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Abstract

We consider a vector version of the Shifting Seasonal Mean Autore-
gressive model. The model is used for describing dynamic behaviour of
and contemporaneous dependence between a number of long monthly
temperature series for 20 cities in Europe, extending from the second
half of the 18th century until mid-2010s. The results indicate strong
warming in the winter months, February excluded, and cooling fol-
lowed by warming during the summer months. Error variances are
mostly constant over time, but for many series there is systematic
decrease between 1820 and 1850 in April. Error correlations are con-
sidered by selecting two small sets of series and modelling correlations
within these sets. Some correlations do change over time, but a large
majority remains constant. Not surprisingly, the correlations generally
decrease with the distance between cities, but geography also plays a
role.
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1 Introduction

Climate scientists have examined variations in the mean and to some ex-
tent dispersion in seasonal temperature averages over long periods of time.
Variations by season in European temperatures based on station data have
been considered, among others, by Luterbacher, Dietrich, Xoplaki, Grosjean
and Wanner (2004), Xoplaki, Luterbacher, Paeth, Dietrich, Steiner, Grosjean
and Wanner (2005), Casty, Wanner, Luterbacher, Esper and Böhm (2005)
and Casty, Raible, Stocker, Wanner and Luterbacher (2007), to name a few.
Long monthly temperature series have been analysed as well. Harvey and
Mills (2003), Proietti and Hillebrand (2017) and He, Kang, Teräsvirta and
Zhang (2019) built models for the well-known central England temperature
(CET) series, as did Vogelsang and Franses (2005). Harvey and Mills (2003)
modelled quarterly and annual versions of this series. Vogelsang and Franses
(2005) also examined the long De Bilt series which is considered in this
study as well, albeit in a somewhat shortened form. Among other things,
Hillebrand and Proietti (2017) modelled a number of long, mostly European
temperature series and built a separate structural time series model for each
of them.
In this paper we shall construct a multivariate time series model called the

Vector Seasonal Shifting Mean and Covariance Autoregressive (VSSMC-AR)
model. The purpose of the model is to make it possible to examine monthly
variations in the means, variances and correlations of 20 long monthly Eu-
ropean time series extending, with some exceptions, over 250 years from the
second half of the 18th century to the second half of the present decade.
The motivation for this work is to obtain more detailed information about
long-run temperature changes in Europe using these monthly time series.
To this end, we use the VSSMC-AR model to highlight salient features of

these long temperature series. They include monthly means and, in particu-
lar, changes in them over time, and possible systematic changes in monthly
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error variances. Furthermore, and this may be new, correlations between the
errors will be considered. The correlations represent contemporaneous exoge-
nous e¤ects or lack of them, in�uencing the series after the e¤ects of changing
monthly means and variances have been removed. They are assumed to be
potentially time-varying as well, and when the model is estimated, some of
them turn out to be just that.
The plan of the paper is as follows. The VSSMC-AR model is introduced

in Section 2. The log-likelihood and the score of the model are presented in
Section 3. Model speci�cation, estimation and misspeci�cation tests are dis-
cussed in Section 4. The dataset is presented in Section 5. Section 6 contains
the empirical results. Conclusions can be found in Section 7. Appendix A
contains the �gures and Appendix B the estimated mean equations.

2 The model

The VSSMC-AR model is a multivariate generalisation of the Shifting Mean
Autoregressive model with seasonally time-varying variances developed by He
et al. (2019) and the Vector Shifting Mean Autoregressive model by Holt and
Teräsvirta (in press). In this work we consider several series simultaneously
and are also interested in contemporaneous links between them. The mean
component of the N -dimensional VSSMC-AR model for unit or season s is
de�ned as follows:

ySk+s =
SX
j=1

�j(
Sk + j

SK
)D

(j)
Sk+s +

pX
i=1

�iySk+s�i + "Sk+s (1)

where ySk+s = (y1;Sk+s; :::; yN;Sk+s)0; D
(j)
Sk+s = 1 when j = s; zero otherwise

(D(j)
Sk+s is the jth seasonal dummy variable), "Sk+s is an N � 1 error vector

with mean zero (more of it later), and the roots of jI �
Pp

i=1�iz
ij = 0 lie

outside the unit circle. The vector �j(
Sk+j
SK

) = (�1j(
Sk+j
SK

); :::; �Nj(
Sk+j
SK

))0 is
the vector of seasonal dummy variables. The jth time-varying coe¢ cient
�nj(

Sk+j
SK

) of equation n equals

�nj(
Sk + j

SK
) = �nj0 +

qnjX
i=1

�njignji(
Sk + j

SK
; nji; cnji) (2)

where

gnji(
Sk + j

SK
; nji; cnji) = (1 + expf�nji(

Sk + j

SK
� cnji)g)�1 (3)
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or

gnji(
Sk + j

SK
; nji; c1nji; c2nji) = 1� expf�nji(

Sk + j

SK
� cnji)2g (4)

where nji > 0; i = 1; :::; qnj: It follows that (1) at time Sk + s may simply
be written as

ySk+s = �s(
Sk + s

SK
) +

pX
i=1

�iySk+s�i + "Sk+s: (5)

Assume, for notational simplicity, that the transitions in (2) are of type (3),
that is, monotonic logistic functions. To �x notation, let �ns = (�

0
ns;

0
ns; c

0
ns)

0;
where �ns = (�ns0; �ns1; :::; �nsrs)

0 is an (rns + 1) � 1 vector, whereas ns =
(ns1; :::; nsrs)

0 and cns = (cns1; :::; cnsrs)
0 for n = 1; :::; N are rns� 1 vectors.

Let �s = (�01s; :::;�
0
Ns)

0: The autoregressive component has the parameter
matrix � = (�1; :::;�p); where �i = [�imn]; m; n = 1; :::; N for i = 1; :::; p:
Furthermore, setting � = vec(�); �M = (�01; :::;�

0
S;�

0)0 2 �M is a vector con-
taining all parameters in the mean part of (1). Finally, �0M = (�001 ; :::;�

00
S ;�

00)0

is the corresponding true parameter vector.
The error process f"Sk+sg is assumed to have a seasonally time-varying

covariance matrix. The error vector is decomposed as

"Sk+s = VSk+szSk+s (6)

where zSk+s � iidN (0;PSk+s) and PSk+s is a seasonally time-varying corre-
lation matrix. It follows that the covariance matrix HSk+s = E"Sk+s"

0
Sk+s =

VSk+sPSk+sVSk+s: The deterministic diagonal matrixVSk+s = diag(�1s(Sk+sSK
);

:::; �Ns(
Sk+s
SK

)) contains the time-varying error standard deviations. The error
variance of the nth equation at season s equals

�2ns(
Sk + s

SK
) =

SX
j=1

�2nj(
Sk + j

SK
)D

(j)
Sk+s (7)

where

�2nj(
Sk + j

SK
) = �2nj0 +

rnjX
i=1

!njig
(v)
nji(

Sk + j

SK
; 

(v)
nji; c

(v)
nji) (8)

with

g
(v)
nji(

Sk + j

SK
; 

(v)
nji; c

(v)
nji) = (1 + expf�

(v)
nji(

Sk + j

SK
� c(v)nji)g)�1 (9)

or

g
(v)
nji(

Sk + j

SK
; 

(v)
nji; c

(v)
nji) = 1� expf�

(v)
nji(

Sk + j

SK
� c(v)nji)2g: (10)
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In (9) and (10), (v)nji > 0; i = 1; :::; rnj; j = 1; :::; S and n = 1; :::; N . To
guarantee positivity of each element in (8), �2nj0 > 0 and �

2
nj0+

Pk
i=1 !nji > 0

for k = 1; :::; rnj; n = 1; :::; N; and j = 1; :::; S: This de�nition imposes
restrictions on !nji; i = 1; :::; rnj: For the individual season s it conforms to
the one in Silvennoinen and Teräsvirta (2016). Let �(v)s = (�

(v)0
1s ; :::;�

(v)0
Ns )

0

be the vector of parameters of season s in the N equations, where �(v)ns =
(�2ns0;!

0
ns;

(v)0
ns ; c

(v)0
ns )0 with !ns = (!ns1; :::; !nsrs)

0; 
(v)
ns = (

(v)
ns1; :::; 

(v)
nsrs)

0;

and c(v)ns = (c
(v)
1ns1; :::; c

(v)
1nsrs)

0; for n = 1; :::; N . To complete the notation for the
variance component, let �V = (�

(v)0
1 ; :::;�

(v)0
S )0 2 �V contain all parameters

in this component and let �0V = (�
(v)00
1 ; :::;�

(v)00
S )0 be the corresponding true

parameter vector.
The error correlation matrix for season s has the following form:

PSk+s =
SX
j=1

f(1� g(c)j (
Sk + j

SK
))P(j1) + g

(c)
j (
Sk + j

SK
)P(j2)gD(j)

Sk+s (11)

where P(j1) and P(j2) are N � N positive de�nite correlation matrices, j =
1; :::; S: Furthermore, in (11),

g
(c)
j (
Sk + j

SK
; 

(c)
j ; c

(c)
j ) = (1 + expf�

(c)
j (
Sk + j

SK
� c(c)j )g)�1 (12)

or

g
(c)
j (
Sk + j

SK
; 

(c)
j ; c

(c)
j ) = 1� expf�

(c)
j (
Sk + j

SK
� c(c)j )2g: (13)

Since both (12) and (13) are bounded between zero and one, as a convex com-
bination of two positive de�nite correlation matrices PSk+s is positive de�nite
for all Sk + s; see, for example, Berben and Jansen (2005) or Silvennoinen
and Teräsvirta (2005, 2015).
For further use, denote the lower-half stacked square matrixA by vecl(A);

and let �si = vecl(P(si)); i = 1; 2: Then �
(c)
s = (�0s1;�

0
s2; 

(c)
s ; c

(c)
s )0 contains all

parameters in the correlation matrix PSk+s: Finally, denote the vector of all
correlation parameters by �C = (�

(c)0
1 ; :::;�

(c)0
S )0 2 �C and the vector of true

parameters by �0C = (�
(c)00
1 ; :::;�

(c)00
S )0:

3 Log-likelihood and maximum likelihood es-
timation

Assuming normal and independent errors zSk+s, the log-likelihood function of
the model (the log conditional density of zt) for observation Sk+ s (ignoring
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the constant) becomes

`Sk+s(zSk+sj�M ;�V ;�C ;FSk+s�1) = �(1=2) ln jVSk+sPSk+sVSk+sj
�(1=2)"0Sk+sfVSk+sPSk+sVSk+sg�1"Sk+s

= � ln jVSk+sj � (1=2) ln jPSk+sj � (1=2)"0Sk+sfVSk+sPSk+sVSk+sg�1"Sk+s

where FSk+s�1 contains the conditioning information at Sk+ s; and "Sk+s =
ySk+s � �s(Sk+sSK

)�
Pp

i=1�iySk+s�i: As VSk+s is diagonal, one may write

`Sk+s(zSk+sj�M ;�V ;�C ;FSk+s�1)

= �(1=2)
NX
n=1

rnsjX
i=1

ln g
(v)
nsi(

Sk + s

SK
; 

(v)
nsi; c

(v)
nsi)� (1=2) ln jPSk+sj

�(1=2)z0Sk+sP�1Sk+szSk+s: (14)

Since the mean equations are estimated one by one, we present the score for
equation n: In order to do that, we need the partial derivatives of �ns(Sk+sSK

)
in (2). They are given in Lemma 1 of below:

Lemma 1 (He et al., 2019)The partial derivatives

@�ns(
Sk+s
SK

)

@�ns
= (

@�ns(
Sk+s
SK

)

@�ns0
;
@�ns(

Sk+s
SK

)

@�ns1
;
@�ns(

Sk+s
SK

)

@ns1
;
@�ns(

Sk+s
SK

)

@cns1
)0

are as follows: @�ns(Sk+sSK
)=@�s0 = 1; @�ns(

Sk+s
SK

)=@�s1 = gns1;

@�ns(
Sk+s
SK

)

@ns
= ��ns1gns1(1� gns1)(

Sk + s

SK
� cns1)

and
@�ns(

Sk+s
SK

)

@cns
= �ns1ns1gns1(1� gns1g

where gns1 = gns1(Sk+sSK
; ns1; cns1) for short.

