
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Longevity forecasting by socio-economic groups using 

compositional data analysis 

 

Søren Kjærgaard, Yunus Emre Ergemen, Marie-Pier  

Bergeron Boucher, Jim Oeppen and Malene 

Kallestrup-Lamb 

 

CREATES Research Paper 2019-8 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Longevity forecasting by socio–economic groups using compositional data analysis

Søren Kjærgaard

Interdisciplinary Centre on Population Dynamics, University of Southern Denmark

Yunus Emre Ergemen

CREATES and Department of Economics and Business Economics, Aarhus University

Marie-Pier Bergeron Boucher

Interdisciplinary Centre on Population Dynamics, University of Southern Denmark

Jim Oeppen

Interdisciplinary Centre on Population Dynamics, University of Southern Denmark

Malene Kallestrup-Lamb

CREATES and Department of Economics and Business Economics, Aarhus University

Pension Research Centre (PeRCent), Copenhagen Business School

May 9, 2019

Abstract

Several OECD countries have recently implemented an automatic link between the statutory retirement age and

life expectancy for the total population to insure sustainability in their pension systems when life expectancy

is increasing. Significant mortality differentials are observed across socio-economic groups and future changes

in these differentials will determine whether some socio-economic groups drive increases in the retirement age

leaving other groups with fewer years in receipt of pensions. We forecast life expectancy by socio-economic

groups and compare the forecast performance of competing models using Danish mortality data and find that

the most accurate model assumes a common mortality trend. Life expectancy forecasts are used to analyse the

consequences of a pension system where the statutory retirement age is increased when total life expectancy is

increasing.
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1 Introduction

Recently, several OECD countries have established an automatic link between their pension systems and in-

creases in life expectancy: for example in Finland, Denmark, Portugal, Italy, the Netherlands, the Slovak

Republic, and Sweden (OECD, 2017). The link is either between pension payments and life expectancy, as

in Sweden and Italy, or between the statutory retirement age and life expectancy, as in Denmark and the

Netherlands (OECD, 2012) which are rated to have the best pension systems (ACFS, 2018). Denmark and

the Netherlands In the latter case, life expectancy for the total population is used to regulate the pension

system, such that the statutory retirement age will be increased if life expectancy for the whole population

increases. Thus, the pace by which life expectancies for different socio-economic groups will have implications

for the number of pensionable years. This article analyses the consequences of such a pension system on socio-

economic inequalities by forecasting life expectancy by socio-economic status. The aim is to identify the most

accurate model for forecasting mortality by socio-economic status by comparing different models, basing the

selection on their inclusion of dependence among the socio-economic groups. As an example, forecasts are used

to measure the implication of the current pension scheme in Denmark in terms of expected years with pension.

Our empirical setting focuses on Denmark but as mortality differs significantly by socio-economic status for

almost all developed countries (Mackenbach et al., 2003) the outline of the results presented are relevant for all

countries which link life expectancy changes with their pension systems. The relation between income, wealth,

and mortality is a topic of general interest and often studied, e.g. by Snyder and Evans (2006) and Evans and

Moore (2012).

A successful forecast of mortality differentials between socio-economic sub-populations relies on the model’s

ability to capture different aspects of the differentials. Mortality differences can be separated into two parts

(Villegas and Haberman, 2014): mortality differential in the average level of mortality by age which can be

assumed constant over time and the part due to mortality changes over time. Villegas and Haberman (2014)

showed that changes in mortality differentials can be modelled successfully using multi-population mortality

models and the analysis presented in this article uses this approach. Multi-population models aim at coherently

modelling and forecasting mortality data from several populations or sub-populations and estimating both the

level and the changing part of the differentials.

Mortality forecasts are, currently, almost exclusively performed using models which decompose age-specific

mortality rates into age, period, and sometimes also cohort effects, inspired by the Lee and Carter (1992) (LC)

model, which is the most popular mortality forecasting model in countries with data of high quality (Booth,

2006; Cairns et al., 2009; Enchev et al., 2017). One major limitation with the LC type of models is that they

generally underestimate improvements in mortality as a result of assuming constant age-specific and relative

improvements (Bergeron-Boucher et al., 2017a; Booth and Tickle, 2008). As the LC model is fitted to historical

data the model gives a high weight to improvements in mortality for relatively young ages when fitted to data

from developed countries as mortality has declined most in these age groups. When this pattern is imposed in
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forecasts the model fails to capture improvements at higher ages.

Oeppen (2008) and later Bergeron-Boucher et al. (2017a) suggested using life table deaths to forecast mortality

based on compositional data analysis (CoDa) and alleviate this limitation in the LC models by an adaptation

of the LC model to a framework using life table deaths. CoDa mortality models shift deaths from younger

ages towards older ages. A redistribution of the density of death is captured in line with the shifting and

compressing patterns of mortality we see today in most developed countries. CoDa mortality models are

especially useful when forecasting mortality for populations where the mortality patterns are changing e.g. if

life expectancy has been stagnating and then begins to experience improving mortality again. This is the case

for the Danish population because Denmark in the 1980’s and first part of the 1990’s experienced a stagnation in

the improvement of mortality and from 1995 and onwards experienced relatively large improvements in mortality

(Jarner et al., 2008). Other countries experienced a similar stagnation periods, for example, the Netherlands

and the U.S. from around from 1984 to 2000 (Meslé and Vallin, 2006). The LC type of models do not capture

the shifting patterns which leads to less accurate life expectancy forecasts. In contrast CoDa models allow for

more interactive dynamics in the observed mortality trajectories, and more accurate forecasts are often found

when these models are fitted to data (Bergeron-Boucher et al., 2017a). Thus, CoDa models offer an attractive

alternative to LC type models when forecasting mortality by socio-economic groups. A few CoDa mortality

models have been suggested (Oeppen, 2008; Bergeron-Boucher et al., 2017a, 2018; Kjærgaard et al., 2019) and

this paper discusses the suitability of using CoDa models to forecast mortality in socio-economic groups by

comparing existing models as well as proposing a new model. The analysis could have included other multi-

population models formulated on death rates such as the models presented in Villegas and Haberman (2014)

or alternative models using the probability of death such as Cairns et al. (2006) or Cairns et al. (2009). We

choose not to do this as the number of analysed models already is high and because these models have the same

tendency to produce low life expectancy forecasts because they also assume constant age-specific improvements

without any inter-generational transfer of deaths as in the CoDa mortality models (Bergeron-Boucher et al.,

2017b). We refer to Bergeron-Boucher et al. (2017b) for further details and discussions. Although Cairns et al.

