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Abstract

This paper proposes tests of the null hypothesis that model-based forecasts
are uninformative in panels, allowing for individual and interactive fixed ef-
fects that control for cross-sectional dependence, endogenous predictors, and
both short-range and long-range dependence. We consider a Diebold-Mariano
style test based on comparison of the model-based forecast and a nested no-
predictability benchmark, an encompassing style test of the same null, and a
test of pooled uninformativeness in the entire panel. A simulation study shows
that the encompassing style test is reasonably sized in finite samples, whereas
the Diebold-Mariano style test is oversized. Both tests have non-trivial local
power. The methods are applied to the predictive relation between economic
policy uncertainty and future stock market volatility in a multi-country analysis.
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I. Introduction

Many macroeconomic and financial variables are presented in the form of panels,
describing dynamic characteristics of the individual units such as countries or assets.
Examples include cross-country panels of GDP and inflation, international panels
of stock returns or their volatility, and intraday electricity prices, see, e.g., Ergemen
et al. (2016). In the interest of forecasting such variables, it should be natural to
treat data as a panel rather than separate time series. Relative to a pure time series
approach, a panel approach has the potential to yield efficiency gains and improved
forecasts by accounting for the interaction between cross-sectional units, see, e.g.,
Canova and Ciccarelli (2004), Groen (2005), and Baltagi (2013).

Many macroeconomic and financial time series have been shown to exhibit possibly
fractional long-range dependence, see, e.g., Gil-Alana and Robinson (1997) and An-
dersen et al. (2003). Model-based forecasting accounting for such features has been
considered, e.g., by Christensen and Nielsen (2005), Corsi (2009), Busch et al. (2011),
and Bollerslev et al. (2013). As argued by, among others, Robinson and Velasco (2015),
Ergemen and Velasco (2017), and Ergemen (2019), panel data models should also
account for these features, both in order to obtain valid inference, see Kruse et al.
(2018), and for possibly more accurate forecasts, see, e.g., Bos et al. (2002), Bhardwaj
and Swanson (2006), Deo et al. (2006), and Chiriac and Voev (2011).

In this paper, we study out-of-sample predictive accuracy in a general fractionally
integrated panel data model and develop formal tests of (un)informativeness of the
model-based forecasts. We consider the data-generating process proposed by Ergemen
(2019), which allows for individual and interactive fixed effects, endogenous predictors,
and both short-range and long-range dependence. The model nests stationary I(0)
and nonstationary /(1) panel data models and features a multifactor structure that
accounts for cross-sectional dependence in data. It allows for potentially different
integration orders of factor components and the possibility of cointegrating relations,
which may improve forecasting via an error-correction mechanism, see, e.g., Engel
et al. (2008) for an application to exchange rate modelling in a panel context. Our
approach allows for heterogeneity in both slope parameters and persistence char-
acteristics, providing flexibility and wider applicability than a model restricting all

panel units to share common dynamics. The model also nests popular forecasting



frameworks, such as panel vector-autoregressive systems (Westerlund et al., 2016),
predictive regressions (Welch and Goyal, 2008), and autoregressive forecasting (Stock
and Watson, 1999), possibly with the addition of exogenous or endogenous predictors
(Clark and McCracken, 2006).

The estimation approach is based on proxying the multifactor structure by a cross-
sectional averaging procedure, following Ergemen and Velasco (2017) and Ergemen
(2019). Our main interest is then in testing the null hypothesis of uninformativeness,
at a given forecast horizon, of forecasts obtained from the general model, after remov-
ing the multifactor structure. Rejection in this case should imply rejection with the
factors included, as factor augmentation generally improves forecasting performance,
see, e.g., McCracken and Ng (2016). First, for each unit in the panel, we develop a
Diebold and Mariano (1995) style test statistic comparing the loss associated with the
model-based forecasts relative to that from a no-predictability benchmark, i.e., the
unconditional mean. We estimate the unconditional mean on the evaluation sample,
thus also facilitating an evaluation of the informativeness of externally obtained
forecasts, such as those from surveys or market-implied values. Next, we develop
an encompassing version of our predictability test, which is as easy to implement as
the Diebold-Mariano style tests. Finally, besides correcting individual forecasts for
panel features such as interaction across units, it may also be of interest to evaluate
predictive accuracy for the entire panel. To this end, we propose pooled versions of

our test statistics, in a spirit similar to Pesaran (2007).

We contribute to the literature on forecast evaluation in several ways. Primarily, we
provide the first tests of predictive accuracy in a panel with long-range dependence.
This extends the results in Kruse et al. (2018) by treating a panel, rather than working
with individual time series. Moreover, our approach considers the underlying process
of the forecasts, rather than being silent about the origin of these. This distinction is
important, since it allows us to compare model-based forecasts with the nested uncon-
ditional mean. Accordingly, the resulting Diebold-Mariano (DM) style statistic has
a non-standard, half-normal distribution under the null hypothesis. As in Breitung
and Kniippel (2018), we circumvent this issue by providing a simple modification
leading to a chi-squared distributed test statistic. The encompassing test on the other
hand possesses a standard normal distribution. Our framework extends Hjalmar-
son (2010), Westerlund and Narayan (2015a,b), and Westerlund et al. (2016) who



present in-sample analyses of predictive regressions in short-range dependent panel
settings which may allow for either endogenous predictors or factor structure, but not
both simultaneously. These studies focus on stock return predictability, whereas our
framework would be relevant for the analysis of general panels involving other vari-
ables such as stock return volatility or aggregate macroeconomic variables, because
it features out-of-sample analysis, long-range dependence, and the co-existence of
endogenous predictors and a factor structure. Moreover, to the best of our knowledge,
there are only a few papers examining out-of-sample forecast evaluation within the
typical short-range dependent panel literature. Pesaran et al. (2009) and Chudik et al.
(2016) propose pooled DM tests, possibly accounting for cross-sectional dependence,
whereas Liu et al. (2015) employ a panel-wide Giacomini and White (2006) conditional
test of predictive ability.

We explore the finite-sample properties of our testing procedures by means of Monte
Carlo experiments. The encompassing test is reasonably sized, whereas the DM style
test suffers from oversizing, paralleling the findings in Breitung and Kniippel (2018),
and the pooled test is quite conservative. Both tests have non-trivial power against
local departures from the null. In an empirical application, we apply our methodology
to estimate the relationship between a newspaper-based index of economic policy
uncertainty (Baker et al., 2016) and stock market volatility in 14 countries, obtain
forecasts, and evaluate the predictive accuracy of the economic policy index for future

stock market volatility.

The rest of the paper is laid out as follows. Section II presents the model framework
and the conditions imposed to study it based on Ergemen (2019). Section III introduces
the forecast setting based on the model framework and discusses the null hypothesis
of interest. It also provides the main results for DM and encompassing style tests and
related panel-wide generalization. Section IV examines the finite-sample properties
of the proposed tests based on Monte Carlo experiments and Section V presents the

empirical application. Section VI concludes.

Throughout the paper, “(n,T);” and “(n,T,m);” denote the joint asymptotics in which
the sample is growing in multiple dimensions, with n the cross-section dimension,
T the length of the in-sample and m the out-of-sample window, “=” denotes weak

p . .- d . . . .
convergence, “—” convergence in probability, “—” convergence in distribution, and



|A|l = (trace(AA"))Y2 for a matrix A. All proofs are collected in the Appendix.

I1. Model framework

We describe the model framework and estimation procedure of Ergemen (2019) as the
basis for our forecasting discussions in the next sections. The basis of the approach
is a triangular array describing a long-range dependent panel data model of the

observed series (y;s,x;;) given by

_ I 1 —d;o

Yit = &+ Boxis + A fe + A, V€1, 1
_ / =0i0

Xit = i Y[t + A, e,

where, fori=1,...,nand t=1,...,T, the scalar y;; and the k-vector of covariates x;;
are observable, a; and u; are unobserved individual fixed effects, f; is the g-vector of
unobserved common factors whose j-th component is fractionally integrated of order
6; (so we write fj; ~1(6;)), j=1,...,q, and the g-vector 1; and the q x £ matrix y;
contain the corresponding unobserved factor loadings indicating how much each cross-
section unit is impacted by f;. Both £ and q are fixed throughout. In (1), with prime
denoting transposition, €;; = (elit>€’2i t)' is a covariance stationary process, allowing for
Cov[etis,€2it] # 0, with short-range vector-autoregressive (VAR) dynamics described
by

P .

B(L;0,)e;s = (Ik+1— ZBJ'(Hi)LJ)Git =0it, (2)
j=1

where L is the lag operator, 6; the short-range dependence parameters, I;,1 the

(k+1) x (k +1) identity matrix, B; are (k + 1) x (k + 1) upper-triangular matrices, and

vi¢ is a (B + 1) x 1 sequence that is identically and independently distributed across i

and ¢ with zero mean and variance-covariance matrix Q2; > 0. Throughout the paper,

the operator At_d applied to a vector or scalar ¢;; is defined by

) ) t-1 r'G+d)
A= A1 0= L, )=

where 1(-) is the indicator function and I'(-) the gamma function, such that I'(d) = co
ford =0,-1,-2,..., and I'(0)/T'(0) = 1.



For the analysis of the system in (1), Ergemen (2019) considers d;o € 9; =[d i,gi] and

D,0€V; = [Qi,ﬁi]k with d,,9, >0, implying that the observable series are fractionally

integrated. In particular, y;; ~ I(max{9;0,d;0,0max}) and x;; ~ I(max{9;0,0max}) Where

Omax = max; 0 ;. Further, setting

Omax =maxd;p and dpq, =maxd;o
l 15

and letting d* denote a prewhitening parameter chosen by the econometrician, the

following conditions are imposed on (1).