Furthermore, @�ns1(Sk+sSK
)=@�nj = 0 for any j 6= s:

The average score of (14) for the mean parameters of equation n can also
be borrowed from He et al. (2019):

Lemma 2 The (4S + p) � 1 average score function (1=SK)@LSK(�; ")=@�
of the mean parameter block of equation n of (14) has the following form.
The partial derivatives with respect to �ns and �n equal

sK(�ns) =
1

K

K�1X
k=0

"n;Sk+s

�2ns(
Sk+s
SK

)

@�ns(
Sk+s
SK

)

@�ns
(15)
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for s = 1; :::; S; and

sSK(�n) =
1

SK

K�1X
k=0

SX
j=1

"n;Sk+j

�2ns(
Sk+j
SK

)
ySk+j�1 (16)

where ySk+j = (ySk+j;:::; ySk+j�p+1)
0: The elements of @�ns(Sk+sSK

)=@�ns are
de�ned in Lemma 1.

When the mean parameters are estimated for the �rst time, �2ns(
Sk+j
SK

) =
�2ns0 for s = 1; :::; S: In order to estimate the variance terms, we need the
score for the variance parameters of equation n: They have been derived in
Amado and Teräsvirta (2013) and are presented in the following lemma:

Lemma 3 The partial derivatives

@�2ns(
Sk+s
SK

)

@�(v)ns
= (

@�2ns(
Sk+s
SK

)

@�2ns0
;
@�2ns(

Sk+s
SK

)

@!ns1
;
@�2ns(

Sk+s
SK

)

@
(v)
ns1

;
@�2ns(

Sk+s
SK

)

@c
(v)
ns1

)0

are as follows: @�2ns(
Sk+s
SK

)=@�2s0 = 1; @�
2
ns(

Sk+s
SK

)=@!ns1 = g
(v)
ns1;

@�2ns(
Sk+s
SK

)

@
(v)
ns1

= !ns1g
(v)
ns1(1� g

(v)
ns1)(

Sk + s

SK
� c(v)ns1)

and
@�2ns(

Sk+s
SK

)

@c
(v)
ns1

= �(v)ns1!ns1g
(v)
ns1(1� g

(v)
ns1):

As in the mean component, @�2ns(
Sk+s
SK

)=@�
(v)
nj = 0 for j 6= s: The average

score for the variance component in equation n is given in the following
lemma:

Lemma 4 (He et al., 2019) The sth 4 � 1 block of the average score func-
tion (1=SK)@LSK(�V ; ")=@�V of the variance part of (14) for equation n
assuming uncorrelated errors equals

sK(�
(v)
ns ) =

1

2K

K�1X
k=0

(
"2n;Sk+s

�2ns(
Sk+s
SK

)
� 1) 1

�2ns(
Sk+s
SK

)

@�2ns(
Sk+s
SK

)

@�(v)ns
(17)

s = 1; :::; S; where the elements of @�2ns(
Sk+s
SK

)=@�(v)ns are de�ned in Lemma 3.
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This result is applied when the error variances are estimated the �rst
time. The resulting estimates serve as initial estimates for further iterations.
In order to consider the joint average score function of the variance and
correlation parameters, let

sSk+s(�
(c)
s ) = (s

0
t(�s1); s

0
t(�s2); st(

(c)
s ); st(c

(c)
s ))

0: (18)

denote the score vector for observation Sk+s of the correlation block for sea-
son s. The form of the sub-blocks in (18) as well as the variance block under
correlated errors are given in the following lemma, adopted from Silvennoinen
and Teräsvirta (2017):

Lemma 5 The average score for the sth 4 � 1 variance block of (14) for
equation n has the following representation:

sK(�
(v)
ns ) =

1

2K

K�1X
k=0

1

�2ns(
Sk+s
SK

)

@�2ns(
Sk+s
SK

)

@�(v)ns
(z0Sk+sene

0
nP

�1
Sk+szSk+s � 1) (19)

where ei = (00i�1; 1;0
0
N�i)

0; i = 1; :::; N: The sth (N(N � 1)=2 + 2)� 1 corre-
lation block equals

sK(�
(c)
s ) = �

1

2K

K�1X
k=0

@vec(PSk+s)0

@�(c)s
fvec(P�1Sk+s)�(P�1Sk+s
P�1Sk+s)vec(zSk+sz0Sk+s)g:

Dividing @vec(PSk+s)=@�
(c)
s into four sub-blocks as follows:

@vec(PSk+s)

@�(c)s
=

"
@vec(PSk+s)

@�0s1
;
@vec(PSk+s)

@�0s2
;
@vec(PSk+s)

@
(c)
s

;
@vec(PSk+s)

@c
(c)
s

#
the two N2 �N(N � 1)=2 blocks are

@vec(PSk+s)
@�0s1

= (1� g(c)s )
@vec(P(1))
@�0s1

(20)

@vec(PSk+s)
@�0s2

= g(c)s
@vec(P(2))
@�0s2

(21)

and the two N2 � 1 vectors have the form
@vec(PSk+s)

@
(c)
s

= g(c)s (1� g(c)s )(
Sk + s

SK
� c(c)s )vec(P(2) �P(1))

and
@vec(PSk+s)

@c
(c)
s

= �(c)s g(c)s (1� g(c)s )vec(P(2) �P(1)):

The di¤erence between (17) and (19) is that in the latter, the time-varying
seasonal correlations PSk+s are properly accounted for. The expression (17)
is nevertheless needed in the estimation; see Section 4.3.1.
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4 Modelling

4.1 General idea

The VSSMC-AR model is nonlinear in the mean, error covariances and cor-
relations. This requires care in specifying the model. It is seen from (2) that
the nonlinear seasonal intercept nests a linear (constant) one. This implies
that if the intercept has a constant coe¢ cient for equation n and season
s, say, the nonlinear model is not identi�ed. Because of this, constancy of
the seasonal intercepts has to be tested equation by equation and season
by season before �tting a VSSMC-AR model to the data. More generally,
the number of transitions in (2) has to be determined before proceeding to
estimating the mean component and the same number in (8) before estimat-
ing the error variances. Note that these numbers can equal zero. A similar
argument applies to correlations.
The parameters in the mean component of (1) are estimated equation

by equation, assuming that the errors are iid and that the error covariance
matrix is a diagonal matrix. After this has been done, the model is tested for
serial correlation in the errors using a test that is robust against heteroskedas-
ticity. This is done equation by equation because the error covariance matrix
is at this stage assumed diagonal. If the null hypothesis is rejected, the lag
structure of the model has to be respeci�ed and the test performed again.
The test is described in Section 4.2.2.
After the mean component has been estimated, constancy of the monthly

error variances is tested season by season against (8) with one transition.
As seen from (8) and (9) (or (10)), the error variance with one transition is
not identi�ed if the transition does not exist. As a result, even this testing
situation is nonstandard and considered in more detail in Section 4.2.3. Test-
ing proceeds by adding one transition at a time until the �rst non-rejection.
The error variances are then estimated season by season from the residuals.
The monthly components whose square roots form the main diagonal of ma-
trix VSk+s in the error decomposition (6) are completely orthogonal to each
other.
The error variances are estimated without regard to the correlations.

Once this has been done, the next step is to test constancy of the corre-
lation matrix PSk+s season by season, that is, for s = 1; :::; S. Since this
matrix is not identi�ed under the null hypothesis PSk+s = Ps; the testing
situation is again nonstandard. Testing this null hypothesis is studied in
Section 4.2.4. After this has been done, the variances and correlations are
estimated jointly. This is discussed in Section 4.3.
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4.2 Specifying and testing the VSSMC-AR model

4.2.1 Testing constancy of the intercept and determining the num-
ber of transitions

The �rst step in building the VSSMC-AR model is to test constancy the
coe¢ cients of seasonal dummies against the alternative that there is one
transition, qnj = 1 in (2). This can be done equation by equation and season
by season. For equation n and season s; the null hypothesis is ns1 = 0.
This is a nonstandard testing situation because the model is not identi�ed
(�ns1 and cns1 are unidenti�ed nuisance parameters) when the null hypothesis
holds. The test is based on approximating the alternative by a polynomial
as in Luukkonen, Saikkonen and Teräsvirta (1988). For details, see He et al.
(2019). If the null hypothesis is rejected, the choice is made between (3)
and (4), and the equation with one transition estimated. This is done for
all n equations. Next, the null hypothesis of one transition is tested against
two transitions. The test is a slightly generalised version of the previous
test, see, for example, Teräsvirta, Tjøstheim and Granger (2010, Chapter
16). The tests are robusti�ed against heteroskedasticity as in Wooldridge
(1990). Testing and estimation continue until the null hypothesis of no more
transitions is no longer rejected.

4.2.2 Testing the hypothesis of no serial correlation in errors

The test of no error autocorrelation is a standard test for the errors in non-
linear models; see for example Teräsvirta, Tjøstheim and Granger (2010,
Chapter 5). A robust version is needed because the errors are heteroskedas-
tic. The test against autocorrelation of order r is carried out for each equa-
tion separately. As Wooldridge (1990) showed, it may be carried out in the
�TR2-form�as follows.

1. Estimate the model (1), save the residual vectors b"Sk+s = (b"1;Sk+s; :::;b"N;Sk+s)0; s = 1; :::; S; k = 0; 1:::; K � 1:

2. For equation n; regress 1 on the residuals b"n;Sk+s�1; :::;b"n;Sk+s�r and
the gradient vector

Gn;Sk+s(�ns;�n) = (b"n;Sk+s@b�ns(Sk+sSK
)

@�0ns
;b"n;Sk+sy0n;Sk+s�1)0

(the constant variance can be ignored). Save the residuals b�n;Sk+s and
compute the sum of squared errors SSRn1 =

PK�1
k=0

PS
s=1
b�2n;Sk+s:
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3. Compute the test statistic Tn = SK � SSRn1.

Under H0 of no error autocorrelation of order r; the statistic Tn has an
asymptotic �2-distribution with r degrees of freedom.

4.2.3 Testing constancy of error variances

After estimating the seasonal means assuming normal and independent er-
rors, constancy of seasonal error variances is tested equation by equation and
season by season, assuming that the errors are not seasonally contempora-
neously correlated. In order to test constancy in equation n and season s
against (at least) one transition in (8) with j = s, that is, rns = 1: The null
hypothesis is H0: 

(v)
ns1 = 0; so �

(v)
ns1; and c

(v)
ns1 are unidenti�ed nuisance para-

meters when this hypothesis holds. The test is set up along the lines in He
et al. (2019). For notational simplicity we consider the case where the transi-
tion function equals is logistic, see (9). The logistic function is expanded into
a Taylor series around (v)ns1 = 0 and reparameterised accordingly. Assuming
!ns1 6= 0 and choosing the third-order polynomial expansion one obtains

�2ns(
Sk + s

SK
) = �

(v)
ns0+�

(v)
ns1

Sk + s

SK
+�

(v)
ns2(

Sk + s

SK
)2+�

(v)
ns3(

Sk + s

SK
)3+Rn3;Sk+s

(22)
where, under H0; �

(v)
ns0 = �2ns0; and Rn3;Sk+s is the remainder. Since �

(v)
nsi =


(v)
ns1e!(v)nsi; where e!(v)nsi 6= 0; i = 1; 2; 3; the new null hypothesis equals H00:
�
(v)
ns1 = �

(v)
ns2 = �

(v)
ns3 = 0: Under this hypothesis, Rn3;Sk+s = 0; and because

we are considering a Lagrange multiplier test, the remainder does not a¤ect
the inference. If the null hypothesis is rejected, the model with a seasonally
time-varying error variance is estimated. Under H00, the resulting test statistic
has an asymptotic �2-distribution with three degrees of freedom. The test is
repeated for all seasons s = 1; :::; S:
If the null hypothesis is rejected and the error variance with one transi-

tion estimated, the next step is to test one transition against two. Testing
and estimation continue until the �rst non-rejection of the null hypothesis.
Testing rns transitions against rns+1 relies on a Taylor series approximation
of the (rns + 1)st transition function similar to the one in (22).

