depreciates at a constant rate,

δ ∈ [0, 1]. Since our focus is on the steady state, all the investment decisions in the economy

are exclusively directed towards replacing depreciated capital. Therefore the macroeconomic

identity

Y = C + δK, (2.4)

holds at every instant of time, where C denotes aggregate consumption, and δK denotes ag-

gregate investment. We have removed the temporal subscript t from all aggregate variables

to indicate that the economy is in a stationary equilibrium.

2.3 Equilibrium

In this economy, households face uncertainty regarding their future level of labor efficiency.

This makes their labor income and wealth also uncertain. Hence, the state of the economy

at instant t is characterized by the wealth-income process (at, et) ∈ A × E defined on a

probability space (Ω,F , G) with associated joint density function g (at, et, t). In a stationary

equilibrium, as the one assumed throughout, the density function is independent of time and

thus it simplifies to g (at, et).

Households. For any given values of r and w, the optimal behavior of each of the house-

holds in the economy can be represented recursively from the perspective of time t by the

Hamilton-Jacobi-Bellman equation (HJB)

ρV (a, e) = max
c∈R+

{
u(c) + Va(a, e)(ra+ we− c)

+(V (a, el)− V (a, eh))φ1(e) + (V (a, eh)− V (a, el))φ2(e)
}
, (2.5)

where V (a, e) denotes the value function of the agent1. The first-order condition for an

1A complete derivation of the HJB equation, the Fokker-Planck equations that described the subdensity
functions of wealth, and the stationary probability distributions of the efficiency endowments can be found
in the Online Appendices A and B.
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interior solution reads

u′ (c) = Va (a, e) (2.6)

for any t ∈ [0,∞), making optimal consumption a function only of the state variables and in-

dependent of time, c = c(a, e). Equation (2.6) implies that in equilibrium, the instantaneous

increase in utility from marginally consuming more must be exactly equal to the increase in

overall utility brought by an additional unit of wealth.

Due to the state dependence of the arrival rates, only one Poisson process will be active

for each of the values in E . This leads to a bivariate system of maximized HJB equations

ρV (a, el) = u(c(a, el)) + Va(a, el)(ra+ wel − c(a, el)) + (V (a, eh)− V (a, el))φlh, (2.7)

ρV (a, eh) = u(c(a, eh)) + Va(a, eh)(ra+ weh − c(a, eh)) + (V (a, el)− V (a, eh))φhl.(2.8)

As argued in Achdou et al. (2020), an interesting feature of our continuous-time setup

as opposed to the discrete-time case, is that (2.6) holds for all a > a since the borrowing

constraint never binds in the interior of the state space. Therefore, the system of equations

formed by (2.7) and (2.8) does not get affected by the existence of the inequality constraint

a ≥ a, and instead gives rise to the following state-constraint boundary condition

Va (a, e) ≥ u′ (ra+ we) . (2.9)

It can be shown that (2.9) implies that ra + we − c(a, e) ≥ 0 and therefore the borrowing

constraint is never violated.

Firms. The representative firm rents capital and labor from the households in perfectly

competitive markets. Hence, in equilibrium the production factors are paid their respective

marginal products

r = αKα−1L1−α − δ and w = (1− α)KαL−α, (2.10)

where the steady state aggregate capital is obtained by aggregating the wealth held by every

type of household, K =
∑

et∈{el,eh}
∫∞
a
atg (a, e) da, and the steady state aggregate labor is

obtained by aggregating their efficiency labor units, L =
∑

e∈{el,eh}
∫∞
a
etg (a, e) da. This

form of aggregation provides a link between the dynamics and randomness that occurs at

the micro level with the deterministic behavior at the macro level.

Distribution of endowments and wealth. Given its dependence on one continuous random

variable and one discrete random variable, the stationary joint density function, g (a, e),

can be split into g (a, eh) and g (a, el). Following Khieu and Wälde (2019), we refer to

these individual probability functions as subdensities. For each e ∈ E , it follows that

g (a, e) ≡ g (a | e) p (e), implying that∫
g (a, e) da = p (e) , (2.11)
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where p (e) ≡ limt→∞ P (et = e) is the stationary probability of having an efficiency endow-

ment equal to e. Then, the (marginal) stationary density function of wealth is

g (a) = g (a, eh) + g (a, el) . (2.12)

Given our two state Markov process for the endowment of labor efficiency units it is

possible to show that its stationary distribution is given by

p (eh) =
φlh

φhl + φlh
, and p (el) =

φhl
φhl + φlh

. (2.13)

Let s (a, e) = ra + we − c (a, e) denote the optimal savings function for an individual

with an efficiency endowment equal to e ∈ E . The subdensities in (2.12) correspond to the

solution of the following non-autonomous quasi-linear system of differential equations known

as (stationary) Fokker-Planck equations

s (a, el)
∂

∂a
g (a, el) = −

(
r − ∂

∂a
c (a, el) + φlh

)
g (a, el) + φhlg (a, eh) (2.14)

s (a, eh)
∂

∂a
g (a, eh) = −

(
r − ∂

∂a
c (a, eh) + φhl

)
g (a, eh) + φlhg (a, el) , (2.15)

where the partial derivatives with respect to wealth describe the cross-sectional dimension

of the density function. The system of equations formed by (2.14) and (2.15) takes as given

the optimal policy functions for consumption of individuals. This feature creates a recursive

structure within the model that facilitates its solution: households and firms meet at the

market place and make their choices taking prices as given. Prices in turn are determined in

general equilibrium and hence depend on the entire distribution of individuals in the econ-

omy. Such distribution is determined by the optimal choices of households and the stochastic

properties of the exogenous shocks.

Equilibrium. A stationary equilibrium is defined as a situation where the aggregate vari-

ables and prices in the economy are constant, the joint distribution of wealth and income is

time-invariant, and all markets clear. More specifically, while the distribution of wealth is

constant for both the low and high efficient workers and the number of low and high efficient

workers is also constant, the households are not characterized by constant wealth levels and

efficiency status over time. Achdou et al. (2020) show that such stationary equilibrium is

unique if the EIS is greater or equal than one, i.e. 1/γ ≥ 1. Closely related results for the

case of discrete-time economies have been shown in Açikgöz (2018) and Light (2020).

Definition 2.1 (Competitive stationary equilibrium) A competitive stationary equi-

librium is given by pairs of value functions V (a, el) and V (a, eh), individual policy functions

for consumption c (a, el) and c (a, eh), time-invariant density functions g (a, el) and g (a, eh),

a vector of constant prices [w, r], and a vector of constant aggregates [K,L, Y, C] such that:
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1. the consumption functions c (a, el) and c (a, eh) satisfy (2.7) and (2.8), i.e. they solve

the household’s consumption-saving problem,

2. factor prices satisfy the first order condition in (2.10), i.e. they solve the firm’s allo-

cation problem,

3. markets clear, i.e. (2.4) holds.

