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Abstract
The purpose of this paper is to study di¤erences in long monthly

Asian and European temperature series. The longest available Asian
series are those of Beijing and Shanghai, and they are compared with
the ones for St Petersburg, Dublin and Uccle that have a rather dif-
ferent climate. The comparison is carried out in the Vector Shifting
Mean and Covariance Autoregressive model that the authors have pre-
viously used to analysed 20 long European temperatute series. This
model gives information about mean shifts in these �ve temperature
series as well as (error) correlations between them. The results sug-
gest, among other things, that warming has begun later in China than
in Europe, but that the change in the summer months in both Beijing
and Shanghai has been quite rapid.

Keywords. Climate change, changing seasonality; long monthly
Chinese temperature series; nonlinear model; nonlinear time series;
time-varying correlation, time-varying variance, time-varying vector
smooth transition autoregression
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1 Introduction

The purpose of the paper is to compare monthly average changes in tem-
perature over a long period and to contrast Asian locations with selected
European ones. This is important as one would like to obtain as much infor-
mation as possible of long-run e¤ects of the climate change on temperatures
by season in various locations in the world. The two Asian cities, Beijing and
Shanghai, are selected because they possess the longest monthly temperature
records in China and Asia. To the best of our knowledge, long monthly Asian
temperature time series have not been studied in detail before. The set of
long series studied by Hillebrand and Proietti (2017) contained 16 European
and two North American series but no Asian ones. They estimated a separate
structural time series model for each series.
In previous work, He, Kang, Teräsvirta and Zhang (2019a) studied shifts

in average temperatures and correlations between them using 20 European
locations extending from Trondheim in the north to Milan in the south. This
was done using the Vector Seasonal Shifting Mean and Covariance Autore-
gressive (VSSMC-AR) model developed for the purpose. The model can take
into account time-variation both in the mean, error and correlation parame-
ters of the model. The time-varying parameters contain interpretable infor-
mation about seasonal long-run temperature changes as well as relationships
between seasonal changes in di¤erent locations. Among other things, the
VSSMC-AR model allows estimating (error) correlations between Asian and
European locations or stations and thus drawing conclusions on relationships
between them.
In this work, we consider three European locations that were not included

in He et al. (2019a) or Hillebrand and Proietti (2017): Dublin, Uccle and St
Petersburg. St Petersburg is chosen to represent Northern Europe. It is
selected, among other things, because winters there can be cold as they are
in Beijing. The other locations are Dublin and Uccle, of which the latter is
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the site of the Royal Meteorological Institute of Belgium. They are selected
because they, Dublin in particular, lie close to the Atlantic Ocean and are in
that sense quite di¤erent from St Petersburg. This is why comparing them
with the more continental St Petersburg and the two Chinese cities can be
interesting. We hope to gain information not only about seasonal correla-
tions between European and Chinese series but also about these correlations
between Dublin and Uccle, clearly a¤ected by the Atlantic weather systems,
on the one hand and St Petersburg, further away from the Atlantic Ocean,
on the other. Besides, the results can be compared to ones reported by He
et al. (2019a).
The plan of the paper is as follows. The VSSMC-AR model is presented

in Section 2. Section 3 contains information about the �ve time series. Model
building is described in Section 4 and the empirical results discussed in Sec-
tion 5. Final remarks appear in Section 6. Figures can be found in the
Appendix A and additional tables in Appendix B.

2 The model

The VSSMC-AR model developed by He et al. (2019a) is a multivariate
generalisation of the Shifting Mean Autoregressive model by González and
Teräsvirta (2008) and its seasonal version introduced in He, Kang, Teräsvirta
and Zhang (2019b). In the following the main features of the model are re-
capitulated. The mean component of the N -dimensional VSSMC-AR model
for unit or season s is de�ned as follows:

ySk+s =

SX
j=1

�j(
Sk + j

SK
)D

(j)
Sk+s +

pX
i=1

�iySk+s�i + "Sk+s (1)

k = 0; 1; :::; K � 1; where ySk+s = (y1;Sk+s; :::; yN;Sk+s)
0 contains the obser-

vations, D(j)
Sk+s = 1 when j = s; zero otherwise (D(j)

Sk+s is the jth seasonal
dummy variable), "Sk+s is an N � 1 error vector with mean zero, and the
roots of jI �

Pp
i=1�iz

ij = 0 lie outside the unit circle. Furthermore, S is
the number of seasons, and K is the total number of seasonal cycles. The
vector �j(

Sk+j
SK

) = (�1j(
Sk+j
SK

); :::; �Nj(
Sk+j
SK

))0 is the vector of seasonal dummy
variables for season j. The jth time-varying coe¢ cient �nj(

Sk+j
SK

) of equation
n equals

�nj(
Sk + j

SK
) = �nj0 +

qnjX
i=1

�njignji(
Sk + j

SK
; 
nji; cnji) (2)
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where the transition variable

gnji(
Sk + j

SK
; 
nji; cnji) = (1 + expf�
nji(

Sk + j

SK
� cnji)g)�1 (3)

or

gnji(
Sk + j

SK
; 
nji; c1nji; c2nji) = 1� expf�
nji(

Sk + j

SK
� cnji)2g (4)

where 
nji > 0 both in (3) and in (4). At time Sk + s; the mean component
(1) may be written as

ySk+s = �s(
Sk + s

SK
) +

pX
i=1

�iySk+s�i + "Sk+s: (5)