4.2.4 Testing constancy of correlations

Following estimation of the error variances in V2
Sk+s = diag(�21s(

Sk+s
SK

); :::;

�2Ns(
Sk+s
SK

)), a constant correlation matrix bPs = corr(bzSk+s) is obtained for
each s = 1; :::; S. The next step is to test constancy of the correlations in (11)
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using bPs. As discussed in Silvennoinen and Teräsvirta (2005, 2015, 2017),
the time-varying correlation model is only identi�ed under the alternative,
which invalidates the standard asymptotic inference. As already done in the
case of the mean and the variance components, the identi�cation problem
is circumvented by approximating the transition function (12) or (13) by its
Taylor expansion around the null hypothesis, H0: 

(c)
s = 0:

The test can be constructed along the lines presented in Hall, Silvennoinen
and Teräsvirta (2019), see also the appendix of Silvennoinen and Teräsvirta
(2005). The only di¤erence is that because of orthogonality of the seasonal
covariances, the test is carried out separately for each season. To derive
the test statistic, consider the �rst-order Taylor expansion of (13) around

(c)
s = 0; assuming that the test is against (11) with (13). It has the following
form:

g(c)s (
Sk + s

SK
; (c)s ; c

(c)
s ) = 1� expf�(c)s (

Sk + s

SK
� c(c)s )2g

=
1

2
(
Sk + s

SK
� c(c)s )2(c)s +R1(

Sk + s

SK
; (c)s ) (23)

where R1(Sk+sSK
; 

(c)
s ) is the remainder. Using (23), (11) becomes

PSk+s = P(s1) + f
1

2
(
Sk + s

SK
)2 � c(c)s

Sk + s

SK
+
1

2
(c(c)s )

2g(c)s (P(s2) �P(s1))

= fP(s1) +
1

2
(c(c)s )

2(c)s (P(s2) �P(s1))g

+(
1

2
(
Sk + s

SK
)2 � c(c)s

Sk + s

SK
)(P(s2) �P(s1))(c)s

+(P(s2) �P(s1))R1(
Sk + s

SK
; (c)s )

= P(As0) + (
Sk + s

SK
)P(As1) + (

Sk + s

SK
)2P(As2)

+R1(
Sk + s

SK
; (c)s )(P(s2) �P(s1))

whereP(s1) 6= P(s2): The main diagonals ofP(As1) andP(As2) consist of zeroes.
Setting �As = (�0As0;�

0
As1;�

0
As2)

0; where �Asi = vecl(P(Asi)); i = 0; 1; 2; the
new null hypothesis is H00: �As1 = �As2 = 0N(N�1)=2: This is because �Asi =

(c)
s e�Asi; where e�Asi 6= 0; for i = 1; 2: The resulting test statistic has an
asymptotic �2-distribution with N(N � 1) degrees of freedom under H00; for
details, see Hall et al. (2019). In Section 6.3, tests based on the �rst-, second-
and third-order polynomials are applied.
If none of the S null hypotheses is rejected, it is possible to test the

hypothesis that the correlations are the same for s = 1; :::; S: The null hy-
pothesis is H0: Ps = P; s = 1; :::; S: This can for example be done using
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a likelihood ratio test in which the number of degrees of freedom equals
(S � 1)N(N � 1)=2:

4.3 Estimation

4.3.1 Iterations

Since the mean and the covariance components do not contain common pa-
rameters, the estimation can be divided into two main steps as suggested by
Sargan (1964). First estimate the mean parameters and then, conditionally
on the mean, the variance parameters and the correlations. Iterate until
convergence. Both the mean, the variance and the correlations are nonlinear
and have to be estimated iteratively. In the application, �i; i = 1; :::; p; are
assumed diagonal, because for monthly temperature series it is reasonable to
exclude �spillovers�from one weather station to others. The main advantage
of this restriction is a reduction in the number of parameters to be estimated.
When the mean is estimated the �rst time, it is done under the assumption
that HSk+s = �

2
sIN : He et al. (2019) showed that under normality and reg-

ularity conditions, the maximum likelihood estimators are consistent and
asymptotically normal.
After estimating the mean parameters, seasonal covariance components

can be estimated separately for each s = 1; :::; S: This is the case because the
seasonal error covariances are completely orthogonal to each other; see (7)
and (11). Estimation is carried out using a simpli�ed version of the algorithm
in Silvennoinen and Teräsvirta (2017). In that paper, the error variances also
contain conditional heteroskedasticity, which is not a concern here.
For season s; estimation proceeds as follows.

1. Estimate the parameters in �(v)s ; s = 1; :::; S; equation by equation, as-
suming PSk+s(�

(c)
s ) = IN ; where �

(c)
s is the vector of correlation para-

meters for season s: Denote the estimate b�(v;1;1)s = (b�(v;1;1)01s ; :::; b�(v;1;1)0Ns )0:

This means that the deterministic components g(v)ns (Sk+sSK
; 

(v)
nsi; c

(v)
nsi); n =

1; :::; N , have been estimated once.

2. Estimate PSk+s(�
(c)
s ) given �

(v)
s = b�(v;1;1)s : This requires a separate iter-

ation because PSk+s(�
(c)
s ) is nonlinear in parameters, see (8) and (11).

Denote the estimate PSk+s(b�(c;1;1)s ):

3. Re-estimate �(v)s assuming PSk+s(�
(c)
s ) = PSk+s(b�(c;1;1)s ): This yields

�(v)s = b�(v;1;2)s : Then re-estimate PSk+s(�
(c)
s ) given �

(v)
s = b�(v;1;2)s : Iterate
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Station
Latitude Longitude Elevation, m Years

Berlin 52o31�0� 13o23�20� 34 1756-2015
Brno-Turany 49o12� 16o37� 237 1772-2015
Budapest 47o29�33� 19o03�5� 102 1780-2015
Copenhagen 55o40�34� 12o34�6� 9 1798-2014
De Bilt 52o10� 5o18� 15 1750-2017
Hohenpeissenberg 47o48� 11o0� 780 1781-2015
Innsbruck 47o16� 11o23� 574 1777-2016
Karlsruhe 49o00�33� 8o24�14� 115 1779-2015
Kremsmünster 48o03�18� 14o7�51� 384 1767-2016
Milan 45o28�18� 9o11� 120 1763-2012
Munich 48o08� 11o34� 520 1781-2015
Paris 48o51�24� 2o21�3� 34 1757-2000
Regensburg 49o1� 12o5� 338 1773-2015
Stockholm 59o19�46� 18o4�7� 15 1756-2015
Stuttgart 48o47� 9o11� 245 1792-2015
Trondheim 63o25�47� 10o23�36� 115 1761-1981
Uppsala 59o51�63� 17o38�44� 15 1756-2017
Vienna 48o12� 16o22� 170 1775-2016
Vilnius 54o41� 25o17� 124 1777-2015
Warsaw 52o14� 21o1� 93 1779-2015

Table 1: Location of stations and time span for the long monthly average
temperature series in the sample

until convergence. Let the result after R1 iterations be �
(v)
s = b�(v;1;R1)s

and PSk+s(�
(c)
s ) = PSk+s(b�(c;1;R1)s ): The resulting estimates are maxi-

mum likelihood ones.

As already mentioned, this procedure is repeated S times in order to
obtain the estimates for all seasons. In the application, however, the series
are not equally long. This requires some modi�cations to the residual series
in testing and estimation of correlations because only the overlapping parts of
the series can be used for computing them. This complicates things somewhat
because for the overlapping period, the sample mean of the standardised
residuals di¤ers from zero, which biases the constancy test. The problem can
be solved simply by centring the residuals. (It is also possible to re-estimate
the (time-varying) error variances for the overlapping period.) The centred
residuals are used for testing and estimation. Parameter estimates of the
time-varying error variances obtained before considering correlations serve
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as initial values in joint estimation of error variances and correlations.

4.3.2 Details

When the means and error variances are estimated, the iterations are termi-
nated when the slope parameter, nji in (3) or (4), or 

(v)
nji in (9) or (10), or


(c)
j in (12) or (13) reaches 40. This is done both to save computing time and
because it can be assumed that changes in seasonal means, error variances
or correlations are not very abrupt. The standard deviations estimated for
the other parameter estimates are then slightly too small because they are
conditioned on the fact that the slope parameter is �xed.
Another noteworthy detail is that if the transition function to be esti-

mated is a logistic one, it may happen that there is very little information in
the data on where the function bends (its �rst derivative gradually increases
from zero or approaches zero). Consequently, the estimation algorithm may
not converge. In such situations, the logistic function is replaced by a linear
trend:

�Lnj(
Sk + j

SK
) = �nj0 + �nj1((Sk + j)=SK):

A few such cases can be found among the results; see Tables 9�28. They are
restricted to seasonal mean estimates. The corresponding graphs in Figures
A4�A15 are linear.
If the transition function is an exponential one, see (4) or (10), a similar

situation may occur. When it does, the location parameter cnj is �xed,
typically to unity. The estimates of nj and �nj1; however, remain extremely
strongly negatively correlated, which means that their joint uncertainty is
very large. This manifests itself in the very large standard deviations of the
estimates of these parameters, see again Tables 9�28. Buncic (2019) has an
illustrative discussion of this case. Analogously to the previous case, one
could replace the estimated function by a quadratic trend but this has not
been done because the estimation algorithm has nonetheless converged after
�xing the value of the location parameter.

5 Data

Our sample comprises 20 long European monthly temperature series, each
with about 3000 observations, for a list see Table 1. Many of these time series
were examined in Hillebrand and Proietti (2017). Five series may be classi�ed
as Northern European (Copenhagen, Stockholm, Trondheim, Uppsala and
Vilnius), ten as Central or Eastern European, four as Western European (De
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Bilt, Karlsruhe, Paris and Stuttgart), whereas Milan is the sole Southern
European (south of the Alps) series, see Figure A1. With two exceptions,
Paris, ending 2000, and Trondheim, ending 1981, the series extend to the
2010s. For details of the De Bilt series, see van Engelen and Nellestijn (1995).
(De Bilt hosts the headquarters of the Royal Dutch Meteorological Institute.)
The daily Uppsala series, constructed by Bergström and Moberg (2002), has
been converted to a monthly series and shortened to begin at the same time
as the Stockholm one (1756); for this series see Moberg, Bergström, Ruiz
Krigsman and Svanered (2002). The series for the Alpine region stations are
from HISTALP, see Auer et al. (2007).
The last country in our sample to switch to from the Julian to the Gre-

gorian calendar is Sweden, where this happened in 1753. As both Swedish
series start in 1756, none of the weather stations was using the Julian calen-
dar when their recordings began. The De Bilt series actually begins in 1706
but is in this study shortened to start in 1750 in order to make it comparable
with the other series. The Berlin series is also shortened to start in this year
because of a large amount of missing values in the beginning of the series.
A few other time series contain missing values. They have been replaced

with smoothed values obtained by the Kalman �lter. The most conspicuous
gaps occur in the Brno and Warsaw series. The period with missing values
in the former series stretches from November 1939 to March 1949, whereas
in the latter the corresponding months are May 1938 and December 1950.
Figures A2 and A3 contain histograms of seasonal densities of monthly

temperatures for the 20 weather stations. It is seen that there is more dis-
persion in the boreal winter than in the summer. Vilnius seems to have the
most dispersed winter averages of all series, whereas the opposite is found
for Milan.

