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Abstract

Random forest regression (RF) is an extremely popular tool for the analysis
of high-dimensional data. Nonetheless, its benefits may be lessened in sparse
settings, due to weak predictors, and a pre-estimation dimension reduction
(targeting) step is required. We show that proper targeting controls the prob-
ability of placing splits along strong predictors, thus providing an important
complement to RF’s feature sampling. This is supported by simulations using
representative finite samples. Moreover, we quantify the immediate gain from
targeting in terms of increased strength of individual trees. Macroeconomic and
financial applications show that the bias-variance tradeoff implied by targeting,
due to increased correlation among trees in the forest, is balanced at a medium
degree of targeting, selecting the best 10–30% of commonly applied predictors.
Improvements in predictive accuracy of targeted RF relative to ordinary RF
are considerable, up to 12–13%, occurring both in recessions and expansions,
particularly at long horizons.
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1. Introduction

Recent trends in economic forecasting have emphasized the use of machine learning

techniques in settings with many predictors. The method of random forest (RF)

regression (Breiman, 2001; Amit and Geman, 1997; Ho, 1998) is particularly popular

due to its wide applicability, allowance for nonlinearity in data, and adaptability

to high-dimensional feature spaces (many predictors), among others. According

to Howard and Bowles (2012), RF has been the most successful general-purpose

algorithm in modern times. It is best described as a “divide and conquer” approach

that bootstraps fractions of data, grows a decision tree on each fraction, and then

aggregates these predictions. Tree diversity is ensured by the bootstrap step and

feature sampling, which, at each node in the tree, restricts the possible split direc-

tions to a randomly chosen subset of the predictors (Wager, 2016). RF is easy to

apply and is implemented in most programming languages. For instance, it can be

found in the sklearn library in Python, the randomForest and ranger packages

in R, and the TreeBagger class in MATLAB. Several fields within economics and

finance have adopted tree-based algorithms as a data-driven approach to inference

and forecasting, e.g., Athey et al. (2019) recast a classical kernel weighting function

as an adaptive weighting function based on RF, Wager and Athey (2018) estimate

heterogeneous treatment effects, Ng (2014) employs trees to forecast economic reces-

sions, and Gu et al. (2020) use RF to predict future stock returns using numerous

firm-specific and common predictors.

Although it is widely acknowledged that RF is applicable in high-dimensional set-

tings, as it has the potential to detect informative predictors automatically (see, e.g.,

Biau and Scornet, 2016), the need to select a reduced number of predictors from the

full list of initial candidates, prior to implementing a particular forecasting method,

has been emphasized in recent literature. According to Gentzkow et al. (2019):

“The benefits of regression trees – nonlinearity and high-order inter-

actions – are sometimes lessened in the presence of high-dimensional

inputs. [...]. Often times, a more beneficial use of trees is in a final
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prediction step after some dimension reduction [...].”

Thus, RF applied in high dimensions without an initial weeding out of irrelevant

predictors may fail to reach its full potential.

This principle of targeting predictors in high-dimensional settings, i.e., an initial

(supervised) dimension reduction step before feeding data into an algorithm, was

introduced by Bai and Ng (2008) in the context of factor-based prediction. Targeting is

typically achieved via regularization, such as the LASSO (Least Absolute Shrinkage

and Selection Operator) of Tibshirani (1996), or a related method, e.g., elastic net

(Zou and Hastie, 2005), or Bayesian shrinkage (De Mol et al., 2008). It involves

choosing the number of predictors to target, which therefore effectively constitutes

a tuning parameter of the procedure. Targeting of predictors has been applied in

various high-dimensional prediction problems, e.g., LASSO is used by Kotchoni et al.

(2019) to target predictors in complete subset regressions (Elliott et al., 2013) for

forecasting consumer price inflation, stock market returns, industrial production

growth, and employment growth, and elastic nets are used by Bork et al. (2020) to

target predictors in partial least squares regressions for forecasting housing price

growth. Both these methods and Bayesian shrinkage have been used for targeting

factor models, e.g., for forecasting consumption and investment (Luciani, 2014), and

gross domestic product growth and its subcomponents (Bulligan et al., 2015).

Given the importance of RF for prediction in high-dimensional settings, and the

demonstrated value of targeting, e.g., in regressions and factor-based analyses, it

is natural to investigate the potential role of targeting of predictors in RF. The

challenge is that the performance of the RF algorithm historically has been con-

sidered extremely difficult to analyze (see, e.g., the discussion in Biau and Scornet,

2016), with only few theoretical results available in the literature, e.g., Biau (2012)

demonstrates in a simplified setting how to achieve faster convergence than the

usual n−2/(p+2) nonparametric regression rate in case of sparsity, Wager and Athey

(2018) establish asymptotic normality for honest forests, and Scornet et al. (2015)

prove L2 consistency of an RF algorithm close to Breiman’s original specification.

2
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In this paper, we provide a theoretical and empirical assessment of the effects of

targeting within the framework of RF. Our results are easy to grasp and highlight

the components of the algorithm that are particularly impacted by targeting. We

conduct our analysis in the following three steps.

First, we examine the ability of RF to detect a relatively small number of important

predictors for splitting along, when building trees in a high-dimensional setting

with many potentially irrelevant predictors. Such a setting is motivated, e.g., by the

empirical literature on asset return forecasting, in which a plethora of predictors has

been suggested (Welch and Goyal, 2008; Rapach and Zhou, 2013), or macroeconomic

forecasting, in which, frequently, a large set of predictors is applied (Stock and

Watson, 2002; McCracken and Ng, 2016). We cast the analysis in terms of the

probability ρ of splitting along strong predictors. On the one hand, it is vital for

the strength of individual trees that the important (strong) predictors are selected

most of the time, i.e., ρ must be sufficiently large. On the other hand, to control

the variance of RF, it is important to randomize splitting directions when growing

its trees, i.e., ρ should not be so large as to jeopardize the benefits of averaging

across trees in the forest. We establish lower and upper bounds on ρ, and show

that the width of the interval for ρ shrinks to zero as sample size increases. Based

on this interval, we determine that the degree of feature sampling (the selection

of splitting variables by RF), one of the few tuning parameters of RF, primarily

controls the upper bound. However, as established through simulations, ρ will often

be considerably below this bound in finite samples. Thus, feature sampling by itself

does not ensure that ρ is at an appropriate level, and hence the role for targeting.

We show that the lower bound on ρ is determined by two quantities. The first reflects

the finite sample Classification And Regression Tree (CART) impurity decrease

estimation error, and the second the maximal signal among the strong predictors.

Through these quantities, we show that targeting can be used to lift the lower bound

on ρ, primarily by reducing the CART estimation error. Thus, targeting can be used

actively as a complement to feature sampling to secure an adequate probability of

splitting along strong predictors.

3
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Second, we show that the strength of individual decision trees in the forest is

always improved by (proper) targeting, and quantify this gain analytically in specific

cases. In particular, for a linear regression function, we obtain explicit bounds on

the mean squared error (MSE) of an ordinary tree, conditionally on the sequence

of strong/weak splits, in terms of the MSEs of targeted trees with fewer leaves.

From these conditional bounds and explicit expressions for the distribution of the

underlying random variables, we derive bounds on the unconditional MSE of an

ordinary tree. On this basis, we show that targeting can lead to significant gains in

tree strength.

Third, we address the issue that, although tree strength is always improved by

excluding weak predictors, the resulting TRF (targeted RF, i.e., RF with an initial

targeting step) cannot be expected to perform uniformly better than ordinary RF,

since the targeting step likely increases the correlation across individual trees in the

forest. The inclusion of weak predictors can be seen as a way of injecting randomness

into the tree-growing procedure, thereby increasing diversity across trees. More

precisely, the expected number of so-called potential nearest neighbors increases

with the dimension of the feature space, see Lin and Jeon (2006). Thus, targeting

involves an inherent bias-variance tradeoff—specifically, a tree strength-correlation

tradeoff, and the degree of targeting may be viewed as a tuning parameter.

We examine this strength-correlation tradeoff in an extensive empirical analysis of

the effects of targeting. An additional purpose of our empirical work is to assess

the statistical and economic significance of the effect of targeting in typical areas

of application. We consider two classical applications within different fields of

economics and finance. The first is the challenging task of predicting the US equity

premium in the setting of Welch and Goyal (2008). The second application considers

the prediction of industrial production growth, employment growth, and consumer

price inflation, using a large set of macroeconomic, financial, and sentiment variables

from McCracken and Ng (2016). In line with Bai and Ng (2008), the set of targeted

predictors is determined using LASSO regularization techniques.

4
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We synthesize our findings from the empirical analysis as follows. First, to address

the strength-correlation tradeoff inherent in targeting, we estimate the empirical

MSE and correlation among trees. TRF performs well if a medium-sized subset of the

initial predictors is targeted. In our applications, this amounts to targeting the best

10–30% of initial predictors. With too much targeting (too few predictors selected),

the increased correlation between trees more than outweighs the gains in MSE

from targeting. On the other hand, with too little targeting (too many predictors

selected), the marginal decorrelation from including more predictors is more than

outweighed by the loss in individual tree strength (increase in MSE). Second, in

terms of the significance of gains in our macroeconomic and financial applications,

TRF performs particularly well for long forecast horizons. The prediction problem at

long horizons is often challenging, with limited signal (Galbraith and Tkacz, 2007),

hence rendering TRF particularly useful in such cases. Third, TRF generates gains

in predictive accuracy of substantial magnitude, up to 12–13%, relative to ordinary

RF, both in expansions and recessions.

The rest of the paper is laid out as follows. Section 2 starts with a mathematical

introduction to both ordinary and targeted RF. This is followed by an analysis of a

forest’s ability to automatically detect good predictors, and of the immediate gain in

terms of tree strength from targeting. Section 3 presents empirical results on the

effects of targeting in financial and macroeconomic applications. Section 4 concludes.

All proofs are deferred to the Appendix.

2. The effect of targeting strong predictors in random forests

In this section, we concisely present ordinary and targeted RF. This is followed by an

analysis of the ability of trees in the forest to select strong predictors over weak ones.

