
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

The dynamics of factor loadings in the cross-section 

of returns 

 

Riccardo Borghi, Eric Hillebrand, Jakob Mikkelsen and 

Giovanni Urga 

 

CREATES Research Paper 2018-38 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


The dynamics of factor loadings in the

cross-section of returns∗

Riccardo Borghi† Eric Hillebrand‡ Jakob Mikkelsen§ Giovanni Urga¶

December 8, 2018

Abstract

In this paper, we propose a two-level factor model with time-varying loadings to

investigate the dynamics of factor betas in the cross-section of returns of a large

portfolio of 1815 firms from 54 countries over the period 2006-2016. The model con-

tains a global observed financial factor and unobserved global and regional factors

consistently estimated via principal component. When unexpected events happen

globally, loadings on global factors increase. The dynamics of the global factor

loadings is related to the profile of the firm. Loadings persistence is decreasing in

firm size and expected returns are increasing in the variance of the loading.
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1 Introduction

The analysis of comovements between stock returns is at the heart of the empirical asset

pricing literature. Portfolio managers invest internationally [Heston and Rouwenhorst

(1995), Bekaert et al. (2009)], and this requires knowledge of relevant common factors

and their importance for stock returns, both for risk management and for asset allocation

purposes.

Searching for the most influential factors, various researchers have concluded that

global, country- and region-specific factors are more important than industry factors in

explaining the cross-section of expected returns [e.g., Heston and Rouwenhorst (1995),

Griffin (2002), Bekaert et al. (2009), Fama and French (2017), Ando and Bai (2017),

Barigozzi et al. (2018)]. Bekaert et al. (2009) show that the relevance of industry factors

was a short-lived phenomenon. Nevertheless, factor loadings have been shown to vary

over time, making it difficult for the investor to estimate the factor exposure of a firm.

For instance, Fama and French (1997) remark that “. . . there is strong variation through

time in the CAPM and the three-factor risk loadings of industries. . . ” and this variation

is even stronger for individual firms. Consequently, the relative importance of global

versus group-specific factors is time-varying and difficult to estimate. So far the litera-

ture has assessed the time-varying relevance of global and regional factors using rolling

window estimation [see, among others, Bekaert et al. (2009)], with results depending on

a nuisance parameter such as the length of the window. Gagliardini et al. (2016) prove

the consistency of a two-step estimation of a factor model with time-varying parameters

that are function of stock specific and macroeconomic variables, as in Shanken (1990).

In the field of asset pricing, several researchers have estimated factor models with

time-varying loadings but the results are based on models with observable factors (CAPM

and Fama-French extensions). Some authors have assumed that the factor loading is a

function of economic state variables [Robichek and Cohn (1974), Shanken (1990), Rosen-

berg and Guy (1995), Ferson et al. (2002), Santos and Veronesi (2004)], leading to the

derivation of the conditional CAPM. Intuitively, a firm in distress is more likely to report

low earnings when the economy is in a bad state. However, Ghysels (1998) and Lewellen

and Nagel (2006), among others, point out that the loading estimates are highly depen-

dent on the assumed information set and, in case of misspecification, the unconditional

CAPM works better. To avoid this drawback, a recent strand of literature makes use

of non-parametric estimation to retrieve factor loadings from high-frequency data [e.g.

Bollerslev and Zhang (2003), Patton and Verardo (2012)]. Ang and Kristensen (2012)

develop a non-parametric technique to estimate conditional betas in multifactor models,

finding that also momentum and book-to-market decile portfolios have strong variation

in factor loadings. However, non-parametric estimation by construction cannot capture

the parameters driving the dynamics of the loadings, which have been shown to contain
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important information for asset prices. For instance, Armstrong et al. (2013) develop a

model where uncertainty about a firm’s loading is negatively related to expected returns.

The main limitation of this literature is that the analysis of factor loadings highly de-

pends on the prior identification of the factors. In particular, because the factors in the

asset pricing theory are unknown, many authors focus solely on the loading of the market

factor.