Assume, for notational simplicity, that the transitions in (2) are of type
(3), that is, described by logistic functions. To �x notation, let �ns =
(�0ns;


0
ns; c

0
ns)

0; where �ns = (�ns0; �ns1; :::; �nsrs)
0 is an (rns + 1) � 1 vector,

whereas 
ns = (
ns1; :::; 
nsrs)
0 and cns = (cns1; :::; cnsrs)

0 for n = 1; :::; N are
rns � 1 vectors. Let �s = (�01s; :::;�0Ns)0: The Np � N parameter matrix of
the autoregressive component equals � = (�1; :::;�p); where �i = [�imn];
m; n = 1; :::; N; i = 1; :::; p: In the application of this paper, �i; i = 1; :::; p;
are diagonal matrices, because feedback from one location to the other can
be excluded.
The error process f"Sk+sg is assumed to have a seasonally time-varying

covariance matrix. The error vector is decomposed similarly to multivariate
ARCH or GARCH models as

"Sk+s = VSk+szSk+s (6)

where zSk+s � iidN (0;PSk+s) and PSk+s is a seasonally time-varying corre-
lation matrix. It follows that the covariance matrix HSk+s = E"Sk+s"

0
Sk+s =

VSk+sPSk+sVSk+s: The deterministic diagonal matrixVSk+s = diag(�1s(Sk+sSK
);

:::; �Ns(
Sk+s
SK

)) contains the time-varying error standard deviations for season
s. The error variance of the nth equation at season s equals

�2ns(
Sk + s

SK
) =

SX
j=1

�2nj(
Sk + j

SK
)D

(j)
Sk+s (7)

where

�2nj(
Sk + j

SK
) = �2nj0 +

rnjX
i=1

!njig
(v)
nji(

Sk + j

SK
; 


(v)
nji; c

(v)
nji): (8)
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Similarly to (2), the jth transition function in equation n equals either

g
(v)
nji(

Sk + j

SK
; 


(v)
nji; c

(v)
nji) = (1 + expf�


(v)
nji(

Sk + j

SK
� c(v)nji)g)�1 (9)

or

g
(v)
nji(

Sk + j

SK
; 


(v)
nji; c

(v)
nji) = 1� expf�


(v)
nji(

Sk + j

SK
� c(v)nji)2g: (10)

In (9) and (10), 
(v)nji > 0; i = 1; :::; rnj; j = 1; :::; S and n = 1; :::; N . To guar-
antee positivity of each element in (8), �2nj0 > 0 and �2nj0 +

Pq
i=1 !nji > 0

for q = 1; :::; rnj; n = 1; :::; N; and j = 1; :::; S: This de�nition imposes re-
strictions on !nji; i = 1; :::; rnj: For the individual season s it conforms to
the one in Silvennoinen and Teräsvirta (2016). To �x notation, let �(v)s =

(�
(v)0
1s ; :::;�

(v)0
Ns )

0 be the vector of parameters of season s in the N equations,
where �(v)ns = (�2ns0;!

0
ns;


(v)0
ns ; c

(v)0
ns )0 with !ns = (!ns1; :::; !nsrs)

0; 

(v)
ns =

(

(v)
ns1; :::; 


(v)
nsrs)

0; and c(v)ns = (c
(v)
1ns1; :::; c

(v)
1nsrs)

0; for n = 1; :::; N .
The error correlation matrix for season s has the following form:

PSk+s =
SX
j=1

f(1� g(c)j (
Sk + j

SK
))P(j1) + g

(c)
j (
Sk + j

SK
)P(j2)gD(j)

Sk+s (11)

where P(j1) and P(j2) are N � N positive de�nite correlation matrices, j =
1; :::; S: Furthermore, in (11),

g
(c)
j (
Sk + j

SK
; 


(c)
j ; c

(c)
j ) = (1 + expf�


(c)
j (
Sk + j

SK
� c(c)j )g)�1 (12)

or

g
(c)
j (
Sk + j

SK
; 


(c)
j ; c

(c)
j ) = 1� expf�


(c)
j (
Sk + j

SK
� c(c)j )2g: (13)

where 
(c)j > 0 for j = 1; :::; S: Since both (12) and (13) are bounded between
zero and one, as a convex combination of two positive de�nite correlation
matrices PSk+s is positive de�nite for all Sk + s; see, for example, Berben
and Jansen (2005) or Silvennoinen and Teräsvirta (2005, 2015).

3 Data

Information about the weather stations can be found in Table 1 and their
locations can be seen in Figure 1. The time series are monthly and end in
2018. They have been obtained from the KNMI Climate Explorer website
(http://climexp.knmi.nl/start.cgi). The St Petersburg series is about
as long as the series considered in He et al. (2019a) and hence much longer
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Station
Latitude Longitude Elevation, m Period

Beijing 39.93N 116.28E 55 1841�2018
Dublin 53.43N �6:25E 85 1831�2018
Shanghai 31.20N 121.40E 7 1847�2018
St Petersburg 59.97N 30.30E 6 1752�2018
Uccle 50.48N 4.20E 104 1833�2018

Table 1: Location of stations and time span for the four long monthly average
temperature series

than the other four. All �ve stations, Shanghai and St Petersburg in partic-
ular, have a rather low elevation. The two Chinese cities lie more south than
the European ones, but the Gulf Stream to some extent compensates the
di¤erences in latitude. Despite its low latitude compared to St Petersburg,
Dublin and Uccle, the mean temperatures in Beijing from November to Feb-
ruary are substantially lower than in Dublin and Uccle. They are, however,
not as low as those of St Petersburg.
The series contain occasional missing values. The longest stretches appear

in the Beijing series, comprising the years 1856 to 1858 and 1862 to 1868.
They have been approximated using the Kalman Filter. The correlations are
estimated for the period 1847�2018, determined by the shortest (Shanghai)
series. More of this in Section 5.3.

