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Abstract

We show that Google search activity on relevant terms is a strong out-of-
sample predictor for future employment growth in the US over the period
2004-2018 at both short and long horizons. Using a subset of ten keywords
associated with “jobs”, we construct a large panel of 173 variables using
Google’s own algorithms to find related search queries. We find that the best
Google Trends model achieves an out-of-sample R2 between 26% and 59% at
horizons spanning from one month to a year ahead, strongly outperforming
benchmarks based on a large set of macroeconomic and financial predictors.
This strong predictability extends to US state-level employment growth,
using state-level specific Google search activity. Encompassing tests indicate
that when the Google Trends panel is exploited using a non-linear model
it fully encompasses the macroeconomic forecasts and provides significant
information in excess of those.
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I. Introduction

Employment growth is a measure of economic expansion and regarded as a litmus

test for US economic health. As such, it is a leading indicator that is important to

policy makers, businesses and job seekers alike. It is one of the key macroeconomic

series looked at by the Federal Open Market Committee when determining the path

of the federal funds rate, which is the primary tool of monetary policy used by the Fed.

Additionally, job growth figures are carefully scrutinized by the media every time they

are released. Thus, it is no coincidence that the word “jobs” was mentioned a total of 42

times during the 90 minutes long first presidential debate between candidates Hillary

Clinton and Donald Trump in September 2016. Despite its significance, employment

growth has historically been a relatively difficult macroeconomic series to forecast. A

case in point is the period that covered the recession of 2008-2009 and subsequent

recovery, where it developed relatively different to projections made by the Bureau of

Labor Statistics.1

Given the salience of jobs and job growth in the minds of the US working-age popu-

lation, it should not come as a surprise that latent labor market sentiment leaves a

heavy footprint on internet search behavior, particularly from job seekers. A survey

made by the Pew Research Center in 2015 found that 80% of the US population uses

the internet when searching for a job, and 34% say that it is the most important

resource available to them during the job search process (Smith, 2015). In a recent

contribution, D’Amuri and Marcucci (2017) show that search volume for the term

“jobs” is a strong predictor of the unemployment rate in the US. This predictability

is also present in international markets, as evidenced by Askitas and Zimmermann

(2009), Francesco (2009), and Fondeur and Karamé (2013) who find predictability for

the unemployment rate in Germany, Italy, and France, respectively.2 Nonetheless,

1The employment projections can be found on the designated website https://www.bls.gov/emp/.
2The evidence for the predictive power of internet search volume for macroeconomic series is not

limited to the unemployment rate. Other macroeconomic variables for which there is evidence of
predictability are private consumption (Vosen and Schmidt, 2011), initial claims (Choi and Varian,
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these studies have solely focused on search volume for a single query or, at best, a

small group of queries as predictors, failing to account for the inherent benefits of

data rich environments. The potential for high-dimensional models to bring about

significant improvements over classical univariate or low-dimensional forecasting

models has been documented by several studies, among others, Stock and Watson

(2002a,b, 2006), De Mol, Giannone, and Reichlin (2008), Bai and Ng (2008), Buchen

and Wohlrabe (2011), Fan, Lv, and Qi (2011), Elliott, Gargano, and Timmermann

(2015), Kim and Swanson (2014), and Groen and Kapetanios (2016).

The aim of this paper is to forecast employment using a data rich environment

formed by Google search activity and as such the paper has two main contributions.

The first is to construct a real-time monitoring device for US employment growth

using a broad spectrum of 173 internet search terms related to job-search activity

and labor market sentiment. This index can be constructed instantaneously, is free

from revisions, and displays much higher forecast accuracy than a large panel of

(traditional) macroeconomic and financial variables. Our second contribution is to

adapt state-of-the-art methods for forecasting with high-dimensional panels to the

case of Google search activity and show that this results in much higher predictive

power than models based on the single keyword, e.g. “jobs”. By combining a large

and heterogeneous set of Google search terms, we benefit in three important ways.

First, each additional regressor has the potential of contributing with supplementary

information. Second, the inclusion of different terms can possibly alleviate sample

selection issues that arise due to variation in internet use across different groups by

income and age since semantically related terms can potentially capture the same

type of information but across distinctive demographical groups. Third, it minimizes

the impact of noise in the data that arises due to changes in search terms or behavior

across time.

Google Trends has several advantages over classical statistical measures used for

2012), and building permits (Coble and Pincheira, 2017).
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macroeconomic forecasting. More specifically, official statistics are usually released

with a lag and they are subject to substantial revisions. Household and business

surveys can be more timely and they are relatively free from revisions but they are

costly to obtain and might suffer from selection biases in response rates. Google

Trends on the other hand, can be obtained in real time, be restricted to specific

geographical areas, and can even be obtained at (intra-)daily frequencies. Moreover,

the ease with which you can download additional Google Trends series makes it easy

to expand the panel of predictors.

Starting with a set of ten keywords, we use Google’s own algorithms to find seman-

tically linked search queries and thereby expand the panel to a high-dimensional

setting. By using text as data we face a sparse and non-linear structure (Kelly, Manela,

and Moreira, 2018; Gentzkow, Kelly, and Taddy, 2019). Given these attributes of our

text data set, we use soft thresholding variable selection based on regularization from

Elastic Net, as proposed by Bai and Ng (2008), to choose the best ten predictors at

each point in time within this large panel. We then employ off-the-shelf Random

Forests to form predictions. This forecasting procedure yields consistently superior

performance to benchmark models for horizons between one month and one year

ahead, producing out-of-sample R2 measures between 26% and 59%. This strongly

outperforms benchmark models that employ a traditional high-dimensional panel

of 128 macro, financial, and sentiment variables from McCracken and Ng (2016).

The improvement is striking at horizons of 6-12 months ahead. The conclusions are

robust to employing linear models such Bagging as in Rapach and Strauss (2012)

or Complete Subset Regressions (Elliott, Gargano, and Timmermann, 2013; Elliott

et al., 2015). In contrast to the benchmark models, Google Trends based models are

particularly adept at forecasting employment growth during the latest recession and

recovery that followed. In an attempt to further generalize our results and broaden

their applicability, we construct state-level Google search activity panels and forecast

the employment growth within each US state. We find an overall considerable degree

3



of predictability. Our forecasting methodology delivers out-of-sample R2 measures

that exceed 60% for some states at all forecast horizons analyzed. Even at a horizon

of 12 months ahead, we obtain out-of-sample R2 measures above 40% for 20 states.

The states with strongest predictability tend to be highly populated. This might

partly be attributed to less measurement error in search activity trends and a larger

number of relevant keywords. In a forecast encompassing exercise, we show that

the information embedded in Google Trends forecasts generally encompass that in

the benchmark forecasts using the macro-financial data set and, for horizons above

one month, they provide significant information in excess of that in the benchmark

models. The general superior performance of the model appears to arise from the

combination of heterogeneous search queries with its flexibility to let the selected

keywords vary over time. Finally, we show that our results are robust to the choice of

search terms used to build the data set and estimation window and scheme, and that

they are very unlikely to be spurious using a placebo test in the spirit of Kelly and

Pruitt (2013).

The rest of the paper is laid out as follows. In Section II we present the methodology

used to construct the panel of predictors for both the Google Trends data and the

benchmark data set. Section III introduces the main models we use to forecast

employment growth as well as the methods we use to draw inference on predictability.

In Section IV we present empirical findings, compare alternative models build, and

discuss our results. We show the robustness of the results in Section V. Finally, in

Section VI we present some concluding remarks.

