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Abstract

Following the Paris Agreement, most countries have agreed to reduce their CO2 emissions

according to individually set Nationally Determined Contributions (NDCs). However, national

CO2 emissions are reported by individual countries, and cannot be directly measured or ver-

ified by third parties. This engenders a potential misreporting problem, where nations that

are not living up to their Paris commitments could, by under-reporting emissions, nevertheless

appear to be fulfilling their NDC targets. This paper uses the theory of sequential testing to

design a statistical CO2 monitoring procedure, that can detect systematic misreportings of CO2

emissions. The data series that we monitor is the so-called carbon budget imbalance, which is

a time series derived from reported CO2 emissions and independently measured Earth system

data. We show that, when emissions are truthfully reported, the budget imbalance constitutes

a stationary process, while, if emissions become systematically misreported, a structural break

occurs. Our proposed procedure monitors the budget imbalance data and sequentially tests the

null that the budget imbalance is stationary; rejection of the null provides evidence for system-

atic misreportings of CO2 emissions. By constructing the procedure appropriately, detection

time can be made sufficiently fast to help inform the 5 yearly global “stocktake” of the Paris

Agreement.
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1 Introduction

The Paris Agreement of 2015 instituted a transnational commitment to limit global temperature

rise to between 1.5 and 2.0 degrees centigrade above pre-industrial levels (UNFCCC, 2015). It is

widely accepted that to achieve this goal, substantial reductions of anthropogenic CO2 emissions

are needed (Millar et al., 2017; Tokarska and Gillett, 2018). Indeed, the recent IPCC report (IPCC,

2018b) states that to stay below 1.5◦C, emissions should be reduced by almost half by 2030 (from

2010 levels) with a level close to zero in 2050 (Sanderson et al., 2016; Tanaka and O’Neill, 2018;

Luderer et al., 2018).

Reducing emissions substantially requires all nations to work towards this goal, particularly the

nations that are currently emitting the most (Larkin et al., 2018). The Paris Agreement therefore

requires signing parties to deliver mandatory emissions reports, which are to be assessed during

5 yearly “stocktakes” of the global emissions status. Unfortunately, since data on CO2 emissions

are reported by the nations themselves, instead of being measured by the global community, this

could create incentives for individual nations to misreport emissions (Peters et al., 2017). In this

way, nations that are not living up to their Paris commitments could, by misreporting their CO2

emissions, nevertheless appear to be fulfilling their Nationally Determined Contribution (NDC)

targets. This is especially worrisome, as some countries have notoriously opaque emissions reporting

and verification practices (Guan et al., 2012; Duflo et al., 2013; Transparency International, 2013;

Ghanem and Zhang, 2014; Korsbakken et al., 2016; Nature, 2018; Zhang et al., 2019). Indeed, the

problem of verifying the reported CO2 emissions was one of the key topics discussed at the recent

COP24 meeting in Katowice, Poland (IPCC, 2018a).

The aim of this paper is to suggest a statistically rigorous procedure to verify global anthro-

pogenic CO2 emissions, a problem which has not received much research attention in the climate

literature (Peters et al., 2017). By employing the theory of sequential testing (e.g., Page, 1954), or

“monitoring” (e.g., Chu et al., 1996), the procedure uses available climate data, collected indepen-

dently of emissions data, to verify reported anthropogenic CO2 emissions sequentially in time as

new data become available. To do this, we exploit the idea of a balanced carbon budget (Friedling-

stein et al., 2019): the amount of CO2 that is emitted to the atmosphere must equal the amount

of CO2 absorbed in the three carbon sinks, namely the atmosphere, the terrestrial biosphere, and

the oceans. This insight gives rise to the carbon budget equation

EANTt = GATMt + SOCNt + SLNDt +BIM
t , (1.1)

where EANTt is year-t anthropogenic CO2 emissions, and GATMt , SOCNt , SLNDt denote the year-t

uptake of CO2 in the atmosphere, the oceanic carbon sink, and the terrestrial (“land”) carbon sink,

respectively. In theory, because the carbon system is closed, the total CO2 flux to the three carbon

sinks must be equal to the amount of anthropogenic emissions, which implies that BIM
t = 0 in (1.1).

Indeed, originally, the budget equation was simply stated as EANTt = GATMt +SOCNt +SLNDt (e.g.,

Le Quéré et al., 2016). However, due to measurement errors in the various data sources making up

the carbon budget, i.e. EANTt , GATMt , SOCNt , and SLNDt , this equation will not hold in practice,

when the measurements of the various terms are inserted. For this reason Le Quéré et al. (2018)
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introduced the residual term BIM
t , dubbed the budget imbalance, into the carbon budget equation,

making the equation (1.1) balanced at all times.

When emissions are truthfully reported, we do not expect the time series of the budget im-

balance BIM
t to contain any large systematic biases (Le Quéré et al., 2018). Below we perform

a statistical analysis of the observed budget imbalance BIM
t from t = 1959 to t = 2018, and do

indeed find that these data are historically well-described by a zero-mean stationary process. In

contrast, when emissions are not truthfully reported, we show that the budget imbalance BIM
t will

undergo a structural break : some non-stationary process will be introduced into the data. These

insights allow us to cast the problem of verifying reported emissions data as a sequential testing

problem, and thus draw on well-known results in this field. Our procedure monitors the residuals

of the global carbon budget, i.e. BIM
t , through time, and decide whether or not a structural break

has occurred. In effect, we sequentially test the null hypothesis that reported emissions EANTt are

compatible with the independently measured Earth system data GATMt , SOCNt , and SLNDt . If, for

some time period t, this null hypothesis can be rejected, we conclude that there is evidence for

EANTt being systematically misreported.