This is a key property in high-dimensional settings. If the probability of splitting

on strong variables is small, then it can be highly beneficial, or even necessary, to

include an initial targeting step, to avoid severe curse of dimensionality issues. In

the subsequent analysis, we take a one-sided view on the effect of proper targeting

and analyze the strength of an ordinary tree relative to a targeted one. While this

5
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does not yield a definitive performance comparison of RF versus TRF, it quantifies

how much one would have to gain in terms of tree diversity to justify not targeting.

In the empirical applications in Section 3, we assess this strength-diversity tradeoff

by estimating tree correlations and MSE for different levels of targeting.

2.1. The random forest algorithm and targeting

Given a sample of size n of the form Dn = {(X1,Y1), . . . , (Xn,Yn)}, with (X i,Yi) ∈X ×R,

X ⊆Rp, p indicating the number of predictors of Yi in the vector X i, and E[Y 2]<∞,

an RF produces a nonparametric estimate f̄n = f̄n( · ;Dn) : X → R of the regression

function f := E[Y |X = · ]. It is an ensemble learning algorithm obtained by bagging,

say, B regression trees (the base learners), and can thus be represented as

f̄n(x)= 1
B

B∑
b=1

f̂ b
n (x;Dn) , (1)

with f̂ b
n (x;Dn) the bth tree in the forest. Trees are assumed to be grown by the

same set of rules, and their diversity is caused by injected (exogenous) randomness,

only. More precisely, f̂ b
n (x;Dn)= f̂n(x;Dn,Θb), with Θ1, . . . ,ΘB i.i.d. replicates of some

random variable Θ, which, e.g., can include decisions on resampling, splitting direc-

tions, and positions of splits. A tree f̂n(x;Dn,Θ) is a particular case of a partitioning

estimate, with feature space X partitioned into, say, L sets (nodes), (A i,n)L
i=1. The

partition, which can depend on both Dn and Θ, is constructed recursively by starting

from X and performing a sequence of splits, each one perpendicular to the axes.

Given a point x ∈X , the resulting tree estimate of f (x) is the local average over the

Yi for which the associated X i is in the same node as x, that is,

f̂n(x;Dn,Θ)=
L∑

i=1
Ȳn(A i,n)1A i,n(x) , x ∈X ,

with Ȳn(A) = 1
|{k : Xk∈A}|

∑
k : Xk∈A Yk, and the convention Ȳn(A) = 0 if none of the ob-

servations belongs to A. Many different specifications of Θ have been considered

in the literature, depending on whether the focus is on computational efficiency,

adaptivity to high-dimensional feature spaces (many predictors), predictive strength,

6

Electronic copy available at: https://ssrn.com/abstract=3551557



or analytic/theoretical tractability, see the discussion in Biau and Scornet (2016).

We use a typical tree-growing mechanism, corresponding to a variant of Breiman’s

RF (Breiman, 2001). Each tree in the forest is based on a bootstrap sample from

Dn with replacement. Splits are recursively performed in nodes until either (i) a

maximal depth is reached, or (ii) splitting the node will imply that one of the child

nodes contains strictly fewer bootstrap points than a certain threshold. We follow

the conventional CART methodology (Breiman et al., 1984) and choose the optimal

split (i?,τ?) in a given node A by maximizing the impurity decrease in A,

Ln(i,τ, A)= 1
n

∑
j : X j∈A

(Y j − Ȳn(A))2 − 1
n

∑
j : X j∈A∩{x : x(i)≤τ}

(Y j − Ȳn(A∩ {x : x(i) ≤ τ}))2

− 1
n

∑
j : X j∈A∩{x : x(i)>τ}

(Y j − Ȳn(A∩ {x : x(i) > τ}))2 , (2)

over i ∈ Mtry and τ ∈ A(i) := {x(i) : x ∈ A}. Here, x(i) refers to the ith coordinate

in x, and Mtry = Mtry(A) a random subset of [p] := {1, . . . , p}, of fixed cardinality

m(p) := |Mtry|, which determines the set of feasible split directions in A. The default

is m(p)= p in the sklearn library in Python, m(p)= bppc in the ranger package in

R, and m(p)= dp/3e in both the randomForest package in R and the TreeBagger

class in MATLAB.

2.1.1. Strong predictors

Assume throughout for simplicity that X = [0,1]p. Further, the key assumption

throughout is that of a sparse setting, i.e., the regression function f is of the form

f (x)= g(xS ) , x ∈ [0,1]p , (3)

for some measurable function g : [0,1]s →R and subset S ⊆ [p], with xS = (x(i))i∈S

and s := |S | significantly smaller than p. Many applications have p = 100 or larger,

and s ≈ 5 or less, see, e.g., the discussions in Rapach and Zhou (2013) and Chinco

et al. (2019). The predictors in S are referred to as strong, and the remaining as

weak, in line with Breiman (2004), Biau (2012), and Biau and Scornet (2016).
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2.1.2. Targeted random forest

The targeted RF (henceforth TRF) algorithm is identical to the RF above, except that

an initial step is included, with the aim to filter out some of the weak predictors. The

search is for a (relatively small) subset S ′ ⊆ [p] satisfying S ⊆S ′. The resulting

targeted estimator of f is thus constant along directions in [p] \S ′, and its trees

correspond to partitions of [0,1]s′ , with s′ := |S ′|.

There are various ways of choosing the targeted set S ′. Following Bai and Ng (2008),

we consider the LASSO estimator β̂λ of the linear regression coefficients, obtained as

(α̂λ, β̂λ)= argmin
α,β

n∑
i=1

(Yi −α−β′X i)2 +λ‖β‖`1 , (4)

with ‖ ·‖`1 the `1 norm. The minimization problem (4) corresponds to the Lagrangian

for the minimization of the sum of squared errors over a rhomboid {β : ‖β‖`1 ≤ C},

which in turn is the reason that β̂λ will often be sparse, i.e., it will only have few

non-zero entries. The choice of λ or, equivalently, C, controls the degree of sparsity.

Under suitable conditions, λ = λ(n) can be tuned in such a way that the LASSO

asymptotically identifies the true sparsity pattern S , as n →∞ (Hastie et al., 2015,

Ch. 11). This makes for an assumption of proper targeting, i.e., strong predictors are

not discarded, which we need for some of our analysis. Thus, we choose the targeted

set S ′ =S ′(λ) as

S ′ = {i ∈ [p] : β̂λi 6= 0} , (5)

and use λ to control the number of selected predictors, s′. An important feature of S ′

is that the selection is explicitly based on the predictors’ ability to (linearly) forecast

Y . Effectively, the degree of targeting is a tuning parameter of the procedure. For

example, Bai and Ng (2008) target 30 predictors in their factor-based setting. In the

RF context, the degree of targeting important for the performance of the resulting

TRF, as we show in the following. To this end, we need some assumptions.

2.1.3. Assumptions

We will impose one or more of the following:

8
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(A1) The data Dn = {(X1,Y1), . . . , (Xn,Yn)} form an ergodic sequence.

(A2) The input vector X is uniformly distributed on X = [0,1]p.

(A3) The regression function is linear, f (x)=β0 +∑
i∈S βix(i).

Assumption (A1) is imposed to ensure that empirical averages converge to their

theoretical counterparts. This assumption is mild and holds for most stationary

processes. The second assumption, (A2), is classical in the nonparametric regression

literature, and it is often sufficient to assume that the copula density of X is bounded

from above and below (Biau, 2012; Györfi et al., 2002; Scornet et al., 2015; Wager

and Athey, 2018). Assumption (A3) is mainly imposed for the sake of simplicity

and smooth exposition. Under this assumption, S = {i : βi 6= 0}. Most of what

follows could as well be worked out under the assumption that f is additive, f (x)=∑
i∈S f i(x(i)). The additive regression framework is convenient when trees are built

up on splits based on the CART criterion. Given a node A of a tree, there will

asymptotically always be a split in A leading to a decrease in impurity, unless f is

constant on A (Scornet et al., 2015, Technical Lemma 1, Supplement).

2.2. The probability of splitting on strong predictors

This section analyzes the probability of splitting on strong predictors both with and

without an initial targeting step. To cover both situations at once, consider selecting

a general subset A ⊆ [p] of cardinality a := |A | prior to building the trees of the

forest. The case A = [p] returns the ordinary RF, and S ⊆A ( [p] a proper TRF. Fix

a node A ⊆ [0,1]a in a given tree, select at random m(a)≤ a feasible split directions

MA
try, and let ρn(A ) be the probability that a split in A is performed along a strong

predictor. Let s(a) := |A ∩S | be the number of strong predictors in A . If s(a) ¿ a,

then m(a) may be tuned sufficiently low to ensure ρn(A ) < 1, and thereby induce

tree diversity, resulting in a variance reduction of the RF estimator. On the other

hand, to avoid severely biased trees, it is important that splitting directions are not

simply chosen at random, and that strong predictors are selected most of the time,

which means that ρn(A ) À s(a)/a. This implies that m(a) should not be tuned too

low. This section aims to show that (i) it might not be possible to ensure that ρn(A )

9
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is sufficiently large simply by tuning m(a) high (close to a), and (ii) using (proper)

targeting instead can increase ρn(A ).

While ρn(A ) is difficult to assess directly, we are able to provide useful bounds on

this probability. Before stating the formal result, some general notation is introduced.

Let L? denote the population counterpart of the CART objective function (2), that is,

L?(i,τ, A)=VarA(Y )−PA(X (i) ≤ τ)VarA(Y | X (i) ≤ τ)

−PA(X (i) > τ)VarA(Y | X (i) > τ) ,
(6)

subscript A indicating conditioning on {X ∈ A}. Define

δn(A )= sup
i∈A ,τ∈A(i)

|Ln(i,τ)−L?(i,τ)| , and C?(A )= sup
i∈MA

try∩S ,τ∈A(i)
L?(i,τ) ,

with the convention sup;= 0, and suppressing the dependence on A in Ln and L?.

The quantity δn(A ) reflects the finite sample disturbances from the estimation of

impurity decrease, and C?(A ) the maximal signal (relative to the CART criterion)

among the strong predictors in MA
try.

