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Abstract

We propose a structural augmented dynamic factor model for U.S. CO2 emissions. Variable

selection techniques applied to a large set of annual macroeconomic time series indicate that

CO2 emissions are best explained by industrial production indices covering manufacturing and

residential utilities sectors. We employ a dynamic factor structure to explain, forecast, and

nowcast the industrial production indices and thus, by way of the structural equation, emis-

sions. We show that our model has good in-sample properties and out-of-sample performance

in comparison with univariate and multivariate competitor models. Based on data through

September 2019, our model nowcasts a reduction of about 2.6% in U.S. CO2 emissions in 2019

compared to 2018 as the result of a reduction in industrial production in residential utilities.
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1 Introduction

In this paper, we propose a structural augmented dynamic factor model for U.S. CO2 emissions,

where emissions are explained contemporaneously by industrial production (IP) variables, and IP,

in turn, is modeled by macroeconomic factors obtained from a large data set.

The literature on modeling the relation between macroeconomic activity and CO2 emissions

discusses a range of effects: the scale effect, by which increased IP increases emissions, changes in

input and output mixes, changes in production efficiency, and changes in energy intensity (Stern,

2017, p.10). A large body of literature discusses a possible tipping point effect under the label of

an environmental Kuznets curve, or EKC (e.g. Grossman and Krueger, 1991; Arrow et al., 1995;

Schmalensee et al., 1998; Millimet et al., 2003; Brock and Taylor, 2005; Wagner, 2008, 2015).

The pertinent models that are commonly considered in climate science, integrated assessment

models (IAMs), focus in their macroeconomic modules on highly aggregated measures of economic

activity, such as global gross domestic product (GDP) and global population (Blanco et al., 2014;

Bosetti et al., 2006; Calvin et al., 2019; Fujimori et al., 2017; Gambhir et al., 2019; Luderer et al.,

2015; Messner and Strubegger, 1995; Nordhaus and Sztorc, 2013; Stehfest et al., 2014). The

aggregated economic output then implies, by way of an energy intensity of GDP and a greenhouse

gas (GHG) intensity of energy, an evolution of emissions, following the Kaya identity (Blanco

et al., 2014; Raupach et al., 2007). At this point in time, IAMs are predominantly non-statistic,

and parameters are set or calibrated to produce plausible output. In contrast to this, econometric

theory for EKC estimation is highly sophisticated (Wagner, 2015).

Given this state of the literature, manifold causal channels with different magnitudes and signs

of effects, and increasing availability of macroeconomic and emissions data, there is a need for a

statistical model class that can capture the cumulative effects of economic activity on CO2 emissions

and that can be used to solve very practical problems, such as forecasting and nowcasting emissions.

These problems arise, for example, in the annual update of the Global Carbon Budget (Le Quéré

et al., 2018b).

To arrive at such a statistical model class, we start out by identifying a set of contemporaneous

explanatory variables for U.S. CO2 emissions from a large panel of 226 annual macroeconomic

time series, using a range of variable selection techniques. We demonstrate that two variables in

particular, the IP index and the IP: Residential Utilities index, explain CO2 emissions to an extent

that further information contained in the macroeconomic data set has only negligible explanatory
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power for emissions.

The macroeconomic data set does have explanatory power for the IP indices, however. There-

fore, we draw on the extensive literature on macroeconomic forecasting and specify a dynamic

factor model (DFM) in order to exploit the forecast power of the macroeconomic data set for the

IP indices (Elliott et al., 2006; Elliott and Timmermann, 2013, 2016; Hillebrand and Koopman,

2016). The resulting model is labeled a structural augmented dynamic factor model (SADFM):

structural because it contains a contemporaneous relation between CO2 emissions and IP index

time series, augmented because individual IP indices and factors that summarize large amounts

of data are modeled jointly, and dynamic factor model because a dynamic state equation for the

factors harnesses the forecasting power of many macroeconomic predictors for the IP indices.

We demonstrate that this model describes the data well and has good in-sample properties.

We present a pseudo-out-of-sample forecast exercise and show that the model performs better than

a set of univariate and multivariate competitors, such as ARMA, vector autoregressions (VAR),

structural VAR, principal components regressions, and standard DFMs. Finally, we show how

the model can be used in nowcasting problems such as those faced by the Global Carbon Budget

initiative.

The remainder of the paper is organized as follows: Section 2 describes the data used in this

study. Section 3 presents the SADFM. Section 4 discusses the selection of the contemporaneous

explanatory variables for U.S. CO2 emissions. Section 5 discusses the estimation of the model, the

in-sample fit, and an extension with time-varying parameters. Section 6 considers forecasting and

nowcasting. Section 7 concludes.

2 Data

2.1 U.S. CO2 Emissions Data

Let Et denote yearly U.S. CO2 emissions data at year t, i.e. the sum of yearly emissions from

fossil fuels and cement production in the United States (U.S.), obtained from The Global Carbon

Project (Le Quéré et al., 2018b), which in turn is compiled from Boden et al. (2018) and UNFCCC

(2018). The variable Yt = Et/popt, where popt denotes total U.S. population in year t, is defined

as CO2 emissions per capita in the U.S., in tons of carbon emitted per capita. and yt = log Yt is

referred to as log-emissions per capita. Population data, popt, are obtained from the World Bank.1

1https://data.worldbank.org, downloaded on May 7, 2019.
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Finally, ∆yt is taken as a good approximation of the growth rate of CO2 emissions per capita.

The variables Yt and yt are observed at a yearly frequency, from 1960 to 2017. Figure 1 presents

these data series as well as their first differences, ∆Yt and ∆yt, respectively. The results of tests

for stationarity and for unit roots in these time series are given in Table 1; we conclude that there

is evidence for a unit root in both Yt and yt and that their differences appear to be stationary.

Table 2 contains further descriptive statistics of the time series.
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Figure 1: Per capita U.S. CO2 emissions from t = 1960 to t = 2017. a): Levels, Yt. b): Differences,

∆Yt. c): Log-levels, yt. d): Log-differences (growth rates), ∆yt.

2.2 U.S. Macroeconomic Data

We have collected economic data representative of the U.S. macroeconomy, with a particular em-

phasis on variables that can plausibly influence the amount of CO2 emitted to the atmosphere.

We consider N = 226 variables in our study, of which 126 are macroeconomic variables from the

so-called “FRED-MD” database, compiled and maintained by the Federal Reserve Bank of St.
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Table 1: Tests for stationarity and unit roots: p-values for the KPSS test of the null of stationarity

(left) and for the Augmented Dickey-Fuller (ADF) test for the null of a unit root (right). The tests

require a choice of the number of autoregressive lags to include in the linear regressions that are

part of the tests; we consider 0 to 4 lags as indicated in the top of the table. The alternative in the

ADF test is that the series is stationary; results for a trend-stationary alternative are similar and

thus not presented here

KPSS ADF

Number of lags: 0 1 2 3 4 0 1 2 3 4

Yt = per capita emissions

Yt : 0.01 0.01 0.01 0.01 0.02 0.62 0.62 0.60 0.53 0.51

∆Yt : 0.10 0.10 0.10 0.10 0.10 0.00 0.00 0.01 0.00 0.01

yt = log-per capita emissions

yt : 0.01 0.01 0.01 0.01 0.02 0.62 0.60 0.65 0.72 0.76

∆yt : 0.10 0.10 0.10 0.10 0.10 0.00 0.00 0.01 0.01 0.01

Table 2: Descriptive statistics and diagnostics of per capita emissions data. N is the test-statistic

from the Jarque-Bera test (Jarque and Bera, 1987): the null hypothesis that the data comes from a

Gaussian distribution can be rejected if N is larger than the 95% critical value of 5.99. DW is the

Durbin-Watson test statistic (Durbin and Watson, 1971): If DW < 2 there is evidence of positive

serial correlation in the data; if DW > 2 there is evidence of negative serial correlation in the data;

data without serial correlation will have DW = 2. Q is the Ljung-Box Q test statistic (Ljung and

Box, 1978) for presence of autocorrelation. The 95% critical value for the Q-test is 31.41; hence if

the test statistic is above 31.41 then the null of no autocorrelation can be rejected at a 5% level.

Descriptive statistics Diagnostics

NumObs Mean Std. Skew Kurt N DW Q

Yt = per capita emissions

Yt : 58 5.30 0.48 −0.56 2.21 4.52 0.11 188

∆Yt : 57 0.00 0.16 −0.57 2.93 3.10 1.38 25

yt = log-per capita emissions

yt : 58 1.67 0.09 −0.68 2.36 5.49 0.10 181

∆yt : 57 0.00 0.03 −0.60 2.94 3.43 1.36 27
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Louis.2 The remaining 100 time series variables are related to different sectors in U.S. production:

18 variables represent U.S. agricultural production; 76 variables represent U.S. foreign trade3; 2

time series represent U.S. cement production; and 4 represent U.S. transport4. We have followed

the procedure described in McCracken and Ng (2016) to transform the non-stationary time se-

ries to a set of stationary time series and to studentize all resulting time series to mean zero and

unit variance. Further details of the data set, including how we collected and transformed each

individual data series, are given in Appendix A.

