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Wavelet Estimation for Dynamic Factor Models
with Time-Varying Loadings

Duván Humberto Cataño∗†, Carlos Vladimir Rodríguez-Caballero‡, and
Daniel Peña §,

Abstract

We introduce a non-stationary high-dimensional factor model with time-
varying loadings. We propose an estimation procedure based on two stages.
First, we estimate common factors by principal components. Afterwards,
in the second step, considering the factors estimates as observed, the time-
varying loadings are estimated by an iterative procedure of generalized least
squares using wavelet functions. We investigate the finite sample features of
the proposed methodology by some Monte Carlo simulations. Finally, we
use this methodology to study the electricity prices and loads of the Nord
Pool power market.

Keywords: Factor models, wavelet functions, generalized least squares, elec-
tricity prices and loads.

1 Introduction

Factor models have been widely used in the last decade due to their ability to ex-
plain the structure of a common variability among time series by a small number
of unobservable common factors. In this sense, these models are used to reduce di-
mensionality on complex systems. The studies of factor models have encompassed
the stationary and nonstationary frameworks by different estimation methods, see
among many others, Pena and Box (1987), Forni et al. (2000), Stock and Wat-
son (2002), Bai and Ng (2002), Bai (2003), Forni et al. (2004), and Forni et al.
(2005) for the stationary cases, and Bai and Ng (2004), Peña and Poncela (2006),
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Barigozzi et al. (2016), and Rodríguez-Caballero and Ergemen (2017) for the non-
stationary cases.

One non stationary framework of special interest is the factor model with
loadings that vary over time. Motta et al. (2011) introduced deterministic smooth
variations in factor loadings and proposed estimation procedures based on locally
weighted generalized least squares using kernel functions under a time-domain ap-
proach. Similarly, Eichler et al. (2011) allowed for a non stationary dynamic struc-
ture in a factor model and considered deterministic time-dependent functions in the
factor loadings. Their estimation procedure can be seen as a time-varying spectral
density matrix of the underlying process. Furthermore, Mikkelsen et al. (2018)
proposed a factor model with time-varying loadings that evolve as stationary VAR
processes. They employed Kalman filter procedures to obtain the maximum likeli-
hood estimators of the parameters of the factor loadings.

In this paper, we use wavelet functions to define smooth variations of load-
ings in high-dimensional factor models. Our model can be useful in some eco-
nomic applications when the dynamics is driven by smooth progressive variations,
whose cumulative effects cannot be simply ignored, see Su and Wang (2017), and
Bai and Han (2016), for details. In our framework, to capture the common smooth
variations in the vector of time series, the parameters in the loading matrix are
assumed to be well aproximated by deterministic functions over time.

The estimation procedure consists of two steps. First, the common factors
are estimated by standard principal component analysis (PCA). Then, in the second
step, considering the factors as known, factor loadings are estimated by an iterative
procedure that combines generalized least squares (GLS) using wavelet functions.
We show that factors estimated by principal components are consistent after con-
trolling the magnitude of the loadings instabilities. We highlight that a necessary
requirement for such consistency is that common factors need to be independent of
the functions of factor loadings. This model is extended for the case when variables
are non-stationary where the factor are first estimated by the approach of Peña and
Poncela (2006). We use Monte Carlo simulations to show that the method cor-
rectly identify the factors and loadings. Finally, we use the methodology proposed
with non-stationary variables to analyze an electricity market: the Nord Pool power
market. We use the electricity system prices and loads throughout two years and a
half to show that factor loadings are not invariant along time, illustrating the useful
of our model in energy markets. We find that some features of electricity prices and
loads, see e.g. Weron (2007), and Weron (2014), are well extracted by common
factors estimates, and by time-varying loadings estimates.

The remainder of the paper is organized as follows. Section 2 introduces the
model, shows the consistency of principal components with stationary and non-
stationary variables, and introduces the wavelet functions. Section 3 discusses the
proposed estimation procedure. Monte Carlo simulation studies are presented in
Section 4, and an empirical illustration is provided in Section 5. Section 6 con-
cludes. Throughout the paper we use bold-unslanted letters for matrices, bold-
slanted letters for vectors and unbold (normal) letters for scalars. We denote by
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tr(·) the trace operator, by rank(A) the rank of a matrix A, by In the identity
matrix of dimension n, by ⊗ the Kronecker product and by ‖ · ‖ the Frobenius
(Euclidean) norm, i.e., ‖A‖ =

√
tr(A′A).

2 The model

The model we propose is as follows

Yt = Xt + et, (1)

Xt = [Λ0 + Λ(t/T )]Ft, (2)

where the common component, Xt, is aN−dimensional locally stationary process,
in sense of Dahlhaus et al. (1997b) and the loadings are defined in the re-scaled
time, u = t/T ∈ [0, 1]. Ft are the unobservable common factors and et, the
idiosyncratic component, is a sequence of weakly dependent variables. Λ(u) =
{λij(u), i = 1, . . . , N ; j = 1, . . . , r, is the time-dependent factor loading matrix.
In this respect, the influence of Ft on the observed process varies over time and
Λ(u) capture the smooth variations of the loadings with respect Λ0, a constant
loading matrix.

When Λ(u) = 0, ∀u ∈ [0, 1], the standard factor model is considered,
therefore the model proposed in (1) can be seen as a generalization of the standard
factor model of Bai (2003).