(2006) and Cairns et al. (2009) are highly relevant and more sophisticated than models analysed in Bergeron-

Boucher et al. (2017b) it is outside the scope of this article to analyse this in further detail and we limit the

number of cross comparisons to the Lee-Carter and Li-Lee models as they are the most widely used models for

developed countries.

For the total population in a country, an independent modelling of sub-populations might be reasonable, but for

sub-populations within the same country it is likely that factors such as health care, public policy, technology,

etc. affect all sub-populations. Factors which affect all sub-populations could be incorrectly specified by

the independent model and could lead to implausible forecasts with possibly unbounded divergence among

the sub-groups without any boundaries (Villegas and Haberman, 2014). Hence, modelling the dependence

between socio-economic groups is important but it is not straightforward to determine how and to what extent

dependence should be included to obtain the most accurate forecasts. A key contribution of this article is in
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the selection of models which include models with different levels of dependence, imposed both in the time and

age structures of mortality. The models used in the analysis are selected based on their inclusion of time and

age dependent parameters so that different degrees of flexibility with respect to the time- and age-dimensions

are allowed for. The inclusion of dependence spans from an one side an independent treatment (including 6

parameter vectors both for the time and the age dimension), that is the Independent-CoDa (Inde-CoDa) and

Lee-Carter (LC) models. On the other side, we include models with one parameter vector for both the time and

age dimension, that is the Relative-CoDa (Rela-CoDa), Three Dimensional CoDa (3D-CoDa), and Lee-Li (LL)

models. The LL model is an extension of the LC model to multiple populations. The new model suggested

in this article, Dynamic Factor CoDa (Dynam-CoDa), places itself in between these extremes by having one

age dimension and multiple time dimensions. Further, by comparing CoDa mortality and models formulated

on death rates (LC and LL) we are checking whether it is necessary to include the intergenerational dynamics

which are imposed in the CoDa models. The CoDa models were developed into a multi-population framework

but their performance has not been tested in a socio-economic setting.

We find that, out of six different models, CoDa mortality models that model mortality changes for each socio-

economic group proportional to a common trend provide the most accurate life expectancy forecasting for Danish

males and females. Thus, models allowing for multiple trends and an individual treatment of the socio-economic

groups are less suitable when forecasting, indicating a high degree of homogeneity among the socio-economic

specific mortality trends. Further, models based on death rates (the LC and LL models) provided in general the

lowest life expectancy forecasts and less accurate forecasts compared to the CoDa models assuming a common

trend. Hence, these models were not able to capture the mortality development observed in a developed country

with shifting mortality patterns. By measuring life expectancy forecasts at the statutory retirement age from

2016 to 2030 we find large socio-economic differences in the number of pensionable years. These differences are

expected to persist until 2030.

2 Danish pension system and socio-economic groups

In 2007, Denmark implemented a pension scheme that gradually increases the pension age in line with the

increase in life expectancy, targeting receipt of pension for 14.5 years. The scheme was implemented to finance

an increasing number of retirees from large birth cohorts while also taking into account increasing life time in

the entire population. The exact rules are complicated but basically the pension age will be increased if life

expectancy exceeds 14.5 years at the statutory retirement age. Increases are notified 15 years ahead assuming

a 0.6 years increase in the current life expectancy with a ceiling of maximum one year increase in the pension

age over a five year period (Finansministeriet, 2017). Hence, the pension age will increase if life expectancy

increases regardless of the population subgroups experiencing mortality improvements. Widening life expectancy

differentials across socio-economic groups will therefore not only imply larger inequality in life span but also
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a larger difference in the number of years people can expect to receive a public pension. For example, if the

highest socio-economic group is experiencing a decline in mortality and the other groups experience no change,

the pension age will increase leaving the lower socio-economic groups with fewer expected years with a pension.

Analysing and forecasting life expectancy across socio-economic status is therefore highly relevant when studying

the distributional consequences of a pension system.

Socio-economic status is, in this study, based on an individual’s income and wealth and not education status,

as is more traditional, because we want to capture mortality trends that measure the underlying life span

inequality in the population over time. This is not well captured by analysing mortality by education if the

population experiences large changes in the educational level of the population as well as compositional chances

over recent decades (Brønnum-Hansen and Baadsgaard, 2012). Mortality trends by education thus include

a selection effect where in particular people with very low or no education consist of a small selected group

in addition to mortality differences caused by different health conditions (Colardyn and Baltzer, 2008). This

selection effect is referred to as the downward bias in mortality from education (Hendi, 2015).

Using income and wealth for measuring socio-economic status, groups of approximately equal size can be found

because income and wealth are continuous variables, constituting an individual ranking basis. Time consistent

mortality trends can thereby be calculated. Cairns et al. (2019) show that it is important to consider both

income and wealth as both high income and high wealth are associated with low mortality. An individual

person can be well off with a medium level of income if he enjoys a sufficiently high accumulation of wealth.

The contrary is also true for low income or low wealth (Cairns et al., 2019). We delve more into the details of

socio-economic classification in the next section.

2.1 Data for Danish socio–economic groups

The Danish population was, for each sex, divided into five (almost) equally large socio-economic groups based

on an affluence index following the procedure suggested by Cairns et al. (2019), as it is found to produce a

consistent and relevant classification of socio-economic groups in relation to life expectancy in each sub-group.

Cairns et al. (2019) define socio-economic groups weighting individual gross annual income with a factor of

15, compared to their net wealth, that is A = W + K × Y , where A is the affluence index, W is net wealth,

K = 15 is the weighting factor, and Y is gross annual income. Sensitivity tests for the K value are provided

in Cairns et al. (2019). Gross annual income consists of all incomes subject to tax such as wages, income from

self-employment, income from social benefits and pension-related incomes (Cairns et al., 2019). Net wealth is

the difference between total assets such as real estate, bonds, deposits etc. and total liabilities such as mortgage,

financial loans, unpaid tax, etc. Cairns et al. (2019) find that migration between socio-economic groups should

be allowed until age 67 after which the groups are fixed. Age 67 was selected because it was the statutory

retirement age for most of the data period until it was reduced to 65 years in 2004. Even though data are from
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the central Danish register, income and wealth are missing for a very small fraction of the population these

missing values were imputed by an average of the income and wealth, respectively, for each individual.