The sample period of the yearly economic data set is from 1960 until 2018. Given that, at the

time of writing, the official emissions variable Et is only available until 20175, we only consider

economic data up to 2017. Many of the time series start in 1961 after first differencing, while some

variables start even later. We are therefore faced with an unbalanced panel of economic variables.

Hence the economic data matrix X, with T = 57 rows and N = 226 columns, contains a number

of missing entries. We impute these missing values using a factor model approach, following Stock

and Watson (2002) and McCracken and Ng (2016). As a result, in our empirical study we work

with a T ×N balanced panel of economic data X. The details of the imputation method are given

in Appendix B.

3 Statistical Model for Growth in CO2 Emissions

The variable of interest yt in our study is the log-difference (i.e., growth rate) of U.S. CO2 per-capita

emissions. Our analysis is based on the statistical dynamic model

yt = α+
k∑
j=1

βjx
(ij)
t + β′fft + γ′zt + εyt , (3.1)

where x
(ij)
t , for j = 1, . . . , k, are pre-selected individual economic variables, ij ∈ {1, 2, . . . , N}

indicates the column number in the data matrix X, βj is the regression coefficient for the ijth

variable, ft is an r × 1 vector of economic factors or principal components, βf is the r × 1 cor-

responding loading coefficient vector, zt is an l × 1 vector of exogenous variables not contained

2https://research.stlouisfed.org/econ/mccracken/fred-databases/, downloaded on May 7, 2019, see Mc-

Cracken and Ng (2016).
3Collected from the World Bank website, https://data.worldbank.org, downloaded on September 19, 2019.
4Collected from the website of the U.S. Federal Reserve Bank, https://fred.stlouisfed.org, downloaded on

October 10, 2019.
5UNFCCC inventories are available at https://di.unfccc.int/time_series, accessed on November 18, 2019.
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in X, such as dummy variables, γ is the corresponding l × 1 vector of regression coefficients, and

εyt is the disturbance term. For any disturbance term in our modelling framework, we assume

it is an independent and identically distributed (IID) random sequence with mean zero and a

positive variance. All 2 + k + r + l unknown coefficients are collected in the parameter vector

θy = (α, β1, . . . , βk, β
′
f , γ
′, σy)

′ with σ2y = Var(εyt ) for all t. The statistical model (3.1) can be

regarded as a standard regression model with the addition of latent dynamic factors in ft. A sim-

ilar modeling framework is considered in many macroeconomic studies, for example, in Stock and

Watson (2002), Giannone et al. (2008), and Stock and Watson (2010).

3.1 Structural augmented dynamic factor model

The main motivation for model (3.1) is that we have a large number of macroeconomic time

series available for our analysis, in our case N = 226. The formulation of a statistical model

with all individual time series present in X is not feasible, despite the relatively small number of

observations, in our case T = 57. Our model faces this challenge in two ways. First, we make a

pre-selection of relevant variables for yt and only include the k << N most important variables

x
(i1)
t , . . . , x

(ik)
t as regressors in (3.1). The selection of these k “most important” variables can be

done in different ways, depending on selection strategies and criteria; see the discussion in Section

4. Second, we include r latent dynamic common factors ft, with r << N , that are connected with

all economic variables in X. For this purpose, we consider the N ×1 vector of economic time series

xt, being the t-th row of X, and specify the dynamic factor model as

xt = Λft + εxt , (3.2)

where Λ is an N × r matrix of factor loadings, and εxt is an idiosyncratic disturbance term with

Var(εxt ) = Σx, an N ×N matrix. We assume that the mild conditions of Stock and Watson (2002)

apply to our setting. The dynamic properties of the common factors are implied by a vector

autoregressive process of order one, or VAR(1), for ft, as given by

ft = Φft−1 + ηt, (3.3)

where Φ is an r × r autoregressive coefficient matrix, and ηt is the disturbance vector with r × r

variance matrix Var(ηt) = Ση. We assume that the roots of the characteristic polynomial |Ir−Φz|

lie outside the unit circle, where Ir denotes the r × r identity matrix. This condition ensures that
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the VAR(1) model for ft is stable.6 We further restrict the variance matrix Ση such that the factors

are orthogonal and normalized to have unit variance: Var(ft) = Ir.

In case β1 = β2 = . . . = βk = 0 in equation (3.1), the model for yt reduces to the “standard”

dynamic factor model (DFM) as studied in Doz et al. (2012), Jungbacker and Koopman (2015),

Stock et al. (2016), among others. Stock and Watson (2002) have suggested to improve forecast

performance of the DFM by including lags of selected variables, x
(ij)
t−1, in the forecast equation

for yt. In this spirit, we include contemporaneous individual variables, the selection x
(ij)
t , for

j = 1, . . . , k, in the equation for yt, and we consider βj 6= 0, for j = 1, . . . , k, in (3.1). This

alternative specification provides a more structural interpretation of the model and hence we refer

to the resulting model as a structural augmented dynamic factor model (SADFM).7

3.2 State space model representation

The SADFM model (3.1)–(3.3) can be written jointly in matrix form by

B

yt
xt

 =

α
0

 +

β′f
Λ

 ft +

γ′
0

 zt +

εyt
εxt

 , ft+1 = Φft + ηt+1,

where B is the (N + 1)× (N + 1) selection matrix

B =

1 −βs ′

0 IN

 ,

where βs is the N × 1 vector of zeros except for the entries i1, . . . , ik which are equal to βj ,

respectively, for j = 1, . . . , k. Given that the inverse of B is

B−1 =

1 βs ′

0 IN

 ,

it follows that the model (3.1)–(3.3) is equivalent toyt
xt

 =

α
0

 +

β′f + βs ′Λ

Λ

 ft +

γ′
0

 zt + ut, ft+1 = Φft + ηt+1, (3.4)

6If a stable VAR process is initialized according to its stationary distribution, then the resulting process is

stationary and ergodic.
7This model is related to the structural dynamic factor model (SDFM) as studied by Stock et al. (2016) and

elsewhere. The lagged dependence of x
(ij)
t , for j = 1, . . . , k, in the SADFM is implicitly specified through the

dynamics of the factors in ft.
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with

ut = B−1

εyt
εxt

 , Var(ut) =

σ2y + βs ′Σxβ
s βs ′Σx

Σxβ
s Σx

 .

The (N + 1)×1 vector (yt, x
′
t)
′ is the observed data vector for the complete model, the r×1 vector

ft is a latent dynamic factor, the l×1 vector zt is exogenous (fixed covariates), and the (N + 1)×1

vector ut is the disturbance. The system of equations (3.4) represents a linear state space model,

with the initial moment conditions E(f1) = 0 and Var(f1) = Ir; see Durbin and Koopman (2012)

for a complete treatment of this class of models. The model is subject to a number of choices,

including the composition of the economic data matrix X, the selection of indices i1, . . . , ik, and

the number of factors r. In the empirical part of our study we discuss these choices further and

show how they have been made for our data set.

3.3 Parameter estimation

The unknown parameters in (3.4) are the collection of θy, Λ, Σx, and Φ.8 All parameters can

be consistently estimated (as T,N → ∞) in a two-step iterative procedure as proposed in Doz

et al. (2011, 2012). It requires the computation of principal components from the data matrix X

as in Stock and Watson (2002), where the principal components (or diffusion indices) are used as

regressors for a variable of interest, for the purpose of forecasting. In our analysis we consider the

r principal components from X that are associated with the r largest eigenvalues of the sample

variance matrix of X. The principal components are collected in the r × 1 vector Ft and are

regarded as proxies of ft, for t = 1, . . . , T .

First, we carry out two regressions: one to estimate matrix Φ by regressing the principal

components Ft+1 on Ft (equation by equation), the other to estimate matrix Λ and diagonal

matrix Σx by regressing xt on Ft. We obtain the estimate Ση using its definition Ση = Ir−ΦΦ′ and

replacing Φ by its estimate. Next, we take these estimates to replace their unknown counterparts

in (3.4) while the remaining parameters in vector θy are estimated by the method of maximum

likelihood, for which the Kalman filter is used to evaluate the loglikelihood function based on the

prediction error decomposition; see Jungbacker and Koopman (2015) for further details in the

context of the DFM. After this first stage of our estimation process, we consider (3.4), with the

parameter estimates, to signal extract the dynamic factors ft, for t = 1, . . . , T , using the Kalman

8For computational convenience, we restrict Σx as a diagonal matrix. The variance matrix Ση = Ir − ΦΦ′ is

restricted and not explicitly estimated.
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filter and the associated smoother (KFS) method; see Durbin and Koopman (2012, Chapter 4).

We denote these smoothed estimates by f̃t, for t = 1, . . . , T .