4. the joint probability density function of wealth and income is stationary, that is,

∂g (a, e, t) /∂t = 0 for all (a, e) ∈ A× E, and the associated subdensities satisfy (2.14)

and (2.15).

2.4 Computation of the equilibrium

The solution of our prototype economy is not available in closed form. Therefore, for a

given set of parameter values, the stationary competitive equilibrium in Definition 2.1 is

approximated on a discretized state space for A. The algorithm we use to approximate the

solution builds on earlier work by Candler (1999) and Achdou et al. (2020) which exploits

the recursive nature of the model. It consists of two main blocks: (i) an outer block that

takes the factor prices as given to compute in a recursive way the stationary equilibrium at

the macro level; and (ii) an inner block that uses an implicit finite difference method in two

steps. In the first step it approximates the solution to the system of equations (2.7) and (2.8)

which represents the household’s allocation problem at the micro level. Given the optimal

consumption function from step one, the second step approximates the stationary subden-

sities that solve the system of ordinary differential equations in (2.14) and (2.15). Having

approximated the density function, the factor prices from the outer block are updated and

the algorithm iterates until convergence. A detailed description of the algorithm and its

implementation can be found in the Online Appendix D .

3. Structural estimation: The likelihood function

While there is a broad consensus on the importance of heterogeneity in macroeconomics,

there is less agreement on how these models should be taken to the data. In this section

we show how to estimate the structural parameters of heterogeneous agent models using full

information methods. The feasibility of our procedure is dictated, in general, by the use of

continuous-time methods, and in particular by the Fokker-Planck equations that allow us to

approximate the probability density function of the state variables which can be then used

to write the model’s likelihood function.
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Let a = [a1, . . . , aN ] and e = [e1, . . . , eN ] be a sample of N i.i.d observations on individual

wealth and income, respectively. Then, the log-likelihood function of the prototype model

in Section 2 can be computed as

LN (θ | a, e) =
N∑
i=1

log g (ai, ei | θ) , (3.1)

where θ ∈ Θ ⊂ RM is theM×1 vector of structural parameters, and where Θ is the parame-

ter space, assumed to be compact. The maximum likelihood (ML) estimator, θ̂N is defined as

θ̂N = arg max
θ∈Θ

LN (θ | a1, e1 . . . , aN , eN) . (3.2)

Alternatively, by using identity (2.12), it is possible to obtain the marginal density of

wealth as g (ai | θ) = g (ai, el | θ)+g (ai, eh | θ) for each i = 1, . . . , N . Therefore, in situations

where only data on individual wealth is available, we can rewrite the log-likelihood function as

LN (θ | a) =
N∑
i=1

log g (ai | θ) . (3.3)

In practice, the ML estimation is carried out by means of an iterative procedure that

requires solving the model for different values of the parameter vector θ. At each iteration,

the model is solved on the discretized state-space A×E as described in Section 2. While the

efficiency lattice only takes two possible values, E = {el, eh}, the wealth lattice is discretized

using I ≤ N points on a partially ordered set defined by A = [min (a) ,max (a)]. Once

the joint density function of wealth and income has been approximated, the log-likelihood

function is constructed in two steps: (i) For each pair (ai, ei) ∈ a × e, we use a piece-wise

linear interpolation to evaluate g (ai, ei | θ); (ii) Once g (ai, ei | θ) has been evaluated for all

(ai, ei) ∈ a× e, the log-likelihood function is computed using (3.1).

4. Finite sample properties

This section uses Monte Carlo simulations to investigate the properties of the ML estimator in

finite samples by estimating the model of Section 2 on artificially generated data of individual

wealth and individual income (labor efficiency). The parameter values for the data generating

process (DGP), θ0, are provided in Table 1. In the model, time is measured in years and pa-

rameter values should be interpreted accordingly. To ensure the existence of a unique station-

ary equilibrium we assume an economy with unitary EIS. The labor efficiency process is set

to match the long run employment-unemployment dynamics of the US economy. Following

Shimer (2005), the promotion rate is calibrated to match a monthly average job finding rate of
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Table 1. Population parameters, θ0. The exogenous endowment of efficiency units is given
by de = −∆edq1 + ∆edq2, with ∆e ≡ eh − el, where q1 and q2 are Poisson processes with intensity
rates φlh and φhl respectively. The representative household has standard preferences defined
by Ut = Et

[∫∞
t eρ(s−t)u (c) ds

]
where u (c) = c1−γ/ (1− γ). The macroeconomic identity in the

stationary competitive equilibrium is given by Y = C − δK, where Y = KαL1−α. In the model,
time is measured in years and parameter values should be interpreted accordingly.

Parameter Value

Relative risk aversion, γ 1.0000
Rate of time preference, ρ 0.0490
Capital share in production, α 0.3600
Depreciation rate of capital, δ 0.1038
Endowment of high efficiency, eh 1.0000
Endowment of low efficiency, el 0.2000
Demotion rate, φhl 0.5578
Promotion rate , φlh 7.3822

0.45, and the demotion rate is calibrated to match a monthly average separation rate of 0.034.

The endowment level of high efficiency is normalized to one while that of low efficiency is set

to one-fifth of the one for employed individuals. These values imply a labor efficiency gap, ∆e,

of 80%, which is consistent with the values used in Huggett (1993), and Imrohoroğlu (1989)

and Krusell and Smith (1998). The transition rates for the Poisson processes are computed

using (2.13). The remaining parameter values are fairly standard in the literature and are

consistent with the long-run averages observed for the capital-output ratio and interest rates.

The Monte Carlo experiment is based on M = 200 samples from the model’s popula-

tion stationary joint density function g (a, e | θ0), each of them of size N ∈ {1,000, 5,000,

10,000}2. We first sample the two state labor efficiency units using the marginal stationary

distribution in (2.13). Given the draws on the efficiency units, we then approximate the

population density of wealth, g (a|θ0), using I = 500 uniform grid points between a = 0

and amax = 100, from which we sample values of individual wealth using a slice sampler.

For each simulated sample, we proceed to estimate the model’s full parameter set using the

proposed maximum likelihood estimator when the econometrician only has access to data on

wealth, and when also has data on wealth and income. The numerical maximization of the

log-likelihood function is carried out by means of a Global Search algorithm with 250 initial

stage points and 500 trial points.