6 Results

6.1 Mean equations

6.1.1 De�nition of shifting mean

We begin by reporting seasonal means for each of the 20 series. As already
mentioned, it is assumed that the lag matrices �i; i = 1; :::; p; are diagonal:
�i = diag(�i), where �i = (�i1; :::; �iN)

0; i = 1; :::; p: In order to de�ne the
mean, write the nth equation of (5) as

(1�
pX
i=1

�niL
i)yn;Sk+s = �ns(

Sk + s

SK
) + "n;Sk+s
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where L is the lag operator, and yn;Sk+s = (yn;Sk+s; :::; yn;Sk+s�p+1)
0: Then,

assuming as before that the roots of the lag polynomial lie outside the unit
circle,

Eyn;Sk+s = (1�
pX
i=1

�ni)
�1�ns(

Sk + s

SK
) +O(

1

SK
) (24)

see He et al. (2019), where the asymptotically vanishing term O(1=SK) is
due to the fact that �ns(Sk+sSK

) is a nonlinear function of time. The mean can
thus vary seasonally and over time within a season.

6.1.2 General observations

Constancy of coe¢ cients of the seasonal dummy variables is tested for each
equation and rejected. As already mentioned, the transition function (4) is
selected if the test based on the second-order polynomial has a lower p-value
than the corresponding test based on the �rst-order polynomial. Otherwise
the standard logistic function (3) is selected. The test results can be found in
Table 2. There are plenty of rejections, many of them very strong. However,

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Berlin ** - ** ** * * ** *** - * *** -
Brno *** - *** ** - - - *** - ** *** **
Budapest ** * ** ** * ** ** *** * - *** *
Copenhagen ** * *** ** * - * *** - * *** *
De Bilt *** - *** - - - * * - * *** **
Hohenpeissenbg ** - *** * *** ** ** ** - * *** **
Innsbruck *** - *** * *** ** *** *** - * *** ***
Karlsruhe *** - *** ** ** * *** *** * *** *** ***
Kremsmünster ** - ** * ** ** *** *** - - *** **
Milan *** - ** - ** * ** *** ** ** *** ***
Munich ** - *** ** *** ** *** *** - *** *** ***
Paris *** - *** - - - - ** - *** *** ***
Regensburg *** - *** * * - ** *** - ** *** ***
Stockholm * - *** *** - *** ** ** - * *** **
Stuttgart *** - *** * ** ** ** *** * *** ** **
Trondheim * - * - * - - * - *** *** ***
Uppsala ** - *** *** ** ** * ** - * *** ***
Vienna ** * ** ** ** *** ** *** - - *** *
Vilnius * - - ** - ** ** *** - - *** ***
Warsaw ** - *** - - *** * *** - * *** ***

Table 2: Results on testing constancy of seasonal means by month for the 20
stations. Rejection at the 0.05 level of signi�cance (*), 0.01 level (**), 0.001
level (***)

for February, the three rejections only occur at the signi�cance level 0.05.
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When the model with one transition in appropriate places is estimated and
the time-varying dummy coe¢ cients tested against another transition, there
is not a single p-value equal to or below 0.05. The results of the test appear
in Appendix C, Tables 29 and 30.
When this hypothesis is tested, constancy of the intercepts for which

there was no rejection are tested again. This results in three rejections, all
in September, for Copenhagen, Munich and Regensburg. The corresponding
equations are re-estimated and the results given in Appendix B. The hy-
pothesis of no error autocorrelation is tested, and the p-values do not give
cause for concern for any of the �nal equations, see Appendix C, Table 31.
All estimated mean equations with at most one transition per month are

reported in Appendix B, Tables 9�28. In illustrating estimation results by
graphs the months are arranged by season. The boreal winter consists of
December, January and February, the spring of March, April and May, and
the summer of June, July and August. The remaining months, September,
October and November, belong to the boreal autumn. Casty et al. (2007)
examined the period 1766�2000 by season and concluded that the dominant
patterns of climate variability for winter, spring, and autumn resembled the
North Atlantic Oscillation. They found a distinct positive trend for the
period 1960�2000 for winter and spring. For the Alpine region Casty et al.
(2005) pointed out that the pre-1900 winter temperatures were generally
colder than those of the twentieth century. They detected a strong transition
to warm winter conditions between 1890 and 1915.
We begin with the winter temperatures. Luterbacher et al. (2004) pointed

out that the North Atlantic Oscillation has a dominant in�uence over winter
temperatures in Europe but added that regional variations may be large.
This is more or less what we �nd. The December mean shifts are plotted
in Figure A4. It should be noted that the ordinates in this �gure and the
ones for the remaining months are not the same. The plots mostly suggest a
steady increase in the mean temperature, which is in line with Casty et al.
(2005). Only three mean shifts di¤er from this pattern. No shift can be
detected for Berlin, and both Budapest and Vienna display a positive shift
that occurs late, from about 1920 to 1960. Shifts in the northern locations
are generally larger than the ones in the south. The largest increases, around
2.5oC or slightly over have occurred in Vilnius and Warsaw in the north and
Regensburg, Karlsruhe, Paris, Stuttgart and Munich in the west.
The January shifts in Figure A5 suggest a steady increase in the mean

temperature throughout the period or growth that accords with what Casty
et al. (2005) noted and begins in the 20th century. These shifts are generally
larger than the ones in December. There are four cases which are speci�c to
January in that the mean shift is already over by 1900. This group contains
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three of the four northernmost stations in the sample (Stockholm, Trond-
heim and Vilnius), completed with Berlin. It may be mentioned that He
et al. (2019) found the same phenomenon in the central England tempera-
ture series. Even here, Budapest and Vienna surge late. The shift in these
cities begins after the �rst half of the 20th century, and the increase up until
the end of the series has been about 1.5oC (Vienna) and 2oC (Budapest).
Milan also has a similar shift. The increase over time has been strongest in
Warsaw in the north, more than 2oC, Stuttgart, Regensburg and Kremsmün-
ster (2.5oC) in the west, and Innsbruck in the Alps. It has been more modest
in the other northern locations than Warsaw.
It is seen from Figure A6 that February is di¤erent from the two other

winter months. According to the estimated model, in 17 out of 20 locations
the mean temperature has not shifted. Again, Budapest and Vienna are
di¤erent from the rest. In the former there is a positive shift beginning
around 1950, whereas the estimates for Vienna suggest that the mean has
decreased until 1890 and then gradually increased to its original 1770 level.
Even if March o¢ cially counts as a spring month, the mean shifts shown

in Figure A7 resemble those estimated for December or January. Accelerating
growth in the mean is quite typical for this month. For Berlin and Innsbruck,
the rather modest shift is concentrated on the period 1880�1920, whereas the
shift for Milan begins after 1920. For a majority of locations, the shift has
been close to 2oC or even exceeded it (Stuttgart and Munich).
It is seen from Figure A8 that the mean shifts for April are radically

di¤erent from the ones estimated for March. The most frequent pattern is
the one in which there is a decline ending before 1900 and an increase which
continues to the present. Stuttgart has a strong late surge, about 2.5oC,
starting only after 1970. Warsaw and Budapest show a steady growth, but
the total increases are small, around 1.5oC for the former and less than 1oC
for the latter.
Shifts in May, see Figure A9, are rather similar to the ones for April.

Berlin appears to show a positive mean shift occurring between 1880 and
1920, but it is less than 0.5oC. . In general, shift patterns in many locations
for April and May correspond to European �ndings by Casty et al. (2007)
who reported cooling until 1900 and warming thereafter. However, for six
locations, our modelling strategy has found no shifts. Milan has experienced
a late surge that exceeds 1.5oC
For June, the patterns change by latitude. For the northern cities, there is

either a decline (Uppsala, Stockholm, Vilnius, Berlin and Warsaw) or no shift
(Trondheim and Copenhagen, both close to the Atlantic Ocean). Moberg,
Alexandersson, Bergström and Jones (2003) argued, however, that the ob-
served summer temperatures in Stockholm and Uppsala series before 1860 or
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so may have been 0.7�0.8oC too high due to insu¢ cient protection of instru-
ments from radiation. This bias accentuates the estimated downward shift.
Then there is a �mid-category�(De Bilt, Brno, Regensburg and Paris) with
no or a minimal positive shift. Moving south, beginning from Karlsruhe, but
excepting Paris in the west, the dominant pattern is a late positive shift. For
most these cities, this shift has been quite strong, even close to 2oC. The
only real exception is Budapest, where a small positive shift is found roughly
between 1850 and 1900.
The situation for July, shown in Figure A11, is di¤erent. The 19th century

cooling, common to most series, is usually over before the end of the century,
whereafter it is followed by warming. The only exception is Warsaw, where
the minimum occurs around 1915. Besides, the latest estimated July averages
for Warsaw have not yet reached their earliest values in the sample. The
increases in the mean are less than in the winter, and there is not a single
example of a steady increase in the mean over the observation period. For
Vilnius, similarly to June the small downward shift in the 19th century is
not followed by any warming. On the other hand, Copenhagen shows a late,
around 2oC, positive surge.
The 19th century decrease followed by a positive shift is very clear in

August, see Figure A12. The increase from the bottom is less pronounced
for the northern locations than the rest. Milan and Stuttgart are the only
exceptions. A late (post-1950) but rather strong (close to 2oC) surge in the
mean is estimated for these two locations. A general observation is that if the
mean temperature at the end of the observation period exceeds the values in
the beginning, the overall increase remains small.
Moving to the autumn, plots of the September mean shift appear in Figure

A13. While there are still some 19th century downward shifts followed by a
positive shift, the dominant pattern is �no change�. Milan and Stuttgart still
have a positive shift in the mean, but it begins earlier than in August and is
small, less than 1oC.
Figure A14 contains the October patterns where positive shifts dominate.

A typical shift begins in the 20th century and often rather late. They are
again more modest in the north than in the other locations. Karlsruhe and
Stuttgart have the largest (close to 2oC) shifts.
A comparison to December suggests that November, see Figure A15, may

already be classi�ed as a boreal winter month. All 20 stations display a
positive mean shift, and in a majority of cases they are clearly larger than
in October, exceeding 1.5oC. In most cases the shift is gradual and starts
already at the end of the 19th century. Vilnius and Munich have the largest
shifts.
The estimated shift patterns suggest that the year may be divided into
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three seasons instead of four. The �winter� extends from November until
March. It contains February which is di¤erent from the rest but has to
be included because of its position between by January and March. The
�summer�consists of the months from April to August, whereas September
and October are the �autumn�months. September has more in common
with August than with November. For October the situation is the opposite,
which is what one might expect. It may also be concluded that the positive
shifts in northern locations are often, but by no means always, somewhat
smaller than the ones elsewhere. Of these stations, Karlsruhe and Stuttgart
frequently seem to have shifts whose size exceeds the median.
These results may be compared to the ones in Hillebrand and Proietti

(2017). The authors construct monthly models that contain two trends: a
linear deterministic trend and a stochastic one. They write that the latter
is included to account for an increase in the temperature towards the end of
the period. The deterministic trends are mostly positive, often strongly, and
the few negative ones fall on June, July and August. This accords with our
results. Although the authors do not mention it, sometimes the stochastic
trend helps explain the 19th century cooling; see their Figures C2�C5. As
already noticed, this cooling is quite prominent in our results for the months
from April to August.