Theorem 1. The probability ρn(A ) of splitting on a strong variable satisfies

P(2δn(A )< C?(A ))≤ ρn(A )≤P(MA
try ∩S 6= ;) . (7)

Under (A1) and E[|Y |γ]<∞ for some γ> 2, the impurity decrease estimation error is

asymptotically negligible, δn(A )→ 0 as n →∞ with probability one. If, in addition,

(A2)–(A3) are satisfied, then

ρn(A )−→P(MA
try ∩S 6= ;) , n →∞ . (8)

In general, the less the finite sample error (the smaller δn) or the stronger the

signal (the higher C?), the tighter is the interval (7) for ρn(A ), the probability of

splitting on a strong variable. An additional mild moment condition on Y ensures

that the splitting probability approaches its upper bound. In fact, from the proof of

the theorem, it follows that Assumptions (A2)–(A3) are not strictly needed for (8).

10
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Since δn(A )→ 0 with probability one under (A1) and the moment condition, the only

additional property needed is that

sup
τ∈A(i)

L?(τ, i)> 0 , (9)

for each i ∈ S . This is satisfied, e.g., if f is additive, f (x) = ∑
i∈S f i(x(i)), with

f i continuous and not constant on A(i) (Scornet et al., 2015, Technical Lemma 1,

Supplement), thus relaxing (A3). Similarly, for additive f , it should be possible to

relax (A2) by using the c.d.f. to transform the predictors. The transformed predictors

would not necessarily be independent, but as noted in Section 2.1.3, it is often

sufficient that the copula density be bounded from above and below. We will not go

into further details with this, but instead focus on the possibility of controlling the

splitting probability through the bounds from Theorem 1.

2.2.1. Control of upper bound

The estimators (both RF and TRF) can be tuned to ensure diversity of trees by

lowering the upper bound in (7) in Theorem 1 through the choice of the function m(·),
thereby forcing ρn(A ) away from one. To elaborate on this, the upper bound can be

calculated explicitly, using the hypergeometric distribution, as

P(MA
try ∩S 6= ;)= 1−1{m(a)<a−s(a)}

a− s(a)

m(a)

/ a

m(a)

 . (10)

As long as a is large compared to s(a), proper choice of m(a) ensures that ρn(A ) is

not too large. To give an example, a representative forecasting exercise with a = 40

predictors, of which s(a)= 5 strong, and splitting direction chosen from among m(a)=
da/3e = 14 feasible directions would produce an upper bound of P(MA

try∩S 6= ;)= 0.9,

low enough to ensure randomness in the splitting procedure, while still much larger

than s(a)/a = 0.125. In particular, if ρn(A ) is close to its upper bound, which occurs

asymptotically by (8) in Theorem 1, the ability of the trees to select strong predictors

to split on is, in principle, controllable through choice of m. However, as we show in

simulations below, ρn(A ) can be far below the upper bound in small samples, i.e.,

11
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the interval (7) can be wide. Thus, additional tools, besides the choice of m(·), are

needed to ensure that ρn(A ) is not too small, and hence the role for targeting.

2.2.2. Control of lower bound

Targeting of predictors can be used to raise the lower bound in (7) in Theorem 1.

First, given MA
try, the quantity C?(A ) is deterministic, and may for some classes of

f be computed explicitly. For instance, under (A3) it can be verified that

C?(A )= 1
16

sup
i∈MA

try∩S

β2
i Leb(A i)2 , (11)

with A =×p
i=1 A i (see also Biau, 2012, Section 3). In general, it holds that C?(A )≤

supi∈A ,τ∈A(i) L?(i,τ). Here, the right-hand side is independent of m and can, for

some regression functions f , be arbitrarily small, even for fixed A and Var( f (X ))

(see Proposition 2 below). This means that the dependence of the lower bound

P(2δn(A ) < C?(A )) on m is limited. While the presence of δn(A ) in the bound is

unavoidable, its magnitude can be reduced simply by considering a smaller set of

predictors, B. If, in addition, C? is roughly the same for A and B, the lower bound

increases. Ultimately, this means that ρn(B) is forced to exceed a larger bound than

ρn(A ).

To state a rigorous result corresponding to this discussion, let ≤st denote first order

stochastic dominance. The following proposition gives sufficient conditions for one

targeting set B to be preferred over another set A .

Proposition 1. Let A ,B ⊆ [p] such that δn(B) ≤st δn(A ) and C?(A ) ≤st C?(B).

Then the lower bound on ρn is larger for B than for A , that is,

P(2δn(A )< C?(A ))≤P(2δn(B)< C?(B)) . (12)

In particular, using a targeting set A increases the lower bound on the probability ρn

of splitting on strong predictors if C?([p])≤st C?(A ).

Intuitively, the condition δn(B) ≤st δn(A ) means that B ⊆ A . Under suitable as-
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sumptions, extreme value theory implies an approximate relation

P(δn(A )≥ x)≈ aP(Zn ≥ x) , (13)

for s(a)¿ a ¿ n and some random variable Zn not depending on A . This suggests

that δn(B)≤st δn(A ) as long as the cardinality of B is smaller than that of A (both

being much larger than s). The condition C?(A )≤st C?(B) is related to the likelihood

of having strong predictors in MA
try relative to MB

try. It is of no use simply to discard

arbitrary predictors.

Consider the case that all directions are feasible (m is the identity function) and B

contains the same strong directions as A . This implies that C?(A ) and C?(B) are

deterministic and C?(A )= C?(B)= C?. Thus, if all directions are feasible, and A

represents a targeted set that does not eliminate strong predictors from the non-

targeted set of all original predictors, [p], then targeting increases the lower bound

on ρn. If the approximation (13) applies, a rough estimate of the gain from targeting

(increase in the lower bound in Theorem 1) is

P(2δn(A )< C?)−P(2δn([p])< C?)≈ (p−a)P(2Zn ≥ C?) .

Thus, targeting of predictors in RF improves the lower bound on the probability

of splitting on strong predictors roughly linearly in the number of weak predictors

discarded. This indicates that the ability of TRF to navigate in high-dimensional

settings can dominate that of ordinary RF.

2.2.3. Sampling experiments

By Theorem 1, two key objects, the finite sample impurity decrease estimation

error δn(A ) and the maximal signal C?(A ), determine the lower bound on the

probability ρn(A ) of splitting on strong variables. By Proposition 1, using targeting

to push these two quantities in a stochastic order sense can increase the lower

bound. It is of interest to know whether the impact carries over to ρn(A ) directly

in finite samples. Thus, we design simulation studies to assess the partial effect
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of δn = δn([p]) and C? = C?([p]) on ρn = ρn([p]). Throughout the simulations, we

set m(p) = p, S = {1}, and let Y given X = x be Gaussian with variance σ2 > 0. In

particular, C? is deterministic, and ρn → 1 as n →∞, by Theorem 1. For simplicity,

we take A = [0,1]p and normalize f so that Var( f (X ))= 1. The signal-to-noise ratio

(SNR) may be expressed simply in terms of σ2,

SNR := Var( f (X ))
Var(Y )

= 1
1+σ2 . (14)

Under Assumptions (A2)–(A3), the restrictions used in the simulations imply |β1| =
p

12 and β2 = ·· · =βp = 0, since S = {1} and the variance of a uniform on [0,1] is 1/12,

i.e., Var( f (X ))= 1=β2
1/12.

The effect of δn on ρn We consider variations in the SNR (14) and the number of

weak predictors, as these are key drivers of δn. The higher the SNR or the lower the

number of weak predictors, the lower the value of δn. We focus on the linear case

(A3), β1 =p
12. Given n, p, and SNR, we repeat the following experiment 10,000

times to obtain a Monte Carlo estimate of ρn:

• Generate n realizations (X1,Y1), . . . , (Xn,Yn).

• Compute the value Ln(i, X (i)
j ) of the CART objective function (2) at τ= X (i)

j , for

i = 1, . . . , p and j = 1, . . . ,n.

• Assign the value 1 to the current repetition of the experiment if Ln(i, X (i)
j ) is

largest for i = 1, and 0 otherwise.

Figure 1 shows the resulting (approximate) probability ρn as a function of SNR, for

different values of n and p. Consistently with our theoretical results, ρn increases

as p is reduced, or SNR or n is increased. A challenging predictive environment,

with low SNR or many weak predictors, reduces the probability of splitting on strong

predictors considerably in finite samples. This relates directly, e.g., to financial

applications aiming at predicting stock, bond, or exchange rate returns. Here,

n = 100 would be a typical sample size, and likely SNR ≤ 0.1, since asset returns

contain a sizeable amount of inherently unpredictable variation (Rapach and Zhou,
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2013). Moreover, a plethora of predictors exists. If, say, around five percent of the

predictors are strong, the sampling experiment suggests that the probability of

splitting on strong predictors is only of the order one half.
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Figure 1: The probability of splitting on the strong predictor X (1) as function of SNR
for different sample sizes n and number of predictors p = 2 (orange), p = 4 (blue),
p = 8 (gray), and p = 16 (purple).

The effect of C? on ρn Given the normalization Var( f (X ))= 1 and linearity (A3),

it follows from (11) that C? = 3/4. However, for nonlinear f , this value can be very

different. If f (x) tends to fluctuate around a certain level for x in some region A, the

gain from placing a split in A can be limited. To illustrate, consider an oscillating

regression function

f (x)=
p

2sin(αx(1)), x = (x(1), . . . , x(p))′ ∈ [0,1]p , (15)
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Figure 2: The best approximating step function x 7→ a1[0,τ](x)+b1(τ,1](x) to (15) in
case α= 4π (left) and α= 16π (right), for τ= 1/3.

with frequency α a multiple of 2π for simplicity. This relates to applications involv-

ing seasonality, with X (1) indicating calendar time, and predicting, e.g., industrial

production or retail sales (Ghysels and Osborn, 2001). Given the amplitude of
p

2 in

the example, f does indeed satisfy Var( f (X ))= 1 under Assumption (A2). Further, α

controls the maximal signal, C?, as shown in the following proposition.

Proposition 2. For f given by (15) and under Assumption (A2), the maximal signal

satisfies C? ≤ 4(α−2)−1.

Thus, the higher the frequency α, the less is the gain from placing a split along the

strong variable, in terms of impurity decrease. Even for moderate values of α, the

signal is much smaller than the value 3/4 for the linear specification. For instance,

if α = 4π, then C? ≤ 0.3786, i.e., the signal is at most about half of the linear one.