Table 2 summarizes the results. For each parameter θ ∈ θ, it reports: (i) the Median Nor-

malized Bias, MNB = median{(θ̂m − θ0)/θ0}; (ii) the InterQuartile Range, IQR = Q3 −Q1,

where Q1 and Q3 are the 25th and 75th percentiles of the distribution of the parameter es-

2Each Monte Carlo experiment takes up to 28 hours on a dedicated 32 cores Xeon server.
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Table 2. Finite sample properties of the ML estimator. For each θ ∈ θ, the table reports
the Median Normalized Bias (MNB), the InterQuartile Range (IQR), and the Mean Absolute
Normalized Errors (MANE) from a Monte Carlo experiment using M = 200 samples, each of size
N = {1,000, 5,000, 10,000}. Results in Panel A are based on cross-sectional data on wealth only,
while those in Panel B are based on cross-sectional data on both wealth and income.

MNB IQR MANE MNB IQR MANE MNB IQR MANE

θ N=1,000 N=5,000 N=10,000

Panel A: Wealth only

γ 7.139 7.148 6.374 2.399 6.487 3.739 3.165 5.960 3.754

ρ 0.056 0.051 0.506 -0.058 0.035 0.383 0.058 0.025 0.303

α -0.218 0.055 0.225 -0.243 0.068 0.239 -0.205 0.077 0.192

δ 0.118 0.021 0.212 0.114 0.022 0.189 0.083 0.021 0.180

el 4.689 0.498 4.337 4.126 0.745 3.723 3.651 0.823 3.299

eh 0.892 0.674 0.867 0.926 0.746 0.890 0.715 0.858 0.719

φlh 0.071 7.464 0.468 -0.093 4.576 0.351 0.030 3.424 0.282

φhl 0.457 1.704 2.004 -0.061 1.142 1.547 0.257 0.746 1.039

Panel B: Wealth and income

γ 4.028 8.076 4.797 0.084 3.535 2.297 0.057 2.498 1.933

ρ 0.168 0.040 0.431 -0.011 0.024 0.312 0.223 0.022 0.308

α -0.205 0.089 0.215 -0.229 0.060 0.221 -0.138 0.062 0.155

δ 0.125 0.020 0.200 0.135 0.019 0.194 0.091 0.028 0.201

el 4.378 0.864 4.153 2.016 0.996 2.905 0.650 0.810 2.114

eh 0.940 0.739 0.848 0.898 0.714 0.858 0.567 0.730 0.618

φlh -0.070 5.968 0.417 0.057 5.270 0.389 0.120 3.798 0.351

φhl -0.070 0.470 0.449 0.046 0.430 0.398 0.139 0.296 0.355

timate; and (iii) the Mean Absolute Normalized Errors, MANE = (1/M)
∑

m|(θ̂m − θ0)/θ0|.
We report normalized metrics in order to avoid scale problem when comparing estimates

across parameters. Panel A present results when the only data used in the estimation is

individual wealth, while Panel B reports the results when data on both individual wealth

and income are used. A careful analysis of the (normalized) mean and median biases, and

the interquartile range provides information on the small sample distributions of the param-

eter estimates. In particular, substantial differences between (the absolute value of) MNB

and MANE point towards small sample parameter distributions that are skewed, while large

values for the IQR would imply high levels of uncertainty around the parameter’s estimate.

The simulation results suggest that some of the model parameters exhibit large biases

that persist even as the sample size increases. This includes the coefficient of relative risk

aversion, γ, the levels of labor efficiency units, {el, eh}, and their transition rates, {φlh, φhl}.
In particular, their ML estimates imply extremely risk averse households as well as income

levels and transition rates that are up to 2 and 4 times higher than their population values.
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Their distributions are skewed and show considerable variability. On the other hand, the

biases on the discount rate, ρ, the capital share in production, α, and on the depreciation

rate, δ, are within reasonable ranges, even in small samples.

In general, increasing the sample size reduces the estimated bias for most of the parame-

ters as well as the uncertainty around them. Panel A shows that augmenting the sample size

from N=1,000 to N=5,000 observations reduces the MANE of largely biased parameters by

around two to three orders of magnitude. On the other hand, Panel B suggests that using

data on both individual wealth and individual income generally delivers ML estimates with

smaller biases, and relatively larger bias reductions as a function of the sample size. This is

particularly evident for γ, el and φhl. However, the additional information brought by the

use of income data has limited effects on the estimation errors and biases for ρ, α and δ.

5. The Kullback-Leibler divergence

Overall, the finite sample results for the unrestricted ML estimator reveal substantial dif-

ferences among parameter estimates that could suggest potential identification problems,

particularly for those that exhibit considerable normalized errors. To investigate this possi-

bility we take one step back and look at the model’s implied population distribution function,

G0 ≡ G (a, e | θ0), and its associated population density function, g0 ≡ g (a, e | θ0). Since

the model’s probability density function constitutes the building block of the maximum

likelihood estimator in (3.1), examining its behavior will provide valuable information on

whether it is possible to achieve identification of the model parameters using the likelihood

of the data. In particular, we are interested in studying the sensitivity of the population

distribution to small perturbations in the values of the model’s structural parameters.

We propose to use the Kullback-Leibler (KL) divergence, or relative entropy, to measure

the divergence between any two distributions (see Kullback and Leibler, 1951 and Kullback,

1959). Let G̃ ≡ G (a, e | θ) and g̃ ≡ g (a, e | θ) denote the model’s implied wealth-income

distribution and density functions for θ 6= θ0. Then, the KL divergence from G̃ to G0 is

defined as

DKL
(
G0 || G̃

)
=
∑
e∈E

∫
a∈A

g (a, e | θ0) log

(
g (a, e | θ0)

g (a, e | θ)

)
da.

The value of the KL divergence, k ≥ 0, measures the information differences between the two

distributions G0 and G̃. If k = 0, then if follows that G0 = G̃ almost everywhere in A× E ,

despite the fact that θ 6= θ0. For k > 0, however, the KL divergence does not help to assess

whether the difference between the two distributions is large or small along A×E . Following

McCulloch (1989), we therefore map the KL divergence between wealth-income distributions

to the KL divergence between the two Bernoulli distributions, B (0.5) and B (q), where the
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implicit probability q is chosen in such a way that DKL (B (0.5) ||B (q)) = DKL(G0 || G̃)3.

As an example, suppose that the probability implied by the two distributions G0 and G̃

is q = 0.51. This corresponds to assigning a fair coin toss a probability of 0.51 when the

true probability is 0.5. Interestingly, Akaike (1973) and White (1982) have shown that

minθ∈ΘDKL(G0 || G̃) = maxθ∈Θ LN as N →∞. Therefore, from an asymptotic perspective,

the KL divergence can be used as a device to explore the behavior of the log-likelihood

function around the θ0, and hence, to inform on the ability of the ML estimator to identify

the model parameters.

[Figure 1 about here.]