4 Modelling

4.1 The seasonal mean component

From (1) and (2) it is seen that the VSSMC-AR model is not identi�ed if at
least one season s for any equation n has a constant coe¢ cient. This renders
the standard speci�cation tests useless. Testing is carried out one equation
and one season at a time. For equation n and season s, the null hypothesis
is chosen as 
ns = 0 in (2). In order to circumvent the identi�cation prob-
lem and carry out the test we approximate the alternative as suggested by
Saikkonen and Luukkonen (1988) and Luukkonen, Saikkonen and Teräsvirta
(1988). This involves approximating the coe¢ cient de�ned either by (3) or
(4) by a polynomial developed around the null hypothesis 
ns = 0. Thus,
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using a third-order polynomial as an example, the approximation becomes

yn;Sk+s = e�ns0 + e�ns1(Sk + s
SK

) + e�ns2(Sk + s
SK

)2 + e�ns3(Sk + s
SK

)3

+

pX
i=1

�nsiyn;Sk+s�i + "
�
Sk+s (14)

where "�Sk+s = "Sk+s + R3((Sk + s)=SK); with R3((Sk + s)=SK) being the
remainder. For j 6= s; the equation is assumed to have the form

yn;Sk+j = �nj0 +

pX
i=1

�njiyn;Sk+j�i + "
�
Sk+j

for k = 0; 1; :::; K�1; that is, stability of each seasonal coe¢ cient in equation
n is tested separately, keeping the other S � 1 coe¢ cients constant also
under the alternative. The null hypothesis H003: e�ns1 = e�ns2 = e�ns3 = 0 in
(14). Under this hypothesis, R3((Sk + s)=SK) = 0, which implies "�Sk+s =
"Sk+s: When one constructs a Lagrange multiplier type for testing H003; the
remainder therefore does not a¤ect the asymptotic theory.
As Lin and Teräsvirta (1994) pointed out, the standard asymptotic the-

ory applies even when the regressors are deterministic polynomials as in
(14). Thus the usual �2-statistic has an asymptotic null distribution with
three degrees of freedom. There is one caveat, however, in that the errors
of the VSSMC-AR model are heteroskedastic. The test statistic has to be
robusti�ed against this complication, and this is done following Wooldridge
(1990).
The choice between (3) and (4) is decided using the heuristic rule in

Teräsvirta (1994), based on the de�nition of e�ns1;e�ns2 and e�ns3 as functions
of the parameters in (3) and (4). If the null hypothesis H003 is rejected, test
H002: e�ns1 = e�ns2 = 0 given e�ns3 = 0 and H001: e�ns1 = 0 given e�ns2 = e�ns3 = 0:
If the rejection of H002, measured by the p-value, is strongest of the three,
select the exponential function (4), otherwise settle for the logistic function
(3).
If the null hypothesis is rejected for rn � S seasons for equation n, n =

1; :::; N; the corresponding mean equation with rn time-varying coe¢ cients
is estimated equation by equation. It is then tested (equation by equation)
against the alternative with another transition for these rn seasons. It turns
out that in the present application, one transition is enough for all S seasons
(12 months) and the �ve equations.
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4.2 The seasonal variance component

The error variances of the VSSMC-AR model are time-varying, but as is
obvious from (8), the model is not identi�ed if at least one of them is constant
over time. For this reason, constancy has to be tested before the (time-
varying) variances are estimated and constancy of correlations tested. In
the present application there is seasonal variation in the errors, and because
of this, constancy over time is tested separately for each season. Testing is
carried out using the polynomial approximation to the alternative as in He
et al. (2019a). This implies approximating the error variance for equation
n and season j: As in Section 4.1, taking a third-order polynomial as an
example, the approximation looks as follows:

�2nj(
Sk + j

SK
) = e�2nj0 + e!nj1Sk + jSK

+ e!nj2(Sk + j
SK

)2

+e!nj3(Sk + j
SK

)3 +R3(
Sk + j

SK
; 


(v)
nji; c

(v)
nji) (15)

where R3(
Sk+j
SK

; 

(v)
nji; c

(v)
nji) is the remainder. The null hypothesis is H0: e!nj1 =e!nj2 = e!nj3 = 0 in (15). Since the remainder equals zero under the null

hypothesis even here, it does not a¤ect asymptotic theory when the test is
constructed using the Lagrange multiplier (LM) principle. Thus, when the
null hypothesis holds, the LM-statistic has an asymptotic �2-distribution
with three degrees of freedom.

