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Abstract

This paper proposes tests of the null hypothesis that model-based forecasts
are uninformative in panels, allowing for individual and interactive fixed ef-
fects that control for cross-sectional dependence, endogenous predictors, and
both short-range and long-range dependence. We consider a Diebold-Mariano
style test based on comparison of the model-based forecast and a nested no-
predictability benchmark, an encompassing style test of the same null, and a
test of pooled uninformativeness in the entire panel. A simulation study shows
that the encompassing style test is reasonably sized in finite samples, whereas
the Diebold-Mariano style test is oversized. Both tests have non-trivial local
power. The methods are applied to the predictive relation between economic
policy uncertainty and future stock market volatility in a multi-country analysis.
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I. Introduction

Bollerslev, Osterrieder, Sizova, and Tauchen (2013) Andersen, Bollerslev, Diebold, and

Labys (2003) Ergemen, Haldrup, and Rodríguez-Caballero (2016) Kruse, Leschinski,

and Will (2018) Deo, Hurvich, and Lu (2006) Bos, Franses, and Ooms (2002) (Wester-

lund, Karabiyik, and Narayan, 2016) Pesaran, Schuermann, and Smith (2009) Chudik,

Grossman, and Pesaran (2016) Liu, Patton, and Sheppard (2015) (Baker, Bloom, and

Davis, 2016) Pesaran, Pick, and Timmermann (2011) Bialkowski, Gottschalk, and

Wisniewski (2008) Rapach, Strauss, and Zhou (2013) Gonçalves, McCracken, and

Perron (2017) Engel, Mark, and West (2008) Busch, Christensen, and Nielsen (2011)

Many macroeconomic and financial variables are presented in the form of panels,

describing dynamic characteristics of the individual units such as countries or assets.

Examples include cross-country panels of GDP and inflation, international panels

of stock returns or their volatility, and intraday electricity prices, see, e.g., Ergemen

et al. (2016). In the interest of forecasting such variables, it should be natural to

treat data as a panel rather than separate time series. Relative to a pure time series

approach, a panel approach has the potential to yield efficiency gains and improved

forecasts by accounting for the interaction between cross-sectional units, see, e.g.,

Canova and Ciccarelli (2004), Groen (2005), and Baltagi (2013).

Many macroeconomic and financial time series have been shown to exhibit possibly

fractional long-range dependence, see, e.g., Gil-Alaña and Robinson (1997) and An-

dersen et al. (2003). Model-based forecasting accounting for such features has been

considered, e.g., by Christensen and Nielsen (2005), Corsi (2009), Busch et al. (2011),

and Bollerslev et al. (2013). As argued by, among others, Robinson and Velasco (2015),

Ergemen and Velasco (2017), and Ergemen (2019), panel data models should also

account for these features, both in order to obtain valid inference, see Kruse et al.

(2018), and for possibly more accurate forecasts, see, e.g., Bos et al. (2002), Bhardwaj

and Swanson (2006), Deo et al. (2006), and Chiriac and Voev (2011).

In this paper, we study out-of-sample predictive accuracy in a general fractionally

integrated panel data model and develop formal tests of (un)informativeness of the

model-based forecasts. We consider the data-generating process proposed by Ergemen

(2019), which allows for individual and interactive fixed effects, endogenous predictors,

and both short-range and long-range dependence. The model nests stationary I(0)

and nonstationary I(1) panel data models and features a multifactor structure that

accounts for cross-sectional dependence in data. It allows for potentially different

integration orders of factor components and the possibility of cointegrating relations,

which may improve forecasting via an error-correction mechanism, see, e.g., Engel

et al. (2008) for an application to exchange rate modelling in a panel context. Our

approach allows for heterogeneity in both slope parameters and persistence char-

acteristics, providing flexibility and wider applicability than a model restricting all

panel units to share common dynamics. The model also nests popular forecasting
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frameworks, such as panel vector-autoregressive systems (Westerlund et al., 2016),

predictive regressions (Welch and Goyal, 2008), and autoregressive forecasting (Stock

and Watson, 1999), possibly with the addition of exogenous or endogenous predictors

(Clark and McCracken, 2006).

The estimation approach is based on proxying the multifactor structure by a cross-

sectional averaging procedure, following Ergemen and Velasco (2017) and Ergemen

(2019). Our main interest is then in testing the null hypothesis of uninformativeness,

at a given forecast horizon, of forecasts obtained from the general model, after remov-

ing the multifactor structure. Rejection in this case should imply rejection with the

factors included, as factor augmentation generally improves forecasting performance,

see, e.g., McCracken and Ng (2016). First, for each unit in the panel, we develop a

Diebold and Mariano (1995) style test statistic comparing the loss associated with the

model-based forecasts relative to that from a no-predictability benchmark, i.e., the

unconditional mean. We estimate the unconditional mean on the evaluation sample,

thus also facilitating an evaluation of the informativeness of externally obtained

forecasts, such as those from surveys or market-implied values. Next, we develop

an encompassing version of our predictability test, which is as easy to implement as

the Diebold-Mariano style tests. Finally, besides correcting individual forecasts for

panel features such as interaction across units, it may also be of interest to evaluate

predictive accuracy for the entire panel. To this end, we propose pooled versions of

our test statistics, in a spirit similar to Pesaran (2007).

We contribute to the literature on forecast evaluation in several ways. Primarily, we

provide the first tests of predictive accuracy in a panel with long-range dependence.

This extends the results in Kruse et al. (2018) by treating a panel, rather than working

with individual time series. Moreover, our approach considers the underlying process

of the forecasts, rather than being silent about the origin of these. This distinction is

important, since it allows us to compare model-based forecasts with the nested uncon-

ditional mean. Accordingly, the resulting Diebold-Mariano (DM) style statistic has

a non-standard, half-normal distribution under the null hypothesis. As in Breitung

and Knüppel (2018), we circumvent this issue by providing a simple modification

leading to a chi-squared distributed test statistic. The encompassing test on the other

hand possesses a standard normal distribution. Our framework extends Hjalmar-

son (2010), Westerlund and Narayan (2015a,b), and Westerlund et al. (2016) who

2



present in-sample analyses of predictive regressions in short-range dependent panel

settings which may allow for either endogenous predictors or factor structure, but not

both simultaneously. These studies focus on stock return predictability, whereas our

framework would be relevant for the analysis of general panels involving other vari-

ables such as stock return volatility or aggregate macroeconomic variables, because

it features out-of-sample analysis, long-range dependence, and the co-existence of

endogenous predictors and a factor structure. Moreover, to the best of our knowledge,

there are only a few papers examining out-of-sample forecast evaluation within the

typical short-range dependent panel literature. Pesaran et al. (2009) and Chudik et al.

(2016) propose pooled DM tests, possibly accounting for cross-sectional dependence,

whereas Liu et al. (2015) employ a panel-wide Giacomini and White (2006) conditional

test of predictive ability.

We explore the finite-sample properties of our testing procedures by means of Monte

Carlo experiments. The encompassing test is reasonably sized, whereas the DM style

test suffers from oversizing, paralleling the findings in Breitung and Knüppel (2018),

and the pooled test is quite conservative. Both tests have non-trivial power against

local departures from the null. In an empirical application, we apply our methodology

to estimate the relationship between a newspaper-based index of economic policy

uncertainty (Baker et al., 2016) and stock market volatility in 14 countries, obtain

forecasts, and evaluate the predictive accuracy of the economic policy index for future

stock market volatility.

The rest of the paper is laid out as follows. Section II presents the model framework

and the conditions imposed to study it based on Ergemen (2019). Section III introduces

the forecast setting based on the model framework and discusses the null hypothesis

of interest. It also provides the main results for DM and encompassing style tests and

related panel-wide generalization. Section IV examines the finite-sample properties

of the proposed tests based on Monte Carlo experiments and Section V presents the

empirical application. Section VI concludes.

Throughout the paper, “(n,T) j” and “(n,T,m) j” denote the joint asymptotics in which

the sample is growing in multiple dimensions, with n the cross-section dimension,

T the length of the in-sample and m the out-of-sample window, “⇒” denotes weak

convergence, “
p−→” convergence in probability, “ d−→” convergence in distribution, and
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‖A‖ = (trace(AA′))1/2 for a matrix A. All proofs are collected in the Appendix.

II. Model framework

We describe the model framework and estimation procedure of Ergemen (2019) as the

basis for our forecasting discussions in the next sections. The basis of the approach

is a triangular array describing a long-range dependent panel data model of the

observed series (yit, xit) given by

yit =αi +β′
i0xit +λ′

i f t +∆−di0
t ε1it,

xit =µi +γ′i f t +∆−ϑi0
t ε2it,

(1)

where, for i = 1, . . . ,n and t = 1, . . . ,T, the scalar yit and the k-vector of covariates xit

are observable, αi and µi are unobserved individual fixed effects, f t is the q-vector of

unobserved common factors whose j-th component is fractionally integrated of order

δ j (so we write f jt ∼ I(δ j)), j = 1, . . . , q, and the q-vector λi and the q× k matrix γi

contain the corresponding unobserved factor loadings indicating how much each cross-

section unit is impacted by f t. Both k and q are fixed throughout. In (1), with prime

denoting transposition, εit = (ε1it,ε′2it)
′ is a covariance stationary process, allowing for

Cov[ε1it,ε2it] 6= 0, with short-range vector-autoregressive (VAR) dynamics described

by

B(L;θi)εit ≡
(
Ik+1 −

p∑
j=1

B j(θi)L j

)
εit = vit, (2)

where L is the lag operator, θi the short-range dependence parameters, Ik+1 the

(k+1)× (k+1) identity matrix, B j are (k+1)× (k+1) upper-triangular matrices, and

vit is a (k+1)×1 sequence that is identically and independently distributed across i
and t with zero mean and variance-covariance matrix Ωi > 0. Throughout the paper,

the operator ∆−d
t applied to a vector or scalar εit is defined by

∆−d
t εit =∆−dεit1(t > 0)=

t−1∑
j=0

π j(−d)εit− j, π j(−d)= Γ( j+d)
Γ( j+1)Γ(d)

,

where 1(·) is the indicator function and Γ(·) the gamma function, such that Γ(d)=∞
for d = 0,−1,−2, . . . , and Γ(0)/Γ(0)= 1.
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For the analysis of the system in (1), Ergemen (2019) considers di0 ∈Di = [d i,d i] and

ϑi0 ∈ Vi = [ϑi,ϑi]k with d i,ϑi > 0, implying that the observable series are fractionally

integrated. In particular, yit ∼ I(max{ϑi0,di0,δmax}) and xit ∼ I(max{ϑi0,δmax}) where

δmax =max j δ j. Further, setting

ϑmax =max
i
ϑi0 and dmax =max

i
di0

and letting d∗ denote a prewhitening parameter chosen by the econometrician, the

following conditions are imposed on (1).

