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1 Introduction

This paper links two branches of the literature concerning the identification of bub-

bles in financial markets. On one side there is the mainstream economic literature

on asset bubbles currently championed by the Supremum Augmented Dickey-Fuller

tests (henceforth referred to as supremum ADF tests) (Phillips et al., 2011, 2015),

and on the other side is the completely separated albeit very active literature on as-

set bubbles that uses the fitting of a Log Periodic Power Law (henceforth referred to

as LPPL) as the means of testing for the presence of a bubble (Sornette et al., 1996;

Sornette and Johansen, 1998; Johansen et al., 1999, 2000; Sornette and Johansen,

2001). See Brauers et al. (2014) for a recent application. Previous studies have con-

sidered the relative performance of various tests for bubbles (Homm and Breitung,

2012), but this is the first paper to introduce the LPPL model to the mainstream eco-

nomic literature in a similar rigorous setup. We choose the supremum ADF test as

the base model from the mainstream economic literature, as it is widely regarded as

a state of the art test for bubbles and used by practitioners. Various other tests could

also be considered, e.g. the variance bounds tests of Shiller (1981); Leroy and Porter

(1981), the two-step test by West (1987), the intrinsic bubbles approaches of Froot

and Obstfeld (1991), and with the fractionally integrated approach of Cuñado et al.

(2005); Frömmel and Kruse (2012). An overview of the various tests can be found in

Gürkaynak (2008).

The mainstream economic literature identifies a bubble when the price process de-

viates from the fundamentals and was originally introduced by Diba and Grossman

(1988a,b) with an adaptation of the Dickey-Fuller test. Under the null hypothesis

there is no bubble and the price process contains at most a unit root driven by the

dividend process. This is tested against the alternative that the price process has an

explosive root that is then assumed to stem from the bubble component. Evans (1991)

showed that even though the bubble, and by extension the price, is explosive during

bubble expansion, the test would not identify the bubble correctly if it collapses par-
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tially one or more times during the test window. The test was improved with the

recursive test SADF (Phillips et al., 2011) and a generalized version, GSADF, was in-

troduced in Phillips et al. (2015) with more power in samples with multiple explosive

periods. The introduction of the Backward Supremum Augmented Dickey-Fuller test

(BSADF) also allowed for time stamping of the bubble periods (Phillips et al., 2015).

One of the drawbacks of the GSADF test is that it assumes a common unit root

(cointegration) between the dividend and the price processes which has not been

tested. Engsted (2006) and Engsted and Nielsen (2012) developed a framework using

a bivariate coexplosive vector autoregression, but while this deals with the non-tested

assumption that the price and dividend processes should be cointegrated, it struggles

to detect bubbles when allowing for partial collapses, and we will not be using that

particular framework for this study. The GSADF test was made robust to autocorre-

lated innovations by Pedersen and Schütte (2017) by calculating the critical values

for the test statistic using the sieve bootstrap (Chang and Park, 2003; Palm et al.,

2008). We include this newly proposed test in the study to see if there are significant

improvements to the performance over the BSADF test as well as how it compares to

the LPPL procedure.

The second branch of the bubble literature is based on the LPPL procedure orig-

inating in Sornette et al. (1996), Sornette and Johansen (1998), and Johansen et al.

(1999). Under a certain set of assumptions regarding trader interaction the price

process can be shown to follow an LPPL in the time preceding the collapse of the

bubble. The literature draws on the critical points theory from physics that is also

used in the modelling of geophysical events like earthquakes and volcanic eruptions

(Sornette and Johansen, 1998). The critical point is the time at which the traders’

opinions become highly correlated and sensitive to external signals, and at which

point the bubble is most likely to collapse. The LPPL model differs from the conven-

tional economics literature by not including fundamentals. As previously mentioned

a bubble is defined as an inflation of the price above its fundamental price, and this
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definition can be difficult to implement if one does not have a proxy for the fundamen-

tal price or if the proxy is only available at a low frequency. The LPPL model only

requires knowledge of the price trajectory to determine whether there is a bubble or

not, which means it can be used with e.g. daily observations or index data. For a

review of the LPPL literature see for example Geraskin and Fantazzini (2013) and

Sornette et al. (2013).

There are also similarities between the two branches of the bubble literature.

Abreu and Brunnermeier (2003) discuss how a bubble can exist despite having ratio-

nal investors in the economy. They argue that the bubble is allowed to persist because

the rational traders are unable to coordinate their sell off. Similarly Johansen et al.

(2000) explain the collapse of the bubble as the point in time when the traders are

able to synchronize their behaviour.

Depending on the nature and dynamics of the bubble it might be reasonable to

expect it to lead to a different price process. Hence, we simulate different bubble

dynamics to determine the robustness of the three tests. The simulated processes

follow mainly those used when presenting the GSADF test in Phillips et al. (2015)

with some additions and modifications. This allows us to investigate how often the

frameworks erroneously or correctly detect a bubble. These properties share some of

the intuition behind the concepts of size and power from statistics.

Up until now the LPPL literature has assumed a zero required rate of return

when deriving the LPPL function. This paper extends the model by allowing for

a non-zero and possibly time varying required rate of return. The case of a positive

constant required rate of return is included in the Monte Carlo study. We also develop

and present proofs of the LPPL processes, which can be found in the appendix.

We find that the LPPL function is very flexible and can fit a large variety of pro-

cesses, despite the imposed parameter restrictions. The root mean squared error re-

quirement turns out to be the driving factor when identifying bubbles. Unfortunately

there is no single maximum value of the RMSE that allows the LPPL procedure to

3



Comparing Tests for Identification of Bubbles Bertelsen, K. P.

detect existing bubbles and reject non-existing bubbles. The ability of the LPPL pro-

cedure to estimate the most likely time of the collapse of the bubble is doubtful, albeit

improved by our generalization. We confirm that the supremum ADF tests are over-

sized when innovations are serially correlated and that the robust supremum ADF

test developed by Pedersen and Schütte (2017) is able to reduce the size. Both ver-

sions of the supremum ADF test however, are oversized when the innovations follow

a GARCH process. There are mixed results indicating that the tests are able to detect

a bubble very early in the build up of the bubble.

The paper is organised as follows. Section 2 presents the supremum ADF test

including the robust version developed in Pedersen and Schütte (2017). Section 3

presents the LPPL procedure. Section 4 compares the two branches of the bubble

literature presenting differences and similarities. Section 5 describes the processes

that are used for the Monte Carlo study. Section 6 presents the results from the

Monte Carlo study. Section 7 provides a discussion of the robustness of the findings

of this paper. And section 8 concludes the paper.

2 The Supremum ADF Tests

The supremum ADF tests presented in Phillips et al. (2011) and Phillips et al. (2015)

are widely used in the economics literature to detect bubbles in financial assets. They

are based on the idea of testing whether the time series has an explosive root as an

alternative to at most a unit root using a Dickey-Fuller framework. The fundamental

price of an asset is the sum of the discounted flow of future dividends and perhaps

some unobserved fundamentals.

PF
t =

∞∑
i=0

(
1

1 + R

)i

Et (Dt+i + Ut+i) ,

where R is a constant real discount rate as created by market participants, Et is

the expectation operator conditional on the information available at time t, Dt is the
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dividend received at time t, and Ut contains unobserved fundamentals as originally

presented in Diba and Grossman (1988a). The bubble is then modelled as a sub-

martingale Bt such that

Et (Bt+1) = (1 + R) Bt. (1)

Then the resulting observable price process is given by

Pt = PF
t + Bt. (2)

Usually the dividend stream is modelled as an I(1) process and the unobserved fun-

damentals are assumed to be at most I(1). Then since PF
t , and by extension Pt is a

discounted sum of unit root processes they will themselves contain a unit root. If the

observed price only contains one unit root, and it is exactly the unit root from the div-

idends, then this can be removed through cointegration by taking the price-dividend

ratio Pt
Dt

. However, (1) reveals that the bubble component contains an explosive root

that will also be carried over to the observed price Pt.

The null hypothesis of the supremum ADF tests is that there is no bubble and

that the price-dividend ratio, yt, follows an AR(1) process with a weak drift.

yt = dT−η + (1 − β) yt−1 + εt, εt
iid
∼ N

(
0, σ2

)
,

where d is a constant, T is the sample size, and η > 1
2 is a parameter controlling the

magnitude of the drift. This functional form was presented in Phillips et al. (2014)

to give a realistic model with tractable asymptotic properties. In this paper, as in

Phillips et al. (2015), we will consider the case where d = η = 1 and β = 0. With this

specification it is clear that under the null, the process will be I(1) and conveniently

fits the framework of Fuller (1976); Dickey and Fuller (1979).

The tests calculate a Dickey-Fuller test statistic from various sample windows for
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increased power. The test windows are characterized by the fractions r1 and r2 of the

total sample length, T . Let rw be the length of the test window such that r2 = r1 + rw.

Then the test window will extend from observation bTr1c to observation bTr2c and has

a length of bTrwc, where b•c is the floor function. Finally denote the minimum relative

size of the test window by r0 such that rw ≥ r0 and bTrwc ≥ bTr0c. Then the regression

model identified by r1 and r2 can be written as

∆yt = α̂r1,r2 + β̂r1,r2yt−1 +

k∑
i=1

φ̂i,r1,r2∆yt−i + εt, εt
iid
∼ N

(
0, σ2

r1,r2

)
. (3)

From this regression one can then test whether the process contains a unit root(
βr1,r2 = 0

)
or an explosive root

(
βr1,r2 > 0

)
. Bear in mind however, that it has not

been shown that there actually is a common unit root (cointegration) between the

price and the dividend processes. If the two processes do not share a unit root

then even the price-dividend ratio might contain both a unit root and an explosive

root from the bubble component, thus rendering the Dickey-Fuller framework in-

valid. There is also the possibility that the unobserved fundamentals contain a unit

root, however in Phillips et al. (2015) the characteristics of the unobserved funda-

mentals are merely assumed away. If these assumptions would prove not to hold,

the Dickey-Fuller framework would be equally invalid. The estimates obtained in

(3) depend on the choice of the lag length k, which is selected by BIC over the set

k ∈
[
1, . . . , b8 (T/100)1/4c

]
.