Using simulations, we illustrate the use of the theoretical results proposed in the paper and

investigate their finite sample performance. We find that, under realistic conditions, our monitoring

scheme is able to detect misreporting quickly and with high probability, while having controlled

size. Indeed, the simulations indicate that the empirical size of our proposed test is slightly below

the nominal level when the null of no misreporting is true, i.e. when CO2 emissions are reported

truthfully. The empirical (power) properties of the test when the alternative is true, i.e. when

CO2 emissions are misreported, depend on the magnitude of misreporting. We find that when the

magnitude of misreporting is very small, misreporting can be difficult to detect in practice. For

moderately larger magnitudes of misreporting, however, the mean detection time of the method

is on the order of 5 years, which is the frequency at which the Paris “stocktakes” take place.

Consequently, the method proposed in this paper can potentially help the global community in

future efforts of verifying reported CO2 emissions.

The rest of the paper is structured as follows. Section 2 is theoretical, containing the proposed

monitoring procedure and its theoretical justification, and a reader only interested in the practi-

calities and implementation of the testing procedure can skip this section. Section 3 briefly reviews

the data that we work with and reports the results of a statistical analysis of the residual from

the carbon budget, i.e. the budget imbalance BIM
t . Section 4 illustrates the practical use of the

sequential testing procedure on simulated and real data. An Appendix, containing a proof of the

main theoretical result, as well as a detailed statistical analysis of the budget imbalance data, is

given at the end. An online Supplementary Material file contains additional details and simulation

results.1 A MATLAB software package is available online, with which the methods of the paper

can be easily implemented and adapted (Bennedsen, 2020).

1The Supplementary Material file is available at https://sites.google.com/site/mbennedsen/research/

monitoring_gcb_v36_supplementary.pdf.
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2 Sequential monitoring procedure

Let Yt denote a time series of observations of a stochastic process, given by

Yt =

ut t = 1, 2, . . . , τ − 1,

ut + ε∗t t = τ, τ + 1, . . . ,
(2.1)

where ut is a stationary stochastic process and ε∗t is a possibly non-stationary process. We assume

that Yt is observed over an initial time period t = 1, . . . ,K, where it is known that ε∗t = 0. The

initial period is used to estimate the long run variance of ut and then the monitoring algorithm is

initiated from time t = K+ 1. At some later (unknown) time τ ≥ K+ 1, a structural break occurs

and the process ε∗t is introduced into the observations. If no structural break occurs, set τ =∞.

Technically, we make the following assumption on the process ut.

Assumption 2.1. The process ut is a zero-mean stationary process satisfying a functional central

limit theorem of the form

(λ 7→
bλKc∑
i=1

ui)⇒ (λ 7→ ωuB(λ)), λ > 0,

where ω2
u is the long run variance of ut and B(·) is a Brownian motion. Here, “⇒” means con-

vergence in distribution.

Assumption 2.1 is satisfied for a wide variety of stochastic processes ut. For instance, ut can

be a stationary martingale difference sequence or ut can be a “short memory” linear process. An

AR(1) process with autoregressive parameter |φ| < 1 falls into this latter category. More general

and high-level conditions, such as mixing conditions, are also sufficient. We refer the interested

reader to Davidson (2006) for a comprehensive list of sufficient conditions for Assumption 2.1 to

hold.

Our goal is to design a monitoring scheme, which, at each time period t, conducts a statistical

test for whether t ≥ τ , i.e. for whether a structural break has occurred. Monitoring can be done

over an indefinte time horizon or over a fixed time horizon. Let Λ > 0 be a constant denoting

the length of the monitoring period, compared to the length of the initial period K.2 That is, we

monitor over the period FK,Λ, where

FK,Λ := {K + 1,K + 2, . . . ,K(Λ + 1)}.

We are interested in testing the null hypothesis

H0 : τ > K(Λ + 1),

i.e. that there is no structural break in the monitoring period FK,Λ, against the alternative

H1 : τ ∈ FK,Λ,
2It is straight forward to adapt our methods to allow for an open-ended monitoring period, i.e. to Λ = ∞, cf.

Remark 2.1.
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i.e. that there is a structural break in the monitoring period.

Our proposed scheme is based on the following statistic

Z̃t :=
1√
Kω̂2

K

t∑
i=K+1

Yi, t ≥ K + 1, (2.2)

where ω̂2
K is an estimate of the long run variance of ut using the first K observations {Yi}Ki=1, which

are equal to {ui}Ki=1 by assumption. In other words, the test statistic is the cumulated sum of the

observations after monitoring has started, scaled appropriately.

Before we state the limit theory as it relates to our setup, we need to introduce the concept of

a boundary function. Specifically, we consider functions h satisfying the following assumption.

Assumption 2.2. The function h, defined on (1,∞), is such that h(λ) > 0 for all λ > 1.

Remark 2.1. To allow for Λ = ∞, it is necessary to assume some more stringent assumption on

the boundary function h, see, e.g., the assumptions imposed in Chu et al. (1996).

The main theoretical result which will allow us to construct monitoring procedures is as follows.

The proof relies on results in Davidson (2006) and Leisch et al. (2000). The details are given in

Appendix A.

Theorem 2.1. Let Z̃t be given by (2.2), where ut and the boundary function h satisfy Assumptions

2.1 and 2.2, respectively, and let ω̂2
K be a consistent estimator of ω2

u as K → ∞. Suppose H0 is

true and let Λ > 0. Then,

lim
K→∞

P
(
|Z̃t| ≥ h(t/K), for some t ∈ FK,Λ

)
= P

(
|B(λ)| ≥ h(1 + λ), for some λ ∈ (0,Λ]

)
,

where B(·) is a Brownian motion.