We introduce a two-level factor model with time-varying loadings to investigate the

dynamics of factor loadings in a large global cross-section of returns. The model features

global and regional as well as observable and unobservable factors, which are consistently

estimated via principal component analysis. For each stock, the persistence and the

variance of the factor loadings are estimated via maximum likelihood. The main aim of

this paper is twofold. First, we estimate the unknown global and regional risk factors

and their contribution to the overall variance in the portfolio. Thus, we contribute to the

literature on time-series risk models [e.g. Ludvigson and Ng (2007)]. Second, we relate

the dynamics (uncertainty and persistence) of factor loadings to expected returns and

firm characteristics. Thus, we contribute to the literature on empirical asset pricing [e.g.

Fama and French (2017)].

The empirical applications are based on a panel of 1815 stock returns from six world

regions from January 2006 to January 2016. We formulate a factor model where stock

returns are assumed to be a function of two types of factors: global (one observed finan-

cial factor and one latent non-financial factor) and region-specific (one latent factor per

region). This modelling choice is motivated by Boivin and Ng (2006), who show that

increasing the number of stocks, N , does not always help the estimation of the common

factors when there is large cross-sectional correlation in groups of variables. Goyal et al.

(2008) use the clustering of Nasdaq- and NYSE-listed stocks to identify common factors.

Ando and Bai (2017) let the group membership of a stock be an unknown parameter to

be estimated. The global financial factor in our model is the S&P500 Financials Index

while the latent global and regional factors are estimated by principal components anal-

ysis (PCA). Furthermore, in our model the loadings of each factor vary over time, thus

the model is an extension of Breitung and Eickmeier (2015). Principal components are a

consistent estimator of the unknown factors in the presence of time-varying loadings for

large panels with N, T → ∞: Bates et al. (2013) prove average consistency in t, while

Mikkelsen et al. (2018) prove uniform consistency in t if T
N2 → 0 is satisfied.

There is a large body of empirical evidence in favour of modelling factor loadings

as time-varying parameters. For instance, Stock and Watson (2009) find significant im-

provement in forecasting macro variables when coefficients are allowed to change after a

structural break. Del Negro and Otrok (2008) and Eickmeier et al. (2015) estimate factor

models with loadings modelled as random walks using large panels of macro data. Bates

et al. (2013) show analytically that the principal component estimator remains consistent
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if the loadings are stationary experiencing a structural break, or if they are random walks

of a restricted class. In this paper, we model the factor loadings as stationary processes,

and we estimate them in a state-space framework following Mikkelsen et al. (2018), who

prove that the maximum likelihood estimator (MLE) of the parameters of autoregressive

loadings processes is consistent.

Several papers find that the factor exposure of a firm should only temporarily diverge

from its long-run average. From a statistical point of view, Andersen et al. (2006) find

that a stock’s beta is best approximated by a stationary I(0) process, due to a cancellation

in the ratio of covariance and market variance. From a corporate finance perspective, sta-

tionary fluctuations of factor loadings reconcile with theories of the firm. First, systematic

risk is a decreasing function of investment because the level of investment increases with

the availability of low risk projects [Berk et al. (1999), Cooper and Priestley (2011)], in

alignment with pro-cyclical macroeconomic factors. Predictions from real options models

[e.g. Carlson et al. (2006)] agree with this mechanism because undertaking a real in-

vestment can be considered as exercising a risky option, which decreases systematic risk.

Second, the beta of a firm increases around earning announcements [Savor and Wilson

(2016)] and before Seasoned Equity Offerings [Carlson et al. (2010)], while gradually de-

creasing afterwards. Finally, entertaining takeover bids temporarily modifies the beta of

a firm according to the difference with the beta of the target, because the new entity will

have an average beta of the two firms [Hackbarth and Morellec (2008)].

A final point is that factor models can be either estimated on portfolios, as proposed

by Fama and French (1997), or on individual stocks. In this paper, we estimate the

model at stock level, and this has two main advantages. First, it avoids the loss of

information caused by grouping the stocks into portfolios when testing for the pricing

of market anomalies, such as size or value [Ang et al. (2017), Gagliardini et al. (2016)].

Second, it allows to test if the dynamics of factor loadings (uncertainty and persistence)

are related to expected returns. Lately, Armstrong et al. (2013) provide evidence of a

negative relationship between factor loading uncertainty and future stock returns in a

CAPM setting. In this paper, we extend this framework to the case of global and region

latent factors.