Assumption A (Long-range dependence and common-factor structure). Per-

sistence and cross-section dependence are introduced according to the following:

1

The fractional integration parameters, with true values ;9 # d;o, satisfy d;o €
9; =1d;,d;1<(0,3/2), 9;0 € ¥ = [9;,9;1* <(0,3/2)%, Ipax — 9; < 1/2, Omax —d; < 1/2,
O max _Qi <1/2, bmax _ii <1/2, dmax _ii <1/2, and d* > max{Omax, dmax,Omaxt —
1/4.

For j=1,...,q, the j-th component of the common factor vector satisfies fj; =
a? + At_ajz;t, 6; =0, for 6mqx < 3/2, where the vector z{ containing the 1(0) series Z;
satisfies 2] =W/ (L)el, with W/(s) = X2, W!'s!, 52, 11W || < 0o, det (¥/(s)) #0 for
Isl<1, and €/ ~iid(0,%/), 5 >0, Elle] |* < co.

f+ and €;; are independent, and independent of the factor loadings A; and v;, for all

iandt.

The factor loadings A; and y; are independent across i, and rank(C,)=q<k+1 for
all n, where the (k + 1) x ¢ matrix C,, containing cross-sectionally averaged factor

loadings is defined as

Y'n

with ¥, =n" X% vi, An=n" X% Ai,and Bpy' =n X BloYie

Assumption A.1 imposes restrictions on the range of memory orders allowed, moti-

vated by the use of first differences (to remove fixed effects) in the methodology. The

requirement on the lower bounds of the sets &; and 7; is necessary to ensure that



the initial-condition terms, arising due to the use of truncated filters and uniformly
of size O p(T'ii) and O p(T'Qi), vanish asymptotically. The conditions that restrict
the distance between the parameter values allowed and the lower bounds of the sets
are necessary to control for the unobserved individual fixed effects, see Robinson and
Velasco (2015), and cross-section dependence, see Ergemen and Velasco (2017), as
well as to ensure that the projection approximations adopted below work well with
the original integration orders of the series, see Ergemen (2019) for rigorous details.
The projection method based on the cross-section averages of the d*-differenced ob-
servables is guaranteed to work under Assumption A.1 since the projection errors
vanish asymptotically with the prescribed choice of d*. For most applications, first
differences, d* = 1, would suffice, anticipating 9;0,0 max,d;0 < 5/4.

Assumption A.2 allows for a fractionally integrated common factor vector that may
also exhibit short-memory dynamics, where the 1(0) innovations of f; are not collinear
and each common factor can have different memory, unlike the homogeneity restric-
tion imposed by Ergemen and Velasco (2017). The upper bound condition on the
maximal factor memory is not restrictive and is motivated by working with d* = 1.

The non-zero mean possibility in common factors, i.e., when a§ # 0, allows for a drift.

Assumption A.3 is standard in the factor model literature and has been used, e.g.,
by Pesaran (2006) and Bai (2009). When A; # 0 and y; # 0, further endogeneity is
induced by the common factors, in addition to that stemming from Covl[eq;s,€92;:]1 #0
in (1).

Assumption A.4 states that sufficiently many covariates whose sample averages can
span the factor space are required. When the system in (1) is written for z;; =( yit,x; t)’,
the matrix C,, basically contains the cross-sectionally averaged factor loadings. The
full rank condition on C, simplifies the identification of ¢ factors with % + 1 cross-
section averages of observables. This condition is also imposed by Pesaran (2006) in

establishing the asymptotics of heterogeneous slope parameters.

Assumption B (System errors). In the representation

p .
B(L;0,)eir = (Ik+1 - ZBj(ei)L]) €it = Vit,
j=1

1. Bj(-) are upper-triangular matrices satisfying Z;‘;l JIBj|l < oo, det(B(s;0;)) # 0 for

6



|s| = 1, 91’ € @i.

2. the vj; are identically and independently distributed vectors across i and t with zero
mean and positive-definite covariance matrix Q;, and have bounded fourth-order

moments.

Assumption B.1 rules out possible collinearity in the innovations by imposing a stan-
dard summability requirement and ensures well-defined functional behaviour at zero
frequency. This ensures invertibility and thereby allows for a VARMA representation,
see Robinson and Hualde (2003). Finally, Assumption B.2 imposes a standard moment

requirement.

For the estimation of both linear (slope) and memory parameters in (1), Ergemen
(2019) works with the projected series that proxy the common-factor structure up
to an asymptotically vanishing projection error. First-differencing (1) to remove the
fixed effects,

Ayir = ﬁQoAxit + A;Aft + A}_dioelit,

iy (3)
Axit=Y§Aft+A;} 069,

fori=1,...,nand t=2,...,T, (3) can be prewhitened from idiosyncratic long-range
dependence for some fixed exogenous differencing choice, d*, as prescribed in Assump-
tion A.1, by which all variables become asymptotically stationary with their sample

means converging to population limits.
Using the notation a;;(7) = A:__llAa it for any 7, the prewhitened model is given by

yield™) = Bioxi(d™) + A f(d™) + €13:(d™ — dio),
xit(d*) = Y;ft(d*) +e€9i4(d™ —Djp).

(4)

Thus, using the notation z;,(71,72) = (i1 (71), %/ t(TQ)), , (4) can be written in the vector-

ized form as
zi(d”,d") = {Bioxi(d™) + N f(d™) +e;s (d —djo,d" — Do), (5)

where { =(1,0,...,0)', and A; = (4; ;). The structure A}f;(d*) in (5) induces cross-
sectional correlation across individual units i through the common factor structure
f:(d*). A standard method for dealing with this unobserved structure is projection

based on proxies obtained by sample cross-section averages of (differenced) data, see

7



Pesaran (2006). Write z,(d*,d*) =n"1 Y7 1 2i(d*,d”) for the cross-section average of
(5), so that

Z(d*,d") = (Bhx(d*) + N fd*) +& (d* —do,d* —0p), (6)

where €;(d* —do,d* —9g) is Op(n'1/2) for sufficiently large d*. Thus, z;(d*,d*) and
( ,ngt(d*) asymptotically capture all the information provided by the common factors,
provided that A is of full rank. Note that x;(d*) is readily contained in z,(d*,d*) =
(y(d*),x(d*))" and that the ;o do not introduce any dynamics in {fjx;(d*) since

they are fixed for each i. Therefore, z;(d*,d ™) alone can span the factor space.

Write the prewhitened time-stacked observed series as x;(d*) = (x;2(d*),...,x;7(d*))
and z;(d*,d*) = (z;o(d*,d¥),...,z;7(d*,d*)) for i =1,...,n. Then, foreach i = 1,...,n,

zi(d*,d")=x;(d")Biol' +F(d")A; +E; (A" - djo,d” — Do), (7)

where E; (d* —d;o,d* —0;0) = (e;2(d* —d0,d™ = 00,),...,6;7(d" —djo,d” —00)) and
F(d*) = (fo(d*),...,fr(d*)). Writing T; = T — 1, the common factor structure can

asymptotically be removed by the T'; x T'; feasible projection matrix
Mr,(d*) =1Ir, —Z(d*,d*)Z (d*,d*)z(d*,d*)) 2 (d*,d*), (8)

where z(d*,d*) = n_lz?ﬂzi(d*,d*), and P~ denotes the generalized inverse of a
matrix P. When the projection matrix is built with the original (possibly nonstation-
ary) series, it is impossible to ensure the asymptotic replacement of the latent factor
structure by cross-section averages because the noise in (5) may be too persistent
when d* = 0. On the other hand, using some d* > max{9,,4x,dmax,O max} — 1/4 for

prewhitening guarantees that the projection errors vanish asymptotically.
Introducing the infeasible projection matrix based on unobserved factors,
Mp(d*) =Ir, -F(d")F(")YFA") Fd"),

and adopting Pesaran (2006)’s argument under Assumption A.2 and A.4, we have the



approximation as (n,T); — oo that
My, (d*)F(d*) =~ Mp(d*)F(d*) = 0. (9)

This implies that the feasible and infeasible projection matrices can be employed
interchangeably for factor removal in the asymptotics, provided that the rank condi-
tion in Assumption A.4 holds. Based on (7) and using the approximation in (9), the

defactored observed series for eachi=1,...,n is
z,(d”,d*) = %,(d")Biol' +E; (d* —dio,d* — i), (10)

where 7;(d*,d*) = Mp,(d*)z;(d*,d*), %,(d*) = Mp,(d*)x;(d*) and E; (d* — d0,d* — 9;0) =
Mr,(d")E;(d* —d;o,d* —950).

Integrating the defactored series back by d* to their original integration orders,
disregarding the projection errors that are negligible as n — oo under Assumption A.1
as shown by Ergemen and Velasco (2017), and defining the generic parameter vector
7, =(d;, 0,

511 = (Bl ki (d ) + €, (di — dio, 9; — Do), (11)

where the first and second equations of (11) are for the transformed series

d) =AY 5i(d") and &0 =AY Fi(d"),
respectively, omitting the dependence on d* and the (asymptotically negligible) initial
conditions in the notation. Both the linear and long-range dependence parameters
are identified, and may be estimated with the standard parametric convergence
rates with centered asymptotic normal distributions. Ergemen and Velasco (2017)
consider estimation under the assumptions of common memory orders §; of factors
and exogeneity of the defactored series x;,(9;) for 3,(d;), and Ergemen (2019) relaxes

these assumptions.