Assumption A (Long-range dependence and common-factor structure). Per-
sistence and cross-section dependence are introduced according to the following:

1. The fractional integration parameters, with true values ϑi0 6= di0, satisfy di0 ∈
Di = [d i,d i]⊂ (0,3/2), ϑi0 ∈ Vi = [ϑi,ϑi]k ⊂ (0,3/2)k, ϑmax −ϑi < 1/2, ϑmax −d i < 1/2,

δmax −ϑi < 1/2, δmax −d i < 1/2, dmax −d i < 1/2, and d∗ > max{ϑmax,dmax,δmax}−
1/4.

2. For j = 1, . . . , q, the j-th component of the common factor vector satisfies f jt =
α

f
j +∆

−δ j
t z f

jt, δ j ≥ 0, for δmax < 3/2, where the vector z f
t containing the I(0) series z f

jt

satisfies z f
t =Ψ f (L)ε f

t , with Ψ f (s)=∑∞
l=0Ψ

f
l sl ,

∑∞
l=0 l‖Ψ f

l ‖ <∞, det
(
Ψ f (s)

) 6= 0 for
|s| ≤ 1, and ε

f
t ∼ iid(0,Σ f ), Σ f > 0, E‖ε f

t ‖4 <∞.

3. f t and εit are independent, and independent of the factor loadings λi and γi, for all
i and t.

4. The factor loadings λi and γi are independent across i, and rank(Cn)= q ≤ k+1 for
all n, where the (k+1)× q matrix Cn containing cross-sectionally averaged factor
loadings is defined as

Cn =
(
β′

0γ
′
n +λ′n
γ′n

)
,

with γn = n−1 ∑n
i=1γi, λn = n−1 ∑n

i=1λi, and β′
0γ

′
n = n−1 ∑n

i=1β
′
i0γ

′
i.

Assumption A.1 imposes restrictions on the range of memory orders allowed, moti-

vated by the use of first differences (to remove fixed effects) in the methodology. The

requirement on the lower bounds of the sets Di and Vi is necessary to ensure that
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the initial-condition terms, arising due to the use of truncated filters and uniformly

of size Op(T−d i ) and Op(T−ϑi ), vanish asymptotically. The conditions that restrict

the distance between the parameter values allowed and the lower bounds of the sets

are necessary to control for the unobserved individual fixed effects, see Robinson and

Velasco (2015), and cross-section dependence, see Ergemen and Velasco (2017), as

well as to ensure that the projection approximations adopted below work well with

the original integration orders of the series, see Ergemen (2019) for rigorous details.

The projection method based on the cross-section averages of the d∗-differenced ob-

servables is guaranteed to work under Assumption A.1 since the projection errors

vanish asymptotically with the prescribed choice of d∗. For most applications, first

differences, d∗ = 1, would suffice, anticipating ϑi0,δmax,di0 < 5/4.

Assumption A.2 allows for a fractionally integrated common factor vector that may

also exhibit short-memory dynamics, where the I(0) innovations of f t are not collinear

and each common factor can have different memory, unlike the homogeneity restric-

tion imposed by Ergemen and Velasco (2017). The upper bound condition on the

maximal factor memory is not restrictive and is motivated by working with d∗ ≥ 1.

The non-zero mean possibility in common factors, i.e., when α
f
j 6= 0, allows for a drift.

Assumption A.3 is standard in the factor model literature and has been used, e.g.,

by Pesaran (2006) and Bai (2009). When λi 6= 0 and γi 6= 0, further endogeneity is

induced by the common factors, in addition to that stemming from Cov[ε1it,ε2it] 6= 0

in (1).

Assumption A.4 states that sufficiently many covariates whose sample averages can

span the factor space are required. When the system in (1) is written for zit = (yit, x′it)
′,

the matrix Cn basically contains the cross-sectionally averaged factor loadings. The

full rank condition on Cn simplifies the identification of q factors with k+1 cross-

section averages of observables. This condition is also imposed by Pesaran (2006) in

establishing the asymptotics of heterogeneous slope parameters.

Assumption B (System errors). In the representation

B(L;θi)εit ≡
(
Ik+1 −

p∑
j=1

B j(θi)L j

)
εit = vit,

1. B j(·) are upper-triangular matrices satisfying
∑∞

j=1 j‖B j‖ <∞, det(B(s;θi)) 6= 0 for
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|s| = 1, θi ∈Θi.

2. the vit are identically and independently distributed vectors across i and t with zero
mean and positive-definite covariance matrix Ωi, and have bounded fourth-order
moments.

Assumption B.1 rules out possible collinearity in the innovations by imposing a stan-

dard summability requirement and ensures well-defined functional behaviour at zero

frequency. This ensures invertibility and thereby allows for a VARMA representation,

see Robinson and Hualde (2003). Finally, Assumption B.2 imposes a standard moment

requirement.

For the estimation of both linear (slope) and memory parameters in (1), Ergemen

(2019) works with the projected series that proxy the common-factor structure up

to an asymptotically vanishing projection error. First-differencing (1) to remove the

fixed effects,
∆yit =β′

i0∆xit +λ′
i∆ f t +∆1−di0

t ε1it,

∆xit = γ′i∆ f t +∆1−ϑi0
t ε2it,

(3)

for i = 1, . . . ,n and t = 2, . . . ,T, (3) can be prewhitened from idiosyncratic long-range

dependence for some fixed exogenous differencing choice, d∗, as prescribed in Assump-

tion A.1, by which all variables become asymptotically stationary with their sample

means converging to population limits.

Using the notation ait(τ)=∆τ−1
t−1∆ait for any τ, the prewhitened model is given by

yit(d∗)=β′
i0xit(d∗)+λ′

i f t(d∗)+ε1it(d∗−di0),

xit(d∗)= γ′i f t(d∗)+ε2it(d∗−ϑi0).
(4)

Thus, using the notation zit(τ1,τ2)= (
yit(τ1), x′it(τ2)

)′ , (4) can be written in the vector-

ized form as

zit(d∗,d∗)= ζβ′
i0xit(d∗)+Λ′

i f t(d∗)+εit
(
d∗−di0,d∗−ϑi0

)
, (5)

where ζ = (1,0, . . . ,0)′, and Λi = (λi γi). The structure Λ′
i f t(d∗) in (5) induces cross-

sectional correlation across individual units i through the common factor structure

f t(d∗). A standard method for dealing with this unobserved structure is projection

based on proxies obtained by sample cross-section averages of (differenced) data, see
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Pesaran (2006). Write zt(d∗,d∗)= n−1 ∑n
i=1 zit(d∗,d∗) for the cross-section average of

(5), so that

zt(d∗,d∗)= ζβ′
0xt(d∗)+Λ′ f t(d∗)+εt

(
d∗−d0,d∗−ϑ0

)
, (6)

where εt (d∗−d0,d∗−ϑ0) is Op(n−1/2) for sufficiently large d∗. Thus, zt(d∗,d∗) and

ζβ′
0xt(d∗) asymptotically capture all the information provided by the common factors,

provided that Λ is of full rank. Note that xt(d∗) is readily contained in zt(d∗,d∗) =
(yt(d∗), xt(d∗)′)′ and that the βi0 do not introduce any dynamics in ζβ′

0xt(d∗) since

they are fixed for each i. Therefore, zt(d∗,d∗) alone can span the factor space.

Write the prewhitened time-stacked observed series as xi(d∗)= (xi2(d∗), . . . , xiT(d∗))′

and zi(d∗,d∗)= (zi2(d∗,d∗), . . . , ziT(d∗,d∗))′ for i = 1, . . . ,n. Then, for each i = 1, . . . ,n,

zi(d∗,d∗)= xi(d∗)βi0ζ
′+F(d∗)Λi +Ei

(
d∗−di0,d∗−ϑi0

)
, (7)

where Ei (d∗−di0,d∗−ϑi0)= (εi2 (d∗−di0,d∗−ϑi0, ) , . . . ,εiT (d∗−di0,d∗−ϑi0))′ and

F(d∗) = ( f2(d∗), . . . , fT(d∗))′ . Writing T1 = T − 1, the common factor structure can

asymptotically be removed by the T1 ×T1 feasible projection matrix

MT1(d∗)= IT1 −z(d∗,d∗)(z′(d∗,d∗)z(d∗,d∗))−z′(d∗,d∗), (8)

where z(d∗,d∗) = n−1 ∑n
i=1 zi(d∗,d∗), and P− denotes the generalized inverse of a

matrix P. When the projection matrix is built with the original (possibly nonstation-

ary) series, it is impossible to ensure the asymptotic replacement of the latent factor

structure by cross-section averages because the noise in (5) may be too persistent

when d∗ = 0. On the other hand, using some d∗ > max{ϑmax,dmax,δmax}−1/4 for

prewhitening guarantees that the projection errors vanish asymptotically.

Introducing the infeasible projection matrix based on unobserved factors,

MF (d∗)= IT1 −F(d∗)(F(d∗)′F(d∗))−F(d∗)′,

and adopting Pesaran (2006)’s argument under Assumption A.2 and A.4, we have the
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approximation as (n,T) j →∞ that

MT1(d∗)F(d∗)≈MF (d∗)F(d∗)= 0. (9)

This implies that the feasible and infeasible projection matrices can be employed

interchangeably for factor removal in the asymptotics, provided that the rank condi-

tion in Assumption A.4 holds. Based on (7) and using the approximation in (9), the

defactored observed series for each i = 1, . . . ,n is

z̃i(d∗,d∗)≈ x̃i(d∗)βi0ζ
′+ Ẽi

(
d∗−di0,d∗−ϑi0

)
, (10)

where z̃i(d∗,d∗)=MT1(d∗)zi(d∗,d∗), x̃i(d∗)=MT1(d∗)xi(d∗) and Ẽi (d∗−di0,d∗−ϑi0)=
MT1(d∗)Ei (d∗−di0,d∗−ϑi0) .

Integrating the defactored series back by d∗ to their original integration orders,

disregarding the projection errors that are negligible as n →∞ under Assumption A.1

as shown by Ergemen and Velasco (2017), and defining the generic parameter vector

τi = (di,ϑ′
i)
′,

z̃∗it(τi)= ζβ′
i0 x̃∗it(di)+ ε̃∗it (di −di0,ϑi −ϑi0) , (11)

where the first and second equations of (11) are for the transformed series

ỹ∗it(di)=∆di−d∗
t−1 ỹit(d∗) and x̃∗it(ϑi)=∆ϑi−d∗

t−1 x̃it(d∗),

respectively, omitting the dependence on d∗ and the (asymptotically negligible) initial

conditions in the notation. Both the linear and long-range dependence parameters

are identified, and may be estimated with the standard parametric convergence

rates with centered asymptotic normal distributions. Ergemen and Velasco (2017)

consider estimation under the assumptions of common memory orders δ j of factors

and exogeneity of the defactored series x̃∗it(ϑi) for ỹ∗it(di), and Ergemen (2019) relaxes

these assumptions.