6.2 Error variances

After estimating the means, the estimated series are subjected to misspec-
i�cation tests. They are tested for serial correlation in the errors. The lag
structure of each equation is adjusted such that the test of the �nal equation
does not reject the null hypothesis. Two or three lags are the norm, and the
roots of the lag polynomial are invariably far from the unit circle; see Tables
9�28.
After this, constancy of error variances is tested against a single transi-

tion. The results appear in Table 3. Constancy is rejected only in a few
occasions at the 0.05 or a lower level. In those cases the error variance con-
taining one transition is estimated, and the corresponding model (8) with (9)
is �tted to the residuals. Typically, if the error variance changes over time,
it decreases, sometimes rather smoothly, and not by much. Most rejections
occur in the spring (in April and to some extent in May) and winter (De-
cember). But then, the null hypothesis is never rejected for February and
seldom for the boreal summer months and September.
Figures A16�A18 contain plots of the shifts in variance for December,

April and May. The shifts in 16 out of 20 April error variances shown in
Figure A17 occur with remarkable regularity during the �rst half of the 19th
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Berlin - - - * * - - - - - - -
Brno ** - - ** - - * * - - - -
Budapest - - - * - - - - - - - *
Copenhagen - - - ** *** - - - - - - -
De Bilt - - - * - * - - - - - -
Hohenpeissenbg - - - * - - - - - - * -
Innsbruck * - - ** - - - ** - - * **
Karlsruhe * - ** ** - - - - - - - **
Kremsmünster * - - ** * - - * - - - -
Milan ** - - - - - - - ** - - **
Munich - - - * * - - ** - - ** *
Paris - - - - * - - - - * - *
Regensburg - - * ** * - - ** - * ** *
Stockholm - - - * * - - - - * - -
Stuttgart ** - - ** - - - - - - - *
Trondheim - - - *** * - - - - - - -
Uppsala - - - * * - - - - - - -
Vienna - - - ** ** * - * - * - *
Vilnius - - - - - - * - - - - **
Warsaw - - - - - - * * - - - **

Table 3: Results of testing constancy of error variances by month for the 20
stations. Rejection at the 0.05 level of signi�cance (*), 0.01 level (**), 0.001
level (***)

century and are all downward shifts. They may hardly be ascribed to im-
provements in measurement techniques during that period because the same
phenomenon is not observed for any other month. Interestingly, He et al.
(2019) found the same pattern for April in their univariate model for the
CET series. A simple, but admittedly not very informative, explanation for
April shifts is that there is early weather induced variation in April temper-
atures that the mean component of the model cannot explain.
Shifts in the following month, May (Figure A18) are no longer as frequent,

and a majority of them take place during the second half of the 19th century.
The remaining May shifts are rather smooth and occur later.
Finally, a majority of shifts in December, see Figure A16, also take place

on the second half of the 19th century. The error variance for Vilnius displays
a steady decrease during the whole 19th century. The late shift for Vienna
may, due to its location, be a statistical artifact. All May and December
changes are downward shifts as well.
Both Stockholm and Uppsala have a similar decrease in the error vari-

ance in May during the second half of the 19th century. There is, however,
none during the summer months. This suggests that the measurement error
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Moberg et al. (2003) discussed has indeed been systematic in the sense that
it has not a¤ected dispersion around the estimated mean.

6.3 Correlations

Since the temperature series do not cover exactly the same period, the resid-
uals used for computing (constant) correlation estimates are adjusted as dis-
cussed in Section 4.3.1. For the adjusted series we compute pairwise correla-
tions and test their constancy as described in Section 4.2.4. In general, the
null hypothesis is not rejected at any relevant signi�cance level. For January
and October, there is not a single rejection for the 190 pairs; for February
there is one. To save space, these results are not reported in detail here.
Rejections are most frequent for the summer months June, July and August;
see Tables 4, 5 and 6. Compared to the very large number of tests, however,
the 5% signi�cance level is not very suggestive, and rejections on that level
may not be considered particularly striking.
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Evidence on shifts in correlations seem to be most widespread in August
in Table 6. The rejections seem to concentrate on a small number of locations.
Surprisingly, the null hypothesis is rejected for 17 out of the 19 pairs for Brno,
often even at the 0.01 level, but nothing similar is observed for the other
months. Other locations with many August rejections include Copenhagen,
Innsbruck, Milan, Stockholm and Trondheim.
It is possible to discern patterns. For example, for Copenhagen constancy

is often rejected when the other location lies in the Alpine Region or south
of the Alps (Milan), and the same is true for Stockholm and Uppsala. For
these two, the results are similar in the sense that the other member of the
pair when the null hypothesis is rejected is the same for both. This is not
surprising, given the proximity of these two locations. Rejections in June
seem to be concentrated on Stockholm and Uppsala as well, whereas for
July, a similar pattern is not found. Most of the June rejections (only at the
0.05 level) for these two locations occur when the other member of the pair
is a location in the Alpine region.
These test results already give an idea of whether the correlations may

or may not change over time. Nevertheless, it may be more interesting to
consider more than two series at the same time. One can in principle test
the correlation matrix of all 20 series, but such a test would require 380
degrees of freedom, and the results might not be very informative. Besides,
even if the null hypothesis were rejected, assuming that a single transition
function would control the change in all series simultaneously would be rather
unrealistic.
For this reason we focus on lower-dimensional vectors of standardised

residual series. Their potentially time-varying correlations we estimate by
month as discussed in Section 4.3.1.
We shall begin by considering four series: Hohenpeissenberg, Innsbruck,

Milan and Stockholm. The �rst two Alpine series are selected as a check
because they are close to each other, and the (error) correlations between
them, time-varying or not, should therefore be high. In pairwise tests the
null hypothesis is often rejected for pairs that involve Stockholm and an
Alpine location, which is why Stockholm is selected. Besides, Stockholm
represents the North, whereas Milan is the only city in our sample located
south of the Alps. Stockholm and Milan may therefore be expected to display
the lowest correlations of all.
Results of constancy tests for this quartet can be found in Table 7. For

eight of the twelve months, constancy is not rejected, while the strongest
rejections of the null hypothesis appear in November and December. Time-
varying correlations are estimated for these four months: April, August,
November and December. Since it cannot be assumed that all correlations
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Month 1 2 3

Jan 0.379 0.157 0.378
Feb 0.111 0.381 0.648
Mar 0.191 0.174 0.139
Apr 0.133 0.008 0.026
May 0.890 0.680 0.810
Jun 0.863 0.393 0.703
Jul 0.240 0.155 0.082
Aug 0.015 0.075 0.151
Sep 0.572 0.690 0.936
Oct 0.214 0.403 0.488
Nov 0.018 0.007 0.003
Dec 0.019 0.047 0.000

Table 7: p-values of tests of constant error correlations for the 12 months
for correlations between Innsbruck, Hohenpeissenberg, Stockholm and Milan.
Column headings indicate the order of the polynomial used in the test

are changing over time, we search estimates that look similar in P(s1) to
their counterparts in P(s2). If such pairs of estimates are found, variances
and correlations are re-estimated assuming that these correlations are equal,
and a likelihood ratio test is carried out to test this restriction. If the null
hypothesis is not rejected, the restrictions are retained and the correlations
in the null model reported.
The results are summed up in Figure A19. Stockholm is involved in blue

but not in red correlations, and it is seen that the correlations between the
standardised errors of this location and the rest are much weaker than cor-
relations between the other series. Not surprisingly, the Hohenpeissenberg-
Innsbruck correlation is the highest of all, often exceeding 0.9. The Stockholm-
Milan correlation for April seems to be an anomaly. The best �t is obtained
by characterising this correlation instead of the exponential function (13) by
a double logistic transition function; see Jansen and Teräsvirta (1996). It is
high in the beginning of the series when this is not the case for any other
month, remains low for most of the time, and increases again towards the
end of the period.
Interestingly, all changes except this particular one are pure downward

shifts. The shifts in the Stockholm correlations for August agree with results
of the pairwise tests in Table 6. By 1900, the changing correlations reach zero,
and one of them becomes even slightly negative. The other conspicuous shifts
occur in November and December. In November, all shifts involve Milan,
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Month 1 2 3

Jan 0.094 0.058 0.104
Feb 0.614 0.920 0.983
Mar 0.372 0.827 0.711
Apr 0.653 0.427 0.028
May 0.426 0.343 0.503
Jun 0.630 0.583 0.833
Jul 0.028 0.079 0.116
Aug 0.447 0.248 0.174
Sep 0.275 0.506 0.627
Oct 0.780 0.909 0.839
Nov 0.591 0.529 0.623
Dec 0.302 0.416 0.251

Table 8: p-values of tests of constant correlations for the 12 months for cor-
relations between De Bilt, Stuttgart, Vienna and Vilnius. Column headings
indicate the order of the polynomial used in the test

and in December the only correlation that does not change is the already low
Stockholm-Milan one. The November shifts occur somewhat earlier but later
than the August ones and are slightly sharper than the ones in December.
Since the model does not make use of any extraneous information, causes for
these fading correlations remain unclear. Warming does not occur in tandem
in the north and the south, but the purpose of the mean component of the
model has been to take care of this di¤erence. Perhaps this has not been a
complete success for November or December.
In order to complete this analysis, we conduct another four-station inves-

tigation, this time in the east-west direction. The stations are Vilnius in the
north-east, Vienna just east of the Alpine region and De Bilt and Stuttgart
in the west, the former being close to the Atlantic Ocean. The test results in
Table 8 show that for ten months, constancy of correlations is not rejected.
April and July are the only exceptions, and even for these two locations the
evidence in favour of shifts is not very strong.
Plots of the estimated correlations can be found in Figure A20. The error

correlations between Vilnius and the other locations are systematically the
lowest ones, the one between Vilnius and Vienna being somewhat higher than
the other two. This agrees with the previous results in that the northernmost
location is di¤erent from the rest. These correlations are generally higher
from October to March than they are from May to September. April is
an intermediate month in that Stuttgart-Vilnius and Vienna-Vilnius error
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correlations lie on the �winter or October-March level� until around 1950
and then descend to the �summer level�. There is a similar decrease in the
Stuttgart-Vienna correlation. For July, there is an inexplicable late surge in
correlations between Vilnius, and De Bilt and Vienna, respectively.
The highest correlations can be found between Stuttgart and Vienna (ex-

cept July after 1950), and the lowest �non-Vilnius�ones are the correlations
between the Atlantic De Bilt and continental Vienna. They do not change
with the month as much as the correlations involving Vilnius.

7 Conclusions

In this work we develop a multivariate seasonal time series model called the
VSSMC-AR model and design a systematic modelling structure for it. We
�t the model to twenty about 250 years long monthly European tempera-
ture series. The purpose of the exercise is to characterise main features of
monthly temperature changes in various locations in Europe and have a look
at possible correlations between the errors. Our results agree with the gen-
eral conclusion that winters have been warming up more quickly than the
summers, but due to the monthly observation frequency, the information ob-
tained is more detailed than that. For example, we are able to show that
warming (or lack of it) in February is strikingly di¤erent from that found for
the adjacent months, both January and March. We also �nd some systematic
behaviour in error variances in cases where they vary over time.
The multivariate model also gives an opportunity to learn about corre-

lations between the (standardised) errors. Within a month they are mostly
constant over time, but the ones between a northern and a southern loca-
tion appear lower in the summer than in the winter. The two examples
seem to suggest that the north-south distance between the locations matters
more than the east-west one. It seems di¢ cult to explain changes over time
without extraneous information.
The VSSMC-AR model provides a framework for studying multivariate

seasonal time series in situations where seasonality is suspected to vary over
time. Some climate scientists may prefer quarterly temperature series to
monthly ones, and the model is of course applicable to quarterly data as
well, at least if the series are not too short. Seasonal time series can also
be found in economics, and the model, including the modelling structure
presented here, can also be applied to economic series. Such applications
and further developments of the model will be left for further research.
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A Figures