Theorem 2.1 shows that we can use the statistic (2.2) to sequentially test H0 against H1. To

be precise, let α ∈ (0, 1/2] denote the desired nominal significance level of the test, and choose the

function h such that

α = P
(
|B(λ)| ≥ h(1 + λ), for some λ ∈ (0,Λ]

)
,

where B is a Brownian motion. Now, by Theorem 2.1, for t = K + 1,K + 2, . . . ,K(Λ + 1), the

sequential rule

“reject H0 in favor of H1 if |Z̃t| ≥ h(t/K)”,

will, asymptotically, result in a test of H0 with size α.

Conversely, if ε∗t 6= 0 for t ≥ τ , a structural break will be introduced in Yt. As we will see

below, cf. also Remark 3.1, realistic specifications for ε∗t will quickly result in large values of the

test statistic |Z̃t|, thus leading to rejection of the null hypothesis. In other words, after settling

on the length of the monitoring period (which can be infinite, cf. Remark 2.1) and a nominal

significance level, it is only necessary to track the value of |Z̃t| and in each period compare it to
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the value of the boundary h(t/K). If the test statistic exceeds the boundary at any time in the

monitoring period, there is statistical evidence for a structural break in Yt at significance level α.

The behavior of the test under H1, i.e. when there is misreporting, will depend on the exact form

of ε∗t and on the chosen boundary function.

As we will see below, the situation most relevant to our application is when ε∗t is a negative

process. This implies that it is only necessary to test if Z̃t is sufficiently negative, as compared to

testing whether |Z̃t| is sufficiently positive. In particular, the test may gain some power against

the alternative of a negative test statistic, compared to the double-sided alternative. A straight

forward consequence of Theorem 2.1 is the following one-sided version of the testing procedure.

Corollary 2.1. Suppose the setup of Theorem 2.1. Then,

lim
K→∞

P
(
Z̃t < −h(t/K), for some t ∈ FK,Λ

)
= P

(
B(λ) < −h(1 + λ), for some λ ∈ (0,Λ]

)
=

1

2
P
(
|B(λ)| > h(1 + λ), for some λ ∈ (0,Λ]

)
.

Proof. The second line follows from similar arguments as those of Theorem 2.1. The third line

follows since the law of B(t) is symmetric around 0.

2.1 The boundary function

The researcher has considerable freedom when choosing the boundary function, as long as it satisfies

Assumption 2.2. The choice of function can thus be tailored to the objective the researcher has.

The Supplementary Material contains an extensive discussion on boundary functions, including

simulation studies motivating our preferred choice of boundary function, which is as follows:3

h(λ) = c ·

√
λ(λ− 1)

(
1 + log

(
λ

λ− 1

))
, λ > 1. (2.3)

The constant c = cΛ,α > 0 depends on the length of the monitoring period, i.e., on Λ, and on the

nominal significance level, α, of the test of H0. Appendix B contains details on how to calculate

the constant c given Λ and α in the context of the one-sided test of Corollary 2.1.4 We also supply

a computer program that can do these calculations automatically (Bennedsen, 2020).

Remark 2.2. From (2.2) and (2.3), we see that we can base our test on the more simple test statistic

Zt :=

t∑
i=K+1

Yi, t ≥ K + 1,

in place of Z̃t, provided we use the alternative boundary function (or “critical value function”):

Cαt :=
√
Kω̂2

K · h(t/K), t ≥ K + 1, (2.4)

3For a given t = K + 1,K + 2, . . ., the corresponding value for λ is λ = λt = t
K

.
4The Supplementary Material contains more extensive details on this procedure, including implementation of the

two-sided test as well as implementation in the case of alternative boundary functions h.
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where h(·) is given by (2.3). This is the approach taken in what follows. Consequently we will

use the simpler test statistic Zt and the appropriately modified boundary function (2.4) in the

remainder of the paper.

Remark 2.3. The critical value function (2.4) requires an estimate of the long run variance ω2
K ,

obtained from the first K observations of the data {Yt}Kt=1. We will see below that a good model

for {Yt}Kt=1 in our application is an AR(1) process, which has long run variance given by

ω2
AR(1) =

σ2
ε

(1− φ)2
,

and can thus be straightforwardly estimated given σ2
ε and φ. These parameters can in turn be

estimated from a (ordinary least squares) regression of Yt+1 on Yt for t = 1, 2, . . . ,K−1. See Section

3.1 for an example of this, where we obtain σ̂2
ε = 0.52 and φ̂ = 0.38 and thus ω̂2

K = ω̂2
AR(1) = 1.37.

In our empirical applications, when computing the critical values of the monitoring test through

(2.4), we use this AR(1)-based approach to estimate the long run variance ω2
K . Note, however,

that the methods proposed above apply equally well when ω2
K is estimated using other (consistent)

means. For instance, if the parametric AR(1) assumption on the dynamics of Yt is believed to be too

strong, ω2
K can be estimated non-parametrically. This possibility is explored in the Supplementary

Material.