To see the identification, apply the operator B(L;θi) giving the short-range dynamics
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in (2) to each side of (11) and invoke Assumption B to get

z̃∗it(τi)−
p∑

j=1
B j(θi)z̃∗it− j(τi)

= ζβ′
i0 x̃∗it(di)−

p∑
j=1

B j(θi)ζβ′
i0 x̃∗it− j(di)+ ṽ∗it (di −di0,ϑi −ϑi0) . (12)

Here, the error terms are serially uncorrelated, given that vit are identically and

independently distributed, and clearly B j(θi) is identified. Writing the system out in

more detail, noting that z̃∗it(di,ϑi)= ( ỹ∗it(di), x̃∗it(ϑi)′)′, the first equation in (12) is

ỹ∗it(di)=β′
i0 x̃∗it(di)+

p∑
j=1

B1 j(θi)z̃∗it− j(τi)

−
p∑

j=1
B1 j(θi)ζβ′

i0 x̃∗it− j(di)+ ṽ∗1it (di −di0) , (13)

and the second equation is

x̃∗it(ϑi)−
p∑

j=1
B2 j(θi)z̃∗it− j(di,ϑi)=−

p∑
j=1

B2 j(θi)ζβ′
i0 x̃∗it− j(di)+ ṽ∗2it (ϑi −ϑi0) , (14)

with B j = (B′
1 j,B

′
2 j)

′. Combining (13) and (14), we obtain

ỹ∗it(di)=β′
i0 x̃∗it(di)+ρ′i x̃∗it(ϑi)+

p∑
j=1

(
B1 j(θi)−ρ′iB2 j(θi)

)(
z̃∗it− j(τi)−ζβ′

i0 x̃∗it− j(di)
)

+ ṽ∗1it (di −di0)−ρ′i ṽ∗2it (ϑi −ϑi0) , (15)

where ρ i =E[ṽ∗2itṽ
∗′
2it]

−1E[ṽ∗2itṽ
∗
1it], suppressing the dependence on fractional orders.

The error term in (15) is orthogonal to ṽ∗2it, given that vit are identically and inde-

pendently distributed, so that ṽ∗1it −ρ′i ṽ∗2it is uncorrelated with ṽ∗2it as a result of the

triangular array structure of the system. Ergemen (2019) imposes ϑi0 6= di0 to avoid

collinearity when ϑi0 = di0. On this basis, both βi0 and ρ i are identified.

Following Ergemen (2019), we can now consistently estimate the linear parameters,

βi0, ρ i, and B j(θi), by least squares for each i. The feasible estimate requires es-

timation of the long-range dependence parameters, which feature non-linearly in

the system given by (14) and (15). They can be estimated equation-by-equation by

10



conditional sum of squares (CSS), where di0 is estimated from (15), and ϑi0 can be

estimated from any of the k equations for xit in (14), or by an objective function con-

structed over all k equations. Both linear and non-linear parameters enjoy standardp
T convergence rates and centered normal asymptotic distributions.

III. Forecasting

In this section, we study predictive accuracy of forecasts using the projected series.

We develop Diebold-Mariano and encompassing style test statistics and determine

their asymptotic distribution. Forecasting the original (non-defactored) series instead

would require a different methodology, since the fractionally integrated unobserved

factors would need to be estimated. Asymptotic results for such factor estimates are

yet to be provided in the literature. Instead, we focus on testing uninformativeness

in the defactored series. Rejection in this case should imply rejection in the original

series.

Employing (15), the h-step-ahead direct forecast, h = 0,1, . . . ,H with H fixed, can be

written as

ỹ∗it+h(τi)=β′
i0 x̃∗it(di)+ρ′i x̃∗it(ϑi)+

p∑
j=1

(
B1 j(θi)−ρ′iB2 j(θi)

)(
z̃∗it− j(τi)−ζβ′

i0 x̃∗it− j(di)
)

+ ṽ∗1it+h (di −di0)−ρ′i ṽ∗2it+h (ϑi −ϑi0) , (16)

making the dependence on di and ϑi explicit, so that conditional on information

through time t, we can write down the forecasting equation as

ỹ∗it+h|t(τi)=β′
i0 x̃∗it(di)+ρ′i x̃∗it(ϑi)+

p∑
j=1

(
B1 j(θi)−ρ′iB2 j(θi)

)(
z̃∗it− j(τi)−ζβ′

i0 x̃∗it− j(di)
)
.

(17)

Thus, forecasts are derived from a heterogeneous predictive model, facilitating unit-

specific inferences on predictive accuracy, while still treating each unit as part of a

panel.

It is important to understand the generality of this model, which nests several

models employed in the literature, while still accounting for long-range and cross-

sectional dependence. If B j(θi) = 0 and ρ i = 0, for all i, we recover the well-known

11



predictive regression for each i, with coefficients βi0. This is especially popular in

the financial literature on stock return and volatility prediction, typically relating

aggregate financial ratios or macroeconomic conditions to future stock returns and

their volatility. In the pure time series setting, Welch and Goyal (2008) is a classical

example of an examination of the in- and out-of-sample predictive performance of

stock characteristics, interest-rate related and macroeconomic indicators for future

stock market returns, whereas Hjalmarson (2010) and Westerlund and Narayan

(2015a,b) employ panel predictive regressions. If the zero condition on ρ i is relaxed,

the framework allows for endogenous predictors, even after accounting for cross-

sectional dependence, which is a common issue in finance (Stambaugh, 1999). If,

instead, βi0 = ρ i = B2 j(θi)= 0 for all i, we obtain a conventional short-range dependent

autoregressive model in yit+h with coefficients B1 j(θi), as often used in macroeconomic

settings, for instance for inflation forecasting (Stock and Watson, 1999). Again, once

the zero conditions on βi0 or ρ i are relaxed, other exogenous or endogenous predictors

are accommodated, as, e.g., in Phillips curve forecasting models, with xit a measure

of economic activity, such as the output gap or unemployment rate. Clark and

McCracken (2006) explore each of these in a univariate, short-range dependent setting.

The predictor may enter with additional lags in (17) by allowing non-zero B2 j(θi).

Once k ≥ 1, we have an upper-triangular panel VAR system, which is typical in

forecasting settings where yit can depend on lagged values of itself and the predictors,

whereas each component in xit depends only its own past values, see, e.g., Westerlund

et al. (2016).

For an evaluation sample (out-of-sample) that includes m observations, indexed by

t = 1, . . . ,m, we may distinguish between three different estimation schemes for the

forecasting model, noting that its parameters can be estimated consistently, cf. Section

II. First, the recursive scheme fixes the starting point of the estimation sample (in-

sample) window at t =−T +1 and increases its endpoint recursively with t. Second,

the rolling scheme fixes the length of the estimation sample to T observations and,

thus, increases both the starting and end point with t. Third, the fixed window scheme

estimates parameters only once on the (initial) estimation sample of size T. Given the

parameter estimates at time t, we then form the h-step forecasts from the forecasting

equation in (17).

12



The theoretical forecast error is

e it+h|t(τi) := ỹ∗it+h(τi)− ỹ∗it+h|t(τi)

= ṽ∗1it+h (di −di0)−ρ′i ṽ∗2it+h (ϑi −ϑi0) . (18)

Since under Assumption A.1 the difference between the maximum integration orders

and the lower bounds of allowed set values is less than 1/2, the forecast error e it+h|t(τi)

is stationary and exhibits long memory whenever di 6= di0 or ϑi 6=ϑi0, which must be

accounted for when conducting inference on predictive accuracy.

We are interested in testing the null hypothesis that the forecast function ỹ∗it+h|t(τi)

is uninformative for ỹ∗it+h(τi) for fixed i,

H0 :E
[
e2

it+h|t(τi)
]
≥E

[(
ỹ∗it+h(τi)− ỹ∗it(τi)

)2
]

, (19)

where ỹ∗it(τi) is the expectation of ỹ∗it(τi) for fixed i. In order to gain more insight on

the forecast error, we can decompose the mean squared error (MSE) as

E
[
e2

it+h|t(τi)
]
=E

[(
ỹ∗it+h(τi)− ỹ∗it(τi)

)2
]

−2E
[(

ỹ∗it+h(τi)− ỹ∗it(τi)
)(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)]

+E
[(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)2

]
. (20)

Clearly, E
[(

ỹ∗it+h(τi)− ỹ∗it(τi)
)(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)]

= 0 is a sufficient condition for the

forecast to be uninformative, as E
[(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)2

]
≥ 0. Furthermore, for a

rational forecast satisfying E
[
e it+h|t(τi) ỹ∗it+h|t(τi)

]
= 0 and since under Assumption

B.2 E[e i,t+h|t(τi)]= 0, we have that

E
[(

ỹ∗it+h(τi)− ỹ∗it(τi)
)(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)]

=E
[(

e it+h|t(τi)+ ỹ∗it+h|t(τi)− ỹ∗it(τi)
)(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)]

=E
[(

ỹ∗it+h|t(τi)− ỹ∗it(τi)
)2

]
. (21)

Therefore, by combining (20) and (21), any rational forecast with positive variance is
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informative and the null hypothesis (19) is then equivalent to

Cov
[

ỹ∗it+h(τi), ỹ∗it+h|t(τi)
]
= 0,

which will be utilized further below in constructing an alternative to a Diebold-

Mariano style test statistic.

Furthermore, an iterative scheme can be used if, instead of (16), we write

ỹ∗it+h(τi)=β′
i0 x̃∗it+h(di)+ρ′i x̃∗it+h(ϑi)

+
p∑

j=1

(
B1 j(θi)−ρ′iB2 j(θi)

)(
z̃∗it+h− j(τi)−ζβ′

i0 x̃∗it+h− j(di)
)

+ ṽ∗1it+h (di −di0)−ρ′i ṽ∗2it+h (ϑi −ϑi0) , (22)

in which both the dependent variable and regressors need to be forecast. This error-

correction representation of the system may form the basis of iterative forecasts,

including in the case of possible fractional cointegration among the original series yit

and xit, in which case the cointegration can potentially be used to improve forecasting

performance. In general, the h-step-ahead iterative forecast error exhibits an MA(h−
1) structure in the usual way, in addition to stationary long-range dependence as

discussed for (18). For the iterative forecasting scheme, a vector autoregressive

moving average (VARMA) specification or seemingly unrelated regression estimation

(SURE) can be used, as in Pesaran et al. (2011). However, VARMA models are not

commonly used in practice and can have stability and convergence problems in the

face of large-dimensional data.

A. Panel Diebold-Mariano test

In order to construct the test statistic, we concentrate on the direct forecasting scheme

and give the details accordingly. This is due to the fact that for iterative forecasting,

the same asymptotic arguments follow under Assumption B by taking further into

account the resulting MA forecast errors, and the main ideas are better motivated

under the direct scheme whose treatment avoids further notational complexity.