The obtained test statistic, β̂r2
r1 , can then be used to calculate the SADF, GSADF,

and BSADF tests statistics. The SADF test is the simplest version and a special case

of the GSADF test. It is defined as

S ADF (r0) = sup
r2∈[r0,1]

β̂r2
0 .

Note that the starting point of the subsections is fixed at r1 = 0, and the supremum

is then taken on the set of test statistics obtained by varying r2 ∈ [r0, 1]. This is
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rather inflexible which is evident when allowing for partially collapsing bubbles like

those presented in Evans (1991). Since the SADF only expands the subsection by

increasing r2 there is a risk that the test mistakes the partially collapsing bubble for

a stationary process (Phillips et al., 2015).

The GSADF is then a generalization of the SADF test allowing for more flexibility

in the choice of subsections such that the test is also capable of detecting partially

collapsing bubbles. The test statistic is defined as

GS ADF (r0) = sup
r2∈[r0,1] ∧ r1∈[0,r2−r0]

β̂r2
r1
.

From the definition one can see that not only does the subsection vary with r2 but

now also with r1. This added flexibility ensures that the test is performed on the

particular subsection containing only the build up period of the bubble, thus giving

the correct significant realisations of the ADF test statistic.

As with the ADF test, the distribution of the supremum ADF test statistics is

non-standard and the critical values are found by simulation using iid errors.

2.1 Time Stamping

The concept of varying the subsections of the sample to calculate the GSADF can be

altered using the BSADF test to allow for date stamping (Phillips et al., 2015). The

idea is that the test procedure moves backwards from r2 = 1 to r2 = r0, while for each

r2 it calculates a supremum ADF test statistic by varying r1 ∈ [0, r2 − r0]. The BSADF

is like the GSADF a function of r0 but it also depends on r2. The BSADF is defined as

BS ADFr2 (r0) = sup
r1∈[0,r2−r0]

β̂r2
r1
.

Hence, the BSADF method considers a fixed end point, r2, and works itself backwards

from there. It performs multiple ADF tests obtaining the different βr2
r1 test statistics

for r1 ∈ [0, r2 − r0]. Then the BSADF test statistic is obtained by taking the supremum
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on the set of βr2
r1 test statistics. Again the distribution of the test statistic is non-

standard and the critical values are found by simulation using iid errors.

Then by considering the different BSADF test statistics derived from different

values of r2 one can determine the start and end points of the bubble. Varying r2 ∈

[r0, 1] will give rise to a set of BS ADFr2 (r0) test statistics, and the start of the bubble

is estimated as

r̂e = inf
r2∈[r0,1]

{
r2 : BS ADFr2(r0) > cvαr2

}
.

The observation marking the beginning of the bubble is then identified as bT r̂ec. Sim-

ilarly the end date of the bubble is found by

r̂ f = inf
r2∈[r̂e+δ log(T )/T,1]

{
r2 : BS ADFr2(r0) < cvαr2

}
,

where δ is a parameter ensuring that the identified bubble period has a certain min-

imum length. The observation marking the end of the bubble is then identified as⌊
T r̂ f

⌋
.

One should bear in mind that for the BSADF test, the significance level corre-

sponds to each of the test statistics calculated across the range of r2. Hence, simply

by choosing a sufficiently fine partitioning of the data one can be almost certain to

detect a bubble using the BSADF, simply because there is a say 5% probability of erro-

neously detecting a bubble for each value of r2. Of course this can be resolved by using

some variation of the Bonferroni correction (Dunn, 1958, 1961) or one of the numer-

ous alternative procedures developed in the literature. However, since the GSADF

includes all the relevant subsections in one test statistic, the significance level of the

critical value will be the significance level for the entire test statistic. Thus, we will

use the GSADF test to compare the size and power type properties of the alterna-

tive tests, and we will use the BSADF test for the date stamping comparisons. As

described in section 3 a similar solution does no exist for the LPPL procedure.
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2.2 The Robust Supremum ADF tests

Pedersen and Schütte (2017) find that the supremum ADF tests are significantly

oversized when subject to serially correlated innovations. Previous literature has

studied how a suitable choice of lag-length can retain the low size of the Dickey-

Fuller test given serial correlation without losing too much power (Schwert, 1989; Ng

and Perron, 1995, 2001). However, as argued in Pedersen and Schütte (2017) this

is not applicable in the supremum ADF frameworks, because the test statistic is the

supremum of a range of ADF test statistics. They propose an alternative way to calcu-

late the critical values using the sieve bootstrap (Chang and Park, 2003; Palm et al.,

2008) rather than iid errors to make the critical values robust to autocorrelation. See

appendix A for the algorithm to calculate the robust critical values.

3 The Logarithmic Periodic Power Law Procedure

The LPPL procedure offers an alternative to the GSADF test. As described in the

previous section the GSADF test requires the time series of both prices and funda-

mentals to construct the price-dividend time series in an attempt to eliminate the

unit root. As mentioned this does not necessarily guarantee the removal of the unit

root if prices and dividends do not share a unit root, and there might also be a unit

root in the unobserved fundamentals, Ut. Furthermore, for almost all asset classes

dividend data is collected at a relatively low frequency, and one need long series of

data to test for the presence of a bubble. The LPPL procedure only considers the

shape of the price trajectory in order to detect a potential build up of a bubble, and

since prices are available at a much higher frequency it is possible to perform tests

in a real time setting.

The LPPL procedure originates from the widely cited paper Johansen et al. (2000).

In Sornette and Johansen (2001) it was defended from criticism put forward by Feigen-

baum (2001) who found that the significance of the LPPL shape was fragile when
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removing key data points. The model is motivated by interactions between a large

number of traders that are allowed to influence one another1.

3.1 The LPPL Model

Johansen et al. (2000) develop the model by introducing the following assumptions.

Assumption 3.1.

1. The asset pays no dividends.

2. The risk free asset pays zero interest rate.

3. Agents are risk neutral.

4. Markets clear automatically without the need of imposing any conditions.

The agents in the economy are claimed to be rational because they satisfy the

rational expectations condition, given the assumptions above

Et (Pt+1) = Pt. (4)

Another implication of the assumptions is that the fundamental value is zero, such

that any Pt > 0 actually indicates a bubble. This is clearly not realistic and cannot be

used as a testable criterion using empirical data.

Given that there is a bubble that has not collapsed yet, then the cumulative distri-

bution function of a crash as a function of time is given by Qt, with the corresponding

probability density function qt =
dQt
dt and hazard rate ht =

qt
1−Qt

. We then assume that

the price increases at some deterministic rate µt in the absence of the collapse of the

bubble, whereas the price drops by a fixed fraction κ ∈ (0, 1) if the bubble collapses.

1In the appendix we develop and present proofs for the theorems and corollaries below. A proof of the
LPPL process is included in Bree and Joseph (2013) but relies on the use of Wolfram’s Mathematica
online integrator.
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The price process can then be written as

dPt = µtPtdt − κPtd j, (5)

where j = 0 before a crash and j = 1 during a crash and is associated with the hazard

rate ht such that Et (d j) = htdt. Then given risk neutral agents and zero interest rate

the price process must satisfy the martingale condition

Et(dPt) = µtPtdt − κPtEt(d j) = 0, (6)

which implies that

µt = κht.

The restriction Et (dPt) = 0 will be relaxed in section 3.3.

Hence, under the assumptions given above the investors require a zero return on

their investment. But since there is a positive probability of a crash there must be

a positive growth in the price exactly equal to the expected price drop from a crash.

Plugging this into (5) we get prior to a crash (i.e. d j = 0) that dPt = κhtPtdt, which is

an ordinary differential equation with the solution

log Pt = log Pt0 + κ

∫ t

t0
ht′dt′. (7)

The traders are then modelled to rely partly on their connections and partly on

idiosyncratic signals when forming their opinion on the price level. In particular the

traders can be in either of two states {−1,+1}. The states can be understood as ”buy”

and ”sell”, such that the state of trader i is given by

si = sign

Kt

∑
j∈N(i)

s j + σεi

 , (8)
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where N(i) contains the indices of the traders that are connected with trader i, K

is positive, and εi is a Gaussian random variable representing idiosyncratic noise or

knowledge. A more general formulation of this model with q states and two types

of interactions (positive for equal states and negative for different states) is known

from statistical mechanics as the Potts model (Wu, 1982). The average state across

all traders is then given by M = 1
I
∑I

i=1 si, which has the expectation E(M) = 0. To un-

derstand the dynamic features of the trader interactions we define the susceptibility

of the system. First we augment (8) with a global influence term G such that

si = sign

Kt

∑
j∈N(i)

s j + σεi + G

 , (9)

and then the susceptibility of the system is defined as

χ =
dE(M)

dG

∣∣∣∣∣
G=0

.

The susceptibility of the system is the average sensitivity to a change in the global

influence term. Similarly, the influence from one agent being in a particular state on

another agent will be proportional to the susceptibility of the system. Thus, Johansen

et al. (2000) argue that the susceptibility measures the agents’ tendency to agree on

e.g. a sell state, and that the process driving the susceptibility of the system is similar

to that driving the hazard rate. It is important to define the structure of the trader

connections in order to describe the susceptibility process. Johansen et al. (2000) use

a hierarchical diamond lattice because it has already been solved for the Ising model

(Derrida et al., 1983).