4.3 The seasonal correlations

It is seen from (11) that there is an identi�cation problem also in the correla-
tion matrix. When the correlations are constant for season s, P(s1) = P(s2);
and the parameters in the transition function (12) or (13) are unidenti�ed
nuisance parameters. Alternatively, 
(c)s = 0 makes the transition function
constant, in which case the location parameter c(c)j is a nuisance paramete,
and, besides, there is not enough information in the data to estimate both
P(s1) and P(s2) consistently. Stability of the correlation matrix has therefore
to be tested �rst and the time-varying correlation matrix estimated only if
the null hypothesis is rejected. For details, see He et al. (2019a).
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5 Results

5.1 Shifting seasonal means

5.1.1 De�nition of the shifting seasonal mean

In order to de�ne the shifting seasonal mean, let the equation n of the
VSSMC-AR model (5) be

yn;Sk+s = �ns(
Sk + s

SK
) +

pX
i=1

�niyn;Sk+s�i + "n;Sk+s:

It follows that the corresponding shifting mean at Sk + s equals

Eyn;Sk+s = (1�
pX
i=1

�ni)
�1�ns(

Sk + s

SK
) +O(

1

SK
) (16)

where O( 1
SK
) vanishes asymptotically; see He et al. (2019a,b). Ignoring

O( 1
SK
); (16) is a shifting mean which at time (Sk+s)=SK can be interpreted

as the mean of a stationary AR model whose intercept equals �ns(Sk+sSK
) and

does not change over time.

Beijing Shanghai St Petersburg Dublin Uccle
Jan ** * *** - **
Feb *** *** - - -
Mar *** *** *** ** ***
Apr - ** *** - *
May ** *** *** - **
Jun ** - - - -
Jul - ** * - -
Aug *** * * ** -
Sep ** ** - ** -
Oct ** *** ** *** **
Nov * *** *** - **
Dec *** * *** * *

Table 2: Results on testing constancy of seasonal means for the �ve cities.
Notation: p-value of the test below 0.05 (*), below 0.01 (**), and below 0.001
(***)
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5.1.2 Hypothesis testing

Table 2 contains the results of the constancy tests by city and month. They
are summed up by the size of the p-value. The values below 0.05 lead to
estimating a mean equation in which the corresponding months have a time-
varying representation. Beijing has ten p-values below 0.05, whereas Dublin
has only �ve.
The estimated seasonal means will be considered next. It should be men-

tioned that the estimated equations have been tested for error autocorrela-
tion, and the results can be found in Appendix B, Table 8. Where appro-
priate, the hypothesis of one transition against (at least) two has also been
tested using a straightforward extension of the constancy test in Section 4.1.
Since there were no p-values below 0.05, the detailed results are not reported
here.

5.1.3 Beijing and Shanghai

The monthly mean shifts for Beijing can be found in Figure 2 and the ones
for Shanghai in Figure 3. The estimated mean equations appear in Tables
3 and 4. Two technical remarks on the estimated mean equations are in
order. For some months, see, for example, October and November in Figure
2, the estimated seasonal mean is practically a straight line. It is numerically
di¢ cult to �t a logistic function to this type of data as there is very little
information on where the logistic function is bending, that is, where its second
derivative is changing from negative to zero and from zero to positive. As
a result, the estimation algorithm may not converge. In these cases, the
transition function for equation n and month j is approximated by a straight
line:

�2nj(
Sk + j

SK
) = �nj0 + �nj1(Sk + j)=SK:

In estimating the exponential transition function, uncertainty about the
values of 
nj1; cnj1 and �nj1 is sometimes also large. In those cases the
convergence problem is alleviated by �xing one of the parameters, typically
cnj1: Estimates of the other two parameters involved, 
nj1 and �nj1; are in
those cases very strongly negatively correlated, so their standard deviations
are remarkably large. See for example estimates for April in Table 3. A
similar situation occurs for example in September and December, where the
transition function is exponential and the data do not cover the areas where
the function is approaching one. Buncic (2019) recently discussed this case
which is in fact analogous to the aforementioned situation where the transi-
tion function is logistic but no observations at the tails of the function are
available.
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It is also seen from Tables 3 and 4 that sometimes the estimate b
nj1 is
�xed to a high value. When 
nj1 is high, its estimate converges slowly to its
�nal value. Since it can be assumed that changes in seasonal means are not
completely abrupt, to speed up estimation an upper bound equal to 40 is set
for this parameter.
Concerning empirical results, it may be noted that the monthly records

begin rather late, in the 1840s. This means that information about e¤ects
of the Little Ice Age on monthly temperatures at these two locations is not
available. Thus we cannot know whether shifts similar to those reported in
European summer temperatures during the 19th century in He et al. (2019a)
would have occurred in these two cities. For a discussion of the e¤ects of the
Little Ice Age on the climate in China, see Chen, Liu, Zhang, Chen, Huang,
Chen, Zhang, Zhou and Chen (2019).
In both series the shifts found occur quite late. Figures 2 and 3 show

that they gain strength on the second half of the 20th century. Figure 7
indicates that warming after 1950 has been stronger in Beijing and Shanghai
than in the three European locations. The average shifts in the latter series
for February, April, October and November are quite substantial, around
3oC, whereas the size of the corresponding shifts for Beijing remains around
half of it. One exception is March, where a record shift of more than 4oC is
estimated for Beijing. Another one is December. For both locations there is
a decrease ending around 1920 or 1930 but, as also seen from Figure 7, the
subsequent bounceback is larger for Beijing than for Shanghai.
The increases for both cities are more modest in the summer than in the

winter. The timing of the shifts agrees with the increase in Chinese CO2
concentrations. The �rst notable (positive) change in them occurred about
1970, and the growth accelerated around 2000; see, for example, Zhang and
Cheng (2009). Results in Michail, Savva, Koursaros and Zachariadis (2019)
suggest that changes in carbon concentrations in the late 1960s or around
1970 have been rather universal.
The only month where the shifts are in the opposite directions is June.