II. Data

The sample that we use for this analysis spans from 2004:M1 to 2018:M12 and has

a monthly frequency. The starting date is determined by the availability of Google

Trends data. We obtain data for our target variable, seasonally adjusted employment

growth in the US, from the Bureau of Labor Statistics.
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Our set of search volume data predictors are obtained from Google Trends, which

provides a time series index on the proportion of queries for a search term in a given

geographical area.3 The proportion of queries for a particular keyword is normalized

by the total amount of Google searches in the selected geographic area and time

range. The resulting number is then scaled on a range between 0 and 100 such that

the maximum volume for the particular query in the selected time period takes the

value 100. Due to privacy concerns, Google Trends does not explicitly provide its

users with the actual number of queries made for each keyword. Nonetheless, for the

purpose of forecasting, this does not represent a problem since we are only interested

in the time series dynamics of relative search activity. A very useful feature of Google

Trends is that, for each keyword, the user is provided with a list of up to 25 related

terms (also referred to as related queries henceforth).4 The final number of related

queries depends on the search volume of the original query, i.e. relatively low volume

series will have fewer than 25 related terms. According to Google, related terms

are selected by looking at terms that are most frequently searched with the term

you entered within the same search session. Although the precise algorithm that

determines the related terms is proprietary, the output is generally intuitive. For

example, querying for the term “jobs" in the US for the period of interest returns a

list of 25 related terms of which the top five are: “county jobs”, “craigslist jobs”, “jobs

indeed”, “indeed”, “jobs hiring”.5 From a forecasting perspective, this functionality

is appealing for at least two reasons. First, each semantically related keyword can

potentially provide additional information about the target variable and thereby truly

harness the predictive power of “Big Data”. Secondly, the algorithm performs a form

of variable selection since it selects queries with high search volume that might be

3See http://www.google.com/Trends.
4Google divides related queries into two main categories, top and rising. We use the top related

terms in our analysis.
5Indeed.com is an American worldwide employment-related search engine for job listings launched

in November 2004. Craigslist.com is an American classified advertisements website with sections
devoted to jobs, housing, for sale, items wanted, services, community service, gigs, résumés, and
discussion forums.

5
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unknown to the researcher. A clear example of this are the terms “craigslist” and

“indeed” which are widely popular job search web pages, but this is not necessarily

known nor exploited by the forecaster.

To construct the main set of predictors, which we denote X g, in a manner that is as

objective as possible we rely on another service from Google called Google Keyword

Planner which, for a given keyword, provides you with the most relevant keywords

to include in your webpage to increase webtraffic. Starting with the search term

“jobs” we use the Keyword Planner to obtain the top ten keywords associated with

this term; “jobs”, “government jobs”, “part time jobs”, “online jobs”, “career”, “top jobs”,

“jobs hiring”, “job”, “job search” and “job vacancies”.6 We take inspiration from Da,

Engelberg, and Gao (2014) and call these words primitive queries (or alternatively

primitive terms).7 Figure 1 shows the Google Trends for our primitive queries over

the period of interest. Figure 1 also shows how some of the queries, i.e. “government

jobs” and “online jobs” clearly increase during the financial crisis as a result of the

large drop in employment during this period which led an increasing amount people

to look for job opportunities over the internet

For each of the ten primitive queries, we add their related terms and remove dupli-

cates, low volume series and series that are clearly unrelated to the employment

sentiment.8 This methodology follows Da et al. (2014), who start with a set of primi-

tive queries and then add related terms (removing duplicates, low volume series and

6Note that the keyword “jobs” is shown by D’Amuri and Marcucci (2017) to be a very good predictor
of the unemployment rate in the U.S.

7We show in Section V results from the use of "employment” and "unemployment”.
8We define low volume series as those for which more than than 95% of the observations are larger

than 0. Da et al. (2014), working with data at a daily frequency, define low volume series as those for
which there is less than 1,000 positive observations in their sample. Economically unrelated terms
are those which are clearly unrelated to the main query from an economic or sentiment perspective.
For example, “nose job” and “Steve Jobs” are among the related terms for the query “jobs” and we
cannot expect these terms to have any predictive power for employment growth. The Elastic Net is
generally successful at removing these terms, hence, the results presented here are not really sensitive
to whether or not we manually remove these terms or not. Moreover, note that the spike in "jobs” in
October 2011 coincides with the death of Steve Jobs. D’Amuri and Marcucci (2017) removes the effect
of this observation. We leave the observation unaltered since we want to maintain generality of our
methodology and rely on our predictor targeting (EN) to sort out the irrelevant information.
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unrelated queries) to enrich the data set. Our raw data set (excluding duplicates)

has 237 keywords that become 180 after removing low volume queries and 173 once

economically unrelated terms are removed. As noted by D’Amuri and Marcucci (2017),

Google Trends are created based on a sample of queries that change according to the

time and IP address of the computer used to download the data. To account for the

resulting sampling error, we compute the index for all Google Trends queries based on

an average over 20 different days. The average correlation across different samples is

always above 0.98. The results are, as a consequence, not sensitive to this precaution.

Following Da, Engelberg, and Gao (2011), Da et al. (2014), and Vozlyublennaia (2014),

we start by converting the series to their natural logarithm. This is primarily done to

account for the high volatility in some of the series. Considering Figure 1, there are

two other things that stand out from Google Trends data. First, they contain a strong

yearly seasonal component. Secondly, the series appear to be relatively heterogeneous

in terms of their order of integration and whether they contain deterministic trends.9

We account for the former by regressing each Google trends series on monthly dum-

mies and taking the residuals of this regression. To address the latter, we adopt a

sequential testing strategy in the spirit of Ayat and Burridge (2000). The idea is

to successively test for stationarity, linear trend stationarity and quadratic trend

stationarity using an augmented Dickey-Fuller (ADF) test. Hence, the first test is an

ADF test with a constant term. If the null of non-stationarity is rejected, we stop and

use the series without any transformation. Conversely, if the null is maintained, we

use an ADF test that includes both a constant and a linear time trend. If the null of

this second test is rejected, we linearly detrend the series by using the residuals of

9There is indeed no consensus on the literature as to whether or not Google Trends data is best
characterized by stationarity, trend stationarity or a unit root since this appears to be completely
dependent on the query in question. Choi and Varian (2012), Vozlyublennaia (2014), Bijl, Kringhaug,
Molnár, and Sandvik (2016), and D’Amuri and Marcucci (2017) do not perform any differencing or
detrending of the series, which posits that the Google Trends they use are stationary. Yu, Zhao, Tang,
and Yang (2019) use an ADF test on three Google Trends queries “oil inventory”, “oil consumption”,
and “oil price” and find evidence of stationarity at the 5% level (10% level) in “oil inventory” (“oil
consumption”) but are not able to reject the null of a unit root for “oil price”. Da et al. (2014) take
log-differences on the series.
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a regression of the series on a constant and a time trend. Otherwise, we run a final

ADF test that includes a constant, a linear trend and a quadratic trend. If we reject

the null of this test, we detrend the series by a similar methodology as before but

including a quadratic trend in the regression. Otherwise, we take first differences. All

ADF tests are performed with a maximum lag length of 4 with the optimal number

of lags selected by the BIC. We conduct each sequential test at the 1% level.10 The

list of all keywords and associated transformations (using the full sample) can be

found in the Appendix. To avoid look-ahead bias, we deseasonalize and perform the

sequential testing for unit roots on a recursively expanding window, where the small-

est window used matches our estimation window for the forecasting model. Hence,

only information available at time t is used in both procedures.11 Figure 2 shows four

log deseasonalized queries exemplifying all the possible transformations that each

series can undergo when applying the Ayat and Burridge (2000) procedure on the full

sample. For the series in the top panel, “job fair”, we find evidence of stationarity

(no transformation). For the series in the second panel, “career opportunities”, we

find evidence of linear-trend stationarity (linear detrending). For the series in the

third panel, “top jobs”, we find evidence of quadratic-trend stationarity (quadratic

detrending). Finally, for the one in the bottom panel, “government jobs”, we cannot

reject the null of a unit root (first differences). Note that the latter series is not

a related term but a primitive term. Hence, the effect of taking the log transform

and deseasonalizing can also be seen by comparing the raw series data, shown in

the upper right panel of Figure 1 with the lower left panel in Figure 2, which is log

transformed, deseasonalized and standardized.
10Ayat and Burridge (2000) note that the procedure is able to retain relatively good size even though

multiple tests are involved. We also note that using a 1% significance level on three consecutive tests
will result, at most, at a nominal size of 3%, which is still fairly conservative.