We use ỹ∗ih(τi) = m−1 ∑m+h
t=h+1 ỹ∗it(τi) as a consistent estimator for E

[
ỹ∗it(τi)

]
, focusing
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on information in the evaluation sample. Denote

uit+h(τi)= ỹ∗it+h(τi)− ỹ∗ih(τi). (23)

Then, to be able to work with the forecasting functions ỹ∗it+h|t(τi) and ˆ̃y∗it+h|t(τ̂i), we

adapt conditions used by Breitung and Knüppel (2018) to our panel setting in the

following.

Assumption C (Forecasting functions).

1. Under the null hypothesis in (19), uit+h(τi) is independent of the estimation error;
E [uit+h|τ̂is −τi]= 0 for all i and s = t, t−1, . . . .

2. The parameter vector τi is consistently estimated and the convergence rates satisfy
τ̂i0 −τi =Op(T−1/2) and τ̂it − τ̂i0 =Op(

p
t/T), t = 1, . . . ,m.

Assumption C.1 states that the time series is not predictable given the information

set at time t which includes the estimation error τ̂it −τi and is implied by (19). The

conditions in Assumption C.2 set the usual convergence rate in the in-sample period

and limit the variation in the recursive estimation, respectively. The first condition in

Assumption C.2 is shown to be satisfied using conditional-sum-of-squares estimation

for memory parameters under Assumptions A and B by Ergemen (2019).

Note also that we can only observe the actual forecast error,

ê it+h|t(τ̂i) := ˆ̃y∗it+h(τ̂i)− ˆ̃y∗it+h|t(τ̂i)

= ˆ̃v∗1it+h
(
d̂i −di0

)− ρ̂′i ˆ̃v∗2it+h
(
ϑ̂i −ϑi0

)
. (24)

Define the loss differential for fixed i as

ϕ̂h
it = ê2

it+h|t(τ̂i)− û2
it+h(τ̂i)

and let ω̂2
ϕ denote the consistent long-run variance estimator with long-memory/anti-

persistence correction (MAC) due to Robinson (2005) applied to ϕ̂h
it. Then we can

construct a Diebold-Mariano type test as

DMih = m1/2−κ̂i
1

ω̂ϕm

m∑
t=1

ϕ̂h
it (25)
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for i = 1, . . . ,n, where κ̂i is a consistent estimator of the integration order of the

squared loss differential ϕ̂h
it, which may be determined cf. Propositions 2-4 of Kruse

et al. (2018). Here, it is important to note that under Assumptions A and B, Ergemen

(2019) establishes the
p

T-consistency of both individual memory estimates, d̂i and

ϑ̂i, so if we consider, e.g., the full-sample estimation, κ̂i also enjoys the
p

T-consistency

under any scenario prescribed in Propositions 2-4 of Kruse et al. (2018). This means

that for all i, the (logT)(κ̂i −κi) = op(1) condition as imposed by Robinson (2005)

and Abadir, Distaso, and Giraitis (2009) for consistent estimation of ω2
ϕ is naturally

satisfied. In practice, it can be much simpler to estimate κi by resorting to semi-

parametric, e.g., local Whittle, methods.

It should be noted that it is also possible to consider a modified version of (19) for

comparing the model forecast to an external forecast if we write

H†
0 :E

[
e2

it+h|t(τi)
]
≥E

[
ξ2

it+h|t
]

, (26)

where ξ2
it+h|t corresponds to the squared forecast error resulting from an external

forecast, e.g., a survey, for cross-section unit i. The methodologies described here can

be adapted to test (26), noting that the memory of the loss differential, κi, needs to be

estimated in this case. It cannot be deduced based on the model memory parameter

estimates, since the memory transmission rules listed in Kruse et al. (2018) are no

longer guaranteed to apply.

To study the asymptotic behavior of the test statistic, we further impose the following

rate conditions.

Assumption D (Rate conditions for DM type test). As (n,T,m) j →∞,

m1/2−κi n−1 +m1/2−κi n−1/2T−1/2 +m3/2−3κi T−1/2 → 0

and κi ∈ (−1/2,1/2) for all i.

The requirement on the relative asymptotic size of the number of forecasts and the

number of cross-section units, m1/2−κi n−1 +m1/2−κi n−1/2T−1/2 → 0, is to control for the

projection error, see Appendix C. The condition m3/2−3κi T−1/2 → 0 ensures that the

first-order approximations of conditional forecasts depending on estimated memory

parameters around the true memory parameters work well, imposing that there
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is enough information gathered in the estimation period so that forecasts can be

evaluated in the following m periods. The condition on κi is imposed in order to

include the case where the predictive accuracy comparison is made to an external

forecast, i.e., when testing (26) (it is automatically satisfied when testing the null

in (19)). This condition also enables the estimation of the long-run variance of the

loss differential using readily available techniques such as local Whittle methods, see

Robinson (2005) and Abadir et al. (2009).

The following result establishes the asymptotic distribution of the test statistic in

(25).

Theorem 1. Under Assumptions A-D and H0 in (19), as (n,T,m) j →∞,

DMih ⇒ |wi|
2

,

for fixed i, where wi is a standard normally distributed random variable.

This result states that for each cross-section unit i, the Diebold-Mariano type (hence-

forth DM) test statistic converges weakly to a random variable that has an asymptotic

half-normal distribution with unit variance under the null hypothesis in (19). Bre-

itung and Knüppel (2018) obtain the same limiting result, but under a setup in which

the series and thus the forecasts are I(0) time series, imposing only that m/T → 0

as both m and T diverge, in contrast to our Assumption D. Therefore, showing the

result in Theorem 1 is quite different under our setup, particularly because of the

estimation of the long-run variance, due to the allowance for long memory as well as

the proxying for the common-factor structure in the panel.

Corollary 1. Under the conditions of Theorem 1,

2DMih
d−→ |N(0,1)|,

�DM ih = m1−2κ̂i
1

ω̂2
ium

m∑
t=1

ϕ̂h
it

d−→ χ2
1,

for fixed i, where ω̂2
iu is a consistent long-run variance estimator of uit+h as defined in

(23).

These two test statistics are in spirit of the adjusted DM test statistic in (25) and

are direct consequences of the result in Theorem 1. It is important to note here that
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the null hypothesis is rejected for smaller values of the test statistic �DM ih, which

contrasts with most chi-squared distributed test statistics, see also Breitung and

Knüppel (2018) for a discussion.

The DM type test statistic in (25) can be adopted for use under (26), yielding the same

asymptotic properties, if we replace ϕ̂h
it by ϕ̂h†

it defined as

ϕ̂
h†
it = ê2

it+h|t(τ̂i)− ξ̂2
it+h|t,

where ξ̂2
it+h|t is the (actual) observed squared forecast error from the external forecast,

and ω̂2
ϕ by ω̂2

ϕ†, obtained by applying the MAC estimator to ϕ̂h†
it .

B. Panel encompassing test

The DM type and related test statistics considered so far encounter size problems

in small samples due to the null in (19) being rejected for small values of the test

statistic, see also Breitung and Knüppel (2018) and our simulation results in Section

IV. Furthermore, the rate condition m3/2−3κi T−1/2 → 0 in Assumption D can be too

stringent, particularly when κi ∈ (−1/2,0). To offer a remedy, we reformulate the null

hypothesis as

H′
0 :E

[(
ỹ∗it+h(τi)− ỹ∗it+h|t(τi)

)(
ỹ∗it+h|t(τi)− ỹ∗ih(τi)

)]
= 0, (27)

which, for a rational forecast satisfying E
[

ỹ∗it+h(τi)− ỹ∗it+h|t(τi)
∣∣ ỹ∗it+h|t(τi)

]
= 0, is

equivalent to (19). The null hypothesis is rejected when there is positive correlation

between ỹ∗it+h(τi) and ỹ∗it+h|t(τi). To motivate this further, writing

m∑
t=1

ϕh
it =

m∑
t=1

[
ỹ∗it+h(τi)− ỹ∗ih(τi)− ( ỹ∗it+h|t(τi)− ỹ∗ih(τi))

]2 −
(
ỹ∗it+h(τi)− ỹ∗ih(τi)

)2

=
m∑

t=1

(
ỹ∗it+h|t(τi)− ỹ∗ih(τi)

)2 −2
m∑

t=1

[
( ỹ∗it+h(τi)− ỹ∗ih(τi))( ỹ∗it+h|t(τi)− ỹ∗ih(τi)

]
shows the link to the DM type test statistic. The covariance between ỹ∗it+h(τi) and

ỹ∗it+h|t(τi) plays the key role in terms of deciding the power of the test, since the first

term is non-negative.
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Our approach may be considered as a one-sided Mincer-Zarnowitz regression,

ỹ∗it+h(τi)=φi0,h +φi1,h ỹ∗it+h|t(τi)+ e it+h,

in which we test φi1,h = 0 versus φi1,h > 0 for fixed i and unrestricted φi0,h. In the

literature, the errors from similar regressions are typically mean zero I(0) processes,

and this is asymptotically so for e it+h in our setup, given the consistency of τ̂i. We

consider the null as one of uninformativeness of the forecast, whereas Mincer and

Zarnowitz (1969) focused on the joint null of informativeness and unbiasedness,

φi1,h = 1 and φi0,h = 0. Our test can also be seen as a forecast encompassing test by

writing

ỹ∗it+h(τi)=ψih ỹ∗it+h|t(τi)+ (1−ψih) ỹ∗ih(τi)+ e it+h

ỹ∗it+h(τi)− ỹ∗ih(τi)=ψih( ỹ∗it+h|t(τi)− ỹ∗ih(τi))+ e it+h,

since testing for φi1,h = 0 is the same as testing for ψih = 0. Further, in analogy with

Breitung and Knüppel (2018), our DM type statistics can be interpreted as likelihood

ratio tests of the uninformativeness null in the Mincer-Zarnowitz or encompassing

regressions, against the joint informativeness and unbiasedness alternative.

We focus here on the encompassing type test statistic given by

%ih = m1/2−υ̂i
1

ω̂Ξm

m∑
t=1
Ξ̂h

it, (28)

essentially an LM type statistic, where

Ξ̂h
it = ( ˆ̃y∗it+h(τ̂i)− ˆ̃y∗ih(τ̂i))( ˆ̃y∗it+h|t(τ̂i)− ˆ̃y∗ih(τ̂i)),

υ̂i is a consistent memory estimate of Ξ̂h
it satisfying (logT)(υ̂i −υi)= op(1), and ω̂2

Ξ is

the MAC-robust long-run variance estimator of Robinson (2005) applied to Ξ̂h
it. We

impose the following condition to study the asymptotic behavior of the test statistic in

(28).

Assumption E (Rate conditions for encompassing type test). As (n,T,m) j →
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∞,

m1/2−υi n−1 +m1/2−υi n−1/2T−1/2 +mT−1 → 0,

and υi ∈ (−1/2,1/2) for all i.

