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Abstract

We study the theoretical properties of the model for fractional cointegration proposed
by Granger (1986), namely the FVECMd,b . First, we show that the stability of any discrete-
time stochastic system of the type Π(L)Yt = εt can be assessed by means of the argument
principle under mild regularity condition on Π(L), where L is the lag operator. Second, we
prove that, under stability, the FVECMd,b allows for a representation of the solution that
demonstrates the fractional and co-fractional properties and we �nd a closed-form expres-
sion for the impulse response functions. �ird, we prove that the model is identi�ed for
any combination of number of lags and cointegration rank, while still being able to gen-
erate polynomial co-fractionality. In light of these properties, we show that the asymptotic
properties of the maximum likelihood estimator reconcile with those of the FCVARd,b model
studied in Johansen and Nielsen (2012). Finally, an empirical illustration is provided.
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1 Introduction

�e concept of equilibrium is central in many economic and �nancial models. In macroeco-
nomics, equilibrium relations o�en originate from an economic theory linking agents’ expecta-
tions to the actual outcome variables, as those behind the term structure of the interest rates.
In �nance, long-run equilibrium relations are o�en the result of no-arbitrage constraints, where
deviations from the equilibrium can be interpreted as evidence against the ability of the �nancial
markets to fully process new information and incorporate it in the asset prices. Depending on
the persistence of the deviations from the no-arbitrage relation, i.e. the strength of the reversion
of the system to the long-run equilibrium, we might conclude on the extent of the violation of
the market e�cient hypothesis. For almost thirty years, the analysis of cointegrated systems
has been the paradigm in the empirical investigation of equilibrium relations between economic
variables. �e notion of cointegration, as originally de�ned in Engle and Granger (1987), en-
tails a long-run relation between variables characterized by highly persistent common stochastic
trends, I (1), with short-memory, I (0), deviations from the equilibrium.

Unfortunately, the classi�cation of I (1) and I (0) variables is very restrictive and does not ac-
commodate the dynamic features of many economic time series. For example, the very persistent
dynamics of in�ation can not be described by means of integrated processes, but, consistently
with the price theory of Rotemberg (1987), in�ation is best described by a process with a frac-
tional order of integration which arises from the cross-sectional aggregation of simple, possibly
dependent, dynamic micro processes, see Granger (1980) and Za�aroni (2004), and the recent
contribution of Schennach (2018). In particular, fractionally integrated processes are character-
ized by long range dependence or long-memory; that is a strong relationship between observa-
tions that are distant in time, since the e�ects of a shock last for many periods and decay slowly
and hyperbolically, see Granger (1980) and Hosking (1981). For this reason, the class of frac-
tionally integrated processes have changed the way in which researchers describe and forecast
macroeconomic and �nancial series, providing an elegant and parsimonious way of describing
the dynamic features of economic time series with any order of integration. Evidence of long
memory is found in macroeconomic aggregates, such as the consumer prices and in�ation (see
Geweke and Porter-Hudak, 1983), interest rates (see Shea, 1991), and in �nancial series as ex-
change rates (see Baillie and Bollerslev, 1994) and the volatility of stock prices, see, among others,
Baillie et al. (1996) and Andersen and Bollerslev (1997).

In this paper, we rediscover the multivariate model of Granger (1986) for the analysis of the
long-run equilibrium relations between series that are integrated of any fractional order. We
show that the the model of Granger (1986) is coherent with the concept of fractional cointegra-
tion or co-fractionality. In particular, fractional cointegration implies that linear combinations
of I (d) processes are I (d − b), with d,b ∈ R+ and 0 < b ≤ d , see Robinson and Marinucci (2003)
among others for a formal de�nition. In other words, the concept of fractional cointegration
involves the existence of common stochastic trends integrated of order d , with short-period de-
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partures from the long-run equilibrium integrated of order d −b. �us the range of applicability
of the concept of cointegration is enormously extended compared to that originally de�ned by
Engle and Granger (1987), which was limited to integer values of d and b.

In his original contribution, Granger (1986, Equation 4.3) already introduces a model for
co-fractionality, the fractional VECM (FVECMd,b henceforth). �e FVECMd,b extends the well-
known VECM to the fractional case, which is obtained by se�ing the parametersd andb to 1. For
many years, most of the econometric analysis has been focusing to cases with d and b restricted
to integers. More recently Johansen (2008b) has noted that the characteristic function of the
co-fractional model of Granger (1986) involves a complicated transcendental equation, so that it
is inconvenient to analyze in the sense that the stochastic properties of the solution generated by the
equations are not easily re�ected in properties of the coe�cients. Hence Johansen (2008b) proposes
a slightly modi�ed version of the FVECMd,b , namely the FCVARd,b , and studies the properties
of the new model in terms of conditions for the stability and Granger representation theorem.
�e FCVARd,b provides a fully parametric characterization of the long-run relations between
fractionally integrated processes and it encompasses the VECM analyzed in Johansen (1988),
which is obtained when the parametersd andb are restricted to be equal to one. Johansen (2008b)
studies the properties of the FCVARd,b in terms of Granger representation, while Johansen and
Nielsen (2012) derive the asymptotic properties of the pro�le maximum likelihood (ML) estimator
of the FCVARd,b , see also Lasak (2010). Although alternative models for fractional cointegration
can be found in Avarucci (2007) and Tschernig et al. (2013), the FCVARd,b of Johansen (2008b)
is probably the most commonly adopted speci�cation in this context. Empirical applications
of the FCVARd,b can be found in Rossi and Santucci de Magistris (2013), Caporin et al. (2013),
Bollerslev et al. (2013a), Dolatabadi et al. (2015), Dolatabadi et al. (2016) and Nielsen and Shibaev
(2018). Unfortunately, as noted by Johansen and Nielsen (2012) and subsequently by Carlini
and Santucci de Magistris (2017), the FCVARd,b is not identi�ed when the number of lags is over-
speci�ed and the cointegration rank is also unknown. In other words, the FCVARd,b can generate
special cases of polynomial fractional cointegration analogous to those studied in Franchi (2010),
when the number of lags is not correctly determined. �is problem might have led to a limited
use of the FCVARd,b in the empirical applications. Indeed, it is o�en needed to impose restrictions
on the coe�cientd or to adopt rather computationally-intensive algorithms (such as grid-search)
to study the shape of the log-likelihood function in di�erent regions of the parameter space, see
the discussion in Nielsen and Popiel (2018).

In this paper, we begin by discussing the stability properties of the FVECMd,b in light of the
argument principle, which is a well known result in complex analysis but, to the best of our
knowledge, has never been applied in the context of time-series econometrics. �e application
of the argument principle to determine the stability of a dynamic system is a general result that
can be adopted in a wide range of circumstances beyond the context of fractional cointegration.
Examples of possible applications of the argument principle are in the �eld of rational expec-
tation models when assessing the existence of the steady-state in reduced-form systems, see
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Binder and Pesaran (1997) and Klein (2000) among others, and when dealing with non-causal
processes like those introduced in Gouriéroux and Zakoı̈an (2017) for explosive bubbles. Under
the stability condition, we derive a number of theoretical results for the FVECMd,b of Granger
(1986). First, we show that the model of Granger (1986) admits a Granger representation in the
fractional context. �is makes the model suitable for analyzing equilibrium relations between
fractionally integrated series. Furthermore, the impulse response functions of the FVECMd,b are
obtained in closed-form in terms of a recursive formula built upon the type-II fractional di�er-
ence operator. Second, we prove that the model is identi�ed for any choice of the number of lags
and cointegration rank. �is result is expected to simplify the empirical analysis of fractionally
cointegrated systems compared with the FCVARd,b . �ird, we show that the FVECMd,b allows
for a Granger representation also under polynomial cofractionality, which is a generalization of
the I(2)-type cointegration to the fractional context. Finally, we complete the theoretical analysis
by studying the asymptotic behavior of the ML estimator of the coe�cients of the FVECMd,b .
We show that the conditions for applying the asymptotic results of Johansen and Nielsen (2012)
hold in the FVECMd,b context. Hence consistency can be proved and the asymptotic distribution
of the ML estimator can be derived. Finally, we provide an example on the long-run relationship
linking the VIX and the realized variance of SPX to illustrate the ease of adopting the FVECMd,b

in the empirical analysis of cointegrated systems.
�e paper is organized as follows. Section 2 presents the FVECMd,b . Section 3 discusses

the conditions for the stability of the system. Section 4 contains the theorem on the Granger
representation of the FVECMd,b and the derivation of the impulse response functions of the
FVECMd,b . In Section 5 we prove that the FVECMd,b is identi�ed for any combination of lag-
length and cointegration rank. In Section 6 we show that the FVECMd,b allows for polynomial
fractional cointegration, i.e. we provide a Granger representation theorem for I (2)-type frac-
tional processes. Section 7 contains results on the consistency and asymptotic distribution of
the maximum-likelihood estimator of the parameters of the FVECMd,b . Section 8 presents and
discusses the empirical application. Finally, Section 9 concludes. Appendix A contains a discus-
sion of the regularity of the characteristic polynomial, while the proofs of the theorems are in
Appendix B.

2 �e fractional VECM of Granger (1986)

In this section, we outline and study the properties of the FVECMd,b of Granger (1986), which is
de�ned as

Hr ,k : ∆dXt = αβ
′∆d−bLbXt +

k∑
j=1

Γj∆
dXt−j + εt , (1)
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and it is an extension of the well known VECM to the case of fractional cointegration, see also
Davidson (2002). �e fractional operator ∆d in (1) is de�ned as

∆d := (1 − L)d =
∞∑
j=0
(−1)j

(
d

j

)
Lj ,

where L is the lag operator, such that LXt = Xt−1 and d ∈ R. �e operator ∆d−b := (1 − L)d−b

is de�ned in an analogous way. �e term Lb := 1 − ∆b denotes the so called fractional lag
operator. �e term Xt is a p-dimensional vector, α and β are p × r matrices, where r de�nes
the cointegration rank, εt is p-dimensional independent and identically distributed with mean
zero and covariance matrix Ω > 0, and Γj , j = 1, . . . ,k , are p × p matrices loading the short-
run dynamics. �e coe�cient d determines the degree of fractional integration of the series Xt ,
while the coe�cient b determines the so called cointegration gap, i.e. the degree of fractional
integration of β′Xt that is d − b. Model (1) reduces to the classic VECM when d = b = 1.1 �e
modelHr ,k in (1) has k lags and θ = {d,b,α , β, Γ1, ..., Γk ,Ω} is the collection of parameters. �e
parameter space of the model is

Θ = {α ∈ Rp×r , β ∈ Rp×r , Γj ∈ R
p×p, j = 1, . . . ,k,d ∈ R+,b ∈ R+,d ≥ b > 0,Ω > 0 ∈ Rp×p},

where r is the cointegration rank, such that p − r determines the number of common stochastic
trends between the series. When r = p, the model is

Hp,k : ∆dXt = Ξ∆d−bLbXt +

k∑
j=1

Γj∆
dXt−j + εt , (2)

where Ξ is a p × p matrix with full rank. By adopting the standard tools for the analysis of
the solutions of the FVECMd,b in (1), Johansen (2008b) notes that it is not possible to study the
stability of the system and obtain the Granger representation for Xt . Hence, Johansen (2008b)

1As also noted in Johansen (2008b), model (1) is a slightly di�erent version of the original Granger’s model in
(1). Indeed, the original model reported in Granger (1986, Equation 4.3) is

∆dXt = αβ
′∆d−bLbXt−1 +

k∑
j=1

Γj∆
dXt−j + εt .

Imposing the restriction d = b = 1 leads to

∆Xt = αβ
′Xt−2 +

k∑
j=1

Γj∆Xt−j + εt ,

which is not the classic VECM since the error correction term β ′Xt enters on the right-hand side of (1) lagged by
two periods.
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proposes an alternative version of the FVECMd,b , the FCVARd,b . �e FCVARd,b is de�ned as

∆dXt = αβ
′∆d−bLbXt +

k∑
j=1

Γj∆
dLj

b
Xt + εt , (3)

and it replaces the usual lag operator in the autoregressive polynomial with the fractional lag
operator. In other words, the FVECMd,b in (1) and the FCVARd,b in (3) share the same cointe-
gration component, αβ′∆d−bLbXt , which, as noted by Johansen (2008b, p.652), arises from the
formulation in terms of common trends and cofractional terms of Breitung and Hassler (2002)
with β′Xt = ∆−d+bu1t and γ ′Xt = ∆−du2t , where ut = (u′1t ,u′2t )′ ∼ iidN (0, Σ), and (β′,γ ′)′ is a full
rank matrix, with β being a p × r matrix and γ a p × (p − r ) matrix.

�e inclusion of the fractional lag operator in the short term dynamics enables Johansen
(2008b) to assess the stability of the FCVARd,b and to prove that the solution of the characteristic
polynomial of the FCVARd,b exists so that the FCVARd,b admits a Granger representation. Based
on this result, Johansen and Nielsen (2012) derive the asymptotic theory for the ML estimator of
the parameters of the FCVARd,b . Recently, Carlini and Santucci de Magistris (2017) highlight the
potential identi�cation issues that emerge when the true lag structure and co-integration rank
of the FCVARd,b are unknown. �e identi�cation problems mostly arise as a consequence of
the presence of the fractional lag operator in the autoregressive part of (3). In the following, we
show that the stability conditions of the FVECMd,b can be studied through the argument principle
and the Granger representation theorem can be obtained by the inversion of the characteristic
function.