11Note that this can result in some discordance (across time) about the presence of a unit root or
deterministic Trends in some series. In particular, due to the low power of unit root tests in small
samples, some of the series might be initially characterized as having a unit root and later on, as more
information becomes available, they will be characterized as stationary or trend stationary.
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A. Benchmark data set

Our benchmark data, which we denote X m, is comprised by a large panel of 128

macroeconomic and financial indicators. Data is obtained from McCracken and Ng

(2016) and transformed according to authors’ recommendations. In the Appendix

we list all variable abbreviations and their associated descriptions. The data set

represents broad categories of macroeconomic time series related to real activity,

such as real output and income, employment and working hours, housing starts,

and inventories, financial indicators such as bond and stock market indices, divi-

dend yields, foreign exchange measures and stock market (implied) volatility, and

sentiment indicators like the consumer sentiment index. This choice of benchmark

data set is natural for at least two reasons. First, Rapach and Strauss (2008, 2010,

2012) consider a (pre-selected) set of macroeconomic and financial variables when

forecasting employment growth. Secondly, the data set is high-dimensional simi-

larly to the Google Trends panel, aiding benchmark results with a fair chance in the

comparison.12

III. Forecasting methodology and inference

In this section, we outline our empirical methodology and briefly describe the methods

we use to draw inference on the predictive performance of the models. We note in this

regard three distinctive attributes of text as data. First, it is high-dimensional by

definition as a large amount of unique phrases is available. Secondly, the structure

of text data is typically sparse in the sense that several phrases have few searches

and may be of little relevance to a given target variable. Thirdly, text is inherently

non-linear and, as such, likely non-linearly associated with a given objective, see

also Kelly et al. (2018) and Gentzkow et al. (2019). As such, our main forecasting

model with Google Trends data will be Random Forests (Breiman, 2001) with a pre-

12Note that the benchmark data set contains employment growth itself, thus it also allows autore-
gressive effects and for a direct AR(1) model when we consider individual predictors.
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selection step that targets relevant predictors using regularization techniques. We

exploit the high-dimensional features of our data set, while acknowledging the sparse

structure, in the targeting step, and allow for interaction and higher-order effects of

the data by using RF. We elaborate in separate sections below. In an effort to make a

methodologically fair comparison that can keep model effects constant, we also use

RF on our benchmark data set, Xm.

Given the different type of data characteristics in Xm, it is possible that other fore-

casting methodologies are more appropriate. To make a fair comparison, we also

include Bagging and the Complete Subset Regressions (CSR) method of Elliott et al.

(2013). We include the former because Rapach and Strauss (2012) show that it can

produce significant improvements in employment growth forecast accuracy over the

autoregressive benchmark. CSR is included because Elliott et al. (2013) report that

this forecast combination approach shows strong performance when compared to

alternative forecasting techniques such as ridge regression, Bagging and LASSO. We

also include an autoregressive model as additional benchmark, which is typically

employed in the macroeconomic literature. The optimal lag order is determined

recursively by BIC.13

Let our target variable, which is the h month ahead employment growth rate, be

defined as

yh
t+h = (1/h)

h∑
j=1

yt+ j, (1)

where yt is the log-difference of the seasonally adjusted employment growth at time t.

Let us also define our N ×1 vector of predictors at time t by X t =
[
X1,t,...,XN,t

]′
. Note

that this should not be confused with the matrix of predictors, e.g. X g or Xm, which

we denote with bold letters.
13Note that this differs from the direct AR(1) model that results from having employment growth in

the panel of predictors, both because we allow for higher order models and the forecasts are made by
an iterated model instead of a direct forecast.
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A. Targeted predictors

To exploit our high-dimensional, data rich-environment as well as to maintain feasi-

bility of the somewhat low-dimensional Bagging and CSR methodologies, we make

use of targeted predictors.14 Even though RF remain feasible in this high-dimensional

setting, we aim to put all methods on equal footing and, as such, employ RF with

targeted predictors as well. Moreover, the benefits of RF are often reduced when the

input is high-dimensional, making targeted predictors natural using this methodology

as well (Gentzkow et al., 2019).15 Lastly, as noted above, it is likely that our predictors

enjoy a sparse structure. Targeting predictors is due to Bai and Ng (2008) which

take into account the fact that not necessarily all series in X t are important when

forecasting the target variable. The idea is to first pre-select a subset X∗
t ∈ X t of

predictors that are targeted to the forecasting object and then subsequently esti-

mate a forecasting model of interest. Bai and Ng (2008) propose both soft and hard

thresholding regularization techniques for constructing X∗
t . In this section, we focus

only on soft thresholding, which is based on dropping uninformative regressors using

penalized regressions.16 More specifically, we use the Elastic Net (EN) estimator of

Zou and Hastie (2005) since it performs well when predictors are correlated.17 If we

let RSS be the residual sum of squares of a regression of yh
t+h on X t, EN solves the

problem

β̂EN = argmin
β

[
RSS+λ

(
(1−α)1

2 ∥β ∥2
`2

+α ∥β ∥`1

)]
, (2)

where α= (0,1] selects a weight between the LASSO and ridge regression, λ is a tuning

parameter and ∥·∥ `i denotes the `i norm for i = {1,2}. Both the LASSO (Tibshirani,

14Strictly speaking, the Bagging method presented below can handle high dimensional data sets,
however, hard thresholding runs the risk of including more predictors than there are observations in
the estimation window. CSR can also be modified to handle large-dimensional sets as shown in Elliott
et al. (2015), but soft thresholding variable pre-selection is much simpler to implement and puts all
methods on a level playing field.

15The results of using RF without targeted predictors do not alter our conclusions. Targeted
predictors improve the performance of RF by a small margin in our sample.

16We cover hard thresholding in the Bagging model below.
17We find that using the LASSO estimator of Tibshirani (1996) instead of the Elastic Net does not

alter the results in any significant way.
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1996) and ridge estimators work by regularizing the coefficients of unimportant or

irrelevant predictors towards zero. The main difference is that ridge will only decrease

the absolute size of the coefficients but it will never set them exactly equal to zero. In

contrast, the LASSO is able to set the coefficients to zero and thus perform variable

selection. We can then construct the soft threshold X∗
t by

X∗
t =

{
X i ∈ X t |βEN

i 6= 0
}

, (3)

with i = 1, . . . , N. We follow Bai and Ng (2008) and tune λ such that ten predictors

are selected. We set α= 0.5 which means that ridge and LASSO regression get an

equal weight. Hence, the idea is to use the EN estimator to remove uninformative

predictors from X t and thereby improve on the forecast of the target variable from a

high-dimensional outset.

B. Bagging

Our implementation of Bagging follows the lines of Inoue and Kilian (2008). We

start with the defining the hard-threshold multivariate forecast with N exogenous

predictors

ŷh,HT
t+h = α̂+∑N

i=1 δ̂i X HT
i,t ,

X HT
t = {

X i ∈ X∗
t | ∣∣tX i

∣∣> 2.58
}

with i = 1, ..., N
(4)

where tX i is the t-statistics formed on δ̂i. Thus, from the variables in X∗
t , we select

only those that are statistically significant at the 1% level.18 The procedure is then

augmented by using a moving block bootstrap to reduce variance coming from model

uncertainty. More specifically, we generate B bootstrap samples by randomly drawing

blocks of size m from the {yt+h, X t} tuple. We then calculate (4) for each bootstrap

sample using information only up to time t, and compute the hard-threshold bootstrap

forecast, yh
b,t+h, using bootstrap coefficients and original data X HT

t . The Bagging

18Note that this is essentially combining a soft threshold pre-selection procedure (targeting predic-
tors) with hard thresholding. Following Rapach and Strauss (2012) we use Newey and West (1987)
standard errors to calculate the t-statistic. The lag truncation is set to h−1.
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forecast for ŷh
t+h is then given as the average of the B = 400 hard threshold bootstrap

forecasts

ŷh
t+h = 1

B

B∑
b=1

ŷh
b,t+h. (5)

We maintain the autocorrelation structure of the target variable by applying the

circular block bootstrap of Politis and Romano (1992) with block size chosen optimally

according to Politis and White (2004).19

C. Complete Subset Regressions

The Complete Subset Regressions (CSR) method of Elliott et al. (2013) is based on

the idea of taking all combinations of models restricted to using a fixed number of

regressors k < N. Specifically, if we let X l,t denote the matrix of predictors containing

k variables for each model l = 1, ..., M the l’th model forecasts is

ŷh
l,t+h = α̂+ β̂X l,t, (6)

such that the Complete Subset Regression forecast is given by

ŷh
t+h = 1

M

M∑
l=1

ŷh
l,t+h. (7)

We select model combinations that include a maximum of k = 3 predictors to maintain

parsimony of the models, which has been shown by Elliott et al. (2013) to yield

superior predictive accuracy.20

D. Random Forests

Both the Bagging and CSR methods above rely on linear prediction models. A means

to allow for non-linearities is regression trees that nonparametrically estimates the

19For robustness we also used m = h as Inoue and Kilian (2008), but the results are insensitive to
this alteration since the Politis and White (2004) method tends to choose an optimal block size close to
h.