The smoothed factor estimates f̃t will be different from the principal components Ft, for t =

1, . . . , T . Based on these new factor estimates, the procedure described above can be repeated by

replacing Ft by f̃t. The two regressions can be repeated and, based on the resulting new estimates

for Φ, Λ and Σx, the maximum likelihood estimation for θy can also be repeated. In turn, based on

these new parameter estimates, new smoothed estimates can be obtained for ft, for t = 1, . . . , T ,

using KFS. This iterative procedure is close to what is described in Doz et al. (2012, p. 1018). Let

Lm be the loglikelihood function value for the parameter estimates in iteratiom m. We define the

statistic

cm =
Lm − Lm−1

(Lm + Lm−1)/2
,

and compute it at the end of each iteration. This iterative procedure can stop at iteration M ,

where M is the first integer such that cM < 10−4. In our empirical study it turns out that the

number of iterations M is as low as 4 or 5.

3.4 Collapsed structural augmented dynamic factor model

From an econometric viewpoint, we can base our empirical analysis on the model formulation (3.4).

However, in case the model needs to cope with a high-dimensional N × 1 data vector xt, or with

many consecutive estimations in a forecast exercise, various computational steps in the estimation

procedure become somewhat cumbersome. In our empirical study below, we consider the analysis

on N = 226 economic variables: it requires many regression computations in each iteration. To

alleviate the computational burden somewhat, we consider a dimension reduction by employing

the collapsed dynamic factor model, as proposed by Bräuning and Koopman (2014).

In this collapsed approach, we consider the principal components in Ft as data proxies of the

corresponding latent dynamic factors in ft, for t = 1, . . . , T . In particular, we assume that

Ft = ft + εft ,

where εft is a disturbance vector with Var(εft ) = Σf . We further treat the principal component

vector Ft as a data vector that can replace the original large data vector xt, since the principal

components provide a sufficiently accurate description of the data matrix X. This suggestion

leads to a much lower-dimensional model with much smaller number of parameters and a smaller

computational burden for estimation. The estimation process is also easier (as a smaller number
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of parameters are involved) and may potentially provide more accurate forecasts, given that the

model is more parsimonious; see Bräuning and Koopman (2014) and Hindrayanto et al. (2016).

The collapsed SADFM is given by
yt

x∗t

Ft

 =


α

0

0

 +


β′f + β∗ ′Λ∗

Λ∗

Ir

 ft +


γ′

0

0

 zt + u∗t , ft+1 = Φft + ηt+1, (3.5)

where x∗t is the k × 1 sub-vector xt (or is equal to xst but with all zeros removed), β∗ is the

corresponding regression coefficient vector for x∗t , Λ∗ is the loading matrix only with the rows of Λ

corresponding to i1, . . . , ik, and u∗t is the same as the disturbance vector ut with εxt replaced by εft ,

for t = 1, . . . , T . While the SADFM has an observation vector of dimension N + 1, the collapsed

SADFM has a reduced observation vector of dimension k+r+1 where both k << N and r << N .

We employ the same iterative procedure for the estimation of the parameters in the collapsed

SADFM, as described above for the non-collapsed model. First, we carry out two regressions: one

to estimate matrix Φ by regressing the principal components Ft+1 on Ft (equation by equation);

the other to estimate matrix Λ∗ by regressing x∗t on Ft. The remaining parameters in vector θy

are estimated by the method of maximum likelihood. After this first stage, we signal extract the

dynamic factors ft, for t = 1, . . . , T , using KFS, and we denote these by f̃t, for t = 1, . . . , T . The

iterative process can start by replacing Ft with f̃t, for t = 1, . . . , T . The iterations can be stopped

on the basis of the same convergence criterion cm as suggested above.

4 Selection of macroeconomic variables for CO2 emissions

To select economic variables to be included in the sub-vector x∗t , we carry out a preliminary

statistical analysis of per-capita CO2 emission growth yt and the economic data matrix consisting

of the N × 1 data vectors xt, with N = 226. The description of the data matrix is provided in

Section 2 and in the supplementary material.

First, we run N static separate regressions for yt on each variable in the data vector xt in

simple univariate regressions with intercept. The resulting N coefficients of determination (R2)

are displayed in Figure 2. It shows that many individual economic variables in xt can provide a

considerable goodness-of-fit statistic for the growth in CO2 emissions. The variables producing a

particularly high R2 are macroeconomic variables related to the real economy, such as production
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indices (i = 1, 2, . . . , 20) and employment (i = 21, . . . , 49). Some of the trade-related variables (i =

145, . . . , 220) also enjoy a high R2, as do the cement-production-related variables (i = 221, 222).

FRED Agriculture Trade Cement/Transport

Economic variable

0

0.1

0.2

0.3

0.4

0.5

0.6

R
2

Figure 2: Coefficient of determination (R2) obtained from single regressions for CO2 growth, with

intercept and a single explanatory economic variable (each at a time). The economics variables are

grouped (and coloured) into those coming from the FRED-MD database (blue), agricultural data

series (red), trade-related data series (green), cement-related data series (cyan), and transport-

related data series (magenta).

The results so far only show how a single economic variable explains growth in CO2 emissions.

We are interested in selecting multiple economic variables that provide the best possible fit for

CO2 emissions growth. For this purpose, we run multiple regressions (with intercept) based on a

subset of economic variables indexed by a subset of indices I ⊆ {1, 2, . . . , N}, with |I| being the

cardinality of the set I. For example, in case of I = {1, 5, 10}, the multiple regression contains yt

(CO2 growth), the intercept, and the vector of regressors (x
(1)
t , x

(5)
t , x

(10)
t )′. Depending on the size

of the permissible set, there is a vast range of possible sets I with all possible combinations. There

are various strategies for selection. Well-known methods are the LASSO of Tibshirani (1996) and

the Elastic Net (EN) of Zou and Hastie (2005). For our data set with many series that are highly

correlated, we find that both LASSO and EN include implausibly many variables in their preferred

sets I.9 Another regression selection method is advocated by Doornik and Hendry (2015) and is

referred to as “AutoMetrics”; it is an automated “general-to-specific” (GETS) method that chooses

9Using a 25-fold cross validation to minimize the mean squared error of the LASSO/Elastic Net regression, they

both retain the variables I = {3, 6, 11, 13, 15, 17, 23, 38, 46, 55, 102, 159, 185, 213, 222}.
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the best set I on the basis of multiple criteria including goodness-of-fit, model diagnostics, and

exogeneity tests. We have adopted the AutoMetrics implementation in the PcGive module of the

OxMetrics software; see Doornik and Hendry (2018). The documentation provides the details of

the automated selection method. AutoMetrics has the option to specify a prior belief on the size

of I. We report results based on sizes that are indicated as “Tiny” and “Small”. The AutoMetrics

results are presented in the top panel of Table 3. The “Tiny” setting provides I = {6, 17, 48, 51, 56},

while the “Small” setting yields I = {6, 17, 48, 51, 55, 89}. Furthermore, the procedure detects two

outliers in t = 1970 and t = 1990.10

Although the selected set I obtained from the AutoMetrics procedure is smaller than those

from the LASSO and EN procedures, the selected set I is still large. Therefore, we consider an

alternative route. Given a pre-set maximum size s ≥ 1 for I, and subject to |I| ≤ s, we determine

which variables need to be selected to provide the best goodness-of-fit. Table 3 presents these

results for a range of s values and for a variety of selection procedures. At this stage, all regressions

include the intercept and two outlier dummy variables, for the time indices t = 1970, 1990. When

s is small, it is computationally feasible to search over all possible combinations of variables in

xt to be included in I, subject to |I| ≤ s. For each combination, we record the realized values

for the R2, the maximized loglikelihood value (LogL), the Akaike Information Criterion (AIC), its

corrected version (AICc), and the Bayes Information Criterion (BIC). We rank the sets according

to each criterion separately. Furthermore, we restrict the LASSO and EN procedures by choosing

the sets with the smallest penalizing parameter such that the number of variables retained in I are

|I| ≤ s. The results from these different selection procedures (and for different s) are presented in

the bottom panel of Table 3.11

In case of the complete search, for a given s, and with the different rankings based on R2, LogL,

AIC, AICc, and BIC, the selections all agree on the set of variables to include in I. The LASSO

and EN methods choose similar variable sets, although their selections differ from those of the

complete search strategy. All methods agree that the variable corresponding to i = 6 is the most

important variable to include in the model. This variable represents the general level of industrial

production (IP) in the U.S. economy. A regression with this single variable and an intercept,

10An outlier around t = 1970 has been found in similar data; see, for example, Auffhammer and Steinhauser (2012)

and Schmalensee et al. (1998). The interpretation of the outlier in t = 1990 is not clear.
11We have also carried out the selection procedures with the inclusion of ten principal components, Ft, from X that

correspond to the ten largest eigenvalues of the sample variance matrix of X. In this case, the principal components

have never been selected as part of the best model.
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Table 3: Regression output from the models chosen by the various selection criteria. The AutoMet-

rics procedure detects two outliers in t = 1970 and in t = 1990. These have been included in the

other models as well.