3 Data

The global carbon budget is a physical accounting identity, describing that the amount of anthro-

pogenically emitted CO2 in a given time period, must equal the total flux of CO2 in the atmosphere,

the oceans, and the terrestrial biosphere (the so-called “carbon sinks”). The global carbon budget

is thus given by the equation (Friedlingstein et al., 2019)

EFFt + ELUCt = GATMt + SOCNt + SLNDt +BIM
t , (3.1)

where EFFt is CO2 emissions from fossil fuel burning, cement production, and gas flaring; ELUCt is

CO2 emissions from land-use change; GATMt is growth of atmospheric CO2 concentration; SOCNt

is the flux of CO2 from the atmosphere to the oceans; and SLNDt is the flux of CO2 from the

atmosphere to the terrestrial biosphere. We use the data set provided by The Global Carbon

Project (Friedlingstein et al., 2019).5 The fossil fuel emissions data EFFt are from Boden et al.

(2018), while the land-use change data, ELUCt are averages over the model-based estimates of Hansis

et al. (2015) and Houghton and Nassikas (2017), updated as in Friedlingstein et al. (2019). The

growth rate in atmospheric CO2 data, GATMt , is from Dlugokencky and Tans (2018), while the sink

data, SOCNt and SLNDt , are averages over several independent model-based estimates, constructed

as explained in Friedlingstein et al. (2019). We define the total amount of anthropogenic CO2

emissions, EANTt , as the sum of fossil fuel emissions, cement production, and gas flaring and

emissions from land-use change. That is, EANTt := EFFt + ELUCt .

5The data are available at http://www.globalcarbonproject.org/ and were downloaded on December 22, 2019.
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Figure 1: Time series data from the carbon budget, Equation (3.1), from 1959 to 2018. a): Total

anthropogenic emissions, EANTt := EFFt +ELUCt . b): Atmospheric growth, GATMt . c): Ocean sink

flux, SOCNt . d): Terrestrial sink flux, SLNDt . e): Budget imbalance, BIM
t .

The quantity

BIM
t = EANTt −GATMt − SOCNt − SLNDt . (3.2)

is the so-called budget imbalance. It is implicitly defined so as to balance the carbon budget

equation (3.1). In principle, the budget should be balanced at all times, so that BIM
t = 0, but due

to measurement errors in the sources and sinks of CO2, the budget imbalance will in general be

non-zero. The next section presents the results of a statistical analysis of the time series properties

of the budget imbalance BIM
t .

All data are given in gigatonnes of carbon (GtC) and are recorded at a yearly frequency,

beginning in 1959 and ending in 2018, resulting in 60 observations for each term in (3.1). Figure

1 plots the time series of the variables from Equation (3.1) from t = 1959 to t = 2018.

3.1 The budget imbalance and its statistical properties

Figure 1e) plots the budget imbalance data BIM
t , t = 1959, . . . , 2018. In Appendix C, an in-depth

statistical analysis of the time series properties of these data are conducted, the main points of

which we briefly review here.

Firstly, there is statistical evidence that the data are stationary with zero mean and positive

autocorrelation. Secondly, in the autoregressive moving average (ARMA) class of models, the

Bayesian Information Criterion (BIC) of Schwarz (1978) indicates that the best fitting parametric

model is a zero-mean autoregressive process of order one (AR(1)). Subsequent tests on the residuals
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from this model confirm that it provides a good fit to the data. That is, a reasonable statistical

model of the historical budget imbalance time series data is

BIM
t = φBIM

t−1 + εt,

where εt is an iid noise sequence and φ ∈ R. Our estimate (obtained by an ordinary least squares

regression) of the autoregressive parameter is φ̂ = 0.38 and for the variance of εt, V̂ ar(εt) = 0.52.

See Appendix C for further details. As mentioned above, the sequential testing framework of this

paper does not hinge on this parametric assumption. Indeed, the methods proposed below are

valid under significantly weaker (e.g., non-parametric) assumptions as well. See Remark 2.3 and

the Supplementary Material for details.

3.2 The budget imbalance when emissions are misreported

Suppose that from some time point τ , anthropogenic CO2 emissions are misreported as the amount

EANT,∗t , while the true value emitted to the biosphere is EANTt 6= EANT,∗t . Then, for t ≥ τ , the

observed budget imbalance data become

BIM,∗
t = EANT,∗t −GATMt − SOCNt − SLNDt

= ut + ε∗t ,

where

ut = EANTt −GATMt − SOCNt − SLNDt ,

is the budget imbalance under the true emission path EANTt , while

ε∗t = EANT,∗t − EANTt ,

denotes the amount of misreporting in CO2 emissions at time t ≥ τ .

In this case, the budget imbalance will take the form

BIM,∗
t =

ut t < τ,

ut + ε∗t t ≥ τ.
(3.3)

Equation (3.3) shows that at the (unknown) time t = τ , the budget imbalance time series will

undergo a structural break : it will go from being a zero-mean stationary process to being the sum

of this process and the term ε∗t . The upshot is that the reported budget imbalance data Yt = BIM,∗
t

can be expected to conform with the theoretical monitoring framework presented in Section 2 cf.

Equations (2.1) and (3.3). This shows that we can use the monitoring methodology of Section 2

to verify reported CO2 emissions. Section 4 gives the practical details.

Lastly, note that the arguably most important case is when emissions are under -reported, i.e.,

when EANT,∗t < EANTt . This implies that the structural break term ε∗t = EANT,∗t − EANTt will be

a negative process. This insight motivates our use of the one-sided testing procedure as given in

Corollary 2.1.
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Remark 3.1. The properties of the process ε∗t will decide the effect of the structural break on the

observations. A setup which we find particularly useful and reasonably realistic is the following.