However, both are estimated to be small: about �0:6oC for Beijing and
+0:7oC for Shanghai. He et al. (2019a) found corresponding negative shifts
in June in a number of Northern European series such as Berlin, Stockholm,
Uppsala, Vilnius andWarsaw, where their size varied between 1oC and 1.5oC.
The typical European shift shape for the summer months, July and August
in particular, the shift being �rst negative and turning positive after 1850,
cannot be observed here even if it existed. This is because the Chinese series
are too short for that. But then, as already mentioned, both Beijing and
Shanghai display a negative December shift that turns positive somewhere
between 1920 and 1930.
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Compared to European series, there is one noteworthy di¤erence. For 17
out of the 20 European series analysed and tested in He et al. (2019a), the
null hypothesis of no shift is not rejected for February. On the contrary, a
clear shift is found for both Beijing and Shanghai and, as already seen, for the
latter it is remarkably large, 3oC and for the former close to 2oC. Whatever
the reasons for February being a �stable�month for European series, these
reasons do not seem to be valid either for Beijing or for Shanghai.
Coe¢ cient estimates of the two lags of the temperature variables are

low, meaning that the �uctuations in the mean are mainly explained by the
time-varying dummy variables. This is also true for equations for the three
European locations. Heteroskedasticity-robust tests of no error autocorre-
lation (not reported) do not reject the null hypothesis for any of the �ve
seasonal mean equations.

5.1.4 St Petersburg

The monthly mean shifts for St Petersburg can be found in Figure 4 and the
estimated mean equation in Table 5. Figure 7 shows that although warming
after 1950 has been generally slower than in either Beijing or Shanghai, it has
exceeded that in the other two European locations.The shifts, however, have
many similarities to the corresponding shifts in Northern European series
in He et al. (2019a). In particular, the rather unusual January shift which
begins around 1850 and is over by the end of the century, see Figure 4, can
also be found in estimated equations of the VSSMC-AR model for Berlin,
Stockholm, Trondheim and Vilnius. Incidentally, it is also found in the well
known monthly central England temperature series; see He et al. (2019b).
No shift is detected for February, and the same is true for September. Both
outcomes may be emphasized because they accord with the results for a
majority of the 20 European series in He et al. (2019a). The European
summer mean shifts for July and August are clearly visible for St Petersburg.
The aforementioned negative June shift for Northern European series is not
visible in this series, but for this month no positive shift can be detected
either.
There is one similarity between Beijing and St Petersburg. In both loca-

tions, the (positive) shift in March is large. As already mentioned, it exceeds
4oC for the former station, and the same is true for the latter. This may be
a pure coincidence. At any rate, the shift in the St Petersburg series begins
earlier than its counterpart for Beijing. It may be noted that the 20 esti-
mated European equations in He et al. (2019a) also display a positive shift
for March. Its size, however, is in all cases smaller than that of St Peters-
burg. Another large positive mean shift, exceeding 4oC, in the St Petersburg
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series occurs in December, as seen from Figure 4. The estimated European
equations have a similar positive shift but, again, it is less strong that the
one estimated for St Petersburg.

5.1.5 Dublin

For Dublin, the calendar year may be roughly divided into two distinct pe-
riods: one extending from January to July and the other from August to
December. The estimated mean components can be found in Figure 5 and
the corresponding mean equations by month in Table 6. The shifts consid-
ered over three distinct periods are plotted in Figure 7. In the �rst period
theonly shift appears in March and is less than 1oC. March is a month in
which all estimated European means in He et al. (2019a) contain a positive
shift.
The second period contains four small positive shifts (no shift in Novem-

ber). As also seen from Figure 7, none of them begins before 1900. It should
be noted that the possible existence of the European summer pattern, a de-
crease until the second half of the 19th century and a subsequent increase,
cannot be su¢ ciently well observed here even if it existed because the Irish
series begins as late as 1831. Of the aforementioned 20 European series, only
Paris as the westernmost location in that set shows some similarity to Dublin,
although the shifts estimated from the former series are usually larger than
they are in the latter. As already noted in Section 5.1.2, Dublin has seven
months in which constancy of the mean is not rejected. Paris has six, which
is the largest number in the set of 20 stations considered in He et al. (2019a).
It may be concluded that e¤ects of global warming evident in many long

European series are less conspicuous in the Dublin one. By comparison it
seems that proximity of the Atlantic Ocean has moderated the temperatures
and so far precluded big shifts. Obviously, the North Atlantic Oscillation af-
fecting the climate in Europe, see for example Casty, Raible, Stocker, Wanner
and Luterbacher (2007), and Asia, Zheng, Li, Li, Zhao and Deng (2016), has
had little impact on shifts in monthly average temperatures in Dublin.

5.1.6 Uccle

The estimated mean equation for Uccle appears in Table 7. As may be
expected, judging from the geographical location, the seasonal patterns for
Uccle, depicted in Figure 6, do not deviate very much from those for Dublin.
Figure 7 does demonstrate one di¤erence, however. The post-1950 shifts in
October-December do not have a counterpart in the estimated Dublin model.
For Uccle, the only shift exceeding 2oC occurs in January. The months

13



displaying at least a 1oC degree shift span a period from October until March,
February again being an exception. Thus for the three European locations
considered here, no shift is detected for February. For the remaining months
Uccle displays either a minor positive shift early in the 20th century (April
and May) or no shift. As in the case of Dublin, the measurements begin too
late (in 1833) for possible changes in the mean due to the Little Ice Age to
be observed and estimated.