Tiny Small

AutoMetrics {6, 17, 48, 51, 56} {6, 17, 48, 51, 55, 89}

s = 1 s ≤ 2 s ≤ 3 s ≤ 4

R2 {6} {4, 17} {4, 17, 185} {6, 17, 51, 53}

logL {6} {4, 17} {4, 17, 185} {6, 17, 51, 53}

AIC {6} {4, 17} {4, 17, 185} {6, 17, 51, 53}

AICc {6} {4, 17} {4, 17, 185} {6, 17, 51, 53}

BIC {6} {4, 17} {4, 17, 185} {6, 17, 51, 53}

LASSO {6} {6, 9} {6, 9} {6, 9, 15, 17}

Elastic Net {6} {6, 9} {6, 9} {6, 9, 15, 17}

produces an R2 of 0.54. Many other IP related indices produce the same degree of goodness-of-fit.

The variable corresponding to i = 17 is present in most models. This variable is the industrial

production index of residential utilities (IP: Residential Utilities). The variable set I = {6, 17}

produces an R2 of 0.71. It is plausible that these two variables explain much of the variation in

the growth of CO2 emissions: variable i = 6 represents the production part of the economy while

variable i = 17 represents the residential part of the economy. When more explanatory power is

desired, a trade-related variable (i = 185) or a housing-related variable (i = 51 or i = 53) can be

included in the set I.

The results in Table 3 show that for s ≤ 2 and s ≤ 3, the variable i = 4 (real manufacturing

and trade industries sales) is preferred over i = 6 (industrial production). However, the correlation

between the two variables x
(4)
t and x

(6)
t is 95%. There is little gain from including further variables.

Figure 3 plots the R2 from the regression from the sets I selected by the various methods. The

IP variable x
(6)
t clearly contributes most of the explanatory power with R2 = 0.54. When adding

the IP: Residential Utilities variable x
(17)
t , we obtain R2 = 0.73. The increase in R2 levels off when

further variables are added: we obtain R2 = 0.75, for s ≤ 3, and R2 = 0.77, for s ≤ 4. We thus

prefer a small set I, set k = 2, and select the variables x
(i1)
t and x

(i2)
t with i1 = 6 and i2 = 17 in

the following.
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Figure 3: Coefficient of determination (R2) for the regression for different sets I. The AutoMetrics

sets IAM1 = {6, 17, 48, 51, 56} and IAM2 = {6, 17, 48, 51, 55, 58} are the sets obtained from the

options “Tiny” and “Small”, respectively.

5 Estimation Results and In-Sample Analysis

In our empirical analysis of U.S. per-capita CO2 emissions growth, we consider the SADFM where

we need to specify k, l and r, and select variables for x∗t and zt. As motivated in Section 4, we

take k = 2, with i1 = 6 and i2 = 17, that is x∗t = (x
(6)
t , x

(17)
t )′, and l = 2, with zt representing two

dummy variables to extract the outliers in per-capita CO2 emissions growth for 1970 and 1990.

The dimension of ft is r, and it is determined by the p2 criterion of Bai and Ng (2002). In almost

all our model settings, we find strong empirical support for r = 4. We therefore present the results

for the SADFM with these settings.

Furthermore, we consider three variants of the SADFM specification:

(i) DFM: with restriction β1 = β2 = 0, leading to the standard DFM model;

(ii) SADFM-U: without any restriction;

(iii) SADFM-R: with restriction βf = 0, leading to a model with factors only for xt.

These specifications have their own specific and different features. The DFM specification leads

to a standard dynamic factor analysis and can be used for forecasting and nowcasting in a reg-

ular manner. The SADFM-U provides a powerful intersection of including both the specifically

important economic variables and the overall summary of dynamic features in a large data set
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of economic variables for the prediction of CO2 emissions growth. The SADFM-R reduces the

equation for yt into a basic regression model and with only the equation for xt being made subject

to the factors. The simplicity of a regression model for yt is a nice feature while the practicalities

of forecasting xt’s, when a forecast of yt is computed, are handled by the dynamic factor structure

for xt. These different specifications with their different impacts on the empirical analyses also

illustrate the flexibility of our SADFM framework.

5.1 Parameter estimation results

The parameter estimation results are presented in Panel A of Table 4. For all three model specifi-

cations, the estimate of the intercept α is estimated to be statistically indistinguishable from zero,

while the two regression coefficients in γ, associated with the two dummy variables for 1970 and

1990 are statistically significant. In the case of the DFM specification, yt loads significantly on

the first two economic factors, while the other two factors appear to have less significant support

for yt. In case of the unrestricted model SADFM-U, the regression coefficient for x
(17)
t is highly

significant, while the loadings on the first three factors are also statistically significant. The re-

gression coefficient for x
(6)
t is not significant, but we stress that the first principal component in

Ft closely resembles the variable x
(6)
t ; the sample correlation between the two variables is as high

as −87%. Given that the first principal component is a proxy for the first factor in ft, we believe

that the insignificance of the coefficient for x
(6)
t can be explained by this resemblance. In this light,

and given the findings in Section 4, it is not surprising that in the case of the restricted model

SADFM-R, we obtain highly significant regression parameter estimates for both x
(6)
t and x

(17)
t .

5.2 In-sample analysis

In Panel B of Table 4 we report the various goodness-of-fit measures for the three SADFM speci-

fications; these measures are introduced in Section 4. In the context of SADFM, the R2 measures

relate only to the fit of yt. The likelihood-based measures are all calculated using the full observa-

tion vector with yt and xt in equation (3.4). Overall, the goodness-of-fit for the SADFM is high. A

basic regression analysis based on x
(6)
t and x

(17)
t produces the R2 statistic of 0.73, and with some

other regression specifications we may raise it to 0.77; see the discussion in Section 4. The SADFM

produces R2 values of 0.84 and 0.86; these are clearly better fits. The fit measures of LogL and AIC

point towards SADFM-U as providing the best fit while AICc and BIC point towards SADFM-R

for the best fit. However, the differences are small. We tend towards favoring the SADFM-R
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specification, as it is more parsimonious and more convenient for out-of-sample analysis, including

forecasting and nowcasting; see the discussions in Section 6.

Panel C of Table 4 reports diagnostic statistics for the standardised one-step ahead prediction

residuals, which are obtained from the Kalman filter. If the model is correctly specified, these

prediction residuals have properties that can be verified. We focus particularly on the properties

that the prediction residuals are serially uncorrelated and normally distributed. We report the

Durbin-Watson (DW) and Ljung-Box (LB) tests for serial correlation and the skewness (skew),

kurtosis (kurt) and the two combined (N) tests for normality. The reported results for the SADFM

specifications can be viewed as follows. The LB test cannot reject the null of no serial correlation

in ε̂yt at a 5% significance level. However, the DW test statistics indicate that there is still some

positive autocorrelation left in the prediction residuals. The reported normality diagnostics are

reasonable. Overall we can conclude that the SADFM provides an adequate model for the data at

hand.

The fits of yt for both SADFM-U and SADFM-R specifications are presented in Figure 4.

The upper graph is showing the fits with the actual CO2 growth observations and the lower

graph is presenting the residuals (yt minus the fit). The plots confirm the successful performances

of SADFM in our empirical study. It also shows that the overall performance of SADFM-R is

somewhat superior. The residual plots reveal that there may still be some subtle (short-term)

serial correlation present.

5.3 Temporal stability of the estimation results

Given the in-sample analysis so far, we have a slight preference for the SADFM-R specification.

We can scrutinize this specification further by verifying the stability of the presented results. For

example, we can split the time series sample in two parts: the first part covers the period from

1961 to 1988, and the second period is from 1990 to 2017, resulting in two non-overlapping sample

periods. To ensure that both periods have the same number of observations, that is T1 = T2 = 28,

the observation for 1989 is discarded. We then re-estimate the parameters for SADFM-R and

particularly focus on the parameters in the equation for yt, that is (α, β1, β2)
′. We adopt the same

maximum likelihood estimation strategy as for the full sample. Figure 5 reports the results for

the parameters α, β1 and β2. While it may be plausible that the effect of the various economic

processes on CO2 emissions growth will change over different time periods, we do find that only

the intercept appears to be somewhat different for the two sub-periods. The estimates of β1 and
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Table 4: SADFM estimation output

Panel A: Estimates

α β1 β2 βf1 βf2 βf3 βf4 δ1970 δ1990

DFM −0.0020 −0.0211 −0.0114 −0.0026 −0.0030 0.0910 0.0391

(−0.79) (−7.27) (−4.89) (−1.39) (−1.39) (5.58) (2.40)

SADFM-U −0.0020 0.0030 0.0136 −0.0145 −0.0086 −0.0038 0.0011 0.0775 0.0505

(−1.33) (0.38) (7.03) (−2.07) (−2.29) (−2.05) (0.60) (7.19) (4.69)

SADFM-R −0.0019 0.0201 0.0115 0.0770 0.0448

(−1.14) (9.11) (6.65) (6.52) (3.79)

Panel B: Diagnostics (fit)

R2 R2
a logL AIC AICc BIC

DFM 0.72 0.68 −12124.57 24261.15 24262.83 24273.41

SADFM-U 0.88 0.86 −12102.06 24220.12 24223.12 24236.47

SADFM-R 0.85 0.84 −12106.58 24221.16 24221.93 24229.34

Panel C: Diagnostics (residuals)

std skew kurt N DW Q

DFM 0.02 0.16 2.60 0.64 1.56 18.95

SADFM-U 0.01 −0.09 2.32 1.16 1.75 18.34

SADFM-R 0.01 −0.34 2.79 1.17 1.54 19.94

Output from the SADFM estimation procedure. t-stats in parentheses. Q is the Ljung-Box (LB) test statistic; the

5% critical value is 31.4104.
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Figure 4: a): In-sample fit of SADFMs. b): Residuals from SADFMs.