Figure A1. Locations of the 20 weather stations, from Trondheim in the
north to Milan in the south, and from Paris in the west to Vilnius in the

east
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Figure A2. Histograms of monthly temperatures for the �rst ten locations
from north to south, Trondheim to Regensburg
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Figure A3. Histograms of monthly temperatures for the last ten locations
from north to south, Karlsruhe to Milan
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Figure A4. Shifting means of December for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A5. Shifting means of January for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A6. Shifting means of February for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A7. Shifting means of March for the 20 weather stations (from north
to south) over more than 250 years of monthly observations
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Figure A8. Shifting means of April for the 20 weather stations (from north
to south) over more than 250 years of monthly observations
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Figure A9. Shifting means of May for the 20 weather stations (from north
to south) over more than 250 years of monthly observations
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Figure A10. Shifting means of June for the 20 weather stations (from north
to south) over more than 250 years of monthly observations
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Figure A11. Shifting means of July for the 20 weather stations (from north
to south) over more than 250 years of monthly observations
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Figure A12. Shifting means of August for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A13. Shifting means of September for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A14. Shifting means of October for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A15. Shifting means of November for the 20 weather stations (from
north to south) over more than 250 years of monthly observations
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Figure A16. Estimated error variances (green) and the shifting variance
(black) component for December in the 20 locations (from north to south)
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Figure A17. Estimated error variances (green) and the shifting variance
(black) component for April in the 20 locations from north to south
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Figure A18. Estimated error variances (green) and the shifting variance
(black) component for May in the 20 locations from north to south
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Figure A19. Time-varying correlations for four stations: red circles, Inns-Hpb;
red squares, Inns-Mil; red triangles, Hpb-Mil; blue circles, Sto-Inns; blue squares,

Sto-Hpb; blue triangles, Sto-Mil

51



Figure A20. Time-varying correlations for four stations: blue circles, DeB-Vil;
blue squares, Stu-Vil; blue triangles, Vie-Vil; red circles, DeB-Stu; red squares,

DeB-Vie; red triangles, Stu-Vie
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B Estimated equations

This appendix contains the estimated seasonal mean equations of the 20 tem-
perature series, arranged according to latitude from north to south. Three
remarks are in order. First, sometimes it has not been numerically possible
to estimate the logistic transition function as there has not been enough in-
formation in the data about the two tails of the function. It has then been
replaced by a linear trend. These cases are distinguished in the table by the
fact that the estimates for both the slope parameter j and location cj are

missing and replaced by dashes. The two parameter estimates, b�j0 and b�j1;
are the intercept and the coe¢ cient of the linear trend t=T: When there is
no shift for month j, i.e., �j1 = 0; even this nonexisting estimate is replaced
by a dash.
Second, in some cases the transition is rapid, and the slope parameter nj

has been �xed to the upper bound equalling 40. This is why the �estimate�
lacks a standard deviation estimate. Third, in the estimation of an exponen-
tial transition function, cj has sometimes been �xed to a value, typically zero
or unity. At the same time, the standard deviations of bnj and b�nj1 are very
large because the two estimates are strongly negative correlated and their
joint uncertainty is large. As discussed in Section 4.3.2, the reason for this is
that there has not been enough information in the data to cover the part of
the exponential transition function where it begins to approach its limiting
value unity. As a result, it has not been numerically possible to obtain esti-
mates for these three parameters because the estimation algorithm has not
converged properly.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.269 0.019 �7;0 10.387 0.262
�2 0.040 0.008 �7;1 - -
�1;0 -3.680 0.214 7 - -
�1;1 1.128 0.272 c7 - -
1 40.000 - �8;0 7.572 3.430
c1 0.452 0.047 �8;1 1.281 3.355
�2;0 -2.030 0.148 8 40.000 -
�2;1 - - c8;1 0.624 30.298
2 - - c8;2 0.620 30.298
c2 - - �9;0 5.064 0.333
�3;0 -0.419 0.195 �9;1 - -
�3;1 1.090 0.444 9 - -
3 20.920 30.794 c9 - -
c3 0.722 0.082 �10;0 0.581 0.366
�4;0 3.386 0.140 �10;1 1.528 0.442
�4;1 - - 10 - -
4 - - c10 - -
c4 - - �11;0 -7.716 188.303
�5;0 6.742 0.161 �11;1 14.711 375.964
�5;1 2.973 1.645 11 0.741 19.377
5 19.248 15.556 c11;1 1.000 -
c5 1.000 - c11;2 -0.533 0.470
�6;0 9.303 0.191 �12;0 -3.584 0.446
�6;1 - - �12;1 2.004 1.229
6 - - 12 6.616 7.111
c6 - - c12 0.615 0.165

Table 9: Estimates of parameters of the seasonal mean equation for Trond-
heim. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.332 0.018 c6 0.137 0.050
�2 0.047 0.010 �7;0 11.406 0.341
�1;0 -6.904 1.775 �7;1 23.757 2068.478
�1;1 4.750 3.793 7 0.161 14.290
1 1.977 2.599 c7 0.509 0.060
c1 0.000 - �8;0 8.506 0.425
�2;0 -2.581 0.149 �8;1 0.920 0.371
�2;1 - - 8 40.000 -
2 - - c8 0.553 0.050
c2 - - �9;0 5.050 0.351
�3;0 1.255 0.334 �9;1 - -
�3;1 -1.698 0.355 9 - -
3 23.358 20.797 c9 - -
c3 0.900 0.063 �10;0 1.117 0.313
�4;0 3.897 0.253 �10;1 0.813 0.321
�4;1 3.906 12.633 10 40.000 -
4 1.937 7.789 c10 0.737 0.068
c4 0.460 0.041 �11;0 -2.137 0.297
�5;0 -0.528 1550.554 �11;1 3.930 0.991
�5;1 19.076 3100.486 11 6.263 2.950
5 0.796 130.407 c11 1.000 -
c5;2 1.000 - �12;0 -4.342 0.273
c5;1 0.000 - �12;1 2.163 0.443
�6;0 12.301 0.495 12 - -
�6;1 -1.247 0.484 c12 - -
6 40.000 -

Table 10: Estimates of parameters of the seasonal mean equation for Uppsala.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.350 0.018 c6 0.000 -
�2 0.043 0.008 �7;0 11.176 0.363
�1;0 -3.736 0.226 �7;1 0.646 0.349
�1;1 1.054 0.268 7 40.000 -
1 40.000 - c7 0.499 0.066
c1 0.367 0.048 �8;0 8.604 0.409
�2;0 -2.246 0.135 �8;1 0.989 0.349
�2;1 - - 8 40.000 -
2 - - c8 0.548 0.043
c2 - - �9;0 5.428 0.350
�3;0 -0.888 0.256 �9;1 - -
�3;1 1.875 0.419 9 - -
3 - - c9 - -
c3 - - �10;0 1.638 0.317
�4;0 3.682 0.228 �10;1 0.732 0.295
�4;1 25.343 784.258 10 40.000 -
4 0.232 7.379 c10 0.722 0.071
c4 0.457 0.040 �11;0 -1.497 0.275
�5;0 7.850 0.142 �11;1 0.976 0.341
�5;1 - - 11 19.227 27.307
5 - - c11 0.596 0.085
c5 - - �12;0 -3.356 0.263
�6;0 13.879 0.935 �12;1 1.641 0.418
�6;1 -3.212 0.933 12 - -
6 6.216 3.390 c12 - -

Table 11: Estimates of parameters of the seasonal mean equation for Stock-
holm. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.371 0.020 c6 - -
�2 0.043 0.013 �7;0 10.692 0.316
�8 0.041 0.012 �7;1 4.023 1.449
�1;0 -2.261 0.282 7 20.363 10.482
�1;1 1.876 0.370 c7 1.000 -
1 - - �8;0 9.017 0.411
c1 - - �8;1 1.335 0.459
�2;0 -1.235 0.339 8 10.185 9.061
�2;1 3.222 0.807 c8 0.437 0.041
2 5.766 2.788 �9;0 6.025 0.430
c2 1.000 - �9;1 0.712 0.306
�3;0 0.504 0.447 9 18.171 21.677
�3;1 4.110 0.767 c9 0.405 0.064
3 4.118 1.824 �10;0 3.033 0.348
c3 1.000 - �10;1 0.854 0.248
�4;0 4.443 0.354 10 40.000 -
�4;1 3.437 0.831 c10 0.690 0.053
4 6.169 2.756 �11;0 -0.214 0.331
c4 1.000 - �11;1 1.521 0.367
�5;0 7.939 0.568 11 12.749 9.701
�5;1 2.386 0.920 c11 0.533 0.066
5 3.292 3.107 �12;0 -1.366 0.268
c5 1.000 - �12;1 1.295 0.371
�6;0 10.490 0.272 12 - -
�6;1 - - c12 - -
6 - -

Table 12: Estimates of parameters of the seasonal mean equation for Copen-
hagen. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.268 0.019 c6 0.493 0.070
�2 0.060 0.010 �7;0 13.054 0.640
�1;0 -5.693 0.302 �7;1 -0.555 0.641
�1;1 1.001 0.342 7 15.077 50.089
1 40.000 - c7 0.292 0.260
c1 0.332 0.063 �8;0 9.969 0.506
�2;0 -3.249 0.189 �8;1 1.412 0.431
�2;1 - - 8 18.984 16.528
2 - - c8 0.565 0.045
c2 - - �9;0 6.273 0.407
�3;0 -0.251 0.334 �9;1 - -
�3;1 0.977 0.521 9 - -
3 - - c9 - -
c3 - - �10;0 1.954 0.354
�4;0 5.699 0.282 �10;1 - -
�4;1 20.547 715.656 10 - -
4 0.232 8.308 c10 - -
c4 0.417 0.070 �11;0 -2.082 0.285
�5;0 10.597 0.187 �11;1 5.003 1.602
�5;1 - - 11 12.794 6.193
5 - - c11 1.000 -
c5 - - �12;0 -5.184 0.339
�6;0 12.707 0.310 �12;1 5.894 1.086
�6;1 -0.899 0.315 12 5.357 2.026
6 40.000 - c12 1.000 -

Table 13: Estimates of parameters of the seasonal mean equation for Vilnius.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.254 0.018 c6;1 0.100 0.044
�2 0.043 0.009 �7;0 13.629 0.402
�1;0 -1.985 0.225 �7;1 23.727 1086.442
�1;1 1.541 0.268 7 0.200 9.372
1 40.000 - c7 0.459 0.051
c1 0.394 0.034 �8;0 12.256 0.459
�2;0 0.986 0.126 �8;1 3.129 8.824
�2;1 - - 8 2.461 9.053
2 - - c8 0.506 0.039
c2 - - �9;0 9.130 0.424
�3;0 3.279 0.178 �9;1 - -
�3;1 0.954 0.264 9 - -
3 40.000 - c9 - -
c3 0.558 0.054 �10;0 4.580 0.719
�4;0 7.332 0.237 �10;1 1.810 1.082
�4;1 16.298 506.258 10 3.254 4.790
4 0.309 9.925 c10 1.000 -
c4 0.473 0.047 �11;0 0.946 0.313
�5;0 11.329 0.228 �11;1 0.955 0.277
�5;1 0.352 0.264 11 40.000 -
5 40.000 - c11 0.653 0.055
c5 0.573 0.147 �12;0 -0.349 0.207
�6;0 13.313 0.288 �12;1 - -
�6;1 1.607 0.615 12 - -
6 40.000 - c12 - -
c6;2 1.000 -

Table 14: Estimates of parameters of the seasonal mean equation for Berlin.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.257 0.019 c6 0.519 0.073
�2 0.037 0.008 �7;0 13.653 0.426
�1;0 -4.294 0.280 �7;1 24.697 2979.495
�1;1 2.370 0.472 7 0.121 14.787
1 - - c7 0.553 0.091
c1 - - �8;0 11.782 0.490
�2;0 -1.322 0.149 �8;1 1.404 0.494
�2;1 - - 8 10.390 9.637
2 - - c8 0.611 0.050
c2 - - �9;0 8.299 0.434
�3;0 0.872 0.286 �9;1 - -
�3;1 2.445 0.472 9 - -
3 - - c9 - -
c3 - - �10;0 -8.315 8056.581
�4;0 6.951 0.276 �10;1 25.267 16112.652
�4;1 0.701 0.471 10 0.121 77.442
4 - - c10 1.000 -
c4 - - �11;0 -0.983 0.638
�5;0 11.581 0.192 �11;1 4.509 1.091
�5;1 - - 11 3.475 2.092
5 - - c11 1.000 -
c5 - - �12;0 -14.479 118.714
�6;0 13.841 0.326 �12;1 21.220 237.903
�6;1 -0.833 0.312 12 0.494 5.741
6 35.295 79.452 c12 0.000 -