20We find that results are similar, yet slightly weaker for k = {4,5,6} across both X g and Xm.
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function f h(X t)= E[yh
t+h|X t] to form forecasts using f̂ h(X t). A regression tree is based

on the principle of sequentially splitting the space of predictors into several regions,

characterized by nodes, and model the response by the mean of yh
t+h within each

region. For instance, in the case of macroeconomic predictors, the tree might split

according to expansionary and recessionary states, low stock-market volatility and

high stock-market volatility, weak inflationary and strong inflationary states, etc.,

and provide forecasts within each of those regions. Moreover, the regression tree

facilitates interactions by defining, for instance, a region as expansionary states

together with weak inflation. Additional higher-order interactions can be entertained

as well as higher-order terms of the single predictors. The tree regression forecast of

yh
t+h using X t is, thus, the average of yt within the region for which X t falls into, that

is,

f̂ h(X t)= 1
Tl

M∑
l=1

yt1{X t ∈ Rl}, (8)

where R1, . . . ,RM represents the region partition of the space of predictors and Tl

the number of samples falling into region Rl . Random forests (RF) are ensembles of

regressions trees proposed by Breiman (2001) and is based upon bagging of randomly

constructed regression trees to control variance (overfitting). Each of the regression

trees is specified on a bootstrapped sub-sample of the original data, which we denote

by f h
b , b = 1, . . . ,B. The final prediction by RF is then obtained by

ŷh
t+h = 1

B

B∑
b=1

f̂ h
b (X t). (9)

Similarly to the (linear) Bagging above, we take B = 400 in our application of RF. We

use default parameters of the RF implementation in MATLAB, i.e. bagging from the

full sample (with replacement) using a third of the total number of predictors used as

input to split each node. The default number of predictors coincides with the number

used in CSR. The regions are estimated using the CART algorithm based on least
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squares criterion, following Breiman (2001) to which we refer for additional details.

E. Inference on predictability

We compare the performance of the competing models using the Campbell and Thomp-

son (2007) out-of-sample R2 defined as

R2
OoS = 1−

∑
t
(
yt − ŷm,t

)2∑
t (yt − ȳt)2 , (10)

where ȳt is the rolling-mean forecast, which is computed on a window that matches

the model estimation window and ŷm,t is the forecast of the model in question at time

t. This measure lies in the range (−∞,1], with negative numbers indicating that the

model in question performs worse than the historical mean of the series. We conduct

out-of-sample inference using the Diebold and Mariano (1995), tDM , test statistic.

The null hypothesis of the Diebold-Mariano test used in this paper is that the model

in question does not beat the rolling mean of the series, while the alternative is that it

does. Hence, it may be interpreted as the t-statistic of the R2
OoS. When forecasting for

horizons h > 1, we adjust for the moving average structure of the forecast errors by

using Newey and West (1987) standard errors in the denominator of the test statistic

with a bandwidth length equal to h−1.

A positive R2
OoS measure tells us that the model in question outperforms the rolling-

mean benchmark by looking at the ratio of forecast errors over the whole out-of-sample

period. However, it is possible that the model in question is only beating the rolling

mean during a subset of the evaluation period and it is underperforming during

others. To assess the stability of predictive accuracy, we follow Welch and Goyal

(2008) and compute and plot the cumulative sum of squared error difference (CSSED)

between the model of interest and the rolling mean model. The CSSED for a given
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model, l, at time t is computed as

CSSEDl,t =
t∑

i=R

(
(yt − ȳt)2 − (

yt − ŷl,t
)2

)
, (11)

where R and t are the beginning and the end of (the increasing) forecast evaluation

period, respectively. For any t, a positive CSSEDl,t means that model l is outperform-

ing the rolling mean up to that point in time t. Increases in the CSSEDl,t trajectory

means that model l is improving against the rolling mean benchmark at that specific

point in time t and vice versa for decreases.

Since we are dealing with several competing models, we also employ the model

confidence set (MCS) approach developed by Hansen, Lunde, and Nason (2011) to

compare the performance of the models. This approach returns a confidence set that

includes the best model with probability (1−α), α= 20% being the chosen significance

level of the testing procedure. We use squared forecast errors as a loss function and

set the bootstrap block size equal to h when applying the MCS. We rely on the range

statistic to draw inference.

IV. Empirical results

This section presents the out-of-sample performance using our novel Google Trends

data versus the benchmark macroeconomic data and investigates the source of any

predictability. We also examine the informational content in either of the two forecasts

by considering predictability from their combined data sets and a formal encompassing

analysis. Lastly, we consider forecasting US state-level employment growth. In the

following, we refer to RF using the data set X d, d = {g,m}, by RF(X d) and analogously

for Bagging and CSR.
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A. Employment growth predictability

Table 1 shows the R2
OoS, p-value of the Diebold-Mariano test statistic, and an inclusion

indicator (shaded text) for the MCS of the competing models. All models are estimated

using a rolling window scheme with 48 observations in the sample period 2004:M1-

2018:M12. We forecast at horizons of h = {1,3,6,9,12} months ahead. Thus, the first

forecast for horizons of less than nine months ahead occurs during the recession

of 2008-2009, allowing us to assess the performance of the models during a large

contractionary period in the labor force. Panel A and Panel B show the RF, Bagging

and CSR results for the Google Trends panel, X g, and the macroeconomic predictors,

Xm, respectively.21 Panel C shows the results for the autoregressive model.

The results in Panel A show that X g demonstrates a striking degree of forecasting

power irrespective of the method used. However, it is clear that RF is best suited to

utilize the predictive content of the Google Trends panel. By corollary, non-linearities

in search activity is important and RF is successful in exploiting those. This is

particularly the case for the one year ahead forecast where RF(X g) achieves a R2
OoS

of 59.15% which is more than double the one achieved by Bagging(X g) (27.41%). The

performance of CSR(X g) is similar to its RF counterpart albeit lower for horizons

above six months ahead. In terms of significance, the RF(X g) delivers results that

are significant at conventional levels for across all forecast horizons. For CSR(X g)

the results are similar although less statistically significant in general. Even though

Bagging(X g) produces positive R2
OoS measures, they are only significant at the 10%

level for h = {1,3,6} and insignificant otherwise.

Moving to Panel B, we find that none of the Xm models beat the RF(X g) at any fore-

cast horizon and that they generally underperform their Google-based counter parts.

The exception seems to be the Bagging(Xm) which performs better than Bagging(X g)

for h = {1,3} with R2
OoS measures that surpass its competitor by approximately 6 per-

21Plots of the actual employment growth versus the forecast of the best-performing model using X g
and Xm can be found in the Appendix.
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centage points. Overall, it also seems that Bagging is the best performing methodology

for macroeconomic predictors, the exception seems to be h = 9 where RF(Xm) is the

only macro-based model that delivers a positive (although statistically insignificant)

R2
OoS measure. It is also worth noting that none of the Xm models are able to beat the

rolling mean benchmark for the one year ahead forecast. This stands in stark contrast

to the X g models which produce positive and large R2
OoS measures for this forecast

horizon. Finally, we note that the forecasting performance of the autoregressive model

is relatively poor since this model obtains positive R2
OoS measures only for h = {1,3} of

which only the results for h = 1 are significant at the 10% level.