The first two terms ensure that the projection errors in the panel setting do not

have any asymptotic contribution, see Appendix C. The third condition, m/T → 0, is

standard and is also imposed by Breitung and Knüppel (2018). It simply states that

the out-of-sample length must be smaller than the in-sample length so that there is

enough information at hand for prediction.

The next result establishes the asymptotic behavior of the encompassing type test.

Theorem 2. Under Assumptions A-C and E, H′
0 in (27), and a recursive estimation

scheme, as (n,T,m) j →∞,

%ih
d−→ N(0,1),

for fixed i.

The null in (27) is rejected when %ih is large compared to the critical value from the

standard normal distribution.

Given our panel setup, it is interesting in addition to analyze the cross-sectional

average of the test statistic in (28). Noting that, as n →∞, the projection errors, of

size Op(n−1 + (nT)−1/2), become op(1), making the cross-section units asymptotically

independent of each other under Assumption B.2. Thus, the individual %ih test

statistics are asymptotically approximately independent for large n. Thus, we can

simply consider the test statistic

%h := n−1/2
n∑

i=1
%ih, (29)

based on the first result in Theorem 2, in a similar spirit to the CIPS test statistic

proposed by Pesaran (2007). We present the asymptotic behavior of %h in the next

result.
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Theorem 3. Under the conditions of Theorem 2,

%h
d−→ N(0,1).

Theorem 3 shows that the cross-sectionally averaged test statistic is asymptotically

distributed as standard normal, under the conditions of Theorem 2. Note that

although %h uses equal weighting, it is also possible to allow for different weights

for cross-section units, as in Chudik et al. (2016), and the asymptotic normality

result in Theorem 3 still holds under suitable conditions imposed on the weights,

see, e.g., Pesaran (2006), although in this case the asymptotic mean and variance

are characterized based on those weights. It would be also possible to consider the

combination of p-values of the individual encompassing test statistics. For example,

the inverse chi-squared test statistics defined by

P(n,T)=−2
n∑

i=1
ln(piT),

where piT , the p-value corresponding to cross-section unit i, see also Pesaran (2007),

can be used when n is large.

C. Local power analysis

In order to study the local power properties of DM and encompassing type tests, we

work with a restricted version of (16) in which ρ i = 0 and B j(θi)= 0, for all i, so that

we end up with a predictive regression setup taking h = 1,

ỹ∗it+1(τi)=β′
i0 x̃∗it(di)+ ṽ∗1it+1 (di −di0) . (30)

Our choice in (30) is motivated by a desire to contrast our setup to the popular

predictive regression setup in the literature, and we present Monte Carlo results and

an empirical application to this case in the following sections.

Under Assumptions A.1 and B.2, using the asymptotic independence of ṽ∗1it+1 (di −di0)
and {x̃∗it(di), x̃∗it−1(di), . . .}, as T →∞, we have that

E

[(
ỹ∗it+1(τi)− ỹ∗i1(τi)

)2
]
=σ2

v1
+β2

i0σ
2
x.
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So, if βi0 6= 0, the forecast is informative, and �DM i1 and %i1 are Op(m−1/2). Accordingly,

both DM and encompassing type tests are consistent against fixed alternatives βi0 6= 0.

We consider local alternatives of the form βi0 = ci/
p

m, for all i, extending the case in

Breitung and Knüppel (2018) to the panel setup with factor projection and long-range

dependence. It is also possible to consider deviations in short/long-range dependence,

as well as contemporaneous correlation parameters, but we focus on the simplest case

to show our tests have nontrivial local power.

In relation to the aggregate test statistic in (29), we note that it is possible to allow for

ci = 0 for some non-negligible, but non-dominating, fraction of the cross-section units,

as in Su and Chen (2013), under further regularity conditions, but this is beyond the

scope of the current paper.

The next result establishes the local asymptotic behavior of both DM and encompass-

ing type test statistics.

Theorem 4. Under the conditions of Theorem 2 for �DMi1 and additionally imposing
m/

p
T → 0 for %i1, and βi0 = ci/

p
m in (30), as (n,T,m) j →∞,

�DMi1
d−→ w2

1i −2ηiw2i −η2
i (31)

%i1
d−→ sign(ci)w2i +ηi (32)

for fixed i where η2
i = c2

iσ
2
x/σ2

v1
is the signal-to-noise ratio and w1i and w2i are two

independent standard normally distributed random variables.

This result states that both DM and encompassing type test statistics have non-trivial

power against local alternatives. The rate condition is the same as the one imposed

in Theorem 4 of Breitung and Knüppel (2018) under the alternative model considered

in (30) since it carries along the error term ṽ∗1it+1 (di −di0) , which is stationary under

Assumption A.1. Figure 1 depicts the resulting power curves for ci ≥ 0 for three

conventional significance levels. In each case, the DM type test is more powerful in

the vicinity of the null than the encompassing style test, whereas the encompassing

type test is most powerful when the signal-to-noise ratio grows large. Note also that

the power curves are symmetric in c since the asymptotic distribution in (31) and (32)

is unchanged by replacing w2 with −w2.
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IV. Monte Carlo study

In this section, we carry out a Monte Carlo experiment to study the finite-sample

properties of our proposed tests. The simulation experiment builds upon the setup con-

sidered by Ergemen (2019). We simulate scalar yit and xit and draw the idiosyncratic

vector (ε1it,ε2it)′ as standard normal with covariance matrix

Ω=
(
a11 a12

a21 a22

)
,

with signal-to-noise ratio s = a22/a11 and correlation ρ = a12/(a11a22)1/2. Without

loss of generality, we set a11 = 1 and introduce short-memory dynamics via B1(θi)=
diag{θ1i,θ2i}. We generate a serially correlated common factor via f t = 1/2 f t−1+∆−δ

t z f
t

based on iid innovations z f
t drawn as standard normal and then fractionally integrated

to the order δ. The individual fixed effects are left unspecified since they are removed

via first differencing and projections are based on the first-differenced data. We then

obtain yt+1 from the general DGP

yit+1 =αi +βi0xit +λi f t +∆−di0
t+1 ε1it+1,

xit =µi +γi f t +∆−ϑi0
t ε2it.

(33)

Under the null, yit+1 is obtained by setting βi0 = 0, θ1 = θ2 = 0, and ρ = 0 for all i,
whereas forecasts are based on the predictive model including xit as a predictor. This

model is estimated recursively, using information known through t, and forecasts

are made in a direct manner according to (17). We employ an alternative that fixes

θ1 = θ2 = 0 and ρ = 0. The memory orders κi and υi of the loss series ϕ̂h
it and Ξ̂h

it are

estimated on the evaluation sample with the CSS parametric estimator from Ergemen

and Velasco (2017). We consider two choices of bandwidth length, bmqc, in the MAC

estimator, setting q = 3/5 and q = 4/5, where the latter corresponds to the MSE

optimal boundary (Abadir et al., 2009). We focus on different cross-section, in-sample

and out-of-sample sizes, n,T, and m, and consider di0 = 0.4,1 and ϑi0 = 0.4,0.7,1. For

this study, we fix s = 1 and d∗ = 1. Simulations are carried out via 20,000 replications.

In terms of size, Tables 1 and 2 report results for the DM style tests from Corollary 1,

2DMih and �DM ih, respectively, with n = 20 and various combinations of the length of

the in-sample and out-of-sample windows. The DM style tests suffer from considerable
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oversizing. This is not entirely surprising, since the critical values of the half-normal

and the χ2
1 distribution are very close to zero, leaving a considerable amount of

probability mass in the vicinity of the critical values. That is, small asymptotically

negligible terms may have a large impact on the size of the test. These results are also

consistent with the findings in Breitung and Knüppel (2018). On the contrary, from

Table 3, the size properties of the encompassing style test from Theorem 2, which

rejects for large, positive values in the standard normal distribution, are much more

reasonable, though somewhat conservative. The choice of bandwidth in the MAC

estimator has little impact on the size properties of the Diebold-Mariano style tests,

whereas the encompassing style test provides the best results when q = 3/5.

To examine the power properties of the tests, we consider a local departure from the

null via βi0 = ci/
p

m, motivated by the analysis of the local alternative in Theorem 4.

For ease of exposition, we analyse the case in which the tests depart from the null

for all i with ci = 2 and ci = 5, corresponding to βi0 = 0.2 and βi0 = 0.5, respectively,

for m = 100. The second of the two values of βi0 is similar to that in Breitung and

Knüppel (2018). Tables 4 and 5 show that when the departure from the null is

proportional to ci = 2, the power of the Diebold-Mariano style test is reasonably high,

while the power of the encompassing style test (cf. Table 6) is moderate at the 5%

and 10% significance levels and quite low otherwise. Increasing the length of the

in-sample and out-of-sample window generally improves power. Also, q = 3/5 provides

the best results. When ci = 5 (Tables 7-9), the power of both Diebold-Mariano and

encompassing style tests is generally high. According to the local power analysis in

Theorem 4, the Diebold-Mariano and encompassing style tests have local asymptotic

power equal to 76.2 and 63.0, respectively, for ci = 2 and 99.0 and 99.9, respectively,

for ci = 5 and the given parameter values. These theoretical predictions correspond

well to the experimental findings reported in Tables 4-9. Finally, Table 10 reports size

and power properties for the pooled test statistic in (29). Its size properties are quite

conservative, but the local power is high for both choices of ci.

V. Predictive relation between stock market volatility and
economic policy uncertainty

The relation between stock market return volatility and political uncertainty has

gained considerable interest in the literature. Recent structural models of Pástor and
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Veronesi (2012, 2013) (PV) show that increasing uncertainty about economic policy

makes stocks more volatile. The main reason is that as uncertainty about government

policy actions increases, stock markets become unsettled in view of the uncertain

prospects of the economy. Such political uncertainty may be triggered by, among

other things, elections (see, e.g., Bialkowski et al. (2008)) or economic crises (see,

e.g., Schwert (1989) and Bittlingmayer (1998)). It may arguably be prominent not

only in the USA, but also in Europe and the developing countries. In this empirical

application we apply our methodology to the predictive relation between stock market

volatility and economic policy uncertainty (EPU) in a multi-country panel analysis,

treating the former as the forecast objective and the latter as the predictor. We use

the Baker et al. (2016) EPU indices for 14 countries, quantifying newspaper coverage

of policy-related economic uncertainty in a given month. We compute the realized

volatility (RV) from daily returns on each stock market index within the month,

obtained from Global Financial Data and Yahoo! Finance (see, e.g., Chernov (2007),

Rapach et al. (2013), and Luo and Qi (2017) for use of similar data sources). The data

set spans the time period 2001-2017, totalling 204 time series observations. We find

that both RV and EPU exhibit cross-sectional variation in volatility characteristics,

which we take into account by standardizing within country so that valid comparisons

can be made on the estimates. Figure 2 depicts RV and EPU. Both series show spikes

in accordance with the global financial crisis. The EPU of the UK rose sharply in 2016

at the time of the Brexit referendum and has remained elevated since then. Table 11

reports the full-sample integration order of RV and EPU for each country. Both RV

and EPU are found to exhibit long-range dependence with integration orders in the

neighborhood of 0.5. The estimates are strongly significant and exhibit cross-sectional

variation, thus calling for the methods outlined in this paper.