For t ≥ τ , assume that true emissions grow at a constant rate g ∈ (−1,∞), i.e.,

EANTt = (1 + g)t−τ+1EANTτ−1 , t = τ, τ + 1, . . . ,

while (mis)reported emissions grow at the rate m ∈ (−1,∞), relative to the value for emissions

before misreporting began:

EANT,∗t = (1 +m)t−τ+1EANTτ−1 , t = τ, τ + 1, . . . .

For instance, if actual emissions grow at a rate of 1% per year while emissions are reported fall

2% per year, then g = 0.01 and m = −0.02. Such a situation could follow due to some agreement,

such as the Paris Agreement, where emissions are agreed (and therefore reported) to fall, i.e. that

m < 0. If the reported value differs from the actual value such that g > m, i.e. that actual

emissions are above reported emissions, then

ε∗t = EANT,∗t − EANTt =
[
(1 +m)t−τ+1 − (1 + g)t−τ+1

]
EANTτ−1 < 0, t = τ, τ + 1, . . . . (3.4)

4 Implementation and numerical investigations

As shown in the previous section, the budget imbalance data BIM,∗
t , implied by the reported

emissions data EANT,∗t and the independent data on the Earth system variables GATMt , SOCNt ,

and SLNDt , through Equation (3.2), are likely to conform to the setup of Section 2. Therefore, to

sequentially verify whether reported CO2 emissions are compatible with the Earth system data,

we can use the monitoring theory presented above. In practice, Remark 2.2 tells us that we should

monitor the cumulated sum of the budget imbalance data since the monitoring period started, i.e.

Zt =

t∑
i=K+1

BIM,∗
i , t ≥ K + 1,

and, at each time point t, check whether Zt has crossed the critical boundary Cαt of Equation (2.4).

As mentioned above, we are especially interested in the alternative hypothesis that CO2 emissions

are under-reported; hence we reject the null when Zt becomes smaller than Cαt . That is, if for some

t it is the case that Zt < Cαt , then the null hypothesis that CO2 emissions are accurately reported

can be rejected at an α significance level. Details on how to calculate Cαt are given in Appendix

B, and a computer program written in the MATLAB programming language, which performs the

calculation of the critical values Cαt automatically, is supplied online (Bennedsen, 2020).

Section 4.1 illustrates the use of this method in a simulation study, which also serves to estimate

the mean detection time of the test under various assumptions on the amount of misreporting being

conducted (i.e. on ε∗t ). Section 4.2 uses all currently available data to set up the critical values

for a monitoring procedure, which can be used in practice to verify global CO2 emissions going

forward.
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4.1 Estimating mean detection time through simulations

The goal of this section is to investigate how the proposed monitoring scheme will perform under

realistic conditions going forward. We simulate future paths of the budget imbalance and compare

the results from the test when emissions are reported correctly and when they are misreported.

To be precise, we use the historical budget imbalance data BIM
t , t = 1959, . . . , 2018, as initial

data (implying K = 60) and then simulate 10 000 different future paths of BIM
t , t = 2019, . . . , 2078.

That is, we set BIM
t = ut+ ε∗t , where ut is simulated as a stationary autoregressive process of order

one and ε∗t = EANT,∗t − EANTt , where EANT,∗t is the reported emissions and EANTt is the actual

emissions. The autoregressive parameter for ut is set to φ = 0.38, while the variance of error term

of ut is set to σ2 = 0.52, which are the parameters we estimated from the initial budget imbalance

data in Section 3.1.

To achieve the Paris objectives, CO2 emissions should be cut in approximately half, as compared

to 2010 levels, by 2030 (Sanderson et al., 2016; Luderer et al., 2018). Since EANT2010 = 10.44 GtC and

EANT2018 = 11.4905 GtC, this means that CO2 emissions should decrease by 6.37% each year from

2019 onwards. This is our baseline scenario: in the simulations to come, we suppose that reported

CO2 emissions, EANT,∗t , are decreasing with 6.37% each year for t = 2019, 2020, . . .. We consider a

range of different scenarios for actual emissions, EANTt , where each scenario will imply a different

behavior for the structural break process ε∗t = EANT,∗t − EANTt . We use the setup discussed in

Remark 3.1; since we assume that emissions are reported to decrease by 6.37% per year, this entails

that m = −0.0637. The parameter g denotes the growth rate of actual emissions, EANTt , for

t = 2019, 2020, . . .. We consider g ∈ {−0.0637,−0.0537,−0.0437,−0.0337,−0.0237,−0.0137, 0}.
Here, g = −0.0637 corresponds to accurately reported emissions (no misreporting) and g = 0

corresponds to constant emissions (6.37% under-reporting per year). The remaining values of g each

correspond to a certain magnitude of yearly misreporting; for instance, g = −0.0537 corresponds

to 1% under-reporting, g = −0.0437 corresponds to 2% under-reporting, and so forth.

The resulting paths of the emissions, for the cases g = −0.0637 (no misreporting) and g =

−0.0437 (2% under-reporting per year), are shown in Figures 2a) and 2c), respectively. The

solid blue line corresponds to the “actual emissions”, i.e. EANTt , while the dashed green line is the

“reported emissions”, i.e. EANT,∗t . Figures 2b) and 2d) present 100 example paths of the simulated

test statistic Zt =
∑

iB
IM
i =

∑
i ui +

∑
i ε
∗
i (solid cyan lines), obtained from the simulated budget

imbalances and the CO2 emission scenarios just described. The black lines indicate the one-sided

critical values, Cαt , for α = 5%, 10%, and 32%, calculated using Corollary 2.1 cf. also Remark

2.2. We set Λ = 1, which correspond to monitoring CO2 emissions for K · Λ = 60 years, i.e. from

t = 2019 to t = 2078. The null hypothesis is rejected if Zt < Cαt for some t = 2019, 2020, . . . , 2078.