Individual information about income, wealth and marital status was obtained from the Danish central registers

by merging information from the Population Register and the Income and Tax Register. Data are only available

from 1985 because reliable information about income at an individual level does not exist for the whole study

population prior to 1985. Further details about the socio-economic measure and data can be found in Cairns

et al. (2019). This study considers only five socio-economic groups so that each group is of a large enough size,

enabling the models we consider in the next section to be estimated.

The socio-economic data are available from age 50 and grouped at 100+. Mortality is measured by the death

rates (mx), life table deaths distributions (dx), or life expectancy (ex), all calculated using standard life table

techniques following Preston et al. (2001). All variables are measured by single age x = (50, ..., X), single year

t = 1985, ..., T , and g = (1, ..., G) is used to denote a socio-economic group constituting a sub-population. The

life table death distributions, dt,x are ungrouped when fitting the CoDa models to avoid a problem of artificial

compression in the life table forecasts (Bergeron-Boucher et al., 2017a). We use a penalized composite link

model for ungrouping as suggested by Rizzi et al. (2015) and ungroup until age 105. Ungrouping to age 105

gives a smooth and realistically downward sloping dt,x at higher ages and only affects the life expectancy of the

first age group minimally. 1

The socio-economic groups are labelled G1 to G5 with G1 having the lowest income and wealth and G5 the

highest.

Table 1: Summary table of Danish life expectancies

Year G1 G2 G3 G4 G5 G1 G2 G3 G4 G5
Males at 50 years Females at 50 years

1985 20.70 24.22 26.17 27.21 27.83 25.92 28.84 30.96 31.73 32.98
1995 22.03 24.63 25.98 27.30 28.66 27.56 28.41 29.69 30.65 31.99
2005 24.65 26.10 28.53 30.04 31.77 29.54 29.94 31.81 33.08 34.21
2015 26.97 27.90 30.56 32.32 33.92 31.40 32.02 33.43 34.97 36.43

Males at 65 years Females at 65 years
1985 11.27 13.55 14.67 15.22 15.72 14.43 17.93 18.77 19.03 19.87
1995 12.09 13.42 14.17 15.00 15.99 15.95 16.63 17.50 17.98 19.04
2005 14.17 14.79 15.98 16.90 18.27 17.70 17.73 18.68 19.70 20.74
2015 16.04 16.54 17.75 18.79 20.06 19.29 19.50 20.09 21.32 22.33

Other studies have, similar to Cairns et al. (2019), used income to define socio-economic groups, for example:

Tarkiainen et al. (2012). Tarkiainen et al. (2012) used taxable income (similar to the income variable used in this

1As a sensitivity analysis we compared life expectancies when socio-economic groups were defined using disposable income
instead of gross annual income. Using disposable income produces similar mortality trends but smaller gaps between the lowest
socio-economic groups for both males and females. Given that the main objective of this study is to model and forecast mortality
by socio-economic groups, it is beyond the scope of this paper to analyse the definition of socio-economic group in further detail.
Further sensitivity tests of the affluence index procedure used can be found in Cairns et al. (2019) for Danish males.
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study) and divide the Finnish population into five groups. For the period 1988 to 2007 widening life expectancy

differentials are found for the lowest socio-economic group compared with the others but differentials remain

constant between the other groups in the Finnish population. Mortality trends by socio-economic groups, similar

to those presented in this study, are found for Danish males and females by Brønnum-Hansen and Baadsgaard

(2012). A steep increase for the lowest socio-economic group during the first part of the data period are found

by Brønnum-Hansen and Baadsgaard (2012), suggesting that the large improvements for the lowest group are

due to changing conditions in the labour market and the flexibility model of the Danish labour market. The

socio-economic classification used by Brønnum-Hansen and Baadsgaard (2012) differs from the one suggested

by Cairns et al. (2019) by using disposable income, missing inclusion of any wealth measure, and by the number

of groups as Brønnum-Hansen and Baadsgaard (2012) divide the Danish population into four groups.

3 Methods

The LC model is included in the analysis as a benchmark model and compared to the proposed CoDa models.

For comparison, all models use similar notation for the time and age index.

3.1 The Lee-Carter model (LC)

The LC model is a single population model and when applied to sub-populations treats them independently.

The model decomposes age-specific mortality rates mt,x,g by Singular Value Decomposition (SVD), using only

the first rank, after having subtracted the average level of mortality. That is,

log(mt,x,g) = αx,g + βx,gkt,g + εt,x,g, (1)

where αx,g = 1
T

∑
t log(mt,x,g) is the time arithmetic average measuring the general mortality age pattern, kt,g

an index over time of the general level of mortality, βx,g age-specific responses to the index, and εt,x,g the iid.

error term. Mortality forecasts are calculated with the LC model by extrapolating kt,g using an ARIMA model

to produce mortality rate forecasts.

3.2 The Li-Lee model (LL)

The CoDa models are also compared with the multi-population extension of the LC model, the Li-Lee (LL)

model. The LL model (Li and Lee, 2005) estimates a common factor term for the average population by applying

an LC model to the average death rates. Next, the common factor is subtracted from each socio-economic sub-

population and SVD is used to decompose deviations by sub-population specific age and time parameters. The
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LL thereby extends the LC model by modelling dependence among the sub-populations. The LL model can be

written as,

log(mt,x,g) = αx,g +BxKt + βx,gkt,g + εt,x,g, (2)

where Kt is an index of the general level of mortality for the average population, Bx is the age specific response

to changes in the index, and εt,x,g the iid. error term. The group-specific parameters are interpreted similar to

the parameters in the LC model but relative to changes in the common factor term. Following Li and Lee (2005),

we assume that kt,g follow an AR(1) model which is used to calculate forecasts and changes in sub-population

specific mortality thus converge to the national level described by the common factor.

3.3 Compositional Data Methods

We present and analyse four different CoDa models and forecast mortality for each sub-population. Three

of the models have already been used to forecast mortality in different settings whereas the Dynamic Factor

Coda model is proposed for the first time. The CoDa models differ from the traditional LC modelling by using

life table death distributions instead of death rates and by applying compositional data analysis techniques to

introduce redistribution of deaths.