3 Stability

We �rst provide a number of de�nitions that are useful for the characterization of the properties
of the FVECMd,b .

De�nition 3.1. Following Johansen (2008b), we de�ne F (0) processes, F (d) processes and frac-
tional cointegration as follows:

(i) If Ψj is a sequence of p × p matrices for which
∑∞

j=0 | |Ψj | |
2 < ∞ with Ψ(z) =

∑∞
j=0 Ψjz

j .
We call the stationary linear process Xt =

∑∞
j=0 Ψjεt−j fractional of order zero, denoted as

Xt ∼ F (0), if the spectrum at zero fX (0) = 1
2πΨ(1)ΩΨ(1)

′ , 0.

(ii) We denote F (0)+ the class of processes of the form, X+t = Ψ(L)+εt =
∑t−1

j=0 Ψjεt−j .

(iii) We say that Xt is fractional of order d and write Xt ∼ F (d), if conditionally on the past
{Xs , s ≤ 0}, ∆d

+Xt − µt ∼ F (0)+ for some function µt of the past where

∆d
+Xt := (1 − L)d+Xt =

t−1∑
j=0
(−1)j

(
d

j

)
LjXt (4)
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(iv) If Xt ∼ F (d) and there exists a vector β so that β′Xt ∼ F (d − b) for some b, 0 < b ≤ d , we
call Xt co-fractional with co-fractional vector β .

For a given r < p and k , the characteristic function of the FVECMd,b in (1) is

Π(z) = (1 − z)dIp − αβ′(1 − z)d−b(1 − (1 − z)b) −
k∑
j=1

Γj(1 − z)dz j , (5)

or by se�ing Π̃(z) := (1 − z)b−dΠ(z), we have

Π̃(z) = (1 − z)bIp − αβ′(1 − (1 − z)b) −
k∑
j=1

Γj(1 − z)bz j ,

with Ip being the p × p identity matrix.
A crucial assumption for the stability of the FVECMd,b is that there are only p − r roots of

|Π̃(z)| = 0 in z = 1, while the others are outside the unit circle. While in the FCVARd,b of
Johansen (2008b), the trick of substituting y = 1 − (1 − z)b in Π̃(z) allows to obtain a polynomial
in the fractional lag operator for which the conditions of stability can be easily shown (up to a
remapping to the fractional unit circle), the same can not be done for the FVECMd,b . However,
the analysis of the stability of the FVECMd,b can be carried out by adopting the general result
in complex analysis known as the argument principle, see Fuchs and Shabat (1964, p.322). Let us
�rst de�ne the function д(z) = |Π̃(z)| = 0. Given the cointegration rank r , д(z) can be further
factorized as д(z) = (1 − z)b(p−r ) f (z), so that we can count the number of zeroes of f (z) inside
the unit circle. Provided that f (z) is a holomorphic function in the unit circle, the number of
zeroes is obtained through the following Cauchy integral

1
2πi

∮
S

f ′(z)

f (z)
dz = N − P, (6)

where f ′(z)
f (z) is the logarithmic derivative of f (z) in C, andN and P are respectively the number

of zeros and poles in the region S = {z ∈ C s.t. |z | ≤ 1}. In Appendix A we show that f (z) is
holomorphic and it does not have poles inside the unit circle (P = 0) nor zeros and poles on the
boundary of S. Hence, by se�ing z = eiθ , the Cauchy integral becomes

1
2πi

∫ 2π

0

f ′(eiθ )

f (eiθ )
ieiθdθ = N . (7)

�e integral on the right-hand side admits an analytical solution, which can be approximated
numerically with very high accuracy, see Delves and Lyness (1967).2 �e following lemma shows
that the stability condition of the FVECM can be equivalently expressed in terms of the principle

2�e MATLAB code argument principle.m uses the quadrature method to evaluate the integral, which
is a more accurate alternative than the trapezoidal method studied in Delves and Lyness (1967).
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of the argument.

Lemma 3.2. Let f (z) be an holomorphic function. �en, N = 0 if and only if |Π̃(z)| = 0 implies
that either z = 1 or z are outside the unit circle. Hence, the FVECMd,b is stable.

�e lemma is a direct consequence of the Cauchy’s argument principle see Ahlfors (1953),
and Appendix A discusses the conditions on f (z) so that this result can be applied in the present
context. It should be noted that the range of applicability of the Cauchy’s argument princi-
ple to assess the stability of a stochastic process extends beyond the current application to the
FVECMd,b and it can be employed when the standard analysis of the characteristic function is
complicated/unfeasible provided that f (z) is a holomorphic function in the unit circle. In the
context of fractional (co)integration, the argument principle could be applied to study the sta-
bility of the FCVARd,b without the need of computing the roots and compare them with the
fractional unit circle as discussed in Johansen (2008b), or for the stability of the FIVARb model of
Tschernig et al. (2013). In the following section, we show that the FVECMd,b admits a Granger
representation given that the stability condition of the FVECMd,b of Granger (1986) is satis�ed.

4 Granger Representation�eorem

In the following, we show that the FVECMd,b in (1) is coherent with the notion of fractional
cointegration, as in De�nition 3.1-(iv). In other words, the FVECMd,b admits a representation of
the solution that demonstrates the fractional and co-fractional properties. In particular, �eorem
4.1 shows that the FVECMd,b allows for a Granger representation in the fractional context. We
also introduce the variable y = 1 − (1 − z)b and we de�ne Π̃(z) = Π̃(z,y) as

Π̃(z,y) = (1 − y)Ip − αβ′y −
k∑
j=1

Γj(1 − y)z j .

Adding and subtracting αβ′z from Π̃(z,y) we obtain

Π̃(z,y) = (1 − y)
(
Ip + αβ

′ −

k∑
j=1

Γjz
j

)
− αβ′.

�eorem 4.1. If N = 0 and α and β have rank r < p, and if |α ′⊥Γβ⊥ | , 0 with Γ = Ip −
∑k

i=1 Γi ,
then

Xt = C(L)∆
−d
+ εt + ∆

−(d−b)
+ Yt + µt , (8)

where C(L) = β⊥(α
′
⊥Γ(L)β⊥)

−1α ′⊥ with Γ(L) = Ip −
∑k

i=1 ΓiL
i and C(1) = β⊥(α

′
⊥Γ(1)β⊥)−1α ′⊥.

�e term Yt ∼ F (0) with continuous spectrum that at zero frequency is given by C∗ΩC∗
′

2π , 0 and
µt = −Π+(L)

−1Π−(L)Xt depends on the initial values. �us,Xt is fractional of order d , whereas ∆bXt

and β′Xt are fractional of order d − b.
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Proof in Appendix B.1.
Although sharing similarities with the Granger representation of the FCVARd,b in Johansen

(2008b), the Granger representation of the FVECMd,b displays one interesting di�erence with
its predecessor. Indeed, the loading term of the common stochastic trend is not a reduced rank
matrix as in Johansen (2008b), but it is a reduced rank lag-polynomial matrix,C(L). In particular,
the leading term in (8) can be wri�en as

C(L)∆−d+ εt = β⊥(α
′
⊥(Ip −

k∑
i=1

ΓiL
i)β⊥)

−1α ′⊥∆
−d
+ εt

=

∞∑
j=0

∆jβ⊥Φjα
′
⊥∆
−d
+ εt =

∞∑
j=0

β⊥Φjα
′
⊥∆

j−d
+ εt ,

where
∑∞

j=0 ΦjL
j = (α ′⊥Γ(L)β⊥)

−1, so that

Xt = C(1)∆−d+ εt +
∞∑
j=1

β⊥Φjα
′
⊥∆

j−d
+ εt + ∆

−(d−b)
+ Yt + µt . (9)

Equation (9) shows that the process is composed as the sum of two usual terms C(1)∆−d+ εt and
∆−(d−b)+ Yt , but the extra term

∑∞
j=1 β⊥Φjα

′
⊥∆

j−d
+ εt is (in general) fractional of order d − 1, but

perhaps greater than the order of Yt . In any case, we still have that

β′Xt = β
′

∞∑
j=0

β⊥Φjα
′
⊥∆

j−d
+ εt + β

′∆−(d−b)+ Yt + β
′µt = β

′∆−(d−b)+ Yt + β
′µt ,

that is β′Xt is fractional of order d −b. �is means that the FVECM reconciles with the standard
notion of fractional cointegration. Furthermore, under the condition |α ′⊥Γ(1)β⊥ | , 0, we cannot
have polynomial fractional cointegration because sp(C(L)) = sp(β⊥), where the sp(A) denotes
the column space of A. Section 6 discusses the case of polynomial fractional cointegration when
α ′⊥Γ(1)β⊥ has reduced rank.

4.1 Impulse response function

�e impulse response functions represent a useful tool to assess the dynamic impact of a shock
of a variable on anther variable in a system. �e following lemma contains the recursive formula
to calculate the coe�cients of the impulse response functions for the FVECMd,b obtained by the
vector MA representation of the FVECMd,b arising from �eorem 4.1.

Lemma 4.2. Consider the FVECMd,b with k lags de�ned in (1). �e impulse responses Θj , j ≥ 0 are
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given by the following set of recursions:

Θ0 = Ip, Θ1 = −ρ1(d) + αβ
′(ρ1(d − b) − ρ1(d)) + Γ1,

Θ` = Θ1Θ`−1 +
`−1∑
i=0

ΨiΘ`−i−1, ` = 2, 3, . . .

Ψj = αβ
′(ρj+1(d − b) − ρj+1(d)) +

j∑
i=1

Γiρj−i(d) − Ipρj+1(d), j = 1, . . . ,k − 1

Ψs = αβ
′(ρs+1(d − b) − ρs+1(d)) +

k∑
i=1

Γiρs−i(d) − Ipρs+1(d), j = k, . . .

where ρi(a) = (−1)i
(a
i

)
, a ∈ R+.

Section B.2 in Appendix B reports the derivation of the recursive formulas for the calculation
of the impulse response coe�cients. Figure 1 displays an example of IRF for the FVECMd,b when
p = 2, r = 1 and k = 1. �e le� panel displays the IRFs of a stable system, which slowly decay
to zero due to the persistent nature of the variables which are fractional of order d = 0.6. �e
right panel reports the IRFs of an unstable system, which is correctly detected by computing the
Cauchy integral in (6). Under an unstable setup, the IRFs explode as the horizon h increases.
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Figure 1: Impulse response function for the FVECMd,b when p = 2, r = 1 and k = 1. �e le� panel is

generated with d = 0.6, b = 0.4, β = [1,−0.8]′, α = [−0.4; 0.3], Γ1 =

[
0.2 −0.1
0.2 0.4

]
with N = 0. �e right

panel is generated with d = 1.1, b = 0.8, β = [1,−1.2]′, α = [−0.6, 1.7]′, Γ1 =

[
0.3 −0.2
−0.1 0.3

]
withN = 1.
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5 Identi�cation

We now study the identi�cation property of the FVECMd,b for any choice of the lag, k , and
cointegration rank, r . As shown in Carlini and Santucci de Magistris (2017), there exist several
equivalent parametrization of the FCVARd,b for di�erent values of k and r . First, we introduce
the concept of identi�cation and equivalence between two models as in Johansen (2010).

De�nition 5.1. Let {Pθ ,θ ∈ Θ} be a family of probability measures, that is, a statistical model.
We say that a parameter function д(θ ) is identi�ed if д(θ1) , д(θ2) implies that Pθ1 , Pθ2 . On the
other hand, if Pθ1 = Pθ2 and д(θ1) , д(θ2), the parameter function д(θ ) is not identi�ed. In this
case, the statistical models Pθ1 and Pθ2 are equivalent.

As noted by Johansen (1995, p.177), the product αβ′ is identi�ed but not the matrices α and
β because if there was an invertible r × r matrix ξ , the product αβ′ would be equal to αξ β

′
ξ
,

where αξ = αξ and βξ = βξ−1. In the following, we do not discuss the identi�cation of α and
β , that is generally solved by a proper normalization of β . �e following theorem states that the
parameters of the FVECMd,b in (1) are uniquely identi�ed.

�eorem 5.2. For any k and r , the parameters of the FVECMd,b in (1) are identi�ed, up to rotations
of the vectors α and β .

Proof in Appendix B.3.
It follows from �eorem 5.2 that the FVECMd,b is identi�ed for any choice of k and r . �is

means that for each combination of k and r we obtain a model that is distinct from the others.
Hence the following corollary highlights the nesting structure of the FVECMd,b , that is a direct
consequence of the identi�cation property.

Corollary 5.3. �e nesting structure of the FVECMd,b is represented by the following scheme:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ · · · ⊂ H0,k

∩ ∩ ∩ ∩

H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ · · · ⊂ H1,k

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩

Hp,0 ⊂ Hp,1 ⊂ Hp,2 ⊂ · · · ⊂ Hp,k .

(10)

�e nesting structure in (10) is a direct consequence of the identi�cation property outlined
in �eorem 5.2. In particular, row-wise we have that, for a given k , the model with full rank
nests all models with reduced rank r < p. Column-wise, it is trivial to note that for a given r ,
the model with k lags nests models with 0, 1, . . . ,k − 1 lags. Finally, by �eorem 5.2, models
H0,k and Hp,k−1 are distinct, and a fortiori H0,k and Hr ,k−1 are also distinct when r < p. �e
regular nesting structure of this model facilitates the model selection in the empirical works
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with a general-to-speci�c sequence of LR tests similar to the one adopted in the standard VECM
context, see Section 8 for an empirical illustration. On the contrary, the FCVARd,b of Johansen
(2008b) displays a non-regular nesting structure that makes the model selection more involved
as a consequence of the lack of identi�cation, see Carlini and Santucci de Magistris (2017).