Consequently, we should expect ρn to be considerably smaller in this example. With

oscillations on both sides of a split position τ, the best approximating step function

x 7→ a1[0,τ](x)+b1(τ,1](x) of f has a,b ≈ 0, so the improvement over the zero function

is limited. This is illustrated in Figure 2. While there will be few oscillations in, say,

[0,τ] for τ close to 0, such a split leads to a modest decrease in impurity, since X (1)

only falls into [0,τ] for a small fraction of observations.

The question is whether the effect on C? carries over to ρn. Based on Proposition 2

and this discussion, we expect ρn to decrease in α and, generally, be much smaller

than the values in Figure 1 for the linear specification of f . We design a new

simulation experiment along the lines of the preceding one, restricting attention to
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the case p = 8. We compare the linear regression function to (15) for various values

of α and n.

Results of the experiment are presented in Figure 3. Generally, the oscillating

behavior of the regression function harms the ability of the CART criterion to detect

the signal, and the more oscillations, the worse the performance. In particular, when

α= 16π, ρn remains below 0.2, for all values of SNR and n considered, which is not

much better than choosing the split direction at random (s/p = 0.125).
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Figure 3: The probability of splitting on the strong predictor X (1) as function of
SNR in the linear case (orange) compared to the oscillating (15), with α= 4π (blue)
and α= 16π (gray). In all cases, p = 8.

While the lack of identification of strong predictors is particularly prevalent for

oscillating regression functions, the issue remains for less chaotic specifications. To
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Figure 4: The piecewise polynomial given in (16).

illustrate, consider f (x)∝ (x(1) −1/2)2 and the piecewise polynomial

f (x)∝



(2x(1) +1)2/2 if x(1) ∈ [0,1/4),

x(1) +3/8 if x(1) ∈ [1/4,1/2),

−5(2x(1) −6/5)2 +43/40 if x(1) ∈ [1/2,3/4),

2x(1) −7/8 if x(1) ∈ [3/4,1].

(16)

The regression function (16), which is due to Györfi et al. (2002), is shown in Figure 4.

The value of C? is computed numerically to 0.3125 for the second-order polynomial,

and 0.2565 for (16), both considerably smaller than 0.75, the value for f linear.

Although these cases are less extreme than the oscillating, results from a third sam-

pling experiment, shown in Figure 5, demonstrate that the probability of selecting

the strong predictor X (1) is reduced significantly, relative to the linear case.

Taken together, the results show that increased sample size, fewer weak predictors,

and stronger signal-to-noise ratio, or, more generally, reduced finite sample error

in the estimation of impurity decrease and increased maximal signal, can increase

both the lower bound on the probability of splitting on strong variables and the

probability itself in finite samples.
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Figure 5: The probability of splitting on the strong predictor X (1) as function of
SNR in the linear setting (orange) compared to the cases f (x) ∝ (x(1) −1/2)2 (blue)
and f given by the piecewise polynomial (16) (gray). In all cases, p = 8.

2.3. Strength of trees

In the following analysis, we consider the effect of targeting in terms of strength of

individual shallow trees, that is, trees whose “size” does not increase with sample

size n. To evaluate the strength of a forest, one would need to take into account both

the strength and the diversity of its trees. In this section, we investigate the gain

from targeting in terms of tree strength, thus showing how much must be gained

from tree diversification to justify not targeting. For simplicity of exposition, we

consider a particular type of shallow trees, in which the number of leaves is fixed, and

nodes are split in a best-first fashion. Such trees are widely applied in practice, and

implemented in most programming languages. For example, in Python’s sklearn

library, these trees are tuned by the max_leaf_nodes parameter. In our empirical

applications in Section 3, we use trees of fixed depth—that is, trees for which an

exact number of edges must be traversed to reach any of their leaves. With only a

few modifications to the splitting rule, we conjecture that the following analysis can

be carried out for trees of fixed depth, as well.

Recall that, given data Dn, an ordinary tree forecast f̂L,n(x) of f (x) with L leaves

takes the form

f̂L,n(x)=
L∑

i=1
Ȳn(A i,n)1A i,n(x) , x ∈ [0,1]p , (17)
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with (A i,n)L
i=1 a partition of [0,1]p, which in Breiman’s (Breiman, 2001) algorithm

depends on Dn and the random input selection Θ (assuming no bootstrap step). For

simplicity, assume S = {1} and perfect targeting, S ′ =S . Thus, the targeted tree

forecast f̃L,n(x) is of the same form (17), but with splits only along the strong predictor.

Hence, (A i,n)L
i=1 is replaced by a partition (Bi,n)L

i=1 of [0,1] and corresponding local

averages,

f̃L,n(x)=
L∑

i=1
Ȳn(Bi,n)1Bi,n(x(1)) , x ∈ [0,1]p . (18)

We assess the effect of targeting by comparing the strength of f̃L,n and f̂L,n. Given

L ¿ n, we assume that the partition (A i,n)L
i=1 can be built in a theoretically optimal

way, that is, (A i,n)L
i=1 = (AL

i )L
i=1 is obtained by starting from A1

1 = [0,1]p and then

applying the following recipe recursively:

• For k < L, let M (k)
try be a randomly chosen subset of [p] of size m.

• Pick a node A in (Ak
i )k

i=1. If M (k)
try∩S 6= ;, the kth split (i?,τ?) is determined

by optimizing (6) over i ∈M (k)
try ∩S and τ ∈ A(i).

• The partition (Ak+1
i )k+1

i=1 is the same as (Ak
i )k

i=1 except from A, which is divided

into A∩ {x : x(i?) ≤ τ?} and A∩ {x : x(i?) > τ?}, with (i?,τ?) the chosen split.

In particular, the probability ρ of splitting along a strong variable coincides with the

upper bound from (7) in Theorem 1, explicitly given as (see (10))

ρ = 1−1{m+s<p}

p− s

m

/ p

m

 . (19)

In case the optimum (i?,τ?) is not unique, we assume that a certain deterministic

tie-breaking rule is employed. The construction outlined above is similar to the one

used in practice, except that we assume that L? can be optimized, rather than Ln.

The node A to split in a given step is determined in a best-first fashion:

(R) The kth split is performed in the node leading to maximal impurity decrease,

i.e., if (i j,τ j) is the optimal split in Ak
j , then the node to split is A = Ak

j? , with

j? = argmax j L?(i j,τ j, Ak
j ).

20

Electronic copy available at: https://ssrn.com/abstract=3551557



The partition (Bi)L
i=1 is obtained similarly, but all splits are placed in S . Define the

corresponding partition-optimal trees f̂L and f̃L by

f̂L(x)=
L∑

i=1
E[Y | X ∈ A i]1A i (x) , and f̃L(x)=

L∑
i=1

E[Y | X (1) ∈ Bi]1Bi (x
(1)) . (20)

Under wide conditions, f̂L,n and f̃L,n converge uniformly to their partition-optimal

counterparts (see, e.g., Wager and Walther, 2015), meaning that their relative

performance can be assessed through (20) for large n. Thus, we restrict attention to

f̂L and f̃L in the following.

As an example of the structure of f̂L and f̃L, consider p = 2 and L = 6, and let Zk =
1{M (k)

try∩S 6=;} indicate whether the kth split is performed along the strong predictor or

not. Consider the case that Zk = 0 for k ∈ {1,4} and Zk = 1 otherwise, and denote by

τ1,τ2,τ3 ∈ [0,1] and γ1,γ2 ∈ [0,1] the corresponding splits along the strong and weak

predictor, respectively. The partition of f̂2 is A2
1 = [0,1]×[0,γ1] and A2

2 = [0,1]×(γ1,1].

The next split will be at τ1, in either A2
1 or A2

2, depending on the ranking of ties,

since both result in an impurity decrease of β2
1/16 under assumption (A3) (see (11)).

Moreover, the optimal split is always at the midpoint, so τ1 = 1/2. The next strong

split will for sure be placed in the other node, at τ2 = 1/2. The fourth split is weak

and will be placed somewhere in one of the four possible nodes, the specific position

being determined by the tie-breaking rule. Finally, each of the last five nodes leads

to the same maximal impurity decrease, so we will again rely on the ranking of

ties. As before, τ3 is placed at the midpoint, which, depending on the node, is either

1/4 or 3/4. For the targeted tree, the first split is at τ1 = 1/2, then τ2 ∈ {1/4,3/4},

and τ3 = {1/4,3/4}\ {τ2}. This means that the ordinary tree gets to split only at two

distinct places along the strong predictor, although three strong splits are placed,

while the targeted tree splits five times along the strong predictor. An example of

the two partitions is given in Figure 6.

The example shows that the order in which strong and weak splits are placed can

have a significant impact on tree strength. This is formalized more generally in

the next theorem, which provides bounds on the strength of the ordinary tree f̂L,n
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Figure 6: A partition of [0,1]2 for an ordinary tree of size L = 6 (left) and its targeted
counterpart (right). The horizontal and vertical axes correspond to a strong and
a weak predictor, respectively. Only two distinct splits on the strong predictor are
performed in the ordinary tree.

relative to the corresponding targeted tree f̃L,n. Write MSE( f̂ ) := E[( f (X )− f̂ (X ))2]

for an estimator f̂ = f̂ ( · ;Dn) of f which is independent of X , let the notation MSEΘ

indicate that probabilities are computed conditionally on Θ, and define the functions

ι(x)= 2blog2(x)c and ι(x)= 2dlog2(x)e, (21)

which satisfy ι(x)≤ x ≤ ι(x) with equalities when x = 2k for some integer k.

Theorem 2. Suppose that Assumption (A2)–(A3) are satisfied, and that the splitting

rule (R) is employed. Then

MSE( f̃L)=β2
1

7ι(L)−3L
48ι(L)3 , L ≥ 1 , (22)

and

MSEΘ

(
f̃
ι
(
`0+ N−`0+1

`0(L−N)

))≥MSEΘ( f̂L)≥MSEΘ

(
f̃
ι
(
1+ N

`1

)) , L ≥ 1 , (23)

with Θ= (M (1)
try, . . . ,M (L−1)

try ), N =∑L−1
k=1 1{M (k)

try∩S 6=;}, and `i =min{k : 1{M (k)
try∩S 6=;} = i}.