Table 15: Estimates of parameters of the seasonal mean equation for Warsaw.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.250 0.018 �7;0 12.246 0.346
�2 0.048 0.012 �7;1 20.654 1003.719
�1;0 -1.557 1.960 7 0.152 7.520
�1;1 7.069 3.594 c7 0.398 0.077
1 1.866 1.501 �8;0 3.147 2787.025
c1 1.000 - �8;1 18.089 5573.516
�2;0 2.016 0.114 8 0.611 189.009
�2;1 - - c8;2 1.000 -
2 - - c8;1 0.000 -
c2 - - �9;0 9.189 0.372
�3;0 3.575 0.232 �9;1 - -
�3;1 3.483 0.768 9 - -
3 5.254 2.377 c9 - -
c3 1.000 - �10;0 5.479 0.351
�4;0 6.958 0.133 �10;1 0.764 0.277
�4;1 - - 10 40.000 -
4 - - c10 0.769 0.060
c4 - - �11;0 1.971 0.308
�5;0 10.017 0.179 �11;1 3.860 0.885
�5;1 - - 11 7.784 3.019
5 - - c11 1.000 -
c5 - - �12;0 0.492 0.261
�6;0 11.757 0.248 �12;1 3.243 0.794
�6;1 - - 12 6.069 2.815
6 - - c12 1.000 -
c6 - -

Table 16: Estimates of parameters of the seasonal mean equation for De Bilt.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.227 0.018 c6 - -
�2 0.045 0.009 �7;0 13.373 0.344
�1;0 -4.016 0.504 �7;1 - -
�1;1 2.375 0.768 7 - -
1 7.909 5.586 c7 - -
c1 0.460 0.086 �8;0 12.116 0.397
�2;0 -0.765 0.135 �8;1 4.869 1.871
�2;1 - - 8 40.000 -
2 - - c8;1 1.000 -
c2 - - c8;2 -0.043 0.044
�3;0 1.649 0.420 �9;0 8.387 0.407
�3;1 4.889 0.913 �9;1 - -
3 3.984 1.802 9 - -
c3 1.000 - c9 - -
�4;0 6.548 0.148 �10;0 3.714 0.378
�4;1 1.849 0.703 �10;1 0.784 0.359
4 40.000 - 10 26.413 54.206
c4;1 0.000 - c10 0.694 0.090
c4;2 0.912 0.040 �11;0 -0.712 0.381
�5;0 10.736 0.178 �11;1 4.253 0.889
�5;1 - - 11 4.983 2.237
5 - - c11 1.000 -
c5 - - �12;0 -2.889 0.466
�6;0 12.623 0.265 �12;1 4.133 0.925
�6;1 - - 12 3.798 2.097
6 - - c12 1.000 -

Table 17: Estimates of parameters of the seasonal mean equation for Brno.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.203 0.019 c6 - -
�2 0.042 0.011 �7;0 13.631 0.374
�1;0 -3.396 0.276 �7;1 3.862 1.314
�1;1 5.734 0.934 7 11.671 6.011
1 5.331 1.763 c7 1.000 -
c1 1.000 - �8;0 12.376 0.454
�2;0 -0.284 0.136 �8;1 21.201 548.502
�2;1 - - 8 0.297 7.932
2 - - c8 0.473 0.038
c2 - - �9;0 8.778 0.489
�3;0 2.800 0.260 �9;1 0.749 0.417
�3;1 2.796 3.663 9 14.411 23.316
3 7.529 8.568 c9 0.476 0.077
c3 0.862 0.361 �10;0 4.465 0.383
�4;0 6.985 0.232 �10;1 1.052 1.112
�4;1 20.849 719.309 10 25.865 57.372
4 0.228 8.069 c10 0.883 0.124
c4 0.436 0.055 �11;0 -0.610 0.367
�5;0 10.782 0.289 �11;1 2.027 0.801
�5;1 1.387 1.628 11 9.436 7.836
5 5.858 12.788 c11 0.670 0.104
c5 0.496 0.055 �12;0 -2.736 0.296
�6;0 12.934 0.351 �12;1 4.799 0.928
�6;1 0.648 0.434 12 5.591 2.155
6 - - c12 1.000 -

Table 18: Estimates of parameters of the seasonal mean equation for Regens-
burg. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.171 0.019 �7;1 5.857 3.818
�2 0.032 0.010 7 5.434 7.056
�1;0 -0.939 0.193 c7;1 1.000 -
�1;1 1.550 0.266 c7;2 -0.162 0.094
1 40.000 - �8;0 13.873 0.534
c1 0.549 0.034 �8;1 2.063 0.945
�2;0 1.746 0.126 8 24.076 22.439
�2;1 - - c8;1 0.044 0.057
2 - - c8;2 0.837 0.059
c2 - - �9;0 10.364 0.604
�3;0 4.342 0.224 �9;1 0.966 0.418
�3;1 2.500 2.330 9 40.000 -
3 8.794 9.045 c9;1 0.173 0.114
c3 0.830 0.235 c9;2 0.633 0.114
�4;0 8.135 0.245 �10;0 6.053 0.423
�4;1 24.731 1007.202 �10;1 2.357 2.988
4 0.217 9.032 10 13.650 17.194
c4 0.469 0.044 c10 0.901 0.213
�5;0 11.580 0.294 �11;0 1.740 0.436
�5;1 3.898 17.955 �11;1 4.193 0.881
5 1.646 9.094 11 4.689 2.201
c5 0.471 0.044 c11 1.000 -
�6;0 14.222 0.312 �12;0 -0.337 0.272
�6;1 1.869 0.826 �12;1 4.954 1.000
6 40.000 - 12 6.850 2.462
c6 0.923 0.041 c12 1.000 -
�7;0 14.313 2.260

Table 19: Estimates of parameters of the seasonal mean equation for
Karlsruhe. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.146 0.018 c6 - -
�2 0.037 0.012 �7;0 15.490 0.379
�6 0.047 0.012 �7;1 - -
�1;0 -0.493 1.016 7 - -
�1;1 2.639 1.524 c7 - -
1 5.326 4.934 �8;0 14.363 0.472
c1 0.449 0.138 �8;1 19.437 1076.928
�2;0 2.647 0.347 8 0.208 11.810
�2;1 - - c8 0.493 0.050
2 - - �9;0 11.684 0.456
c2 - - �9;1 - -
�3;0 3.695 1.836 9 - -
�3;1 4.603 3.294 c9 - -
3 1.984 2.348 �10;0 7.112 0.455
c3 1.000 - �10;1 3.126 0.972
�4;0 8.261 0.250 10 7.980 4.159
�4;1 - - c10 1.000 -
4 - - �11;0 2.737 0.438
c4 - - �11;1 1.406 0.389
�5;0 11.708 0.247 11 - -
�5;1 - - c11 - -
5 - - �12;0 0.095 0.412
c5 - - �12;1 2.448 0.390
�6;0 14.222 0.307 12 - -
�6;1 - - c12 - -
6 - -

Table 20: Estimates of parameters of the seasonal mean equation for Paris.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.167 0.019 c6 0.919 0.042
�2 0.036 0.006 �7;0 14.614 0.427
�6 0.053 0.006 �7;1 20.936 526.002
�1;0 -3.200 1.445 7 0.232 6.012
�1;1 6.835 2.436 c7 0.395 0.063
1 2.327 1.591 �8;0 13.655 0.445
c1 1.000 - �8;1 1.796 0.474
�2;0 0.644 0.360 8 40.000 -
�2;1 - - c8 0.857 0.035
2 - - �9;0 9.938 0.469
c2 - - �9;1 0.837 0.285
�3;0 3.254 0.386 9 40.000 -
�3;1 4.389 0.970 c9 0.603 0.066
3 5.322 2.391 �10;0 5.552 0.451
c3 1.000 - �10;1 3.588 1.153
�4;0 7.476 0.235 10 8.316 4.395
�4;1 2.619 1.398 c10 1.000 -
4 40.000 - �11;0 1.297 0.409
c4 0.947 0.039 �11;1 3.768 1.216
�5;0 10.553 0.347 11 9.447 4.858
�5;1 1.206 0.379 c11 1.000 -
5 40.000 - �12;0 -1.342 0.417
c5 0.384 0.038 �12;1 4.323 12.275
�6;0 13.644 0.310 12 7.625 9.793
�6;1 1.861 0.822 c12 0.987 0.683
6 40.000 -

Table 21: Estimates of parameters of the seasonal mean equation for
Stuttgart. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.203 0.019 c6 0.349 0.090
�2 0.037 0.005 �7;0 15.128 0.431
�1;0 -2.014 0.161 �7;1 20.328 563.428
�1;1 2.485 0.704 7 0.194 5.542
1 30.640 25.555 c7 0.358 0.083
c1 0.857 0.034 �8;0 13.651 0.492
�2;0 0.218 0.233 �8;1 20.948 413.541
�2;1 25.270 727.353 8 0.338 6.922
2 0.259 7.665 c8 0.470 0.034
c2 0.473 0.036 �9;0 10.369 0.469
�3;0 3.993 0.203 �9;1 - -
�3;1 3.933 1.051 9 - -
3 7.257 3.316 c9 - -
c3 1.000 - �10;0 5.826 0.420
�4;0 8.278 0.231 �10;1 0.572 0.450
�4;1 20.750 581.519 10 40.000 -
4 0.230 6.642 c10 0.858 0.103
c4 0.413 0.058 �11;0 1.071 0.394
�5;0 11.912 0.296 �11;1 4.432 0.916
�5;1 2.551 6.566 11 5.591 2.309
5 2.803 9.797 c11 1.000 -
c5 0.481 0.045 �12;0 -1.133 0.235
�6;0 14.064 0.355 �12;1 0.957 0.300
�6;1 18.937 516.216 12 40.000 -
6 0.198 5.574 c12 0.714 0.056

Table 22: Estimates of parameters of the seasonal mean equation for Vienna.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.184 0.019 c6 0.929 0.035
�2 0.040 0.006 �7;0 13.312 0.405
�1;0 -2.038 0.198 �7;1 21.294 364.924
�1;1 1.077 0.284 7 0.296 5.268
1 40.000 - c7 0.409 0.048
c1 0.549 0.052 �8;0 12.490 0.459
�2;0 0.040 0.136 �8;1 20.663 400.603
�2;1 - - 8 0.362 7.296
2 - - c8 0.477 0.034
c2 - - �9;0 10.515 3.822
�3;0 2.706 0.271 �9;1 -0.944 3.855
�3;1 5.372 1.000 9 17.960 69.069
3 5.607 2.057 c9 0.073 0.522
c3 1.000 - �10;0 4.157 0.494
�4;0 6.666 0.242 �10;1 1.543 0.379
�4;1 22.828 477.313 10 29.924 19.867
4 0.268 5.795 c10 0.565 0.033
c4 0.418 0.048 �11;0 0.066 0.331
�5;0 10.141 0.282 �11;1 5.473 1.186
�5;1 20.781 395.159 11 8.649 3.065
5 0.362 7.166 c11 1.000 -
c5 0.474 0.034 �12;0 -2.030 0.333
�6;0 12.815 0.282 �12;1 4.909 0.965
�6;1 2.410 0.981 12 5.287 2.150
6 40.000 - c12 1.000 -