In the first scenario, cf. a) and b) of Figure 2, emissions are reported truthfully. Consequently,

when Zt crosses the critical boundary, it will result in a Type I error (a “false positive”): we will

reject the null of no misreporting even in this case when emissions are truthfully reported. The

false positive rates in the simulation experiment are 2.24%, 4.95%, and 18.79% for α = 5%, 10%,

and 32%, respectively, implying that the test is slightly under-sized in this setup. When emissions

are under-reported, i.e. when g > m, such as in the case shown in c) and d) of Figure 2, the null

is false. Hence, failure to reject the null will here result in a Type II error (a “false negative”).
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When g = −0.0537, i.e. when there is under-reporting of 1% per year, the Type II error rates are

1.36%, 6.92%, and 12.54% for α = 5%, 10%, and 32%, respectively. When g > −0.0537, i.e. when

the under-reporting is 2% or larger, the Type II error rates are all zero, meaning that misreporting

is always detected before the end of the monitoring period.

Figure 3a) reports the estimated mean detection times as a function of the amount of misreport-

ing, m − g ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.0637}. Figure 3b) reports the associated standard

deviations of the time until detection. Here, the false-negatives (Type II errors) have been removed

for m − g = 0.01. (Recall that there were no false-negatives for m − g ≥ 0.02.) From the figures,

we see that when the magnitude of under-reporting is m − g = 0.01, the mean detection time is

very large (15 to 25 years, depending on the significance level) and so is the standard deviation of

the detection times. This indicates that if the magnitude of misreporting is very small, the misre-

porting can be difficult to detect in practice. Conversely, when m− g = 0.02, both mean detection

time and the standard deviation of the detection time drop dramatically: the mean detection time

is in this case between 7.5 and 11.5 years, depending on the significance level. For m−g ≥ 3%, the

mean detection time is on the order of 5 years, indicated by the horizontal black line in Figure 3a),

which is the time between the Paris “stocktakes” of the global emissions status. In these cases,

the standard deviation of the detection time is also low, between 0.9 and 2 years, indicating that

detection of misreporting is not only fast on average, but also reliable.

The Supplementary Material contains additional simulation results. There it is also shown that

the test is correctly sized under H0 when K is large.

4.2 Monitoring the future carbon budget

If we wish to monitor the carbon budget starting now, that is, starting when the 2019 data come in,

Table 1 presents the critical values, Cαt , for the test proposed in this paper. These are the critical

boundaries which were used in the simulation experiment of Section 4.1, cf. Figure 2. To monitor

the future carbon budget, we proceed as follows. Every year t = 2019, 2020, . . ., when new data

arrive, we calculate the budget imbalance using Equation (3.2), update the monitoring statistic Zt,

and compare it to the critical values given in Table 1. That is, we calculate the cumulative sum

of the budget imbalances through time, Zt =
∑t

i=2019B
IM
i , and compare this to the appropriate

critical value Cαt in the table. If in some year t, the test statistic is below the corresponding

critical value, i.e. if Zt < Cαt , we reject the null of no misreporting against the alternative that

under-reporting is taking place, at the given significance level α. In other words, if Zt < Cαt for

some t = 2019, 2020, . . ., we can conclude that there is statistical evidence that CO2 emissions are

being systematically under-reported.

In practice, it might be preferable to defer monitoring until more hard and fast commitments

are made and misreporting becomes a serious issue to contend with. In this case, the critical values

of Table 1 should be updated accordingly. This is easily done using the methods of Section 2. To

facilitate easy application of our methods, we supply a simple computer program that can do this

automatically (Bennedsen, 2020).
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Figure 2: Illustration of simulation study. From 1959 to 2018 real data are used; from 2019 to 2050

different emissions scenarios are considered and the budget imbalance is simulated using an AR(1)

process, as explained in the text. Left panels show realized CO2 emissions trajectories from 1959 to

2018 and hypothetical future CO2 emissions trajectories from 2019 to 2050: actual emissions (blue

solid line) and reported emissions (green dashed line). Right panels show 100 simulated paths of

the test statistic Zt (cyan lines) and critical boundaries Cαt (black lines) for α = 5%, 10%, and

32%, from 2019 to 2050. a)+b): Both actual and reported emissions are decreasing by 6.37% each

year (no misreporting). c)+d): Actual emissions are decreasing 4.37% each year, while emissions

are reported to decrease by 6.37% each year (under-reporting of 2% per year).
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Figure 3: Estimating the mean and standard deviation of the detection time using simulations.

From 1959 to 2018 real data are used; from 2019 to 2078 different emissions scenarios are consid-

ered, which results in different magnitudes of misreportings, m − g (x-axis), as explained in the

text. a): Mean detection time as function of the amount of misreporting. The horizontal dashed

black line denotes 5 years. b): Standard deviation of the detection time as function of the amount

of misreporting. Three different significance levels are considered: α = 5% (blue line, crosses),

α = 10% (red line, circles), and α = 32% (green line, diamonds).

Table 1: Critical values Cαt for the test of misreporting in CO2 emissions. The values in the table

have been calculated using BIM
t , t = 1959, . . . , 2018, as input.