In the event that the set {k : 1{M (k)
try∩S 6=;} = i} considered in Theorem 2 is empty, we

set `i = 1. Thus, N is the number of strong splits among L−1 possible, while `0 and
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`1 refer to the first time a weak and a strong split is placed, respectively. In the

example above, and in Figure 6, N = 5, `0 = 1, and `1 = 2. The following heuristic

arguments provide intuition for the bounds (23) in the theorem.

Lower bound Before placing any strong splits, the tree is partitioned into `1

subtrees, without improving MSE. The splitting rule (R) implies that the N strong

splits are roughly equally distributed across subtrees, meaning that none of these

can be better than a targeted tree with 1+N/`1 ≤ L leaves.

Upper bound The first `0 −1 splits are strong, so up to this point, the ordinary

tree f̂L is identical to the targeted tree with `0 leaves. However, in f̂L, these `0 nodes

are expanded into subtrees. The worst possible subtree would be one which is first

divided into L−N branches by weak splits among them, and then receives a number

of strong splits. Again, the splitting rule (R) ensures that each branch in this subtree

receives roughly N−`0+1
`0(L−N) strong splits. Since this number is on top of the initial `0−1

strong splits, f̂L is no worse than a targeted tree with `0 + N−`0+1
`0(L−N) ≤ L leaves.

Theorem 2 turns the heuristic arguments into the rigorous bounds in (23), using

the functions ι and ι from (21), as the distribution of the strong splits is known only

roughly, and the number of splits is an integer.

While Theorem 2 provides bounds conditionally on Θ, these can be translated into

explicit bounds on the unconditional MSE of the ordinary tree. Let

g0(x, y)=MSE
(
f̃
ι
(

y+ x−y+1
y(L−x)

)) and g1(x, y)=MSE
(
f̃
ι
(
1+ x

y

))

be the functions determining the bounds (23) for given N, `0, and `1. These functions

can be evaluated using (22) from Theorem 2. The following corollary provides

tractable expressions for the distributions of (N,`0) and (N,`1), and explicitly bounds

the MSE of the ordinary tree above and below by averages over targeted trees with

fewer leaves.
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Corollary 1. Under the conditions of Theorem 2,

E[g0(N,`0)]≥MSE( f̂L)≥ E[g1(N,`1)] , (24)

in which the probability mass functions of (N,`0) and (N,`1) are given by

P(N = n,`0 = k)

=


ρk−1(1−ρ)Bin(n+1−k;L−1−k,ρ) if n ∈ (0,L−1) and k ∈ [1,n+1]

ρn(1−ρ)L−1−n if n ∈ {0,L−1} and k = 1

0 otherwise,

respectively

P(N = n,`1 = k)

=


ρ(1−ρ)k−1 Bin(n−1;L−1−k,ρ) if n ∈ (0,L−1) and k ∈ [1,L−n]

ρn(1−ρ)L−1−n if n ∈ {0,L−1} and k = 1

0 otherwise,

with ρ defined in (19) and Bin( · ;k,ρ) the probability mass function of the Binomial

distribution with k trials and success probability ρ.

From (24) and 1+ N/`1 ≤ L, it follows that MSE( f̂L) > MSE( f̃ι(L)), i.e., there is an

immediate gain in tree strength from targeting (again, MSE( f̂L) > MSE( f̃L) for

L = 2k). Figure 7 illustrates the bounds on MSE( f̂L) from (24) in the corollary by

showing E[g0(N,`0)] and E[g1(N,`1)] as functions of ρ, for two different values of L.

The probability mass functions provided by the corollary are used to compute these

functions. In the figure, these best and worse case scenarios for the performance of

the ordinary tree are compared to that of the targeted tree, MSE( f̃L). With only one

strong predictor, ρ will not exceed 0.5 when the total number of predictors is p ≥ 2

and the cardinality of Mtry is set to the default value, m = dp/3e.

For the values of L considered here, the mean squared error for the ordinary tree,
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Figure 7: A comparison of MSE( f̃L) (orange) to the upper (blue) and lower (gray)
bounds of MSE( f̂L) from Corollary 1 as functions of ρ, with β1 =

p
12, for two values

of L. The graph of MSE( f̂L) is located somewhere in the shaded region.

located somewhere in the shaded region in Figure 7, is much larger than that for its

targeted counterpart, in the bottom part of the figure, even for large values of ρ.

3. Empirical applications

In this section, we investigate the effect of targeting predictors in random forests

empirically by assessing the relative predictive ability of ordinary versus targeted

RF in two classical applications involving many initial predictors, namely, equity

premium prediction in the style of Welch and Goyal (2008), and the prediction of

industrial production growth, employment growth, and consumer price inflation

from a large panel of monthly macroeconomic, financial, and sentiment variables as

in Stock and Watson (2002), using the McCracken and Ng (2016) data. We consider

standard transformations of the data, for which ergodicity (A1) can reasonably be

assumed. We expect that most of our theoretical results apply more generally than

under the stated assumptions of uniformity (A2) and linearity (A3). We focus first on

the linear case in the applications, then turn to nonlinearities in Section 3.2.1.

Following standard practice in the literature, we evaluate the accuracy of our point

forecasts based on squared prediction errors, and use the Diebold-Mariano or DM

(Diebold and Mariano, 1995) test to compare the performance of TRF against ordinary

RF. The null hypothesis is that the forecast from TRF does not outperform that
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from ordinary RF, and the (one-sided) alternative is that it does. The DM test

statistic is constructed using HAC standard errors and a Bartlett kernel with lags

truncated at h− 1, with h the forecast horizon. A maximum tree depth of 3 is

applied, corresponding, e.g., to the median of values used in Gu et al. (2020). The

implementation is done in Python, using the standard sklearn library. For the bth

tree in (1), Θb specifies the bootstrap draw of size n from Dn with replacement, and

for each node the random selection MA
try of size m = da/3e of feasible split directions

from A , with a = |A |, i.e., A = [p] and a = p for ordinary RF, a < p for TRF.

3.1. Applications with many initial predictors

The financial and macroeconomic applications are described in Sections 3.1.1 and

3.1.2, respectively. Section 3.2 presents empirical results based on monthly data for

predictive ability one month ahead (h = 1), one quarter ahead (h = 3), and one year

ahead (h = 12).

3.1.1. Predicting the equity premium

Our first application, the prediction of the monthly equity premium in the spirit

of Welch and Goyal (2008), is based on a long tradition in finance. The forecasting

objective is the return to the US stock market in excess of the risk-free rate, i.e., the

equity premium. For the stock market index Pt, the logarithmic return is defined by

Rt+h = logPt+h − logPt, and the equity premium by

Yt = Rt+h −R f
t+h ,

with R f
t+h the continuously compounded risk-free rate of return. We use the S&P500

month-end cum dividend index returns from 1960–2017 for Rt+h, and the monthly

Treasury bill rate for R f
t+h. Following Welch and Goyal (2008), we aim to predict Yt

using the most prominent predictors X t in the literature. We include the dividend-

price ratio, dividend-earnings ratio, earnings-price ratio, dividend-yield ratio, book-

to-market ratio, net equity expansion, Treasury bill rate, term spread, default return

spread, default yield spread, long-term rate of return, long-term yield, stock variance,
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and inflation, for a total of p = 14 predictors. Their construction follows Welch and

Goyal (2008), and data on X t and Yt are obtained from Amit Goyal’s website.*

As in Welch and Goyal (2008), we consider an expanding window estimation scheme,

including all data up to the point in time at which the forecast is constructed. The

initial estimation window spans the period from 1960 through 1974, so that the first

forecast is generated for the hth month of 1975, and the last for December 2017.

3.1.2. Predicting macroeconomic variables

Our macroeconomic application covers monthly industrial production growth, em-

ployment growth, and consumer price inflation prediction. We treat the industrial

production index (IP) and employment (EMP) as I(1) series, and the consumer price

index (CPI) as an I(2) series, following Stock and Watson (2002) and McCracken

and Ng (2016). The forecasting object is the logarithmic difference or cumulative

growth for a given horizon h,

Yt = log Zt+h − log Zt , (25)

for Zt = {IPt,EMPt}. For our third macroeconomic forecasting object, we consider

the second difference of the logarithm of CPI t, i.e., CPI acceleration, and cumulate

this over the h-step horizon.

Following Stock and Watson (2002), we aim to predict Yt using a large panel of

monthly predictors. We use the McCracken and Ng (2016) data, which contains a

broad set of macroeconomic, financial, and sentiment variables, including data for

constructing Yt.† We restrict the sample period to 1970-2018, as most series become

available from 1970, and remove those with missing values during the period. This

yields a set of p = 100 predictors. We transform the data as proposed by McCracken

and Ng (2016).

As in the financial application, we consider an expanding window estimation scheme.

*http://www.hec.unil.ch/agoyal/.
†https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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The initial estimation window runs from 1970 through 1984, so the first forecast is

for the hth month of 1985.

3.2. Results

Table 1 reports the ratio of the mean squared prediction error (MSE) of TRF, for

various numbers of targeted predictors, s′, to that of ordinary RF, both for the full out-

of-sample period and for NBER dated recessions and expansions, with the forecasting

objective in either of the two states. Reported values below unity indicate superior

performance of TRF relative to RF and are highlighted with bold. Significance

levels of the DM test are displayed using standard notation with three, two, and one

asterisks representing p-values less than 1%, 5%, and 10%, respectively.

Results are reported for a broad range of s′, the number of predictors targeted in

TRF. In the macroeconomic applications, λ in (5) is tuned to target s′ = 5, 10, 20, 30,

or 50 predictors in TRF, against the p = 100 available to RF. These values span a

very sparse setting, with only a few (five) targeted predictors, medium-dimensional

settings in which several predictors are left out, yet 10–30 are targeted, and one with

only half of the predictors discarded. In the financial application, λ is tuned to s′ = 2,

5, or 10 predictors in TRF, compared to p = 14 for RF, similarly representing sparse

and medium settings, as well as a case with only a small share of initial predictors

discarded. From the theory, targeting always increases the strength of individual

trees (Section 2.3), but might come at a cost of reduced diversity across trees, hence

lowering the benefit of the variance reduction inherent in RF. Here, we analyze this

tradeoff empirically, along with the magnitude of the impact of targeting. In the

following, we synthesize our findings.