Our empirical analysis yields a number of results that we can summarise as follows.

First, using canonical correlation analysis, we find that our estimated factors are linear

combinations of Fama and French’s market, value and size factors. Thus, our estimated

factors correctly capture the risk at which firms are exposed.1 Second, we find that

the relative importance of unobserved regional and global factors is time-varying: when

1We find that bigger firms have larger exposure to financial and regional factors. Thus, the global
financial factor (the S&P Financials Index) is not enough to capture the relationship between firm size
and its market beta, and adding the regional factor factor improves the fit of the model. This finding
supports the result of Fama and French (2017) that a global version of the factor model would not be
able to price the cross-section of stock returns.
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unexpected events happen globally, loadings on global factors increase. For instance,

Energy stocks started to be more exposed to global shocks, both during the Great Fi-

nancial Crisis in 2007-2008 (GFC) and from the beginning of 2015, due to the shocks

to oil prices. Third, the dynamics (persistence and variance) of the factor loading are

related to the profile of a company. Expected returns are higher when the variance of

financial and global factor loadings is large, while they are not so pronounced when the

variance of the regional factor loading is large. This decreasing relationship is in line

with the finding of Armstrong et al. (2013) for US stocks. However, our model suggests

that there is a premium for holding stocks whose exposure to global systematic risk is

very volatile. Finally, expected returns are decreasing in the persistence of financial and

global factor loadings, implying that there is no premium for holding firms with highly

persistent factor exposures.

The remainder of the paper is organised as follows. Section 2 presents the model

and the estimation procedure. Section 3 describes our data base and the identification

of the factors. Section 4 presents the estimation results. In Section 5, we compare the

performance of our time-varying loading factor model with one with constant loadings.

Section 6 uses our model to analyses the comovements between stock returns. Section 7

connects the loadings persistence and variance to the profile of the firm. Section 8 con-

cludes.

2 Model and estimation

This paper contributes to factor models used to analyse comovements in equity markets

[Bekaert et al. (2009), Bekaert et al. (2014)], to test for market integration [Flood and

Rose (2005)], and for contagion across countries and asset classes [Dungey and Martin

(2007), Belvisi et al. (2016)]. In this section, we introduce the two-level factor model with

time-varying loadings, and the estimation procedures for factor extraction and loading

estimation via maximum likelihood estimation (MLE).

2.1 A two-level factor model with time-varying loadings

We have N stocks in total. We divide them into regions R1, R2, . . . , RK . Each region has

nk stocks, thus
∑K

k=1 nk = N . The log-return ri,t on stock i in week t is modelled as:

ri,t = ai,tOt + bi,tGt +
K∑
k=1

ci,tFk,t1{i∈Rk} + ei,t, ei,t ∼ N(0, ψi), (1)

for i = 1, . . . , N and t = 1, . . . , T . Ot is an observable global factor, Gt is an unobservable

(latent) global factor and Fk,t is an unobservable factor specific to stocks in region Rk, for
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k = 1, . . . , K. The factor loadings vary over time according to the following specifications:

ai,t = (1− φOi )āi + φOi ai,t−1 + ηOi,t, ηOi,t ∼ iidN(0, qOi )

bi,t = (1− φGi )b̄i + φGi bi,t−1 + ηGi,t, ηGi,t ∼ iidN(0, qGi )

ci,t = (1− φki )c̄i + φki ci,t−1 + ηki,t, ηki,t ∼ iidN(0, qki )

The model could easily accommodate multiple regional factors, but to keep the structure

interpretable we assume that there is one factor for each region. After a sign identification,

this allows us to have a multi-factor model with interpretable statistical factors (each

region factor is the main regional driver of returns). The total number of factors in the

model is denoted by m = K + 2.

The main innovation of the model is to introduce time-varying loadings. We specify

the dynamics of the factor loadings by stacking ai,t, bi,t, ci,t in the loading vector λi,t. The

formulation in Eq. (1) implies a sparsity condition in the loading matrix, so that λi,t is

an m-dimensional vector that contains the same number of non-zero elements for all i.