Considering the MCS results, it is worth noting that the only model that is included in

the confidence set for all forecast horizons is the RF(X g) model. This is not surprising

given its strong predictive performance. However, for h = 1 all models with the

exception of Bagging(X g) are included in the model confidence set implying that

we cannot statistically conclude that there is any difference in performance across

them at this forecast horizon.22 For h = 3 we have that all the Google-based models

are included, but only Bagging(X g) is included from the three macro-based models.

The confidence set for h = 6 includes all Google and macro models, but excludes the

AR model. Finally, for horizons above six months ahead the only model included is

RF(X g).

Figure 3 plots the CSSED for all models across the different forecast horizons. We

see that most models have their greatest relative advantage over the rolling mean

model during the early part of the forecast evaluation period, i.e. the period during

the recession and subsequent recovery. This is particularly the case for horizons

below six months ahead where the CSSED lines are increasing steeply during the

recession period and then remain elevated subsequently. There is a second period of

relative improvements for the majority of the models over the rolling mean in the

22We note however that the RF(X g) is always the best ranking model, in other words, the one with
the highest model confidence probability.
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period between 2012 and mid-2013 where the US economy experienced an accelerated

expansion on the number of jobs created. After this period, most models seem to

perform on par with the rolling mean benchmark. The figure also helps explaining the

superior performance of Google-based models for long horizon forecasts (h = {9,12})

since we can see that while some of the Xm initially outperform the Google-based

models, they perform very poorly in the mid-2010 to mid-2011 period, and although

there is some relative performance recovery in 2012 and 2013, it is not enough to

make up for the lost ground. Overall, the CSSED lines for the Google Trends panel are

mostly increasing or stable, indicating that the models mostly outperform or perform

in par with the no-predictability benchmark of the rolling mean. In conjunction with

the results above, we may conclude that the Google Trends panel delivers strong

predictive accuracy compared to its benchmarks, in particular at long horizons, and

that capturing inherent non-linearities (which may be achieved by RF) is important.

B. Where does predictive power come from?

In the preceding section, we showed that Google Trends have a high degree of pre-

dictive power for future employment growth. However, in Section III we argued for

the necessity of variable pre-selection procedure given the sparsity of the data and

a number of possibly uninformative predictors in X g. These results lead us to the

critical question about where that predictive power is coming from. The first thing we

do to answer this question is to asses the forecasting power of each individual search

term, X i ∈ X g, using a univariate regression forecasting model of the form

yh
t+h =α+βi X i,t +εh

t+h, (12)

where the parameters of the model are estimated using OLS and forecasts are gener-

ated similarly to the procedures in the former sections. Figure 4 shows top twenty

R2
OoS among all the keywords in X g for h = {1,3,6,9,12} months ahead. The first

thing we notice is that some individual predictors appear to be consistently good
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across all forecast horizons. A case in point is “part time job” which achieves an

average R2
OoS of 40.4% across all horizons which makes it almost competitive with the

RF(X g) with an average R2
OoS (across horizons) of 48.5%. Nonetheless, the second

best individual predictor which is “job fair” achieves an average R2
OoS of 28.5%, which,

although appreciable, lies substantially below the average R2
OoS for RF(X g). Out of

the 173 terms included in X g, seven attain an average R2
OoS > 20% across all horizons

analyzed and 52 have a positive average R2
OoS. Thus, the Google Trends panel can be

described as an environment with some strong predictors, several weak predictors,

and a relatively large degree of noise. Queries related to almost all primitive keywords

appear in the figure, which implies that each primitive keywords might contribute

with additional predictive information to the data set. Despite this large amount of

heterogeneity in the top search terms, some keywords re-appear relatively often. For

example, queries that include “government”, “part time” and “career” appear at all

horizons, implying that “government jobs”, “part time jobs” and “career” are important

primitive keywords.

For the sake of comparison, we also show the R2
OoS of the top twenty individual

predictors in the benchmark data set, Xm, in Figure 5. Not surprisingly, out of the

top five variables from Xm in terms of average R2
OoS four are related to the number of

employees in the financial, wholesale trade, service, and trade/transportation/utilities

industries, respectively, while the fifth one is the VXO stock market implied volatility

index. These five predictors have an average R2
OoS across forecast horizons between

42.3% and 35.15%, thus, they are relatively strong predictors on their own.23 The next

five predictors (in terms of average R2
OoS across h) are all related to the unemployment

rate, number of employees and business inventories and have average R2
OoS between

34% and 29.3%. We also note that out of the total of 128 predictors in Xm, 51 result

in a positive R2
OoS, which is proportionally higher than the share in X g.

23We note however, that strictly speaking, we test the null hypothesis as many times as we have
covariates. A conventional Bonferroni correction would render most individual predictor’s accuracy
statistically insignificant, even though their predictability appear striking.
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The evidence presented until now implies that, although there is predictive infor-

mation in X g about future employment growth, no individual predictor can account

for the outstanding performance of the RF(X g) model since X m has more predictors

which are individually good. Thus, we can infer that soft thresholding is selecting a

particularly good combination of Google Trends at each time period. Figure 6 shows

the inclusion per period for the most often included predictors in X g (ordered by in-

clusion frequency) as determined by our procedure of targeting predictors.24 Several

features of these figures are noteworthy. First, none of the series in X g are included

in the set for all periods at any forecast horizon. The most included predictors at

each horizon, i.e. “job search sites” (h = 1), “job interview” (h = 3), “job fair” (h = 6),

“interview questions” (h = 9), “part time job” (h = 12) are included in the set between

40.1% and 55.9% of the time. Second, there appears to be heterogeneity across the

most frequent predictors, which means that they are generally related to different

primitive keywords and therefore each probably contributes with distinct and unique

information. Finally, there is some overlap between the top individual predictors in

Figure 4 and the most frequently included terms, but the overlap is far from complete,

implying that the subset selected by targeting predictors is not necessarily composed

of the best individual predictors but a combinations of keywords that produce an even

better forecast.

Overall, it seems that Google-based methods outperform their macroeconomic bench-

marks because of the heterogeneity of the search terms included, each one contributing

to additional information. As such, constructing a high-dimensional panel of Google

search activity is desirable from the outset. This information appears to be better

exploited with a method that accounts for non-linearities between predictors, such

as Random Forests. Interestingly, these non-linearities do not seem to play a big

role in the case of the large macroeconomic data set since RF(X m) underperforms

Bagging(X m).

24A similar plot for the inclusion of predictors from X m can be found in the Appendix.
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C. Combining data sets and encompassing tests

The former sections established an overall superiority of methods based on the Google

Trends panel relative to the benchmark data set. However, it is possible that X m

embodies useful information that is not contained in X g. To investigate this, we create

a data set that combines X g and X m, and denote it by Xc =
[
X g Xm

]
. We then run the

out-of-sample forecast using all three methods using this data, RF(Xc), Bagging(Xc),

and CSR(Xc). The results are presented in Table 2. For most forecast horizons

the combined data set does not lead to improvements in predictability. For long

horizons the performance deteriorates, yet at h = 1 (and h = {3,6} for Bagging(Xc))

the predictive accuracy improves, but in most cases only slightly. Considering the

inclusion frequency for this combined data set we find that several macroeconomic

variables are included in the set of targeted predictors across all horizons.25 Thus,

even though those variables appear as desirable predictors ex-ante, they do not seem

to provide additional predictive information.