Compositional data are defined as a composition with only positive entries summing to a fixed constant and life

table deaths are densities summing to 1 in each year, if rescaled to the life table radix, and therefore only contain

relative information. Aitchison (1986) showed that traditional decomposition methods, for example (SVD), do

not apply to compositional data as data coordinates cannot vary freely but are constrained to vary between 0

and a constant. Instead, it is necessary to transform the data so it can vary freely and back-transform after the

decomposition has been carried out (Pawlowsky-Glahn and Buccianti, 2011).

The covariance structure in compositional data is utilised when analysing life table deaths with CoDa. For

example, a decreasing number of deaths at young ages implies that more deaths occur at older ages. Thus,

the use of life table deaths has an advantage, compared to models that use mortality rates, as the shifting and

compression process observed in mortality data is modelled directly.

The analysis presented in this paper uses the centered log-ratio transformation (clr) transformation which is

the log ratio of the composition divided by its geometric mean (gt). That is,

clr(dt,x) = ln

(
dt,x
gt

)
. (3)

All the models except the Inde-CoDa and the LC models account for dependence among sub-populations but

differ in their assumptions on the nature of dependence. The Dynam-CoDa model restricts the age dimension

but allows for different mortality time trends and by including the Dynam-CoDa model in the analysis we explore
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whether flexibility in the time dimension is important when forecasting mortality by socio-economic groups.

The Rela-CoDa model constraint both age and time dimensions to a national trend for all sub-populations by

modelling deviations from a national common trend. The 3D-CoDa also restricts the sub-groups to follow the

same common age and time factors but instead of modelling the residuals, as with the Rela-CoDa model, a

third dimension, related to the population-specific pace of mortality, is introduced. Summing up, we analyse

whether dependence among socio-economic groups is most useful for forecasting when it is introduced in the

time dimension (Dynam-CoDa), by a common national trend (Rela-CoDa), or by the structure in the age and

time dimensions (3D-CoDa). It is important to analyse different levels of flexibility in order to determine the

most suitable forecasting model. A very complex model might provide a very accurate fit of the observed

mortality but could lack ability to forecast mortality due to bias-variance trade off. By analysing several models

that provide different forecast methods we test for alternative ways that mortality by socio-economic status can

be related. Further, because models using either death rates or life table deaths are included we explore which

of these two indicators is most suitable when forecasting life expectancy for different socio-economic groups.

All the CoDa models ensure that deaths not occurring at a certain age are moved to another age where they

are likely to occur. All models capture level differentials by calculating sub-population specific means (ax,g)

but mortality improvement differentials are captured differently in the models; in Dynam-CoDa, g mortality

time indexes measuring time changes (kt,g); in Rela-CoDa by both age specific dynamics (bx,g) and kt,g; and in

3D-CoDa by an additional third dimensional parameter vector related to population-specific pace of mortality.

3.4 Independent (Inde-CoDa)

The simplest way to analyse socio-economic sub-populations is to treat each sub-population independently,

similar to the LC model but in a CoDa setting. Using CoDa, that means applying the model suggested by

Oeppen (2008) to each sub-population. The Inde-CoDa model centres life table deaths for each sub-population

(dt,x,g) by differencing out the age-specific geometric mean. The model uses the operator 	 which is the

subtraction operator in CoDa. The centred dt,x,g are approximated by SVD. That is,

clr(dt,x,g 	 αx,g) = b1x,gk
1
t,g + ...+ bpx,gk

p
t,g + εt,x,g, (4)

where kpt,g is an index representing the overall mortality development over time for rank-p approximation, bpx,g

the age-specific response changes in kpt,g, and εt,x,g the iid. error term. The changes in mortality are thereby

decomposed into an age and time dimension. βx displays how deaths are redistributed in the forecasts, fulfilling

the restriction that the total number of deaths needs to be maintained. For positive kt values, which is the case

for all forecast years, deaths are redistributed from ages with negative βx values towards those with positive βx

values. Mortality forecasts are calculated by extrapolating kpt,g using ARIMA models. Estimates and forecasts

of dt,x,g are transformed back using the inverse of the clr transformation and estimates of αx,g are added. The
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inverse procedure of clr ensures that the initial life table constraint is fulfilled so deaths sum to the radix in

each year. For more details see Oeppen (2008). See Figure 1 for graphical representation.

3.5 Dynamic Factor Coda model (Dynam-CoDa)

One way to incorporate dependence among sub-populations is to estimate kt time trends for each sub-group

and forecast these in a system estimating dependence among time trends but use the same βx all sub-groups.

To do so, we propose to stack the life table deaths for each sub-population vertically and perform an analysis

similar to the Inde-CoDa. A matrix of size (T ·G)×X of life table deaths is first centred and transformed and

from an SVD, g group-specific time parameter vectors and one age parameter vector are calculated. That is,

clr(dt,x,g 	 αx,g) = b1xk
1
t,g + ...+ bpxk

p
t,g + εt,x,g (5)

The Dynam-CoDa model is thereby assuming g time indexes describing the time dimension and one age param-

eter vector common to all sub-populations measuring the age dimension, for each rank approximation. εt,x,g is

the iid. error term

If the sub-population mortality trends move together, it is possible that they share common time trends which

can be modelled together. We use a multi-level dynamic factor model here to model kt,g jointly. The multi-level

dynamic factor model determines a factor common to all sub-groups and factors which are only shared by one

or more of the sub-groups. More specifically k1t,g are factorized using:

k1t,g = γ′gPt + λ′gRt + εt,g, g = 1, . . . , G, (6)

where Pt is the vector of factors that pervade all groups, Rt is the vector of factors that pervade only a subset of

groups, and γg and λg are the corresponding loadings. Using the selection method suggested by Hallin and Liska

(2007) one Pt factor is estimated for both Danish males and females, two Rt factors for Danish females, and one

Rt factors for Danish males. The Dynam-CoDa is thereby incorporating dependence between sub-groups by

estimating a common factor for all groups but also factors (Rt) which are shared only by some of the sub-groups.

Details about the multi level dynamic factor model are presented in the supplementary material section A.