β2 for the two periods are very similar and statistically not different from each other. Hence our

results can be viewed as rather stable in this respect. The estimates for the intercept α appear

to be larger in the second period when compared to the first period, providing tentative evidence

that the base level of emission growth has increased slightly over time.

5.4 Time-varying parameters for observation equation

Finally, as part of our in-sample analysis, we investigate the possibility of time-varying parameters

in the observation equation for our SADFM-R specification, which is

yt = α+ β1x
(6)
t + β2x

(17)
t + γ′zt + εyt ,

for t = 1, . . . , T . Due to technological changes in the fuel mix, the β1 and β2 coefficients may

change over time. Also, technology changes that are not affecting economic variables but are still

affecting CO2 emissions may lead to changes in the intercept α. To investigate these possible

effects in our SADFM-R model, we replace α, β1 and β2 by the corresponding elements in the

time-varying parameter vector α∗t = (αt , β1t , β2t)
′. The time-varying parameter (TVP) version of
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Figure 5: Estimation of SADFM-R when the data are split in half (T1 = T2 = 28 observations in

each half). The first coefficient is the intercept, the second coefficient relates to x
(6)
t , and the third

coefficient relates to x
(17)
t . The estimates using the full data set, along with 95% confidence bands,

are given as blue crosses; the estimates from using only the first half of the data are given in red

circles; the estimates from using only the second half of the data are given in green squares.

the observation equation of the SADFM-R model is then given by the system of equations

yt = (1, x
(6)
t , x

(17)
t )α∗t + γ′zt + εyt , α∗t+1 = α∗t + κt, (5.1)

where κt is a 3× 1 disturbance vector with mean zero and diagonal variance matrix Σκ. In effect,

we let the time-varying parameters follow independent random walk processes. The resulting TVP

model can be viewed as a specific linear state space model with initial moment conditions E(α1) = 0

and Var(α1) = d · I3 where d is typically a large positive value, say d = 107; see the discussion in

Durbin and Koopman (2012, Chapters 4 and 5).

The estimation results for the time-varying parameters in the TVP model are presented in

Figure 6. The overall fit of the TVP model appears to be highly satisfactory. The right-hand plot

of Figure 6 presents the estimated time-varying paths for the three parameters in α∗t . We find

clear evidence of time-varying behavior in some of the elements of α∗t . The intercept αt is upward

trending. This confirms the earlier finding that the estimated intercept in the second half of the

sample is larger than the one in the first half. The estimated time-varying coefficient for the IP

index x
(6)
t reduces to a constant, fixed estimate in the full sample. The estimated time-varying

coefficient for the residential utility production index x
(17)
t is varying somewhat over time. Its time-
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varying path appears to oscillate. The in-sample evidence for time-varying parameter behavior in

the SADFM-R specification is therefore somewhat weak. Overall we may conclude that there is

some evidence of a time-varying αt but not much evidence for time-varying β1t and β2t coefficients.

Apart from the increasing general level of emissions captured by αt, technology developments do

not seem to have changed the economy-emissions relationship noticeably in our in-sample analysis.
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Figure 6: TVP model. a): Fit of model. b): Smoothed estimates of αt and βt.

6 Out-of-sample Analysis

Dynamic factor models have been successfully applied to many macroeconomic forecasting prob-

lems (e.g. Stock and Watson, 2002; Bräuning and Koopman, 2014) and nowcasting problems (e.g.

Giannone et al., 2008; Hindrayanto et al., 2016). Given the good in-sample fit of the SADFMs

when applied to CO2 emissions data, this section investigates their out-of-sample performance.

Since the sample period is short, containing only T = 57 observations, an out-of-sample experi-

ment must necessarily be limited. Let h ≥ 0 denote the forecast horizon in years; h = 0 corresponds

to “nowcasting”, while h > 0 corresponds to forecasting. We consider the in-sample period from

t = 1960 to t = 2001 − h and use an expanding window for estimation. That is, we estimate the

models using the initial period from 1960 to 2001 − h, containing 42 − h observations, and then

nowcast (h = 0) or forecast (h > 0) per capita emissions growth in year 2001. We then update the

in-sample period and estimate the models using data from 1960 to 2002 − h to nowcast/forecast

per capita emissions growth in 2002, and so forth. For h = 0 we do not use the emissions data in
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the year we are nowcasting, but only the economic data. This setup ensures that the out-of-sample

period covers 17 h-step ahead forecasts of per capita CO2 emissions growth from 2001 to 2017,

regardless of the value of h.

We consider two different loss metrics: root mean squared error (RMSE) and mean absolute

error (MAE):

RMSEh =

√√√√ 1

17

2017∑
t=2001

(ŷt|t−h − yt)2,

MAEh =
1

17

2017∑
t=2001

|ŷt|t−h − yt|,

where ŷt|t−h denotes the forecast of yt using information at time t − h for any given model. The

results for this exercise with h = 0, 1, 2 for the SADFM-R model are shown in Figure 7. The top

row in the figure displays the raw losses RMSEh and MAEh; the bottom row of the plot displays

the corresponding losses as fractions of the corresponding losses from the constant growth model.

The constant growth model simply predicts h-step ahead emissions to be the historical mean of yt

up to year t − h, that is ŷt|t−h = 1
t−h−1961+1

∑t−h
t=1961 yt. Numbers smaller than one indicate that

the SADFM-R outperforms the constant growth model and vice versa for numbers greater than

one. Figure 7 shows that for h = 0 and h = 1, the SADFM-R model outperforms the constant

growth model. For h = 2, the advantage disappears.

The results in Figure 7 indicate that the SADFM-R model is well-suited to nowcasting (h = 0)

and forecasting one year ahead (h = 1). In relative terms, the SADFM-R improves on the constant

growth model. It has 64% of the constant model’s MAE and 67% of the RMSE when nowcasting

and 20% of both measures when forecasting one year ahead. The following two sections take a closer

look at the forecasting and nowcasting performance of our proposed models: Section 6.1 conducts

an extended forecast exercise with more benchmark models than just the constant growth model;

Section 6.2 examines the nowcasts from the various models considered in this paper and also takes

a closer look at more recent nowcasts and compares with those from the Global Carbon Project.

6.1 Forecasting

Accurate forecasting of the future growth in country-level CO2 emissions is important, since such

forecasts can be used to gauge whether a country is on track to keep their emissions targets,

for instance. This section conducts a pseudo-out-of-sample study to assess how the models for
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Figure 7: Out-of-sample forecasting h years ahead for h = 0, 1, 2. h = 0 is “nowcasting”. a): Root

mean squared error (RMSE) of SADFM-R. b): Mean absolute error (MAE) of SADFM-R. c):

RMSE of SADFM-R as fraction of the RMSE of the constant growth model. d): MAE of SADFM-

R as fraction of the RMSE of the constant growth model. The red line shows the performance of

the constant growth model.
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forecasting CO2 emissions growth proposed above compare with standard univariate and multi-

variate alternatives. The main benchmark is the constant growth model (“Cst”), which predicts

the historical mean of yt up until the time of the forecast. Other alternative models are:

• RW: A random walk model. This model predicts yt+h using the current level of CO2 growth,

i.e. yt.

• AR1: An autoregressive model of order one. This model assumes yt = a+ φyt−1 + εt, where

a, φ ∈ R and εt is zero-mean white noise.

• MA1: A moving-average model of order one. This model assumes yt = a+ εt + θεt−1, where

a, θ ∈ R and εt is zero-mean white noise.

• ARMA(1,1): An autoregressive-moving-average model of order (1, 1). This model assumes

yt = a+ φyt−1 + εt + θεt−1, where a, φ, θ ∈ R and εt is zero-mean white noise.

We also consider two VAR models, i.e.,

Yt = a+

p∑
j=1

ΨjYt−j + εt, (6.1)

where Yt = (yt, x
(6)
t , x

(17)
t )′, and x

(6)
t , x

(17)
t are the IP index and the IP: Residential Utilities index,

respectively.

• VAR: The 3-dimensional VAR of (6.1).

• SVAR: The structural counterpart of (6.1). That is, here we consider the model B1Yt =

ΨYt−1 + εt, with B1 similar, mutatis mutandis, to the B matrix considered in Section 3.

Inspired by the “direct” forecasting approach of Stock and Watson (2002), we also consider the

predictive regression

yt = a+ b′Ft−h + εt, (6.2)

where Ft are principal components estimates of the economic factors. The numbers of factors, r, in

Ft is determined by the p2 criterion of Bai and Ng (2002). The parameters (a, b′)′ can be estimated

by OLS and the forecast of yt+h is ŷt|t−h = â+ b̂′Ft−h.