To see the identification, apply the operator B(L;0;) giving the short-range dynamics



in (2) to each side of (11) and invoke Assumption B to get

(t;)

it—j

p
£;,(t))- ) B;(0)z]
j=1
p
= (Bio%i(di) = Y B0 PioE], j(di)+07,(di —dio,Di—Di0).  (12)
j=1

Here, the error terms are serially uncorrelated, given that v;; are identically and
independently distributed, and clearly B;(0;) is identified. Writing the system out in
more detail, noting that z7,(d;, 9;) = (§/,(d;),x},(9;)'), the first equation in (12) is

ylt(d) IBLOth(d )+ZB1J(0) Zit- ]( 7;)
J=

- Z B0 Bio&;_ (di)+07;,(d; —dio), (13)
j=1
and the second equation is

p
x;t<ai>—2132](e DEf_(di,9;)=— ZBz,w W Bior,_(di)+05;,(0;—9i0),  (14)
J= Jj=

with B; = (B’J.,B’2J.)’. Combining (13) and (14), we obtain

o) =)+ 0100+ Y- (B0~ pBas(00) (27, (x0) Bl ()
j=1

+07;,(di —dio) — p;0;, (9; — Dj0), (15)

where p; = El[0,,,0, t] 1]E[v2l ,07;,1, suppressing the dependence on fractional orders.
The error term in (15) is orthogonal to ;. ,, given that v;; are identically and inde-
pendently distributed, so that #;, — p.05., is uncorrelated with &, as a result of the
triangular array structure of the system. Ergemen (2019) imposes ;g # d o to avoid

collinearity when ;9 = d;o. On this basis, both f;o and p; are identified.

Following Ergemen (2019), we can now consistently estimate the linear parameters,
Bio, pi, and B;(0;), by least squares for each i. The feasible estimate requires es-
timation of the long-range dependence parameters, which feature non-linearly in

the system given by (14) and (15). They can be estimated equation-by-equation by

10



conditional sum of squares (CSS), where d;( is estimated from (15), and 9;¢ can be
estimated from any of the £ equations for x;; in (14), or by an objective function con-
structed over all £ equations. Both linear and non-linear parameters enjoy standard

VT convergence rates and centered normal asymptotic distributions.

II1. Forecasting

In this section, we study predictive accuracy of forecasts using the projected series.
We develop Diebold-Mariano and encompassing style test statistics and determine
their asymptotic distribution. Forecasting the original (non-defactored) series instead
would require a different methodology, since the fractionally integrated unobserved
factors would need to be estimated. Asymptotic results for such factor estimates are
yet to be provided in the literature. Instead, we focus on testing uninformativeness
in the defactored series. Rejection in this case should imply rejection in the original

series.

Employing (15), the A-step-ahead direct forecast, ~ =0,1,...,H with H fixed, can be

written as

p
Tan () = Bo%(d) + 000 + Y- (B1,(00) — By (00) (25, (1)~ OBl ,(d))
j=1

vlzt+h(d —dio)— p; v;Lt+h(19 = io), (16)

making the dependence on d; and 9; explicit, so that conditional on information
through time ¢, we can write down the forecasting equation as
ThrneT0) = B (di) + P, (0 + Z (B1(0:) - 0}B2,(00) (57,1~ (Bl (dy).
a7

Thus, forecasts are derived from a heterogeneous predictive model, facilitating unit-
specific inferences on predictive accuracy, while still treating each unit as part of a

panel.

It is important to understand the generality of this model, which nests several
models employed in the literature, while still accounting for long-range and cross-

sectional dependence. If B;(0;) = 0 and p; = 0, for all i, we recover the well-known

11



predictive regression for each i, with coefficients ;9. This is especially popular in
the financial literature on stock return and volatility prediction, typically relating
aggregate financial ratios or macroeconomic conditions to future stock returns and
their volatility. In the pure time series setting, Welch and Goyal (2008) is a classical
example of an examination of the in- and out-of-sample predictive performance of
stock characteristics, interest-rate related and macroeconomic indicators for future
stock market returns, whereas Hjalmarson (2010) and Westerlund and Narayan
(2015a,b) employ panel predictive regressions. If the zero condition on p; is relaxed,
the framework allows for endogenous predictors, even after accounting for cross-
sectional dependence, which is a common issue in finance (Stambaugh, 1999). If,
instead, B;0 = p; = B2;(0;) = 0 for all i, we obtain a conventional short-range dependent
autoregressive model in y;;,;, with coefficients B1;(6;), as often used in macroeconomic
settings, for instance for inflation forecasting (Stock and Watson, 1999). Again, once
the zero conditions on ;¢ or p; are relaxed, other exogenous or endogenous predictors
are accommodated, as, e.g., in Phillips curve forecasting models, with x;; a measure
of economic activity, such as the output gap or unemployment rate. Clark and
McCracken (2006) explore each of these in a univariate, short-range dependent setting.
The predictor may enter with additional lags in (17) by allowing non-zero By;(0;).
Once k£ = 1, we have an upper-triangular panel VAR system, which is typical in
forecasting settings where y;; can depend on lagged values of itself and the predictors,
whereas each component in x;; depends only its own past values, see, e.g., Westerlund
et al. (2016).

For an evaluation sample (out-of-sample) that includes m observations, indexed by
t=1,...,m, we may distinguish between three different estimation schemes for the
forecasting model, noting that its parameters can be estimated consistently, cf. Section
II. First, the recursive scheme fixes the starting point of the estimation sample (in-
sample) window at ¢t = —T + 1 and increases its endpoint recursively with ¢. Second,
the rolling scheme fixes the length of the estimation sample to T' observations and,
thus, increases both the starting and end point with ¢. Third, the fixed window scheme
estimates parameters only once on the (initial) estimation sample of size T'. Given the
parameter estimates at time ¢, we then form the A-step forecasts from the forecasting

equation in (17).

12



The theoretical forecast error is

eit+hit(Ti) = 33y (T) = 57y 1 (T2)

= 01,045 (di = dio) = p;05;,5 (D = Dio). (18)

Since under Assumption A.1 the difference between the maximum integration orders
and the lower bounds of allowed set values is less than 1/2, the forecast error e ;.5 :(7;)
is stationary and exhibits long memory whenever d; # d;o or 9; # 99, which must be

accounted for when conducting inference on predictive accuracy.

We are interested in testing the null hypothesis that the forecast function 3, Bl A(T1)

is uninformative for 5’;‘*t 5, (74) for fixed i,

HoiE

2 x =2
&2 o o7D)| 2 B | (375,70 - 57,0 ] (19)

where ¥7,(7;) is the expectation of ,(7;) for fixed i. In order to gain more insight on

the forecast error, we can decompose the mean squared error (MSE) as

E

&) =B (7t )
it+hit\bi/ | = [yit+h(Tz) yit(Tz))
2B (57 =5500) it =5

2
+IE (5’;+h|t(Ti)—5/;t(Ti)) ] (20)

Clearly, I [(nyh(Ti) - y;t(ri)) (&;‘tht(ri) - y;(ri))] =0 is a sufficient condition for the

2
forecast to be uninformative, as I (5/;; Y A7) — 5/;(11-)) = 0. Furthermore, for a

rational forecast satisfying It | e;;15:(7:)5],, Bl t(Ti)] =0 and since under Assumption
B.2 Ele; ¢+1¢(7:)] = 0, we have that

B (7500 = 75,0 (7570 - 75,0

=B [(eiesntt@+ 5 po70) = 550 (T nor) - 70|

— 2
=B [(ﬁnhlt(“) _y;t(‘[i)) : 21)

Therefore, by combining (20) and (21), any rational forecast with positive variance is
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informative and the null hypothesis (19) is then equivalent to
Cov | 7114 (Ti)s Fiyino(T:)| =0,

which will be utilized further below in constructing an alternative to a Diebold-

Mariano style test statistic.

Furthermore, an iterative scheme can be used if, instead of (16), we write
Fian(T0) = BioXiy (di) + 03, 1, (97)
p
+ 3 (B1j(0) = p}Bay(00) (2] (70~ LBl )
j=1
+ 03505 (di = di0) = ;05,1 (Di = Do), (22)

in which both the dependent variable and regressors need to be forecast. This error-
correction representation of the system may form the basis of iterative forecasts,
including in the case of possible fractional cointegration among the original series y;;
and x;;, in which case the cointegration can potentially be used to improve forecasting
performance. In general, the h-step-ahead iterative forecast error exhibits an M A(h —
1) structure in the usual way, in addition to stationary long-range dependence as
discussed for (18). For the iterative forecasting scheme, a vector autoregressive
moving average (VARMA) specification or seemingly unrelated regression estimation
(SURE) can be used, as in Pesaran et al. (2011). However, VARMA models are not
commonly used in practice and can have stability and convergence problems in the

face of large-dimensional data.

A. Panel Diebold-Mariano test

In order to construct the test statistic, we concentrate on the direct forecasting scheme
and give the details accordingly. This is due to the fact that for iterative forecasting,
the same asymptotic arguments follow under Assumption B by taking further into
account the resulting M A forecast errors, and the main ideas are better motivated

under the direct scheme whose treatment avoids further notational complexity.

We use 77, (1;) = m_lzﬁZﬁly;t(Ti) as a consistent estimator for I [77,(7;)], focusing
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on information in the evaluation sample. Denote
Uitrn(Ti) = 55,5 (1) = 575, (7). (23)

Then, to be able to work with the forecasting functions j (r;) and y (T;), we

it+h|t it+h|t
adapt conditions used by Breitung and Kniippel (2018) to our panel setting in the

following.