[ Insert Figure 1 about here ]

The hierarchical diamond lattice is constructed by starting with two connected

traders as in figure 1a. Then two additional traders are introduced by replacing the

single connection with a diamond as in figure 1b. Each of these connections is then

12
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replaced by diamonds as in figure 1c. Then after p iterations there will be 2
3 (2 + 4p)

traders and 4p connections. In particular in figure 1c after p = 2 iterations there are

12 traders and 16 connections. For this network of traders there exists a Kt in (9) and

some critical value Kc such that χ < ∞ when Kt < Kc, and χ→ ∞ for Kt → Kc. Then the

first order approximation of the susceptibility is given by (see Derrida et al. (1983);

Johansen et al. (2000))

χ ≈ R
(
A0 (Kc − Kt)−γ + A1 (Kc − Kt)−γ+iω

)
= A′0 (Kc − Kt)−γ + A′1 (Kc − Kt)−γ cos

(
ω log (Kc − Kt) + ψ′

)
,

where R returns the real part of the argument and so A′0, A′1, ω and ψ′ are real num-

bers.

Then as mentioned above we assume that the hazard rate follows a process sim-

ilar to that of the susceptibility. We assume that Kt is sufficiently smooth and slow-

moving, such that with tc being the first time when Ktc = Kc, we can write the approx-

imation Kc − Kt ∝ tc − t. Then rewriting the approximated susceptibility the hazard

rate is given by

ht = B′ (tc − t)β−1 + C′ (tc − t)β−1 cos
(
ω log (tc − t) + ψ

)
. (10)

Then inserting ht from (10) into (7) we get the following theorem.

Theorem 3.1. Let assumptions 3.1 be satisfied and let the traders be connected by

means of a hierarchical diamond lattice and influenced by their neighbours as given

by (8). Then the price follows

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
, (11)

where Ptc is the price of the asset at the critical time, tc, and B, C, ω, φ, and β are

constants. See the proof in appendix B for their relation to the parameters in (10).

13
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Proof. See appendix B. �

And then this can be rewritten such that the non-linear parameter φ is trans-

formed into a linear parameter which will make the estimation procedure much more

robust.

Theorem 3.2. Let assumptions 3.1 be satisfied and let the traders be connected by

means of a hierarchical diamond lattice and influenced by their neighbours as given

by (8). Then the price follows

log Pt = log Ptc + B (tc − t)β +C1 (tc − t)β cos
(
ω log (tc − t)

)
+C2 (tc − t)β sin

(
ω log (tc − t)

)
, (12)

where C1 = C cos φ and C2 = −C sin φ.

Proof. See appendix C. �

Since the hazard rate is a probability it must be positive. That gives us the fol-

lowing corollary.

Corollary 3.2.1. The hazard rate is positive if

B <

√(
C2

1 + C2
2

) ω2 + β2

β2 . (13)

Proof. See appendix D. �

Corollary 3.2.2. The non-oscillating part of the hazard rate is increasing if

Bβ (β − 1) >0. (14)

Proof. see appendix E. �
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3.2 Calibration of the LPPL Model

The model is calibrated in a two-step approach. Since log Ptc is calibrated as a whole

rather than by its components we denote A = log Ptc for coherence, such that the model

reads

log Pt = A + B (tc − t)β +C1 (tc − t) cos
(
ω log (tc − t)

)
+C2 (tc − t)β sin

(
ω log (tc − t)

)
. (15)

The linear parameters, A, B, C1, and C2 in (15), can be slaved to the estimates of the

non-linear parameters, tc, β, and ω, by rewriting the model into a least squares loss

function (Filimonov and Sornette, 2013).

F(tc, β, ω, A, B,C1,C2) =

T∑
t=1

[
log Pt − A − B (tc − t)β

− C1 (tc − t)β cos
(
ω log (tc − t)

)
− C2 (tc − t)β sin

(
ω log (tc − t)

)]2

=

T∑
t=1

[
log Pt − A − B ft −C1gt −C2ht

]2 ,

where, yi = log P(ti), fi = (tc − ti)β, gi = fi cos
(
ω log (tc − ti)

)
, and hi = fi sin

(
ω log (tc − ti)

)
.

Hence, for given parameter values of tc, β, and ω the loss function, F, is uniquely

minimized by the least squares estimates of A, B, C1, and C2
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. (16)

The current LPPL literature does not provide any assumptions or results regarding

any stochastic error term used for the least squares estimation. Hence, we do not
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know the statistical properties of the obtained estimates. Interestingly Feigenbaum

(2001) obtains standard errors on the least squares estimates. they do no, however,

explain how they are obtained.

Given the method for obtaining the estimates of A, B, C1, C2, the non-linear pa-

rameters β, ω, and tc are chosen to minimize the resulting mean squared error by

running a simple Nelder-Mead search algorithm (Filimonov and Sornette, 2013).

The estimates are then saved to determine whether the fit indicates the presence

of a bubble or not by checking if the estimates are economically meaningful (Johansen

et al., 2000; Filimonov and Sornette, 2013). We require that β ∈ (0.0, 0.8) to ensure

that the hazard rate is increasing and Pt → Ptc as t → tc. Rejecting low estimates of

ω avoids the slow oscillations to just fit the trend, and rejecting too high estimates

of ω avoids just fitting the noise. The two conditions (13) and (14) ensure that the

hazard rate is positive and increasing respectively. For the purposes of this paper

we impose the restriction ω ∈ (2, 13) as well which is similar to what is done in the

literature. Furthermore, the root mean squared error (RMSE) is used in some studies

as a goodness of fit criterion (Johansen et al., 1999, 2000; Graf and Meister, 2003;

Brauers et al., 2014), and as will be evident in the Monte Carlo results in section 6 the

choice of maximum RMSE will have a large impact on whether the LPPL procedure

detects a bubble or not. As a technicality we also require that the matrix in (16) is

non-singular and well conditioned. See section 7 and appendix G for a discussion on

the bounds on β and ω.

[ Insert Figure 2 about here ]

Two examples of fitting the log periodic power law can be seen in the figures

2a and 2b showing an approved and rejected fit, respectively. The time series in

figure 2a is a realization of the process described in section 5.4 and the times series

in figure 2b is a realization of the process described in section 5.1. The plots show

that the LPPL has quite some flexibility in fitting various processes, and it is clear
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that the parameter requirements play an important role in detecting bubbles. The

fit shown in figure 2a has all parameter values within the bounds, whereas the fit in

figure 2b violates β̂ ∈ (0.0, 0.8).

Similarly to the GSADF the sample is divided into subsections identified by r0,

r1, and r2, which are defined as in section 2. The LPPL is then calibrated based on

each of the subsections and a bubble is detected for the entire sample if there is a

fit satisfying the restrictions in at least one of the subsections. Note that there is

no nominal size for the LPPL procedure given the lack of a test statistic. Hence, its

objective is simply to detect as few bubbles, under the null. There is no measure

of power either, however in this regard the objective is the same as for the GSADF;

detect all of the bubbles.

3.3 The Generalized LPPL Framework

The model above is based on the assumptions 3.1 which result in a required rate of

return of zero. In the following we present the consequences of a non-zero required

rate of return. A non-zero required rate of return could be the result of allowing for

a non-zero risk free rate or by allowing the agents to be risk averse. The generalized

LPPL (GLPPL) model is obtained by rewriting the martingale condition in (6) into

Et(dPt) = µtPtdt − κPtEt(d j) = γt, (17)

where γt the required rate of return that is now allowed to be non-zero and time

varying.

Theorem 3.3. Let the required rate of return be given by γt such that it is allowed to

be non-zero and time varying. Then the logarithm of the price follows

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
−

∫ tc

t
γt′dt′. (18)

Proof. See appendix F. �
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By allowing the required rate of return to be non-zero the integral of the required

rate of return from the current time, t, to the critical point, tc, is subtracted from the

right-hand side in (12). The shape of this integral as a function of t depends on the

shape of γt. In order to obtain further insights we can restrict γt to be constant.

Corollary 3.3.1. Let the required rate of return be given by γ. Then the logarithm of

the price follows

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
− γ (tc − t) , (19)

Proof. See appendix F. �

By allowing the required rate of return to be non-zero but restricting it to a con-

stant reveals that a linear trend is added to log Pt. The hazard function is the same

as for the zero required return case and so are the conditions in lemma 3.2.1 and

]3.2.2. By taking the exponential of either (18) or (19) it is clear that γt and γ will

indeed enter as the continuously compounded return of Pt, which is intuitive as γt

and γ were defined as the required return of the asset in (17).

3.4 Calibrating the Generalized LPPL Model

The generalized LPPL model is calibrated with a two-step approach like the standard

LPPL model. We rewrite the model as in (15) such that

log Pt =A + B (tc − t)β + γt + C1 (tc − t) cos
(
ω log (tc − t)

)
(20)

+ C2 (tc − t)β sin
(
ω log (tc − t)

)
, (21)

where A = log Ptc − γtc. The linear coefficients A, B, C1, C2, and γ can then be slaved

to the linear parameters tc, β, and ω. Note how the extension of the model only adds

linearly to the complexity of the model. Hence, we have the same number of non-
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linear parameters as before. We rewrite this into a least squares loss function.

F (tc, β, ω, A, B,C1,C2, γ) =

T∑
t=1

[
log Pt − A − B ft −C1gt −C2ht − γt

]2 ,

where ft = (tc − t)β, gt = ft cos
(
ω log (tc − t)

)
, and ht = ft sin

(
ω log (tc − t)

)
.

As for the standard LPPL procedure the concepts of size and power are unde-

fined. However, the interpretation is the same as for the standard LPPL procedure

described in setion 3.1.

3.5 Time Stamping

Similarly to the method described in section 2.1 we can consider the various subsec-

tions of the sample in order to time stamp the bubbles identified with the LPPL and

GLPPL frameworks. The main idea is very similar to Phillips et al. (2015), and de-

ploys a backward looking recursive framework. The end of the subsection varies over

r2 ∈ (r0, 1), and for each value of r2 the start of the subsection varies over r1 ∈ (0, r2−r0).

Then the start of the bubble is given by the first value of r2 for which one of the sub-

sections is found to contain a bubble, and the end of the bubble is found by the subse-

quent value of r2 where no bubble is found in any of the subsections. See section 6.2

for a detailed description of the actual requirements used for the study.