6 Polynomial cofractionality

In the derivation of �eorem 4.1, we assumed that |α ′⊥Γ(1)β⊥ | , 0. �is assumption is known
as I (1) condition in the classic VECM framework. In the framework of fractionally cointegrated
VAR systems, Carlini and Santucci de Magistris (2017) denoted it as the ”F (d) condition” to
signal that under |α ′⊥Γ(1)β⊥ | , 0 and under correct model speci�cation, there is an unique pair
of parameters d and b such that Xt ∼ F (d) and β′Xt ∼ F (d − b). Unfortunately, when the
number of lags in the FCVARd,b is overspeci�ed, Carlini and Santucci de Magistris (2017) show
that violations of the F (d) condition might arise, inducing identi�cation problems associated
with special cases of polynomial cofractionality. For example, there might exist two parameters
d1 = d − b/2 and b1 = b/2 such that Xt ∼ F (d1 + b1) and β′Xt ∼ F (d1 − b1) when k > k0.
Provided that �eorem 5.2 guarantees identi�cation of d and b for a generic lag-length in the
FVECMd,b framework, we can now focus on the cointegration properties of Xt when imposing
the restriction

α ′⊥

(
Ip −

k∑
j=1

Γj

)
β⊥ = ξη

′, (11)

with ξ and η being (p − r ) × s matrices with α⊥ and β⊥ such that α ′α⊥ = 0 and β′β⊥ = 0, and that
0 ≤ b ≤ d . �is is the analogous of the I (2) model derived in the VECM framework, which is
obtained whend = 2 andb = 1, see Johansen (1992). �e characteristic function of the FVECMd,b

under (11) is

Λ(z) = (1 − z)dIp − αβ′(1 − z)d−b(1 − (1 − z)b) −
k∑
j=1

Γj(1 − z)dz j , (12)

where Λ(z) is di�erent from Π(z) in (5) since the restriction (11) is imposed. We can de�ne an
equivalent characteristic function as

Λ̃(z) := (1 − z)b−dΛ(z) = (1 − z)bIp − αβ′(1 − (1 − z)b) −
k∑
j=1

Γj(1 − z)bz j .

�e analysis of the stability of the characteristic function can be carried out again the princi-
ple of the argument as discussed above. Let us �rst de�ne the function д∗(z) = |Λ̃(z)| = 0. Given
the cointegration ranks r and s , д∗(z) can be further factorized as д∗(z) = (1 − z)bs+2b(p−r−s) f (z),
see Johansen (1997, p.437). Hence, we can apply the argument principle as in (7) and count the
number of zeroes of f (z) inside the unit circle. Given the stability of the FVECMd,b system under
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the restriction (11), the following theorem provides the Granger representation of the FVECM
under polynomial cofractionality.

�eorem 6.1. If N = 0 and α and β have rank r < p with α ′⊥
(
Ip −

∑k
j=1 Γj

)
β⊥ of rank s < p − r

and if α ′2Γ(1)β̄ᾱ ′Γ(1)β2 is invertible with ᾱ = α(α ′α)−1, β̄ = β(β′β)−1, α2 = α⊥ξ⊥ and β2 = β⊥η⊥,
then

Xt = C2(L)∆
−b−d
+ εt +C1(L)∆

−d
+ εt + ∆

−(d−b)
+ Y+t + µt , (13)

where µt = −Λ+(L)−1Λ−(L)Xt depends on the initial values. �e polynomial matrices C2(L) and
C1(L) are

C2(L) = β2θ22(L)
−1α ′2

C1(L) = −β̄1ᾱ
′
1 +

(
β̄1θ12(L) − β̄ᾱ

′Γ(L)β2
)
θ22(L)

−1α ′2 +

+β2θ22(L)
−1 (

θ21(L)ᾱ
′
1 − α

′
2Γ(L)β2ᾱ

)
+ β2Ξ(L)α

′
2,

where ᾱ1 = α1(α
′
1α1)

−1 with α1 = ᾱ⊥ξ , β̄1 = β1(β
′
1β1)

−1 with β1 = β̄⊥η. �e process Yt is stationary
with continuous spectrum, and Xt is fractional of order d +b, (β′, β1)

′Xt is fractional of order b, and
β′Xt − ᾱ

′Γ(L)∆b
+Xt is fractional of order 0.

Proof in Appendix B.4.
In analogy with �eorem 4.1, the loadings C2(L) and C1(L) of the fractional roots of order

d + b and d are matrix polynomials in the lag operator.

7 Inference

As shown in Johansen and Nielsen (2012), the parameters of the FCVARd,b can be estimated
following a pro�le likelihood approach. We follow here the same approach for the estimation of
the parameters of the FVECMd,b . For �xedψ = (d,b)′, the ML estimator is found by reduced rank
regression of ∆dXt on ∆d−bLbXt corrected for {∆dLiXt }

k
i=1, see Anderson et al. (1951) or Johansen

(1995). For �xedψ = (d,b)′ in modelHr , we de�ne the residuals, Rit (ψ ) for i = 0, 1, of the reduced
rank regression of ∆d

+Xt on ∆d
+L

jXt and ∆d−b
+ LXt on ∆d

+L
jXt for j = 1, ..,k , respectively. We also

de�ne the product moment matrices Sij(ψ ) for i, j = 0, 1, that is Sij(ψ ) = T −1 ∑T
t=1 Rit (ψ )R

′
jt (ψ ).

Given the product moment matrices, we can express the generalized eigenvalue problem as

det
(
ωS11(ψ ) − S10(ψ )S

−1
00 (ψ )S01(ψ )

)
= 0, (14)

whose solutions, ωi(ψ ) for i = 1, . . . ,p, are sorted in decreasing order. Analogously with the
reduced rank regression in the VECM framework of Johansen (1991), the (pro�le) log-likelihood
function for given �xedψ is

`T ,r (ψ ) = − log det(S00(ψ )) −
r∑
i=1

log(1 − ωi(ψ )). (15)
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�erefore, for a given value of the cointegration rank r = 1, . . . ,p, ML estimates of d and b,
denoted as d̂ and b̂, can be calculated by maximizing the pro�le log-likelihood function, `T ,r , as
a function ofψ by a numerical optimization procedure, that is

ψ̂ = arg min
ψ
`T ,r (ψ ). (16)

Finally, given d̂ and b̂, the estimates α̂ , β̂ , Γ̂j , j = 1, . . . ,k , and Ω̂ are found by reduced rank
regression as in Johansen (1991, 1995).

7.1 Asymptotic properties of the ML estimator

�is section discusses the asymptotic properties (consistency and asymptotic distribution) of
the ML estimator of the FVECMd,b . �e theorems outlined in this section follow Johansen and
Nielsen (2012) very closely and the proofs are aimed at verifying the conditions under which
the asymptotic results of Johansen and Nielsen (2012) can be extended to the FVECMd,b context.
Similarly to Johansen and Nielsen (2012), we make the following assumptions

Assumption 7.1. We assume that:

(i) For k ≥ 0 and 0 ≤ r ≤ p, the process Xt t = 1, 2, . . .T , is generated by modelHr ,k .

(ii) �e errors εt are i.i.d. (0,Ω0) with Ω0 > 0 and E |εt |
8 < ∞.

(iii) �e initial values X−n, n ≥ 0 are uniformly bounded.

(iv) �e true parameter value θ0 satis�es:

1. (d0,b0) ∈ Ψ, with Ψ = {(d,b) : 0 < b ≤ d ≤ d1} where d1 > 0 can be arbitrarily large.

2. 0 ≤ d0 − b0 < 1/2,b0 , 1/2.3

3. Γ0k , 0 (if k > 0), α0 and β0 are p × r matrices of rank r , α0β0 , −Ip . Furthermore, the
F (d) condition, |α ′0,⊥Γ0(1)β0,⊥ | , 0, with Γ0(1) = Ip −

∑k
i=1 Γ0i holds.

4. If r < p, then |Π(z)| = 0 has p − r unit roots and the remaining roots are outside the
unit circle. If k = r = 0, only 0 < d0 , 1/2 is assumed.

7.2 Consistency

We �rst have to characterize the asymptotic behavior of the pro�le log-likelihood function for
full rank as T →∞, that is

`p(ψ ) := lim
T→∞

`T ,p(ψ ), (17)

3�is assumption might be restrictive in certain macroeconomic and �nancial applications. In a recent contri-
bution, Johansen and Nielsen (2018) extend the analysis of the FCVARd,b to include the possibility that the cointe-
grating vectors are nonstationary, i.e. d0 − b0 > 1/2.
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where

`T ,p = − log det
(
T −1

T∑
t=1

Rit (ψ )R
′
jt (ψ )

)
= − log det (SSRT (ψ )) , (18)

so that `p(ψ ) is the limit log-likelihood function `T ,p(ψ ). �e following theorem states the prop-
erties of the `p(ψ ) and the consistency of the ML estimator ofψ .

�eorem 7.2. �e function `p(ψ ) has a strict maximum atψ = ψ0 that is,

`p(ψ ) ≤ `p(ψ0) = − log |Ω0 |, ψ ∈ Ψ (19)

and equality holds if and only ifψ = ψ0. Let Assumption 7.1 hold, and assuming that (d0,b0) ∈ Ψ(η)

with Ψ(η) = {(d,b) : η < b ≤ d ≤ d1} ⊂ Ψ being a family of compact sets with η > 0, then

`T ,p(ψ0)
p
→ − log |Ω0 |. (20)

Finally, with probability converging to 1, ψ̂ in model Hr ,k for r = 0, 1, . . . ,p exists uniquely for
ψ ∈ Ψ(η) and is consistent.

See proof in Appendix B.5.
�e property of identi�cation derived in �eorem 5.2 guarantees that the consistency of

`T ,p(ψ0) holds true also when k > k0. Figure 2 reports the surface of the expected pro�le log-
likelihood function of the FCVARd,b and FVECMd,b in the two-dimensional space of (d,b) ∈
[0.2, 0.99]2 with d ≥ b when the DGP is a co-fractional model with k0 = 0 lags. �e plot clearly
highlights the presence of two or three equivalent peaks for the FCVARd,b log-likelihood when
k = 1 and k = 2 respectively. Instead, the log-likelihood function of the FVECMd,b is always
associated with a unique maximum for any k ≥ k0, as a consequence of the identi�cation prop-
erty of the FVECMd,b . �is is relevant in the empirical applications when the true value of k is
unknown and it is normally selected with a general-to-speci�c approach.

7.3 Asymptotic distribution

Let consider again the FVECMd,b

∆d
+Xt = αβ

′∆d−b
+ LbXt +

k∑
j=1

Γj∆
d
+Xt−j + εt ,

where θ = {d,b,α , β, Γ1, ..., Γk ,Ω} is the collection of parameters and θ̃ is a partition of θ such
that θ\θ̃ denotes all parameters but θ̃ . We want to �nd an expression for Dθ̃εt (θ0\θ̃ )|θ̃=θ̃0

that is
the derivative of εt (θ0\θ̃ ) with respect to θ̃ . Let de�ne εt (θ ) as

εt (θ ) = ∆d
+Xt − αβ

′∆d−b
+ LbXt −

k∑
j=1

Γj∆
d
+Xt−j , (21)
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(a) FCVAR, k = 1 (b) FVECM, k = 1

(c) FCVAR, k = 2 (d) FVECM, k = 2

Figure 2: �e �gure reports the contour plot of the values of the function `(ψ ) for di�erent combinations
of d ∈ [0.2, 0.99] (x-axis) and b ∈ [0.2, 0.99] (y-axis). �e observations from the DGP are generated with
k0 = 0 lags and both the FCVARd,b and FVECMd,b withk = 1 andk = 2 lags are estimated. �e parameters
of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′. �e empty area is associated with values of
b > d which are ruled out by assumption.

and the log-likelihood function as −2 logL(θ ) = tr
{
Ω−1

0
∑T

t=1 εt (θ )εt (θ )
′
}
, with Ω = Ω0. By

substituting in (21) the Granger representation of Xt evaluated in θ0 up to the initial conditions
(that asymptotically are negligible), we get

εt (θ ) =∆
d−d0
+ (C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−αβ′∆d−b−d0
+ Lb(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−

k∑
i=1

Γi∆
d−d0
+ Lj(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).
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To derive the asymptotic distribution of θ it is necessary to characterize the asymptotic be-
havior of the product moments needed to calculate the log-likelihood function. For this purpose,
it is useful to use a local parametrization of the FVECMd,b . We de�ne the following quantities

X−1,t = (∆
d−b − ∆d)Xt , Xit = (∆

d+i − ∆d+k)Xt , Xkt = ∆d+kXt ,

where i = 0, . . . ,k − 1 and the errors as

εt (λ) = Xkt − αβ
′X−1,t +

k−1∑
i=0

ΨiXit ,

where λ = (d,b,α , β,Ψ∗) with Ψ∗ = (Ψ0, . . . ,Ψk−1). As in Johansen and Nielsen (2012) we locally
parametrize the likelihood with the following formulation β = β0 + β0⊥(β̄

′
0⊥β) = β0 + β0⊥ϑ . Let

N(ψ0, ϵ) = {ψ : |ψ −ψ0 | < ϵ}. �en for (d,b) ∈ N(ψ0, ϵ), ϵ < 1/2 with δ−1 = d − b − d0 < −1/2
and d + i − d0 ≥ −ϵ for i ≥ 0. the process β′0⊥X−1,t is the only non-stationary process in εt (λ).