Assumption C (Forecasting functions).

1. Under the null hypothesis in (19), u;;+,(7;) is independent of the estimation error;
Elu;inltis—ti1=0foralliand s=t¢t,t—1,....

2. The parameter vector T; is consistently estimated and the convergence rates satisfy
ti0-1; =0,(T"V?) and #;; —#i0 = 0,(VUT), t =1,...,m.

Assumption C.1 states that the time series is not predictable given the information
set at time ¢ which includes the estimation error 7;; — 7; and is implied by (19). The
conditions in Assumption C.2 set the usual convergence rate in the in-sample period
and limit the variation in the recursive estimation, respectively. The first condition in
Assumption C.2 is shown to be satisfied using conditional-sum-of-squares estimation

for memory parameters under Assumptions A and B by Ergemen (2019).

Note also that we can only observe the actual forecast error,
Citent(F) =3y B = 3]y (B0
= 0345 (di = dio) = P;B3;0.1 (9i = Dio). (24)
Define the loss differential for fixed i as
‘p?t = é?tht(f,-) - LA‘?Hh(fi)

and let (I)i denote the consistent long-run variance estimator with long-memory/anti-
persistence correction (MAC) due to Robinson (2005) applied to (i)?t. Then we can
construct a Diebold-Mariano type test as

m

.1 N
DM =m'2 % ——% ol (25)
Wem -1
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for i = 1,...,n, where k; is a consistent estimator of the integration order of the
squared loss differential (f)?t, which may be determined cf. Propositions 2-4 of Kruse
et al. (2018). Here, it is important to note that under Assumptions A and B, Ergemen
(2019) establishes the v/ T-consistency of both individual memory estimates, d; and
9;, so if we consider, e.g., the full-sample estimation, k; also enjoys the vT-consistency
under any scenario prescribed in Propositions 2-4 of Kruse et al. (2018). This means
that for all i, the (logT)(k; — ;) = 0,(1) condition as imposed by Robinson (2005)
and Abadir, Distaso, and Giraitis (2009) for consistent estimation of a)i is naturally
satisfied. In practice, it can be much simpler to estimate k; by resorting to semi-

parametric, e.g., local Whittle, methods.

It should be noted that it is also possible to consider a modified version of (19) for
comparing the model forecast to an external forecast if we write
.
Hy:E

2
o] (26)

e?t+h|t(ri)] =

2
it+h|t

forecast, e.g., a survey, for cross-section unit ;. The methodologies described here can

where & corresponds to the squared forecast error resulting from an external
be adapted to test (26), noting that the memory of the loss differential, x;, needs to be
estimated in this case. It cannot be deduced based on the model memory parameter
estimates, since the memory transmission rules listed in Kruse et al. (2018) are no

longer guaranteed to apply.

To study the asymptotic behavior of the test statistic, we further impose the following

rate conditions.
Assumption D (Rate conditions for DM type test). As (n,T,m); — oo,

ml/Z—Kin—l + ml/Z—Kin—l/ZT—1/2 + m3/2—3Ki T—1/2 s O

and x; € (—1/2,1/2) for all i.

The requirement on the relative asymptotic size of the number of forecasts and the

12-x; = 12— 1/2

number of cross-section units, mY2 %ip"1+m — 0, is to control for the

3/2-3x;p-1/2 _, () ensures that the

projection error, see Appendix C. The condition m
first-order approximations of conditional forecasts depending on estimated memory

parameters around the true memory parameters work well, imposing that there
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is enough information gathered in the estimation period so that forecasts can be
evaluated in the following m periods. The condition on x; is imposed in order to
include the case where the predictive accuracy comparison is made to an external
forecast, i.e., when testing (26) (it is automatically satisfied when testing the null
in (19)). This condition also enables the estimation of the long-run variance of the
loss differential using readily available techniques such as local Whittle methods, see
Robinson (2005) and Abadir et al. (2009).

The following result establishes the asymptotic distribution of the test statistic in
(25).

Theorem 1. Under Assumptions A-D and Hy in (19), as (n,T,m); — oo,

DMy = 28,

for fixed i, where w; is a standard normally distributed random variable.

This result states that for each cross-section unit i, the Diebold-Mariano type (hence-
forth DM) test statistic converges weakly to a random variable that has an asymptotic
half-normal distribution with unit variance under the null hypothesis in (19). Bre-
itung and Kniippel (2018) obtain the same limiting result, but under a setup in which
the series and thus the forecasts are I(0) time series, imposing only that m/T — 0
as both m and T diverge, in contrast to our Assumption D. Therefore, showing the
result in Theorem 1 is quite different under our setup, particularly because of the
estimation of the long-run variance, due to the allowance for long memory as well as

the proxying for the common-factor structure in the panel.

Corollary 1. Under the conditions of Theorem 1,

2DM;, % IN(0,1)],

1
?
u

m

~hd 2
Z(pit — X1
m =1

Wih = m1_2KAi

2

for fixed i, where @7, is a consistent long-run variance estimator of w;s+p as defined in

(23).

These two test statistics are in spirit of the adjusted DM test statistic in (25) and

are direct consequences of the result in Theorem 1. It is important to note here that
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the null hypothesis is rejected for smaller values of the test statistic DM, which
contrasts with most chi-squared distributed test statistics, see also Breitung and

Kniippel (2018) for a discussion.

The DM type test statistic in (25) can be adopted for use under (26), yielding the same
asymptotic properties, if we replace <ph by (phT defined as

A

F_a2 a2
P = €ipan T = S

where 2 is the (actual) observed squared forecast error from the external forecast,

t+h|t
and w(p by ww, obtained by applying the MAC estimator to (i)?:.

B. Panel encompassing test

The DM type and related test statistics considered so far encounter size problems
in small samples due to the null in (19) being rejected for small values of the test
statistic, see also Breitung and Kniippel (2018) and our simulation results in Section

3/2-3x; -1/2

IV. Furthermore, the rate condition m — 0 in Assumption D can be too

stringent, particularly when «; € (-1/2,0). To offer a remedy, we reformulate the null

hypothesis as
Hy B[ (57,000 = 5770 (3o - T30 | =0, @)

which, for a rational forecast satisfying IE

y;t+h(Ti)_y:t+h|t(‘[i)|5’:t+hlt(n)] =0, 1s
equivalent to (19). The null hypothesis is rejected when there is positive correlation

between j , (7;) and ¥, , .(7;). To motivate this further, writing

it+h|t

2
NEACOR 35D = G0 = 57, (@ ))] ~ (a0 -75,G0)

Mz

<

P‘.}A
Il

~
I
—

TFMS TFMg

2 -, —_— . _—
(ymh”(r )= 75,0 —2; | h @D = TGN py70) = 57|

shows the link to the DM type test statistic. The covariance between ¥, ,(7;) and
it " .(7;) plays the key role in terms of deciding the power of the test, since the first

term is non-negative.

18



Our approach may be considered as a one-sided Mincer-Zarnowitz regression,
~% ~
Fien @) = Gion + Pith¥p i1 (Ti) + €itens

in which we test ¢;1 5 = 0 versus ¢;1, >0 for fixed i and unrestricted ¢;o ;. In the
literature, the errors from similar regressions are typically mean zero 1(0) processes,
and this is asymptotically so for e;;,5 in our setup, given the consistency of 7;. We
consider the null as one of uninformativeness of the forecast, whereas Mincer and
Zarnowitz (1969) focused on the joint null of informativeness and unbiasedness,
¢i1,, =1 and ¢;p, =0. Our test can also be seen as a forecast encompassing test by
writing

Vi T =Wind T+ A= Win) 35, (Ti) + eitn

5);}+h(‘[i) - yfh(rl) = Wih(y:t+h|t('[i) - y;h(TL)) teit+h,

since testing for ¢b;1 = 0 is the same as testing for v;; = 0. Further, in analogy with
Breitung and Kniippel (2018), our DM type statistics can be interpreted as likelihood
ratio tests of the uninformativeness null in the Mincer-Zarnowitz or encompassing

regressions, against the joint informativeness and unbiasedness alternative.

We focus here on the encompassing type test statistic given by

. 1 m

1/2—1; h
- y &h 28
th (I)E = it ( )

[}

essentially an LM type statistic, where
é?t = (ﬁfﬁh(fi) —f’fh(fi))(f’fﬂh”(fi) —f’fh(fi)),

0; is a consistent memory estimate of EZ satisfying (log T)(0; —v;) = 0,(1), and 6)25 is
the MAC-robust long-run variance estimator of Robinson (2005) applied to ﬁ?t. We
impose the following condition to study the asymptotic behavior of the test statistic in
(28).

Assumption E (Rate conditions for encompassing type test). As (n,T,m); —
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mV2vi =1 4 g V2-vi =112 | =1

and v; € (-=1/2,1/2) for all i.

The first two terms ensure that the projection errors in the panel setting do not
have any asymptotic contribution, see Appendix C. The third condition, m/T — 0, is
standard and is also imposed by Breitung and Kniippel (2018). It simply states that
the out-of-sample length must be smaller than the in-sample length so that there is

enough information at hand for prediction.

The next result establishes the asymptotic behavior of the encompassing type test.

Theorem 2. Under Assumptions A-C and E, H, 6 in (27), and a recursive estimation

scheme, as (n,T,m); — oo,
d
pin — N(0,1),

for fixed i.

The null in (27) is rejected when p;j, is large compared to the critical value from the

standard normal distribution.