We also use forecast encompassing tests to formally compare the informational content

in the forecasts using Google Trends and macroeconomic data across all methods. To

that end, consider the case of forming a combination forecast of employment growth

yh
t+h by a convex combination of the two forecasts

yh
t+h =λg ŷh

g,t+h +λm ŷh
m,t+h (13)

where ŷh
g,t+h and ŷh

g,t+h are the forecasts using Google Trends and macroeconomic

data, respectively, and λg +λm = 1. If λm = 0, Google Trends forecasts encompass the

macroeconomic forecasts in the sense that the latter do not contribute any relevant

information to forecasting employment growth in addition to that contained in the

Google Trends forecasts. The alternative λm > 0 suggest the Google Trends forecast do

not encompass the macroeconomic forecasts and, as such, the latter contains relevant

25Predictor inclusions for the combined data set, Xc, can be found in the Appendix.
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information in addition to the Google Trends forecasts in predicting employment

growth. We follow Rapach and Strauss (2010) and employ the statistic of Harvey,

Leybourne, and Newbold (1998) to test the null hypothesis of λm = 0 against the

one-sided alternative hypothesis of λm > 0. Accordingly, let ε̂h
l,t+h denote the forecast

error associated with the l’th forecasts, l = {g,m}. We then define

d̂h
t+h = (ε̂h

g,t+h − ε̂h
m,t+h)ε̂h

g,t+h, (14)

to obtain the test statistic

HLNh = d̄h(V̂ h)1/2, (15)

where d̄h = P−1
h

∑T
t=R d̂h

t+h is the average of d̂h
t+h over the Ph out-of-sample observa-

tions and V̂ h is a consistent estimate for the variance of d̄h. We employ a HAC

estimator with Bartlett kernel and bandwidth length of h−1. Harvey et al. (1998)

show that HLNh d−→ N(0,1) under the null of λm = 0. Similarly to Rapach and Strauss

(2010), we employ the modified HLNh test

MHLNh = Ph +1−2h+P−1
h h(h−1)

Ph
HLNh,

which enjoys a asymptotic Student’s t-distribution with degrees of freedom Ph −1.

The estimated weight λ̂m is obtained as

λ̂m =
T∑

t=R
d̂h

t+h/
T∑

t=R
(ε̂h

g,t+h − ε̂h
m,t+h)2, (16)

Analogously, we may test the converse null hypothesis of λg = 0 that the macroeco-

nomic forecasts encompass Google Trends forecasts against the alternative λg > 0

that they do not. This requires redefining d̂h
t+h = (ε̂h

m,t+h−ε̂h
g,t+h)ε̂h

m,t+h, and the weight

λ̂g is obtained using this definition of d̂h
t+h together with (16).

Table 3 reports the estimated weights and associated p-values of the encompassing
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analysis. The pattern generally echo that of the analysis using Xc. At all horizons

and at conventional significance levels, the RF(Xm) provides no significant additional

information relative to RF(X g), whereas RF(X g) provides significant predictive infor-

mation above that of RF(Xm). A similar picture is obtained using the CSR methods,

whereas Bagging suggests both data sets provide significant information. Since Bag-

ging tends to be the worst-performing method and RF the best, we may conclude on

this basis that when the Google Trends panel is exploited in a non-linear setting it

fully encompasses the macroeconomic forecasts and provides significant information

in excess of those.

D. State-level predictability

State-level employment growth is of interest to both local and national policy-makers

as well as for business location and investment planning. Figure 7 shows a large

degree of cross-sectional heterogeniety in the average employment growth levels as

well as their time series variability. Louisiana (LA) exhibits large changes over time

with relatively weak employment growth, whereas Texas (TX) has relativeliy little

time series variability, yet strong employment growth. Pennsylvania (PA), for instance,

has little variability and little employment growth. Given this heterogenity in the

dynamics of employment growth, if one identifies a robust forecasting methodology

across most states, one can be reasonably confident that the methodology will deliver

predictability in other applications as well (Rapach and Strauss, 2012). As an attempt

to enhance the generality of the success of the RF(X g) and investigate its applicability

on the state level, we construct a Google Trends state-level panel for each of the US

states. We follow the same procedures outlined in Section II but restrict the obtained

Google search activity of state i to that occuring only in state i itself. We then follow

Rapach and Strauss (2012) and use both state-level and national predictors. We also

attach the Google Trends panel for the states that have borders next to the state in
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question.26

In Figure 8 we depict the distribution of R2
OoS across states sorted in a descending

manner. It stands out that the RF(X g) is highly successful in predicting state-level

employment growth at all forecast horizons. This is also summarized in Table 4. It can

deliver an R2
OoS of above 60% for several states, and only a few states at each forecast

horizon have a negative R2
OoS. Interestingly, the states with strongest predictability

tends to be large and vice versa. We gather 2018:Q4 state-level population data from

the Bureau of Labor Statistics and compute each state’s share of total population. As

reported in Table 4 the R2
OoS when weighted by those population shares is notably

higher than the equally weighted one. Moreover, it also stands out that the R2
OoS

correlates positively (and significantly for h = {1,3}) with state population share.

This may be explained by three, not necessarily mutually exclusive, reasons. First,

smaller states may be less predictable simply due to a larger share of unpredictable,

idiosyncratic variation in employment trends. Second, since Google trends is based on

a sample of searches which is a function of total search volume, the larger population,

the less measurement error is present in Google Trends. Third, since we eliminate

keywords with insufficient search volume less populated states have less predictors

in X g. This can also be seen from Table 5. For instance, Alaska (AK), which is

less populated and has no bordering states, uses a total of 203 keywords, 173 of

which comes from the national Google Trends panel. Accordingly, cf. Figure 8, AK

is generally one of the least predictable states across all forecast horizons. On the

other hand, California (CA), which has a large number of state-level keywords, yet

not as many highly populated bordering states, has much stronger predictability

with R2
OoS consistently above 50% at all forecast horizons. Utah (UT) to the contrary,

has relatively few state-level keywords but a large number of keywords coming from

neighbouring states. It shows R2
OoS at 60% or above. North Carolina (NC) has a large

number of both state-level keywords and from neightbouring states, totalling 741

26Predictability generally remains using state-only data or by including just those from bordering
states, yet with less significance. This occurs at especially longer horizons.
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keywords in use before targeting predictors. As such, its predictability is generally

high at 50% or above.

V. Robustness checks

In this section we show that the forecasting power of RF(X g), which is our main

model, is not sensitive to the words we use to construct the data or alternative

estimation windows. Finally, we also show that the methodology we use does not

result in spurious out-of-sample predictive power by running a placebo test.

A. Alternative keywords

The primitive set of words we use to build X g are based on the keyword “jobs”. This

raises the possibility that the results depend on that particular keyword. To address

this issue we construct two alternative Google trends data sets by selecting primitive

keywords using the Google Keyword Planner but taking the top ten terms linked

to “employment” and “unemployment”, respectively. The primitive keywords for the

former are “employment”, “jobs”, “job search”, “job”, “government jobs”, “jobs hirinig”,

“job vacancies”, “online jobs”, “career” and “part time jobs”. , whereas the primitive

keywords for the latter are “unemployment”, “unemployment rate”, “unemployment

office”, “ui online”, “unemployment insurance”, “unemployment benefits”, “unemploy-

ment number”, “file for unemployment”, “apply for unemployment” and “unemployment

claim”. Note that the overlap between the primitive keywords for X g, and the alter-

native data set based on “employment” is almost complete and the only difference

is that X g includes “top jobs” instead of “employment”, thus we can expect similar

predictive performance.27 The data set based on “unemployment” has no overlap in

primitive keywords with the other two. Once we have the set of primitive keywords,

we follow the same procedure as with X g and end up with 176 terms for the data set

based on “employment” and 120 for the data set based on “unemployment”. As before,
27By the same token, using primitive keywords derived from “careers” leads to almost identical

results.
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we remove seasonality and detrend recursively when estimating the RF forecasting

model. The R2
OoS and p-values from the Diebold- Mariano test using a rolling window

of 48 observations are shown in Table 6. The results for the alternative data set

based on ““employment” are very similar to X g, albeit slightly lower, except for h = 6.

This is to be expected given the large degree of overlap in primitive keywords. The

forecasting performance for the alternative data set based on “unemployment” is

worse than the other two, particularly at horizons above h = 1. We note, however, that

for h = 9 the R2
OoS of the model is still on par with RF(Xm), and strongly outperforms

Bagging(Xm) and CSR(Xm). At h = 12 it outperforms all methods using macroeco-

nomic data notably. We believe the decrease in predictive accuracy is natural as we

find it more likely that individuals search for words related to “jobs”, “employment”,

and “careers” rather than “unemployment” when looking for a job.