Definition 1. The sequence Yt in (1) follows a factor model with time-varying
loadings if:

a. For N ∈ N, there is a function with

Λ(·) : [0, 1] → RN×r
u 7→ Λ(u)

such that ∀ T ∈ N,

ΓY (u) = [Λ0 + Λ(u)]ΓF [Λ0 + Λ(u)]′ + Γe,

where rank[Λ0 + Λ(u)] = r and ΓF = Var(Ft), is a positive definite
diagonal matrix.

b. Γe = var(et) is a positive definite matrix.
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2.1 Assumptions

With an arbitrary constant Q ∈ R+, the assumptions of the model in (1) following
Bai and Ng (2002) are as follows,

Assumption A. Factors:

A1 E‖Ft‖4 < Q,

A2 T−1
∑T

t=1 FtF
′
t
p→ ΓF when T → ∞, where ΓF is a positive definite diag-

onal matrix.

Assumption B. Factor loadings:

B1 ‖λi0‖ ≤ λ̄ and ‖Λ′0Λ0/N − D‖ → 0, when N → ∞, with r × r positive
definite matrix D, where λi0 is the i−th row of Λ0,

B2 supu∈(0,1) ‖λi(u)‖ ≤ λ̄ <∞, where λi(u) is the i−th row of Λ(u),

B3 λij(u) ∈ L2[0, 1], for i = 1, . . . , N and j = 1, . . . , r.

Assumption C. Idiosyncratic terms:

C1 E(eit) = 0,E|eit|4 < Q,

C2 E[eitejt] = τij,t,with |τij,t| < |τij |, for a constant |τij | andN−1
∑N

i,j=1 |τij | <
Q, for all t,

C3 E[N−1
∑N

i=1 eiseit] = γN (s, t), |γN (s, s)| < Q, for all (s, t); and
T−1

∑T
s=1

∑T
t=1 |γN (s, t)| < Q.

Assumption D. Time-varying factor loadings and factors:
K1NT , K2NT and K3NT are functions such that the following conditions are ful-
filled for any n,m, k, q = 1, . . . , r and λij(s/T ) ≡ λij(s).

D1 sups,t
∑N

i,j |λin(s)λjm(t)||E[FnsFmt]| < K1NT ,

D2
∑T

s,t=1

∑N
i,j=1 |λin(s)λjm(s)||E[FnsFmsFktFqt]| < K2NT ,

D3
∑T

s=1

∑N
i,j=1 |λin(s)λjm(s)λik(t)λjq(t)||E[FnsFmsFktFqt]| < K3NT .

Assumption E. Independence:
The process eit and Fjs are independent of each other for any (i, j, s, t).

Assumption A imposes standard moment conditions, that is, the unobserv-
able factors have finite fourth moments and their covariance converges in probabil-
ity to a positive definite matrix. AssumptionsB1 andB2 ensure that each factor has
a nontrivial contribution to the variance of Yt. Assumption B3 ensures existence
of the expansion in the wavelet function for the factor loadings. Assumptions C
allows dependence in the idiosyncratic process. Assumption D is required to guar-
antee the consistency of the principal components. Finally, independence between
factors and the idiosyncratic term is provided in the Assumption E.
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2.2 Principal component estimators

We use PCA to estimate the factors Ft. It is well-known that principal components
are obtained solving the optimization problem

min
F,Λ

(NT )−1
N∑
i=1

T∑
t=1

(Yit − λ′iFt)
2, (3)

where F = (F1,F2, . . . ,FT )′ is a T × r matrix and Λ is a N × r matrix. We need
to impose some restrictions to guarantee the identification of the parameters as
usual. Solving for Λ, the normalization F′F = Ir provides the necessary number
of restrictions. With this, minimize (3) is equivalent to maximize tr[F′(YY′)F],
where Y = (Y1, . . . ,YT )′. Then, the estimated factor matrix, F̃, is

√
T times the

eigenvectors corresponding to the r largest eigenvalues of the T × T matrix YY′.
It is well-known that this solution is not unique, that is, any orthogonal rotation of
F̃ is also a solution. See Bai et al. (2008) for more details.

The following theorem is a modified version of Theorem 1 in Bates et al.
(2013) and shows that, under the assumptions previously stated, it is possible to
consistently estimate any rotation of the factors by principal components even if
the loadings are time-varying.

Theorem 1. Under Assumptions A-E, there exists an r × r matrix H such that

T−1
T∑
t=1

‖F̃t −H ′Ft‖2 = Op(RNT ), (4)

whenN,T →∞, whereRNT = max
{

1
N ,

1
NT ,

K1NT
N2 , K2NT

N2T 2 ,
K3NT
N2T 2

}
withK1NT ,

K2NT , and K3NT defined in the Assumption D. Furthermore,
H = (Λ

′
0Λ0/N)(F′F̃/T )V −1

NT , where VNT is a diagonal matrix of the r largest
eigenvalues of the matrix (NT )−1YY′.

Proof. See the appendix A.1.
Theorem 1 points out that the average squared deviation between the esti-

mated factors and the space spanned by a rotation of the true factors will vanish
at rate RNT , which is similar to that in Bai and Ng (2002). Note that from (4),
the estimated common factors, F̃t, are identified through a rotation, then, principal
components converge to a rotation of the true common factors H ′Ft.