Targeted RF performs particularly well for long horizons. At the longest

forecasting horizon considered, h = 12, TRF delivers improvements over ordinary

RF over the full out-of-sample period, with MSE ratios below unity both for the

equity premium and the three macroeconomic variables, and for all degrees of

targeting considered, except in a single case—the equity premium, heavy targeting.

Improvements from targeting are statistically significant at level 10% or better
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Table 1: Predictive ability of RF versus TRF
This table reports the ratio of mean squared prediction error (MSE) of each version of TRF to
that of ordinary RF, both for the full out-of-sample period and for the NBER dated recessions
and expansions, with the forecasting objective belonging to either of the two states. Across
the macroeconomic (employment growth, industrial production growth, and consumer price
inflation) and financial applications, forecast horizons h = 1,3,12 are considered. The penalty
λ is tuned to target s′ predictors. Bold indicates values of relative MSE below unity and thus
improvements from targeting. Superscripts ***, **, and * indicate statistical significance,
based on a (one-sided) Diebold-Mariano test statistic using HAC standard errors with a
Bartlett kernel of bandwidth h−1, at significance levels 1%, 5%, and 10%, respectively.

Full out-of-sample NBER recessions NBER expansions

s′ h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12

Panel A: Employment growth

5 1.031 0.993 0.909∗∗ 0.975 0.983 0.920∗ 1.035 0.995 0.906∗

10 0.994 0.996 0.878∗∗ 0.927 0.868∗∗∗ 0.906∗ 0.999 0.994 0.870∗∗

20 0.992 0.996 0.920∗∗ 1.018 0.908∗∗∗ 0.987 0.990 1.004 0.901∗∗

30 0.996 0.994 0.916∗∗ 1.015 0.968∗ 0.994 0.994 0.997 0.894∗∗

50 1.025 0.996 0.926∗∗ 1.094 0.969∗∗ 1.019 1.019 0.998 0.900∗∗∗

Panel B: Industrial production growth

5 1.095 1.076 0.872 1.319 1.204 1.032 1.010 1.009 0.751∗

10 1.009 1.055 0.927 1.134 1.188 1.028 0.962 0.985 0.851∗

20 1.021 1.001 0.875∗∗ 1.124 1.066 0.946 0.979 0.966 0.821∗

30 1.012 0.984 0.898∗∗ 1.067 1.077 0.954∗ 0.991 0.935∗ 0.856∗

50 1.013 0.960 0.889∗ 1.022 1.099 0.918∗∗ 1.010 0.886∗∗ 0.867

Panel C: Consumer price inflation (acceleration)

5 0.993 0.906 0.986 0.925 0.822 0.890∗ 1.022 0.974 1.013

10 0.986 0.922 0.984 0.989 0.845 0.924∗∗ 0.986 0.983 1.010

20 1.006 0.915 0.993 1.006 0.830 0.924∗∗ 1.006 0.983 1.012

30 1.005 0.926∗ 0.988 1.016 0.867∗ 0.944∗ 1.004 0.974 1.000

50 1.010 0.964∗ 0.988 1.011 0.931∗ 0.976∗∗∗ 1.010 0.990 0.991

Panel D: Equity premium (S&P500 Index returns)

2 1.011 1.099 1.056 0.961 1.212 1.097 1.005 1.094 1.047

5 0.979 1.015 0.941∗ 0.913∗∗ 1.084 1.123 0.988 1.000 0.922∗

10 1.005 0.991 0.955∗∗ 0.993 1.004 1.004 1.010 0.978∗ 0.943∗∗

in most cases. The same general pattern applies for h = 12 during recessions

and expansions, the only exception during expansions being inflation, and during
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recessions—the equity premium. The results are interesting, as the forecasting of

macroeconomic variables is known to be particularly challenging at long horizons. For

example, Galbraith and Tkacz (2007) find deteriorating predictability for increasing

forecasting horizons across a large set of macroeconomic and financial variables, and

Galbraith (2003) document a similar pattern for GDP and inflation, specifically. Thus,

TRF delivers significant improvements in settings in which predictability is generally

challenging. This corresponds well with the results from Section 2.2.3, showing that

a low SNR can reduce the probability of splitting on strong variables considerably,

and that targeting of predictors reduces the curse of dimensionality issues involved.

It is likely that SNR is particularly low for long-horizon macroeconomic forecasting,

which therefore explains the significant gains to targeting in these cases.

Targeted RF can yield substantial gains in predictive accuracy. For employ-

ment growth, CPI, and the equity premium, and for each of the three forecasting

horizons over the full out-of-sample period, TRF improves over ordinary RF in most

cases, with at most two-three exceptions, across the different numbers of targeted

predictors considered. The gain in predictive accuracy is considerable in many cases,

up to 12–13%, which is noteworthy, considering that the benchmark model, RF, is

a sophisticated forecasting technique itself. Whenever TRF is not preferred over

RF, the difference is typically small and economically negligible. For instance, for

consumer price inflation, this amounts to 0.5–1% over the full period. For indus-

trial production growth, most gains occur at the longest horizon, h = 12, again with

magnitudes up to 12–13%, but with no improvements at h = 1, hence reinforcing the

particular relevance of targeting in low SNR environments.

Targeted RF yields improvements in both expansions and recessions. For

employment growth, gains in predictive accuracy of TRF over RF occur both during

NBER dated recessions and expansions, and appear strongest during recessions

at the quarterly forecasting horizon, and during expansions at the yearly. For

industrial production growth, considerable gains to targeting are observed during

expansions, while gains are relatively more frequent during recessions for consumer

price inflation. The improvements in predictive accuracy for the equity premium
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occur both during recessions and expansions. Like for employment growth, they

are strongest at long horizons during expansions, while during recessions they are

strongest at shorter horizons (monthly, in case of the equity premium, quarterly for

employment growth).

A medium degree of targeting is preferred. For employment growth, over the full

period, the only cases in which TRF produces less predictive accuracy than ordinary

RF are for very light (s′ = 50) or very heavy (s′ = 5) targeting, at the short horizon

(h = 1). A similar pattern is seen for the equity premium, with TRF not beating RF

for s′ = 10 or 2 at the short horizon. During expansions, an intermediate degree of

targeting is preferred at the short horizon for employment and industrial production

growth. The notion that an optimal degree of targeting exists is meaningful. With

too much screening, the improvements in predictive performance for a given tree are

insufficient to offset the large increase in correlation among trees, and the variance

reduction from averaging the forest never fully kicks in. In terms of the analysis in

Section 2.2, although the probability of splitting on strong predictors is improved,

the low number of predictors targeted renders trees very similar. On the other hand,

with too little screening, targeting does not sufficiently increase the probability of

splitting on strong predictors, as too many week predictors are retained.

The empirical results are consistent with the analysis in Section 2, i.e., improvements

in tree strength come at the cost of increased correlation across trees, thus limiting

the reduction in variance from averaging across trees. Moreover, the targeting

step is naturally at risk of discarding strong variables. To analyze this inherent

tradeoff in targeting empirically, we follow Breiman (2001) and estimate the MSE

and (pairwise) correlation among trees in the forest. Specifically, conditionally on

two randomization parameters Θ and Θ′, define the covariance κ(Θ,Θ′) between the

(prediction) errors of the corresponding trees,

κ(Θ,Θ′)= E[(Y − f̂n(X ;Dn,Θ)
)(

Y − f̂n(X ;Dn,Θ′)
) |Θ,Θ′,Dn

]
.
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Figure 8: The MSE (left figure) and tree correlation (right figure) for TRF over
the range s′ = 1, . . . ,100, with s′ = p = 100 corresponding to the ordinary RF. Values
shown are for the application to one month ahead employment growth prediction.

The MSE of a tree built from Dn is

MSE(tree)= E[κ(Θ,Θ) |Dn
]
, (26)

and the correlation ρ between tree errors is

ρ = E
[
κ(Θ,Θ′) |Dn

]
E
[√

κ(Θ,Θ) |Dn
]2 , (27)

with Θ and Θ′ independent. We estimate the quantities in (26) and (27) by applying

out-of-sample analogs in the following way. Using the same initial in-sample period

of 15 years as in Table 1, we estimate 500 individual trees, i.e., trees that would

compose an ordinary RF. For each tree, we predict the outcome of interest for the

entire out-of-sample period. To estimate the expectation over Θ, we average over

trees, and to estimate the expectation over data, we average across the out-of-sample

predictions. We repeat this procedure for the full range of targeting levels s′ = 1, . . . , p,

with s′ = p corresponding to ordinary RF.

Figure 8 presents the estimated quantities in (26) and (27), i.e., average out-of-

sample MSE and correlation among trees grown, for each version of TRF, including

ordinary RF. We focus here on the case of h = 1 month ahead prediction of employ-

ment growth noted previously, i.e., p = 100. From the figure, targeting evidently
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involves a tradeoff between tree MSE and tree correlation. As the number of targeted

predictors is increased, MSE generally increases, consistently with the analysis in

Section 2.3. At the same time, tree correlation decreases (right panel of figure).

Indeed, for very few targeted predictors, tree correlation increases rapidly, almost

exponentially. Similarly, MSE decreases fast for few targeted predictors. The results

in Table 1 suggest, however, that the increase in correlation is too strong to justify

the decrease in MSE from heavy targeting, i.e., TRF predictions are inferior to or-

dinary RF predictions for extreme degrees of targeting. Similar tradeoffs apply for

industrial production growth, inflation, and the equity premium.

It stands out that an intermediate degree of targeting balances the tradeoff between

tree strength and correlation optimally. Across our applications, TRF mostly delivers

improvements for a medium-sized set of targeted predictors, amounting to the best

10–30% of the commonly applied set of initial predictors.