B. Alternative estimation windows

The CSSED analysis shows that the predictive performance of the RF(X g) has strong

predictive ability during the recent crisis and continues to improve, albeit less pro-

nounced, subsequently. To further check the robustness and stability of the results, we

also perform the RF(X g) forecast with three alternative estimation windows; a rolling

window of 36 observations, a rolling window of 60 observations and an expanding

window with 48 initial observations. Table 7 shows the R2
OoS and p-values of the

Diebold-Mariano test of these alternative estimation windows. Decreasing the size of

the rolling estimation window results in R2
OoS measures that are slightly smaller (3-6

percentage points) for h = {1,3,6}, and more pronounced (12-24 percentage points) for

h = {9,12}. This decrease in performance is possibly arising for two reasons. First,

a smaller estimation window will inevitably lead to noisier parameter estimates.

Second, the sample evaluation period is longer, which means that it covers most of

the recession of 2008-2009, a period that is inherently more difficult to forecast at

primary longer horizons. The results for the models that are estimated using a longer

rolling window of 60 observations are similar to the ones we obtain for our main
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model (with an estimation window of 48 observations), implying that the results are

not sensitive to these changes. This also indicates the the predictability obtained from

RF(X g) is not purely driven by the recent economic crisis. The expanding window

scheme results in values of R2
OoS similar to that for the short rolling window scheme.

Overall, while decreasing the estimation window has a negative effect on predictabil-

ity for RF(X g), the R2
OoS measures remains statistically significant and generally

larger than those using the macroeconomic data set, especially at longer horizons. In

unreported results, we find that decreasing the estimation window to 36 observations

has an even larger (negative) effect on models based on Xm with forecasts at longer

horizons deteriorating.

C. Placebo test

To show that the our RF methodology does not result in spurious out-of-sample

predictive ability, we construct a placebo test in a spirit similar to Kelly and Pruitt

(2013). If the methodology results in a mechanical bias, simulated placebo data that

is similar to the data in X g or Xm, but unrelated to our target variable, will also

display out-of-sample predictability.28 As such, for each time period, we generate

thirty AR(1) series that have the same mean, variance and autoregressive coefficient

as the series selected by soft thresholding at each time period in the out-of-sample

window. Innovations in the series are generated using an i.i.d. normal distribution

that has zero covariance with our target variable. Thus, they are independent of yt.

Table 8 shows summary statistics of the empirical distribution of the R2
OoS under the

null of no predictability obtained from 10,000 placebo replications. It is clear that

the predictability obtained from the combination of RF and Google Trends data is

very unlikely spurious at all forecast horizons since they are notably greater than the

99% percentile. It even exceeds the maximum across the simulations. That is, the

placebo test shows that the probability of actually getting a positive R2
OoS by chance

28As the Google Trends panel and the macroeconomic data set likely exhibit difference time series
characteristics, we run the placebo test twice, using either X g or Xm.
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is virtually null. Note also that although we can expect a result of zero asymptotically,

in finite samples the results at longer horizons are mostly negative due to small

sample bias. When looking at RF(Xm), we find that this model only has empirical

probabilities below conventional significance levels at horizons between one and nine

months ahead. However, even though the RF(Xm) has a negative R2
OoS at h = 12, it

is actually better than the median of the placebo test distribution.

VI. Concluding remarks

Employment growth is a leading indicator that has important implications for both

policy makers and the private sector. Therefore, the need for accurate and timely

predictions is relatively self-evident. In this paper, we show that there is plenty of

relevant information about future employment growth in internet search volume. Our

findings imply that Google-based forecasting models can be a particularly valuable

tool for obtaining accurate real-time information on future employment growth and

labor market conditions. We also show that individual Google Trends series do

not appear to embed enough information to be better predictors than the classical

macroeconomic and financial series. However, the combination of many Google Trends

series, preferably in a non-linear manner, can substantially increase the forecasting

power and considerably improve upon models based on classical macroeconomic

and financial series. This is obtained by targeting predictors using a variable pre-

selection procedure such as soft thresholding. Moreover, the Google Trends panel

fully encompasses benchmark forecasts and provides significant information in excess

of those. Overall, our contributions show that the high predictive power of Google

Trends implies that it should be added to the toolbox of practitioners and policy

makers interested in forecasting employment growth. Our results also suggest that

internet search volume should be further investigated to forecast other macroeconomic

variables.
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VII. Tables

Table 1: Out-of-sample predictability for employment growth
This table shows the R2

OoS (in percentage) and p-value from the Diebold-Mariano
test (in parenthesis) for all models using a rolling window of 48 observations. Grey
shading indicates that the model is included in the 80% model confidence set
(α= 20%).

Method (predictors) h = 1 h = 3 h = 6 h = 9 h = 12

Panel A: Google Trends predictors, X g

RF (X g)
26.24 48.73 51.81 56.73 59.15

(0.006) (0.014) (0.034) (0.046) (0.076)

Bagging (X g)
16.64 38.60 48.30 39.60 27.41

(0.098) (0.075) (0.060) (0.105) (0.203)

CSR (X g)
23.67 47.23 50.49 50.65 42.68

(0.009) (0.016) (0.037) (0.055) (0.107)

Panel B: Macroeconomic predictors, X m

RF (X m)
20.03 38.92 37.74 18.05 −9.57

(0.011) (0.035) (0.130) (0.339) (0.563)

Bagging (X m)
22.31 44.44 45.34 −0.13 −65.44

(0.014) (0.050) (0.126) (0.565) (0.709)

CSR (X m)
21.23 35.89 35.72 −2.14 −63.22

(0.011) (0.031) (0.113) (0.515) (0.730)

Panel C: Autoregressive model

AR (−)
17.16 9.40 −12.44 −67.41 −108.13

(0.061) (0.298) (0.724) (0.813) (0.810)
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Table 2: Out-of-sample predictability with combined data set
This table shows the R2

OoS (in percentage) and p-value from the Diebold-Mariano
test (in parenthesis) for all models using a rolling window of 48 observations that
combines the Google Trends panel X g and the macroeconomic data set X m into
X c = [X g, X m].

Method (predictors) h = 1 h = 3 h = 6 h = 9 h = 12

RF (X c)
27.15 46.18 42.77 33.56 23.37

(0.001) (0.020) (0.099) (0.191) (0.315)

Bagging (X c)
21.05 46.84 59.22 35.76 −0.08

(0.035) (0.062) (0.071) (0.220) (0.501)

CSR (X c)
29.58 41.82 37.34 29.00 −32.91

(0.003) (0.041) (0.144) (0.254) (0.653)
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Table 3: Forecast encompassing tests
This table shows estimated weights in (13) according to
(16) as well as the p-value (in parenthesis) associated
with the MHLNh test statistic in (15).

Weight h = 1 h = 3 h = 6 h = 9 h = 12

Panel A: Random forests

λ̂g
0.755 1.127 0.891 1.068 1.074

(0.000) (0.000) (0.051) (0.094) (0.096)

λ̂m
0.245 −0.127 0.109 −0.068 −0.074

(0.101) (0.725) (0.321) (0.624) (0.649)

Panel B: Bagging

λ̂g
0.399 0.402 0.528 0.701 0.808

(0.004) (0.007) (0.017) (0.092) (0.138)

λ̂m
0.601 0.598 0.472 0.299 0.192

(0.000) (0.000) (0.016) (0.044) (0.134)

Panel C: Complete subset regressions

λ̂g
0.620 0.948 0.765 0.847 0.952

(0.013) (0.001) (0.021) (0.076) (0.117)

λ̂m
0.380 0.052 0.235 0.153 0.048

(0.051) (0.410) (0.164) (0.255) (0.399)
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Table 4: Summary of state-level predictability
This table shows equal- or population-share-weighted average R2

OoS (in percentage)
across all 50 US states using a rolling window of 48 observations and the Google
Trends panel for state, its neighbouring states and at the national level. The last
row reports a pairwise correlation coefficient (in percentage) among R2

OoS at each
horizon and the population share. We report in parenthesis below each number the
associated two-sided p-value obtained from Fisher-z transformations of estimated
correlation coefficients.

h = 1 h = 3 h = 6 h = 9 h = 12

Equal-weighted R2
OoS 21.93 39.46 42.14 43.59 34.48

Population-share-weighted R2
OoS 30.78 46.19 46.24 46.28 36.08

Correlation coefficient
39.73 37.37 22.31 15.24 7.19

(0.004) (0.008) (0.119) (0.291) (0.620)
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Table 5: State-level number of Google Trends keywords
This table shows the number of keywords for each state coming from its own Google Trends
panel (the column labelled “State only”), including those from its neighbouring states’
Google Trends panels (the column labelled “Incl. neighbours”) and including the national
Google Trends panel (the column labelled “Total”).