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

α = 5% −3.81 −5.06 −5.97 −6.71 −7.34 −7.91 −8.44 −8.92 −9.37 −9.80

α = 10% −3.37 −4.47 −5.28 −5.93 −6.49 −7.00 −7.46 −7.89 −8.29 −8.66

α = 32% −2.44 −3.24 −3.82 −4.30 −4.71 −5.07 −5.41 −5.72 −6.01 −6.28
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I. Skjelvan, B. D. Stocker, A. J. Sutton, T. Takahashi, H. Tian, B. Tilbrook, I. T. van der Laan-Luijkx,

G. R. van der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, and S. Zaehle (2016). Global Carbon Budget

2016. Earth System Science Data 8 (2), 605–649.
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Stocker, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van

Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, A. J. Wiltshire, S. Zaehle, and D. Zhu

(2018). Global carbon budget 2017. Earth System Science Data 10 (1), 405 – 448.

Leisch, F., K. Hornik, and C.-M. Kuan (2000). Monitoring structural changes with the generalized fluctuation

test. Econometric Theory 16, 835–854.

Ljung, G. M. and G. E. P. Box (1978). On a measure of lack of fit in time series models. Biometrika 65 (2),

297–303.

Luderer, G., Z. Vrontisi, C. Bertram, O. Y. Edelenbosch, R. C. Pietzcker, J. Rogelj, H. S. De Boer, L. Drouet,
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Peters, G. P., C. Le Quéré, R. M. Andrew, J. G. Canadell, P. Friedlingstein, T. Ilyina, R. B. Jackson,

F. Joos, J. I. Korsbakken, G. A. McKinley, S. Sitch, and P. Tans (2017). Towards real-time verification

of CO2 emissions. Nature Climate Change 7 (12), 848–850.

Sanderson, B. M., B. C. O’Neill, and C. Tebaldi (2016). What would it take to achieve the Paris temperature

targets? Geophysical Research Letters 43 (13), 7133–7142.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2), 461–464.

Tanaka, K. and B. C. O’Neill (2018). The Paris Agreement zero-emissions goal is not always consistent with

the 1.5◦C and 2◦C temperature targets. Nature Climate Change 8 (4), 319–324.

Tokarska, K. B. and N. P. Gillett (2018). Cumulative carbon emissions budgets consistent with 1.5 ◦C

global warming. Nature Climate Change 8 (4), 296–299.

Transparency International (Ed.) (2013). Global Corruption Report: Climate Change. London: Routledge.

UNFCCC (2015). Adoption of the Paris agreement.

Zhang, D., Q. Zhang, S. Qi, J. Huang, V. J. Karplus, and X. Zhang (2019). Integrity of firms’ emissions

reporting in China’s early carbon markets. Nature Climate Change 9 (2), 164–169.

A Proof of Theorem 2.1

Proof of Theorem 2.1. Let t ≥ K + 1 and suppose that H0 holds, i.e., that ε∗t = 0 for all t. Note

first, that we can write (2.2)

Z̃t =
1√
Kω̂2

K

(
t∑
i=1

ui −
K∑
i=1

ui

)
.

Since ω̂2
K

P→ ω2 > 0, where
P→ denotes convergence in probability, it holds, by Assumption 2.1 and

Theorem 5.1. in Davidson (2006), that for λ̃ ∈ [1,Λ + 1],(
λ̃ 7→ Z̃[Kλ̃]

)
⇒
(
λ̃ 7→ B̃(λ̃)− B̃(1)

)
,

as n → ∞, where [x] denotes the integer part of x ∈ R and the convergence takes place in the

Skorohod space D[0, 1], see, e.g., Davidson (2006). The process B̃ is a standard Brownian motion

on [1,Λ + 1]. Letting λ := λ̃ − 1 and B(λ) := B̃(λ + 1) − B̃(1), it is clear that B is a Brownian

motion on [0,Λ]. The result follows, using Assumption 2.2, from arguments similar to those in

Theorem 2.1 of Leisch et al. (2000).

B Calculation of the critical boundary

This section briefly explains how to calculate the critical values Cαt of Equation (2.4) for use in

the one-sided test of Corollary 2.1. Further details, including information on the two-sided test

and alternative boundary functions, can be found in the Supplementary Material. A MATLAB

software package that calculates Cαt automatically is supplied online (Bennedsen, 2020).
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Recall from Equation (2.4) that Cαt =
√
Kω̂2

K ·h(t/K), where the function h is given in Equation

(2.3). Given an estimate of the long run variance ω2, it therefore only remains to determine the

constant c = cΛ,α in (2.3). Let α be the chosen significance level of the test and let f(λ) = c−1h(λ),

i.e. f is the function h without the normalizing constant c. When the monitoring period is finite,

i.e. when Λ < ∞, we determine c by simulation as follows. A large number M of Brownian

motions (here M = 100 000) are simulated on [0,Λ]. For each of these Brownian motions, B(λ),

we construct the path of G(λ) = B(λ)/f(1 + λ), and record the minimum of G(λ) on [0,∆]. The

α quantile of the M recorded minima is now the simulated value of c = cΛ,α we were seeking (cf.

also Leisch et al., 2000, Section 4). If the monitoring period is indefinite, i.e. when Λ = ∞, we

approximate c using the same procedure, but setting Λ to a very large number. (E.g. Λ = 100,

which corresponds to monitoring for Λ×K = 6 000 years in our setup.)

C The budget imbalance and its statistical properties

This section contains further details of the analysis of the budget imbalance data BIM
t , t =

1959, ..., 2018, the outcome of which was briefly reviewed in Section 3.1. The top row of Table

2 presents some descriptive statistics regarding these data. We see that the mean of the time series

is not significantly different from zero, indicating that the carbon budget is balanced on average.