4 Similarities and Differences

Until now the economic asset bubbles literature and the LPPL literature have been

completely separated. The supremum ADF tests are based on economic theory by

the notion that the bubble can be identified by the deviation of the observed price

from the latent fundamental price. The link to economic theory for the LPPL test is

not as clear. The literature does however provide some motivation based on herding

behaviour of the traders, which is an established topic in the mainstream behavioural

economics literature (Scharfstein and Stein, 1990; Froot et al., 1992). The motivation
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for the structure of the herding behaviour, however, comes from physics rather than

economics (Johansen et al., 2000).

The main driver of the build up and subsequent collapse of the bubble in the LPPL

framework is that the traders are not synchronized in their actions initially and at

some point, namely the critical point, they manage to coordinate a sell off. This is

motivated by a certain structure of trader interaction and the critical points theory.

A somewhat similar idea has been explored in the economics literature (Abreu and

Brunnermeier, 2003). Here it is argued that an economy with rational traders can

sustain a bubble because the traders are unable to synchronize their actions, and

that the bubble will eventually collapse once the traders get coordinated. This can

potentially be viewed as a theoretical link between the two sets of the literature.

The vast majority of the current LPPL literature has almost exclusively been eval-

uating the performance of the model using in-sample empirical data. Often the col-

lapse of a bubble is defined as a remarkably large draw-down in asset prices and then

the preceding time series is analysed using the LPPL framework (Johansen et al.,

2000; Johansen and Sornette, 2010; Brauers et al., 2014). One exception is Graf and

Meister (2003) which find that the predictive performance of the LPPL model can be

very poor. This is because while the LPPL does indeed fit the time series well in the

time preceding the collapse of a bubble it fits quiet periods without bubbles too. As a

consequence it is difficult to know whether a good fit actually indicates the presence

of a bubble or not. This paper evaluates the LPPL test against the supremum ADF

tests more thoroughly than previous studies focusing on simulated data to create a

controlled environment for the study.

The LPPL framework also faces challenges similar to those of the BSADF test. As

discussed in section 2.1, the BSADF test will be sure to identify a bubble if just given a

sufficiently fine partitioned time series. One could easily imagine that a subsection of

the time series could provide an approved fit for the LPPL test simply by chance and

then, by extension, one could also expect that the finer the time series is partitioned,
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the higher would be the probability to detect a bubble in just one subsection. The

main difference is that as an alternative to the BSADF test we have the GSADF

test for which the significance level applies to the entire time series and not just the

subsections, whereas we have no such correction for the LPPL procedure. There is

also a distribution for the BSADF test statistic and so one could potentially correct

for multiple testing as well.

A major difference between the supremum ADF and the LPPL is that the supre-

mum ADF tests have a test statistic with a distribution under both the null and the

alternative (Phillips et al., 2015). The LPPL does not even have a test statistic. This

allowed Phillips et al. (2015) to do a study of the size and power of the supremum

ADF tests, whereas that approach is not readily applicable to the LPPL. Hence, this

study relies on the calculation of pseudo power and size measures simply obtained as

bubble detection rates in scenarios containing and not containing bubbles.

The bubbles in the mainstream economic literature is said to be rational because

the expectation of the size of the following period’s bubble component in (1) is consis-

tent with rational expectations (Campbell et al., 1997). The LPPL model, however,

does also turn out to be consistent with rational expectations. Given the assumptions

introduced in section 3.1 the fundamental value of the asset is zero, and the price in

(2) can simply be reduced to Pt = Bt. Then substituting this into (4) and realizing that

R = 0 in (1) because of the assumptions made we get

Et(Bt+1) = (1 + R)Bt = Bt

and it turns out that (1) and (4) are actually equivalent given the assumptions.

Hence, the framework of the standard LPPL model is actually consistent with ra-

tional expectations. It is, however, unclear if the equivalence is intact after defining

the network of agents in the LPPL model. Here the agents are allowed to influence

the state of a subset of the agents simply by being in a certain state themselves. This
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does not seem consistent with rationality but rather linked to behavioural finance.

It provides an additional link to the theoretical model of Abreu and Brunnermeier

(2003) as both models rely on a subgroup of the agents agents that is in a ”positive”

or ”buy” state and thus not prepared to sell and let the bubble collapse. If the agents

are assumed to feature rational expectations they are assumed to know the model

when forming their expectations (Muth, 1961). However, that is inconsistent with

the agents being influenced by a limited number of connected agents. Furthermore,

no information regarding connections between agents is used for the forming of ex-

pectations, so it is not clear how they could be regarded as rational after all.

Both frameworks can be viewed as methods to search for structural breaks in

the processes, i.e. periods with or without explosive roots and fits to deterministic

functional forms. This could in principle refer to any number of economic concepts,

like time varying risk premia, but it so happens in this literature that these shifts

are considered ”bubbles”.

5 Simulated Bubble Dynamics

We choose various processes to simulate the dynamics of a potential bubble compo-

nent. They have been chosen such that they cover a broad range of dynamics to

determine how the LPPL model compares with the mainstream economic literature.

5.1 Random Walk without Bubble

To estimate the probability of a type I error we follow the procedure in Phillips et al.

(2015) by simulating a unit root process without bubbles. This will represent the null

hypothesis of no bubbles. The dynamics of the process are as follows.

Pt = T−1 + Pt−1 + εt, εt
iid
∼ N

(
0, σ2

ε

)
,
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where the innovations are iid and the parameters are set to σε = 6.79 and P0 = 100 for

the simulations. The parameter values are the same as those used in Phillips et al.

(2015).

However, as argued in Pedersen and Schütte (2017) the GSADF does not perform

well when innovations are serially correlated as the test statistics become signifi-

cantly oversized. Thus, we also simulate processes with serially correlated innova-

tions.

Pt = T−1 + Pt−1 + νt

νt = φ1νt−1 + εt + γ1εt−1 + γ2εt−2 + γ3εt−3, εt
iid
∼ N

(
0, σ2

ε

)
.

We consider two types of serial correlation. First we consider the case where the

innovations follow an AR(1) model such that φ1 = 0.8 and γ1 = γ2 = γ3 = 0. In the

second case the innovations follow and MA(3) such that γ1 = γ2 = γ3 = 0.8 and φ1 = 0.

The remaining parameters are as in the iid case above. The values of the AR(1) and

MA(3) coefficients are the same as those used in Pedersen and Schütte (2017) and

are based on an extensive study of evidence of AR(1) and MA(3) serial correlation in

housing markets of various countries.

We also simulate the random walk process with GARCH(1,1) innovations as an

additional robustness measure.

Pt = T−1 + Pt−1 + εt

εt = vt
√

ht, vt
iid
∼ N (0, 1)

ht = ω + αε2
t−1 + βht−1,

with parameters set to ω = 10, α = 0.3, β = 0.6, and P0 = 100.

A visual representation of the four processes described above can be seen in fig-

ures 3, 4, 5, and 6. Based on the visuals alone we judge that the time series could
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resemble financial price processes to an extent that justifies including them in the

study. Additional realisations of the processes are similar to those reported.

[ Insert Figure 3 about here ]

[ Insert Figure 4 about here ]

[ Insert Figure 5 about here ]

[ Insert Figure 6 about here ]

5.2 Partially Collapsing Bubbles

Even though the bubble is not permitted to collapse completely and then restart (Diba

and Grossman, 1988b), the bubble may collapse partially and then initiate a new

build up. If this is the case the testing methods originally proposed by Diba and

Grossman (1988a,b) will not be able to detect the bubble consistently (Evans, 1991).

However the GSADF test can successfully detect partially collapsing bubbles because

of its multi-window framework (Phillips et al., 2015).

For the simulation of partially collapsing bubbles the fundamentals follow a ran-

dom walk given by

Dt = µ + Dt−1 + εDt , εDt
iid
∼ N

(
0, σ2

D

)
,

which implies that the fundamental price is given by

Ft =
µρ

(1 − ρ)2 +
ρ

1 − ρ
Dt.

The bubble component follows a threshold function such that the bubble grows at

rate 1 + r when Bt ≤ α and grows at an accelerated pace with the added possibility of
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a collapse when Bt > α. The bubble process is then given by

Bt =


(1 + r) Bt−1εBt , if Bt−1 ≤ α[
δ + π−1 (1 + r) θt

(
Bt−1 − (1 + r)−1 δ

)]
, if Bt−1 > α.

where θt is a Bernoulli process taking value 1 with probability π and value 0 with

probability 1 − π, where 0 < π ≤ 1. The bubble collapses with probability 1 − π when

θ = 0. ρ is a discount factor and is related to the expected growth in the bubble

component by ρ−1 = 1 + r > 1. After a collapse the bubble component is equal to δ

where 0 < δ < (1 + r)α. εBt is a positive random variable with Et
[
εBt+1

]
= 1. Like Evans

(1991), we choose εBt = exp(ytσB − σ
2
B/2) where yt

iid
∼ N(0, 1). For consistency with (1) it

must hold that R > r for the slowly growing regime and π−1 (1 + r) > 1 + R for the fast

growing regime. Furthermore, we use the scaling parameter κ such that the price

process is given by Pt = Ft + ηBt.

We choose the parameter values as in Phillips et al. (2015) for comparability such

that µ = 0.0024, ρ = 0.985, α = 1, π = 0.85, δ = 0.5, σD = 0.0316, σB = 0.05, and η = 20.

A visual representation of the process can be found in figure 7. The partially

collapsing bubbles appear to be rather steep during their build-up period. This does

not mimic empirical prices particularly well. However, it has been used and referred

to repeatedly in previous studies.