Table 23: Estimates of parameters of the seasonal mean equation for Munich.
Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.196 0.018 c6 0.925 0.037
�2 0.035 0.007 �7;0 14.036 0.396
�1;0 -2.919 0.245 �7;1 24.214 767.447
�1;1 4.728 0.905 7 0.221 7.177
1 5.696 2.127 c7 0.444 0.046
c1 1.000 - �8;0 12.957 0.444
�2;0 0.010 0.127 �8;1 20.255 577.705
�2;1 - - 8 0.247 7.254
2 - - c8 0.436 0.050
c2 - - �9;0 9.856 0.426
�3;0 3.300 0.186 �9;1 - -
�3;1 3.687 1.065 9 - -
3 8.168 3.867 c9 - -
c3 1.000 - �10;0 5.195 0.383
�4;0 7.387 0.216 �10;1 - -
�4;1 20.711 958.811 10 - -
4 0.155 7.329 c10 - -
c4 0.377 0.092 �11;0 0.369 0.351
�5;0 10.854 0.299 �11;1 3.550 0.900
�5;1 1.210 0.467 11 5.966 2.907
5 12.051 12.938 c11 1.000 -
c5 0.477 0.047 �12;0 -2.350 0.229
�6;0 13.180 0.283 �12;1 1.041 0.252
�6;1 2.021 0.819 12 40.000 -
6 40.000 - c12 0.545 0.048

Table 24: Estimates of parameters of the seasonal mean equation for
Kremsmünster. Note: see the explanations in the beginning of Appendix
B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.132 0.019 �7;0 12.490 0.363
�2 0.025 0.013 �7;1 20.559 638.147
�1;0 -2.356 0.255 7 0.208 6.656
�1;1 3.311 9.580 c7 0.385 0.076
1 7.670 11.791 �8;0 11.996 0.384
c1 0.956 0.717 �8;1 1.373 0.453
�2;0 -1.020 0.143 8 40.000 -
�2;1 - - c8;1 0.859 0.056
2 - - c8;2 0.091 0.055
c2 - - �9;0 9.374 0.390
�3;0 0.731 0.421 �9;1 - -
�3;1 3.373 5.259 9 - -
3 5.603 7.149 c9 - -
c3 0.855 0.535 �10;0 5.000 0.398
�4;0 4.670 0.253 �10;1 23.962 965.279
�4;1 23.546 932.475 10 0.151 6.249
4 0.227 9.229 c10 0.350 0.102
c4 0.458 0.050 �11;0 0.316 0.380
�5;0 8.404 0.270 �11;1 4.229 0.990
�5;1 10.726 118.754 11 5.302 2.564
5 0.661 7.876 c11 1.000 -
c5 0.469 0.039 �12;0 -2.264 0.301
�6;0 11.132 0.248 �12;1 1.678 0.474
�6;1 4.717 1.768 12 - -
6 17.713 9.516 c12 - -
c6 1.000 -

Table 25: Estimates of parameters of the seasonal mean equation for
Hohenpeissenberg. Note: see the explanations in the beginning of Appendix
B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.208 0.019 �7;0 16.042 0.459
�2 0.032 0.013 �7;1 20.332 623.966
�1;0 -2.142 0.163 7 0.187 5.909
�1;1 2.218 0.720 c7 0.362 0.084
1 36.724 36.716 �8;0 14.624 0.516
c1 0.875 0.034 �8;1 20.797 340.986
�2;0 0.434 0.152 8 0.306 5.223
�2;1 1.218 0.347 c8 0.418 0.043
2 40.000 - �9;0 10.542 0.588
c2 0.782 0.045 �9;1 0.991 0.362
�3;0 4.392 0.262 9 40.000 -
�3;1 3.826 0.930 c9;1 0.144 0.098
3 5.463 2.658 c9;2 0.646 0.098
c3 1.000 - �10;0 6.498 0.447
�4;0 9.244 0.259 �10;1 - -
�4;1 0.918 0.432 10 - -
4 - - c10 - -
c4 - - �11;0 1.200 0.358
�5;0 13.041 0.301 �11;1 1.193 0.272
�5;1 9.110 190.809 11 40.000 -
5 0.472 10.438 c11 0.617 0.044
c5 0.454 0.059 �12;0 -1.647 0.247
�6;0 14.915 0.423 �12;1 0.915 0.296
�6;1 0.481 0.310 12 40.000 -
6 40.000 - c12 0.702 0.058
c6 0.267 0.112

Table 26: Estimates of parameters of the seasonal mean equation for
Budapest. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.177 0.019 c6 0.922 0.036
�2 0.063 0.013 �7;0 13.853 0.372
�7 0.055 0.013 �7;1 1.632 0.472
�1;0 -3.935 0.376 7 40.000 -
�1;1 5.469 0.944 c7 0.870 0.036
1 6.136 1.965 �8;0 12.554 0.455
c1 1.000 - �8;1 20.633 459.707
�2;0 -0.440 0.352 8 0.272 6.264
�2;1 - - c8 0.431 0.046
2 - - �9;0 9.740 0.425
c2 - - �9;1 - -
�3;0 2.787 0.362 9 - -
�3;1 1.226 0.255 c9 - -
3 40.000 - �10;0 4.996 0.390
c3 0.523 0.041 �10;1 2.601 1.301
�4;0 6.851 0.336 10 12.909 9.688
�4;1 22.093 1128.961 c10 1.000 -
4 0.201 10.500 �11;0 -0.409 0.345
c4 0.470 0.051 �11;1 1.095 0.259
�5;0 10.358 0.315 11 40.000 -
�5;1 3.074 5.964 c11 0.595 0.046
5 2.928 7.803 �12;0 -4.213 0.537
c5 0.511 0.035 �12;1 4.699 0.896
�6;0 12.917 0.292 12 3.776 1.787
�6;1 2.037 0.791 c12 1.000 -
6 40.000 -

Table 27: Estimates of parameters of the seasonal mean equation for Inns-
bruck. Note: see the explanations in the beginning of Appendix B.
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Parameter Estimate Std. Error Parameter Estimate Std. Error
�1 0.220 0.018 c6 1.000 -
�2 0.022 0.011 �7;0 18.412 0.457
�1;0 0.626 0.165 �7;1 2.732 0.867
�1;1 1.887 0.376 7 9.045 4.590
1 32.236 24.264 c7 1.000 -
c1 0.815 0.028 �8;0 17.045 0.514
�2;0 4.011 0.108 �8;1 1.817 0.435
�2;1 - - 8 40.000 -
2 - - c8 0.893 0.027
c2 - - �9;0 13.055 0.533
�3;0 7.589 0.142 �9;1 0.747 0.215
�3;1 3.831 0.976 9 40.000 -
3 11.150 4.293 c9 0.673 0.053
c3 1.000 - �10;0 8.303 0.482
�4;0 10.921 0.187 �10;1 1.395 0.803
�4;1 - - 10 22.223 26.233
4 - - c10 0.866 0.077
c4 - - �11;0 3.433 0.398
�5;0 14.276 0.270 �11;1 3.345 6.774
�5;1 4.019 1.332 11 8.289 8.689
5 21.146 9.893 c11 0.964 0.465
c5 1.000 - �12;0 0.454 0.412
�6;0 17.038 0.360 �12;1 3.053 0.690
�6;1 4.079 1.399 12 3.858 2.145
6 23.680 11.409 c12 1.000 -

Table 28: Estimates of parameters of the seasonal mean equation for Milan.
Note: see the explanations in the beginning of Appendix B.
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C Misspeci�cation tests

This appendix contains results of the test of one transition against at least
two and the test of no error correlation, discussed in Section 4.2.2. The former
test is based on the third-order polynomial approximation of the alternative.
The test based on the �rst-order approximation yields similar results, so they
are not reported here.

Jan Feb Mar Apr May Jun
Trondheim 0.782 0.851 0.956 0.959 0.509 0.140
Uppsala 0.784 0.143 0.726 0.958 0.162 0.862
Stockholm 0.274 0.455 0.360 1.000 0.071 1.000
Copenhagen 0.763 0.956 0.989 0.996 0.507 0.753
Vilnius 0.053 0.215 0.131 0.759 0.817 0.167
Berlin 0.193 0.190 0.193 0.984 0.119 0.578
Warsaw 0.774 0.372 0.989 0.134 0.615 0.921
De Bilt 1.000 0.440 0.989 0.063 0.135 0.447
Brno 0.804 0.288 1.000 0.750 0.065 0.377
Regensburg 0.983 0.218 0.530 0.409 0.900 0.146
Karlsruhe 0.400 0.271 0.997 0.730 1.000 0.950
Paris 0.972 0.781 0.946 0.211 0.935 0.106
Stuttgart 0.997 0.182 0.988 0.702 0.321 0.689
Vienna 0.745 0.858 0.774 0.406 0.725 0.341
Munich 0.265 0.369 0.920 0.712 0.873 0.690
Kremsmünster 0.998 0.111 0.782 0.109 0.266 0.825
Hohenpeissenberg 0.596 0.448 0.939 0.683 0.914 0.976
Budapest 0.908 0.668 0.995 0.653 0.960 0.578
Innsbruck 0.809 0.173 0.371 0.311 0.636 0.966
Milan 0.712 0.088 0.854 0.421 0.532 0.543

Table 29: p-values of the test of one transition against (at least) two based on
the third-order polynomial expansion for the 20 stations, months January�
June
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Jul Aug Sep Oct Nov Dec
Trondheim 0.184 0.883 0.600 0.443 0.053 0.975
Uppsala 0.926 0.371 0.062 0.840 0.819 0.905
Stockholm 0.147 0.519 0.212 0.610 0.652 0.950
Copenhagen 0.314 0.908 0.900 0.326 0.690 0.981
Vilnius 0.298 0.727 0.089 0.455 0.457 0.917
Berlin 0.974 0.935 0.355 0.984 0.139 0.346
Warsaw 0.293 0.795 0.271 0.721 0.688 0.972
De Bilt 0.509 0.219 0.181 0.655 0.954 0.987
Brno 0.072 0.202 0.383 0.244 0.801 1.000
Regensburg 0.957 0.371 0.968 0.177 0.757 1.000
Karlsruhe 0.990 0.999 0.947 0.807 0.609 1.000
Paris 0.501 0.741 0.250 0.175 0.584 0.400
Stuttgart 0.990 0.122 0.790 0.129 0.609 0.853
Vienna 0.309 0.203 0.163 0.203 0.536 0.972
Munich 0.584 0.272 0.188 0.117 0.210 1.000
Kremsmünster 0.917 0.075 0.179 0.051 0.930 0.209
Hohenpeissenberg 0.827 0.489 0.259 0.341 0.997 0.567
Budapest 0.533 0.729 0.993 0.057 0.456 0.957
Innsbruck 0.952 0.686 0.306 0.562 0.378 0.990
Milan 1.000 0.651 0.997 0.472 0.273 0.986

Table 30: p-values of the test of one transition against (at least) two based
on the third-order polynomial expansion for the 20 stations, months July�
December
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pAR(1) pAR(2) pAR(3) pAR(6) pAR(12)
Trondheim 0.911 0.992 0.999 0.943 0.886
Uppsala 0.924 0.807 0.931 0.295 0.186

Stockholm 0.785 0.946 0.985 0.395 0.371
Copenhagen 0.908 0.709 0.873 0.153 0.170

Vilnius 0.728 0.668 0.766 0.610 0.117
Berlin 0.802 0.854 0.883 0.504 0.116

Warsaw 0.729 0.760 0.492 0.444 0.282
De Bilt 0.773 0.659 0.639 0.188 0.255
Brno 0.648 0.565 0.334 0.328 0.063

Regensburg 0.749 0.837 0.845 0.409 0.383
Karlsruhe 0.787 0.820 0.756 0.274 0.101

Paris 0.686 0.836 0.702 0.135 0.140
Stuttgart 0.781 0.809 0.708 0.512 0.162
Vienna 0.738 0.811 0.182 0.417 0.301
Munich 0.719 0.625 0.637 0.234 0.223

Kremsmünster 0.642 0.778 0.668 0.921 0.572
Hohenpeissenberg 0.791 0.890 0.748 0.643 0.501

Budapest 0.772 0.776 0.427 0.581 0.610
Innsbruck 0.565 0.551 0.300 0.127 0.195

Milan 0.614 0.797 0.809 0.575 0.678

Table 31: p-values of the test of no error autocorrelation for the 20 estimated
seasonal mean equations
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