2.3 Nonstationary factors

In many areas, as in economics and finance, there is strong evidence in favor of the
presence of non-stationarity processes, which have repeatedly found in many em-
pirical studies with economic or financial time series. Consequently, it is natural to
think that many panel data may include non-stationary economic or financial vari-
ables. There has been some debate concerning the use of differenced variables, the
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main argument being discussed is whether differencing the series causes a severe
loss of information. In this paper, to treat with non-stationary variables, we use the
methodology proposed by Peña and Poncela (2006) who, assuming that Yt ∼ I(d)
with a positive integer d, use generalized covariance matrices, which is defined as

Cy(k) =
1

T 2d+d′

T∑
t=k+1

(Yt−k − Ȳt)(Yt − Ȳt), (5)

where Ȳ = 1
T

∑T
t=1 Yt and d′ can be either 0 or 1. In this framework, a consistent

estimate for the factors are:

F̂ = YΛ̂, (6)

where F̂ = (F̂1, F̂2, . . . , F̂T )′ is a T × r matrix, Y = (Y1, . . . ,YT )′ is a T ×N
matrix and Λ̂ is a N × r matrix composed by the first r eigenvectors of Cy(k).
Following the same reasoning as in Theorem 1, it can be shown that the average
squared deviation between the estimated factors (6) and the space spanned by a
rotation of the true factors will vanish when (N,T )→∞.

2.4 Wavelets

The basic idea of a wavelet is to construct infinite collections of translated and
scaled versions of the scale function φ(t) and the wavelet ψ(t) such as φjk(t) =
2j/2φ(2jt−k), andψjk(t) = 2j/2ψ(2jt−k) for j, k ∈ Z. Suppose that {φlk(·)}k∈Z∪
{ψjk(·)}j≥l;k∈Z forms an orthonormal basis ofL2(R), for any coarse scale l. A key
point is to construct φ and ψ with a compact support that generates an orthonormal
system, which has location in time-frequency. From this, we can get parsimonious
representations for a wide class of wavelet functions, see Chiann and Morettin
(2005) and Porto et al. (2008) for details. In some applications, these functions are
defined in a compact set such as [0, 1]. We consider this compact set for functions
λij(u), for i = 1, . . . , N and j = 1, . . . , r defined in (2). Then, it is necessary
to consider an orthonormal system that generates L2[0, 1]. For the construction of
these orthonormal systems we follow the procedure by Cohen and Ryan (1995),
that generates multiresolution levels Ṽ0 ⊂ Ṽ1 ⊂ · · · , where the spaces Ṽj are gen-
erated by ψ̃jk. Negative values of j are not necessary since φ̃ = φ̃00 = 1, and if
j ≤ 0, ψ̃jk(u) = 2−j/2, see Vidakovic (2009) for more details and different ap-
proaches. Therefore, for any function λ(u) ∈ L2[0, 1], can be expand in series of
orthogonal functions

λ(u) = α00φ(u) +
∑
j≥0

∑
k∈Ij

βjkψjk(u), (7)

where we take l = 0 and Ij = {k : k = 0, . . . , 2j − 1}. For each j, the set Ij
generates values of k such that βjk belongs to the scale 2j . For example, for j = 3,
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there are eight wavelet coefficients in the scale 23, whereas for j = 2, only four
coefficients in the scale 22.

Some applications consider the equation in (7) for a maximum resolution
level J , through

λ(u) ≈ α00φ(u) +

J−1∑
j=0

∑
k∈Ij

βjkψjk(u). (8)

In this way, the function λ(u) approximates to the space ṼJ . In this paper, we use
ordinary wavelets as in Dahlhaus et al. (1997a) due to their performance is suitable
in the case of smooth functions. Particularly, Daubechies D8 and Haar wavelets of
compact supports are employed.

3 Estimation of time-varying loadings by wavelets

We consider the process in (1) with r common factors (r < N) to discuss the
estimation procedure of the time-varying loadings. From now on, we consider the
loading matrix, [Λ(u) + Λ0], as a unique function over time Λ(u), given by

Yt = Λ(u)Ft + et, (9)

with t = 1, 2, . . . , T , and u = t/T ∈ [0, 1]. In matrix form, we have



Y1t

Y2t
...
Yrt

...
YNt


=



λ11(u) λ12(u) . . . λ1r(u)
λ21(u) λ22(u) . . . λ2r(u)

...
...

. . .
...

λr1(u) λr2(u) . . . λrr(u)
...

...
. . .

...
λN1(u) λN2(u) . . . λNr(u)




F1t

F2t
...
Frt

+



e1t

e2t
...
ert
...
eNt


, (10)

where Yt is an N−dimensional vector of time series, Λ(u) is the time-varying
loading matrix with λij(u) ∈ L2[0, 1], for i = 1, 2, . . . , N , and j = 1, 2, . . . , r.
Ft is the common factor, and et is the idisyncratic process. From (9), and the
Assumption E, the structure of the covariance matrix of the process Yt is written
as

ΓY (u) = Λ(u)ΓFΛ′(u) + Γe, ∀u ∈ [0, 1],

that means, the variance of the common component is ΓX(u) = Λ(u)ΓFΛ′(u).
For the construction of the time-varying loadings estimates, we first as-

sume that the estimator of the r common factors are obtained by PCA of the
N−dimensional time series Yt. Then, functions of time-varying loadings are ap-
proximated in series of orthogonal wavelets as in (8), for a fixed resolution level
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J < T ,

λmn(u) = α
(mn)
00 φ(u) +

J−1∑
j=0

∑
k∈Ij

β
(mn)
jk ψjk(u). (11)

The values of j, k vary depending on the resolution level in the wavelet de-
composition. We choose the maximum resolution J , such that 2J−1 ≤

√
T ≤ 2J ,

see Dahlhaus et al. (1997a) for details of this selection. In practice, the coeffi-
cients α(mn)

00 , β
(mn)
00 , β

(mn)
10 , . . . , β

(mn)

J−1,2J−1
are obtained for a particular estimation

method. In this paper, we use GLS to estimate these coefficients and to reconstruct
the loadings functions.