We also introduce the normalized parameter ζ = β̄′0⊥(β − β0)T
−(δ−1+1/2) = ϑT −(δ−1+1/2), such that

β = β0 + β0⊥ζT
δ−1+1/2. Let us de�ne Vt = (X ′−1,tβ0, {X

′
it }

k−1
i=0 ,X

′
kt
)′ and ϕ = (d,b,α ,Ψ∗) such that

λ = (ϕ, ζ ). We can write the error as

εt (λ) = −αT
δ−1+1/2ζ ′β′0⊥X−1,t + (−α ,Ψ∗, Ip)Vt .

Whenb0 > 1/2, the product moments in the conditional likelihood function−2T −1 logLT (ϕ, ζ ) =
log |Ω | + tr

(
Ω−1T −1 ∑T

t=1 εt (λ)εt (λ)
′
)

are(
AT (ψ ) CT (ψ )

CT (ψ )
′ BT (ψ )

)
= T −1

T∑
t=1

(
T δ−1+1/2β′0⊥X−1,t

Vt

) (
T δ−1+1/2β′0⊥X−1,t

Vt

)′
.

Finally we de�ne

C0
εT = T

−1/2
T∑
t=1

T 1/2−b0β′0⊥X
0
−1,tε

′
t ,

whereX 0
−1,t isX−1,t with λ = λ0. When b0 < 1/2, we replace δ−1+1/2 by zero in the de�nition of

At (ψ ),Bt (ψ ),Ct (ψ ) and C0
εT . �e asymptotic behavior of AT (ψ ),BT (ψ ),CT (ψ ) and their deriva-

tives when 1/2 < b0 < d0 and 0 < b0 < 1/2 is derived in �eorem 6 in Johansen and Nielsen
(2012).

We can now outline the following theorem, which is analogous to �eorem 10 in Johansen
and Nielsen (2012).

�eorem 7.3. Under Assumption 7.1, with X−n = 0 for n ≥ T ν for some ν < 1/2, the asymptotic
distribution of the ML estimator of the FVECMd,b is as follows:

• If b0 > 1/2 and E |εt |q < ∞ for some q > (b0 − 1/2)−1, the asymptotic distribution of the ML
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estimator ϕ̂ = (d̂, b̂, α̂ , Γ̂j) and β̂ is given by(
T 1/2vec(ϕ̂ − ϕ0)

Tb0 β̄′0⊥(β̂ − β0)

)
d
→

©­«
N(0, Σ0)(∫ 1

0 F0F
′
0

)−1 ∫ 1
0 F0(dG0)

′(α0Ω
−1
0 α0)

−1
ª®¬ ,

where Σ0 > 0, F0 = β′0⊥C0Wb0−1 with Wb0−1 is the (non-standardized) type II fractional
Brownian motion of order b0 − 1, andG0 = α

′
0Ω
−1
0 W are independent withW :=W0 denoting

the Brownian motion generated by εt . �e two components of the asymptotic distribution are
independent (see Lemma 10 in Johansen and Nielsen, 2010). It follows that the asymptotic
distribution of vec(Tb0 β̄′0⊥(β̂ − β0)) is mixed Gaussian with conditional variance given by

V = (α ′0Ω
−1
0 α0)

−1 ⊗

(∫ 1

0
F0F
′
0du

)−1
.

• If 0 < b0 < 1/2, the estimators (d̂, b̂, α̂ , Γ̂j , β̂) are asymptotically Gaussian.

• If k = r = 0, and d = b the model is ∆dXt = εt , and d̂ is asymptotically Gaussian.

Proof. See the proof in Appendix B.7.

7.4 Testing for the cointegration rank

We now focus on the likelihood ratio test for the determination of the co-fractional rank and we
rely on the results of Johansen and Nielsen (2012) to prove its asymptotic distribution. Let us
�rst de�ne the modelHp,k as

Hp,k : ∆dXt = Π∆d−bLbXt +

k∑
i=1

Γi∆
dLibXt + εt ,

where the following analysis holds for any given k = k0. We consider the test for the null
hypothesis Hr : rank(Π) ≤ r against the alternative Hp : rank(Π) ≤ p. We de�ne the LR
statistic as

− 2 logLR(Hr |Hp) = T log
|S00(ψ̂r )|

∏r
i=1(1 − ω̂i(ψ̂r ))

|S00(ψ̂p)|
∏p

i=1(1 − ω̂i(ψ̂p))
= T (`T ,r (ψ̂r ) − `T ,p(ψ̂p)). (22)

�e following theorem presents the asymptotic distribution of the LR test.

�eorem 7.4. Under Assumption 7.1, with X−n = 0 for n ≥ T ν for some ν < 1/2, the asymptotic
distribution of the LR test in (22) is:

• If b0 > 1/2,

−2 logLR(Hr |Hp)
d
→ tr

(∫ 1

0
(dB)B′b0−1

(∫ 1

0
Bb0−1B

′
b0−1du

)−1 ∫ 1

0
Bb0−1(dB)

′

)
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where B(u) is a (p−r )−dimensional standard Brownianmotion and Bb0−1(u) is the correspond-
ing standardized type II fractional Brownian motion. �e limit distribution is continuous in
b0.

• If 0 < b0 < 1/2,
−2 logLR(Hr |Hp)

d
→ χ 2 (

(p − r )2
)
.

• Let PH1 the probability measure under the alternative Π1 = α1β
′
1 = αβ′ + α∗β∗′, where

α1 = (α ,α
∗) and β1 = (β, β

∗) are p × (r + r ∗) matrices of rank r1 = r + r ∗ > r , and hence
rank(Π1) > r . Under the Assumption that Xt is generated by modelHr , then

−2 logLR(Hr |Hp)
PH1
→ ∞,

under the alternative.

Proof. See the proof of �eorem 11 in Johansen and Nielsen (2012).
In the framework of the FCVARd,b , the parameter b is not identi�ed when k = 0 and we

are testing r = 0 (i.e. Π = 0). Johansen and Nielsen (2012) suggest to follow the approach of
Lasak (2010) and to adopt a sup-type test, supb LR(b), where LR(b) = −2 logLR(Π = 0|b), where
the supremum is taken over the values of the index b.4 In the FVECMd,b , the parameter b is
not identi�ed for any k = 0, 1, . . . when testing r = 0. Hence, the supb LR(b) statistic should be
computed for any choice ofk under r = 0. For a givenk , the co-fractional rank can be determined
with a sequence of tests for a given nominal size ς ∈ (0, 1). �e sequence of tests is performed
by considering the null hypothesis Hr , for r = 0, 1, . . . until rejection, and the estimated co-
fractional rank r̂ is the last non-rejected value of r . �e consistency of the test guarantees that
any test with r < r0, where r0 is the true cointegrating rank, will reject with probability 1 as
T → ∞. Finally, if the asymptotic size is ς , then P(r̂ < r0) → ς , so that P(r̂ = r0) → 1 − ς .
Similarly to MacKinnon and Nielsen (2014), the critical values of the limiting distribution need
to be tabulated.

8 An empirical illustration

As an illustration of the usefulness of adopting a FVECMd,b speci�cation in the empirical analysis
of fractional cointegration, we consider the case of the relationship between the volatility index
(VIX) and the realized variance (RV). Being the VIX a 30-days ahead expectation of RV under the
risk-neutral measure, it is natural to verify the existence of a unique common stochastic trend
(possibly fractional) driving the dynamics of both series over time, see among others Bandi and
Perron (2006) and Bollerslev et al. (2013b). In the following analysis, we consider the time series
of VIX and RV collected at daily frequency for the period January 02, 2001 to December 31, 2018

4Alternatively, Lasak and Velasco (2015) propose a two-step procedure to determine the cointegration rank.
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for a total of T = 4226 daily observations.5 Since the VIX is an expectation for the RV for the
next 30-days, we avoid to deal with overlapping observations by retaining the VIX observed at
the last trading day of each month and by computing the sum of the daily RV (RVt ,i ) in each
month, t . In other words the monthly RV series is computed as

RVt =
21
dt

dt∑
i=1

RVt ,i , (23)

where dt is the number of days in the t-th month and 21 is the average number of days in each
month according to the annualization scheme of VIX which assumes 252 transaction days in a
year. A�er the aggregation over monthly horizons, the sample contains 217 observations. Figure
3 displays the series of monthly RV and squared-VIX for the sample under investigation. Both
series display similar dynamic pa�erns, being characterized by a high degree of persistence and
a slow reversion to the long-run (unconditional) level. In line with the theory of a positive
variance-risk premium, the series of squared-VIX generally lies above the series of RV, where
the la�er, being an ex-post realization, displays more variability.

2002 2004 2006 2008 2010 2012 2014 2016 2018
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: Monthly RV (red) and squared-VIX (blue) series. �e gray area identi�es NBER recessions in
US.

To accommodate the spread between RV and squared-VIX that re�ects the unconditional
level of the variance risk premium (VRP), we consider the FVECMd,b with variables in deviations
from the level, that is

∆dX ∗t = αβ
′∆d−bLbX

∗
t +

k∑
j=1

Γj∆
dX ∗t−j + εt , (24)

5�e series of daily RV is obtained from the realized library available at https://realized.oxford-
man.ox.ac.uk/ and it is computed with the intradaily log-returns of SPX sampled at 5-minutes frequency. Liu
et al. (2015) �nd limited empirical support that the 5-minute RV is outperformed by other (more re�ned) measures
of integrated variance. �e series of VIX is obtained from CBOE.
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k r d b LogL LR pv AIC BIC pmvQ pQ1 pLM1 pQ2 pLM2
8 2 1.038 1.038 -58.18 3.69 0.450 196.37 331.38 1.00 1.00 0.98 1.00 0.99
7 2 1.060 1.060 -60.03 4.22 0.377 192.05 313.56 1.00 1.00 1.00 1.00 1.00
6 2 0.961 0.961 -62.14 2.25 0.690 188.27 296.28 1.00 1.00 1.00 1.00 1.00
5 2 0.866 0.866 -63.26 2.43 0.657 182.52 277.03 1.00 1.00 1.00 1.00 1.00
4 2 0.833 0.833 -64.48 0.54 0.969 176.95 257.96 1.00 1.00 1.00 1.00 1.00
3 2 0.894 0.771 -64.75 1.64 0.801 169.50 237.00 1.00 1.00 0.99 1.00 0.99
2 2 0.923 0.771 -65.57 1.72 0.788 163.14 217.14 1.00 0.97 0.90 0.97 0.92
1 2 0.843 0.836 -66.43 8.01 0.091 156.85* 197.36 1.00 0.98 0.92 0.92 0.87
0 2 1.016 0.591 -70.43 0.00 0.000 156.86 183.86* 0.88 0.84 0.71 0.84 0.72

Table 1: FVECMd,b lag selection procedure. �e procedure considers a maximum of k = 8 lags. �e
cointegration rank is �xed to r = p = 2. Table reports the value of the log-likelihood (logL), the LR test
for k vs k + 1 lags, the associated p-value, the AIC, the BIC. �e last �ve columns provide the p-values for
white noise Q tests on the residuals. �e �rst P-value, pmvQ, is for the multivariate Q-test followed by
univariate Q-tests as well as LM tests on the p individual residuals.

where X ∗t = Xt − µ with Xt = [log VIX2
t , log RVt ], and µ being a 2 × 1 vector with the level pa-

rameters to be estimated together with the other parameters of the FVECMd,b . As an alternative
parametrization, we consider the FCVARd,b speci�cation

∆dX ∗t = αβ
′∆d−bLbX

∗
t +

k∑
j=1

Γj∆
dLj

b
X ∗t + εt , (25)

which is the same adopted by Nielsen and Shibaev (2018) for forecasting the opinion polls in UK.
Tables 1 and 2 report the results of the lag selection for the FVECMd,b and FCVARd,b , re-

spectively.6 �e lag-selection procedure under the FVECMd,b speci�cation is more robust than
that achieved under the FCVARd,b model. Indeed, for the FVECMd,b the log-likelihood is always
increasing in k and the estimates of d and b are in the range between 0.591 and 1.038. On the
contrary, for the FCVARd,b the log-likelihood displays a non-monotonic behavior, resulting in a
negative value for the LR test when k = 5. Furthermore, in two cases (k = 4, 8) the estimates
of d and b are found on the lower bound of the parameter space, which for this application has
been set to η = 0.1. We claim that the non-monotonic behavior of the log-likelihood function is
associated with local maxima, which are the consequence of the identi�cation issues discussed
in Carlini and Santucci de Magistris (2017). �e sequence of LR tests for the FVECMd,b leads
to select the model with k∗ = 1 lags at 10% signi�cance level. On the contrary, adopting the
FCVARd,b speci�cation we would select k∗ = 8, which is an unrealistically high number of lags.
Alternatively, one could adopt the AIC and/or the BIC for the selection of the number of lags.
For the FVECMd,b both the AIC and the BIC points toward a relatively small number of lags,
k∗ = 1 and k∗ = 0 respectively. �is is in line with the low number of lags determined by the
sequence of LR tests. On the contrary, the AIC and the BIC associated with the FCVARd,b select
k∗ = 8 and k∗ = 0 respectively. �is signals again the di�culty in determining the correct lag