Figure 1 plots the probability q implied by the KL divergence from G̃ to G as we vary

each θ ∈ θ while keeping the remaining parameters at their population values. All the KL

divergences, with the exception of that for γ, are constructed using parameter values that are

50% below and 50% above of the true parameter value. In the case of γ, we employ values

that lie 100% below and 100% above its population value. A dotted vertical line denotes the

value in the DGP. The results suggest, that all things equal, small perturbations to ρ, α and

δ have a large impact on the shape of the joint distribution of wealth and income. Therefore,

conditional on a given sample being observed, the ML estimator should be able to identify

these subset of parameters given that small differences in their values will produce signifi-

cantly different density functions. On the contrary, the influence of γ and some of the income

process parameters is small which suggest that the likelihood surface will be flatter along

these dimensions of the parameter space reducing the ability of the ML estimator to identify

them from a given sample. This lack of curvature could explain the poor performance of

the unrestricted ML estimator along these dimensions of the parameter space described in

Section 4. To further exemplify the previous argument, Figure 2 plots the model’s implied

density of wealth for different values of the coefficient of relative risk aversion and the share

of capital in output. As suggested by the KL divergence, small perturbations in γ have

virtually no effect on the wealth distribution, whereas small changes in α lead to substantial

differences in the wealth distribution4.

[Figure 2 about here.]

3McCulloch (1989) shows that the KL divergence from B (q) to B (0.5) is given by DKL (B (0.5) ||B (q)) =
− log (4q (1− q)) /2. Thus, q measures the divergence of an arbitrary Bernoulli trial from a fair Bernoulli

trial. Given the KL divergence k from G̃ to G0, it is straightforward to compute the implied probability q.
4The sensitivity of the wealth distribution to changes in the remaining parameters of the model can be

found in the Online Appendix E.
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6. Calibration and estimation

Although the results from the previous section indicate that the parameter estimates ap-

proach their true values in the population as the sample size increases, they also suggest

that the identification power of the likelihood function of wealth and income is reduced in

some dimensions of the parameter space, particularly in small samples. For the prototype

economy of Section 2, these inaccuracies are reflected in poor estimates of the parameters

related to the exogenous income process and of the coefficient of relative risk aversion. A

common practice among economists to get around this obstacle is to calibrate the parameters

that are problematic, and estimate the remaining ones.

To assess the consequences of following such a strategy, we begin by investigating the

finite sample behavior of the ML estimator when the exogenous income process is externally

calibrated. This strategy closely resembles the standard practice followed in the heteroge-

neous agent literature (cf. Benhabib et al., 2019, Abbott et al., 2019 and Luo and Mongey,

2019). We conduct a set of Monte Carlo experiments where we analyze the properties of

the ML estimator conditional on the following restrictions on the income parameters: (i) the

income levels, el and eh, are fixed to their population values; (ii) the transition rates, φlh and

φhl, are fixed to their population values; (iii) all income parameters are fixed to their popula-

tion values. Each Monte Carlo simulation is based on M = 200 samples generated from the

model’s population stationary probability density function, each of them of size N = 5,000.

Table 3 summarizes the results by reporting the mean absolute normalized errors, MANE,

and the median normalized bias, MNB. Panel A reports the outcomes when only data on

individual wealth is used in the estimation and Panel B reports the results when data on

both individual wealth and income is used. The last column from each panel replicates the

unrestricted ML estimation from Section 4 for comparison.

The results show that calibrating the levels of the income process alone reduces both the

absolute errors and the estimates’ biases considerably. This is particularly the case for the

coefficient of relative risk aversion and the capital share in output, and to a lesser extent, for

the transition rates. On the other hand, calibrating the transition rates of the income process

alone has limited consequences. Although it helps to reduce the bias in γ by nearly half of

that obtained from an unconstrained estimation, there is virtually no effect on the errors of

the remaining parameters. If instead, we calibrate all the income parameters simultaneously,

the ML estimator yields sharper estimates for the relative risk aversion but deteriorates the

precision with which the depreciation rate can be estimated. Interestingly, note that the use

of income data, in addition to wealth data, does not provide any additional information that

can help to identify the income levels. This is most likely due to the fact that the income
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Table 3. Conditional estimates: income process calibrated to their population values.
The table reports the Mean Absolute Normalized Error (MANE) and the Median Normalized Bias
(MNB, in parenthesis) from a Monte Carlo experiment with M = 200 samples, each of them of size
N = 5,000. The ML estimation is conditional on the income parameters being calibrated to their
population values as indicated in the second row.

Panel A: Wealth only Panel B: Wealth and income

θ Income
levels

Transition
rates

All
income

No
restr.

Income
levels

Transition
rates

All
income

No
restr.

γ 0.550
(−0.029)

1.518
(0.867)

0.487
(−0.100)

3.739
(2.399)

0.436
(−0.070)

1.423
(0.476)

0.489
(−0.073)

2.297
(0.084)

ρ 0.322
(−0.197)

0.403
(0.176)

0.341
(−0.354)

0.383
(−0.058)

0.284
(−0.2551)

0.403
(0.079)

0.343
(−0.357)

0.312
(−0.011)

α 0.080
(−0.027)

0.279
(−0.263)

0.173
(−0.153)

0.239
(−0.243)

0.067
(−0.033)

0.278
(−0.258)

0.185
(−0.147)

0.221
(−0.229)

δ 0.145
(0.004)

0.255
(0.060)

0.318
(−0.130)

0.189
(0.114)

0.124
(0.004)

0.277
(−0.031)

0.345
(−0.138)

0.194
(0.135)

el el,0 3.476
(3.527)

el,0 3.723
(4.126)

el,0 3.040
(2.001)

el,0 2.905
(2.016)

eh eh,0 1.068
(1.203)

eh,0 0.890
(0.926)

eh,0 0.918
(0.775)

eh,0 0.858
(0.898)

φlh 0.350
(−0.127)

φlh,0 φlh,0 0.351
(−0.093)

0.211
(−0.092)

φlh,0 φlh,0 0.389
(0.057)

φhl 0.718
(−0.134)

φhl,0 φhl,0 1.547
(−0.061)

0.220
(−0.085)

φhl,0 φhl,0 0.398
(0.046)

data in this model is represented by a binary variable and hence it only contains information

about the stationary probabilities of states.

[Figure 3 about here.]

To further understand the effects of partially, or completely, calibrating the income pro-

cess, Figure 3 plots the finite sample distribution of parameter estimates for the cases (i),

(ii), and (iii) when we use data on wealth and income in the estimation. A dotted vertical

line represents the true parameter values. The figure confirms not only that a strategy based

on calibrating the income levels delivers relatively unbiased parameter estimates, but also

more precise estimates, as measured by the dispersion around the mean estimates. On the

contrary, the simultaneous calibration of all income parameters produces sharp estimates of

γ and ρ but it also generates distributions that exhibit multiple modes for α and δ that could

suggest further identification problems5. To investigate this claim we compute the KL diver-

gence from G̃ to G0, and the associated implied probability q, that results from varying both

α and δ simultaneously while keeping the remaining parameters at their population values.