Let Yt = (Y1t, Y2t, . . . , YNt) be N time series with t = 1, 2, . . . , T which
are generated by

Yt = Λ(u)F̃t + et, (12)

where the r common factors, F̃t, are estimated by principal components. Each
loading function λmn(u) is written as in (11), then when plugging each λmn(u)
into (10), we have



Y11
...

Y1T
...
Yr1

...
YrT

...
YN1

...
YNT


︸ ︷︷ ︸
vec(Y)

=



Ψ
(1)

F̃
Ψ

(2)

F̃
. . . Ψ

(r)

F̃
. . . O O . . . O O O . . . O

O O O O . . . O O . . . O O O . . . O
...

...
...

...
. . .

...
...

...
...

...
...

O O O O . . . Ψ
(1)

F̃
Ψ

(2)

F̃
. . . Ψ

(r)

F̃
O O . . . O

...
...

...
...

...
...

...
...

...
...

O O O O . . . O O . . . O Ψ
(1)

F̃
Ψ

(2)

F̃
. . . Ψ

(r)

F̃


︸ ︷︷ ︸

Θ



β(1)

β(2)

β(3)

...
β(r)

...
β(N)


︸ ︷︷ ︸

β

+



e11
...
e1T

...
er1

...
erT

...
eN1

...
eNT



,

︸ ︷︷ ︸
vec(e)

(13)

where

Ψ
(i)

F̃
=


φ(1/T )F̃i1 ψ00(1/T )F̃i1 . . . ψJ−1,2J−1(1/T )F̃i1
φ(2/T )F̃i2 ψ00(2/T )F̃i2 . . . ψJ−1,2J−1(2/T )F̃i2

...
...

. . .
...

φ(T/T )F̃iT ψ00(T/T )F̃iT . . . ψJ−1,2J−1(T/T )F̃iT

 ,

are T × 2J matrices for i = 1, 2, . . . , r and O is T × 2J null matrix.
Let ΨrF̃ = [Ψ

(1)

F̃
, . . . ,Ψ

(r)

F̃
] be a T × r2J matrix, then

Θ = IN ⊗ΨrF̃
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isNT×Nr2J matrix that depends on the estimated factors, F̃t, the wavelets ψ(u),
and the resolution level J , with vector of parameters β(m) =

(
β(m1),β(m2), . . . ,

β(mr)
)′

of dimension r2J × 1 for m = 1, 2, . . . , N , where β(mn) =
(
α

(mn)
00 ,

β
(mn)
00 , β

(mn)
10 , . . . , β

(mn)

J−1,2J−1

)′
.

Each β(m) is composed by the wavelets coefficients of the m−th row of the
matrix Λ(u). Therefore, the total number of wavelets parameters to be estimated
is 2JNr.

Hence, the model in (13) can be represented in a linear model form as

vec(Y) = Θβ + vec(e),

where vec(Y) is the response vector and Θ is the usual design matrix in regression
analysis. Assuming that the covariance matrix of the idiosyncratic errors, Γe, is
known, then the GLS estimator of the coefficients β is given by

β̂ = (Θ′Σ−1
e Θ)−1Θ′Σ−1

e vec(Y),

where Σe is a NT ×NT matrix defined as

Σe = Γe ⊗ IT =


ITγe,11 ITγe,12 . . . ITγe,1N
ITγe,21 ITγe,22 . . . ITγe,2N

...
...

. . .
...

ITγe,N1 ITγe,N2 . . . ITγe,NN


These results provide linear estimators of wavelets coefficients for the time-

varying loadings assuming that the covariance matrix of the idiosyncratic error is
known. Some procedures, such as maximum likelihood methods, are not computa-
tionally efficient for estimating such model, since the number of parameters tends
to be very large. In this light, we use GLS to simplify the implementation.

Note that we can use different basis of wavelet functions φ(u), and ψjk(u)
for each λmn(u). In the simulation section, we use similar basis to simplify the
exposition.

3.1 Estimation

The estimation procedure is based on a general two-step procedure, which can be
executed by the following algorithm:

Step 1. Use principal components to estimate Ft as

F̃ =
√
T [v1, v2, . . . , vr],

where vi is the eigenvector corresponding to the i−th largest eigenvalue, λi
for i = 1, . . . , r, of the matrix (NT )−1YY′. Here, Y and F̃ denote T ×N
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and T × r matrices, respectively. Next, the loading function matrix, Λ(t), is
approximated by the wavelets

λmn(t) = α
(mn)
00 φ(t) +

J−1∑
j=0

∑
k∈Ij

β
(mn)
jk ψjk(t),

with Ij = {k : k = 0, 1, . . . , 2j − 1}, m = 1, . . . , N , and n = 1, . . . , r.
Then, we write the equation (12) as

vec(Y) = Θ(F̃, ψ, φ)β + vec(e),

where vec(Y) and vec(e) areNT×1 vectors, and the dimensions of Θ(F̃, ψ, φ)
and β are (NT × 2JNr) and (2JNr × 1), respectively, where J indicates
the resolution level chosen in the wavelet expansions.

Step 2. Estimate by GLS the wavelet coefficients as

β̂ = (Θ′Σ−1
e Θ)−1Θ′Σ−1

e Z,

where Θ(F̃, ψ, φ) ≡ Θ, Z = vec(Y), and Σe = INT is used as initial value.

Step 3. Using the estimated coefficient in the Step 2, the loadings are obtained as

Λ̂(t)(0) = {λ̂(0)
mn(t)}n=1,...,r

m=1,...,N ,

where

λ̂(0)
mn(t) = α̂

(mn)
00 φ(t) +

J−1∑
j=0

∑
k∈Ij

β̂
(mn)
jk ψjk(t).