Given our panel setup, it is interesting in addition to analyze the cross-sectional
average of the test statistic in (28). Noting that, as n — oo, the projection errors, of
size O p(n_1 +(nT)~V2), become o »(1), making the cross-section units asymptotically
independent of each other under Assumption B.2. Thus, the individual p;; test
statistics are asymptotically approximately independent for large n. Thus, we can

simply consider the test statistic
12 v
On:=n""") 0in, (29)
i=1
based on the first result in Theorem 2, in a similar spirit to the CIPS test statistic

proposed by Pesaran (2007). We present the asymptotic behavior of p;, in the next

result.
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Theorem 3. Under the conditions of Theorem 2,
0, L N(,1).

Theorem 3 shows that the cross-sectionally averaged test statistic is asymptotically
distributed as standard normal, under the conditions of Theorem 2. Note that
although p; uses equal weighting, it is also possible to allow for different weights
for cross-section units, as in Chudik et al. (2016), and the asymptotic normality
result in Theorem 3 still holds under suitable conditions imposed on the weights,
see, e.g., Pesaran (2006), although in this case the asymptotic mean and variance
are characterized based on those weights. It would be also possible to consider the
combination of p-values of the individual encompassing test statistics. For example,

the inverse chi-squared test statistics defined by

P(n,T)=-2) In(p7),
=1

where p;7, the p-value corresponding to cross-section unit i, see also Pesaran (2007),
can be used when n is large.
C. Local power analysis

In order to study the local power properties of DM and encompassing type tests, we
work with a restricted version of (16) in which p; =0 and B;(0;) = 0, for all i, so that

we end up with a predictive regression setup taking A =1,
i1 (1) =Pk (di) + 01, (di = dio). (30)

Our choice in (30) is motivated by a desire to contrast our setup to the popular
predictive regression setup in the literature, and we present Monte Carlo results and

an empirical application to this case in the following sections.

Under Assumptions A.1 and B.2, using the asymptotic independence of 57, , (d; —d o)

and {%7,(d;),%},_,(d;),...}, as T — oo, we have that

—_\2
B | (300 - T | =2, + P02
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So, if B;o # 0, the forecast is informative, and DM;; and pi1are O p(m_l/ 2). Accordingly,
both DM and encompassing type tests are consistent against fixed alternatives ;o # 0.
We consider local alternatives of the form ;g = c¢;/\/m, for all i, extending the case in
Breitung and Kniippel (2018) to the panel setup with factor projection and long-range
dependence. It is also possible to consider deviations in short/long-range dependence,
as well as contemporaneous correlation parameters, but we focus on the simplest case

to show our tests have nontrivial local power.

In relation to the aggregate test statistic in (29), we note that it is possible to allow for
c; = 0 for some non-negligible, but non-dominating, fraction of the cross-section units,
as in Su and Chen (2013), under further regularity conditions, but this is beyond the

scope of the current paper.

The next result establishes the local asymptotic behavior of both DM and encompass-

ing type test statistics.

Theorem 4. Under the conditions of Theorem 2 for DM ;1 and additionally imposing
m/VT — 0 for pi1, and Bio = ¢c;/\/m in (30), as (n,T,m); — oo,

— 4
DM, —>w%i—2ﬂiw2i —Tﬁ (31)

d .
pi1 — sign(cj)wsz; +1; (32)

for fixed i where 17? = c?ai/agl is the signal-to-noise ratio and wy; and ws; are two

independent standard normally distributed random variables.

This result states that both DM and encompassing type test statistics have non-trivial
power against local alternatives. The rate condition is the same as the one imposed
in Theorem 4 of Breitung and Kniippel (2018) under the alternative model considered
in (30) since it carries along the error term @ Ii ++1(di —dio), which is stationary under
Assumption A.1. Figure 1 depicts the resulting power curves for c¢; = 0 for three
conventional significance levels. In each case, the DM type test is more powerful in
the vicinity of the null than the encompassing style test, whereas the encompassing
type test is most powerful when the signal-to-noise ratio grows large. Note also that
the power curves are symmetric in ¢ since the asymptotic distribution in (31) and (32)

is unchanged by replacing we with —ws.
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IV. Monte Carlo study

In this section, we carry out a Monte Carlo experiment to study the finite-sample
properties of our proposed tests. The simulation experiment builds upon the setup con-
sidered by Ergemen (2019). We simulate scalar y;; and x;; and draw the idiosyncratic

vector (£1;4,€2;¢) as standard normal with covariance matrix

Q= (011 012)’
az1 a2
with signal-to-noise ratio s = ago/a1; and correlation p = a12/(a11a99)V2. Without
loss of generality, we set a11 = 1 and introduce short-memory dynamics via B1(0;) =
diag{f1;,02;}. We generate a serially correlated common factor via f; = 1/2f;_1 + At_‘sz{
based on iid innovations z{ drawn as standard normal and then fractionally integrated
to the order 6. The individual fixed effects are left unspecified since they are removed
via first differencing and projections are based on the first-differenced data. We then

obtain y;.1 from the general DGP
_di
Yitr1 = @i + BioXis + Aifs + A, €1isr1,

Con (33)
Xit = Wi +Yift + A, P €gis.

Under the null, y;;;1 is obtained by setting ;0 =0, 81 =02 =0, and p =0 for all i,
whereas forecasts are based on the predictive model including x;; as a predictor. This
model is estimated recursively, using information known through ¢, and forecasts
are made in a direct manner according to (17). We employ an alternative that fixes
01 =02 =0 and p =0. The memory orders x; and v; of the loss series (i)?t and é?t are
estimated on the evaluation sample with the CSS parametric estimator from Ergemen
and Velasco (2017). We consider two choices of bandwidth length, |m?], in the MAC
estimator, setting ¢ = 3/56 and g = 4/5, where the latter corresponds to the MSE
optimal boundary (Abadir et al., 2009). We focus on different cross-section, in-sample
and out-of-sample sizes, n,T, and m, and consider d ;o = 0.4,1 and 9;9 =0.4,0.7,1. For

this study, we fix s =1 and d* = 1. Simulations are carried out via 20,000 replications.

In terms of size, Tables 1 and 2 report results for the DM style tests from Corollary 1,
2DM;;, and DM 3, respectively, with n = 20 and various combinations of the length of

the in-sample and out-of-sample windows. The DM style tests suffer from considerable
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oversizing. This is not entirely surprising, since the critical values of the half-normal
and the ﬁ distribution are very close to zero, leaving a considerable amount of
probability mass in the vicinity of the critical values. That is, small asymptotically
negligible terms may have a large impact on the size of the test. These results are also
consistent with the findings in Breitung and Kniippel (2018). On the contrary, from
Table 3, the size properties of the encompassing style test from Theorem 2, which
rejects for large, positive values in the standard normal distribution, are much more
reasonable, though somewhat conservative. The choice of bandwidth in the MAC
estimator has little impact on the size properties of the Diebold-Mariano style tests,

whereas the encompassing style test provides the best results when g = 3/5.

To examine the power properties of the tests, we consider a local departure from the
null via ;9 = ¢;/v/m, motivated by the analysis of the local alternative in Theorem 4.
For ease of exposition, we analyse the case in which the tests depart from the null
for all i with ¢; =2 and ¢; =5, corresponding to B;o = 0.2 and B;o = 0.5, respectively,
for m = 100. The second of the two values of §;¢ is similar to that in Breitung and
Kniippel (2018). Tables 4 and 5 show that when the departure from the null is
proportional to c; = 2, the power of the Diebold-Mariano style test is reasonably high,
while the power of the encompassing style test (cf. Table 6) is moderate at the 5%
and 10% significance levels and quite low otherwise. Increasing the length of the
in-sample and out-of-sample window generally improves power. Also, g = 3/5 provides
the best results. When c¢; =5 (Tables 7-9), the power of both Diebold-Mariano and
encompassing style tests is generally high. According to the local power analysis in
Theorem 4, the Diebold-Mariano and encompassing style tests have local asymptotic
power equal to 76.2 and 63.0, respectively, for ¢; =2 and 99.0 and 99.9, respectively,
for ¢; =5 and the given parameter values. These theoretical predictions correspond
well to the experimental findings reported in Tables 4-9. Finally, Table 10 reports size
and power properties for the pooled test statistic in (29). Its size properties are quite

conservative, but the local power is high for both choices of c;.
V. Predictive relation between stock market volatility and

economic policy uncertainty

The relation between stock market return volatility and political uncertainty has

gained considerable interest in the literature. Recent structural models of Pastor and
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Veronesi (2012, 2013) (PV) show that increasing uncertainty about economic policy
makes stocks more volatile. The main reason is that as uncertainty about government
policy actions increases, stock markets become unsettled in view of the uncertain
prospects of the economy. Such political uncertainty may be triggered by, among
other things, elections (see, e.g., Bialkowski et al. (2008)) or economic crises (see,
e.g., Schwert (1989) and Bittlingmayer (1998)). It may arguably be prominent not
only in the USA, but also in Europe and the developing countries. In this empirical
application we apply our methodology to the predictive relation between stock market
volatility and economic policy uncertainty (EPU) in a multi-country panel analysis,
treating the former as the forecast objective and the latter as the predictor. We use
the Baker et al. (2016) EPU indices for 14 countries, quantifying newspaper coverage
of policy-related economic uncertainty in a given month. We compute the realized
volatility (RV) from daily returns on each stock market index within the month,
obtained from Global Financial Data and Yahoo! Finance (see, e.g., Chernov (2007),
Rapach et al. (2013), and Luo and Qi (2017) for use of similar data sources). The data
set spans the time period 2001-2017, totalling 204 time series observations. We find
that both RV and EPU exhibit cross-sectional variation in volatility characteristics,
which we take into account by standardizing within country so that valid comparisons
can be made on the estimates. Figure 2 depicts RV and EPU. Both series show spikes
in accordance with the global financial crisis. The EPU of the UK rose sharply in 2016
at the time of the Brexit referendum and has remained elevated since then. Table 11
reports the full-sample integration order of RV and EPU for each country. Both RV
and EPU are found to exhibit long-range dependence with integration orders in the
neighborhood of 0.5. The estimates are strongly significant and exhibit cross-sectional

variation, thus calling for the methods outlined in this paper.