6�e estimation has been performed adapting the MATLAB package of Nielsen and Popiel (2018) to the case of
the FVECMd,b . All codes are available upon request to the authors.
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structure in the FCVARd,b .

k r d b LogL LR pv AIC BIC pmvQ pQ1 pLM1 pQ2 pLM2
8 2 0.100 0.100 -32.17 55.80 0.000 144.35* 279.36 1.00 0.99 0.98 0.98 0.96
7 2 1.013 1.013 -60.08 4.07 0.397 192.15 313.66 1.00 1.00 1.00 1.00 1.00
6 2 0.969 0.969 -62.11 1.62 0.806 188.22 296.23 1.00 1.00 1.00 1.00 1.00
5 2 0.878 0.878 -62.92 -19.69 1.000 181.84 276.34 1.00 1.00 1.00 1.00 1.00
4 2 0.100 0.100 -53.07 23.27 0.000 154.14 235.15 0.99 0.78 0.78 0.46 0.45
3 2 0.861 0.861 -64.71 2.03 0.731 169.42 236.92 1.00 1.00 0.99 1.00 0.99
2 2 0.968 0.832 -65.72 1.69 0.792 163.44 217.45 1.00 0.95 0.86 0.95 0.88
1 2 0.867 0.867 -66.57 7.73 0.102 157.14 197.64 1.00 0.97 0.89 0.92 0.87
0 2 1.016 0.591 -70.43 0.00 0.000 156.86 183.86* 0.88 0.84 0.71 0.84 0.72

Table 2: FCVARd,b lag selection procedure. �e procedure considers a maximum of k = 8 lags. �e
cointegration rank is �xed to r = p = 2. Table reports the value of the log-likelihood (logL), the LR test
for k vs k + 1 lags, the associated p-value, the AIC, the BIC. �e last �ve columns provide the p-values for
white noise Q tests on the residuals. �e �rst P-value, pmvQ, is for the multivariate Q-test followed by
univariate Q-tests as well as LM tests on the p individual residuals.

�e test of the cointegration rank for the FVECMd,b and FCVARd,b are reported in Table
3. As expected, the LR test for the FVECMd,b is low for r = 1, thus supporting the existence
of a common stochastic trend between VIX and RV. On the contrary, the FCVARd,b displays
a non-monotonic behavior of the log-likelihood function that in theory should be an increas-
ing function of r . Instead, the LR statistic for r = 1 is negative. We conclude the empirical

FVECMd,b - k∗ = 1 FCVARd,b - k∗ = 3
Rank d b Log-likelihood LR statistic Rank d b Log-likelihood LR statistic
0 0.469 0.469 -73.714 14.574 0 0.481 0.481 -66.340 3.264
1 0.725 0.725 -67.550 2.246 1 0.100 0.100 -60.626 -8.164
2 0.843 0.836 -66.427 —- 2 0.861 0.861 -64.708 —-

Table 3: FVECMd,b and FCVARd,b cointegration test.

analysis by looking at the parameter estimates of the FVECMd,b . Table 4 reports the parame-
ter estimates together with the standard errors and t-tests. �e estimates of d and b are equal
(d = b = 0.725), signaling that the common (fractional) stochastic trend fully determines the
long-run behavior of both series, while the deviations from the stochastic trend are short mem-
ory I(0) processes. Furthermore, the estimates of d and b are in the range between 0.5 and
1. �is means that both log VIX2

t and log RVt are non-stationary processes although display-
ing a slow reversion towards a long-run value, which is µV IX = −2.984 and µRV = −3.720.
�e di�erence ∆µ = µ̂V IX − µ̂RV = 0.736 is associated with the unconditional level of the
VRP, expressed in the log-scale. In the original scale of VIX2 and RV, the average di�erence
∆µ∗ = 1

T

∑T
t=1(V IX

2 −RVt ) = 0.0184. �is value is very close to the one implied by the estimates
of FVECMd,b , that is ∆̂µ∗ = e µ̂V IX − e µ̂RV = 0.0264. �e estimate of β2 is -0.945 and it is also very
close to the theoretical value (β2 = −1), which arises from the theory of the VRP. �e VRP is
de�ned as VRPt = EQt [RVt+τ ] − E

P
t [RVt+τ ], where Q and P denote the risk-neutral and physical
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log VIX2
t log RVt

Est . Std .Err . t − Stat P −val Est . Std .Err . t − Stat P −val

µ -2.984 0.245 -12.179 0.000 -3.720 0.274 -13.576 0.000
d 0.725 0.145 5.000 0.000 0.725 0.145 5.000 0.000
b 0.725 0.154 4.707 0.000 0.725 0.154 4.707 0.000
α -0.001 0.112 -0.009 0.998 0.361 0.358 1.008 0.314
log VIX2

t−1 -0.061 0.306 -0.199 0.842 -0.096 0.428 -0.224 0.823
log RVt−1 0.184 0.127 1.448 0.149 0.159 0.235 0.676 0.505

Table 4: FVECM Results. �e table reports the parameter estimates of the FVECM using the monthly
series of log(V IX 2

t ) and log(RV 2
t ) over the period January 2001 through December 2018. �e estimated

cointegration parameters are β̂ = [1,−0.945]′.

probability measures respectively and τ = 1 month is the time horizon usually employed. �e
estimates of α are not signi�cant, but we notice that the loading in the equation of log RVt is
of an order of magnitude larger than that of log VIX2

t , signaling that RV tends to move to re-
store the equilibrium. �is has intuitive explanation. Indeed, while VIXt is a forward looking
variable, being an expectation at time t for RVt+1, RVt is an ex-post measure of variance in the
month t . We expect the results to change to some extent if looking at the lead-lag relation-
ship, i.e. by considering fractional cointegration relations between Xt = [log VIX2

t , log RVt+1] or
Xt = [log VIX2

t , log RVt−1]. As noted in Nielsen (2005): In standard I(1) cointegration, the timing
of variables in the cointegrating relation does not interfere with the cointegration property. In a gen-
eral (fractional) CI(d,b) model, it is the reduction in integration orders, b, implied by cointegration
that determines whether timing ma�ers. �is analysis is however beyond the scope of the present
illustration.

To conclude the empirical analysis, we report in Figure 4 the estimate of the common stochas-
tic trend that is obtained through the Granger representation in �eorem 4.1 as

V̂t = (α̂
′
⊥Γ̂(1)β̂⊥)−1α̂ ′⊥∆

−d̂
+ ε̂t . (26)

Panel a) of Figure 4 reports the dynamic behavior of RVt , VIX2
t andV∗t , where the la�er denotes

the common stochastic trend remapped to the original scale of monthly volatilities. �e common
stochastic trend drives the long-run dynamics of both RVt and VIX2

t , while the deviations from
the long run equilibrium reported in Panel b) are short memory.

9 Conclusion

In this paper, we have shown that the multivariate co-fractional model of Granger (1986) is
suitable to carry out inference on the long-run equilibrium relations between series that are in-
tegrated of a fractional order. Indeed, we have proved that the FVECMd,b allows for a Granger
representation theorem and its stability conditions can be studied through the argument prin-
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Figure 4: Monthly RV (red), squared-VIX (blue) series, common fractional trend (yellow) and error cor-
rection term. Panel a) displays the common fractional trend is computed as V∗t = exp(Vt + µ

∗), where
µ∗ = (µRV + µV IX )/2 and Vt is given in equation (26). Panel b) reports the error correction term,
ECt = β̂

′X ∗t . �e gray area identi�es NBER recessions in US.

ciple. Notably, the model is always identi�ed for any combination of number of lags and coin-
tegration rank. Finally, the parameters FVECMd,b can be estimated by ML in a similar fashion
as in Johansen and Nielsen (2012) and they are associated with the same asymptotic behavior as
those of the FCVARd,b .

References

Ahlfors, L. V. (1953). Complex analysis: an introduction to the theory of analytic functions of
one complex variable. New York, London, page 177.

Andersen, T. G. and Bollerslev, T. (1997). Heterogeneous information arrivals and return
volatility dynamics: Uncovering the long-run in high frequency returns. Journal of Finance,
52(3):975–1005.

Anderson, T. W. et al. (1951). Estimating linear restrictions on regression coe�cients for multi-
variate normal distributions. �e Annals of Mathematical Statistics, 22(3):327–351.

Avarucci, M. (2007). �ree essays on fractional cointegration. PhD thesis, University of Rome Tor
Vergata.

Baillie, R. T. and Bollerslev, T. (1994). Cointegration, fractional cointegration, and exchange rate
dynamics. Journal of Finance, 49(2):737–45.

Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O. (1996). Fractionally integrated generalized
autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1):3–30.

24



Bandi, F. M. and Perron, B. (2006). Long memory and the relation between implied and realized
volatility. Journal of Financial Econometrics, 4(4):636–670.

Binder, M. and Pesaran, M. H. (1997). Multivariate linear rational expectations models: charac-
terization of the nature of the solutions and their fully recursive computation. Econometric
�eory, 13(6):877–888.

Bollerslev, T., Osterrieder, D., Sizova, N., and Tauchen, G. (2013a). Risk and return: Long-run
relations, fractional cointegration, and return predictability. Journal of Financial Economics,
108(2):409–424.

Bollerslev, T., Osterrieder, D., Sizova, N., and Tauchen, G. (2013b). Risk and return: Long-run
relations, fractional cointegration, and return predictability. Journal of Financial Economics,
108(2):409–424.

Breitung, J. and Hassler, U. (2002). Inference on the cointegration rank in fractionally integrated
processes. Journal of Econometrics, 110(2):167–185.

Caporin, M., Ranaldo, A., and Santucci de Magistris, P. (2013). On the predictability of stock
prices: A case for high and low prices. Journal of Banking & Finance, 37(12):5132–5146.

Carlini, F. and Santucci de Magistris, P. (2017). On the identi�cation of fractionally cointegrated
VAR models with the F (d) condition. Journal of Business & Economic Statistics, pages 1–13.

Davidson, J. (2002). A model of fractional cointegration, and tests for cointegration using the
bootstrap. Journal of Econometrics, 110(2):187 – 212.

Delves, L. and Lyness, J. (1967). A numerical method for locating the zeros of an analytic function.
Mathematics of Computation, 21(100):543–560.

Dolatabadi, S., Nielsen, M. Ø., and Xu, K. (2015). A fractionally cointegrated VAR analysis of
price discovery in commodity futures markets. Journal of Futures Markets, 35(4):339–356.

Dolatabadi, S., Nielsen, M. Ø., and Xu, K. (2016). A fractionally cointegrated VAR model with de-
terministic trends and application to commodity futures markets. Journal of Empirical Finance,
38:623 – 639.

Engle, R. and Granger, C. W. J. (1987). Cointegration and error correction: representation esti-
mation, and testing. Econometrica, 55:251–276.

Franchi, M. (2010). A representation theory for polynomial cofractionality in vector autoregres-
sive models. Econometric �eory, 26(04):1201–1217.

Fuchs, B. A. and Shabat, B. V. (1964). Functions of a complex variable and some of their applications,
volume 1. Pergamon Press.

25



Geweke, J. and Porter-Hudak, S. (1983). �e estimation and application of long memory time
series models. Journal of Time Series Analysis, 4:221–238.

Gouriéroux, C. and Zakoı̈an, J.-M. (2017). Local explosion modelling by non-causal process.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):737–756.

Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic models.
Journal of econometrics, 14(2):227–238.

Granger, C. W. J. (1986). Developments in the study of cointegrated economic variables. Oxford
Bulletin of Economics and Statistics, 48(3):213–28.

Hamilton, J. D. (1994). Time series analysis. Princeton university press, Princeton.

Hosking, J. (1981). Fractional di�erencing. Biometrika, 68:165–76.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics
and Control, 12:231–254.

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian
vector autoregressive models. Econometrica, 59(6):1551–80.

Johansen, S. (1992). A representation of vector autoregressive processes integrated of order 2.
Econometric �eory, 8(2):188–202.

Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Ox-
ford University Press, Oxford.

Johansen, S. (1997). Likelihood analysis of the I(2) model. Scandinavian Journal of Statistics,
24(4):433–462.

Johansen, S. (2008a). Representation of cointegrated autoregressive processes with application
to fractional processes. Econometric Reviews, 28(1-3):121–145.

Johansen, S. (2008b). A representation theory for a class of vector autoregressive models for
fractional processes. Econometric �eory, 24(3):651–676.

Johansen, S. (2010). Some identi�cation problems in the cointegrated vector autoregressive
model. Journal of Econometrics, 158(2):262–273.

Johansen, S. and Nielsen, M. Ø. (2010). Likelihood inference for a nonstationary fractional au-
toregressive model. Journal of Econometrics, 158(1):51–66.

Johansen, S. and Nielsen, M. Ø. (2012). Likelihood inference for a fractionally cointegrated vector
autoregressive model. Econometrica, 80(6):2667–2732.

26



Johansen, S. and Nielsen, M. Ø. (2018). Nonstationary cointegration in the fractionally cointe-
grated VAR model. Forthcoming on the Journal of Time Series Analysis.