5An earlier version of this paper shows that the multimodality in these parameters’ density remains even
in large samples (see, Parra-Alvarez et al., 2017).
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Figure 4 plots the contour for q (α, δ) which shows the presence of a ridge in the α− δ space.

In other words, a proportional increase in both parameters produces almost observationally

equivalent distribution functions, and therefore partial identification problems.

[Figure 4 about here.]

The tight relation between α and δ is an example of identification deficiencies that are

rooted in the economic theory and could persist even in samples of finite size. As an ex-

ample, consider the steady state capital-output ratio from the standard neoclassical growth

model, K/Y . Assuming that the gap r−ρ does not vary significantly with α and δ, and thus

implicitly assumed to be relatively constant, the capital-output ratio of the Bewley-Hugget-

Aiyagari economy is proportional to that of the neoclassical growth model, K/Y ∝ α/(ρ+δ).

Therefore, for a given stationary capital-output ratio, and a given discount rate, the station-

ary equilibrium leads to a positive relation between α and δ similar to that depicted in Figure

4. The Monte Carlo evidence suggests that the multimodality in these two parameters, with

their corresponding implications for identification, can be alleviated by calibrating the income

process only partially. As shown in Figure 3 the calibration of the income levels or of the tran-

sition rates yields distribution of estimates for α and δ that are unimodal and at the same time

do not affect the accuracy with which γ can be identified. Hence, allowing α and δ to interact

with some of the income parameters during the estimation process provides a better identifi-

cation. Note, however, that fixing the values for the income levels provide the best results in

terms of bias reduction, correct identification and reduced variability of parameter estimates.

We next investigate the finite sample implications for our ML estimator of calibrating

some of the household’s and firm’s structural parameters, while estimating all of the remain-

ing parameters, including those describing the income process. We conduct a Monte Carlo

simulation under the following restrictions: (i) γ is calibrated to its value in the population;

(ii) ρ is calibrated to its true value in the population; (iii) α is calibrated to its value in the

population; (iv) δ is calibrated to its value in the population; and (v) α and δ are calibrated

to their values in the population. Table 4 summarizes our results by reporting the MANE

and the MNB when using data on individual wealth and individual income in the estima-

tion. The last column reports the results for the unrestricted ML estimation from Section

4 for comparison. The results suggest that calibrating γ reduces the biases and estimation

errors in some dimensions of the parameter space. On the other hand, calibrating ρ, α and δ

separately hardly affects inferences at all. Interestingly, calibrating α and δ simultaneously

does not generate an overall improvement over alternative calibrations.

In general, our calibration experiments point towards a strategy based on calibrating

parameters that are weakly identified, as indicated by the KL divergence. This includes the
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Table 4. Conditional estimates: preference parameters calibrated to their population
values. The table reports the Mean Absolute Normalized Error (MANE) and the Mean Normalized
Bias (MNB, in parenthesis) from a Monte Carlo experiment with M = 200 samples, each of them of
size N = 5,000. The ML estimation is conditional on the preference parameters being calibrated to
their population values as indicated in the second row. The ML estimation uses data on individual
wealth and income.

Wealth and income

θ γ ρ α δ α and δ No
restrictions

γ γ0 2.4793
(0.633)

3.0433
(0.065)

2.6989
(0.055)

2.5315
(0.010)

2.2969
(0.084)

ρ 0.3745
(0.170)

ρ0 0.3604
(−0.234)

0.3291
(−0.027)

0.4754
(−0.484)

0.3125
(−0.011)

α 0.1817
(−0.178)

0.2686
(−0.269)

α0 0.2545
(−0.267)

α0 0.2206
(−0.229)

δ 0.1783
(0.143)

0.1982
(0.068)

0.5313
(0.612)

δ0 δ0 0.1941
(0.135)

el 1.4518
(0.945)

3.3686
(2.605)

2.1285
(1.296)

2.9364
(1.831)

0.7651
(0.148)

2.9053
(2.016)

eh 0.8410
(0.873)

0.9460
(0.974)

0.5563
(0.575)

0.8214
(0.882)

0.2340
(−0.241)

0.8579
(0.898)

φlh 0.3681
(0.342)

0.4152
(−0.092)

0.4476
(−0.059)

0.4136
(0.078)

0.4391
(−0.323)

0.3891
(0.057)

φhl 0.3830
(0.320)

0.4157
(−0.083)

0.4556
(−0.089)

0.4182
(0.064)

0.4471
(−0.352)

0.3979
(0.046)

income levels or the coefficient of relative risk aversion. However, this approach may not

carry any improvement in the identification and estimation accuracy of the ML estimator if

the calibrated values happen to be different from those in the population. Similar concerns

have been raised previously in the context of linearized representative agent models (see

Canova and Sala, 2009). Therefore, we investigate if our previous results are sensitive to

mis-calibration. In particular, we consider the effects of calibrating the risk aversion coeffi-

cient, γ, and the labor efficiency gap, ∆e, to the values in Table 1 when in reality the true

DGP is characterized by higher or lower values.

Table 5 reports the results from a Monte Carlo simulation with M = 200 samples of

wealth and income, each of size N = 5,000. Due to the non-linear dependences among all

structural parameters of the model, we report the MANE and MNB for some of the key

macroeconomic statistics implied by the model. In particular, we analyze the effects of a

higher and lower income level gap and relative risk aversion on the steady state levels of the

capital-output ratio, K/Y , of the interest rate, r, of the aggregate savings rate, (Y −C)/Y ,

of the Gini coefficient, and of the Lorenz curve6. For comparison, the table also reports the

6Similar statistics for all the Monte Carlo simulations described in the paper are available upon request.
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Table 5. Conditional estimates: alternative data generating process. The table reports
the Mean Absolute Normalized Error (MANE) and the Median Normalized Bias (MNB, in paren-
thesis) from a Monte Carlo experiment with M = 200 samples, each of size N = 5,000, generated
under alternative data generating process. In particular, ∆e larger uses eh = 1.5 and el = 0.1; ∆e

smaller uses eh = 0.5 and el = 0.1; γ higher uses γ = 2.0; and γ lower uses γ = 0.5. The ML
estimation uses data on individual wealth and income.