Following PV, we specify a linear relation between RV and EPU, including a first-order

short-range dependent component of RV,

RVt = a;+ BiEPU;; +0;RVip 1 + A fi+ A, ey,

/ -9; (34)
EPUj=pi+v;ft+4, "€zt

In the analysis, we allow for an unobserved common factor structure that on average
captures other relevant indicators for the study. This allowance can be considered

a more flexible way of modelling the relation between RV and EPU, appropriately
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controlling for relevant factors, as opposed to adding separate observable series. We
also allow the innovations of RV and EPU to carry correlation after accounting for
this common factor structure. For example, Bittlingmayer (1998) notes that the
highly volatile stock markets of the 1930s in the USA may very well have reflected a
non-negligible probability that the USA would “go socialist”, whereas a critic would
argue that the highly volatile markets were driven mainly by the business cycle,
eventually causing uncertainty about government (in)actions as response (Schwert,
1989).

With these specifications, we estimate (34) to get the results collected in Table 12 for
a contemporaneous analysis. For comparison with PV, we also report estimates of the
coefficient on EPU from a short-range regression of RV on EPU and its own lag. The
structural model of PV suggests that the contemporaneous relation should be positive.
The results indicate a positive relation for most countries, which is significant at
conventional levels for Australia, Canada, Greece, Ireland, Japan, and Mexico. Across
the entire panel, the average (mean-group) estimate is 0.025 with a (one-sided) p-
value of 0.086. Interestingly, the relation is insignificant for the USA, which contrasts
with the findings in PV of a strongly significant relation (also confirmed in our data
set when applying their procedure, cf. Table 12). Our results differ in this regard
because we account for the evident long-range dependent features in the data to
obtain consistent slope estimates, and control for possible endogeneity of EPU with

respect to RV, as well as for other relevant (global) factors.

Given the presence of this contemporaneous relation, which is the only one studied
in PV, it is natural to ask whether it also translates into a predictive relation with
relevance for, e.g., risk management, asset allocation, and policy-making. For instance,
market unsettlement driven by current political uncertainty may likely persist for
several periods. Specifically, we ask whether EPU is informative about future RV.
To examine this, we construct direct forecasts with an expanding estimation scheme
based on (17) and the same specification as above. We set the initial in-sample
window to the 2001-2007 pre-crisis period, and for A = 1,2,3,6,9,12 construct the
first forecast for month A of 2008. This splits data roughly equally, matching the
parameter choices in the simulation study in Section IV. Based on the findings in
the simulation study, we use the encompassing type p;; statistic from (28) with MAC

bandwidth |m?®?] for inference on uninformativeness of EPU for future RV. Table 13
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reports the results. We find that the contemporaneous relation documented above
generally does not translate into an out-of-sample predictive relation. On the basis
of our proposed inferential framework, uninformativeness of EPU for future RV is
only rejected at conventional levels for the UK (kA = 1), Greece (h = 3), Spain (h = 6),
Mexico (h = 6), and Australia (h = 12). Moreover, the pooled statistic g, does not

reject uninformativeness across the entire panel for any of the forecast horizons.

Assuming that no factor structure is present, Panel B of the table, there is some
evidence of informativeness of EPU for future RV in the case of Canada, Spain,
Greece, Japan, and Mexico at various forecast horizons. Indeed, the pooled statistic
rejects uninformativeness at the 10% level for one-quarter and one-year ahead forecast
horizons. This suggests that some (weak) informativeness of EPU for future RV is
contained in the common (international) component, leaving, however, the domestic
predictive relation mostly non-existent when accounted for (Panel A). We also ran the
procedure including the global crisis period in the initial in-sample window such that
the first forecast is constructed for month A of 2010. Conclusions were qualitatively

unaltered.

In summary, our panel-wide treatment of the relation between stock market volatility
and economic policy uncertainty generally supports the logic from PV of a contempo-
raneous relation between economic political uncertainty and stock market volatility.
However, after a proper account of common factors (obtained from the panel struc-
ture of the data) as well as the presence of long-range dependence, the relation in
the USA is insignificant, in contrast to the finding obtained using the short-range
dependence, univariate procedure in PV. Moreover, using the encompassing style
test of the present paper, we find only weak evidence of informativeness in economic
policy uncertainty for future stock market volatility, and it is mainly contained in the
common factor structure. These results demonstrate the importance of long-range

dependence treatments in practice and underpin the value of panel data modelling.

VI. Concluding remarks

This paper develops a forecast evaluation framework for testing the null hypothesis
that model-based forecasts at a given horizon are uninformative in panels under

potential long-range dependence. We consider the fractionally integrated panel

27



data system of Ergemen (2019) with individual stochastic components, cross-section
dependence, and endogenous predictors. In this setup, a Diebold-Mariano style test
statistic has a half-normal asymptotic distribution, but suffers from oversizing in
finite samples. For an equivalent null hypothesis, an alternative test derived from
the encompassing principle is reasonably sized. Both tests have non-trivial power for
local departures from the null. We also provide natural generalizations for evaluating

pooled uninformativeness of the model-based forecasts in the entire panel.

An interesting direction for future research is the estimation of the fractionally
integrated latent factor structure. Estimates of the factors may be used in a plug-in
scheme to exploit the potential predictive content in the factors themselves, see, e.g.,
Goncalves et al. (2017). Asymptotic results for such factor estimates are, however, yet
to be developed. Moreover, although our model framework allows for heterogeneity
in parameters, it is not necessarily given that this results in superior forecasting
performance relative to a homogeneous specification, see, e.g., Baltagi (2013). A
thorough analysis of the relative merits of the two specifications is left for future
research. Finally, it is also common in macroeconomics to employ a univariate
autoregressive model as benchmark in forecasting exercises, see, e.g., Stock and

Watson (2003), and our framework can be extended to this case, too.
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B. Empirical results

Table 11: Parametric CSS estimates of the integration orders
This table reports the full-sample parametric conditional-sum-of-squares
(CSS) estimation results for the integration orders of the indicators across
countries. RV and EPU stand for realized volatility and economic policy
uncertainty, respectively. The standard error of these estimates is 0.055.
Superscripts *** ** and * correspond to statistical significance at the 1%,
5%, and 10% levels, respectively, for a one-tailed hypothesis test against
positive alternatives.

Country RV EPU
USA 0.686 0.651"
Australia  0.612™ 0.615™

Canada 0.641" 0.665™
Germany 0.497" 0.570™

UK 0.628™ 0.642™
France 0.595™ 0.577"
Spain 0.594™ 0.587"
Greece 0.470™ 0.668™

Hong Kong 0.631" 0.526™
Ireland 0.590™ 0.486™
Japan 0.510™ 0.721™
Mexico 0.618™ 0.680™
Sweden 0.664™ 0.690™
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Table 12: Estimates in contemporaneous model

This table reports estimates of the slope parameter, ;9, and memory orders
of the errors, d ;o and 9;g, across countries. Estimations are performed by
CSS based on (34) over the full sample, covering 2001-2017. Projections
are carried out with d* = 1. The last column (PV) reports estimates of the
slope parameter from a regression similar to Pastor and Veronesi (2013),
including a first-order autoregressive term. Robust standard errors are
reported in parenthesis. Superscripts ***, ** and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively, for a one-tailed
hypothesis test against positive alternatives.

Country Bi 1‘),’ (Aii PV
USA 0.028 0.489 0.372 0.216"
(0.025) (0.464) (0.326) (0.144)
Australia 0.043" 0.483 0.521" 0.239”
(0.025) (0.518) (0.372) (0.131)
Brazil 0.051 0.467 0.600 -0.047
(0.040) (0.638) (0.592) (0.066)
Canada 0.097" 0.494 0.601" 0.057
(0.025) (0.427) (0.355) (0.177)
Germany -0.125 0.366 0.545 -0.136
(0.051) (0.516) (0.755) (0.063)
UK 0.015 0.554" 0.425° -0.039
(0.019) (0.427) (0.280) (0.075)
France -0.076 0.491 0.383 0.055
(0.031) (0.462) (0.442) (0.102)
Spain -0.034 0.424 0.448 0.258™
(0.034) (0.613) (0.466) (0.100)
Greece 0.118™ 0.489 0.559 0.220”
(0.042) (0.537) (0.624) (0.104)
Hong Kong -0.011 0.395 0.446 0.097
(0.036) (0.716) (0.498) (0.093)
Ireland 0.070" 0.319 0.383 0.017
(0.030) (0.794) (0.459) (0.082)
Japan 0.090"  0.595 0.455 0.320"
(0.042) (0.539) (0.613) (0.175)
Mexico 0.059" 0.589 0.447 0.139
(0.031) (0.526) (0.448) (0.139)
Sweden 0.022 0.434 0.505° 0.138°
(0.024) (0.612) (0.352) (0.102)
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Table 13: Test of uninformativeness of economic policy uncertainty
This table reports p;;, and g, statistics based on an expanding window estimation scheme
of (34) and direct forecasts at ~ =1,2,3,6,9,12 monthly horizons. The initial in-sample
window is the 2001-2007 period, with first forecast generated for January 2008. Panel A
performs estimations and forecasts under the assumption of the presence of an unobserved
common factor structure, where projections are carried out with d* = 1. Panel B assumes no
unobserved common factor structure. Superscripts ***, ** and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively.