Klein, P. (2000). Using the generalized Schur form to solve a multivariate linear rational expec-
tations model. Journal of Economic Dynamics and Control, 24(10):1405–1423.

Lasak, K. (2010). Likelihood based testing for no fractional cointegration. Journal of Econometrics,
158(1):67–77.

Lasak, K. and Velasco, C. (2015). Fractional cointegration rank estimation. Journal of Business &
Economic Statistics, 33(2):241–254.

Liu, L. Y., Pa�on, A. J., and Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison
of realized measures across multiple asset classes. Journal of Econometrics, 187(1):293–311.

MacKinnon, J. G. and Nielsen, M. Ø. (2014). Numerical distribution functions of fractional unit
root and cointegration tests. Journal of Applied Econometrics, 29(1):161–171.

Neusser, K. et al. (2016). Time Series Econometrics. Springer.

Nielsen, M. Ø. (2005). Noncontemporaneous cointegration and the importance of timing. Eco-
nomics Le�ers, 86(1):113–119.

Nielsen, M. Ø. and Popiel, M. K. (2018). A MATLAB program and user’s guide for the fractionally
cointegrated VAR model. Technical report, �een’s Economics Department Working Paper.

Nielsen, M. Ø. and Shibaev, S. S. (2018). Forecasting daily political opinion polls using the frac-
tionally cointegrated vector auto-regressive model. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 181(1):3–33.

Robinson, P. M. and Marinucci, D. (2003). Semiparametric frequency domain analysis of frac-
tional cointegration. In Robinson, P. M., editor, Time Series with Long Memory, pages 334–373.
Oxford University Press.

Rossi, E. and Santucci de Magistris, P. (2013). A no-arbitrage fractional cointegration model for
futures and spot daily ranges. Journal of Futures Markets, 33(1):77–102.

Rotemberg, J. J. (1987). �e new Keynesian microfoundations. Macroeconomics Annual, 2:69–104.

Schennach, S. M. (2018). Long memory via networking. Econometrica, 86(6):2221–2248.

Shea, G. S. (1991). Uncertainty and implied variance bounds in long-memory models of the
interest rate term structure. Empirical Economics, 16(3):287–312.

Tschernig, R., Weber, E., and Weigand, R. (2013). Long-run identi�cation in a fractionally inte-
grated system. Journal of Business & Economic Statistics, 31(4):438–450.

27



Za�aroni, P. (2004). Contemporaneous aggregation of linear dynamic models in large economies.
Journal of Econometrics, 120(1):75–102.

A Regularity of f (z)

In this Appendix, we discuss the regularity properties of f (z) = (1 − z)−b(p−r )д(z) such that the
argument principle can be adopted to count the number of zeroes inside the unit circle. In partic-
ular, we have to show that f (z) is an holomorphic function on the unit circle and it does not have
poles inside. An holomorphic function is de�ned as a complex-valued di�erentiable function on
an open set D of the C. For instance, the functions h1(x) = 1 − (1 − z)b and h2(x) = (1 − z)b

are holomorphic in the unit circle for any b ∈ R+, see Johansen (2008b). A useful property of
holomorphic functions is that the composition of two holomorphic functions is also an holo-
morphic function. It follows from this property that Π̃(z) is an holomorphic matrix function.
Analogously, the determinant д(z) = |Π̃(z)| is holomorphic since the determinant is a contin-
uous function. Hence, f (z) is holomorphic in the unit circle and it does not have any zero on
the contour |z | = 1. Moreover, the function f (z) does not have any pole inside the unit circle
because д(z) does not involve any inverse function of z.

B Proofs

B.1 Proof of �eorem 4.1

To ease the exposition of the proof, we �rst derive the Granger representation of the model

∆d
+Xt = αβ

′LdXt +

k∑
j=1

Γj∆
d
+Xt−j + εt ,

where d = b. First of all, let us write the characteristic polynomial as

Πd(z) = (1 − z)d(Ip −
k∑
j=1

Γjz
j) − αβ′(1 − (1 − z)d). (27)

We introduce the variable y = 1 − (1 − z)d and we write Π(z) = Π∗(z,y) as

Π∗d(z,y) = (1 − y)(Ip −
k∑
j=1

Γjz
j) − αβ′y.

Following the proof of �eorem 3 of Johansen (2008a) we calculate A′Π∗
d
(z,y)B with A = (ᾱ ,α⊥)

and B = (β̄, β⊥), with ᾱ = α(α ′α)−1 and β̄ = β(β′β)−1 . We compute the Taylor expansion of
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Π∗
d
(z,y) in y = 1 (with y = 1 ⇐⇒ z = 1) and we get

A′Π∗d(z,y)B =

(
−Ir 0
0 0

)
+

(
ᾱ ′(Γ(z) + αβ′)β̄ ᾱ ′Γ(z)β⊥

α ′⊥Γ(z)β̄ α ′⊥Γ(z)β⊥

)
(1 − y),

where Γ(z) = Ip −
∑k

j=1 Γjz
j . Now, we calculate A′Π∗

d
(z,y)BF (y) where

F (y) =

(
Ir 0
0 (1 − y)−1Ip−r

)
,

and we get

K(z,y) = A′Π∗d(z,y)BF (y) =

(
−Ir ᾱ ′Γ(z)β⊥

0 α ′⊥Γ(z)β⊥

)
︸                   ︷︷                   ︸

K(z)

+

(
ᾱ ′(Γ(z) + αβ′)β̄ 0

α ′⊥Γ(z)β̄ 0

)
︸                        ︷︷                        ︸

ÛK(z)

(1 − y).

�en

K(z,y)−1 = (A′Π∗d(z,y)BF (y))
−1 = K−1(z) + K−1(z) ÛK(z)K−1(z) · (1 − y) + (1 − y)2H1(z,y),

H1(z,y) is the remainder term of the in�nite series K(z,y)−1 in y = 1, and

K−1(z) =

(
−Ir (ᾱ

′Γ(z)β⊥)(α
′
⊥Γ(z)β⊥)

−1

0 (α ′⊥Γ(z)β⊥)
−1

)
,

which is computed with the formula of the partitioned inverse. We now calculate

F (y)K(z,y)−1 = (1 − y)−1M−1(z) +M0(z) + (1 − y)H2(z,y),

with

M−1(z) =

(
0 0
0 (α ′⊥Γ(z)β⊥)−1

)
=

(
0 0
0 (α ′⊥Γ(1)β⊥)−1

)
+ (1 − z)H3(z),

where Γ(1) = Ip −
∑k

j=1 Γj and |α ′⊥Γ(1)β⊥ | , 0 and M0(z) contains term of degree 0 in (1 −
y). �erefore, by pre-multiplying by B and post-multiplying by A′, we �nd that the inverse of
Π∗
d
(z,y) with respect to y is

Π∗d(z,y)
−1 = BF (y)(A′Π∗d(z,y)BF (y))

−1A′ =

(1 − y)−1β⊥(α
′
⊥Γ(z)β⊥)

−1α ′⊥ +C
∗(z) + (1 − y)H (z,y), (28)
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and the only pole of (28) is (1 − y) and H (z,y) has zeros in z = 1 and y = 1. �e function
H̃ (z,y) = C∗(z)+ (1−y)H (z,y) is regular7 in the complex circle with no singularity at y = z = 1.
When b > 0, the functiony = 1−(1−z)d is regular for |z | < 1 and continuous for |z | ≤ 1. Hence,

F (z) = H̃ (1 − (1 − z)d , z), |z | ≤ 1,

is continuous for |z | ≤ 1 and regular without singularities on the open unit disk |z | < 1. Hence,
the expansion F (z) =

∑∞
n=0 Fnz

n, |z | < 1 is de�ned with
∑∞

n=0 ‖Fn‖
2 < ∞. We de�ne now Yt =

F (L)εt =
∑∞

n=0 Fnεt−n as a stationary process with mean zero, �nite variance and continuous
spectral density given by

fY (λ) =
1

2π F (e
−iλ)ΩF (eiλ)′ =

1
2π H̃ (1 − (1 − e

−iλ)d , e−iλ)ΩH̃ (1 − (1 − eiλ)d , eiλ)′,

and for λ = 0 we get

1
2π F (1)ΩF (1)

′ =
1

2π H̃ (1, 1)ΩH̃ (1, 1) =
1

2πC
∗(1)ΩC∗(1)′.

Given the inequality

Ω − α(α ′Ωα)−1α ′ = Ωα⊥(α
′
⊥Ωα⊥)

−1α ′⊥Ω ≥ 0,

then it follows that
β′C∗(1)ΩC∗′(1)β ≥ 0,

because β′C∗(1)α = −Ir . Hence, we have shown that fY (0) , 0, hence Yt ∼ F (0). Now, we know
that

Π−1
d (z) = C(z)(1 − z)

−d + F (z),

and applying the operator Π−1
d,+
(L) (de�ned analogously to the truncated �lter in (4)) to the equa-

tion Πd(L)Xt = εt we �nd the solution

Xt = C(L)(1 − z)−d+ + Y+t − Π−1
d,+(L)Πd,−(L)Xt .

�is means that Xt ∼ F (d) because C(1) , 0 and that β′Xt = β
′Y+t ∼ F (0)+ because Yt ∼ F (0).

�e case d > b can be solved in a similar way by noting that

∆d
+Xt = αβ

′∆d−b
+ LbXt +

k∑
j=1

∆d
+ΓjXt−j + εt ,

7A regular (or holomorphic) function is de�ned to be a complex-valued di�erentiable function on an open (and
arc connected) set D of C, where C denotes the set of complex numbers. For further details see Johansen (2008b).
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has the characteristic polynomial given by

Π(z) = (1 − z)dIp − αβ′(1 − z)d−b(1 − (1 − z)b) −
k∑
j=1

Γj(1 − z)dz j .

that can be wri�en as

Π(z) = (1 − z)d−b
[
(1 − z)bIp − αβ′(1 − (1 − z)b) −

k∑
j=1

Γj(1 − z)bz j
]
.

�e polynomial (1−z)d−b is trivially invertible and the polynomial [(1−z)bIp −αβ′(1−(1−z)b)−∑k
j=1 Γj(1 − z)bz j] is the same as in (27) where d = b and we proved is invertible.

B.2 Proof of Lemma 4.2

To illustrate the steps to obtain the recursion to compute the IRFs, we �rst consider the following
FVECMd,b with one lag,

∆d
+Xt = αβ

′∆d−b
+ LbXt + Γ1∆

d
+Xt−1 + εt ,

which can be wri�en as

∆d
+Xt = αβ

′(∆d−b
+ − ∆d

+)Xt + Γ1∆
d
+Xt−1 + εt .

Now, let us write explicitly Xt , t = 1, . . . ,T as a function of ε1. �e �rst term is X1 = ε1 and the
second is given by

X2 − dX1 = αβ
′(−(d − b) + d)X1 + Γ1X1 + ε2,

so that
X2 = (d + bαβ

′ + Γ1)ε1 + ε2.

Let us de�ne Θ1 := d + bαβ′ + Γ1, the third recursion is given by

X3 −dX2 +
d(d − 1)

2 X1 = bαβ
′X2 +αβ

′[(d −b)(d −b − 1)/2−d(d − 1)/2]X1 + Γ1X2 −d · Γ1X1 + ε3,

and rearranging the terms we get

X3 = dΘ1ε1−
d(d − 1)

2 ε1+bαβ
′Θ1ε1+αβ

′[(d −b)(d −b − 1)/2−d(d − 1)/2]ε1+ Γ1Θ1ε1−dΓ1ε1+ ε3

Hence we can de�ne

Θ2 = [Θ1Θ1 + αβ
′[(d − b)(d − b − 1)/2 − b(b − 1)/2] − dΓ1 − d(d − 1)/2] ε1.

Iterating this process, we can get the impulse response coe�cients, Θj j = 1, 2, . . ., for the
FVECMd,b .
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B.3 Proof of �eorem 5.2

We have to show that
Pθ0 = Pθ1 =⇒ θ0 = θ1,

under the condition εt ∼ N (0,Ω), so that the conditional variance of Xt is Var(Xt |It−1) = Ω,
where the �ltration is the σ -�eld generated as It−1 = {µ0,X0,X1, . . . ,Xt−1}. Hence, the matrix
Ω = Var(εt ) is identi�ed, so that Ω = Ω0. We now show that the conditional mean of the process
Xt is identi�ed for given k and r , i.e. that the characteristic polynomial is uniquely determined
as a function of the parameters, θ0.

Identi�cation when both k and r are known

Let us consider the two characteristic polynomials

Π0(z) = (1 − z)d0Ip − α0β
′
0(1 − z)d0−b0(1 − (1 − z)b0) −

k∑
j=1

Γj,0(1 − z)d0z j ,

and

Π1(z) = (1 − z)d1Ip − α1β
′
1(1 − z)d1−b1(1 − (1 − z)b1) −

k∑
j=1

Γj,1(1 − z)d1z j .

We identify the parameters of the model when Π0(z) = Π1(z) if and only if θ0 = θ1. �e following
set of equalities holds under the FVECMd,b when k and r are known and �xed

(1 − z)d0Ip = (1 − z)d1Ip ⇐⇒ d0 = d1

α0β
′
0(1 − z)d0−b0(1 − (1 − z)b0) = α1β

′
1(1 − z)d1−b1(1 − (1 − z)b1) ⇐⇒ b0 = b1

Γj,0(1 − z)d0z j = Γj,1(1 − z)d1z j , j = 1, . . . ,k ⇐⇒ Γj,0 = Γj,1,

with α1 = α0ξ and β1 = β0ξ
−1. Hence, d,b, Γj , j = 1, . . . ,k are identi�ed as well as α and β up to

rotations, ξ .