[ Insert Figure 7 about here ]

5.3 Random Walk with Explosive Periods

As an alternative to the bubble dynamics proposed by Evans (1991) we also simulate

an explosive AR(1) process. We configure the process with either one or two bubble
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periods. The process containing only a single bubble is given by

Pt =



Pt−1 + εt, t = 1, ..., τe − 1

δT Pt−1 + εt, t = τe, ..., τ f

Pτe + εt, t = τ f + 1

Pt−1 + εt, t = τ f + 2, ...,T,

following the set-up in Phillips et al. (2015) and Pedersen and Schütte (2017). Simi-

larly we let δT = 1 + cT−α, and εt
iid
∼ N

(
0, σ2

ε

)
. This yields a process that initially follows

a random walk up until time τe, where it changes into an explosive process up until

time τ f , where it collapses to Pτe and continues as a random walk. The thresholds

defining the bubble period are constructed as τe = breT c and τ f = br f T c. Again fol-

lowing Phillips et al. (2015) and Pedersen and Schütte (2017) we set the parameter

values to P0 = 100, σε = 6.79, c = 1, α = 0.8, re = 0.3, and r f = 0.75.

The two-period process is given by

Pt =



Pt−1 + εt, t = 1, ..., τe1 − 1

δT Pt−1 + εt, t = τe1 , ..., τ f1

Pτe1
+ εt, t = τ f1 + 1

Pt−1 + εt, t = τ f1 + 2, ..., τe2 − 1

δT Pt−1 + εt, t = τe2 , ..., τ f2

Pτe2
+ εt, t = τ f2 + 1

Pt−1 + εt, t = τ f2 + 2, ...,T.

This creates a series with an explosive period ranging from τe1 = bre1T c to τ f1 = br f1T c

and a second explosive period ranging from τe2 = bre2T c to τ f2 = br f2T c. The explosive

root δT = 1 + cT−α is defined as in the single-bubble random walk. We also choose

the parameter values in line with those in Phillips et al. (2015) and Pedersen and
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Schütte (2017), such that P0 = 100, c = 1, α = 0.8, re1 = 0.1, r f1 = 0.4, re2 = 0.6, r f2 = 0.9,

and σε = 6.79.

Like the simulations under the null in section 5.1 we also simulate the single

bubble processes with serially correlated innovations.

Pt =



Pt−1 + νt, t = 1, ..., τe − 1

δT Pt−1 + νt, t = τe, ..., τ f

Pτe + νt, t = τ f + 1

Pt−1 + νt, t = τ f + 2, ...,T

νt = φ1νt−1 + εt + γ1εt−1 + γ2εt−2 + γ3εt−3, εt
iid
∼ N

(
0, σ2

ε

)
,

with σε = 6.79. As in section 5.1, the innovations follow either an AR(1) with φ1 = 0.8

and γ1 = γ2 = γ3 = 0, or an MA(3) with γ1 = γ2 = γ3 = 0.8 and φ1 = 0.

A visual representation of the four processes described above can be found in

figures 8, 9, 10, and 11. These time series seem to resemble empirical prices rather

well. Only the collapse of the bubbles might be a bit compact as it happens over a

single time increment. However, since none of the tests use the shape of the collapse

of the bubble to detect the bubbles, this should change little in terms of performance.

We also discuss this issue in section 6.1.2

[ Insert Figure 8 about here ]

[ Insert Figure 9 about here ]

[ Insert Figure 10 about here ]

[ Insert Figure 11 about here ]

2See also section 7 for a general discussion on the validity of the simulated processes.
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5.4 Random Walk with LPPL Bubble

We also create a bubble following a log periodic power law to compare the two proce-

dures in an environment representing the LPPL framework. It is based on a random

walk with a predetermined explosive period driven by the log periodic power law, so

the price process will be a sum of what could roughly be described as a fundamental

price and a bubble component.

Pt = Ft + Bt,

where Ft is a random walk

Ft = T−1 + Ft−1 + εt, εt
iid
∼ N

(
0, σ2

ε

)
,

and Bt is the log periodic power law during the bubble period and zero otherwise.

Bt =



0, t = 1, ..., τe − 1

exp
(
A + B (tc − t)β + C1 (tc − t)β cos (ω (tc − t))

+C2 (tc − t)β sin (ω (tc − t))
), t = τe, ..., τ f

0, t = τ f + 2, ...,T.

The parameters are chosen such that for the random walk σε = 6.79 and F0 = 100,

and for the log periodic power law A = 8.5, B = −2, C1 = C2 = −0.5, β = 0.1, ω = 6,

re = 0.30, r f = 0.75, and tc = τ f + 1. The values are chosen such that the resulting

series provide bubbles that are similar in size to those formed by the random walk

with explosive periods in section 5.3 as is illustrated in figures 12 and 13.

We also simulate the process with a positive required rate of return such that Bt
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is given by

Bt =



0, t = 1, ..., τe − 1

exp
(
A + B (tc − t)β + C1 (tc − t)β cos (ω (tc − t))

+C2 (tc − t)β sin (ω (tc − t)) + γt
), t = τe, ..., τ f

0, t = τ f + 2, ...,T,

where γ = 0.01.

A visual representation of the processes described above can be found in figures 12

and 13. This time series has some merit in mimicking empirical prices because of

the exponential shape rather than a linear trend. Again the collapse of the bubble is

rather steep, however as argued in section 6.1 this has little effect on the performance

of the tests.

[ Insert Figure 12 about here ]

[ Insert Figure 13 about here ]

6 Monte Carlo

We perform a Monte Carlo study on each of the discussed bubble dynamics with

1,000 replications for time series with 100, 200, and 400 data points. For each time

series we test for the presence of bubbles for various sub-periods. For all tests the

minimum length of each sub-period is given by
⌊
T

(
0.01 + 1.8T−

1
2
)⌋

as in Phillips et al.

(2015), where T is the total number of observations. For the time series with 100, 200,

and 400 data points the rule yields a minimum length of 19, 27, and 40 observations

respectively.

Section 6.1 covers bubble detection rates and section 6.2 covers the abilities of the

frameworks to time stamp the bubbles.
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6.1 Bubble Detection

The bubble detection part of the simulation study is divided into two categories. First

we estimate the probability of detecting a bubble in the different processes without

bubbles. The standard random walk process will be a pure representation of the null

hypothesis, and the processes with serially correlated and GARCH innovations will

give some indication as to the robustness of the tests under alternative formulations

of the null. The second category consists of the remaining processes that all include

bubbles and represent different formulations of the alternative hypothesis.

We need to deal with a technicality regarding the robust GSADF. When the simu-

lated bubbles collapse over a single time increment the error at that particular point

in time will be extremely large and decrease the performance of the test if they are

drawn in the bootstrap reshuffle. Since these large errors are not seen empirically

we will replace all errors of a magnitude larger than 10 standard deviations with an

iid random variable with the same standard deviation as the sampled errors. We do

not consider this a severe manipulation, since draw-downs of this magnitude are not

seen empirically and so this modification will only make the performance of the test

reflect reality more closely. This does not affect the results presented here.

We use 199 replications to obtain the quantiles in the GSADF and robust GSADF

tests 3.

[ Insert Table 1 about here ]

[ Insert Table 2 about here ]

Table 2 reports the Monte Carlo results for the time series with 100, 200, and 400

data points. Looking at the first four columns in table 2 we consider the processes

without bubbles. We immediately confirm the finding in Pedersen and Schütte (2017)

that the GSADF test is oversized for the processes with serially correlated innova-

tions presented in the second and thirds columns. The solution proposed by Pedersen
3Thus ensuring that α (B + 1) is an integer for B being the number of bootstrap replications and α = 0.05
being the significance level (MacKinnon, 2002).
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and Schütte (2017) and presented in section 2.2 reduces the size and generally brings

the size back to the 5% level. Interestingly both the GSADF and the GSADFB appear

undersized under the null in [1]. For low T we observe that the GSADF and the

GSADFB are oversized for GARCH innovations and the problem becomes more se-

vere as the sample size increases, reaching 0.32 for T = 400. This contradicts Phillips

et al. (2015) who state that GARCH innovations do not appear to be an issue for the

GSADF test. The finding is however in line with Harvey et al. (2016) where a wild

bootstrap implementation is used to correct for the size.

We find that the two LPPL procedures LPPL0.01 and GLPPL0.01 outperform the

GSADF in almost all of the cases. Just for T = 400 in [2] with AR(1) innovations

does GLPPL0.01 the GSADF with detection rates of 0.06 and 0.08, respectively4. The

LPPL0.01 and GLPPL0.01 also have elevated detection rates for MA(3) innovations,

but just not as severely as the GSADF. However, for T = 400 they are quite close

when correcting for the respective objectives of the procedures. LPPL0.1, LPPL0.05,

GLPPL0.1, and GLPPL0.05 all detect bubbles in almost all of the simulations.

Turning to columns [5] through [11] in table 2 we consider the processes with

bubbles. The LPPL procedures LPPL0.1 and LPPL0.05 deliver very high detection

rates for all processes regardless of the required rate of return. However, this is

neither surprising nor impressive since their detection rates were almost as high

for the processes without bubbles. The picture is more nuanced for the LPPL0.01

and the GLPPL0.01 as they do show a strict increase in the detection rates for the

processes in [6], [7], and [8] compared to their non-bubble counterparts in [1], [2], and

[3], respectively. They perform decent in detecting the partially collapsing bubbles

in [5] for T = 100, as well as in [7] for T = 200 and T = 400, and in [8] for all T .

We find a clear indication of the LPPL procedure being able to detect bubbles in

those processes that are most often used for validating the tests in the mainstream

economic literature. They do perform surprisingly poorly for the LPPL processes [9]

4Again, note that the objective for GLPPL is to get as close to zero as possible, whereas the GSADF tries
to get as close to its theoretical size of 0.05. Thus the GSADF is close to its objective in this case.
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and [10], except in [10] with T = 400. They struggle to detect bubbles for the random

walk with two explosive periods in [11]. We find that the proposed generalization

of the LPPL procedure performs slightly better than the standard LPPL procedure.

For T = 100 and T = 200 the GLPPL0.01 improves on LPPL0.01 for seven of the eleven

processes.