Number of keywords Number of keywords

State State only Incl. neighbours Total State State only Incl. neighbours Total

AK 30 30 203 MT 33 141 314

AL 61 471 644 NC 140 568 741

AR 30 575 748 ND 24 184 357

AZ 90 546 719 NE 54 441 614

CA 166 424 597 NH 36 208 381

CO 113 513 686 NJ 124 458 631

CT 73 421 594 NM 42 532 705

DE 21 385 558 NV 66 538 711

FL 141 332 505 NY 189 651 824

GA 130 642 815 OH 125 591 764

HI 52 52 225 OK 67 575 748

IA 63 601 774 OR 102 491 664

ID 45 444 617 PA 124 734 907

IL 145 571 744 RI 37 232 405

IN 82 570 750 SC 76 346 519

KS 61 406 579 SD 22 318 491

KY 69 789 962 TN 94 808 981

LA 77 303 476 TX 151 367 540

MA 122 476 649 UT 69 442 615

MD 116 424 597 VA 128 582 755

ME 31 67 240 VT 19 366 539

MI 156 464 637 WA 112 259 432

MN 105 315 488 WI 101 570 743

MO 111 694 867 WW 35 597 770

MS 45 307 480 WY 17 353 526

37



Table 6: Out-of-sample predictability with alternative keywords
This table shows the R2

OoS (in percentage) and p-value from the Diebold-
Mariano test (in parenthesis) for the random forests using a rolling window
of 48 observations and alternative keywords for generating the Google Trends
panel.

Keyword h = 1 h = 3 h = 6 h = 9 h = 12

Employment
24.43 45.39 52.70 55.99 56.16

(0.007) (0.020) (0.040) (0.059) (0.095)

Unemployment
26.43 38.10 27.44 16.21 11.99

(0.003) (0.027) (0.074) (0.230) (0.341)

Table 7:
Out-of-sample predictability with alternative estimation windows
This table shows the R2

OoS (in percentage) and p-value from the Diebold-Mariano
test (in parenthesis) for the random forests with X g using alternative estimation
windows.

Method (predictors) h = 1 h = 3 h = 6 h = 9 h = 12

Panel A: Rolling window of 36 observations

RF (X g)
21.51 42.75 48.10 44.79 35.35

(0.004) (0.016) (0.043) (0.049) (0.062)

Panel B: Rolling window of 60 observations

RF (X g)
17.28 40.82 57.74 57.85 54.19

(0.040) (0.020) (0.016) (0.066) (0.097)

Panel C: Expanding window with initial size of 48 observations

RF (X g)
20.83 40.34 40.94 39.21 31.85

(0.024) (0.033) (0.088) (0.109) (0.073)
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Table 8: Distribution of placebo R2
OoS

The table shows a summary of the place distribution of R2
OoS for the random

forests using Google Trends and macroeconomic data. The placebo data
Xplacebo is constructed to have the same mean, variance and AR(1) coefficient
as the series selected by soft thresholding but with no true predictive power
for employment growth. The models are estimated using a rolling window of
48 observations. We conduct 10,000 placebo replications.

h = 1 h = 3 h = 6 h = 9 h = 12

Panel A: Random forests with Google Trends, X g

Median 6.85 11.55 2.98 −3.14 −11.42

95th percentile 14.19 20.37 12.67 9.31 4.83

99th percentile 17.35 23.73 16.48 14.36 11.09

Minimum −13.04 −10.33 −23.98 −34.13 −51.45

Maximum 23.32 29.72 29.96 23.66 25.44

Panel B: Random forests with macroeconomic data, X m

Median 8.50 11.92 8.93 0.30 −13.55

95th percentile 15.45 21.48 17.92 13.20 3.31

99th percentile 18.92 24.44 21.65 18.00 10.57

Minimum −8.93 −8.86 −11.45 −40.76 −55.44

Maximum 24.72 27.91 27.05 27.22 24.89
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VIII. Figures

Figure 1: Primitive queries

This figure shows the ten primitive Google Trends queries in the period 2004:M1-
2018:M12. The index is calculated as a simple of average of the index for each word
over twenty different days. Grey shaded areas indicate NBER recessions.
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Figure 2: Data transformation to construct X g

This figure shows the natural logarithm of four deseasonalized Google Trends
queries in the period 2004:M1-2018:M12. The panel on top shows an example
of a stationary query: “job fair", for which we do not perform any detrending or
diferencing. The second panel on the left shows a linear trend-stationary query
“career opportunities" (solid line) and its linear trend estimate (orange dashed line)
while the panel on the right shows deviations from this trend. The third panel
on the left shows shows a quadratic trend stationary query “top jobs" (solid line)
and its trend estimate (orange dashed line) while the panel on the right shows
deviations from this trend. The panel at the bottom right shows a series for which
we could not reject the null of a unit root “government jobs" and the panel on the
bottom right shows the same series in differences. For ease of comparison the
series have been standardized to have mean zero and standard deviation of one.
Grey shaded areas indicate NBER recessions.
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Figure 3: Cumulative sum of squared error difference (CSSED)

This figure shows the cumulative sum of squared errors difference (CSSEDp,t)
as per (11) for all models using a rolling window of 48 observations. Grey shaded
areas indicate NBER recessions.

42



Figure 4: R2
OoS for the best 20 individual predictors in X g

This figure shows the R2
OoS for univariate forecasts, ŷh

t+h = α̂+ β̂X i,t, for the top 20 predictors in the
Google Trends panel X g, using a rolling window of 48 observations.
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Figure 5: R2
OoS for the best 20 individual predictors in X m

This figure shows the R2
OoS for univariate forecasts, ŷh

t+h = α̂+ β̂X i,t, for the top 20 predictors in
the macroeconomic panel X m, using a rolling window of 48 observations.
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Figure 6: Soft thresholding inclusion for individual predictors in X g
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This figure shows the soft thresholding inclusion for the predictors in X g during the out-of-
sample evaluation period for the top 20 predictors. The predictors are ordered from top to
bottom according to their inclusion frequency.

45



Figure 6 (Cont.): Soft thresholding inclusion for individual predictors in X g
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This figure shows the soft thresholding inclusion for the predictors in X g during the out-of-
sample evaluation period for the top 20 predictors. The predictors are ordered from top to
bottom according to their inclusion frequency.
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Figure 6 (Cont.): Soft thresholding inclusion for individual predictors in X g
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This figure shows the soft thresholding inclusion for the predictors in X g during the out-of-
sample evaluation period for the top 20 predictors. The predictors are ordered from top to
bottom according to their inclusion frequency.

Figure 7: State-level employment growth

0 0.05 0.1 0.15 0.2

Average (%)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

S
ta

nd
ar

d 
de

vi
at

io
n 

(%
)

AK

AL AR

AZ

CA
CO

CT

DE

FL

GA

HI

IA

ID

IL

INKS

KY

LA

MA

MD
ME

MI

MN

MO

MS

MT

NC

ND

NE

NH

NJ

NM

NV

NY

OH

OK
OR

PA

RI

SC

SD
TN

TX

UT

VA

VT

WAWI

WV

WY

This figure shows a scatterplot of the state-level standard deviation
(y-axis) and average (x-axis), in percentages, one-period employ-
ment growth over the 2004:M1 to 2018:M12 period.
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Figure 8: State-level out-of-sample predictability for employment growth
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This figure shows R2
OoS (in percentage) for all 50 US states using a rolling window of 48 observations

of the Google Trends panel for the state, its neighbouring states and at the national level. For each
forecast horizon, the states are sorted in descending order according to their predictive ability. The
orange dashed line indicates the R2

OoS from predicting national level employment growth using the
Google Trends Panel as reported in Table 1.
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