Identi�cation ofHk0 when k > k0

Let us consider the following two models

Hk0 : ∆d0
+ Xt = α0β

′
0∆

d0−b0
+ Lb0Xt + Γ1,0∆

d0
+ Xt−1 + · · · + Γk0,0∆

d0
+ Xt−k0 + εt ,

and
Hk : ∆d

+Xt = αβ
′∆d−b
+ LbXt + Γ1∆

d
+Xt−1 + · · · + Γk0∆

d
+Xt−k + εt ,
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where k is such that k ≥ k0 and the rank, r , is known and �xed. �e characteristic polynomials
ofHk0 andHk are

Πk0(z) = (1 − z)d0Ip − α0β
′
0(1 − z)d0−b0(1 − (1 − z)b0) −

k0∑
i=1

Γi,0(1 − z)d0zi ,

and

Πk(z) = (1 − z)dIp − αβ′(1 − z)d−b(1 − (1 − z)b) −
k∑
i=1

Γi(1 − z)dzi .

By equating Πk0(z) and Πk(z) we get the following set of conditions

(1 − z)d0Ip = (1 − z)dIp ⇐⇒ d = d0

α0β
′
0(1 − z)d0−b0(1 − (1 − z)b0) = αβ′(1 − z)d−b(1 − (1 − z)b) ⇐⇒ b = b0

Γi,0(1 − z)d0zi = Γi(1 − z)dzi , i = 1, . . . ,k0 ⇐⇒ Γi,0 = Γi

0 = Γi(1 − z)dzi , i = k0 + 1, . . . ,k ⇐⇒ Γi = 0,

with α0 = αξ and β0 = βξ
−1. Hence, the model Hk0 is always uniquely identi�ed as a subset of

model Hk associated with the restriction Γi = 0 for i = k0 + 1, . . . ,k (up to rotations ξ of α and
β).

Identi�cation when rank and lags are unknown

Let us consider the following two models

H0,k : ∆d0,k
+ Xt =

k∑
j=1

Γj,(0,k)∆
d0,k
+ Xt−j + εt ,

Hp,k−1 : ∆dp,k−1
+ Xt = Ξp,k−1∆

dp,k−1−bp,k−1
+ Lbp,k−1Xt +

k−1∑
j=1

Γj,(p,k−1)∆
dp,k−1
+ Xt−j + εt ,

�e goal is to prove thatH0,k , Hp,k−1. �e characteristic polynomials are

Π0,k(z) = (1 − z)d0,k Ip −
k∑
j=1

Γj,(0,k)(1 − z)d0,kz j ,

and

Πp,k−1(z) = (1 − z)dp,k−1Ip − Ξp,k−1(1 − z)dp,k−1−bp,k−1(1 − (1 − z)bp,k−1) +

k−1∑
j=1

Γj,(p,k−1)(1 − z)dp,k−1z j .

�e polynomial Πp,k−1(z) contains the term (1−z)dp,k−1−bp,k−1(1−(1−z)bp,k−1) that does not appear
in Π0,k(z) and there are no restrictions on dp,k−1, bp,k−1, Γj,(p,k−1) such thatH0,k = Hp,k−1. Hence
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H0,k , Hp,k−1. �

B.4 Proof of �eorem 6.1

To ease the exposition of the proof, we �rst derive the Granger representation of the FVECMd,b

under (11) of

∆d
+Xt = αβ

′LdXt +

k∑
j=1

Γj∆
d
+Xt−j + εt , (29)

where d = b and α ′⊥
(
Ip + α

′β′ −
∑k

j=1 Γj
)
β⊥ = ξη

′ with ξ and η being p − r × s matrices with α⊥
and β⊥ such that α ′α⊥ = 0 and β′β⊥ = 0. �e characteristic polynomial of (29) is

Λd(z) = (1 − z)dIp − αβ′(1 − (1 − z)d) −
k∑
j=1

Γj(1 − z)dz j ,

which can be wri�en as

Λ∗d(z,y) = (1 − y)Ip − αβ
′y −

k∑
j=1

Γj(1 − y)z j ,

where y = 1 − (1 − z)d . Hence

Λ∗d(z,y) = (1 − y)
(
Ip + αβ

′ −

k∑
j=1

Γj(1 − y)z j
)

︸                             ︷︷                             ︸
Γ(z)

−αβ′.

Let us de�ne A = (ᾱ , ᾱ1,α2) and B = (β̄ , β̄1, β2), where ᾱ = α(α ′α)−1, β̄ = β(β′β)−1, ᾱ1 =

α1(α
′
1α1)

−1 with α1 = ᾱ⊥ξ , β̄1 = β1(β
′
1β1)

−1 with β1 = β̄⊥η, α2 = ᾱ⊥ξ⊥ and β1 = β̄⊥η⊥. We can
compute the Taylor expansion of A′Λ∗

d
(z,y)B in y = 1 (with y = 1 ⇐⇒ z = 1) as

A′Λ∗d(z,y)B =
©­­«
−Ir + (1 − y)ᾱ ′Γ(z)β̄ ᾱ ′Γ(z)β̄1(1 − y) ᾱ ′Γ(z)β2(1 − y)
(1 − y)ᾱ ′1Γ(z)β̄ (1 − y)Is 0
(1 − y)ᾱ ′2Γ(z)β̄ 0 0

ª®®®¬ .
Let us now de�ne

F (y) =
©­­«
Ir 0 (1 − y)−1ᾱ ′Γ(z)β2

0 (1 − y)−1Is 0
0 0 (1 − y)−2Ip−r−s

ª®®®¬ ,
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and calculate K(z,y) = A′Λ∗
d
(z,y)BF (z) = K(z) + (1 − y) ÛK(z) where

K(z) =
©­­«
−Ir ᾱ ′Γ(z)β̄1 ᾱ ′Γ(z)β̄ᾱ ′Γ(z)β2

0 Is ᾱ ′1Γ(z)β̄ᾱ
′Γ(z)β2

0 0 α ′2Γ(z)β̄ᾱ
′Γ(z)β2

ª®®®¬ ,
and

ÛK(z) =
©­­«
ᾱ ′Γ(z)β̄ 0 0
ᾱ ′1Γ(z)β̄ 0 0
α ′2Γ(z)β̄ 0 0

ª®®®¬ .
�en, to guarantee that K(z) is invertible, we have to impose that

|α ′2Γ(1)β̄ᾱ ′Γ(1)β2 | , 0, (30)

which we name F (2b) condition. A necessary condition for (30) to hold is that p < 2r + s . By
inversion of K(z,y), we get

K(z,y)−1 = (A′Λ∗d(z,y)BF (y))
−1 = K−1(z) + (1 − y)K−1(z) ÛK(z)K−1(z) + (1 − y)2H1(z,y)

where H1(z,y) is the remainder term of the in�nite series K(z,y)−1 in y = 1. Assuming that a
δ > 0 exists, such that 0 < |z − 1| < δ , H1(z,y) is regular for |1 − y | < δ . Hence, by the formula
of the partitioned inverse, we get

K−1(z) =
©­­«
−Ir ᾱ ′Γ(z)β⊥

(
θ02(z) − ᾱ

′Γ(z)β̄1θ12(z)
)
θ22(z)

−1

0 Is −θ12(z)θ22(z)
−1

0 0 θ22(z)
−1

ª®®®¬ ,
where θij(z) = A′i+1Γ(z)β̄ᾱ

′Γ(z)Bj+1 for i, j = 0, 1, 2. It follows that

F (y)−1K(z,y)−1 = (1 − y)−2M−2(z) + (1 − y)−1M−1(z) +M0(z) + (1 − y)H2(z,y),

with

M−2(z) =
©­­«

0 0 0
0 0 0
0 0 θ22(z)

−1

ª®®®¬ ,
and

M−1(z) =
©­­«

0 0 −ᾱ ′Γ(z)β2θ22(z)
−1

0 −Is θ12(z)θ22(z)
−1

−θ−1
22 α
′
2Γ(z)β2 θ22(z)

−1θ21(z) Ξ(z)

ª®®®¬ ,
with

Ξ(z) = θ22(z)
−1 [

α ′2Γ(z)β̄ᾱ
′Γ(z)β̄ᾱ ′Γ(z)β2 − θ21(z)θ12(z)

]
θ22(z)

−1.
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�e matrix M0(z) is very involved but it has the following form

M0(z) =
©­­«
−Ir + ᾱ

′Γ(z)β2θ22(z)
−1α ′2Γ(z)β̄ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

ª®®®¬ .
Finally, we use

Λ∗d(z,y)
−1 = BF (y)(A′Λ∗d(z,y)BF (y))

−1A′ = BF (y)K(z)−1A′

= C2(z)
1

(1 − y)2 +C1(z)
1

1 − y +C0(z) + (1 − y)H (z,y),

where H (z,y) is regular for |z − 1| < δ , and C0(z) and C1(z) and C2(z) are

C2(z) = β2θ22(z)
−1α ′2

C1(z) = −β̄1ᾱ
′
1 +

(
β̄1θ12(z) − β̄ᾱ

′Γ(z)β2
)
θ22(z)

−1α ′2 +

+β2θ22(z)
−1 (

θ21(z)ᾱ
′
1 − α

′
2Γ(z)β2ᾱ

)
+ β2Ξ(z)α

′
2

β′C0(z)α = −Ir + ᾱ
′Γ(z)C2Γ(z)β̄ .

�e function Λ∗(z,y) = C0(z) + (1 − y)H (z,y) under the condition that the roots of |Λ(z, 1 −
(1−z)b)| = 0 are outside the unit circle is regular without singularities inside the unit circle. We
de�ne F (z) = Λ∗(z, 1 − (1 − z)b) for |z | ≤ 1. By Lemma A.1 in Johansen (2008b) F (z) is regular
for |z | < 1 so that Yt =

∑∞
n=0 Fnεt−n is a stationary process with continuous spectrum, where

F (z) =
∑∞

n=0 Fnz
n, |z | < 1. We �nd then

Λ∗d(z,y)
−1 = C2(z)(1 − z)2b+ +C1(z)(1 − z)b + F (z). (31)

�e solution of the equation Λ(L)Xt = εt is obtained by taking Λ−1
+ (L) and �nd

Xt = C2(L)∆
2b
+ + εt +C1(L)∆

b
+ + εt + Y

+
t − Λ+(L)

−1Λ−(L)Xt . (32)

It is seen that Xt ∼ F (2b) because C2(L) , 0 that (β , β1)
′Xt ∼ F (b). Instead the polynomial

co-fractionality can be obtained by taking β′Xt − ᾱ
′Γ(L)∆b

+Xt ∼ F (0). To extend to the case
d ≥ b > 0, it is su�cient to consider the case

∆d−b
+ [∆

b
+Xt − αβ

′LbXt −

k∑
j=1

Γj∆
b
+LXt ] = εt ,

with characteristic polynomial given by

Λ(z) = (1 − z)d−b
[
(1 − z)bIp − αβ′(1 − (1 − z)b) −

k∑
j=1

Γj(1 − z)bz j
]
.
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Based on the previous results, this implies that

∆d−b
+ Xt =

1
∆2b
+

C2(L)εt +
1
∆b
+

C1(L)εt + Y
+
t +ψt ,

whereψt = ∆d−b
+ µt , so that

Xt = ∆−b−d+ C2(L)εt + ∆
−d
+ C1(L)εt + ∆

−(d−b)
+ Y+t + µt . �

B.5 Proof of �eorem 7.2

�e proof of �eorem 7.2 consists of reconciling with the convergence results of the product mo-
ments, Sij,t (ψ ), as outlined in Appendix A in Johansen and Nielsen (2012). In particular, we have
to prove that the stochastic properties of Xt and of the stationary process Ut = C0(L)εt + ∆b0

+Yt

for the FVECMd,b are the same as for the FCVARd,b . In particular, we can de�ne the following
quantities

X−1,t = (∆
d−b
+ − ∆d

+)Xt , Xk,t = ∆d+k
+ Xt ,

Xi,t = (∆
d+i
+ − ∆

d+k
+ )Xt , i = 0, . . . ,k − 1

U−1,t = (∆
d−b−d0
+ − ∆d−d0

+ )Ut , Uk,t = ∆d+k−d0
+ Xt ,

Ui,t = (∆
d+i
+ − ∆

d+k
+ )∆

−d0
+ Ut , i = 0, . . . ,k − 1

such that we can determine the class of stationary processes for a givenψ as

Fstat (ψ ) =
{
β′0Ujt for all j, and Uit for d − d0 > −1/2

}
. (33)

For d0 < 1/2, d − d0 ≥ −d0 > −1/2, the set Fstat (ψ ) contains Ui,t for all i . We next want
to de�ne the probability limit, `p(ψ ), of the pro�le likelihood function `T ,p(ψ ). �e limit of
log det (SSRT (ψ )) is in�nite if Xk,t is non-stationary and is �nite if Xk,t is (asymptotically) sta-
tionary. Let us now focus on the stochastic properties of ∆d

+Xt = C(L)εt + ∆
b
+Yt , up to the initial

conditions that are asymptotically negligible by assumption. We �rst de�ne an analogous of
the Beveridge-Nelson decomposition for fractional processes similar to that of De�nition 2 in
Johansen and Nielsen (2012, p. 2673). In particular, the polynomialC(z) =

∑∞
j=0 Aj(1− z)j can be

factorized as
C(z) = C(1) + (1 − z)C∗(z), (34)

withC∗(z) =
∑∞

j=0 φ
∗
j z and φ∗j de�ning an absolute summable sequence by the classic Beveridge-

Nelson decomposition. It follows that the process ∆d
+Xt can be wri�en as

∆d
+Xt = Cεt + ∆+Y

∗
t + ∆

b
+Yt , (35)
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where Ỹt = ∆bbc+ Yt and with Y ∗t = C∗(L)εt . As shown in Lemma B.2 below, the process ∆d
+Xt

belongs to theZb class. �is means that the limit theory for product moments of the stochastic
terms in (35) is the same as Johansen and Nielsen (2012), and that Lemma A.9 and Corollary
A.10 in Johansen and Nielsen (2012) hold also for the FVECMd,b . �erefore, the concentrated
log-likelihood function `T ,p(ψ ) = − log |SSRT (ψ )| has the same limit as in Johansen and Nielsen
(2012) for the set of intervals for the parametersd andb given in (33). Hence, consistency follows.