Forecasts of Pt and Rt are calculated using similar ARIMA selection procedures to the Inde-CoDa models. Fi-

nally, k1t,g forecasts are perturbed on βx and forecasts of the life table deaths are calculated by back-transforming

and centre the life table deaths forecast, similar to the procedure in Inde-CoDa. See Figure 1 for graphical rep-

resentation.
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3.6 Relative model (Rela-CoDa)

The third model forecasts the mortality for each sub-population in relation to the national mortality. The model

is a variation of the model suggested by Bergeron-Boucher et al. (2017a).

Rela-CoDa is estimated in two steps. In step one, a simple CoDa mortality model, using rank-1 SVD, is fitted to

the national life table deaths and national forecasts of age specific responses and a mortality index are produced.

The subscript g is left out in the first step and a superscript N added when denoting the national mortality,

dNt,x.

clr(dNt,x 	 αx) = BxKt + εt,x, (7)

In a second step each sub-population is considered after subtracting the geometrical means of national deaths

from the sub-population specific geometrical means using CoDa perturbation. Both the sub-population specific

and national life table deaths are first rescaled so each row sums to one. A rank-1 SVD is used to calculate

sub-population specific estimates of bx, kt, and a εt,x,g iid. error term. That is,

clr(dt,x,g 	 αx,g 	 dNt,x) = bx,gkt,g + εt,x,g, (8)

The Rela-CoDa model is thereby a variation of the Li and Lee (2005) model within a CoDA framework. Forecasts

of Kt and kt,g are calculated with an ARIMA model and an ARMA model, respectively, and the specific AR and

MA terms selected using the AIC. Rela-CoDa thus assumes stationary kt,g parameters such that the change in

mortality will converge for the sub-populations towards the national level, similar to what is normally assumed

in the Li and Lee (2005) model. Forecasts of the life table deaths in each sub-population are calculated by

the inverse perturbation of the national and sub-population specific mortality indexes including the age specific

responses. The inverse perturbation is defined as the element-wise division followed by a rescaling of the variables

according to the initial data constraint. Thus, the sub-population specific deaths are measured as the ratio of

the national death density. Life table forecasts are calculated as,

d̃t,x,g = αx,g ⊕ clr−1(BxK̃t + bxk̃t). (9)

where tilde indicates forecasts of the parameter vectors. Rela-CoDa is a variation of the model suggested by

Bergeron-Boucher et al. (2017a). The difference between the two models is in step two were Bergeron-Boucher

et al. (2017) use BxKt estimates from an average population instead of the national life table deaths. Arguably

in our approach, more of the national variation is accounted for due to the use of national deaths. See Figure

1 for graphical representation.
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3.7 Three dimensional model (3D-CoDa)

The fourth CoDa model we consider introduces a third dimension to capture sub-population differentials. The

model is suggested by Bergeron-Boucher et al. (2018) and applied to Canadian regions. Bergeron-Boucher et al.

(2018) suggest, similar to the other CoDa models, first to centre and transform the life table deaths but instead

of an SVD approximation, the 3D-CoDa model uses a three-way principal component analysis - the Tucker3

method (Tucker, 1966). The model can be written as,

clr(dt,x,g 	 αx,g) =

Q∑
q=1

P∑
p=1

R∑
r=1

wqpr(kt,qβx,pγg,r) + εt,x,g, (10)

where wqpr are elements in a weighting array containing weights between the loading matrices β, k, and γ

Thus, the model assumes that all sub-populations, for each rank, share the same mortality index kt,g and

the same age responses bx,p but that each sub-population experiences changes in mortality at a different pace

measured by the parameter vector γg,r. εt,x,g is an iid. error term. A high degree of similarity in the time

and age structures of the mortality development in each sub-populations is therefore assumed. In line with

the analysis by Bergeron-Boucher et al. (2018) we only consider equal elements of q,p, and r for the 3D-Coda

model but unequal elements are analysed with the more general Population Value Decomposition (PVD) which

is described in the supplementary material Section C together with comparison results. The PVD model did

not provide more accurate forecasts than the 3D-CoDa model. Figure 1 presents a graphical representation of

the CoDa models.
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Figure 1: Graphical representation of the CoDa models
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Three dimensional model (3D−CoDa)
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None of the models include any covariates such as health indexes, GDP, smoking prevalences, or other relevant

factors. The main problem of including covariates is that many of these covariates are often harder to forecast

than the mortality patterns themselves. Thus, forecasts including covariates are often found to be less reliable

when forecasting mortality (Cairns et al., 2011). A few studies have included covariates in the LC model, for

example French and O’Hare (2014), but it is beyond the scope of this paper to include covariates in the CoDa

mortality model framework. These extensions are left for further research.

4 Results

4.1 Estimation findings

We show parameter estimates for the first rank SVD in this section, fitting the models to the whole data period

for Danish males (Parameter estimates for Danish females are also shown in the supplementary material in

Figures A1 to A5.). The first rank accounts for over 65% of the variation in the centred life table deaths for

all Danish male socio-economic groups in all models. The Inde-CoDa and 3D-CoDa (p=r=q=2), models are

estimated using two ranks and parameter estimates for the second rank are shown in the supplementary material

Figures A6 and A7. A rank-1 approximation was found to be sufficient for the Dynam-CoDa model as higher

rank approximations did not improve the forecast accuracy for this model. Mortality forecasts are calculated by

extrapolating kpt,g using ARIMA models selected using the Akaike information criterion (AIC) (Akaike, 1974)

and the Augmented Dickey Fuller test for determination of the order of integration (Dickey and Fuller, 1979).

A random walk with drift is generally used as a suitable model similar to other extrapolative mortality models

as for example the LC model (Booth and Tickle, 2008).
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A correction for a possible mismatch between observed and fitted mortality rates, in the last observed year,

is often applied in the mortality forecasting literature to correct for what is known as the jump-off bias (Lee

and Miller, 2001). The correction adds the distance between the fitted and the observed mortality indicator

in the final year (death rates or life table deaths) to the forecast and adjusts forecasts so that the jump-off

bias is reduced. Hyndman et al. (2013) argue that this correction can introduce a forecast bias and thus a

trade-off exists between correcting the jump-off bias and introducing a forecast bias. The analysis presented in

this article makes use of the jump-off correction for all models as, because of data limitations, we only make

short to medium term forecasts in the out-of-sample comparison. Accurate forecasts in the beginning of the

forecast period are therefore important and the jump-off error would dominate the results if not corrected.