Step 4. With Λ̂(t)(0), obtain residuals, Yt − Λ̂(t)(0)F̃t = ê(0)
t . Then, compute

Γ̂(0)
e =

T∑
t=1

ê(0)
t ê(0)′

t /T.

Step 5. Back to step 2 with Σe = Γ̂
(0)
e . Iterate n-times the procedure to obtain the

sequences {Λ̂(t)(i), Γ̂
(i)
e }i=1,...,n. Stop the iteration when

‖Λ̂(t)(i−1) − Λ̂(t)(i)‖ < δ,

for any small δ > 0, where ‖·‖ denotes the Frobenius norm for t = 1, . . . , T.
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4 Monte Carlo simulation

We examine the finite-sample properties of the estimation procedure proposed
above using a Monte Carlo study. The model in (1) is generated as

Yit = λ′i(t)Ft + eit, i = 1, . . . , N and t = 1, . . . , T,

Fkt(1− θkB) = ηkt, k = 1, . . . , r. ηt ∼ Nr(0, diag{1− θ2
1, . . . , 1− θ2

r}),
et ∼ NN (0,Γe),

where the matrix Γe is generated by a couple of different structures: i) Γe =
{γ|i−j|}i,j=1,...,N , that is a Toeplitz matrix, and ii) a diagonal matrix. Furthermore,
at instant t, Yit denotes the i−th time series, λ′i(t) = (λi1(t), . . . , λir(t)) is the
vector of loadings, which are generated alternately by some smooth functions. We
discuss a couple of functions used below. Ft = (F1t, . . . , Frt)

′ is the vector of fac-
tors, and ηt = (η1t, . . . , ηrt)

′ and et = (e1t, . . . , eNt)
′ are vectors of idiosyncratic

terms which are independent to each other.
In our Monte Carlo study, the model is generated with N ∈ {20, 30} cross-

sectional units and T ∈ {512, 1024, 2048} sample sizes. We consider for sim-
plicity only two common factors, that is r = 2. Furthermore, three values for
θ are considered; θ ∈ {0, 0.5, 1}. For the case with θ = 1, ηt is simulated as
Nr(0, diag{θ2

1, . . . , θ
2
r}). Two values for Γe; a Toeplitz matrix Γe = Toep with

γ = 0, 7 for correlated noise and Γe = Diag for uncorrelated, where the entries of
the diagonal matrix are generated by an uniform distribution U(0.5, 1.5). Note that
simulated data are standardized before extracting the principal components. Com-
mon factors are estimated by principal components in cases with θ < 1, and by the
procedure of Peña and Poncela (2006) in the case with θ = 1. All simulations are
based on 1000 replications of the model.

We rotate the obtained factors in order to compare proposed estimations with
the actual factors. The optimal rotation A∗ is obtained by maximizing
tr[corr(F, F̃A)]. The solution is given by A∗ = V U where V and U are orthog-
onal matrices of the decomposition corr(F, F̃ ) = USV ′. When the number of
k principal components is not equal to the number of factors r, we rotate the first
l = min{k, r} principal components, see Eickmeier et al. (2015). Both estimated
and simulated factors are re-scaled to keep the same standard deviation, then

F̃∗k =
σ(Fk)

σ(F̃k)
F̃k, k = 1, . . . , r, (14)

where F̃k is the k−th column of the matrix of the rotated principal components
F̃A∗.

As explained before, these rotated factors are now treated as observed vari-
ables in the regression model

vec(Y) = Θ(F̃∗, ψ, φ)β + vec(e),
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to estimate the wavelet coefficients, β, where F̃∗ = (F̃∗1, . . . , F̃
∗
r).

To investigate the performance of the estimation procedure, estimated and
simulated factors are compared as following:

i) The precision of the estimation factors is measured by the R2
F̃ ,F

statistics as
in Bates et al. (2013), given by

R2
F̃ ,F

=
tr[F′F̃(F̃′F̃)−1F̃′F]

tr[F′F]
, (15)

where F̃ is the T × r matrix of estimated factors as in (14) and F is the
T × r matrix of the actual factors, that is the simulated ones. This statistics
is a multivariate R2 in a regression of the actual factors on the principal
components. When the canonical correlation of the actual and estimated
factors tends to one, then R2

F̃ ,F
→ 1 as well.

ii) The precision of the estimation loadings is measured by the mean square er-
rors (MSE) between estimated and actual loadings, as in Motta et al. (2011).
The MSE is computed as follows

MSE(v) = (NT )−1
T∑
t=1

‖Λ̂(v)
(t)−Λ(t)‖,

for v = 1, . . . , 1000. The estimator of the factor loadings matrix, Λ(t), is
chosen by a path such that

Λ̂(t) = {Λ̂
(m)

(t) : MSEm = median{MSE(1), . . . ,MSE(1000)}}. (16)

Table 1 shows the results of estimations of (15) and (16). As can be seen, the
methodology proposed in this paper performs very well in relatively small samples
regardless of size distortion between N and T . As seen in Table 1, R2

F̃ ,F
is rela-

tively high indicating a good performance of the estimator, although the precision is
a bit reduced when increasing the value of θ. These findings are maintained for the
both type of wavelets used and even when we allow for cross-correlation between
idiosyncratic errors. Furthermore, inspecting the MSE in Table 1, we find that the
MSEs decrease as T increases in all cases, even if the common factors are seri-
ally correlated and even if idiosyncratic errors are cross-correlated. Furthermore,
another finding indicates that in general, factor loadings using the wavelet D8 per-
form better than the wavelet Haar. We think that such findings are reasonable due
to the smoothness of the wavelet D8 in contrast with the other one. The wavelet
Haar should be implemented when dynamics of the factor loadings have breaks or
perhaps some aggressive jumps. These structures are not considered in the current
paper, but these possible features of the wavelet Haar is part of an another research
and is out of the present scope.
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Finally, in Figures 1 and 2, we display the good performance of the method-
ology to estimate the factor loadings. We choose a couple of different smooth
functions for each value of θ and in both types of wavelets for comparison pur-
poses. The following functions are considered: i) λ1,12(t) = 0.4 cos−3πt, and ii)
λ2,8(t) = 0.6(0.7