• PCA (all): This approach uses all r factors in the predictive regression (6.2).
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• PCA (|t| > 1.96): Same as “PCA (all)” but instead of using all r factors in (6.2), only the

factors that have significant t-statistics at a 5% level are included.

The results from the forecasting experiment for h = 1 are shown in Table 5. We again consider

the two loss functions root mean squared error (RMSE) and mean absolute error (MAE). The

loss numbers MAE and RMSE are fractions of the loss from the benchmark (constant growth)

model. Thus, numbers less than one indicate that a particular model outperforms the benchmark.

The factor-based models appear to be superior, improving on the benchmark by 11–21%. There

is not much difference between the “direct” approaches and the “indirect” approaches. The large

differences between the (S)VAR and the (SA)DFMs indicate that including many macroeconomic

variables, summarized by the economic factors, helps forecasting x
(i1)
t and x

(i2)
t and, thus, forecast-

ing yt.

The asterisks in Table 5 denote whether a particular model, for the specified loss function, is

included in the Model Confidence Set (MCS) of Hansen et al. (2011). Following Hansen et al.

(2011), we consider the α = 10% and α = 25% MCS. Only the direct PCA (|t| > 1.96) and

SADFM-R are in the 25% MCS for both RMSE and MAE, denoted by two asterisks. There are

no models in the 10% MCS.

We also ran the forecasting experiment for h = 2. The results are omitted for brevity. As

shown in Figure 7, the models considered here run out of forecasting power at this horizon. This

resonates with the macroeconometric literature, where it is often found that economic time series

are difficult to forecast far into the future (e.g., Giannone et al., 2008).

Lastly, we forecast 2019 changes in U.S. CO2 emissions. For this exercise, we updated the

economic data set to include 2018 data. Using these, the 2019 forecasts for the series x
(6)
t and x

(17)
t

are −0.16 and −0.27, respectively. These are studentized values; they correspond to an increase

of 1.9 percent in IP and an increase in IP: Residential Utilities of 1.8 percent. Together with the

estimated parameter vector (α̂, β̂1, β̂2) = (−.00150, .0200, .0117), this results in a forecasted CO2

emissions growth of −0.008, or about minus one percent.

6.2 Nowcasting

Estimating a variable of interest in period t while period t is still in progress is termed nowcasting in

the macroeconomic literature. A common application in macroeconomics is nowcasting quarterly

GDP growth, see, e.g., Giannone et al. (2008).
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Table 5: Out-of-sample forecasting experiment

Diagnostics (residuals)

RMSE MAE mean std skew kurt N DW LB

Main benchmark

Cst 1.00 1.00 0.02 0.03 0.59 3.53 3.86 2.35 13.48

Simple benchmarks

RW 1.26 1.27 0.00 0.04 −1.11 4.06 14.11 2.79 19.31

AR1 1.04 1.07 0.01 0.03 −0.64 3.53 4.42 2.69 16.46

MA1 1.01 1.08 0.01 0.03 −0.39 3.04 1.39 2.75 14.81

ARMA(1,1) 1.04 1.10 0.01 0.03 −0.54 3.36 3.05 2.76 14.62

VAR methods

VAR 1.05 1.09 0.00 0.04 −0.52 2.82 2.56 2.71 18.73

SVAR 1.14 1.17 0.00 0.04 −0.73 2.93 5.04 2.79 19.79

Direct methods

PCA (all) 0.84 0.91 0.01 0.03 −0.12 2.61 0.49 2.01 14.42

PCA (|t| > 1.96) 0.82∗∗ 0.87∗∗ 0.02 0.02 −0.08 2.60 0.43 2.39 16.97

Indirect methods

DFM 0.81∗∗ 0.85 0.02 0.02 0.24 2.64 0.85 2.10 18.46

SADFM-U 0.81 0.86 0.02 0.02 0.30 2.77 0.95 2.11 18.46

SADFM-R 0.79∗∗ 0.80∗∗ 0.02 0.02 0.40 2.91 1.48 2.05 18.92

Out-of-sample forecast exercise h = 1 period ahead. Residuals are forecast errors. Boldface numbers indicate the

models with lowest root mean squared error (RMSE) or mean absolute error (MAE). For RMSE and MAE, two

stars indicate that the model is in the 25% MCS. RMSEs (MAEs) are fractions of the RMSE (MAE) of the main

benchmarks.
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Table 6: Out-of-sample nowcasting

Diagnostics (residuals)

RMSE MAE mean std skew kurt N DW LB

Constant growth model

Cst 1.00 1.00 0.02 0.03 0.59 3.53 3.93 2.35 13.48

Other models

DFM 0.60 0.63 0.00 0.02 0.05 2.18 1.60 1.94 10.07

SADFM-U 0.54∗∗ 0.49∗∗ 0.00 0.02 1.34 5.66 33.93 2.16 10.94

SADFM-R 0.33∗∗ 0.36∗∗ −0.00 0.01 0.55 2.71 3.05 1.88 14.12

TVP 0.34∗∗ 0.34∗∗ −0.00 0.01 1.14 3.26 12.53 1.77 12.58

Out-of-sample nowcast exercise, i.e. h = 0. Residuals are forecast errors. Boldface numbers indicate the models with

lowest root mean squared error (RMSE) or mean absolute error (MAE). For RMSE and MAE, two stars indicate

that the model is in the 25% MCS. RMSEs (MAEs) are fractions of the RMSE (MAE) of the constant growth model.

In calculating yearly CO2 emissions, a country tallies consumption of energy carriers – use of

coal, oil, gas, etc. – and calculates emissions implied by these statistics. Numbers on energy use in

year t are generally not available until year t+ 1 (Le Quéré et al., 2015a, p. 55), introducing a lag

in the reporting of country-level CO2 emissions. Economic data used in this paper are generally

published with a shorter lag than CO2 emissions. We propose using our statistical framework to

nowcast growth in CO2 emissions in year t as soon as the economic data series x
(i1)
t and x

(i2)
t are

available.

In Figure 7, we have already indicated the nowcasting performance of the SADFM-R compared

to the constant growth model (h = 0). Table 6 reports the results for the various models considered

in this paper. All models outperform the constant growth model, in particular the SADFM-R and

the TVP models appear to be superior. The SADFM-R, the TVP, and the SADFM-U models are

in the 25% MCS. None of the other models are in the 10% or 25% MCS.

In the annual research report on the global carbon cycle, published by the Global Carbon

Project (GCP, see e.g., Le Quéré et al., 2018b), the authors collect and maintain annual data on

sources and sinks of global CO2 emissions. Because official CO2 emissions are reported with a lag,
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the GCP paper published in year t contains a nowcast of year t emissions. These nowcasts are

based on emissions estimates made by the U.S. Energy Information Administration (EIA) and on

data on cement production from the United States Geological Survey (U.S.GS), see, e.g., Le Quéré

et al. (2018b) p. 2168.

The GCP has been supplying nowcasts of U.S. emissions since 2015, so that we only have four

data points to compare with. We note that our (SA)DFMs use economic data from the entirety of

a given year t. Consequently, the GCP nowcasts are potentially constructed using less data than

the ones from the (SA)DFM, because the GCP (and EIA and U.S.GS) might not have the full year

t data set available for nowcasting. The nowcasting results should be interpreted in this light.

Figure 8 compares the (later) reported realized per capita emissions growth rates from 2015-

2017 with the nowcasts made by the GCP, as published in Le Quéré et al. (2015b), Le Quéré et al.

(2016), and Le Quéré et al. (2018a), and with those from our two preferred nowcasting models, the

SADFM-R and the TVP model. We adjust the GCP nowcasts using the realized growth rates of

population in the U.S. to arrive at nowcasts comparable to our per capita nowcasts.12 The nowcasts

produced by the SADFM-R and TVP model are very accurate for the three years 2015-2017. They

appear to be closer to the eventual true value than the GCP nowcasts for 2015 and 2017, while for

2016, the GCP nowcast was better. These results come with the two caveats explained above: we

only have three reliable data points, and our models use all economic data from year t to make

the nowcast for year t, while the GCP nowcasts likely use less data.

We have not been able to obtain an official estimate of U.S. CO2 emissions for the year 2018,

since this number has not been reported on the UNFCCC web site at the time of writing.13 This

illustrates why nowcasting is a useful exercise: at the time of writing towards the end of 2019,

the official U.S. estimate of CO2 emissions in t = 2018 is still not available. Figure 8 shows the

GCP nowcast from 2018, published in Le Quéré et al. (2018b), and the nowcasts from our models.

For this exercise, we updated the economic data set to include 2018 data. To convert the GCP

nowcast into a per capita emissions growth rate, we adjust by the realized growth rate in U.S.

population (0.6% in 2018). The GCP nowcasts a 2018 growth of 1.9% in per capita emissions,

while the SADFM-R and TVP model nowcast 2.3% and 4.1%, respectively.