Country h=1 h=2 h=3 h=6 h=9 h=12

Panel A: Allowing for a common factor structure

USA -2.213 -1.471 -1.147 -0.161 -1.605 -0.450
Australia -1.493 -1.184 0.861 -0.442 0.874 2.124™
Brazil -1.425 -0.244 0.700 0.702 -1.179 1.037
Canada 0.621 1.242 -0.075 0.144 0.412 0.050
Germany -0.698 0.310 0.991 -0.754 -3.691 -0.506
UK 2.206"  -0.365 0.469 -2.230 -1.046 -0.374
France -1.452 -0.290 -0.886 0.874 -1.413 0.395
Spain -1.415 -2.248 0.087 1.894"  -0.773 0.245
Greece 0.353 0.595 2.011 1.457 -0.431 -0.561
Hong Kong 0.048 -0.825 0.119 -1.072 -1.251 -0.013
Ireland -0.066 -0.169 -1.865 -0.284 0.079 1.141
Japan -1.920 0.054 -0.888 0.193 -0.633 -0.746
Mexico -0.969 -0.933 1.105 1.335° 0.567 0.154
Sweden 0.139 0.379 -1.556 0.093 -1.187 0.993
[ -2.214 -1.376 -0.020 0.467 -3.014 0.932
Panel B: Assuming no common factor structure
USA -1.356 -0.341 -0.397 -1.663 0.596 -1.239
Australia 0.548 -0.775 1.184 -1.991 -0.039 1.161
Brazil 0.186 0.067 0.780 1.518 -0.847 -1.562
Canada 0.827 1.422° 1.370° 2.1217 1.806™ 1.198
Germany -0.326 0.650 -1.487 1.063 -1.197 1.293"
UK -0.068 0.134 0.638 0.266 0.271 1.430°
France -1.012 -1.088 -0.958 -0.297 -1.415 0.400
Spain 0.664 -0.174 1.709™ 1.822"  -0.596 1.544"
Greece 1.394 -2.006 1.576 0.054 0.096 0.023
Hong Kong 0.236 -0.739 0.271 -0.080 0.852 0.391
Ireland -1.170 -0.750 -1.210 -0.955 -0.127 0.423
Japan 1.907"  -0.136 1.491° -1.592 0.602 -0.371
Mexico -1.167 -1.126 1.376" -0.162 0.283 1.619°
Sweden -0.563 0.779 -0.608 -1.002 0.416 -0.472

[ 0.027 -1.091 1.533° -0.240 0.187 1.559°




B. Figures

Figure 1: Local asymptotic power curves for DM;; and Qih
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This figure depicts the local asymptotic power curves
for DM ;1 and p;;, based on Theorem 4. The significance
level used in each figure (10% (upper figure), 5% (mid-
dle figure), and 1% (lower figure)) is indicated by the
horizontal dashed black line.
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Figure 2: Stock market volatility and political uncertainty
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Figure 2 (Cont.): Stock market volatility and political uncertainty
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This figure depicts international stock market volatility and economic political uncer-
tainty. In each figure, the solid green line plots the realized volatility of each country’s
stock market index, and the dashed orange line plots the economic policy uncertainty
(EPU) index of Baker et al. (2016). The EPU is scaled to the same mean and variance as
realized volatility within each figure. Realized volatility is computed monthly from daily
returns within the month. The figures depict each variable’s six-month moving average
between January 2001 and December 2017.



C. Proofs

We here prove the theoretical results presented in the main text, along with an

auxiliary lemma.

Proof of Theorem 1. Given the parameter consistency arguments derived in Erge-
men (2019), (i)?t is a consistent estimator for (pfft. First, it can be easily verified
that

1 m
Var (— Y (p?t) x O(1+m?<i~1),
mi=1

see, e.g., the proofs of Theorems 1 and 2 of Ergemen and Velasco (2017) for a similar

treatment, so

1 1
mKi—12 m

Var( Z(p?t) x 0(1).
t=1

Under Assumptions A-B, Ergemen (2019) establishes that the projected series incurs
a projection error of size O p(n_1 +(nT)"12). Given that the test statistic is based on
the projected series and has a m27%i convergence rate, we need to account for the

projection error that becomes of size
0, (m1/2—1<in—1 +m1/2"<in‘1/2T‘1/2) = 0,(1)

12—k, ~12p=1/2

i m2xin-1em —0as (m,n,T); — co.

Next, we analyze the asymptotic behavior of the test statistic under the null in (19).

Define D;s44(7;) = 05, Y [(7;)/07;. Applying the Mean Value Theorem,

FivenFi) = 50 (T + Digen(Tit) Fir — 7;)
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for some 7;; < T;; < T1;, so, for fixed i,

(P?t = [witsn () + Diprn(Fit) Fie — TP = Wirn(1:) = win(7))?
= Wirn () = Wiran (7)) — uin (77))?
+ 2044 h (T)D it snTi)Rie = 70) + Digan@id)(Rie — 7:)?
= uin(T)Quin(Ti) — uin (1)

+ 20 (T)D e nFi) R ip — 1) + Dipsn(Fit) (i — 1:)? (C.1)
. N — y—lym+h . .
where u;,(1;)=m Y wit(Ti) and
- —(r.. A A _ ~1/2
Tie—7i = (@i —Tio) +(FTio— 1) = O0p(T™ )

under Assumption C.2. Then,

1m o, g 2m . 1m o )
— Y 9l =uin(@) + = witsh (DD nTi) R e —11) + — Y Dy n(7i)*(Fig — 74)
mt:l mt:]_ mt:].

= uin@) +0,(T"V2)+0,(T™Y)

—2 _
= uin(1;) +0,(T71?)

by Lemma A under Assumptions A.1 and C. Then using (C.1),

1 1 Lok
12 DiPir—;
mkXi 1/2mt:j+1 itvit—j
1 (1— o 2 S S s
=———un@) Y Cuin() —uin@))Cuirin—j(7) —uin(1:)) + 0 p (T~ )
m=: m t=j+1

+0p(T-1/2))

1 1—2 uh —2
=—— | —un@) || X 4winn@uirsn-j(7:) |~ 3muin(r;)
m= m t=j+1

1 — 921 & _ _
:W duip(t;) (Etgluiﬁh('fi)uiﬁh—j(l'i))+Op(m 2)+OP(T 1/2))
;| 1 1 & —Kk;—3/2 1/2—x; —1/2
=4up(t;) 12 Z uit+h(Ti)uit+h—j(Ti) +0p(m ’ )"'Op(m ‘T ),
m=TE Mmoo

reasoning as before. Hence,

2 T2 .9 1/2—x; m—1/2
@y =4uip(ti) &7, +0p(m =T,

50



So the test statistic can be written as

win(th) +0,(T12)

DMih — ml/2—f<i _
\/4uih(Ti) (?)?u + Op(ml/z—Ki T—]_/Z)

(ml/z—kim)Q + Op(ml—ZKi T—1/2)

\/4(m1/2—f<i uih(Ti))Zd)lZu + Op(m3/2_3’<i T—1/2)
win(t;)
2d)iu

e +0, (m3/2—31<,» T—1/2) ’

since x; < 1/2. A V/T-consistent estimate for x; can be deduced based on Propositions
2-4 of Kruse et al. (2018) since «; depends on 7;, for which Ergemen (2019) establishes
\/T-consistency under Assumptions A-B. Furthermore, for x; € (—1/2,1/2), @;, is a

consistent estimator of w;,, ¢f. Robinson (2005) and Abadir et al. (2009). Thus,

3/2-3x; T—1/2 1/2—1<in—1

if m — 0, in addition to the previously imposed condition m +

ml2-xip=12p-112 _, ( ¢ (n,T,m); — oo to control for the projection error, i.e., under

Assumption D, we have that

uin(t;) lw;|

20;y, 2’

V2R ‘

where w; is a standard normally distributed random variable, applying the Functional
Central Limit Theorem. O

Proof of Corollary 1. The first result follows directly from Theorem 1. For the
second result, the )(% distribution is obtained directly by applying the definition of (p?t
and based on the arguments in the proof of Theorem 1 with (f)?u a consistent estimator

for the case of u;;,p. O

Proof of Theorem 2. In showing the result, we again argue that é?t is consistent
for EZ, given parameter consistency arguments in Ergemen (2019) and we follow
Breitung and Kniippel (2018)’s steps, making the necessary adjustments for long

memory properties. First, we have that
m - - m -
Z(S/;Hh“(fi) =55 @G, T =55 (1) = > Firen TidWizrn(T:) — win(T;)).
t=1 t=1