5.2 Shifting seasonal error variances

5.2.1 Beijing and Shanghai

As seen from Figure 8, for the two Asian locations, the seasonal error vari-
ances remain low throughout the year and are mostly constant. They are,
however, higher in the winter than in the summer. Comparison between the
locations shows that there is no systematic di¤erence in the levels between
the two cities. For Beijing, the only months for which there is a shift in the
variance are July and December, but the timing of this downward shift in
them is di¤erent. It occurs between 1870 and 1900 for July, whereas the
corresponding period extends from about 1960 to 1975 for December. For
Shanghai, the only (downward) shift in the error variance can be found in
August, and it occurs between 1850 and 1900.

5.2.2 European locations

Tests of constancy of error variances (not reported) in the European equa-
tions show that the null hypothesis of constancy can be rejected only once
at any conventional signi�cance level. There is more variability in the winter
than in the summer for each location. St Petersburg di¤ers from the rest in
that the variability over the year is much stronger than for the other stations.
The errors are not directly comparable with the other stations because the St
Petersburg series is much longer than the other four. However, the di¤erence
remains even if the �rst 90 years were excluded from the considerations. A
reason for this may be that over the years, St Petersburg has been in�uenced
by di¤erent weather conditions: mild winters due to relatively warm air from
the Atlantic have been alternating with cold �Siberian�winters.
Furthermore, stability of the seasonal error variance is not rejected for any

month. This variation has not been absorbed by the mean component of the
model and consequently shows up in the error variance. It could be argued
that winter warming has shifted the St Petersburg distribution, which has
increased the dispersion. It is seen from Figure 8, however, that this cannot
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be a major reason because the variation is strongest in February where no
mean shift has been detected.
On the contrary, for Dublin, with few exceptions the Atlantic weather

patterns have been dominating, which has contributed to a better �t. The
di¤erence between winter and summer variances is small. Interestingly, Uc-
cle, located in Western Europe not far from the Atlantic Ocean, lies between
these two. The error variances for winter months are higher than in the
Dublin equation but are still much lower than the ones for St Petersburg.
The only rejection of constancy occurs in the equation for Uccle, and the

month is December. The variance shifts from the relatively high �January
level� closer to the lower �November level� between about 1925 and 1950.
While there are a few December shifts in the estimated VSSMC-AR model
of He et al. (2019a), the timing of the Uccle shift does not match any of
them.

5.3 Shifting seasonal error correlations

Since the series are not equally long, correlations can only be estimated
based on the data from 1847 to 2018. The model is not re-estimated for this
purpose, but its residuals are centred such that they sum up to zero for this
particular period. Constancy of correlations (test results not reported) is
only rejected for April. For this month, the time-varying correlation matrix
is estimated, and likelihood ratio tests are used to sort out the correlations
that do not change. Thereafter the correlation matrix with the appropriate
restrictions is re-estimated.
The results in Figure 9 show that the European correlations, marked in

red, are somewhat higher in the winter months than in the summer. This
pattern was also observed in the dataset analysed by He et al. (2019a). The
only exception to this rule is the Dublin-Uccle correlation which is rather
steady and only �uctuates between 0.6 and 0.7 throughout the year. The
only Asian, that is, the Beijing-Shanghai correlation also �ts this pattern.
For these two pairs it seems that the variation not captured by the seasonal
means contains factors that are common for them. In April, however, both
correlations surge towards unity at the end of the period. The correlation
between St Petersburg and Uccle is generally lowest in this group but remains
slightly positive for all 12 months.
The monthly �intercontinental�correlations involving one Asian and one

European location, marked in blue in Figure 9, are mostly positive and close
to zero or slightly negative throughout the year. In April, the correlations be-
tween Shanghai on the one hand and both Dublin and Uccle on the other be-
come strongly negative towards the end of the period. Overall, the Shanghai�
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St Petersburg correlation, which is also the one between the northernmost
and the southernmost city in this dataset, is generally the lowest one, always
constant and slightly negative. It appears that the temperature movements
not accommodated in the seasonal means and variances are rather unrelated
across continents.

6 Final remarks

In this paper the VSSMC-AR model is applied to long monthly temperature
series from �ve cities, two from Asia (China) and three from Europe. The
interest centres on two issues: di¤erences between shifts in the Asian and
European series and those between �Atlantic�and continental European ones.
The estimation results for seasonal means show that warming in Beijing and
Shanghai on the average has begun later than in Europe, and it has been
stronger in the winter than in the summer. As to seasonal error variances
from the model, they are smaller than for Uccle or St Petersburg but in line
with those from the Dublin equation.
Among the three European series, there are clear di¤erences in warming.