3.2.1. Targeting and nonlinearities

Next, we investigate whether our conclusions regarding the effect of targeting

predictors on the predictive accuracy of RF carry over to the case of an extended

targeting step, accommodating that predictors may be strong only when included

nonlinearly, e.g., as squared terms or interactions. When targeting predictors in their

original form via LASSO, there is a risk of throwing away relevant information that

RF would find useful. Thus, for the macroeconomic applications, we now conduct the

targeting on an expanded set of predictors, comprised of the original predictors and

their squared and cubed terms. We still feed the original predictors to the RF, as this

is supposed to identify the relevant nonlinear transforms itself, and to keep all else

unaltered. For TRF, after targeting, we feed the targeted predictors in their original

form to the algorithm for the final prediction step, even if they were selected in the

targeting step based on their squared or cubed form. In the financial application,

since the number of initial predictors is smaller, we include all interactions, as well

as squared and cubed transformations, in the targeting step, and feed all predictors

entering any of the transformations selected in the targeting step to the prediction
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step in their original form.‡

Table 2 reports the results, in the same format as Table 1. Our main conclusions

from the former section carry over to the case of targeting with nonlinearities. In

addition, there is some improvement in the performance of TRF relative to RF at the

one-month forecasting horizon. This suggests that nonlinearities are particularly

important at the h = 1 horizon, and that targeting of predictors in some cases only

reaches its full potential if extended to accommodate interactions and nonlinearities

among predictors.

4. Concluding remarks

Although RF is applicable in high-dimensional settings, due to its potential to detect

informative predictors automatically, recent literature highlights the need to target

a subset of predictors prior to the final prediction or forecasting step in a given

application. The overall prediction from an RF comes about by averaging across the

individual predictions, i.e., the trees in the forest. The strength of an individual tree,

in an MSE sense, depends on the probability of splitting along strong predictors.

Averaging across trees serves to reduce variance. Thus, the benefits from averaging

are reduced if trees are similar. We show in this paper that an initial targeting step

added to the RF algorithm serves as an important complement to feature sampling,

enabling control of the lower bound on the probability of splitting on strong predictors.

We further show that there is an immediate and certain gain in tree strength from

(proper) targeting, and quantify this. On the other hand, TRF (i.e., RF with an initial

targeting step) cannot be expected to perform uniformly better than ordinary RF,

since the targeting step likely induces increased correlation across individual trees

in the forest, thus reducing the benefit from averaging. This leads to a bias-variance

tradeoff—in particular, a tree strength-correlation tradeoff.

Our empirical analysis covering classical macroeconomic and financial areas of

‡We also examined the macroeconomic applications with all interactions and squared terms
included in the targeting step. This amounts to more than 5,000 predictors, which is not infeasible,
but overspecified. Results are consistent with those reported, and available upon request.
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Table 2: Predictive ability of RF versus TRF with expanded feature set in
targeting
This table reports the ratio of mean squared prediction error (MSE) of each version of
TRF to that of ordinary RF, both for the full out-of-sample period and for the NBER dated
recessions and expansions, with the forecasting objective in either of the two states. Across
the macroeconomic (employment growth, industrial production growth, and consumer price
inflation) and financial applications, forecast horizons h = 1,3,12 are considered. The penalty
λ is tuned to target s′ predictors. Bold indicates values of relative MSE below unity and thus
improvements from targeting. Superscripts ***, **, and * indicate statistical significance,
based on a (one-sided) Diebold-Mariano test statistic using HAC standard errors with a
Bartlett kernel of bandwidth h−1, at significance levels 1%, 5%, and 10%, respectively.

Full out-of-sample NBER recessions NBER expansions

s′ h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12

Panel A: Employment growth

5 1.034 1.021 0.917∗∗ 0.905 1.011 0.927 1.043 1.022 0.914∗

10 1.006 0.991 0.876∗∗ 1.030 0.919∗∗ 0.910∗∗ 1.005 0.997 0.866∗∗

20 0.993 0.992 0.901∗∗ 1.002 0.949∗∗ 0.983 0.992 0.996 0.878∗∗

30 0.987∗∗ 0.990 0.921∗∗ 0.994 0.914∗∗∗ 1.018 0.987∗∗ 0.997 0.894∗∗

50 0.994 0.994 0.926∗∗ 0.994 0.941∗∗∗ 1.019 0.994 0.999 0.901∗∗

Panel B: Industrial production growth

5 1.095 1.076 0.868 1.319 1.204 1.029 1.010 1.008 0.747∗

10 1.013 1.056 0.932 1.152 1.190 1.031 0.960 0.986 0.857∗

20 0.996 0.999 0.884∗∗ 1.044 1.060 0.985 0.978 0.967 0.821∗∗

30 0.997 1.007 0.931 1.075 1.090 1.056 0.967 0.964 0.808∗

50 0.999 1.005 0.908∗ 1.079 1.181 1.014 0.968∗ 0.912∗∗ 0.837∗

Panel C: Consumer price inflation (acceleration)

5 1.023 0.906 0.992 1.015 0.827 0.889∗ 1.027 0.969 1.020

10 0.980 0.923∗ 1.019 0.938 0.878 1.019 0.998 0.959∗∗ 1.019

20 0.989 0.934∗ 1.011 0.980 0.891 1.018 0.993 0.969∗∗ 1.010

30 0.985 0.934∗ 1.006 0.960 0.884 1.036 0.996 0.975∗ 0.997

50 0.999 0.958∗ 0.995 1.003 0.927∗ 0.969∗∗∗ 0.996 0.983 1.002

Panel D: Equity premium (S&P500 Index returns)

2 1.038 0.969 1.021 1.135 0.948 0.733∗ 1.048 1.019 1.006

5 0.981 1.011 0.939∗ 0.903∗∗ 1.074 1.141 0.989 1.004 0.918∗

10 1.004 0.993 0.949∗∗ 0.989 1.007 1.003 1.007 0.981∗ 0.937∗∗

application examines the magnitude of the impact of targeting, as well as this

tradeoff. Based on the empirical applications, we conclude that targeting is useful,
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particularly if a medium-sized set of predictors is targeted, consisting of the best

10–30% of standard initial predictors, since this essentially balances the tradeoff

between strength and diversity across trees. A medium degree of targeting provides a

safety net, ensuring that performance is not significantly reduced, and often yielding

considerable improvements. In our applications, the gains in predictive accuracy of

TRF relative to ordinary RF are substantial in many cases, up to 12–13%, and arise

particularly at long forecast horizons, presumably cases with weak signals, and both

in expansions and recessions.
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Appendix: Proofs

Proof of Theorem 1. The upper bound in (7) follows because splits must be placed

along directions in MA
try. For the lower bound, it suffices to argue that if 2δn(A )<

C?(A ), then the split will be placed along a direction in S , i.e.,

sup
i∈MA

try,τ∈A(i)
Ln(i,τ)> sup

i∈A \S ,τ∈A(i)
Ln(i,τ) . (A.1)

By the definition of δn(A ), we have Ln(i,τ)≥ L?(i,τ)−δn(A ), and hence

sup
i∈MA

try,τ∈A(i)
Ln(i,τ)≥ C?(A )−δn(A ) . (A.2)

Since L?(i,τ)= 0 for i ∉S (cf. (11)),

sup
i∈A \S ,τ∈A(i)

Ln(i,τ)= sup
i∈A \S ,τ∈A(i)

|Ln(i,τ)−L?(i,τ)| ≤ δn(A ). (A.3)

Combination of (A.2) and (A.3) shows that

sup
i∈MA

try,τ∈A(i)
Ln(i,τ)≥ C?(A )−δn(A )≥ sup

i∈A \S ,τ∈A(i)
Ln(i,τ)+ (C?(A )−2δn(A )) .

Thus, (A.1) holds for 2δn(A )< C?(A ), hence concluding the proof of the first state-

ment of the Theorem.

For the second statement, assume for simplicity (but without loss of generality)

that a = 1 and A = [0,1]. Then, suppressing dependence on the direction index i, it

suffices to show that, almost surely,

1
n

n∑
k=1

(Yk − Ȳn(τ))21{Xk≤τ} −→ E[(Y −E[Y | X ≤ τ])21{X≤τ}] , (A.4)

uniformly in τ ∈ [0,1], with Ȳn(τ)= Nn(τ)−1 ∑n
k=1 Yk1{Xk≤τ} for Nn(τ) :=∑n

k=11{Xk≤τ} 6=
0 and Ȳn(τ)= 0 otherwise. By the decomposition

∑n
k=1(Yk−Ȳn(τ))21{Xk≤τ} =∑n

k=1 Y 2
k1{Xk≤τ}−
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Ȳn(τ)2Nn(τ), and the fact that

1
n

n∑
k=1

Y 2
k1{Xk≤τ} −→ E[Y 21{X ≤ τ}] , (A.5)

uniformly in τ, it suffices to show that

Ȳn(τ)2Nn(τ)
n

−→ E[Y1{X≤τ}]2

P(X ≤ τ)
, (A.6)

uniformly. Uniform convergence in (A.5) follows directly from the law of large

numbers (LLN) for random variables taking values in the space D([0,1]) of càdlàg

functions (see Rao, 1963, Theorem 1). Write Ȳn(τ)2Nn(τ)/n = an(τ)2/bn(τ), with

an(τ) = 1
n

∑n
k=1 Yk1{Xk≤τ} and bn(τ) = 1

n Nn(τ). The LLN for D([0,1])-valued random

variables implies again that an(τ) → a(τ) := E[Y1{X≤τ}] and bn(τ) → b(τ) :=P(X ≤ τ)

uniformly. The issue in immediately concluding that (A.6) holds uniformly is that

h : (x, y) 7→1{y 6=0}x2/y is not uniformly continuous on compacts containing points of

the form (x,0). To circumvent this, introduce for each δ> 0 the function hδ : (x, y) 7→
x2/(y∨δ). With ‖ ·‖∞ denoting the uniform norm, we have

‖h(an,bn)−h(a,b)‖∞ ≤ ‖h(an,bn)−hδ(an,bn)‖∞+‖hδ(an,bn)−hδ(a,b)‖∞
+‖hδ(a,b)−h(a,b)‖∞ .

(A.7)

We need to show that the right-hand side converges to zero as n →∞ with probability

one. By Hölder’s inequality,

‖hδ(a,b)−h(a,b)‖∞ ≤ 2 sup
τ : 0<b(τ)≤δ

E[|Y |1{X≤τ}]2

b(τ)
≤ 2E[|Y |γ]2/γδ1−2/γ ,

and

‖h(an,bn)−hδ(an,bn)‖∞ ≤ 2 sup
τ : 0<bn(τ)≤δ

( 1
n

∑n
k=1 Yk1{X i≤τ}

)2

bn(τ)
≤ 2C2/γδ1−2/γ ,
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with C = supn n−1 ∑n
k=1 |Yk|γ. Fix ω belonging to the event

{
sup

n
n−1

n∑
k=1

|Yk|γ <∞
}
∩

( ⋂
δ∈Q+

{‖hδ(an,bn)−hδ(a,b)‖∞ → 0
})

,

which by Assumption (A1) and E[|Y |γ]<∞ has probability one. For given ε> 0, we

can choose δ ∈Q+ such that 2δ1−2/γ(C(ω)∨E[|Y |γ])2/γ ≤ ε/3. Moreover, there exists

N = N(ω)≥ 1 such that ‖hδ(an,bn)−hδ(a,b)‖∞ ≤ ε/3. Hence, ‖h(an,bn)−h(a,b)‖∞ ≤ ε
for all n ≥ N by (A.7). Thus, (A.4) holds, and δn(A )→ 0 with probability one.