Similarly, a correction between actual and fitted values is applied for the multi-level dynamic factor model in

the Dynam-CoDa model.

Figure 2: Alpha estimates for the CoDa and LC models for Danish males
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Note: αx estimates are the same for all CoDa models and the same for the LC and LL models. Thus, the estimates are only

shown once.

Figure 2 shows estimates for αx for the CoDa models and for the LC/LL models. αx for the CoDa models is

bell shaped as it describes the general death distribution whereas αx is increasing for LC/LL as these models

use log death rates for modelling, where the rate of mortality is increasing with age. Differences in αx by

socio-economic status follow the ordering of the socio-economic groups with a higher mortality at lower ages

for G1 compared to G5. Hence, the part of the mortality differentials between the socio-economic groups that
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is related to differences in the level of mortality follows the ordering of the socio-economic groups. Further,

because αx is assumed to be stable over time the ordering in the level differentials component will persist in the

forecasts (Villegas and Haberman, 2014).

Figure 3: First rank kappa estimates and forecasts using different models for Danish males
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Note: The LC and LL parameter estimates are plotted on a different scale compared to the CoDa models for visibility reasons.

Figure 3 shows k1t estimates and forecasts for all the models which capture the overall mortality development

over time in an index. The time indexes are increasing for the CoDa models and for LC and the LL models

meaning that mortality has been declining over time from 1985 to 2016 for all models. Parameters for the LC

and the LL models are plotted on a different scale for visibility reasons. The scale differences are a consequent

of the LC and LL models being based on death rates, as with the βx estimates.
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The Inde-CoDa model estimates for kt show differences across socio-economic groups with the steepest increase

for the lowest socio-economic groups meaning that this group experiences the largest improvements in mortal-

ity. The second lowest socio-economic group in the Inde-CoDa model is predicted to have the lowest future

improvements in mortality. Similar k1t are estimated with the Dynam-CoDa model, but different forecasts are

produced when dependence among sub-groups is taken into account by the multi level dynamic factor model.

The multi level dynamic factor model estimates a significant common factor and, thus, identifies dependency

among the socio-economic groups in the mortality index k1t . The five socio-economic groups are predicted

to have a similar increase in k1t meaning that they also are predicted to have similar experience progress in

mortality improvements. The common factor is thereby dominating the Dynam-CoDa forecasts. The CoDa

models with common factor terms, 3D-CoDa and Rela-CoDa, both identify an upward sloping time trend in

both estimates and forecasts.

βx estimates for the models are showed in Figure 4. All the CoDa-models follow a similar pattern which can be

described by looking at the βx estimates from the Inde-CoDa model. Over age, the generally increasing pattern

in βx means that when kt,g is increasing and becomes positive, deaths are shifted from ages with negative βx

towards older ages where βx is positive. For the Inde-CoDa model βx is, for G1 and G2, decreasing at ages 50

to 70 years and increasing over age until around age 102 followed by a decrease. For G3 to G5 no decrease is

found for ages 50 to 70. G1 and G2 have the highest βx estimates for the ages 50 to 60 but lowest from age 60

to 95 compared to other groups. The relatively high βx values at ages 50 to 60 and subsequent low values at

ages 60 to 96 for the G1 and G2 groups imply that less deaths are transferred to higher ages for the same shift

in kt,g values: meaning that these groups will experience a lower improvement in life expectancy for the same

increase in kt,g compared to the other groups.

βx parameter estimates for models assuming a common βx vector generally follow patterns observed for the

groups G3 to G5. Assuming a common βx parameter, thus, provides a better fit for these groups than for G1

and G2. Similar patterns are found for the LC/LL models with relative high values for G1 and G2 at ages 50

to 60. Note that these models do not imply transfer of deaths as with the CoDa-models.

Figure 5 shows the group specific parameter estimates for the Rela-Coda and LL models, that is the group specific

adjustments to the common trend identified in the Rela-CoDa and LL models. Because the group specific kt,g

terms are assumed to be stationary, and thus mean reverting, all socio-economic groups are assumed to follow

the same long-run mortality trend dominated by the common Kt term. No particular trending pattern is found

for kt,g parameters in the Rela-CoDa model meaning that the stationarity and thereby mean reverting pattern

fits the Rela-CoDa model well. The kt,g parameters in the LL model display more upwards and downwards

trending patterns making it harder to forecast and less suitable to assume a mean reverting pattern. This

makes the Rela-CoDa formulation more attractive for forecasting as the patterns are easier to predict. The

different patterns in the Rela-CoDa and the LL models are a consequence of Rela-CoDa subtracting dNt,g instead

of parameter estimates KtBx as in the LL model. Further, Coda mortality models have a tendency to implicitly
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Figure 4: First rank beta estimates and forecasts using different models for Danish males
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Note: The LC and LL parameter estimates are plotted on a different scale compared to the CoDa models for visibility reasons.

weight older ages more than younger because they are formulated on dx where intergenerational dependence

is modelled though the clr transformation (Bergeron-Boucher et al., 2017a). The age- and group-specific age

responses βx,g are similar for all age groups and describe how each age group responds to changes in kt,g.

The γg estimates for the 3D-Coda model show how the common factor terms are scaled for each socio-economic

group (Figure 6). Higher γg estimates are found for the lower socio-economic groups meaning that, in the view

of the 3D-Coda model, mortality is decreasing more slowly for those groups compared to higher socio-economic

groups. The only exception is G1 where the fastest decline is found.

Figures A10 to A14 in the supplementary material show standardized residuals for all the studied models across
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Figure 5: Group specific kappa and beta estimates for the LL and Rela-CoDa models for Danish males
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all socio-economic groups. None of the residuals shows any particular pattern and thus we do not include

specific cohort terms in the models. Cohort terms can be included in the models but cannot be identified

uniquely because of the exact relation between age, calender year and cohort birth year (cohort = calender year

- age). Thus a specific form needs to be assumed for identification and a linear identification form is often used

for mortality models: for example by Haberman and Renshaw (2009).
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Figure 6: Gamma estimates for Danish males using the 3D-CoDa model
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5 Cluster analysis of the main mortality trends

To illustrate the high degree of similarity between the mortality time trends observed for each socio-economic

groups we provide a cluster analysis of kt,g obtained from the Dynam-Coda model where multiple time trends

are allowed. In Figure 7, we present the cluster analysis for males and results for females are shown in the

supplementary material Figure A9. The cluster analysis is performed using the Clustergram algorithm in

MATLAB.