The estimation error ¥ (7;) is correlated with u;;(7;). In order to tackle this

*
it+h|t
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issue, we decompose the forecast, explicitly showing the dependence on the

estimates given in Assumption C, into a component 5/; LAl

memory

(T;0) that is independent of

{ii+h,---,Uim+n} and a remaining term and establish that the latter is asymptotically

negligible. Applying a first-order expansion,
FivenEi) =501, (Fi0) + Dirsn(Fi)Eie — Fi0)

where T;; < 7;; < T;0. By Assumption C, y§t+h|t(fi0) is uncorrelated with {u;144,
We then use the decomposition

m J—
Y 1Tt Fi0) + Dirsn(Ti)Eis = Ti0)Wwirsn (1) = win(1:)) = A+ By + By,
t=1

where

o

I
3
=21

fren (Fi0)@iren (7)) — win(1:)),

~
I
—

=
Il
Mz

Diin(Tie)(Tit —Ti0)ui+n(T4),

~
Il
—

. m
By =uin(t:) Y Dipsn(Tie)Eit — Ti0)-
t=1

Further, expanding A around 7; with ¥, pe(Ti) = §7,(t;) yields

m m
A=@Fi0-1) ) DipsnTio)uirsn(Ti) — Fio—T)uin(t:) Y Dirn(Tio)
t=1 t=1

=A1 +A2

s Uimthl

with 7,90 < T;o <7;. Since 7;9o and D;;,,(7;0) are uncorrelated with u;;,,(1;), we have
that A1 = 0,(T~Y3)0,(m"?) and A3 = 0,(T~V2)0,(m""¥2)0,(m) by Assumption
C.2, using arguments as in the proof of Lemma A and reasoning as in the proof
of Theorem 1. Thus, A = O,(T~Y2m"i*2), Under the null in (27), (+;; — %0) and

D;;. 1 (T;;) are uncorrelated with u;;,4(7;). Then, by Assumptions C.2 and using similar

arguments as in the proof of Lemma A, it follows that

m 9 9 9 m2vi+2
Y Fie = 1i0)°Dissn(Tie) wirsn(1:)° = Oy (—T2 )
t=1
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Thus, B = Op(m“i+1T_1). Since by Assumptions C.2 and Lemma A,

m m3/2
(it —Ti0)Dit+n(Tit) = Op (—) ,
=1 T

By =0,(m"i"V2)0,(m*?T~1) = 0,(m"i*1T~1). Therefore, we have
A+Bi+By= Op(m“i+1/2T_1/2 " mvi+1T—1)’
and, thus,
TY2m V2 Vi(A + By +Bg) = 0,(1) + 0,(m 2T 12),

where the O, (1) term leading to the asymptotic normal distribution is

—1/9—a): . ., 1 _ —
TYV2m V2 %A = VT30 —1:)m? U‘E Dit+h(Ti0)(uit+h(Ti)—uih(Ti))-
t=1

Next, we analyze

t_zl(y;‘t+h|t(fi)—y;h<fi)>2(y;;+h<ri>—y;h<ri>>2

NgE

t=1

Using the mean value expansions above,
~ % A SN A — A T, A A
ViteneEi) =535, E) = Digsn(TioXTio — 1) + Wiren(Fiz, Tio),
where

m
Ditin(Fis) =Dipsn(Fis) —m Y. Dypin(Fis),
t=1

m
. o o ) o
Wiren(Fie, 1i0) = DigenTit) Eie —Ti0) —m ™ Y Dipen(Tie)(Fir — Ti0),
t=1

for s =0,1,.... We can then write

S Fhonf ED =75, GGy 71— 57, = Co + C1+Co,
t=1
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where

m J—
Co=@io—T)* Y. Ditsn(Fi0)* Wirsn(T:) — uin(1))?,
t=1

m —
Ci=), U itnFits 00 Wisen (1) — win(1:))%,
=1

Co=2(Fi0— 1) Y DitenFi0)PirenFir, Fi0) Wirsn(Ti) — win(1:)).
t=1

Proceeding as before, the leading term
Co =0, (T Im?i*h),
whereas

Cl — OP(T_2m2Ui+2),

Cv2 — Op(T_3/2m2Ui+5/2),
by Assumption C and since m ™! Y Uitrn(Ti) = Op(m“i_m). Thus,

Tm 172%i(Cy+C1+Cy)

1 = — _
=T(;0-7;)°m' ™" — Y Ditrh(F:10) 2 Wirsn(ti) — uin(1)? + 0, (m¥2T732). (C.3)
t=1

Further, as in the proof of Theorem 1, we note again that we work with the projected
series. Given the convergence rate, we require that m2 Vi(n™1 + (nT)"V2) - 0 as
(n,T,m); — oo. Then, from (C.2) and (C.3), if additionally m/T — 0, i.e., invoking
Assumption E, and applying the FCLT, we establish that

1 2.

Y & LN, 1)

m1/2—f}i x
WEM =1

since consistency of ; can be shown, reasoning as for k; in the proof of Theorem 1. [J

Proof of Theorem 3. Due to asymptotic approximate independence of the individual
pin test statistics for large n, see Appendix 1 in Ergemen (2019), the result in the
Theorem follows from a standard CLT. O

Proof of Theorem 4. We again motivate the cases based on the true parameters,

54



given the parameter consistency arguments discussed earlier. Under the local alter-

native in (30),

51T =T @) = 051 (i = dio) = 5y, 1 (i — dio) + (e Vm)E(d) — T3, (1)),

where the model prediction error is e;j;y1:(7;) = 6Iit+1(di —di0)+0p(T_1/2) under
Assumption A.1. Reasoning as in the proof of Theorem 1 and further noting that the
error term is now ﬁIiHl(di —d;o) as T — oo, we have under Assumption A.1 and B.2
that

~ %
07, (di—djo) 4
ml/2 1it+1 2wy

Oy,

by a standard CLT, and

=¥ [ 7 W\~ ¥ d
leaxm tz( H(di) = %;,(di))0y;;,1(di —dio) = w2
for fixed i, where w1; and wg; are two independent standard normally distributed

random variables. Then,

m .. m

> o= (m'?5 010401 (di— di0)? -
=

(#;,(dy) = %7,(d))07;,,1 (di = dio)

2
iy Y (&) - X, (d))* +O0p(mT ™)
mi=1 !

d
— 031w2 —20,,0xCiWig — c?az
as m/T — 0. Accordingly,
d o g
—— X
DM = w} —2ci—— - c?—,
o
U1 U1

since 62, =m 1YL, (05,1 (di — di0)—07};,,, (di — dio)+(ci/Vm)E}(d)? = 02, +0 5 (m™2)

v1
under Assumption A.1.

Next, using
Fire1e(Ti) = \/_l—~:t(d )+0,(T71%)
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under Assumption A.1, we have as m/vT — 0,

m m
=1 ~ % ~ ~ % ~ %
z‘i:it = X‘i [Ulit+1(di —dio)— Uikit+1(di —d;o) +(cilv m)xit(di) yit+1|t(Ti)
= =
d 2 2
— Cj0y,0,Wi2+C;0,

reasoning as above. Furthermore,

m C; m . o . —_—
mo% =Y (])?= ;l Y @Byie1(di—dio) =05, (di —dio) (& (d;) — X},(d)? +0,(1)
t=1 t=1

P 2 2 2
— c{0,,0%.

Thus,

d . Oy
pi1 — sign(cj)wis +|c;| —.
v1

Lemma A. Under Assumption A.1,
1 m
SuP’_ 2 uit+h(7i)Dit+h(fit)‘ =0,(1),
i My

sup
i

1Z _ 9
— Y Din(Tin) ‘:Op(l)-
t=1

Proof of Lemma A. Let d,,;, and 9,,;, denote min; d; and min; 9;, respectively. We
first observe that

-1
s d;—9;
%;(di) = AT 009 = ) mi(d; — Di0)v2ii—j,
J=0
oo t-1
Z5,0:) =0 Pvg = ) mi(0; — Di0)vair—.
j=0

We then analyze the dominating terms in % Y1 uit+h(Ti)Din(Ti), since the remain-
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ing terms are bounded above by the Cauchy-Schwarz inequality. The first term,

m t—1

= sup)— Z Z 7'L'J(d 1910)71']((1 1910)

Lt zt

:Op(1+m2(19max dmin)— llogm)

= Op(]-)

under Assumption A.1. Similarly,

m t—1
sup|— ) &5,(9:)%;,0,)| = sup)— D, 3701 = Dol 0: 0w
i
=0p(1+m2<’9mx Imin) L 1ogm)
=0,(1).
The third term,

Sup) Z (i) (074, (i le)_p;ﬁ;iHh(ﬁi_ﬁiO))‘

1™ t—1
=sup| - Y. 3 1,(di = 9io) (i ~dio) + 1,00, - 9:0)) |
i Mo 1;=0

21()max_dmin -0

=0,(1+m Omaxtdmax=2dmin=1o0m 4 m min~1]oom)

= Op(l)

by Assumption A.1 and following similar reasoning as above. The fourth term,

sup
i

1m I
— t_Zl 25,09 (03145, (di = di0) = 05,1, (i — Do) ‘

2(79max_79

— Op(l + mﬂmax"’dmax_dmin_ﬁmin_l logm +m min)_l logm)

=0,(1).

To analyze the expression %Z;’i 1Dit+h(fit)2, we again study only the dominating
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terms. The first term

m t—1

1 & L 2 1 2
sup‘— x:,(d;) ’:sup‘— a%5(d; —9i0)
o, X #idaof| =supl 3 3 a0

— Op(l + m2(79max_dmin)_1 10g2 m)

= Op(]-)

under Assumption A.1. Similarly, the second term

sup

1m |
=Y &,(00°] = 01+ m* Pnas=0ni) 1 log2 m)
i M=

= 0,(1).

Finally, the third term

sup

1 2., ik 9 g
: ;;‘ilt(dl)xlt(ﬁl) :Op(1+m19max+dmax Omin dmzn llogzm)

=0,(1).

All remaining terms are of smaller asymptotic size, and thus the results in the lemma
follow. O
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