The GSADF and GSADFB show higher detection rates compared to both LPPL

procedures requiring RMS E < 0.01 for all processes. The GSADF and GSADFB show

decent performance in detecting the partially collapsing bubbles in [5] for T = 100

but improves for T = 200 and T = 400. In general, however, there is no uniform

pattern in the detection rates across the different sample sizes. The GSADF and

GSADFB are also much better at detecting the LPPL bubbles finding almost all of

them. Like the LPPL procedures they struggle to detect the two bubbles in [11] but

not nearly as much. This supports the findings in Phillips et al. (2015) who also

find high detection rates for the partially collapsing bubbles in [5] and low detection

rates for the random walk with two bubbles in [11]. There are no large differences

between the GSADF and the GSADFB although the GSADFB does lose some power

in its attempt to bring down the size. The next question is how many of these bubble

detections can actually be attributed to the detection of the actual bubble. We will

illuminate that by investigating the ability of the various tests to time stamp the

bubbles.

6.2 Time Stamping

Simulations for investigating each of the methods’ ability to correctly time stamp

the bubble period are only done for the five random walk processes and not the par-

tially collapsing bubble process, because the starting and ending points must be fixed

across the simulations. For the random walk processes, however, the bubble period is

characterized by the start and end points given by breT c and br f T c respectively where

re = 0.25 and r f = 0.75, such that the bubble has a total duration of brdT c = b
(
r f − re

)
T c.
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Then the following three requirements must all be met for the method to correctly

identify the start and end of the bubble.

Condition 1. For at least 80% of the values of r2 ∈ (re + 0.5rd, r f ) the method must

identify a bubble in at least one of the relevant subsections formed by varying

r1 ∈ (0, r2 − r0).

Condition 2. For at least 8 of the b0.5rdT + 11c values of r2 ∈ (re − 10, re + 0.5rd) the

method must be unable to detect a bubble in all of the relevant subsections

formed by varying r1 ∈ (0, r2 − r0).

Condition 3. For at least 8 of the 11 values of r2 ∈ (r f , r f + 10) the method must be

unable to detect a bubble in all of the relevant subsections formed by varying

r1 ∈ (0, r2 − r0).

[ Insert Figure 14 about here ]

These requirements provide some flexibility in time stamping the beginning and

the end of the bubble period, as the time stamping is approved in the study as long

as they fall on [re − 10, re + 0.5rd] and
[
r f , r f + 10

]
respectively. This flexibility is al-

lowed because the methods cannot time stamp with perfect accuracy. Previous re-

sults showed close to zero success rate for stricter requirements. Thus, the simu-

lations illustrate the relative performance of the procedures but not their absolute

performance. Written as above this holds for the random walk processes containing

a single bubble. For the random walk process with two bubble periods simply replace

the shares rx with rx1 and rx2 for x = e, f , and d.

[ Insert Table 3 about here ]

[ Insert Table 4 about here ]

Table 3 shows the share of the total amount of simulations that the test is able to

time stamp the bubble correctly. Table 4 shows the adjusted shares of correctly time
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stamped bubbles. The shares are adjusted by only including the simulations in which

the relevant test actually detect a bubble rather than include all of the simulations.

Notice that [11]* denotes the ability to detect either one of the two bubbles and [11]**

denotes the ability to detect both bubbles simultaneously.

The BSADF generally performs better than the BSADFB with few and small ex-

ceptions in processes [8] and [10]. There appears to be no impact of serially correlated

innovations. The time stamping succes rate declines for the standard LPPL bubble

in [9] and the two bubbles in [11]** for increasing sample sizes. Interestingly, intro-

ducing the positive required rate of return in the LPPL process [10] helps the BSADF

and the BSADFB procedures in time stamping the bubbles.

With such a large number of simulations there is a chance that some of the bub-

bles will be of a small magnitude relative to the underlying random walk, making

the bubble impossible to detect for both the tests and the naked eye. To give a more

precise measure of the time stamping performance we introduce the adjusted time

stamping success rate by considering only those simulations in which a bubble is

actually detected. This works fine for large bubble detection rates, but the rates

introduce a lot of uncertainty for low detection rates as they rely on relatively few

realizations. These adjusted rates show the rate at which the procedure time stamps

the bubbles correctly given that it has already detected a bubble. They are by con-

struction at least as high as the standard rates. We do not observe any changes in

the relative performance of the BSADF and the BSADFB, which is not too surprising

given their similar detection rates. The adjusted rates are generally inflated com-

pared to the standard rates, indicating that whenever the GSADF procedures detect

a bubble it is mainly due to identifying the actual bubble. The time stamping suc-

cess rates increase more for the bubble with a random walk and iid innovations in

[6] compared to those with serially correlated innovations in [7] and [8]. There are

no gains for the LPPL bubble with zero required rate of return in [9] with very low

time stamping success rates compared to the other processes. In contrast we observe

34



Comparing Tests for Identification of Bubbles Bertelsen, K. P.

substantial gains for the process with two bubbles in [11].

The standard time stamping success rates are quite low in general for all six of

the LPPL procedures (and zero for the LPPL procedure requiring RMS E ≤ 0.01 in

particular). The LPPL0.1 procedure does, however, compare with the BSADF proce-

dures when it comes to the LPPL bubble with zero required rate of return in [9] for

T = 200 and even outperforming for T = 400, and it shows performance comparable to

the BSADF procedures for the two bubble process in [11] for T = 100. The GLPPL0.1

does show somewhat higher time stamping rates for the bubble with a standard ran-

dom walk in [6] as well as the LPPL bubble with positive required rate of return in

[10] for T = 400. We also observe increasing success rates for the two single bubble

random walks serially correlated innovations as T increases, but they are still low.

The adjusted success rates for the LPPL tests are similarly low and do not in-

crease as was observed for BSADF procedures. This is due to the overall high detec-

tion rate of bubbles and indicates that the LPPL tests do not necessarily identify the

actual bubble. According to these results it is very likely that the LPPL procedures

spuriously detect a bubble in some random subsamble of the time series. The NaN

entries occur when the procedure has failed to identify even a single bubble.

[ Insert Table 5 about here ]

[ Insert Table 6 about here ]

Table 5 shows the average fraction of the sample on which a bubble was first

and last detected. These numbers only include the simulations where a bubble was

detected in at least one of the subsections. Hence, some of the table entries can rely

on quite few realizations for some of the procedures. In particular, NaN entries occur

where no bubbles were detected in any of the simulations. To shed some light on

the influence of outliers table 6 shows the median fraction of the sample on which a

bubble is first detected. Recall from section 5 that for all processes the bubble begins

at re = 0.3 and ends at r f = 0.75.
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The LPPL0.1 and LPPL0.05 generally underestimates re for all T . For T = 100 the

GLPPL0.1 and GLPPL0.05 detect the bubbles with some delay, but for T = 200 and

T = 400 GLPPL0.05 comes quite close to estimating re. The early detections of bubbles

is also a symptom of the fact that the procedures are prone to detect bubbles under

the null. The GSADF and GSADFB generally estimates re well in the processes [6],

[9], and [10] and especially so for large T . They do, however, tend to underestimate

re when exposed to serially correlated innovations in [7] and [8]. The performance is

very poor for LPPL0.01 and GLPPL0.01 due to the small number of detected bubbles.

When it comes to estimating r f , LPPL0.1 and LPPL0.05 come quite close for T = 100

but their performance deteriorates for larger T . GLPPL0.1 performs slightly better,

but only GLPPL0.05 is able to show consistent performance for all T . Both the GSADF

and GSADFB show strong performance for the processes in [6], [9], and [10], and they

estimate r f with quite some delay for the serially correlated innovations in [7] and

[8].

[ Insert Table 7 about here ]

[ Insert Figure 15 about here ]

[ Insert Figure 17 about here ]

Table 7 and figures 15 and 17 show the ability of the LPPL and GLPPL procedures

to predict the most likely time of collapse. The correct value is r f = 0.75. It is clear

that our generalization of the LPPL procedure allowing for a positive required rate

of return improves the estimate of the critical point. From table 7 we see that the

center of the distribution is moved closer to the true value and from figures 15 and

17 we see that the distribution is much narrower for our GLPPL procedure.
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7 Robustness

The Monte Carlo study has been run for various specifications of the price processes

such as different innovation volatility and different magnitudes of explosiveness, and

we have obtained similar results. Additionally, the simulations have been run with

100, 200, and 400 data points to determine the effect of the length of the time series

or the frequency of the observations. Increasing the number of observations further

proved computationally infeasible.

We also considered completely different formulations of the simulated processes,

including more elaborate models where dividends follow a random walk and funda-

mentals are computed as in section 5.2. We also considered having the processes

follow a log unit root to ensure positivity. Instead, simulations with negative prices

were rerun. However, all these models yielded results similar to those reported here.

There are many different versions of the parameter restrictions for the LPPL pro-

cedure. See appendix G for an overview. We have made a choice on the restrictions

that we consider in line with the existing literature, but in trying alternative restric-

tions we found little changes in the results regarding bubble detection.

We have studied the results using different formulations of the time stamping

conditions presented in section 6.2, and when moving from 80% to 100% in condition

1, the shares of correct time stamps drop drastically. Also, when the methods are

required to detect the bubble earlier than halfway through the expansive period the

shares of correct time stamps drop quickly as well.

8 Conclusions

We find that the LPPL procedure has some interesting features since it does not rely

on availability of dividend data and cointegration between prices and dividends. This

allows for using higher frequency data since only the price process is needed. How-

ever, the strengths and weaknesses of the LPPL procedures varies greatly over the
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different formulations. The LPPL0.01 and GLPPL0.01 procedures are better at not de-

tecting a bubble under the null, but struggle to detect the bubbles when under the

alternative. The LPPL0.1, LPPL0.05, GLPPL0.1, and GLPPL0.05 procedures are able to

detect the bubbles under the alternative but also find bubbles under the null. All for-

mulations struggle in time stamping the bubbles, but as shown in tables 5 and 6 the

GLPPL0.05 does show strong performance in finding the start and end points of the

bubbles. These findings are, however, not necessarily in violation of the vast amount

of empirical studies performed using the LPPL procedure that find a good fit on ex-

post identified bubbles (Sornette et al., 1996; Johansen et al., 1999, 2000; Johansen

and Sornette, 2010; Brauers et al., 2014). These studies all consider data samples in

which a bubble is assumed to exist. Taken to the extreme, for example, it should not

be hard to get a good fit during an explosive period if the model fits equally well re-

gardless of the presence of a bubble. From the above analysis it seems that the LPPL

procedure has too much flexibility in fitting the time series for bubble detection. Even

for tighter bounds on the parameters the bubble detection shares under the null are

still very close to 1 for the LPPL0.1, LPPL0.05, GLPPL0.1, and GLPPL0.05 procedures.