Lastly, we nowcast the current year, 2019. We downloaded the most recent economic data set

12If the GCP nowcast of emissions growth in year t is e∗t , we report y∗t = e∗t −pt, where pt is the population growth

in the U.S. in year t.
13See e.g. https://di.unfccc.int/time_series, accessed on November 18, 2019.
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from the Federal Reserve Bank of St. Louis, which at the time of writing runs until September

2019.14 From this data set, we use the two monthly data series on IP and IP: Residential Utilities.

We average the values from January to September (9 observations with monthly frequency), to

estimate yearly growth in the two annual series x
(6)
t and x

(17)
t in our models. These estimates

are (in studentized values) −0.4095 and −1.3698, respectively. This corresponds to 0.9 percent

growth in IP and a 1.8 percent contraction in IP: Residential Utilities. With these, we can nowcast

2019 emissions growth from SADFM-R and the TVP model. The results are shown in Figure 8:

With the estimated parameter vector (α̂, β̂1, β̂2) = (−.00150, .0200, .0117), the SADFM-R model

nowcasts that 2019 U.S. CO2 emissions per capita will decline by approximately 2.6% in 2019; the

TVP model nowcasts a decline of 2.2%.15

2015 2016 2017 2018 2019
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Figure 8: Nowcasting U.S. CO2 emissions per capita growth. Black crosses: True growth rates.

Blue circles: Nowcast from SADFM-R. Red diamond: Nowcast from TVP model. Green square:

Nowcast from the Global Carbon Project. At the time of writing, no official numbers of U.S. CO2

emissions per capita growth for 2018 and 2019 are available.

7 Conclusion

We proposed a structural augmented dynamic factor model (SADFM) for U.S. CO2 emissions

depending on macroeconomic activity. Emissions are best explained by contemporaneous industrial

14https://research.stlouisfed.org/econ/mccracken/fred-databases/, downloaded on November 18, 2019.
15See the supplementary online material for a detailed description of the annualization and stationarity transfor-

mations.
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production, both in manufacturing and in residential utilities. In order to forecast IP, we deployed

a dynamic factor structure using a large set of annual time series on U.S. macroeconomic variables.

The model has good in-sample and out-of-sample properties.

It is of course of high interest to extend this model to other countries and macroeconomic areas

such as the European Union. We leave this to future research. With regard to the commonly

employed GDP time series in explaining U.S. emissions, for example in integrated assessment exer-

cises, we recommend to use industrial production indices that cover manufacturing and residential

sectors instead.

Our model can be used for forecasting and nowcasting emissions. Using 2018 economic data

(except emissions for 2018, which at the time of writing this paper were not yet available in

the UNFCCC inventories), our model forecasts 2019 emissions to decrease by approximately 1%.

Using data up to September 2019, the model nowcasts a decrease of 2.6% (2.2% for the model with

time-varying parameters).

Other possible future generalizations of this model include allowing for a non-linear dependency

of emissions on predictor variables (Auffhammer and Steinhauser, 2012) and using data of mixed

frequency to further improve forecasting and nowcasting performance.
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Le Quéré, C., R. M. Andrew, and P. e. Friedlingstein (2018b). Global Carbon Budget 2018. Earth System

Science Data 10 (4), 2141–2194.
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A Economic data

As explained in Section 2, we consider the T ×N matrix X of economic data. In our study, we have

N = 226 time series of length T = 57 years. The Nfed = 126 first data series are taken from the so-

called “FRED-MD” database, compiled and maintained by the Federal Reserve Bank of St. Louis.16

Detailed information on these data can be found in the Online Appendix to McCracken and Ng

(2016).17 In Table 7 we supply similar information concerning the remaining economic data series

considered in this paper, namely Nagri = 18 variables represent U.S. agricultural production18;

Ntrade = 76 variables represent U.S. foreign trade19; Ncement = 2 time series represent U.S. cement

production20; and Ntransport = 4 represent U.S. transport21. Originally, the data set contained

even more economic variables, but in a first step, we excluded all data series which contained more

than 25% missing values, thus arriving at N = 226 data series. Appendix B explains how we

handle the remaining missing values.

The Nagri + Ntrade = 18 + 76 = 94 data series obtained from the World Bank are, like CO2

emissions, recorded at a yearly frequency. The Nfed + Ncement + Ntransport = 126 + 2 + 4 = 132

data series obtained by the St. Louis Fed are originally all recorded at a monthly frequency. Since

the emissions data used in this paper are available at a yearly frequency, we “aggregate” these

economic data to a yearly frequency, arriving at the T = 57 observations for each time series. The

16https://research.stlouisfed.org/econ/mccracken/fred-databases/, downloaded on May 7, 2019.
17https://s3.amazonaws.com/files.fred.stlouisfed.org/fred-md/Appendix_Tables_Update.pdf, accessed

on November 22, 2019.
18Collected from the World Bank website, https://data.worldbank.org, downloaded on September 19, 2019.
19Collected from the World Bank website, https://data.worldbank.org, downloaded on September 19, 2019.
20Collected from the website of the U.S. Federal Reserve Bank, https://fred.stlouisfed.org, downloaded on

October 10, 2019.
21Collected from the website of the U.S. Federal Reserve Bank, https://fred.stlouisfed.org, downloaded on

October 10, 2019.
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method of aggregation might vary from time series to time series and is based on the nature of

the series in question: for data in levels, we take the arithmetic mean over the 12 observations

from January to December in year t to arrive at the year t observation for the data series; for

data in monthly growth rates, we sum over the 12 observations from January to December in year

t to arrive at the year t growth rate; for interest rates we take the geometric mean over the 12

observations from January to December in year t to arrive at the year t interest rate.

We then follow the procedure described in McCracken and Ng (2016) to transform the economic

time series to a set of stationary variables. The exact method used to transform the a particular

data series is based on the statistical properties of the series. If the series is positive, we take the

natural logarithm. After this possible transformation, we examine the integration properties of

the data to check whether they need to be differenced before they can be considered stationary.

To be precise, we test for a unit root using the Augmented Dickey Fuller (ADF) test; if the null

of a unit root is rejected, we stop; if the null is not rejected, we take first differences of the time

series and perform another unit root test; we proceed until the null is rejected. In Table 7 we give

the transformation code (“tcode”) denoting what transformation has been applied to a particular

time series. Again we follow the convention of transformation codes of the Online Appendix of

McCracken and Ng (2016). For one time series, we differenced the series even though the null of a

unit root was rejected by the ADF test; this decision was taken on the basis of graphical inspection

of the time series and on our economic intuition. The transformation code for this time series is

supplemented with an asterisk.

B Dealing with missing values

The data matrix X constructed using the procedure described in the preceding paragraph contains

a number of missing values. Of the N · T = 226 · 57 = 12882 data points, M = 492 (3.8%) are

missing. There are only very few missing values in the Nfed = 126 first economic data series

based on the FRED-MD data set (Mfed = 24); hence, most of the missing values come from the

remaining 100 data series. Most of the missing values are located in the beginning of the data set.

Before the analyses described in the paper are performed, we impute the missing values us-

ing a variant of the iterative factor-based approach suggested in Stock and Watson (2002) and

implemented by McCracken and Ng (2016).22

22Our implementation of this procedure use the MATLAB code available at https://research.stlouisfed.org/
econ/mccracken/fred-databases/, downloaded on February 1, 2019.
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Table 7: The column “tcode” denotes the data transformation for a series x following McCracken

and Ng (2016): (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log xt; (5) ∆ log xt; (6) ∆2 log xt; (7)

∆(xt/xt−1 − 1). The transformation code of one series was set manually by the authors; this is

denoted by an asterisk.
Group 9: Agriculture

id tcode Indicator name description

1 127 5 TX.VAL.AGRI.ZS.UN Agricultural raw materials exports (% of merchandise exports)

2 128 6 SP.RUR.TOTL.ZS Rural population (% of total population)

3 129 2 SP.RUR.TOTL.ZG Rural population growth (annual %)

4 130 6 SP.RUR.TOTL Rural population

5 131 5 AG.YLD.CREL.KG Cereal yield (kg per hectare)

6 132 5 AG.SRF.TOTL.K2 Surface area (sq. km)

7 133 5 AG.PRD.LVSK.XD Livestock production index (2004-2006 = 100)

8 134 5 AG.PRD.FOOD.XD Food production index (2004-2006 = 100)

9 135 5 AG.PRD.CROP.XD Crop production index (2004-2006 = 100)

10 136 5 AG.PRD.CREL.MT Cereal production (metric tons)

11 137 5 AG.LND.TRAC.ZS Agricultural machinery, tractors per 100 sq. km of arable land

12 138 5 AG.LND.TOTL.K2 Land area (sq. km)

13 139 5 AG.LND.CROP.ZS Permanent cropland (% of land area)

14 140 5 AG.LND.CREL.HA Land under cereal production (hectares)

15 141 5 AG.LND.ARBL.ZS Arable land (% of land area)

16 142 5 AG.LND.ARBL.HA.PC Arable land (hectares per person)