If (A3) holds, then (11) shows that C?(A )> 0 if and only if MA
try∩S 6= ; and, thus,

1{2δn(A )<C?(A )} →1{MA
try∩S 6=;} almost surely. The convergence P(2δn(A )< C?(A ))→

P(MA
try ∩S 6= ;) follows by Lebesgue’s theorem (Billingsley, 1999, Theorem 16.4),

showing that the length of the interval (7) asymptotically shrinks to zero and effec-

tively pushes ρn(A ) towards its upper bound.

Proof of Proposition 1. Let F̄A (x) = P(C?(A ) > x) and F̄B(x) = P(C?(B) > x) denote

the tails of C?(A ) and C?(B), respectively. By the assumptions on stochastic

ordering, F̄A ≤ F̄B , and E[g(δn(A ))] ≤ E[g(δn(B))] for any non-increasing function

g : [0,∞) → [0,∞). Thus, as δn(A ) and C?(A ) are independent, and so are δn(B)

and C?(B), it follows by the law of total probability that

P(2δn(A )> C?(A ))= E[F̄A (2δn(A ))]≤ E[F̄B(2δn(B))]=P(2δn(B)> C?(B)) .

This completes the proof.

Proof of Proposition 2. Since only the first direction is strong, C? = supτL?(1,τ). If

Uγ is uniform on [0,γ], then

Var(sin(αUγ))= 1
2
− sin(2αγ)

4αγ
−

(1−cos(αγ)
αγ

)2
.

Using this fact and that sin(2α(1−τ)) =−sin(2ατ) and cos(2α(1−τ)) = cos(2ατ), it

follows that L?(1,τ) = 2(1− cos(ατ))2/(α2τ(1−τ)). By the mean value theorem, it
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follows that

L?(1,τ)≤ 4min
{
τ,1−τ,

1
α2τ(1−τ)

}
. (A.8)

By symmetry, take τ≤ 1/2. If τ(1−τ)≤α−1, then 1−τ≥ 1−2α−1, so

τ≤ 1
α(1−τ)

≤ (α−2)−1 .

By (A.8), this shows that L?(1,τ)≤ 4(α−2)−1. If, on the other hand, ατ(1−τ)≥ 1, it

follows directly from (A.8) that

L?(1,τ)≤ 4
α2τ(1−τ)

≤ 4α−1 ,

thus concluding the proof.

Proof of Theorem 2. Given an interval A ⊆ [0,1], it can be verified, using Assump-

tions (A2)–(A3), that (6) is optimized at its midpoint τ?, with

L?(τ?, A)=β2
1

Leb(A)2

16
. (A.9)

Under the splitting rule (R), this implies that the targeted tree is grown by first

splitting [0,1] (level 0) into [0,1/2] and [1/2,1] (level 1), then splitting all intervals

in level 1 before splitting at the next level, and so on. In particular, MSE( f̃L+1) =
MSE( f̃L)−β2

18−(k−1)/16, with k ≥ 1 the smallest integer such that L ≤ 2k −1. This

formula can be used inductively to establish that

MSE( f̃L)=β2
1

7×2k −3L
48×8k ,

with k ≥ 1 the largest integer such that L ≥ 2k, i.e., k = blog2(L)c. This establishes

(22). To obtain the bounds (23), we make some initial observations:

Observation I Let A ⊆ [0,1]p be a leaf in the non-targeted tree f̂L. Then {x(1) : x ∈
A}= Bk

i for some k = 1, . . . ,L, with Bk
i a leaf of the targeted tree f̃k. This follows since

X (1) and X (−1) := (X (2), . . . X (p))′ are independent, by Assumption (A2), and hence

L?(i,τ, A) depends only on A through {x(1) : x ∈ A}.
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Observation II Let (Bk
i )k

i=1 be the partition of [0,1] associated with the kth level

targeted tree f̃k, and consider a leaf B = Bk
i . Then

MSE( f̃L+1 | X (1) ∈ B)≤MSE( f̃L | X (1) ∈ B) , for any L ≥ k , (A.10)

with equality if and only if the partitions (BL
j ∩B)L

j=1 and (BL+1
j ∩B)L+1

j=1 are identical.

Equality in (A.10) follows if the aforementioned partitions are the same, since in this

case f̃L+1(x)= f̃L(x) for all x = (x(1), x(−1)) with x(1) ∈ B. If they are not the same, the

Lth split τ? is performed in a subset B̄ ∈ {BL
j : j = 1, . . . ,L} of B, so

EB̄
[
(Y − f̃L+1(X ))2]= EB̄

[
(Y −EB̄[Y ])21{X (1)≤τ?}

]+EB̄
[
(Y −EB̄[Y ])21{X (1)>τ?}

]
= EB̄

[
(Y − f̃L(X ))2]−L?(τ?, B̄) ,

subscript B̄ indicating conditioning on the event {X (1) ∈ B̄}. As already noted,

L?(τ?, B̄) = β2
1Leb(B̄)2/16 > 0, and since f̃L(x) and f̃L+1(x) are identical for x =

(x(1), x(−1)) with x(1) ∈ B \ B̄ and P(X (1) ∈ B̄) > 0, the inequality in (A.10) will be

strict.

To obtain the lower bound in (23), note that the first `1−1 splits have been weak, and

denote by T1, . . . ,T`1 the associated `1 subtrees. We will argue that if N ≤ `1(2m −1)

for a given m ≥ 1, then the strength of a given subtree T is no better than that of

f̃2m . Initially, note that the construction of f̃2m implies that Leb(B2m

j )= 2−m, so we

can fix j such that

Leb(B2m−1
j )> 2−m . (A.11)

We proceed to proof by contradiction. Thus, suppose A = AS × AW is a leaf of T with

MSEΘ(T | X ∈ A)<MSEΘ( f̃2m | X ∈ A) . (A.12)

By Observation I, there exists k such that AS = Bk+1
i , for some i. Moreover, due to

(A.10) and (A.12), it must be the case that k > 2m−1, and that AS has been obtained

by performing splits in one of the sets (B2m

i )2m

i=1. At the same time, since we have at

most `1(2m−1) strong splits in total, this means that at least one of the other subtrees
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T̄ has received strictly less than 2m −1 strong splits. In particular, by (A.11), there

exists a leaf Ā = ĀS × ĀW in T̄ such that Leb(ĀS ) > 2−m. This is a contradiction,

since (R) together with (A.9) imply that no split will be placed in (B2m

i )2
m

i=1 before ĀS

has been split. Since this analysis holds for all subtrees T1, . . . ,T`1 , we conclude that

MSEΘ( f̂L)≥MSEΘ( f̃2m) , if N ≤ `1(2m −1) .

Thus, we may choose m = dlog2(1+N/`1e)e, which yields the result.

For the upper bound in (23), note that after the first `0−1 splits, the non-targeted

tree is identical to f̃`0 . If m ≥ 1 is an integer such that 2m ≥ `0, then, given that no

weak splits occur, it takes 2m −`0 strong splits before any given leaf A = AS × AW

satisfies Leb(AS )= 2−m. While we do indeed have L−N −1 weak splits, none of the

first `0 nodes can possibly have been divided into more than L−N branches by weak

splits. Consequently, as long as we still have at least `0(2m −`0)(L−N) strong splits

available, any leaf A must satisfy Leb(AS )≤ 2−m. At the same time, we cannot have

MSEΘ( f̂L | X ∈ A) > MSEΘ( f̃2m | X ∈ A), since this would imply AS = Bk
i for some

k < 2m and, hence, Leb(AS )> 2−m. This allows concluding that

MSEΘ( f̂L)≤MSEΘ( f̃2m) , if N −`0 +1≥ `0(2m −`0)(L−N) .

In particular, we can set m = ⌊
log2

(
`0+ N−`0+1

`0(L−N)

)⌋
, which verifies the upper bound in

(23) and concludes the proof.

Proof of Corollary 1. From Theorem 2 it follows that

g0(x, y)≥ E[( f (X )− f̂L(X ))2 | N = x,`0 = y,`1 = z
]≥ g1(x, z) , (A.13)

so the law of total expectation implies (24). To derive the distribution of (N,`0),

define i.i.d. Bernoulli random variables by Zk = 1{M (k)
try∩S 6=;} for k = 1, . . . ,L−1, so

that ρ =P(Zk = 1)= 1−P(Zk = 0). We always have N = n for some integer n ∈ [1,L−1],

so we only have to consider such n. Let n ∈ (0,L−1), and note that both weak and
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strong splits have occured when N = n. Moreover, it must necessarily be the case

that `0 = k, for some integer k ∈ [1,n+1]. For any such pair (n,k), we thus find that

P(N = n,`0 = k)=P
(L−1∑

m=1
Zm = n, Z1 = ·· · = Zk−1 = 1, Zk = 0

)
= ρk−1(1−ρ)Bin(n+1−k;L−1−k) ,

using the fact that P(
∑

k∈A Zk = n)=Bin(n; |A|,ρ) for an arbitrary set A ⊆ {1, . . . ,L−1}.

If N = 0, then all splits have been weak, and, necessarily, `0 = 1. This means that

P(N = 0,`0 = 1)=P(Z1 = ·· · = ZL−1 = 0)= (1−ρ)L−1 .

On the other hand, if N = L−1, then all splits have been strong, and `0 = 1 by

convention, so

P(N = L−1,`0 = 1)=P(Z1 = ·· · = ZL−1 = 1)= ρL−1 .

Combination of these findings verifies the form of P(N = n,`0 = k) stated in the

corollary. Similar considerations verify the form of P(N = n,`1 = k).
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