We find that in general our suggested generalization of the LPPL procedure shows

stronger performance than the standard formulation, especially for bubble detection

and estimation of the most likely time of collapse. We confirm the findings in Ped-

ersen and Schütte (2017) that the GSADF tests are oversized for serially correlated

innovations and our findings contrast Phillips et al. (2015) in documenting oversized

test statistics for GARCH innovation for both the standard GSADF and GSADFB

tests.

We find that the proposed time stamping method for the LPPL procedures works

and is comparable to the BSADF and BSADFB in some cases. However, this is limited

to the GLPPL0.1 and LPPL0.1 which perform badly in the bubble detection study. The

time stamping results support the conclusion that the LPPL procedures can detect

bubbles in any subsection and not just the subsection containing the actual bubble.
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There is no increase when looking at the adjusted share of correctly time stamped

bubbles for the LPPL procedures but there is for the BSADF and BSADFB procedures.

Finally there is the obvious challenge with the LPPL procedure that there is no

actual test statistic with a distribution. As mentioned one can use the RMSE but it

is not easily generalized for different processes and from application to application.

Consider tuning the maximum RMSE such that the detection rate is close to 5% un-

der the null. Earlier results showed that the detection rates under the alternative

hypothesis would be of similar magnitude. Hence, there is very little to be gained

from trying to fine-tune the required RMSE and it would also be very hard to do reli-

ably on empirical data. While the LPPL framework relies on the choice of maximum

RMSE the supremum ADF tests also relies on the choice of the significance level. We

point out that this choice is also subjective and arbitrary to some extend.
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Tables

Table 1: Overview of simulated processes used for the Monte Carlo study.

[1] Random walk with iid innovations
[2] Random walk with AR(1) innovations
[3] Random walk with MA(3) innovations
[4] Random walk with GARCH innovations
[5] Partially collapsing bubbles
[6] Random walk with bubble and iid innovations
[7] Random walk with bubble and AR(1) innovations
[8] Random walk with bubble and MA(3) innovations
[9] Bubble following log-periodic-power-law

[10] Bubble following log-periodic-power-law and positive required return
[11] Random walk with two bubbles and iid innovations
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Comparing Tests for Identification of Bubbles Bertelsen, K. P.

Table 3: Time stamping success rate

[6] [7] [8] [9] [10] [11]* [11]**

T = 100

LPPL0.1 0.2500 0.0390 0.0350 0.1580 0.1580 0.3050 0.0390
LPPL0.05 0.0350 0.0050 0.0100 0.0070 0.0040 0.0960 0.0030
LPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GLPPL0.1 0.0400 0.0020 0.0020 0.0060 0.0280 0.0570 0.0000
GLPPL0.05 0.0130 0.0000 0.0000 0.0000 0.0000 0.0250 0.0000
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSADF 0.6460 0.4710 0.4520 0.3130 0.9990 0.3580 0.0980
BSADFB 0.5420 0.3920 0.4360 0.2700 0.9990 0.3360 0.0390

T = 200

LPPL0.1 0.2060 0.0450 0.0520 0.1250 0.0330 0.1970 0.0080
LPPL0.05 0.0200 0.0060 0.0090 0.0000 0.0000 0.0260 0.0000
LPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GLPPL0.1 0.0990 0.0100 0.0070 0.0230 0.0300 0.0690 0.0020
GLPPL0.05 0.0090 0.0000 0.0010 0.0000 0.0020 0.0270 0.0000
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSADF 0.5690 0.5470 0.4810 0.1590 0.9890 0.3420 0.0670
BSADFB 0.4430 0.5160 0.5060 0.0680 0.9950 0.2860 0.0280

T = 400

LPPL0.1 0.1760 0.1000 0.0950 0.1070 0.1140 0.1300 0.0040
LPPL0.05 0.0220 0.0210 0.0240 0.0020 0.0010 0.0080 0.0000
LPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GLPPL0.1 0.1680 0.0390 0.0230 0.0350 0.2060 0.1110 0.0100
GLPPL0.05 0.0110 0.0020 0.0010 0.0000 0.0020 0.0260 0.0010
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSADF 0.6170 0.6110 0.5670 0.0300 0.9770 0.3450 0.0660
BSADFB 0.4650 0.5810 0.6060 0.0070 0.9940 0.3030 0.0230
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Comparing Tests for Identification of Bubbles Bertelsen, K. P.

Table 4: Adjusted time stamping success ratios

[6] [7] [8] [9] [10] [11]* [11]**

T = 100

LPPL0.1 0.2543 0.0405 0.0360 0.1646 0.1591 0.3125 0.0400
LPPL0.05 0.0398 0.0058 0.0110 0.0087 0.0044 0.1190 0.0037
LPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 NaN NaN
GLPPL0.1 0.0415 0.0024 0.0025 0.0063 0.0283 0.0620 0.0000
GLPPL0.05 0.0149 0.0000 0.0000 0.0000 0.0000 0.0328 0.0000
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSADF 0.8374 0.5621 0.4902 0.3130 0.9990 0.6183 0.2317
BSADFB 0.7767 0.4949 0.5017 0.2805 0.9990 0.6626 0.0992

T = 200

LPPL0.1 0.2083 0.0455 0.0524 0.1277 0.0333 0.2014 0.0082
LPPL0.05 0.0226 0.0066 0.0094 0.0000 0.0000 0.0334 0.0000
LPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 NaN NaN
GLPPL0.1 0.1000 0.0103 0.0072 0.0232 0.0300 0.0701 0.0020
GLPPL0.05 0.0098 0.0000 0.0011 0.0000 0.0020 0.0322 0.0000
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 NaN NaN
BSADF 0.7751 0.6071 0.5194 0.1590 0.9890 0.6178 0.1810
BSADFB 0.7048 0.6080 0.5718 0.0700 0.9950 0.6606 0.0673

T = 400

LPPL0.1 0.1765 0.1007 0.0952 0.1076 0.1142 0.1324 0.0041
LPPL0.05 0.0243 0.0224 0.0246 0.0022 0.0010 0.0100 0.0000
LPPL0.01 0.0000 0.0000 0.0000 NaN 0.0000 0.0000 0.0000
GLPPL0.1 0.1680 0.0393 0.0231 0.0351 0.2060 0.1120 0.0101
GLPPL0.05 0.0115 0.0021 0.0010 0.0000 0.0020 0.0295 0.0011
GLPPL0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSADF 0.7848 0.6920 0.6130 0.0300 0.9770 0.6004 0.1789
BSADFB 0.6617 0.6851 0.6871 0.0071 0.9940 0.6829 0.0513
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Table 7: Mean and median of critical point estimates.

[6] [7] [8] [9] [10]

T = 100

LPPL

Mean 0.5931 0.6346 0.6587 0.6780 0.6307
Median 0.5893 0.6279 0.6562 0.6802 0.6245

GLPPL

Mean 0.6401 0.6408 0.6399 0.7174 0.6929
Median 0.6451 0.6326 0.6402 0.7415 0.7181

T = 200

LPPL

Mean 0.5679 0.5886 0.6033 0.6227 0.6027
Median 0.5620 0.5850 0.5986 0.6247 0.6004

GLPPL

Mean 0.6231 0.6083 0.6061 0.6632 0.6512
Median 0.6150 0.6089 0.6100 0.6741 0.6585

T = 400

LPPL

Mean 0.5539 0.5662 0.5731 0.6088 0.5946
Median 0.5499 0.5591 0.5678 0.6116 0.5975

GLPPL

Mean 0.5993 0.5917 0.5945 0.6286 0.6072
Median 0.5950 0.5875 0.5913 0.6389 0.6088
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Figures

(a) (b) (c)

Figure 1: Construction of hierarchical diamond lattice.
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(a) Solid line represents simulated price
and the dashed line shows corresponding
fit of the LPPL. Parameter estimates are
β̂ = 0.372, ω̂ = 5.89, t̂c = 151, Â = 6.61,
B̂ = −0.366, Ĉ1 = −0.0425, Ĉ2 = −0.0184
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(b) Solid line represents simulated price
and the dashed line shows corresponding
fit of the LPPL. Parameter estimates are
β̂ = 0.854, ω̂ = 9.10, t̂c = 223, Â = 5.46,
B̂ = −0.0068, Ĉ1 = 0.0006, Ĉ2 = 0.0031

Figure 2: Fitting the log-periodic-power-law to simulated prices.
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Figure 3: Random walk
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Figure 4: Random walk with MA(3) innovations
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Figure 5: Random walk with AR(1) innovations
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Figure 6: Random walk with GARCH innovations
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Figure 7: Partially collapsing bubble
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Figure 8: Random walk with one bubble
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Figure 9: RW with one bubble and MA(3) innovations
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Figure 10: RW with one bubble and AR(1) innovations
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Figure 11: Random walk with two bubbles
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Figure 12: Bubble following LPPL
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Figure 13: Bubble following LPPL with positive required return
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Figure 14: Graphical illustration of the three conditions for successful time stamp-
ing.
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Figure 15: Histogram of estimates of the critical point tc for the LPPPL procedure
with the vertical line indicating the true value.
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Figure 16: Histogram of estimates of the critical point tc for the GLPPL procedure
with the vertical line indicating the true value.