The estimated equation for Dublin shows that warming has so far been rather
modest throughout the year. For seven months, no warming trend has been
detected. Compared to St Petersburg, warming in Uccle has also been rather
minor, and for �ve months, constancy of the seasonal mean has not been
rejected.
Estimated error correlations suggest that factors not explained by the

seasonal means and variances are di¤erent in Asia (Beijing and Shanghai)
from Europe. The intercontinental correlations are either positive and low or
slightly negative. The strongest correlation is that between the �neighbour-
ing�cities Dublin and Uccle, and the other correlation separate from the rest
is the one between Beijing and Shanghai. It may be concluded, not unex-
pectedly, that the distance between the locations a¤ects the correlations. He
et al. (2019a) arrived at a similar conclusion, but they also did notice that
geography plays a role.
It would be interesting to add more Asian cities to this comparison. A

drawback would be that to the best of our knowledge the other monthly Asian
temperature series would be shorter than the two series analysed here and/or
would contain a rather large number of missing values. This could diminish
strength of the conclusions, although such an exercise would certainly not be
worthless. It is nevertheless left for further research.
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A Figures

Figure 1. Locations of the �ve cities, Beijing, Shanghai, St Petersburg,
Dublin and Uccle
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Figure 2. Shifting average monthly temperatures in Beijing, 1841�2018,
estimated from the model (1)
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Figure 3. Shifting average monthly temperatures in Shanghai, 1847�2018,
estimated from the VSSMC-AR model (1)
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Figure 4. Shifting average monthly temperatures in St Petersburg,
1752�2018, estimated from the VSSMC-AR model (1)
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Figure 5. Shifting average monthly temperatures in Dublin, 1831�2018,
estimated from the VSSMC-AR model (1)
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Figure 6. Shifting average monthly temperatures in Uccle, 1833�2018,
estimated from the VSSMC-AR model (1)
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Figure 7. Plots of estimated shift sizes allocated on periods 1850�1900,
1900�1950 and 1950�2018 for the �ve locations (x-axis measures the shift in
centigrade).
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Figure 8. Histograms of the estimated error variances from the VSSMC-AR
model for the �ve cities
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Figure 9. Estimated error correlations from the VSSMC-AR model for
temperatures of the �ve cities, 1847�2018
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B Tables

This appendix contains the tables for the �ve estimated mean equations.
Three remarks are in order. First, as has been mentioned in Section 5.1.3,
sometimes it has not been numerically possible to estimate the logistic tran-
sition function because there has not been enough information in the data
about where the function bends. It has then been replaced by a linear trend.
These cases are distinguished in the table by the fact that there are no es-
timates for either the slope parameter 
j or location parameter cj. The two

parameter estimates, b�j0 and b�j1; are the intercept and the coe¢ cient of the
linear trend t=T: Furthermore, in the absence of a shift, only b�j0 has an esti-
mate. Second, in some cases the transition is rapid, and the slope parameter

j has been �xed to the value 40 that has functioned as the upper bound.
This is why the �estimate�lacks a standard deviation estimate. Third, in the
estimation of an exponential transition function, cj has sometimes been �xed,
typically to unity. At the same time, the standard deviations of b
j and b�j1
remain very large because these estimates are strongly negative correlated
and their joint uncertainty is thus large. As discussed in Section 5.1.3, the
reason for this is that there has not been enough information in the data
to cover the part of the exponential transition function where it begins to
approach its limiting value unity. As a result, it has not been numerically
possible to obtain estimates for these three parameters simultaneously.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.256 0.022 c6 0.402 0.092
�2 0.084 0.015 �7;0 18.267 0.592
�1;0 -4.361 0.156 �7;1 2.501 1.223
�1;1 1.271 0.268 
7 20.786 14.638

1 40.000 - c7 1.000 -
c1 0.804 0.032 �8;0 16.068 0.667
�2;0 -0.570 0.145 �8;1 3.780 1.115
�2;1 2.050 0.283 
8 17.442 7.535

2 40.000 - c8 1.000 -
c2 0.820 0.020 �9;0 11.131 0.683
�3;0 5.568 0.152 �9;1 21.427 921.697
�3;1 6.189 0.967 
9 0.135 5.914

3 11.857 2.769 c9 0.374 0.077
c3 1.000 - �10;0 5.093 0.603
�4;0 12.312 0.197 �10;1 1.035 0.311
�4;1 15.874 648.736 
10 - -

4 0.150 6.293 c10 - -
c4 0.349 0.101 �11;0 -1.352 0.464
�5;0 16.246 0.298 �11;1 1.037 0.315
�5;1 3.310 1.390 
11 - -

5 25.786 15.300 c11 - -
c5 1.000 - �12;0 -4.970 0.310
�6;0 18.653 0.476 �12;1 20.861 275.498
�6;1 -0.411 0.195 
12 0.290 3.978

6 40.000 - c12 0.416 0.033

Table 3: Estimated monthly seasonal mean equation for Beijing. Note: See
explanations in the beginning of the appendix for notation
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.237 0.022 c6 - -
�2 0.115 0.017 �7;0 19.723 0.587
�1;0 0.447 0.300 �7;1 3.521 0.903
�1;1 2.841 0.709 
7 11.223 4.385

1 6.281 2.852 c7 1.000 -
c1 1.000 - �8;0 17.899 0.706
�2;0 2.661 0.206 �8;1 0.637 0.189
�2;1 4.402 0.717 
8 40.000 -

2 6.582 1.917 c8 0.440 0.058
c2 1.000 - �9;0 13.478 0.757
�3;0 6.741 0.155 �9;1 1.961 3.224
�3;1 4.684 0.897 
9 7.993 9.968