√
t− 0.5 sin 1.2πt), where λ1,12 indicates the loading of the first

factor of the cross-sectional unit i = 12, and λ2,8, the loadings of the second factor
of the unit i = 8. Figures display the actual and estimated time-varying loadings as
well as their bootstrap confidence interval at 95% with B = 100 replications, fol-
lowing de A. Moura et al. (2012). In such figures, we can see that the methodology
works well independently of the value taken in θ.

5 Application

In this section, we provide an application of the model proposed to study comove-
ments in loads and prices of the Nord Pool power market.

Nord Pool runs the leading power market in Europe and operates in the day-
ahead and intraday markets. Elspot is the day-ahead auction market, where par-
ticipants act in a double auction and submit their supply and demand orders (spot
prices and loads) for each individual hour of the next day. The market is in equilib-
rium when demand and supply curves intersect to each other at the system prices
and loads for each hour. The hourly system prices and loads series are announced
as 24 dimensional vectors which are determined simultaneously. See Bredesen and
Nilsen (2013) for more information about the operation and history of the market.

Electricity markets have particular features that do not exist in another type
of commodity market. Particularly, the non-storability of electricity provokes that
the price behavior shows an excessive volatility, possible negative prices and many
spikes along time. These characteristics are intrinsically more linked to prices than
to loads which make them very different, however both series include strong intra-
day, weekly, and yearly seasonality, see Weron (2007).

Hourly electricity prices and loads have been mostly studied by univariate
time series methods, see Weron (2014) for a rich review. Until the last years, some
authors have explored these series by multivariate techniques as high dimensional
factor models in different power markets. Using data from the Iberian Electric-
ity Market (MIBEL), seasonal factor have been extracted in the works of Alonso
et al. (2011) and Garcıa-Martos et al. (2012), whereas Alonso et al. (2016) pro-
pose to employ model averaging of factor models to improve the performance of
forecasting. The Pennsylvania - New Jersey - Maryland (PJM) interconnection
market is studied by Maciejowska and Weron (2015), who estimate factor models
for forecasting evaluation using hourly and zonal prices. Furthermore, the Nord
Pool power market is studied in the works of Ergemen et al. (2016), who study the
long-term relationship between system prices and loads, and Rodríguez-Caballero
and Ergemen (2017) who use regional prices in a multi-level setting. However, all
these empirical studies consider that factor loadings do not vary along time. In this
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sense, to the best of our knowledge, we are the first to consider a factor model with
time-varying loadings for the power market.

We consider a balanced panel data set consisting of N = 24 hourly prices
and loads for each day from 13th March 2016 to 31th December 2018, yielding
a total of T = 1024 daily observations in each hour. The series are downloaded
from the Nord Pool ftp server and prices are denominated in Euros per Mwh of
load. Figures 3 and 4 display six time series in logs from which we can observe
some characteristics in both time series. First, electricity system prices and loads
vary differently over the months with a common pattern in the evolution of hourly
series. Second, the price series show many spikes which are related to the own
features of the commodity as explained above. Third, the seasonal variation is
stronger in loads than in prices series even if this component is present in both
as discussed in Ergemen et al. (2016). Fourth, electricity prices and loads have
nonstationary performances, see e.g. Haldrup et al. (2010), Haldrup and Nielsen
(2006), and Koopman et al. (2007). These papers focus on the feature of electricity
prices and loads have autocorrelation functions that decay at a hyperbolic rate,
suggesting the use of fractionally integrated processes. In this paper, we keep in
the I(1) case to focus on the main ideas. Then, we set our estimation on the non-
stationary approach discussed in the section 2.3. The possibility of long-memory
dynamics is beyond the scope of the present paper and is not further explored.

We estimate the model in (12) with r = 2 for modeling the commonality of
hourly system prices and loads. The literature has consistently used two common
factors in both prices and loads. Since we work with heteroscedastic time series,
we use (in first differences) the procedure proposed by Alessi et al. (2010) which
introduce a tuning multiplicative constant in the penalty function to improve the
criteria of Bai and Ng (2002). We also find two common factors in prices and
loads which are in line with the literature. Using these factors, we explain 95% of
the variation in the panel of electricity prices and 97% of electricity loads. These
percentages are slightly higher than that found in Ergemen et al. (2016) but our
period of time is much shorter than the one covered in their study. In this respect,
what may be provoking such differences is that we do not cover the years in which
the Nord Pool power market experienced a number of events in the delineation and
market infrastructure.

Besides the estimated model, our study differs of Ergemen et al. (2016) and
Rodríguez-Caballero and Ergemen (2017) in two aspects: first, we do not sea-
sonally adjust and detrend each panel element of prices and loads as they do in
their study. This is because we find that the seasonality is strongly extracted not
only in common factors but also in factor loadings which evolve along time in
our approach. Second, we do not follow their estimation procedure based on a
fractionally differencing and integrating back strategy. Instead, we follow the pro-
cedure proposed by Peña and Poncela (2006) using the common eigenstructure of
the generalized covariance matrices as discussed before. Using the methodlogy
proposed in that paper, we set that the first common factor in loads and prices
are nonstationary, I(1), whereas that the second common factors in both series
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are stationary, I(0). These findings are in line with the non-stationary literature
on electricity modeling, see e.g. Ergemen et al. (2016), Rodríguez-Caballero and
Ergemen (2017), for instance.