For instance λ1t = (a1t, b1t, c1t, 0, . . . , 0)′ and λ2t = (a2t, b2t, 0, c2t, 0, . . . )
′. The non-zero

elements of λi,t evolve according to the following vector autoregression:

λit = (I− Φi)λ̄i + Φiλi,t−1 + ηit, (2)

where λ̄i = E(λit) = (āi, b̄i, c̄i)
′ is the unconditional mean vector, Φi = diag(φOi , φ

G
i , φ

k
i )

is the persistence parameter matrix and the characteristic roots of Eq. (2) lie outside the

unit circle. Qi ≡ E(ηitη
′
it) = diag(qOi , q

G
i , q

k
i ) is the covariance matrix of the innovations

ηit, which is a Gaussian white noise process. Thus, the loadings of stock i on the three

factors evolve as independent autoregressive (AR) processes of order one, around their

respective unconditional means, āi, b̄i and c̄i, with AR coefficient φfi , f ∈ {O,G, k}, and

condition |φfi | < 1 satisfied for all f . The higher φfi the higher the weight of the factor

loading at t− 1 in determining the loading today and the lower the weight on its uncon-

ditional mean. Stationarity of the loadings on market factors has been demonstrated by,

among others, Andersen et al. (2006) and Patton and Verardo (2012) and we extend this

to the case of global and regional factors.

Furthermore, to simplify the exposition we group the model by region:


r1,·t

r2,·t

...

rK,·t

 =


A1t

A2t

...

AKt

Ot +


B1t C1t 0 · · · 0

B2t 0 C2t · · · 0

...
...

. . .
...

BKt 0 · · · · · · CKt





Gt

F1t

F2t

...

FKt


+


e1,·t

e2,·t

...

eK,·t

 , (3)
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where rk,·t is the vector of returns on the nk stocks in region Rk and k = 1, . . . , K. Ak,t,
Bk,t and Ck,t are the nk × 1 vectors of loadings on the observable global, latent global

and latent regional factor, respectively. The peculiarity of the two-level structure is that

stocks in region Rk are not influenced by shocks that are specific to other regions, which

render the estimation of the factors more challenging than in the case where all stocks

load on all factors. Breitung and Eickmeier (2015) and Wang (2010) show that regional

and global factors can be disentangled by adding sparsity conditions as in Eq. (3). Finally,

the model for the N stocks can be written in a more compact form as:

rt = AtOt + B∗tFt + et, (4)

where rt = (r′1t, . . . , r
′
Kt)
′, At = (A′1t, . . . ,A′Kt)′, B∗t = [(B′1t, . . . ,B′Kt)′, (C ′1t, 0, . . . )′]. Ft

contains both the global factor Gt and K regional factors F1t, . . . , FKt. Finally,

rt = ΛtF
∗
t + et, (5)

where Λt = (At,B∗t ), and F ∗t = (Ot, Ft)
′. The covariance matrix of idiosyncratic er-

rors et is Ψ0 ≡ E(ete
′
t). To summarise, the N -dimensional vector of returns rt is

generated by m � N global and region factors, time-varying factor loadings Λt =

(λ1t, . . . , λit, . . . , λNt)
′ and normally distributed idiosyncratic errors et = (e1t, . . . , eit, . . . , eNt)

′.

With known factors, specification (1) - (2) can be written and estimated in a linear

state-space form as in Harvey (1990). With unknown factors, and principal components

as estimators, Mikkelsen et al. (2018) prove that the MLE of Φi, λ̄i, Qi and ψi is consistent

as N, T → ∞. An alternative model specification is one where the loadings are static

and the dynamics of the factors are estimated with the Kalman filter. However, since the

Asset Pricing Theory assumes that stock prices are generated by a set of unpredictable

factors, we follow the same rationale in the specification of our model. Furthermore,

estimating stock-specific loadings dynamics allows one to sort stocks by loading variance

or persistence, similarly to Armstrong et al. (2013).2

In the next section, we present the procedure for the estimation of the model.

2.2 Estimation

The estimation procedure consists of two steps. First, unobserved global and regional

factors are estimated using principal components assuming constant loadings. Second,

we replace the unobserved factors with principal components in the likelihood function

and estimate the unknown loadings and variance parameters in Eqs. (1) - (2) via MLE.