Wealth and income

∆e larger ∆e smaller ∆e = 0.8 γ higher γ lower γ = 1.0

K/Y 0.2434
(0.236)

0.3732
(−0.378)

0.0358
(0.021)

0.2888
(−0.283)

0.2631
(−0.275)

0.3081
(−0.299)

Interest rate 0.3008
(−0.278)

0.9752
(1.002)

0.2841
(−0.255)

0.5798
(0.604)

0.4342
(0.462)

0.3740
(0.169)

Savings rate 0.1717
(0.134)

0.1410
(0.118)

0.1149
(0.029)

0.1394
(−0.055)

0.1916
(−0.194)

0.1969
(−0.200)

Gini Coeff. 0.0550
(−0.055)

0.1204
(0.123)

0.0398
(−0.040)

0.0403
(−0.040)

0.0206
(0.021)

0.0396
(−0.039)

Bottom 50% 0.0507
(0.051)

0.1028
(−0.105)

0.0387
(0.038)

0.0368
(0.036)

0.0187
(−0.019)

0.0386
(0.038)

Top 10% 0.0390
(−0.040)

0.1088
(0.111)

0.0248
(−0.025)

0.0288
(−0.028)

0.0153
(0.015)

0.0243
(−0.025)

case where ∆e and γ are calibrated to the values in Table 1.

The mis-calibration of the income levels can have a substantial impact on the accuracy

with which the implied aggregate statistics can be estimated, and thus lead to wrong in-

ferences. In particular, we find that a calibrated income gap that is higher than its value

in the population leads to considerable biases in the steady state capital-output ratio, the

steady state interest rate and the overall implied wealth distribution. On the other hand,

the mis-calibration of the coefficient of relative risk aversion has a negligable effect on the

implied macroeconomic quantities. This result is consistent with the fact that the shape of

the wealth distribution is not sensitive to changes in γ, as suggested by the KL divergence

and documented in Figure 1.

In summary, our Monte Carlo evidence suggests that ρ, α and δ can be identified and

accurately estimated with the use of cross-sectional data on individual wealth and income

by means of our proposed ML estimator. On the other hand, the coefficient of relative risk

aversion and the parameters describing the exogenous income process display some identi-

fication challenges that may lead to inferential problems that persist even in large samples.

Following standard practice in macroeconomics, we find that a mixed strategy where a subset

of the troublesome parameters are calibrated provides a considerable improvement in terms

of statistical precision without affecting the overall results. Given the inherent uncertainty

around the correct parameter values to use in the calibration, the results suggest that fixing

the value of the relative risk aversion, and not the income levels, provides the best finite
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sample performance of the ML estimator.

7. Empirical illustration

This section provides an empirical illustration of our likelihood approach by estimating the

parameters of the Bewley-Hugget-Aiyagari model of Section 2 for the U.S. economy using

the wealth and wage income data reported in the Survey of Consumer Finances (SCF) for

the year 20137.

In order to accommodate the high degree of wealth inequality observed in the data, we

follow Castañeda et al. (2003) and expand the number of labor efficiency states in the proto-

type economy to four so that the endowment process now follows a continuous-time Markov

chain with state space E = {e1, e2, e3, e4} that evolves over time according to

det =
∑
i

∑
j 6=i

(ei − ej) dqij,t, e0 ∈ E ,

and where e1 < e2 < e3 < e4. The Poisson processes qij,t for all i, j = 1, . . . 4 and i 6= j

count the frequency with which an agent moves from state i to state j. Associated with

each efficiency level, we define φij ≥ 0 to be the instantaneous transition rate from state i to

state j. Since individuals cannot transit to state i while currently being in the same state,

it follows that φii = 0, for all i = 1, . . . , 4.

The estimation sample includes data on households with positive net worth and posi-

tive income (per hundred thousand) in order to be consistent with the model’s non-negative

borrowing constraint. The wealth data corresponds to the net-worth reported in the Sum-

mary Extract Public Data provided by the SCF. To obtain an equally weighted sample of

household wealth, we resample the net-worth data using the weights provided by the SCF.

The wage income data is recoded into four discrete states, where each state corresponds to

income levels belonging to one of the following pre-defined quantile bins: 0-25, 25-50, 50-99,

99-100. The unequal spacing of the quantile bins tries to accommodate the high degree of

income inequality in the data8. The final sample includes N =18,631 individuals.

The model’s solution is approximated on a grid for wealth containing I = 500 equally

spaced points. The resulting (negative) log-likelihood function is then minimized using a

GlobalSearch algorithm with 1000 random trial points. We use a non-parametric bootstrap

7It should be stressed that our benchmark model is most likely misspecified as it does not account for
some of the main drivers that characterize the wealth distribution in the U.S. Hence, the estimates reported
are subject to considerably misspecification bias, and should be interpreted with caution.

8Using equally spaced quantile bins will produce much smaller overall estimates of the actual wealth-
income inequality.
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Table 6. Maximum likelihood estimates. The table reports the maximum likelihood estimates
(MLE) of the model parameters and their 95% confidence intervals computed from a non-parametric
bootstrap with M = 100 samples. The estimation sample contains N =18,631 observations on
individual wealth and income. The coefficient of relative risk aversion is calibrated to γ = 1.0.

Panel A: Preference parameters

Parameter γ ρ α δ

Value 1.0 0.1120
[0.1077, 0.1138]

0.5601
[0.5507, 0.5624]

0.0306
[0.0256, 0.0349]

Panel B: Income levels, ei

Parameter e1 e2 e3 e4

Value 0.1130
[0.1129, 0.1329]

0.1164
[0.1161, 0.1371]

0.2586
[0.2450, 0.2653]

5.2823
[4.9703, 5.4561]

Panel C: Intensity rates, φij (× 100)

i\j 1 2 3 4

1 0 0.0006
[0.0005, 0.0008]

0.2275
[0.2119, 0.2480]

0.3055
[0.2334, 0.3073]

2 0.1427
[0.1089, 0.1503]

0 0.0001
[0.0001, 0.0002]

0.2128
[0.1859, 0.2452]

3 0.2045
[0.1686, 0.2124]

0.1842
[0.1653, 0.1972]

0 0.0000
[0.0000, 0.0000]

4 0.0012
[0.0010, 0.0016]

0.0013
[0.0008, 0.0015]

38.9288
[37.8903, 43.2152]

0

to compute confidence intervals for the parameter estimates using M = 100 bootstrap sam-

ples9. Following the Monte Carlo evidence of Section 6, we do not attempt to estimate the

coefficient of relative risk aversion, γ. Instead, we calibrate it to 1.0 and estimate all the

remaining parameters. Alternative calibrations result in lower log-likelihood values.

Table 6 reports the maximum likelihood estimates together with their 95% confidence

intervals. In Panel A we present the results for the preference parameters, in Panel B for the

income or labor efficiency levels, and in Panel C for the intensity rates associated with each

of the count processes that describe the idiosyncratic income dynamics in the economy. Our

estimates capture a considerable and persistent degree of income inequality as suggested by

the extreme estimate for e4 in Panel C which is nearly 50 times the average income of the

least efficient individual. It also suggests that the most productive households are about 20

times more productive than the second most productive households. With respect to the

preference parameters in Panel A, we find that while the estimates for the discount rate and

the capital share of output are somewhat above the values usually reported in the literature,

the estimate for the depreciation rate is below.