Figures 5 and 8 display estimates of common factors of hourly system loads
and prices, respectively. In addition, Figures 6 and 7 show time-varying loadings
of the first and second common factors of hourly system loads, respectively, while
Figures 9 and 10 show the time-varying loadings estimates of hourly system prices.
We only display the results for six hours for exposition purposes: 04:00, 08:00,
12:00, 16:00, 20:00, and 24:00 hrs. Note that with these hours, we can observe dif-
ferent performances of loadings between working and non-working hours, which
exemplify the intrinsic nature of the market. We also estimate the standard factor
model by PCA for comparison purposes. Static factor loadings are represented
in Figures 6, 7, 9 and 10 by horizontal red lines. Common factors by static and
time-varying approaches overlap, consequently static factors are not displayed.

As seen in Figure 5, the first factor captures the strong seasonal component
showing possible weekly, and monthly periodicity in the hourly system loads. Em-
pirical studies have also documented this regular behavior in such frequencies both
in the Nord pool power market and in other energy markets. The second factor
seems to capture mainly a kind of weekly variability, which occurs mostly during
working hours as seen in Figure 3.

A further inspection on Figure 6 indicates that factor loadings correspond-
ing to the first common factor of system loads are all positive showing smooth
variations along time. Loadings have positive peaks more frequent during the sum-
mer. In this regard, time-varying loadings capture a kind of readjustment of system
loads when the demand reaches a maximum level (in winter) and a minimum level
(in summer). This makes sense with the nature of this commodity. Moreover,
time-varying loadings in the remaining months remain stable, oscillating smoothly
around the static factor loading. In turn, factor loadings corresponding to the sec-
ond common factor of system loads do not have a regular behavior in contrast to
those of the first factor, see Figure 7. However, these loadings are positive during
night hours and negative during working hours as also discussed in Ergemen et al.
(2016). This indicates that the second common factor plays a positive role during
non-working hours and have negative contributions along the working hours. In
this sense, such changes in the demand of electricity around the day may provoke
the strong variability of the second common factor as discussed before.

With respect to hourly system prices, at a first glance, Figure 8 shows that
estimated common factors exhibit some stylized facts of electricity prices. Volatil-
ity clustering is being captured by the first factor, while, excessive price spikes
occurring in 2018 by March, July, and August are extracted by both common fac-
tors, but mostly by the second one. Similarly to the case of system loads, the factor
loadings of the first common factor of system prices are all positive (Figure 9),
whereas those of the second factor are positive during the night and negative dur-
ing working hours (Figure 10). However, unlike system loads, we do not find that
factor loadings in the case of prices have regular periodic movements, although in
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general, loadings in some consecutive hours are very similar (5-7, 15-18 hrs, for
instance). The latter indicates that the impact of common factors to explain price
variability will be very similar as the hours approach.

In conclusion, this empirical study leaves open many possibilities for future
research. First, testing whether loadings vary or if they are constant over time
would improve the specification of factor models and could help to understand
market behavior. Second, in the context of the liberalization of energy markets,
short-term forecasting of prices and loads are essential, then, in a subsequent pa-
per, we are investigating if loads/prices forecasts obtained by time-varying factor
models are better than those provided by standard or dynamic factor models. Third,
as discussed in the Monte Carlo study, the factor loadings using the wavelet D8 per-
form better than Haar in situation where time series evolve smoothly as in the case
of system loads. In this sense, a deeper study on electricity prices could help us
understand if the wavelet Haar represents a better choice for modeling the perfor-
mance of factor loadings, since electricity prices are more volatile than loads.

6 Concluding remarks

In the last years, factor models has been widely used in many branches due to
the flexibility of treating high dimensional panels. However, most of the standard
approaches have some limitations when assuming that factor loadings are invariant
along time. In this respect, we relaxed such an assumption and focused on the
study of factor models with time-varying loadings.

In this paper, we proposed a two-step procedure based on GLS with wavelet
functions to estimate factor models, whose loadings are defined as smooth and
continuous functions of time. We consider stationary as well as non-stationary
variables to cover more possibilities of application. The finite-sample properties
of our estimator were supported by some Monte Carlo simulations. Our findings
indicate that the methodology proposed performed very well regardless of size
distortion between N and T and even in relatively small samples. We also found
that Wavelet D8 estimates were more attractive than wavelet Haar estimates due to
its smoothness. This indicates that Wavelet D8 should provide better estimations
when factor loadings do not have sudden changes.

Finally, we motivated the empirical relevance of allowing for time-varying
loadings in factor models by studying the electricity loads and prices of the Nord
Pool power market. At a first glance, we found that factor loadings seem to vary
over time, which has not been discussed in the empirical literature on electricity
markets. Furthermore, we also found that the strong seasonality, which have been
documented in many other studies, is extracted not only by common factors, but
also by factor loadings, which may improve the forecasting of electricity prices and
loads.
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Appendix

A Technical appendix

A.1 Proof of Theorem 1

Proof. Let Y = (Y1, . . . , YT )′ be a T × N matrix, and let VNT be a r × r diago-
nal matrix composed by the r largest eigenvalues of the matrix (NT )−1YY′. By
definition of eigenvectors and eigenvalues, we have

1

NT
YY′F̃ = F̃VNT ⇐⇒ 1

NT
YY′F̃V −1

NT = F̃, (17)

where F̃′F̃ = Ir. The model defined in (1) and (2) can be re-written as

Yt = [Λ0 + Λ(t)]Ft + et
= Λ0Ft + Λ(t)Ft + et
= Λ0Ft + wt + et,

where wt = Λ(t)Ft.Now, we define the following T×N matrices, e = (e1, e2, . . . , eT )′

and w = (w1,w2, . . . ,wT )′. Note that the model in (1), can also be re-written in
matrix form as

Y = FΛ
′
0 + w + e.