2Estimating both the dynamics of the factors and of the loadings is an interesting extension of our
model. This goes beyond the scope of this study and we leave this extension to future research.
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2.2.1 Principal component estimation of the latent factors

The principal component estimator treats the loadings as constant over time and we use

it to estimate the common factors in the model:

yt = B∗Ft + ut, (6)

where yt is the residual from the regression of rt against Ot. Thus, yt is orthogonal to the

observable factor and, consequently, the global and regional factors will not be influenced

by the variation in Ot. This ensures that we can disentangle two risk factors that affect

all assets in the portfolio: the first is represented by an observable factor and the second

is an unobservable latent global factor.

The estimated principal components (PC) are consistent estimates of the latent factors

also in the presence of stationary fluctuations of the loadings around a constant mean. In

particular, we make use of the results in both Bates et al. (2013), who prove the average

convergence in t of the PCs to the true factor space and Mikkelsen et al. (2018), who

prove that the PCs uniformly converge in t when T
N2 → 0.

The principal component estimator minimises the following sum of squared residuals:

S(F,B∗) =
T∑
t=1

(yt − B∗Ft)′(yt − B∗Ft) (7)

=
K∑
k=1

nk∑
i=1

T∑
t=1

(yi,t − biGt − ciFk,t1{i∈Rk})
2. (8)

Since both B∗ and Ft are unobserved, we need to impose the following identifying restric-

tions to obtain a unique solution.

IR1 T−1
∑T

t=1G
2
t = 1 and T−1

∑T
t=1 F

2
k,t = 1.

IR2 T−1
∑T

t=1 Fk,tG
′
t = 0 for all k. This ensures regional factors are orthogonal to the

global one.

IR3
∑T

t=1 Fk,tS
′
k,t > 0, where Sk,t is the biggest country’s stock market index return at

time t in region k. This identifies the sign of the factors by imposing correlation

with the most important stock index of the region. This procedure eliminates the

rotation indeterminacy and allows to interpret the sign of the factor loadings.

IR1 and IR2 ensure that all parameters are identified, while IR3 is also used by Breitung

and Eickmeier (2015). Note that we do not need to assume T−1
∑T

t=1 FtFt = Im as in

standard factor analysis, thus the regional factors can be correlated with one another.

The sparsity assumptions in Eq. (3) ensure that this does not create any multicollinearity

issue. The following estimation algorithm follows Breitung and Eickmeier (2015):
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1. Initialise the global and regional factors in Eq. (6) with suitable values3, F̂t,(0), and

estimate the zero-stage loadings B̂∗(0) from N time series OLS regressions of yt on

F̂t,(0).

2. The estimated loadings are then used as regressors in yt = Ft,(1)B̂∗(0) + ũt to get the

update of the factors at stage one, F̂t,(1), by OLS.

3. At stage s, update Ft,(s) by regressing yt on B̂∗(s−1) and estimate B∗(s) by regressing

yt on F̂t,(s).

4. Step 3 is repeated until convergence of S(F̂(s), B̂∗(s)) to a minimum.

2.2.2 Maximum likelihood estimation of the time-varying loadings

We now turn to the estimation of Φi, λi, Qi and ψi, for i = 1, . . . , N . Using a two-step

maximum likelihood estimator, Mikkelsen et al. (2018) prove that the feasible likelihood

function, which replaces the unobserved factors with PCs, convergences uniformly to the

infeasible one containing the unobserved factors, despite the presence of estimation error

in the principal components and time-variation in the loadings.

In our model, the global and regional factors allow for cross-sectional dependence

in the returns, taking into account the fact that the market is partitioned in groups

[Goyal et al. (2008)]. This allows to estimate the loadings and their parameters as unob-

served stationary states in a standard state-space model [Durbin and Koopman (2012)].

The measurement equation connects the unobserved loadings linearly to the principal

components, which replace the factors. The MLE remains consistent in the presence of

cross-sectional and temporal dependence in the errors. We refer to Mikkelsen et al. (2018)

for details on the two-step estimation procedure.