B.6 �eZb class

To characterize the asymptotic behaviour of the product moments in the log-likelihood function,
we follow Johansen and Nielsen (2012) and introduce the class of processesZb , as de�ned below.

De�nition B.1. Following Johansen and Nielsen (2012, p. 2673), we de�ne the class Zb as the
set of stationary processes Zt that can be represented as

Zt = φεt + ∆
b
+

∞∑
n=0

φ∗nεt−n, (36)

where
∑∞

n=0 |φ
∗
n | < ∞.

In the following, we show that Xt generated by the FCVECMd,b belongs to the classZb .

Lemma B.2. �e process
Zt := ∆d

+Xt = Cεt + ∆+Y
∗
t + ∆

b
+Yt , (37)

belongs to the classZb speci�ed in De�nition B.1.

�e proof of Lemma B.2 proceeds as follows. Let us de�ne B(z) := α ′⊥Γ(z)β⊥. B(z) is a
stationary process because α ′⊥Π(z)β⊥ = α ′⊥Γ(z)β⊥(1−z)b and Π(z) = Γ(z)(1−z)b−αβ′(1−(1−z)b)
has roots in 1 or outside the unit circle. Given that the F (d) condition holds, B(z) has roots
outside the unit circle and it is an autoregressive process. We want to study the behaviour
of B(z)−1 = C(z) =

∑∞
i=0Ciz

i . It follows from Hamilton (1994, p.263) that the (`,k) elements
(C`k)i of the matrix Ci are such that |(C`k)i | ≤ M1 |λ |

i , where |λ | < 1 where M is an universal
constant that bounds |(C`k)i | for any i = 1, 2, . . .�is means that | |Ci | | ≤ M2 |λ |

i , where |λ | < 1,
where | | · | | denotes a norm de�ned on the space of matrices. Let us focus on the expansion
C(z) = C(1) + (1 − z)C∗(z). �en C∗(z) = C(z)−C(1)

(1−z) =
∑∞

i=0
Ci (z

i−1)
1−z =

∑∞
i=0Ci

∑i
j=0 z

j =
∑∞

i=0C
∗
i z

i

where C∗i =
∑

j≥i Cj . Let us prove that the power series C∗(z) is absolutely summable. It follows
that

∞∑
i=0

∑
j≥i

| |Cj | | = M
∑∞

i=0
∑

j≥i |λ |
j = M

∑∞
i=0

1
1−|λ | −

1
1−|λ | (1 + |λ | + . . . + |λ |

i−1)

= M
∑∞

i=0
1

1−|λ | −
1−|λ |i
1−|λ | =

M
1−|λ |

∑∞
i=0 |λ |

i < ∞.
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Using the fact that
∑∞

i=0 |Ci | < ∞ if and only if
∑∞

i=0 | |Ci | | < ∞, see Neusser et al. (2016, p.206),
C∗(z) is absolute summable. Hence, Y ∗t =

∑∞
j=0C

∗
j εt−j with

∑∞
j=0 |C

∗
j | < ∞. We now turn our

a�ention to the term ∆b
+Y
∗
t for b > 1, which can be wri�en as ∆b

+Y
∗
t = ∆{b}+ Y ∗∗t , where Y ∗∗t =∑∞

j=0C
∗∗
j εt−j with

∑∞
j=0 |C

∗∗
j | < ∞, and {b} is de�ned as {b} = b − bbc, where bbc denotes the

greatest integer less than b. Hence, if b > 1, the process ∆bbcZt is in the class Z{b}, a subset of
the classZb . �

B.7 Proof of �eorem 7.3

B.7.1 �e asymptotic distribution of β̂

Let us �rst assume that d0,b0 > 1/2, so that we are in the non-stationary region and normalize
β as β = β0 + β0⊥ϑ . Let now set all the other parameters with the exception of ϑ to their true
values. We obtain

εt (θ0\ϑ ) =(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−α0(β
′
0 + ϑ

′β′⊥0)∆
−b0
+ Lb0(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−

k∑
i=1

Γ0,iL
j(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).

Di�erentiating with respect to ϑ , we �nd

Dϑεt (θ0\ϑ ) = −α0(dθ )
′β′⊥0∆

−b0
+ Lb0(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ). (38)

In this expression we keep the non-stationary fractional terms of higher order, which determine
the asymptotic behavior of the score function, and �nd

Dθεt (θ0\ϑ )|ϑ=ϑ0 = −α0(dϑ )
′β′⊥0(∆

−b0
+ − 1)C0εt ,

where dϑ denotes the increment on the coe�cients ϑ . �e score function then becomes

−2T −b0−1/2Dϑ logL(θ0) = tr {(dϑ )′β′⊥0C0T
−b0−1/2

T∑
t=1
(∆−b0
+ − 1)εtε′tΩ−1

0 α0}

d
→ tr {(dϑ )′β′⊥0C0

∫ 1

0
Wb0−1(dW )

′Ω−1
0 α0},

where
ST ,t = T

−b0+1/2(∆−b0
+ − 1)εt

d
→Wb0−1(u),
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T −1
T∑
t=1

ST ,tε
′
t = T

−b0−1/2
T∑
t=1
(∆−b0
+ − 1)εtε′t

d
→

∫ 1

0
Wb0−1(dW )

′,

T −1
T∑
t=1

ST ,tS
′
T ,t = T

−2b0
T∑
t=1
{(∆−b0
+ − 1)εt }{(∆−b0

+ − 1)εt }′
d
→

∫ 1

0
Wb0−1W

′
b0−1du .

�e information matrix is found as the limit

T −2b0tr {Ω−1
0

T∑
t=1

Dϑεt (θ0)Dϑεt (θ0)
′}

d
→ tr {Ω−1

0 α0(dϑ )
′β′⊥0C0

∫ 1

0
Wb0−1W

′
b0−1duβ⊥0(dϑ )α

′
0}.

Given that the estimator is consistent, we �nd that for all matrices dϑ

tr {(dϑ )′β′⊥0C0T
−1

∑
t

ST ,tε
′
tΩ
−1
0 α ′0} ≈ −tr {(dϑ )

′β′⊥0C0T
−1

∑
t

ST ,tS
′
T ,tC

′
0β⊥0(θ̂ − θ0)(α

′
0Ω
−1
0 α0)}.

Hence

Tb0(ϑ̂ − ϑ0) '[β
′
⊥0C0T

−1
T∑
t=1

ST ,tS
′
T ,tC

′
0β⊥0]

−1β′⊥0CT
−1

T∑
t=1

ST ,tε
′
tΩ
−1
0 α0(α0Ω

−1
0 α0)

−1 =

=

[
β′⊥0C0

(∫ 1

0
Wb0−1W

′
b0−1du

)
C′0β⊥0

]−1
β′⊥0C

∫ 1

0
Wb0−1(dW )

′Ω−1
0 α0(α0Ω

−1
0 α0)

−1 =

=

[∫ 1

0
F0F
′
0du

]−1 ∫ 1

0
F0(dG0)

′(α ′0Ω
−1
0 α0)

−1

where F0 = β′0⊥C0Wb0−1 and G0 = α ′0Ω
−1
0 W . When b0 < 1/2, the right hand side of (38) is

a stationary process because ∆−b0 is applied to an I (0) process. Hence, standard asymptotics
applies in this case.

B.7.2 �e asymptotic distribution of d̂

Let now assume that all the parameters are set to their DGP values, with the exception of d . �e
error term is

εt (θ0\d) =∆
d−d0
+ (C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−α0β
′
0∆

d−d0
+ ∆−b0

+ Lb0(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−

k∑
i=1

Γi,0∆
d−d0
+ Lj(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).
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Exploiting that β′0C0 = 0, then it follows that

εt (θ0\d) =∆
d−d0
+ (C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−α0β
′
0∆

d−d0
+ Lb0(Yt ) −

k∑
i=1

Γi,0∆
d−d0
+ Lj(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ),

so that the non-stationary fractional terms disappear and the derivativeDdεt (θ0) is stationary. By
the martingale CLT the score T − 1

2Dd logL(θ0) = T −
1
2 tr

{∑T
t=1 Ddεt (θ0)εt (θ0)

′Ω−1
0

}
is asymptoti-

cally Gaussian, and the information matrix is found as the limit of the outer product of the gra-
dients, that isT −1tr

{∑T
t=1 Ddεt (θ0)Ddεt (θ0)

′Ω−1
0

}
. �us the asymptotic distribution ofT 1

2 (d̂ −d0)

is Gaussian.

B.7.3 �e asymptotic distribution of b̂

Let now assume that all the parameters are set to their DGP values, with the exception of b. �e
error term is

εt (θ0\b) =(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−α0β
′
0∆
−b
+ Lb(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−

k∑
i=1

Γi,0L
j(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).

Again, we exploit the fact that β′0C0 = β
′
0β⊥0 = 0 and we get

εt (θ0\b) =(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−α0β
′
0∆

b0−b
+ Lb(Yt ) −

k∑
i=1

Γi,0L
j(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).

Taking the derivative with respect to b, we �nd Dbεt (θ0\b)|b=b0 = −α0β
′
0Db(∆

−b−b0
+ )|b=b0Yt , so

that Dbεt (θ0\b) is stationary and the asymptotic distribution of b̂ is Gaussian. �e information
is found as the limit of T −1tr

{∑T
t=1 Dbεt (θ0)Dbεt (θ0)

′Ω−1
0

}
.
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B.7.4 �e asymptotic distribution of Γ̂i , i = 1, . . . ,k

Let now assume that all the parameters are set to their DGP values, with the exception of Γi . �e
error term is

εt (θ0\b) =(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ) − α0β

′
0Lb0(Yt )−

−
∑
j,i

Γj,0L
j(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )

−ΓiL
i(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).

Taking the derivative with respect to Γi we get

DΓiεt (θ0\Γi) = −(dΓi)(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ),

that is stationary and hence the asymptotic distribution of Γ̂i is Gaussian. �e scoreT − 1
2DΓi logL(θ0)

is asymptotically Gaussian and the information is found as the limit ofT −1tr {
∑T

t=1 DΓiεt (θ0)DΓiεt (θ0)
′Ω−1

0 }.

B.7.5 �e asymptotic distribution of α̂

Let now assume that all the parameters are set to their DGP values, with the exception of α . �e
error term is

εt (θ0\α) =(C0εt +
∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt )−

−αβ′0Lb0Yt −
k∑
j=1

Γj,0L
j(C0εt +

∞∑
j=1

β⊥0Φj0α⊥0∆
j
+εt + ∆

b0
+Yt ).

Taking the derivative with respect to α we get

Dαεt (θ0\α) = −(dα)β
′
0LYt .

Hence Dαεt (θ0\α) is stationary and the asymptotic distribution of α̂ is therefore Gaussian. �e
score T −

1
2Dα logL(θ0) is asymptotically Gaussian and the information matrix is found as the

limit of T −1tr {T −1 ∑T
t=1 Dαεt (θ0)Dαεt (θ0)

′Ω−1
0 }.

B.7.6 Asymptotic covariance of θ̂\β̂

�e o� diagonal elements of the asymptotic information matrix of θ̂\β̂ is given by

tr {T −1
T∑
t=1

DΓi (θ0)εtDΓjεt (θ0)Ω
−1
0 }, tr {T

−1
T∑
t=1

Dα (θ0)εtDΓiεt (θ0)Ω
−1
0 },
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tr {T −1
T∑
t=1

Dd(θ0)εtDΓiεt (θ0)Ω
−1
0 }, tr {T

−1
T∑
t=1

Db(θ0)εtDΓiεt (θ0)Ω
−1
0 },

tr {T −1
T∑
t=1

Dα (θ0)εtDdεt (θ0)Ω
−1
0 }, tr {T

−1
T∑
t=1

Dα (θ0)εtDbεt (θ0)Ω
−1
0 },

which are product of stationary components and have a �nite limit. Hence the asymptotic dis-
tribution of

T
1
2vec(d̂ − d0, b̂ − b0, Γ̂ − Γ0, α̂ − α0),

where Γ̂ = [Γ̂1 : . . . : Γ̂k] is multivariate Gaussian and it is independent with respect to β̂ , see
Lemma 10 in Johansen and Nielsen (2010). �
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