Consequently, after taking products we get

YY′ = FΛ
′
0Λ0F′ + FΛ

′
0(e + w)′ + (e + w)Λ0F′ + (e + w)(e + w)′.

Then, from definitions of F̃t in (17) and the matrix rotation H , we can write
for a fixed t

F̃t −H ′Ft = (NT )−1V −1
NT F̃′YY

′
t − V −1

NT (F̃′F/T )(Λ
′
0Λ0/N)Ft

=
V −1
NT
NT [F̃′(FΛ

′
0Λ0Ft + FΛ

′
0(wt + et) + (w + e)Λ0Ft + (e+ w)(et + wt))

−(F̃′F)(Λ
′
0Λ0)Ft]

=
V −1
NT
NT [F̃′FΛ

′
0et︸ ︷︷ ︸

D1t

+ F̃′eΛ0Ft︸ ︷︷ ︸
D2t

+ F̃′eet︸ ︷︷ ︸
D3t

+ F̃′FΛ
′
0wt︸ ︷︷ ︸

D4t

+ F̃′wΛ0Ft︸ ︷︷ ︸
D5t

+ F̃′wwt︸ ︷︷ ︸
D6t

+

F̃′ewt︸ ︷︷ ︸
D7t

+ F̃′wet︸ ︷︷ ︸
D8t

]

= V −1
NT

∑8
i=1Dit.

Then, after applying squared norms in both sides, adding on t, and dividing
by T in V −1

NT

∑8
i=1Dit, we get by the Loèv inequality

1

T

T∑
t=1

‖F̃t −H ′Ft‖2 ≤ ‖V −1
NT ‖

28

8∑
i=1

(
1

T

T∑
t=1

‖Dit‖2
)

(18)
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where
D1t = F̃′FΛ

′
0et/NT D2t = F̃′eΛ0Ft/NT

D3t = F̃′eet/NT D4t = F̃′FΛ
′
0wt/NT

D5t = F̃′wΛ0Ft/NT D6t = F̃′wwt/NT
D7t = F̃′ewt/NT D8t = F̃′wet/NT

Then, from Mikkelsen et al. (2018) (Lemma A.1), VNT converges to a def-
inite positive matrix, therefore ‖V −1

NT ‖ = Op(1). Considering Assumptions A-E
and properties of principal components, for each term Dit, i = 1, . . . , 8, we have

T−1
T∑
t=1

‖D1t‖2 = Op(N
−1),

T−1
T∑
t=1

‖D2t‖2 = Op(N
−1T−1),

T−1
T∑
t=1

‖D3t‖2 = Op(N
−1T−1),

T−1
T∑
t=1

‖D4t‖2 = Op(N
−2K1NT ),

T−1
T∑
t=1

‖D5t‖2 = Op(N
−2T−2K2NT ),

T−1
T∑
t=1

‖D6t‖2 = Op(N
−2T−2K3NT ),

T−1
T∑
t=1

‖D7t‖2 = Op(N
−2K1NT ),

T−1
T∑
t=1

‖D8t‖2 = Op(N
−2K1NT ).

Finally, the right-hand side of equation (18) is a sum of variables with orders{
1
N ,

1
NT ,

K1NT
N2 , K2NT

N2T 2 ,
K3NT
N2T 2

}
, respectively, and the proof is now completed.
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C Figures

Figure 1: Comparison between the actual factor loadings in solid red line, the
estimated factor loadings in solid black line, and Bootstrap confidence interval at
95% in dashed black line. By column, from left to right: λ12, and λ28. By row,
from top to bottom: θ = 0, θ = 0.5, and θ = 1. Γe = Toep, N = 20, T = 1024
and Wavelet Haar.
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Figure 2: Comparison between the actual factor loadings in solid red line, the
estimated factor loadings in solid black line, and Bootstrap confidence interval at
95% in dashed black line. By column, from left to right: λ12, and λ28. By row,
from top to bottom: θ = 0, θ = 0.5, and θ = 1. Γe = Toep, N = 20, T = 1024
and Wavelet D8.

24



04:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.2

10
.6

08:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.2

10
.6

11
.0

12:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.4

10
.8

16:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.4

10
.8

20:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.4

10
.8

24:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

10
.3

10
.6

10
.9

Figure 3: Hourly system loads in logs for six different hours showing working and
non-working hours performances, 12 March 2016 to 31 December 2018.
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Figure 4: Hourly system prices in logsfor six different hours showing working and
non-working hours performances, 12 March 2016 to 31 December 2018.
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Figure 5: Common factors of hourly system loads.
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Figure 6: Time-varying loadings of the first factor of hourly system loads. The
horizontal red line represents the level of loadings by the standard method.
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Figure 7: Time-varying loadings of the second factor of hourly system loads. The
horizontal red line represents the level of loadings by the standard method.
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Figure 8: Common factors of hourly system prices.

27



04:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
20

0.
30

08:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
15

0.
25

12:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
18

0.
22

16:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
10

0.
20

20:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
15

0.
25

24:00

2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

0.
10

0.
20

Figure 9: Time-varying loadings of the first factor of hourly system prices. The
horizontal red line represents the level of loadings by the standard method.
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Figure 10: Time-varying loadings of the second factor of hourly system prices.
The horizontal red line represents the level of loadings by the standard method.
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