Following PV, we specify a linear relation between RV and EPU, including a first-order

short-range dependent component of RV,

RVit =αi +βiEPUit +θiRVit−1 +λ′
i f t +∆−di

t ε1it,

EPUit =µi +γ′i f t +∆−ϑi
t ε2it.

(34)

In the analysis, we allow for an unobserved common factor structure that on average

captures other relevant indicators for the study. This allowance can be considered

a more flexible way of modelling the relation between RV and EPU, appropriately
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controlling for relevant factors, as opposed to adding separate observable series. We

also allow the innovations of RV and EPU to carry correlation after accounting for

this common factor structure. For example, Bittlingmayer (1998) notes that the

highly volatile stock markets of the 1930s in the USA may very well have reflected a

non-negligible probability that the USA would “go socialist”, whereas a critic would

argue that the highly volatile markets were driven mainly by the business cycle,

eventually causing uncertainty about government (in)actions as response (Schwert,

1989).

With these specifications, we estimate (34) to get the results collected in Table 12 for

a contemporaneous analysis. For comparison with PV, we also report estimates of the

coefficient on EPU from a short-range regression of RV on EPU and its own lag. The

structural model of PV suggests that the contemporaneous relation should be positive.

The results indicate a positive relation for most countries, which is significant at

conventional levels for Australia, Canada, Greece, Ireland, Japan, and Mexico. Across

the entire panel, the average (mean-group) estimate is 0.025 with a (one-sided) p-

value of 0.086. Interestingly, the relation is insignificant for the USA, which contrasts

with the findings in PV of a strongly significant relation (also confirmed in our data

set when applying their procedure, cf. Table 12). Our results differ in this regard

because we account for the evident long-range dependent features in the data to

obtain consistent slope estimates, and control for possible endogeneity of EPU with

respect to RV, as well as for other relevant (global) factors.

Given the presence of this contemporaneous relation, which is the only one studied

in PV, it is natural to ask whether it also translates into a predictive relation with

relevance for, e.g., risk management, asset allocation, and policy-making. For instance,

market unsettlement driven by current political uncertainty may likely persist for

several periods. Specifically, we ask whether EPU is informative about future RV.

To examine this, we construct direct forecasts with an expanding estimation scheme

based on (17) and the same specification as above. We set the initial in-sample

window to the 2001-2007 pre-crisis period, and for h = 1,2,3,6,9,12 construct the

first forecast for month h of 2008. This splits data roughly equally, matching the

parameter choices in the simulation study in Section IV. Based on the findings in

the simulation study, we use the encompassing type %ih statistic from (28) with MAC

bandwidth bm3/5c for inference on uninformativeness of EPU for future RV. Table 13
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reports the results. We find that the contemporaneous relation documented above

generally does not translate into an out-of-sample predictive relation. On the basis

of our proposed inferential framework, uninformativeness of EPU for future RV is

only rejected at conventional levels for the UK (h = 1), Greece (h = 3), Spain (h = 6),

Mexico (h = 6), and Australia (h = 12). Moreover, the pooled statistic %h does not

reject uninformativeness across the entire panel for any of the forecast horizons.

Assuming that no factor structure is present, Panel B of the table, there is some

evidence of informativeness of EPU for future RV in the case of Canada, Spain,

Greece, Japan, and Mexico at various forecast horizons. Indeed, the pooled statistic

rejects uninformativeness at the 10% level for one-quarter and one-year ahead forecast

horizons. This suggests that some (weak) informativeness of EPU for future RV is

contained in the common (international) component, leaving, however, the domestic

predictive relation mostly non-existent when accounted for (Panel A). We also ran the

procedure including the global crisis period in the initial in-sample window such that

the first forecast is constructed for month h of 2010. Conclusions were qualitatively

unaltered.

In summary, our panel-wide treatment of the relation between stock market volatility

and economic policy uncertainty generally supports the logic from PV of a contempo-

raneous relation between economic political uncertainty and stock market volatility.

However, after a proper account of common factors (obtained from the panel struc-

ture of the data) as well as the presence of long-range dependence, the relation in

the USA is insignificant, in contrast to the finding obtained using the short-range

dependence, univariate procedure in PV. Moreover, using the encompassing style

test of the present paper, we find only weak evidence of informativeness in economic

policy uncertainty for future stock market volatility, and it is mainly contained in the

common factor structure. These results demonstrate the importance of long-range

dependence treatments in practice and underpin the value of panel data modelling.

VI. Concluding remarks

This paper develops a forecast evaluation framework for testing the null hypothesis

that model-based forecasts at a given horizon are uninformative in panels under

potential long-range dependence. We consider the fractionally integrated panel
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data system of Ergemen (2019) with individual stochastic components, cross-section

dependence, and endogenous predictors. In this setup, a Diebold-Mariano style test

statistic has a half-normal asymptotic distribution, but suffers from oversizing in

finite samples. For an equivalent null hypothesis, an alternative test derived from

the encompassing principle is reasonably sized. Both tests have non-trivial power for

local departures from the null. We also provide natural generalizations for evaluating

pooled uninformativeness of the model-based forecasts in the entire panel.

An interesting direction for future research is the estimation of the fractionally

integrated latent factor structure. Estimates of the factors may be used in a plug-in

scheme to exploit the potential predictive content in the factors themselves, see, e.g.,

Gonçalves et al. (2017). Asymptotic results for such factor estimates are, however, yet

to be developed. Moreover, although our model framework allows for heterogeneity

in parameters, it is not necessarily given that this results in superior forecasting

performance relative to a homogeneous specification, see, e.g., Baltagi (2013). A

thorough analysis of the relative merits of the two specifications is left for future

research. Finally, it is also common in macroeconomics to employ a univariate

autoregressive model as benchmark in forecasting exercises, see, e.g., Stock and

Watson (2003), and our framework can be extended to this case, too.
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B. Empirical results

Table 11: Parametric CSS estimates of the integration orders
This table reports the full-sample parametric conditional-sum-of-squares
(CSS) estimation results for the integration orders of the indicators across
countries. RV and EPU stand for realized volatility and economic policy
uncertainty, respectively. The standard error of these estimates is 0.055.
Superscripts ***, **, and * correspond to statistical significance at the 1%,
5%, and 10% levels, respectively, for a one-tailed hypothesis test against
positive alternatives.

Country RV EPU

USA 0.686*** 0.651***

Australia 0.612*** 0.615***

Brazil 0.610*** 0.568***

Canada 0.641*** 0.665***

Germany 0.497*** 0.570***

UK 0.628*** 0.642***

France 0.595*** 0.577***

Spain 0.594*** 0.587***

Greece 0.470*** 0.668***

Hong Kong 0.631*** 0.526***

Ireland 0.590*** 0.486***

Japan 0.510*** 0.721***

Mexico 0.618*** 0.680***

Sweden 0.664*** 0.690***
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Table 12: Estimates in contemporaneous model
This table reports estimates of the slope parameter, βi0, and memory orders
of the errors, di0 and ϑi0, across countries. Estimations are performed by
CSS based on (34) over the full sample, covering 2001-2017. Projections
are carried out with d∗ = 1. The last column (PV) reports estimates of the
slope parameter from a regression similar to Pástor and Veronesi (2013),
including a first-order autoregressive term. Robust standard errors are
reported in parenthesis. Superscripts ***, **, and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively, for a one-tailed
hypothesis test against positive alternatives.

Country β̂i ϑ̂i d̂i PV

USA 0.028
(0.025)

0.489
(0.464)

0.372
(0.326)

0.216
(0.144)

*

Australia 0.043
(0.025)

** 0.483
(0.518)

0.521
(0.372)

* 0.239
(0.131)

**

Brazil 0.051
(0.040)

0.467
(0.638)

0.600
(0.592)

−0.047
(0.066)

Canada 0.097
(0.025)

*** 0.494
(0.427)

0.601
(0.355)

** 0.057
(0.177)

Germany −0.125
(0.051)

0.366
(0.516)

0.545
(0.755)

−0.136
(0.063)

UK 0.015
(0.019)

0.554
(0.427)

* 0.425
(0.280)

* −0.039
(0.075)

France −0.076
(0.031)

0.491
(0.462)

0.383
(0.442)

0.055
(0.102)

Spain −0.034
(0.034)

0.424
(0.613)

0.448
(0.466)

0.258
(0.100)

***

Greece 0.118
(0.042)

*** 0.489
(0.537)

0.559
(0.624)

0.220
(0.104)

**

Hong Kong −0.011
(0.036)

0.395
(0.716)

0.446
(0.498)

0.097
(0.093)

Ireland 0.070
(0.030)

** 0.319
(0.794)

0.383
(0.459)

0.017
(0.082)

Japan 0.090
(0.042)

** 0.595
(0.539)

0.455
(0.613)

0.320
(0.175)

**

Mexico 0.059
(0.031)

** 0.589
(0.526)

0.447
(0.448)

0.139
(0.139)

Sweden 0.022
(0.024)

0.434
(0.612)

0.505
(0.352)

* 0.138
(0.102)

*

44



Table 13: Test of uninformativeness of economic policy uncertainty
This table reports %ih and %h statistics based on an expanding window estimation scheme
of (34) and direct forecasts at h = 1,2,3,6,9,12 monthly horizons. The initial in-sample
window is the 2001-2007 period, with first forecast generated for January 2008. Panel A
performs estimations and forecasts under the assumption of the presence of an unobserved
common factor structure, where projections are carried out with d∗ = 1. Panel B assumes no
unobserved common factor structure. Superscripts ***, **, and * correspond to statistical
significance at the 1%, 5%, and 10% levels, respectively.