To provide a better understanding of the estimated intensity rates in Panel B of Table

9The bootstrapping exercise is computationally demanding. Estimation with M = 100 samples takes
about 58 hours on a dedicated 32 cores Xeon server.
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Table 7. Transition probability matrix and stationary probabilities of the endowment
of efficiency levels. Panel A reports the implied maximum likelihood estimates (MLE) of the
transition probabilities and and their 95% confidence intervals computed from a non-parametric
bootstrap. Panel B reports the implied maximum likelihood estimates (MLE) of the stationary
probabilities of labor efficiency units and their 95% confidence intervals computed from a non-
parametric bootstrap.

Panel A: Transition probability matrix, p (ei, ej , t) (%)

e1 e2 e3 e4
e1 99.47

[99.46, 99.55]
0.00

[0.00, 0.00]
0.28

[0.26, 0.30]
0.25

[0.19, 0.25]

e2 0.14
[0.11, 0.15]

99.65
[99.63, 99.69]

0.04
[0.03, 0.04]

0.18
[0.15, 0.20]

e3 0.20
[0.17, 0.21]

0.18
[0.17, 0.20]

99.61
[99.61, 99.66]

0.00
[0.00, 0.00]

e4 0.04
[0.03, 0.04]

0.03
[0.03, 0.04]

32.18
[31.48, 35.02]

67.75
[64.91, 68.46]

Panel B: Stationary probabilities (%)

p (ei) 25.50
[24.78, 26.15]

25.34
[24.76, 26.10]

48.83
[47.94, 49.26]

0.34
[0.28, 0.34]

6, we compute the associated transition probabilities, i.e., the probability that the income

process currently in state i transits to state j at an instant later in time. We denote these

probabilities by p (ei, ej, t) ≡ P (et+s = ej | es = ei) for all s ≤ t10. Panel A of Table 7 reports

the implied transition probabilities for the endowment process of efficiency units. Panel B

reports the corresponding limiting distribution defined as p (ei) ≡ limt→∞ p (ei, t), where

p (ei, t) denotes the unconditional probability of being in state i at time t.

Panel A indicates that the ML estimates of the intensity rates imply a very persistent

income process, specially for the first three efficiency states. The table shows that individuals

whose current efficiency endowment is either e1, e2 or e3 will rarely move to a different state.

On the other hand, the most productive individuals have a relatively high probability to

move to the second most productive level of efficiency. The stationary probabilities reported

in Panel B closely match the allocation of households into the different income bins: the

mass of agents in the first and second income/efficiency level is about 25%, the mass in the

third level close to 50%, and finally, the mass of agents with extremely high income levels

does not exceed 1%.

Finally, Table 8 compares some wealth statistics computed from the data to those implied

by the estimated model. In particular, it reports the Gini coefficient and the percentage of

total wealth held by the top 5, 10 and 20 percentiles. Strikingly, the estimated model can

match the data on wealth inequality quite well considering the simplistic nature of the model.

Similar to previous literature which successfully matches the wealth distribution by focusing

10A complete derivation of the transition probabilities can be found in the Online Appendix C.
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Table 8. Wealth Inequality: data vs. model. The table reports the observed and estimated
Gini coefficient and the distribution of wealth across top percentiles. It also reports 95% confidence
intervals computed from a non-parametric bootstrap.

% wealth in top

Gini Coefficient 5% 10% 20%

SCF 2013 data 0.8048 57.73 70.27 83.44

Model implied 0.7912
[0.7817, 0.7939]

44.30
[42.98, 44.76]

63.82
[62.27, 64.31]

83.57
[82.27, 83.91]

on labor income, our estimates indicate that the data favors the inclusion of an “awesome

state” (see Benhabib and Bisin (2018) for a discussion.). In particular, a high degree of in-

come inequality is needed for the prototype model to generate a skewed wealth distribution.

It should be stressed that we view our results not as evidence for this particular income

process. As Benhabib and Bisin (2018) point out, the implication of the “awesome state” in

the labor income process is very likely to be counterfactual to the actual income data. The

estimated income process simply captures all other relevant wealth inequality driving forces

(bequest, entrepreneur risk, explosive wealth accumulation, etc.) that are not present in our

simple model. The estimated parameters of the labor efficiency process are mostly likely the

key driving force for the high degree of the wealth inequality.

8. Conclusions

In this paper we introduce a likelihood approach to estimate the structural parameters of

macroeconomic models with heterogeneous agent using microeconomic data. The feasibility

of our approach follows from the use of continuous-time methods and in particular from the

use of the Fokker-Planck equations that describe the stationary probability density function

of the model which can then be used to build the model’s likelihood function.

Using a standard Bewley-Hugget-Aiyagari model as the data generating process, we per-

form extensive Monte Carlo experiments to study the finite sample properties of the proposed

maximum likelihood estimator. To investigate its identification power, we propose to use

the Kullback-Leibler (KL) divergence as a tool to determine potential sources of irregular

behavior in the likelihood function before any estimation is conducted.

The simulation results show that the parameters related to the supply side of the econ-

omy and the household’s subjective discount rate can be identified and accurately estimated

with the use of cross-sectional data on individual wealth and income. However, the coeffi-

cient of relative risk aversion and the parameters describing the exogenous income process

display some identification challenges that materialize in significant biases that persist even
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in large samples. The KL divergence indicates that changes in these parameters do not af-

fect the shape of the wealth distribution, and therefore imply flat likelihood surfaces in these

dimensions of the parameter space. The lack of curvature translates into weakly identified

parameters that could lead to incorrect inferences.

Following standard practice we instead calibrate some of the troublesome parameters

and estimate all remaining ones. Simulation evidence suggest that this approach delivers

significant improvements over the unrestricted maximum likelihood estimation. However,

given the risk of mis-calibrating some of these parameters, our results favor fixing the risk

aversion coefficient over any of the income parameters.

To illustrate our approach, we provide a small empirical application in which we estimate

the parameters of a extended version of our benchmark Bewley-Hugget-Aiyagari model using

household data on wealth and income from the Survey of Consumer Finances. Despite the

simplistic nature of the model, our estimates match the data quite well as measured by the

implied Gini coefficient and the distribution of wealth across top percentiles.

Our results are encouraging and suggest an important role for likelihood-based methods

in heterogeneous agent macroeconomic models. The increased quality and quantity of micro

data should direct future research towards more sophisticated models, like those studied in

Krusell and Smith (1998), Cagetti and Nardi (2006), Angeletos and Calvet (2006), Angeletos

(2007) and Benhabib et al. (2011), among others, which also allow for more realistic income

processes like those in Achdou et al. (2014) and Gabaix et al. (2016). This will help to

extend the information set used in the estimation process, potentially increase the identifi-

cation power of the structural parameters, and eventually provide a better fit of the wealth

distribution.
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Khieu, H. and K. Wälde (2019): “Capital Income Risk and the Dynamics of the Wealth

Distribution,” CESifo Working Paper Series 7970, CESifo Group Munich.