3 10.566 3.085 c9 0.897 0.422
c3 1.000 - �10;0 8.979 0.702
�4;0 11.219 0.222 �10;1 4.207 0.739
�4;1 3.997 0.800 
10 7.549 2.266

4 8.270 2.667 c10 1.000 -
c4 1.000 - �11;0 4.065 0.579
�5;0 14.666 0.333 �11;1 2.094 0.311
�5;1 3.989 0.860 
11 - -

5 9.715 3.235 c11 - -
c5 1.000 - �12;0 1.040 0.446
�6;0 17.019 0.469 �12;1 22.510 791.349
�6;1 0.510 0.311 
12 0.214 7.702

6 - - c12 0.481 0.034

Table 4: Estimated monthly seasonal mean equation for Shanghai. Note:
See explanations in the beginning of the appendix for notation
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.291 0.018 c6 - -
�2 0.051 0.014 �7;0 12.651 0.365
�1;0 -7.613 0.280 �7;1 24.757 1364.012
�1;1 1.800 0.324 
7 0.171 9.650

1 40.000 - c7 0.425 0.076
c1 0.402 0.035 �8;0 9.970 0.423
�2;0 -5.152 0.208 �8;1 20.494 1699.677
�2;1 - - 
8 0.154 12.989

2 - - c8 0.425 0.102
c2 - - �9;0 5.350 0.381
�3;0 -1.837 0.314 �9;1 - -
�3;1 6.250 1.216 
9 - -

3 6.738 2.323 c9 - -
c3 1.000 - �10;0 0.202 0.409
�4;0 3.375 0.336 �10;1 1.384 0.513
�4;1 2.205 0.522 
10 - -

4 8.846 5.675 c10 - -
c4 0.331 0.039 �11;0 -3.317 0.292
�5;0 8.332 0.299 �11;1 1.356 0.379
�5;1 4.698 1.151 
11 24.403 32.623

5 5.987 2.772 c11 0.574 0.063
c5 1.000 - �12;0 -7.385 0.310
�6;0 12.110 0.218 �12;1 3.661 0.518
�6;1 - - 
12 - -

6 - - c12 - -

Table 5: Estimated monthly seasonal mean equation for St Petersburg. Note:
See explanations in the beginning of the appendix for notation.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.227 0.021 c6 - -
�2 0.063 0.023 �7;0 11.329 0.323
�1;0 3.246 0.182 �7;1 - -
�1;1 - - 
7 - -

1 - - c7 - -
c1 - - �8;0 10.220 0.386
�2;0 3.640 0.159 �8;1 0.449 0.181
�2;1 - - 
8 40.000 -

2 - - c8 0.508 0.080
c2 - - �9;0 8.188 0.397
�3;0 3.691 2.431 �9;1 0.597 0.182
�3;1 2.740 4.580 
9 40.000 -

3 1.601 3.792 c9 0.551 0.060
c3 1.000 - �10;0 5.618 0.368
�4;0 6.181 0.168 �10;1 0.997 0.184
�4;1 - - 
10 40.000 -

4 - - c10 0.579 0.036
c4 - - �11;0 3.816 0.308
�5;0 8.312 0.201 �11;1 - -
�5;1 - - 
11 - -

5 - - c11 - -
c5 - - �12;0 3.138 0.241
�6;0 10.481 0.255 �12;1 0.398 0.232
�6;1 - - 
12 27.639 77.039

6 - - c12 0.664 0.116

Table 6: Estimated monthly seasonal mean equation for Dublin. Note: See
explanations in the beginning of the appendix for notation
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.173 0.021 c6 - -
�2 0.062 0.013 �7;0 14.282 0.418
�1;0 0.568 0.282 �7;1 - -
�1;1 1.829 0.447 
7 - -

1 - - c7 - -
c1 - - �8;0 13.535 0.477
�2;0 2.601 0.149 �8;1 - -
�2;1 - - 
8 - -

2 - - c8 - -
c2 - - �9;0 10.802 0.494
�3;0 4.403 0.276 �9;1 - -
�3;1 1.275 0.342 
9 - -

3 23.740 29.155 c9 - -
c3 0.384 0.059 �10;0 6.690 0.554
�4;0 7.747 0.223 �10;1 2.650 0.908
�4;1 0.627 0.272 
10 4.543 3.554

4 40.000 - c10 1.000 -
c4 0.524 0.086 �11;0 3.157 0.378
�5;0 10.646 0.301 �11;1 1.605 0.646
�5;1 0.879 0.283 
11 40.000 -

5 40.000 - c11 0.902 0.043
c5 0.380 0.062 �12;0 1.167 0.289
�6;0 13.376 0.334 �12;1 0.758 0.281
�6;1 - - 
12 40.000 -

6 - - c12 0.617 0.072

Table 7: Estimated monthly seasonal mean equation for Uccle. Note: See
explanations in the beginning of the appendix for notation
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pAR(1) pAR(2) pAR(3) pAR(6) pAR(12)
Beijing 0.710 0.719 0.488 0.688 0.345

Shanghai 0.915 0.855 0.610 0.547 0.231
St Petersburg 0.659 0.544 0.505 0.683 0.460

Dublin 0.621 0.652 0.362 0.314 0.064
Uccle 0.940 0.890 0.942 0.384 0.222

Table 8: p-values of the test of no error autocorrelation for the �ve seasonal
mean equations in the estimated VSSMC-AR model against error autocor-
relations of various length
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