Further, the Durbin-Watson (DW = 1.21) and Ljung-Box (Q = 35.27) test statistics indicate that

the budget imbalance contains (positive) serial autocorrelation. (The caption of Table 2 contains

additional information regarding the DW and Q statistics.) This, together with the visual impres-

sion of Figure 1e), provides a first indication of the budget imbalance being well-described by a

stationary process with some positive correlation structure.

To further test the stationarity hypothesis, we conduct the “KPSS” test of Kwiatkowski et al.

(1992). The null hypothesis of this test is that the data are (trend) stationary, while the alternative

is that the data contain a unit root. The results of the test are given in Table 3, where a number

equal to one indicates that we reject the null and a number equal to zero indicates that we fail

to reject the null. Besides the data, the KPSS test requires two inputs: the number of lags used

to calculate the long run variance of the data (using the estimator proposed in Newey and West,

1987) and whether or not the data contain a deterministic trend under the null. The table reports

the results from using 0, 1, . . . , 10 lags for computing the long run variance and for both the cases

of the presence of a deterministic trend. The results of the KPSS test provide additional evidence

that the budget imbalance constitutes a stationary process: in most setups, we can not reject the

null. The cases where the null is rejected are where we include a deterministic trend under the null

and include a small number of lags when estimating the long run variance. It is well-known, that

when there is (positive) autocorrelation in the process, this setup can result in over-rejections of

the null, especially when the number of data points is small, which is the case here (Kwiatkowski

et al., 1992, Section 5). What is more, a deterministic trend in the budget imbalance is very

unlikely a priori and the most relevant case for our purpose is therefore the test where such a

trend is excluded. In this case, we can not reject the null regardless of the number of lags used in

the calculation of the long run variance.
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Inspecting the empirical autocorrelation and partial autocorrelation functions of the data BIM
t

(not given here for brevity but see the Supplementary Material), provides evidence that an autore-

gressive process of order one (AR1) is an adequate statistical model for BIM
t for t = 1959, . . . , 2018.

Likewise, the Bayesian Information Criterion (Schwarz, 1978) selects an AR(1) model from the

class of autoregressive moving average (ARMA) models. Although the Akaike Information Crite-

rion (Akaike, 1974) prefers a more complicated model (ARMA(5, 5)), we conclude that a reasonable

model of the budget imbalance data is an autoregressive process of order one.6

After fitting an AR(1) model to the data, we subject the residuals of this fit to the same analysis

as conducted on the budget imbalance data in the beginning of this section. The results are shown

in Figure 4 and Tables 2 and 3. After fitting this model, there is practically no autocorrelation left

in the residuals (DW = 2.00, Q = 20.39) and the KPSS test can not reject the null of stationarity

in any of the setups considered here. Summing up, the diagnostics confirm that our chosen AR(1)

model is a good model for the historical budget imbalance data. The estimate (obtained by an

ordinary least squares regression) of the autoregressive parameter is φ̂ = 0.38 and for the variance

of εt, V̂ ar(εt) = 0.52.

Lastly, we note that if, in spite of the findings of this section, the researcher does not want to

specify a parametric structure for the budget imbalance data, the methods proposed in this paper

are valid under significantly weaker assumptions as well. See Remark 2.3 and the Supplementary

Material for further details.

Table 2: Descriptive statistics and diagnostics of the budget imbalance data from Equation (3.2)

in the paper. N is the test-statistic from the Jarque-Bera test (Jarque and Bera, 1987): the null

hypothesis that the data comes from a Gaussian distribution can be rejected if N is larger than the

95% critical value of 5.99. DW is the Durbin-Watson test statistic (Durbin and Watson, 1971):

If DW < 2 there is evidence of positive serial correlation in the data; if DW > 2 there is evidence

of negative serial correlation in the data; data without serial correlation will have DW = 2. Q is

the Ljung-Box Q test statistic (Ljung and Box, 1978) for presence of autocorrelation. The critical

value for the Q-test is 31.41; hence if Q > 31.41 then the null of no autocorrelation can be rejected.

The autoregressive parameter of the AR(1) process is estimated as φ̂ = 0.38.
Descriptive statistics Diagnostics

Data Num. Obs. Mean Std. Dev. Skewness Kurtosis N DW Q

Budget imbalance 60 0.17 0.77 -0.070 2.81 0.14 1.21 35.27

AR(1) residuals 59 -0.099 0.72 0.045 2.31 1.20 2.00 20.39

6Further, a test for conditional heteroskedasticity using the ARCH test of Engle (1982) shows no signs het-

eroskedasticity in the data. The specifics of this test are not included for brevity but they are available from the

author upon request.
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Table 3: Testing for stationarity of the data using the KPSS test (Kwiatkowski et al., 1992).

Numbers equal to one indicate that the test rejects the null of (trend) stationarity against the

alternative of a unit root in the data, while numbers equal to zero indicate a failure to reject the

null. The table reports the results from using 0, 1, . . . , 10 lags for computing the long run variance

and for both the cases of the presence of a deterministic trend under the null.
Number of lags

0 1 2 3 4 5 6 7 8 9 10

Budget imbalance

No Trend 0 0 0 0 0 0 0 0 0 0 0

Trend 1 1 0 0 0 0 0 0 0 0 0

AR(1) residuals

No Trend 0 0 0 0 0 0 0 0 0 0 0

Trend 0 0 0 0 0 0 0 0 0 0 0

1960 1970 1980 1990 2000 2010 2020
-2

0

2

B IM

AR(1) fit

1960 1970 1980 1990 2000 2010 2020
-2

0

2
AR(1) residuals

Figure 4: Top: Budget imbalance data and AR(1) fit. Bottom: Residuals from AR(1) fit.
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