Komunjer, I. and S. Ng (2011): “Dynamic Identification of Dynamic Stochastic General

Equilibrium Models,” Econometrica, 79, 1995–2032.

Krusell, P. and A. A. Smith (1998): “Income and Wealth Heterogeneity in the Macroe-

conomy,” Journal of Political Economy, 106, 867–896.

Kullback, S. (1959): Information Theory and Statistics, John Wiley and Sons Inc.

Kullback, S. and R. A. Leibler (1951): “On Information and Sufficiency,” The Annals

of Mathematical Statistics, 22, 79–86.

Kydland, F. E. and E. C. Prescott (1982): “Time to Build and Aggregate Fluctua-

tions,” Econometrica, 50, 1345–1370.

Light, B. (2020): “Uniqueness of Equilibrium in a Bewley-Aiyagari Model,” Economic

Theory, 69, 435–450.

Luo, M. and S. Mongey (2019): “Assets and Job Choice: Student Debt, Wages and

Amenities,” Working Paper 25801, National Bureau of Economic Research.

McCulloch, R. E. (1989): “Local Model Influence,” Journal of the American Statistical

Association, 84, 473–478.

Mongey, S. and J. Williams (2017): “Firm Dispersion and Business Cycles: Estimating

Aggregate Shocks Using Panel Data,” Unpublished.

27



Newey, W. K. and D. McFadden (1986): “Large Sample Estimation and Hypothesis

Testing,” in Handbook of Econometrics, ed. by R. F. Engle and D. McFadden, Elsevier,

vol. 4 of Handbook of Econometrics, chap. 36, 2111–2245.

Ozkan, S., K. Mitman, F. Karahan, and A. Hedlund (2016): “Monetary Policy,

Heterogeneity and the Housing Channel,” 2016 Meeting Papers 663, Society for Economic

Dynamics.

Parra-Alvarez, J. C., O. Posch, and M.-C. Wang (2017): “Identification and Es-

timation of Heterogeneous Agent Models: A Likelihood Approach,” CREATES Research

Papers 2017-35, Department of Economics and Business Economics, Aarhus University.

Prescott, E. C. (1986): “Theory Ahead of Business Cycle Measurement,” FRB MN

Quarterly Review.
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Figure 1. Kullback-Leibler divergence. The graph plots the implied probability q associated
with the KL divergence from G (a | θ) to G (a | θ0) that results from varying each parameter at a
time while keeping the remaining ones at their population value. The vertical dashed line denotes
the true parameter value.
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Figure 2. Sensitivity of the wealth distribution. The graph shows the sensitivity of the
distribution of wealth, g (a|θ), for selected parameters. The dashed line denotes the population
density of wealth. The continuous lines correspond to the density of wealth resulting from small
perturbations in each parameter while keeping the remaining ones at their population value.
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Figure 3. Finite sample distribution of parameter estimates. The graph plots the kernel
density of estimated parameters across M = 200 random samples of size N = 5,000 generated from
the true data generating process. The estimation uses data on individual wealth and income. The
vertical line denotes the true parameter value.
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Figure 4. Kullback-Leibler divergence. The graph plots the contour of the implied probability
q associated with the bivariate KL divergence that results from varying α and δ simultaneously while
keeping the remaining parameters at their population value. The dot denotes the true parameter
value.

32



Research Papers 
2020 

 
 

 

 

 

2019-13: Daniel Borup and Erik Christian Montes Schütte: In search of a job: 
Forecasting employment growth using Google Trends 

 

2019-14: Kim Christensen, Charlotte Christiansen and Anders M. Posselt: The Economic 
Value of VIX ETPs 

 

2019-15: Vanessa Berenguer-Rico, Søren Johansen and Bent Nielsen: Models where the 
Least Trimmed Squares and Least Median of Squares estimators are maximum 
likelihood 

 

2019-16: Kristoffer Pons Bertelsen: Comparing Tests for Identification of Bubbles  

2019-17: Dakyung Seong, Jin Seo Cho and Timo Teräsvirta: Comprehensive Testing of 
Linearity against the Smooth Transition Autoregressive Model 

 

2019-18: Changli He, Jian Kang, Timo Teräsvirta and Shuhua Zhang: Long monthly 
temperature series and the Vector Seasonal Shifting Mean and Covariance 
Autoregressive model 

 

2019-19: Changli He, Jian Kang, Timo Teräsvirta and Shuhua Zhang: Comparing long 
monthly Chinese and selected European temperature series using the Vector 
Seasonal Shifting Mean and Covariance Autoregressive model 

 

2019-20: Malene Kallestrup-Lamb, Søren Kjærgaard and Carsten P. T. Rosenskjold: 
Insight into Stagnating Life Expectancy: Analysing Cause of Death Patterns 
across Socio-economic Groups 

 

2019-21: Mikkel Bennedsen, Eric Hillebrand and Siem Jan Koopman: Modeling, 
Forecasting, and Nowcasting U.S. CO2 Emissions Using Many Macroeconomic 
Predictors 

 

2019-22: Anne G. Balter, Malene Kallestrup-Lamb and Jesper Rangvid: The move 
towards riskier pensions: The importance of mortality 

 

2019-23: Duván Humberto Cataño, Carlos Vladimir Rodríguez-Caballero and Daniel 
Peña: Wavelet Estimation for Dynamic Factor Models with Time-Varying 
Loadings 

 

2020-01: Mikkel Bennedsen: Designing a sequential testing procedure for verifying 
global CO2 emissions 

 

2020-02: Juan Carlos Parra-Alvarez, Hamza Polattimur and Olaf Posch: Risk Matters: 
Breaking Certainty Equivalence 

 

2020-03: Daniel Borup, Bent Jesper Christensen, Nicolaj N. Mühlbach and Mikkel S. 
Nielsen: Targeting predictors in random forest regression 

 

2020-04: Nicolaj N. Mühlbach: Tree-based Synthetic Control Methods: Consequences of 
moving the US Embassy 

 

2020-05: Juan Carlos Parra-Alvarez, Olaf Posch and Mu-Chun Wang: Estimation of 
heterogeneous agent models: A likelihood approach 

 

 


	Introduction
	A prototypical heterogeneous agent model
	Households
	Production possibilities and macroeconomic identity
	Equilibrium
	Computation of the equilibrium

	Structural estimation: The likelihood function
	Finite sample properties
	The Kullback-Leibler divergence
	Calibration and estimation
	Empirical illustration
	Conclusions