Country h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

Panel A: Allowing for a common factor structure
USA -2.213 -1.471 -1.147 -0.161 -1.605 -0.450
Australia -1.493 -1.184 0.861 -0.442 0.874 2.124**

Brazil -1.425 -0.244 0.700 0.702 -1.179 1.037
Canada 0.621 1.242 -0.075 0.144 0.412 0.050
Germany -0.698 0.310 0.991 -0.754 -3.691 -0.506
UK 2.206** -0.365 0.469 -2.230 -1.046 -0.374
France -1.452 -0.290 -0.886 0.874 -1.413 0.395
Spain -1.415 -2.248 0.087 1.894** -0.773 0.245
Greece 0.353 0.595 2.011* 1.457 -0.431 -0.561
Hong Kong 0.048 -0.825 0.119 -1.072 -1.251 -0.013
Ireland -0.066 -0.169 -1.865 -0.284 0.079 1.141
Japan -1.920 0.054 -0.888 0.193 -0.633 -0.746
Mexico -0.969 -0.933 1.105 1.335* 0.567 0.154
Sweden 0.139 0.379 -1.556 0.093 -1.187 0.993

%h -2.214 -1.376 -0.020 0.467 -3.014 0.932
Panel B: Assuming no common factor structure

USA -1.356 -0.341 -0.397 -1.663 0.596 -1.239
Australia 0.548 -0.775 1.184 -1.991 -0.039 1.161
Brazil 0.186 0.067 0.780 1.518 -0.847 -1.562
Canada 0.827 1.422* 1.370* 2.121** 1.806** 1.198
Germany -0.326 0.650 -1.487 1.063 -1.197 1.293*

UK -0.068 0.134 0.638 0.266 0.271 1.430*

France -1.012 -1.088 -0.958 -0.297 -1.415 0.400
Spain 0.664 -0.174 1.709** 1.822** -0.596 1.544*

Greece 1.394* -2.006 1.576* 0.054 0.096 0.023
Hong Kong 0.236 -0.739 0.271 -0.080 0.852 0.391
Ireland -1.170 -0.750 -1.210 -0.955 -0.127 0.423
Japan 1.907** -0.136 1.491* -1.592 0.602 -0.371
Mexico -1.167 -1.126 1.376* -0.162 0.283 1.619*

Sweden -0.563 0.779 -0.608 -1.002 0.416 -0.472

%h 0.027 -1.091 1.533* -0.240 0.187 1.559*



B. Figures

Figure 1: Local asymptotic power curves for �DMi1 and %ih
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This figure depicts the local asymptotic power curves
for �DMi1 and %ih based on Theorem 4. The significance
level used in each figure (10% (upper figure), 5% (mid-
dle figure), and 1% (lower figure)) is indicated by the
horizontal dashed black line.
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Figure 2: Stock market volatility and political uncertainty
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Figure 2 (Cont.): Stock market volatility and political uncertainty
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This figure depicts international stock market volatility and economic political uncer-
tainty. In each figure, the solid green line plots the realized volatility of each country’s
stock market index, and the dashed orange line plots the economic policy uncertainty
(EPU) index of Baker et al. (2016). The EPU is scaled to the same mean and variance as
realized volatility within each figure. Realized volatility is computed monthly from daily
returns within the month. The figures depict each variable’s six-month moving average
between January 2001 and December 2017.



C. Proofs

We here prove the theoretical results presented in the main text, along with an
auxiliary lemma.

Proof of Theorem 1. Given the parameter consistency arguments derived in Erge-
men (2019), ϕ̂h

it is a consistent estimator for ϕh
it. First, it can be easily verified

that

V ar

(
1
m

m∑
t=1

ϕh
it

)
∝O(1+m2κi−1),

see, e.g., the proofs of Theorems 1 and 2 of Ergemen and Velasco (2017) for a similar
treatment, so

V ar

(
1

mκi−1/2
1
m

m∑
t=1

ϕh
it

)
∝O(1).

Under Assumptions A-B, Ergemen (2019) establishes that the projected series incurs
a projection error of size Op(n−1 + (nT)−1/2). Given that the test statistic is based on
the projected series and has a m1/2−κi convergence rate, we need to account for the
projection error that becomes of size

Op

(
m1/2−κi n−1 +m1/2−κi n−1/2T−1/2

)
= op(1)

if m1/2−κi n−1 +m1/2−κi n−1/2T−1/2 → 0 as (m,n,T) j →∞.

Next, we analyze the asymptotic behavior of the test statistic under the null in (19).
Define D it+h(τi)= ∂ ỹ∗it+h|t(τi)/∂τi. Applying the Mean Value Theorem,

ỹ∗it+h|t(τ̂it)= ỹ∗it+h|t(τi)+D it+h(τ̄it)(τ̂it −τi)
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for some τ̂it ≤ τ̄it ≤ τi, so, for fixed i,

ϕh
it = [uit+h(τi)+D it+h(τ̄it)(τ̂it −τi)]2 − (uit+h(τi)−uih(τi))2

= (uit+h(τi))2 − (uit+h(τi)−uih(τi))2

+2uit+h(τi)D it+h(τ̄it)(τ̂it −τi)+D it+h(τ̄it)2(τ̂it −τi)2

= uih(τi)(2uit+h(τi)−uih(τi))

+2uit+h(τi)D it+h(τ̄it)(τ̂it −τi)+D it+h(τ̄it)2(τ̂it −τi)2 (C.1)

where uih(τi)= m−1 ∑m+h
t=h+1 uit(τi) and

τ̂it −τi = (τ̂it − τ̂i0)+ (τ̂i0 −τi)=Op(T−1/2)

under Assumption C.2. Then,

1
m

m∑
t=1

ϕh
it = uih(τi)

2 + 2
m

m∑
t=1

uit+h(τi)D it+h(τ̄it)(τ̂it −τi)+ 1
m

m∑
t=1

D it+h(τ̄it)2(τ̂it −τi)2

= uih(τi)
2 +Op(T−1/2)+Op(T−1)

= uih(τi)
2 +Op(T−1/2)

by Lemma A under Assumptions A.1 and C. Then using (C.1),

1
mκi−1/2

1
m

m∑
t= j+1

ϕh
itϕ

h
it− j

= 1
mκi−1/2

(
1
m

uih(τi)
2 m∑

t= j+1
(2uit+h(τi)−uih(τi))(2uit+h− j(τi)−uih(τi))+Op(T−1/2)

)

= 1
mκi−1/2

(
1
m

uih(τi)
2
[(

m∑
t= j+1

4uit+h(τi)uit+h− j(τi)

)
−3muih(τi)

2
]
+Op(T−1/2)

)

= 1
mκi−1/2

(
4uih(τi)

2
(

1
m

m∑
t= j+1

uit+h(τi)uit+h− j(τi)

)
+Op(m−2)+Op(T−1/2)

)

= 4uih(τi)
2
(

1
mκi−1/2

1
m

m∑
t= j+1

uit+h(τi)uit+h− j(τi)

)
+Op(m−κi−3/2)+Op(m1/2−κi T−1/2),

reasoning as before. Hence,

ω̂2
ϕ = 4uih(τi)

2
ω̂2

iu +Op(m1/2−κi T−1/2).
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So the test statistic can be written as

DMih = m1/2−κ̂i
uih(τi)

2 +Op(T−1/2)√
4uih(τi)

2
ω̂2

iu +Op(m1/2−κi T−1/2)

= (m1/2−κ̂i uih(τi))2 +Op(m1−2κi T−1/2)√
4(m1/2−κ̂i uih(τi))2ω̂2

iu +Op(m3/2−3κi T−1/2)

= m1/2−κ̂i

∣∣∣uih(τi)
∣∣∣

2ω̂iu
+Op

(
m3/2−3κi T−1/2

)
,

since κi < 1/2. A
p

T-consistent estimate for κi can be deduced based on Propositions
2-4 of Kruse et al. (2018) since κi depends on τi, for which Ergemen (2019) establishesp

T-consistency under Assumptions A-B. Furthermore, for κi ∈ (−1/2,1/2), ω̂iu is a
consistent estimator of ωiu, cf. Robinson (2005) and Abadir et al. (2009). Thus,
if m3/2−3κi T−1/2 → 0, in addition to the previously imposed condition m1/2−κi n−1 +
m1/2−κi n−1/2T−1/2 → 0 as (n,T,m) j →∞ to control for the projection error, i.e., under
Assumption D, we have that

m1/2−κ̂i

∣∣∣uih(τi)
∣∣∣

2ω̂iu
⇒ |wi|

2
,

where wi is a standard normally distributed random variable, applying the Functional
Central Limit Theorem.

Proof of Corollary 1. The first result follows directly from Theorem 1. For the
second result, the χ2

1 distribution is obtained directly by applying the definition of ϕh
it

and based on the arguments in the proof of Theorem 1 with ω̂2
iu a consistent estimator

for the case of uit+h.

Proof of Theorem 2. In showing the result, we again argue that Ξ̂h
it is consistent

for Ξh
it, given parameter consistency arguments in Ergemen (2019) and we follow

Breitung and Knüppel (2018)’s steps, making the necessary adjustments for long
memory properties. First, we have that

m∑
t=1

( ỹ∗it+h|t(τi)− ỹ∗ih(τi))( ỹ∗it+h(τi)− ỹ∗ih(τi))=
m∑

t=1
ỹ∗it+h|t(τit)(uit+h(τi)−uih(τi)).

The estimation error ỹ∗it+h|t(τi) is correlated with uih(τi). In order to tackle this
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issue, we decompose the forecast, explicitly showing the dependence on the memory
estimates given in Assumption C, into a component ỹ∗it+h|t(τ̂i0) that is independent of
{ui1+h, . . . ,uim+h} and a remaining term and establish that the latter is asymptotically
negligible. Applying a first-order expansion,

ỹ∗it+h|t(τ̂it)= ỹ∗it+h|t(τ̂i0)+D it+h(τ̄it)(τ̂it − τ̂i0)

where τ̂it ≤ τ̄it ≤ τ̂i0. By Assumption C, ỹ∗it+h|t(τ̂i0) is uncorrelated with {ui1+h, . . . ,uim+h}.
We then use the decomposition

m∑
t=1

[ ỹ∗it+h|t(τ̂i0)+D it+h(τ̄it)(τ̂it − τ̂i0)](uit+h(τi)−uih(τi))= A+B1 +B2,

where

A =
m∑

t=1
ỹ∗it+h|t(τ̂i0)(uit+h(τi)−uih(τi)),

B1 =
m∑

t=1
D it+h(τ̄it)(τ̂it − τ̂i0)uit+h(τi),

B2 = uih(τi)
m∑

t=1
D it+h(τ̄it)(τ̂it − τ̂i0).