The cluster analysis presented in Figure 7 shows a high correlation between kt,g for each group with correlations

above 0.84 for all groups. The group G1 is least related to the other group with the lowest correlation coefficient

relative to the other groups. The G1 also clusters in its own subgroup as indicated by solid lines in Figure 7

meaning that G2 to G5 have a similar pattern whereas G1 to some degree follows its own pattern. More

specifically G2 to G5 cluster in one group with G2 and G4 being most similar and G1 in its own cluster.

These clustering pattern do have implications for the different forecasting models as models with one common

kt will fit the mortality time trends better for G2 to G5 compared to G1. This is also seen in the results in

Table 1 where more accurate forecasts are found for G1 with Inde-CoDa using an independent fit compared to

Rela-CoDa and 3D-CoDa which assume one common trend. Contrary, more accurate forecasts are found for

the other groups using models with a common trend. Because kt,g were subject to unit roots of order one, as

argued in Section 3.4, we also test for co-integration between the variables to check whether the correlations

are spurious. Using the Johansen trace test (Johansen, 1991) co-integration is found between the variables

suggesting that equilibrium relationships exist and hence the correlations are real. Results of the co-integration

analysis are presented in supplementary material Section B.
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Figure 7: Cluster analysis of the main mortality time trend (kt,g) for Danish males

5.1 Out-of-sample comparison and selection of forecasting model

To determine which mortality model is most suitable for forecasting mortality we compare the out-of-sample

forecast performance of the different models. Data are available from 1985 to 2016. To have a sufficient number

of years for fitting the models, we consider forecasts with a length of 5 to 11 years calculated by rolling the

onset of the forecasts. That is, for the first forecast we use a fitting period from 1985 to 2005 and the period

from 2005 to 2016 for validation. For the second forecast, one year is added to the fitting period by reducing

the validation period by one year. From this a minimum of 2/3 of the data period is used to fit the models and

1/3 for validation. Forecast errors are measured by the root-mean-square error (RMSE) comparing observed

and forecast life expectancy at age 50 which is the youngest age group in the data set,

RMSE =

√∑H
h=1(eh,50 − ẽh,50)2

H
(11)

where h ∈ (1, 2..., H) is the number of forecast years and e50 the observed life expectancy at age 50 and ẽ50 the

corresponding forecast. The average RMSE is calculated by averaging over the different forecast horizons and

used to compare the models. We use life expectancy at age for comparison as it is calculated using mortality

information for all the considered age groups. Alternatively one could evaluate at a higher age which would

exclude data at younger age-groups. A good in-sample fit can be achieved by introducing a high number of
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parameters but this will not guarantee a good forecast. Because forecasting is the objective of this paper, only

the out-of-sample performance of the models is considered when selecting the most suitable model.

RMSE’s are shown in Table 2 and 3 for Danish males and females, respectively. In-sample fit measures can be

found in the supplementary material Section F and show that the models which fit each sub-group independently

fit more accurately. This is a consequence of the higher number of parameters.

Table 2: RMSE of e50, average over 7 forecast horizons for Danish males

SES1 SES2 SES3 SES4 SES5 Avr.
Inde-CoDA 0.4511 0.8159 0.8970 0.8657 0.5136 0.7087
Dynam-CoDa 0.7190 0.6016 0.7286 0.8333 0.6419 0.7049
Rela-CoDa 0.7088 0.1980 0.3615 0.5626 0.5884 0.4838
3D-CoDa 0.7200 0.5040 0.4641 0.5117 0.4110 0.5221
LC 0.6637 0.5284 0.5487 0.6442 0.4878 0.5746
LL 0.7459 0.3212 0.5617 0.8514 0.9750 0.6910

Note: Lowest RMSE forecast error is indicated with bold font

Table 3: RMSE of e50, average over 7 forecast horizons for Danish females

SES1 SES2 SES3 SES4 SES5 Avr.
Indt-CoDA 0.3243 0.8037 0.8056 0.8551 1.2521 0.8081
Dynam-CoDa 0.8396 0.8327 0.7752 0.9767 0.9456 0.8740
Rela-CoDa 0.6475 0.6366 0.5778 0.7384 0.8240 0.6848
3D-CoDa 0.2797 0.7305 0.7581 0.8308 0.7846 0.6767
LC 0.3460 0.8033 0.7827 0.8298 0.9123 0.7348
LL 0.7968 0.6709 0.6927 0.8805 0.9745 0.8030

Note: Lowest RMSE forecast error is indicated with bold font

For the Danish males, the Rela-CoDa, 3D-Coda, and Inde-CoDa models provide the lowest forecast errors for

the different socio-economic groups. For the Danish females, the Rela-CoDa and 3D-CoDa models are the most

accurate. The Rela-CoDa model provides the lowest forecast error on average for all the groups for Danish males

and thus we conclude that this model is the most accurate model for forecasting mortality by socio-economic

status. Similarly, the 3D-CoDa provides the lowest forecast error for females, but the accuracy is just slightly

higher for the Rela-CoDa model. A good fit for the Rela-CoDa and 3D-CoDa models indicates a high degree of

homogeneity in the Danish mortality trends across socio-economic status and a model based on a national trend

is thus useful when forecasting. Further, it also shows the usefulness of modelling the dependence between the

sub-group specific mortality trends. As the Dynam-CoDa model did not provide better forecasts, in general,

it does not seem relevant to allow for different patterns in the time trends. It is sufficient to have the same

time and age pattern for each group and adjust by modelling the residuals from a national pattern as in the

Rela-CoDa model or by allowing for a different pace as in the 3D-CoDa model. A model based on death rates

(LC or LL) did not provide the lowest forecast error for any of the groups. Hence, better forecasts are obtained
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for Danish mortality data using life table deaths when forecasting life expectancy. 1

Figure 8: Observed life expectancy (Obs) and 20 years life expectancy forecasts using different models for
Danish males
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Figure 8 shows 20 year life expectancy forecasts for Danish males at age 50 using the different models. The

models show relatively large differences between the forecasts. Forecasts from the different models are most

aligned for G3 and G4 whereas larger differences are found for the other socio-economic groups. Hence, the

selection of model is relatively more important for these socio-economic groups.