Figure 17
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A Algorithm for Robust Critical Values

Following Pedersen and Schütte (2017) the algorithm for calculating the robust criti-

cal values using the sieve bootstrap is as follows:

Step 1. Obtain the φ̂i,T estimates and residuals ε̂T from the ADF regression

ε̂t,T = ∆yt − α̂ − β̂yt−1 −

k∑
i=1

φ̂i,T ∆yt−i, t = k + 1, ...T.

Step 2. Draw bootstrap errors, ε∗t , randomly with replacement from

ε̂t,T − (T − k)−1
T∑

t=1+k

ε̂t,T

Step 3. Construct u∗t from ε∗t by

u∗t =

k∑
i=1

φ̂i,T u∗t−i + ε∗t

Step 4. Construct y∗t as

y∗t = y∗t−1 + u∗t , t = 1, ...,T, y∗0 = 0.

Step 5. Calculate the GS ADF(r0) or BS ADFr2(r0) test statistics as in section 2.

Step 6. Repeat steps 2 to 5 M∗ times and obtain the q-quantile of the ordered GS ADF(r0)

or BS ADFr2(r0) test statistics.

Step 7. Calculate the actual GS ADFB(r0) or BS ADFB
r2

(r0) test statistics using the orig-
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inal time series.

GS ADFB (r0) = sup
r2∈[r0,1] ∧ r1∈[0,r2−r0]

β̂r2
r1

BS ADFB
r2

(r0) = sup
r1∈[0,r2−r0]

β̂r2
r1
.

Reject the null if the test statistic exceeds the bootstrap critical value.

As for the GSADF the lag length k in Step 1 is chosen by BIC over a set of potential

k ∈
[
1, . . . , b8 (T/100)1/4c

]
.

B Proof of Theorem 3.1

Proof. We assert that when the hazard rate is given by

ht = B′ (tc − t)β−1 + C′ (tc − t)β−1 cos
(
ω log (tc − t) + φ′

)
(22)

Then the indefinite integral of the hazard rate is given by

∫
htdt = −

B′

β
(tc − t)β −

C′

ω2 + β2 (tc − t)β (ω sin
(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
+ W, (23)

where W is the constant of integration.
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Proof. Differentiate (23) with respect to t.

d
dt

[
−

C′

ω2 + β2 (tc − t)β
(
ω sin

(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
W −

B′

β
(tc − t)β

]
=

βC′

β2 + ω2 (tc − t)β−1 (
ω sin

(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
−

C′

β2 + ω2 (tc − t)β
(
β sin

(
ω log (tc − t) + φ′

)
− ω cos

(
ω log (tc − t) + φ′

)) ω

tc − t

+ B′ (tc − t)β−1

=
C′

β2 + ω2 (tc − t)β−1
(
βω sin

(
ω log (tc − t) + φ′

)
+ β2 cos

(
ω log (tc − t) + φ′

))
+ B′ (tc − t)β−1

−
C′

β2 + ω2 (tc − t)β−1
(
βω sin

(
ω log (tc − t) + φ′

)
− ω2 cos

(
ω log (tc − t) + φ′

))
=B′ (tc − t)β−1 +

C′

β2 + ω2 (tc − t)β−1 cos
(
ω log (tc − t) + φ′

) (
β2 + ω2

)
=B′ (tc − t)β−1 + C′ (tc − t)β−1 cos

(
ω log (tc − t) + φ′

)
,

which is exactly the hazard rate in (22). �

Then the price can be found by substituting (23) into (7).

log Pt =κ

∫ t

t0
ht′dt′

=κ

[
−

C′

ω2 + β2

(
tc − t′

)β (ω sin
(
ω log

(
tc − t′

)
+ φ′

)
+ β cos

(
ω log

(
tc − t′

)
+ φ′

))
−

B′

β

(
tc − t′

)β]t

t0

+ log Pt0 ,
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and expanding

log Pt = log Pt0 − κ
B′

β
(tc − t)β + κ

B′

β
(tc − t0)β

+
κC′

ω2 + β2 (tc − t0)β ( ω sin
(
ω log (tc − t0) + φ′

)
+ β cos

(
ω log (tc − t0) + φ′

))
−

κC′

ω2 + β2 (tc − t)β ( ω sin
(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
. (24)

Then realizing that

log Ptc =
κC′

ω2 + β2 (tc − t0)β ( ω sin
(
ω log (tc − t0) + φ′

)
+ β cos

(
ω log (tc − t0) + φ′

))
+ log Pt0 + κ

B′

β
(tc − t0)β ,

we can write log Pt as

log Pt = log Ptc − κ
B′

β
(tc − t)β

−
κC′

ω2 + β2 (tc − t)β ( ω sin
(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
,

which due to the Harmonic Addition Theorem can be reduced to

log Pt = log Ptc − κ
B′

β
(tc − t)β −

κC′

ω2 + β2 (tc − t)β cos
(
ω log (tc − t) + φ

) √
β2 + ω2

= log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
,

where B = −κ B′
β and C = − κC′√

ω2+β2
. Then this is exactly equal to the process in (11). �
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C Proof of Theorem 3.2

Proof. Rewrite (11) such that

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t)

)
cos φ

−C (tc − t)β sin
(
ω log (tc − t)

)
sin φ, (25)

Insert C1 = C cos φ and C2 = −C sin φ. �

D Proof of Corollary 3.2.1

Proof. Given the hazard rate in (10) then

B′ (tc − t)β−1 + C′ (tc − t)β−1 cos
(
ω log (tc − t) + ψ

)
> 0

B′ > C′.

Then since B′ = −
Bβ
κ and C′ = −

C
√
ω2+β2

κ (See appendix B) and since C =

√
C2

1 + C2
2 then

−
Bβ
κ
> −

C
√
ω2 + β2

κ

B <

√(
C2

1 + C2
2

) ω2 + β2

β2 .

�

E Proof of Corollary 3.2.2

Proof. The oscillating part is bounded and alternates between being increasing and

decreasing. Hence, it does not make sense to set restrictions for the entire hazard rate

to be increasing at all points for t → tc. Rather we require that the non-oscillating part

of the hazard rate is increasing for 0 < t < tc. Only differentiating the non-oscillating
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part with respect to t yields

d
dt

B′ (tc − t)β−1 >0

−B′ (β − 1) (tc − t)β−2 >0

1
κ

Bβ (β − 1) >0

Bβ (β − 1) >0 (26)

From the first to the second line we differentiate the non-oscillating part with respect

to t. When moving to the third line we insert B′ = −
Bβ
κ and realize that (tc − t)β−2 > 0

for 0 < t < tc. When moving to the fourth line we use that κ > 0. (26) is then a

sufficient condition for the hazard rate to be increasing (disregarding the oscillating

part) as t → tc. �

F Proof of Theorem 3.3 and Corollary 3.3.1

Proof. Rather than the martingale condition in (6), assuming a required rate of re-

turn of zero, we consider a more general required rate of return of γt such that the

martingale condition reads

Et (dPt) = µtPtdt − κPtEt (d j) = γt,

which reduces to

µt = κht + γt.

Inserting this into (5) assuming that no crash has materialized, d j = 0 yields

dPt = (κht + γt) Ptdt,
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which is an ordinary differential equation with the solution

log Pt = log Pt0 +

∫ t

t0
κht′ + γt′dt′

= log Pt0 + κ

∫ t

t0
ht′dt′ +

∫ t

t0
γt′dt′.

Then using the result in (24) while splitting the integral of γ at tc.

log Pt = log Pt0 − κ
B′

β
(tc − t)β + κ

B′

β
(tc − t0)β

−
κC′

ω2 + β2 (tc − t)β ( ω sin
(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
+

κC′

ω2 + β2 (tc − t0)β ( ω sin
(
ω log (tc − t0) + φ′

)
+ β cos

(
ω log (tc − t0) + φ′

))
+

∫ tc

t0
γt′dt′ −

∫ tc

t
γt′dt′.

Then a time tc the price is given by

log Ptc = log Pt0 + κ
B′

β
(tc − t0)β +

∫ tc

t0
γ′t dt′

+
κC′

ω2 + β2 (tc − t0)β ( ω sin
(
ω log (tc − t0) + φ′

)
+ β cos

(
ω log (tc − t0) + φ′

))
,

such that the process reduces to

log Pt = log Ptc − κ
B′

β
(tc − t)β −

∫ tc

t
γt′dt′

−
κC′

ω2 + β2 (tc − t)β ( ω sin
(
ω log (tc − t) + φ′

)
+ β cos

(
ω log (tc − t) + φ′

))
.

And finally by the Harmonic Addition Theorem

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
−

∫ tc

t
γt′dt′,

where B = −κ B′
β and C = − κC′√

ω2+β2
.

If we assume a constant but positive required rate of return such that γt = γ, then
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we can write

log Pt = log Ptc + B (tc − t)β + C (tc − t)β cos
(
ω log (tc − t) + φ

)
− γ (tc − t) ,

�

G Parameter Restrictions in the LPPL Literature

There are many different versions of the parameter restrictions for the LPPL proce-

dure. To name a few Johansen et al. (1999) find that β ∈ (0.19, 0.6) and ω ∈ (5.2, 8.2),

Johansen et al. (2000) find that β ≈ 0.6 and ω ∈ (5, 10), Feigenbaum (2001) finds that

β ∈ (0.42, 0.74) and ω ∈ (6.0, 9.6), Graf and Meister (2003) find β ∈ (0, 1) and ω ∈ (7, 13),

Filimonov and Sornette (2013) find that β ∈ (0.1, 0.9) and ω ∈ (6, 13), and Wosnitza

and Leker (2014) find that β ∈ (0, 1) and ω ∈ (2, 4). These values show quite some

variation, and it leaves quite a bit of freedom in choosing the parameter restrictions.

We have made a choice on the restrictions that we consider in line with the existing

literature, but in trying alternative restrictions we found little changes in the results

regarding bubble detection. Choosing tighter bounds for β and ω only decreased the

share of simulations in which bubbles were detected from almost unity to not much

less than 0.95. The broader bands that has been used for this study capture more

of the findings from the current literature and is found to improve time stamping

performance for the LPPL test.
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