Further, expanding A around τi with ỹ∗it+h|t(τi)= ỹ∗it(τi) yields

A = (τ̂i0 −τi)
m∑

t=1
D it+h(τ̄i0)uit+h(τi)− (τ̂i0 −τi)uih(τi)

m∑
t=1

D it+h(τ̄i0)

= A1 + A2

with τ̂i0 ≤ τ̄i0 ≤ τi. Since τ̂i0 and D it+h(τ̄i0) are uncorrelated with uit+h(τi), we have
that A1 = Op(T−1/2)Op(m1/2) and A2 = Op(T−1/2)Op(mυi−1/2)Op(m) by Assumption
C.2, using arguments as in the proof of Lemma A and reasoning as in the proof
of Theorem 1. Thus, A = Op(T−1/2mυi+1/2). Under the null in (27), (τ̂it − τ̂i0) and
D it+h(τ̄it) are uncorrelated with uit+h(τi). Then, by Assumptions C.2 and using similar
arguments as in the proof of Lemma A, it follows that

m∑
t=1

(τ̂it − τ̂i0)2D it+h(τ̄it)2uit+h(τi)2 =Op

(
m2υi+2

T2

)
.
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Thus, B1 =Op(mυi+1T−1). Since by Assumptions C.2 and Lemma A,

m∑
t=1

(τ̂it − τ̂i0)D it+h(τ̄it)=Op

(
m3/2

T

)
,

B2 =Op(mυi−1/2)Op(m3/2T−1)=Op(mυi+1T−1). Therefore, we have

A+B1 +B2 =Op(mυi+1/2T−1/2 +mυi+1T−1),

and, thus,

T1/2m−1/2−υi (A+B1 +B2)=Op(1)+Op(m1/2T−1/2),

where the Op(1) term leading to the asymptotic normal distribution is

T1/2m−1/2−υi A =
p

T(τ̂i0 −τi)m1/2−υi
1
m

m∑
t=1

D it+h(τ̄i0)
(
uit+h(τi)−uih(τi)

)
. (C.2)

Next, we analyze

m∑
t=1

( ỹ∗it+h|t(τ̂i)− ỹ∗ih(τ̂i))2( ỹ∗it+h(τi)− ỹ∗ih(τi))2

=
m∑

t=1
( ỹ∗it+h|t(τ̂it)− ỹ∗ih(τ̂i))2(uit+h(τi)−uih(τi))2.

Using the mean value expansions above,

ỹ∗it+h|t(τ̂i)− ỹ∗ih(τ̂i)= D̃ it+h(τ̄i0)(τ̂i0 −τi)+Ψ̃it+h(τ̂it, τ̂i0),

where

D̃ it+h(τ̄is)= D it+h(τ̄is)−m−1
m∑

t=1
D it+h(τ̄is),

Ψ̃it+h(τ̂it, τ̂i0)= D it+h(τ̄it)(τ̂it − τ̂i0)−m−1
m∑

t=1
D it+h(τ̄it)(τ̂it − τ̂i0),

for s = 0,1, . . . . We can then write

m∑
t=1

( ỹ∗it+h|t(τ̂i)− ỹ∗ih(τ̂i))2( ỹ∗it+h(τi)− ỹ∗ih(τi))2 = C0 +C1 +C2,

53



where

C0 = (τ̂i0 −τi)2
m∑

t=1
D̃ it+h(τ̄i0)2(uit+h(τi)−uih(τi))2,

C1 =
m∑

t=1
Ψ̃it+h(τ̂it, τ̂i0)2(uit+h(τi)−uih(τi))2,

C2 = 2(τ̂i0 −τi)
m∑

t=1
D̃ it+h(τ̄i0)Ψ̃it+h(τ̂it, τ̂i0)(uit+h(τi)−uih(τi))2.

Proceeding as before, the leading term

C0 =Op(T−1m2υi+1),

whereas

C1 =Op(T−2m2υi+2),

C2 =Op(T−3/2m2υi+5/2),

by Assumption C and since m−1 ∑m
t=1 uit+h(τi)=Op(mυi−1/2). Thus,

Tm−1−2υi (C0 +C1 +C2)

= T(τ̂i0 −τi)2m1−2υi
1

m2

m∑
t=1

D̃ it+h(τ̄i0)2(uit+h(τi)−uih(τi))2 +Op(m3/2T−3/2). (C.3)

Further, as in the proof of Theorem 1, we note again that we work with the projected
series. Given the convergence rate, we require that m1/2−υi (n−1 + (nT)−1/2) → 0 as
(n,T,m) j → ∞. Then, from (C.2) and (C.3), if additionally m/T → 0, i.e., invoking
Assumption E, and applying the FCLT, we establish that

m1/2−υ̂i
1

ω̂Ξm

m∑
t=1
Ξ̂h

it
d−→ N(0,1)

since consistency of υ̂i can be shown, reasoning as for κ̂i in the proof of Theorem 1.

Proof of Theorem 3. Due to asymptotic approximate independence of the individual
%ih test statistics for large n, see Appendix 1 in Ergemen (2019), the result in the
Theorem follows from a standard CLT.

Proof of Theorem 4. We again motivate the cases based on the true parameters,
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given the parameter consistency arguments discussed earlier. Under the local alter-
native in (30),

ỹ∗it+1(τi)− ỹ∗i1(τi)= ṽ∗1it+1 (di −di0)− ṽ∗1it+1 (di −di0)+ (ci/
p

m)(x̃∗it(di)− x̃∗it(di)),

where the model prediction error is e it+1|t(τi) = ṽ∗1it+1 (di −di0)+Op(T−1/2) under
Assumption A.1. Reasoning as in the proof of Theorem 1 and further noting that the
error term is now ṽ∗1it+1 (di −di0) as T →∞, we have under Assumption A.1 and B.2
that

m1/2 ṽ∗1it+1 (di −di0)
σv1

d−→ w1i

by a standard CLT, and

m1/2 1
σv1σxm

m∑
t=1

(x̃∗it(di)− x̃∗it(di))ṽ∗1it+1 (di −di0) d−→ w2i

for fixed i, where w1i and w2i are two independent standard normally distributed
random variables. Then,

m∑
t=1

ϕ1
it = (m1/2ṽ∗1it+1 (di −di0))2 − 2cip

m

m∑
t=1

(x̃∗it(di)− x̃∗it(di))ṽ∗1it+1 (di −di0)

− c2
i

m

m∑
t=1

(x̃∗it(di)− x̃∗it(di))2 +Op(mT−1)

d−→σ2
v1

w2
i1 −2σv1σxciwi2 − c2

iσ
2
x

as m/T → 0. Accordingly,

�DMi1
d−→ w2

i1 −2ci
σx

σv1

− c2
i
σ2

x

σ2
v1

,

since σ̂2
v1
= m−1 ∑m

t=1(ṽ∗1it+1 (di −di0)−ṽ∗1it+1 (di −di0)+(ci/
p

m)x̃∗it(di))2 =σ2
v1
+Op(m−1/2)

under Assumption A.1.

Next, using

ỹ∗it+1|t(τi)= cip
m

x̃∗it(di)+Op(T−1/2)
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under Assumption A.1, we have as m/
p

T → 0,

m∑
t=1
Ξ1

it =
m∑

t=1

[
ṽ∗1it+1 (di −di0)− ṽ∗1it+1 (di −di0)+ (ci/

p
m)x̃∗it(di)

]
ỹ∗it+1|t(τi)

d−→ ciσv1σxwi2 + c2
iσ

2
x,

reasoning as above. Furthermore,

mω2
Ξ =

m∑
t=1

(Ξ1
it)

2 = ci

m

m∑
t=1

(ṽ∗1it+1 (di −di0)− ṽ∗1it+1 (di −di0))2(x̃∗it(di)− x̃∗it(di))2 + op(1)

p−→ c2
iσ

2
v1
σ2

x.

Thus,

%i1
d−→ sign(ci)wi2 +|ci| σx

σv1

.

Lemma A. Under Assumption A.1,

sup
i

∣∣∣ 1
m

m∑
t=1

uit+h(τi)D it+h(τ̄it)
∣∣∣=Op(1),

sup
i

∣∣∣ 1
m

m∑
t=1

D it+h(τ̄it)2
∣∣∣=Op(1).

Proof of Lemma A. Let dmin and ϑmin denote mini di and miniϑi, respectively. We
first observe that

x̃∗it(di)=∆di−ϑi0
t v2it =

t−1∑
j=0

π j(di −ϑi0)v2it− j,

x̃∗it(ϑi)=∆ϑi−ϑi0
t v2it =

t−1∑
j=0

π j(ϑi −ϑi0)v2it− j.

We then analyze the dominating terms in 1
m

∑m
t=1 uit+h(τi)D it+h(τ̄it), since the remain-
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ing terms are bounded above by the Cauchy-Schwarz inequality. The first term,

sup
i

∣∣∣ 1
m

m∑
t=1

x̃∗it(di) ˙̃x∗it(di)
∣∣∣= sup

i

∣∣∣ 1
m

m∑
t=1

t−1∑
j=0

π j(di −ϑi0)π̇ j(di −ϑi0)
∣∣∣

=Op(1+m2(ϑmax−dmin)−1 logm)

=Op(1)

under Assumption A.1. Similarly,

sup
i

∣∣∣ 1
m

m∑
t=1

x̃∗it(ϑi) ˙̃x∗it(ϑi)
∣∣∣= sup

i

∣∣∣ 1
m

m∑
t=1

t−1∑
j=0

π j(ϑi −ϑi0)π̇ j(ϑi −ϑi0)
∣∣∣

=Op(1+m2(ϑmax−ϑmin)−1 logm)

=Op(1).

The third term,

sup
i

∣∣∣ 1
m

m∑
t=1

˙̃x∗it(di)
(
ṽ∗1it+h (di −di0)−ρ′i ṽ∗2it+h (ϑi −ϑi0)

)∣∣∣
= sup

i

∣∣∣ 1
m

m∑
t=1

t−1∑
j=0

π̇ j(di −ϑi0)
(
π j(di −di0)+π j(ϑi −ϑi0)

)∣∣∣
=Op(1+mϑmax+dmax−2dmin−1 logm+m2ϑmax−dmin−ϑmin−1 logm)

=Op(1)

by Assumption A.1 and following similar reasoning as above. The fourth term,

sup
i

∣∣∣ 1
m

m∑
t=1

˙̃x∗it(ϑi)
(
ṽ∗1it+h (di −di0)−ρ′i ṽ∗2it+h (ϑi −ϑi0)

)∣∣∣
=Op(1+mϑmax+dmax−dmin−ϑmin−1 logm+m2(ϑmax−ϑmin)−1 logm)

=Op(1).

To analyze the expression 1
m

∑m
t=1 D it+h(τ̄it)2, we again study only the dominating
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terms. The first term

sup
i

∣∣∣ 1
m

m∑
t=1

˙̃x∗it(di)2
∣∣∣= sup

i

∣∣∣ 1
m

m∑
t=1

t−1∑
j=0

π̇2
j (di −ϑi0)

∣∣∣
=Op(1+m2(ϑmax−dmin)−1 log2 m)

=Op(1)

under Assumption A.1. Similarly, the second term

sup
i

∣∣∣ 1
m

m∑
t=1

˙̃x∗it(ϑi)2
∣∣∣=Op(1+m2(ϑmax−ϑmin)−1 log2 m)

=Op(1).

Finally, the third term

sup
i

∣∣∣ 1
m

m∑
t=1

˙̃x∗it(di) ˙̃x∗it(ϑi)
∣∣∣=Op(1+mϑmax+dmax−ϑmin−dmin−1 log2 m)

=Op(1).

All remaining terms are of smaller asymptotic size, and thus the results in the lemma
follow.
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