17 143 5 AG.LND.ARBL.HA Arable land (hectares)

18 144 5 AG.AGR.TRAC.NO Agricultural machinery, tractors
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Group 10: Trade

id tcode Indicator name description

1 145 5 TX.VAL.TRVL.ZS.WT Travel services (% of commercial service exports)

2 146 6 TX.VAL.SERV.CD.WT Commercial service exports (current USD)

3 147 5 TX.VAL.OTHR.ZS.WT Computer, communications and other services (% of commercial service exports)

4 148 5 TX.VAL.MRCH.WL.CD Merch. exports by the reporting economy (current USD)

5 149 5 TX.VAL.MRCH.RS.ZS Merch. exports by the reporting economy, residual (% of total merch. exports)

6 150 5 TX.VAL.MRCH.R6.ZS Merch. exports to low- and middle-income in Sub-Saharan Africa (% of total merch. exports)

7 151 5 TX.VAL.MRCH.R5.ZS Merch. exports to low- and middle-income in South Asia (% of total merch. exports)

8 152 5 TX.VAL.MRCH.R4.ZS Merch. exports to low- and middle-income in Middle East & North Africa (% of total merch. exports)

9 153 5 TX.VAL.MRCH.R3.ZS Merch. exports to low- and middle-income in Latin America & the Caribbean (% of total merch. exports)

10 154 5 TX.VAL.MRCH.R2.ZS Merch. exports to low- and middle-income in Europe & Central Asia (% of total merch. exports)

11 155 5 TX.VAL.MRCH.R1.ZS Merch. exports to low- and middle-income in East Asia & Pacific (% of total merch. exports)

12 156 5 TX.VAL.MRCH.OR.ZS Merch. exports to low- and middle-income outside region (% of total merch. exports)

13 157 5 TX.VAL.MRCH.HI.ZS Merch. exports to high-income (% of total merch. exports)

14 158 5 TX.VAL.MRCH.CD.WT Merch. exports (current USD)

15 159 5 TX.VAL.MRCH.AL.ZS Merch. exports to economies in the Arab World (% of total merch. exports)

16 160 5 TX.VAL.MMTL.ZS.UN Ores and metals exports (% of merchandise exports)

17 161 5 TX.VAL.MANF.ZS.UN Manufactures exports (% of merch. exports)

18 162 5 TX.VAL.INSF.ZS.WT Insurance and financial services (% of commercial service exports)

19 163 5 TX.VAL.FUEL.ZS.UN Fuel exports (% of merchandise exports)

20 164 5 TX.VAL.FOOD.ZS.UN Food exports (% of merchandise exports)

21 165 5 TX.VAL.AGRI.ZS.UN Agricultural raw materials exports (% of merchandise exports)

22 166 5 TM.VAL.TRVL.ZS.WT Travel services (% of commercial service imports)

23 167 6 TM.VAL.SERV.CD.WT Commercial service imports (current USD)

24 168 5 TM.VAL.OTHR.ZS.WT Computer, communications and other services (% of commercial service imports)

25 169 5 TM.VAL.MRCH.WL.CD Merch. imports by the reporting economy (current USD)

26 170 5 TM.VAL.MRCH.RS.ZS Merch. imports by the reporting economy, residual (% of total merch. imports)

27 171 5 TM.VAL.MRCH.R6.ZS Merch. imports from low- and middle-income in Sub-Saharan Africa (% of total merch. imports)

28 172 5 TM.VAL.MRCH.R5.ZS Merch. imports from low- and middle-income in South Asia (% of total merch. imports)

29 173 5 TM.VAL.MRCH.R4.ZS Merch. imports from low- and middle-income in Middle East & North Africa (% of total merch. imports)

30 174 5 TM.VAL.MRCH.R3.ZS Merch. imports from low- and middle-income in Latin America & the Caribbean (% of total merch. imports)

31 175 5 TM.VAL.MRCH.R2.ZS Merch. imports from low- and middle-income in Europe & Central Asia (% of total merch. imports)

32 176 5 TM.VAL.MRCH.R1.ZS Merch. imports from low- and middle-income in East Asia & Pacific (% of total merch. imports)

33 177 5 TM.VAL.MRCH.OR.ZS Merch. imports from low- and middle-income outside region (% of total merch. imports)

34 178 5 TM.VAL.MRCH.HI.ZS Merch. imports from high-income economies (% of total merch. imports)

35 179 5 TM.VAL.MRCH.CD.WT Merch. imports (current USD)

36 180 5 TM.VAL.MRCH.AL.ZS Merch. imports from economies in the Arab World (% of total merch. imports)

37 181 5 TM.VAL.MANF.ZS.UN Manufactures imports (% of merchandise imports)

38 182 5 TM.VAL.INSF.ZS.WT Insurance and financial services (% of commercial service imports)
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Group 10: Trade (contd.)

id tcode Indicator name description

39 183 5 TM.VAL.INSF.ZS.WT Fuel imports (% of merchandise imports)

40 184 5 TG.VAL.TOTL.GD.ZS Merchandise trade (% of GDP)

41 185 5 NY.EXP.CAPM.KN Exports as a capacity to import (constant LCU)

42 186 5 NE.TRD.GNFS.ZS Trade (% of GDP)

43 187 2 NE.RSB.GNFS.ZS External balance on goods and services (% of GDP)

44 188 2 NE.RSB.GNFS.CD External balance on goods and services (current USD)

45 189 5 NE.IMP.GNFS.ZS Imports of goods and services (% of GDP)

46 190 1 NE.IMP.GNFS.KD.ZG Imports of goods and services (annual % growth)

47 191 5 NE.IMP.GNFS.KD Imports of goods and services (constant 2010 USD)

48 192 5 NE.IMP.GNFS.CD Imports of goods and services (current USD)

49 193 5 NE.EXP.GNFS.ZS Exports of goods and services (% of GDP)

50 194 1 NE.EXP.GNFS.KD.ZG Exports of goods and services (annual % growth)

51 195 5 NE.EXP.GNFS.KD Exports of goods and services (constant 2010 USD)

52 196 5 NE.EXP.GNFS.CD Exports of goods and services (current USD)

53 197 5 MS.MIL.XPRT.KD Arms exports (SIPRI trend indicator values)

54 198 5 MS.MIL.MPRT.KD Arms imports (SIPRI trend indicator values)

55 199 5 GC.TAX.IMPT.ZS Customs and other import duties (% of tax revenue)

56 200 5 EG.IMP.CONS.ZS Energy imports, net (% of energy use)

57 201 5 BX.GSR.TRVL.ZS Travel services (% of service exports, BoP)

58 202 5 BX.GSR.TOTL.CD Exports of goods, services and primary income (BoP, current USD)

59 203 6 BX.GSR.NFSV.CD Service exports (BoP, current USD)

60 204 5 BX.GSR.MRCH.CD Goods exports (BoP, current USD)

61 205 5 BX.GSR.INSF.ZS Insurance and financial services (% of service exports, BoP)

62 206 5 BX.GSR.GNFS.CD Exports of goods and services (BoP, current USD)

63 207 5 BX.GSR.CMCP.ZS Communications, computer, etc. (% of service exports, BoP)

64 208 5 BX.GSR.CCIS.ZS ICT service exports (% of service exports, BoP)

65 209 5 BX.GSR.CCIS.CD ICT service exports (BoP, current USD)

66 210 2 BN.GSR.MRCH.CD Net trade in goods (BoP, current USD)

67 211 2 BN.GSR.GNFS.CD Net trade in goods and services (BoP, current USD)

68 212 5 BM.GSR.TRVL.ZS Travel services (% of service imports, BoP)

69 213 5∗ BM.GSR.TRAN.ZS Transport services (% of service imports, BoP)

70 214 5 BM.GSR.TOTL.CD Imports of goods, services and primary income (BoP, current USD)

71 215 6 BM.GSR.NFSV.CD Service imports (BoP, current USD)

72 216 5 BM.GSR.MRCH.CD Goods imports (BoP, current USD)

73 217 5 BM.GSR.INSF.ZS Insurance and financial services (% of service imports, BoP)

74 218 5 BM.GSR.GNFS.CD Imports of goods and services (BoP, current USD)

75 219 5 BM.GSR.CMCP.ZS Communications, computer, etc. (% of service imports, BoP)

76 220 5 BG.GSR.NFSV.GD.ZS Trade in services (% of GDP)

Group 11: Cement and transport

id tcode Indicator name description

1 221 5 IPN32732T9S Industrial Production: Durable Goods: Concrete and product, Index 2012 = 100

2 222 5 IPN32731S Industrial Production: Durable Goods: Cement, Index 2012 = 100

3 223 5 CES4300000001 All Employees: Transportation and Warehousing

4 224 5 CPITRNSL Consumer Price Index: Transportation in U.S. City Average, All Urban Consumers

5 225 5 IPG3364T9S Industrial Production: Durable manufacturing: Aerospace and miscellaneous transportation equipment

6 226 5 IPN32411AS Industrial Production: Nondurable Goods: Aviation fuel and kerosene
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