The Rela-CoDa model has, compared to the other models, an optimistic life expectancy forecast for G2 and G3

1We test the significance of forecast performance differences of the seven models using a Clark-West test (Clark and West, 2006)
in the medium horizon. Details about the Clark-West test are presented in the supplementary material Section D. We test the
forecast differences for each socio-economic group towards the best performing model for each sex and find that a large majority of
the forecasts are significantly different. Results of the Clark-West test are presented in the supplementary material Table A3.
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but intermediate forecasts for G1, G4, and G5. This is a consequence of the common time trend in the Rela-

CoDa model forcing the socio-economic groups towards the same common time trend. Groups with a mortality

trend which is increasing faster than the common trend, as G5, will tend to have a lower life expectancy

forecast compared to the Inde-CoDa model and the opposite for groups with a mortality trend increase below

the common trend. As anticipated in the theoretical comparison, the LC and LL forecasts are among the lowest

for most of the socio-economic groups; only the LL model gives a medium life expectancy forecast for G2.

The low life expectancy forecasts are a consequence of the assumption that βx,g is constant over time and in

contrast to the CoDa models no dynamics are modifying the assumption (Bergeron-Boucher et al., 2017a). The

downward bias in LC and LL models are not necessarily that pronounced for short forecasts horizons but it is

easy to detect in a 20 year forecast as in Figure 8.

6 Implication for the pension age and its developments

Having identified the CoDa models with a common trend as the most suitable models for forecasting life

expectancy for Danish socio-economic groups, these forecasts and remaining life expectancy at the pension age

are reported for both Danish males and females in Figure 9c and 9d until 2030. Life expectancy forecasts are

calculated using the Rela-CoDa model for both sexes as this model provided the lowest RMSE forecast error

for males and just slightly higher forecast errors for females compared to the 3D-CoDa model. This ensures

coherence in the analysis of the consequences for the pension system as the same model is used for both sexes.

Figure 9a shows the statutory retirement age in Denmark until 2030 and finally, Figure 9b shows life expectancy

forecasts for Danish males at age 50 for completeness.

At age 50 life expectancy for the lowest socio-economic group is converging towards the other groups at a

decreasing pace from 1985 to 2026. Mortality differentials for the other groups stay roughly the same during

the data period. Similar trends are observed for Danish females and shown in the supplementary material.

In Figure 9c, Danish males in the lowest socio-economic group would have a remaining life expectancy at pension

age of around 16 years in 2016 which is 4.5 years less than the highest group. The other groups fall between

with remaining life expectancy from around 17 to 19 years in 2016. Danish males are, for all groups, forecast

to have slightly falling life expectancy at pension age meaning that pension age is expected to increase faster

than life expectancy until 2030. For Danish females in Figure 9d, G1 and G2 have the same remaining life

expectancy at pension age at around 19 years in 2016 and the similarity remains in the forecast. The other

socio-economic groups follow with the highest life expectancy for G5 at around 23 years. All groups, for both

males and females, will have a life expectancy more than 14.5 years, which is the desired long term goal in the

current pension scheme, despite the social inequality of pensionable years. Thus, all socio-economic groups can

expect to receive public pension in more years than the political desired number of years if they retire at the

statutory retirement age.
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Figure 9: Threshold ages for statutory retirement age and remaining life expectancy at the statutory retirement
age using the Rela-CoDa model for forecasting
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b) Life expectancy for Danish males using the Rela−CoDa model
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c) Remaining life expectancy at the statutory retirement age, males
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d) Remaining life expectancy at the statutory retirement age, females

Note: the vertical dotted line in panel b) indicates the start of the forecast.

Future mortality differential by socio-economic groups are highly relevant for determining the consequences of

the current pension system in Denmark. Life expectancy forecasts show that relatively large differentials are

expected 14 years ahead between socio-economic groups. As a strong common mortality trend was found across

socio-economic groups, increases in the pension age are predicted to have a similar effect across socio-economic

groups. No particular group is expected to drive future changes in the total life expectancy. Another implication

of the strong common trend is that mortality differentials between the groups persist.
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7 Concluding remarks

This study provides life expectancy forecasts for the Danish population by socio-economic status. Socio-

economic status was measured with an affluence index constructed by weighting income and wealth. Two

models using death rates and five models using life table deaths were compared and, based on the models’

out-of-sample performance, the Rela-CoDa and 3D-CoDa models were found to most accurately forecast life

expectancy for males and females, respectively. Both models use a common trend for all sub-groups to forecast

mortality. The six models differed by their ways of including dependence among the socio-economic groups: the

Inde-CoDa and LC models treat the socio-economic groups independently, the LL and Rela-CoDa in relation

to a common mortality level, the Dynam-CoDa model by relating multiple mortality trends, and the 3D-CoDa

by scaling common age and time structures. That the Rela-CoDa and 3D-CoDa models provided the most

accurate forecast indicates the existence of a high degree of homogeneity in the mortality trends between the

Danish socio-economic groups, so common kt and bx parameters could be assumed for all socio-economic groups

when forecasting. Despite the similarity in the trend by which mortality changes, large mortality differentials

were observed throughout the whole data period. Models formulated on death rates did not provide the most

accurate forecast indicating that these models did not capture changes in life expectancy in the validation

period.

As several countries in the OECD have linked changes in their pension system to changes in life expectancy

for the whole population, the consequences of future mortality differentials are even larger today than before.

Several studies measure socio-economic status by education, e.g. Jasilionis and Shkolnikov (2016). Education is

problematic because of compositional changes in the educational levels where a smaller and smaller fraction of

a birth cohort has limited or no education. This leads to a downward bias in the mortality differentials across

educational groups because the lower educated group becomes more and more selected.

The relatively large mortality differentials also constitute a distributional issue because the lower socio-economic

groups have less private pension and lower capital income from saving making them more dependent on the

public pension (Pensionskommissionen, 2015). The lower groups are thereby affected more when the statutory

retirement age is increased because they do not have sufficient wealth to retire before the statutory retirement

age. Forecasts of the mortality differentials are not only relevant from an individual and public point of view

but also for private pension companies that could experience a mismatch in the composition of socio-economic

groups between their insured population and the national population. Forecasts of the mortality differential

could be used to inform pension companies about their actual longevity risk when taking differences in mortality

by socio-economic status into account.
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