Thus, conditional on the factors, we can treat ri as uncorrelated across stocks, and

the likelihood can be analysed separately for each i. Thus, if ri is the T × 1 vector of

time-series observations for stock i, we can write:

ri = F̂
∗
Λi + ei, (9)

where F̂
∗

= diag(F̂ ∗′1 , . . . , F̂
∗′
T ) is a T ×mT block-diagonal matrix that stacks the time se-

ries observations on the estimated factors, with diagonal elements F̂ ∗′t = (Ôt, Ĝt, F̂1t, . . . , F̂Kt)

representing the observations of each factor at time t. Λi = (λ′i1, . . . , λ
′
iT ) denotes the

Tm× 1 vector of time-varying loadings.

Assuming that the idiosyncratic errors are normally distributed, the likelihood func-

tion for ri is Gaussian and, conditional on F̂ ∗ = (F̂ ∗1 , . . . , F̂
∗
T )′, can be specified as follows:

L̂T (ri|F̂ ∗; θi) = −1

2
log(2π)− 1

2T
log|Σi| −

1

2T
(ri − E(ri))

′Σ−1
i (ri − E(ri)), (10)

3We initialise the algorithm with the first PC of all stocks (for the global factor) and the first PC of
each group of stocks clustered by region (for the regional factor).
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with parameter vector θi = {Φi, λi, Qi, ψi} for each i. E(ri) = (F ∗′1 λ
0
i , . . . , F

∗′
T λ

0
i ) is the

T × 1 mean vector of ri and its covariance matrix is Σi ≡ V ar(ri) = F̂
∗
V ar(Λi)F̂

∗
+

ψiIT . Eq. (10) represents the feasible likelihood because the factors F̂ ∗ are estimated by

principal components. Finally, the maximum likelihood estimator of θi is:

θ̂i = argmax
θ
L̂T (ri|F̂ ∗; θi), (11)

for each i. In practice, Eqs. (2) and (9) can be expressed as a linear state-space model

and the likelihood is maximised via the Kalman filter. Theorem 1 in Mikkelsen et al.

(2018) shows that θ̂i
p→ θ0

i , i.e. the estimates are consistent and converge in probability

to their true values θ0
i .

3 Data and factors identification

In this section, we present the database, the data preparation and descriptive statistics,

together with some figures that outline the region and sector trends of equity markets

between 2006 and 2016.

3.1 Data description

The sample period runs from Friday 13 January 2006 to Friday 8 January 2016, for a

total of 521 weekly observations. The sample period contains several shocks that are

interesting to analyse: the great financial crisis of 2007-2008; the European sovereign

debt crisis of 2011-2012; the Arab spring of 2011; and the oil shocks of 2015. Our dataset

include 1815 stocks that have been part of the main stock market indices of 54 countries

during the sample period and have complete time series of prices. Table 1 reports details

of the number of stocks for each country. The data are downloaded from Bloomberg and

the dataset resembles the one used by Bekaert et al. (2014). For each firm, we download

the following variables: share price, number of shares outstanding, total assets and total

debt. Prices refer to the last transaction of the week reported by the exchange, adjusted

for subsequent splits but not for subsequent dividends. Working with weekly prices is

especially convenient to avoid problems caused by asynchronous trading of stocks listed

in countries with different time zones. The balance sheet data is available at quarterly

frequency.

We consider all stocks that entered the indices during our sample period. This pro-

cedure limits the survivorship bias, which could be particularly severe in our sample

period, considering the changes in the composition of indexes that occurred in 2008.

Table 1 reports detailed information on each stock market index.

[Table 1 about here.]
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Prices are expressed in US dollars, and returns in the model are calculated as the first

difference of the natural logarithm of the share prices. Each stock return is demeaned

by subtracting the sample mean and scaled by dividing each series by the standard

deviation. Before performing PCA, the data have been winsorised at the 99% level, while

the dependent variable is not modified, so that outliers are captured by the time-varying

loadings.

3.2 Observed factor

We define Ot as the returns on the S&P500 Financials Index, which is a known source

of risk that impacts all stocks in all regions. Other authors show that this factor plays

an important role in explaining the cross-section of returns [e.g. Bekaert et al. (2014)].

After orthogonalising all series against Ot, we are then able to identify the remaining

unobservable global and regional risk factor that affect the stocks in our portfolio.

3.3 Region classification

There is evidence that shocks to share prices are more region specific than sector spe-

cific. Common currency, geographic proximity, similar stage of economic development or

distribution of wealth are more important than sector membership. Heston and Rouwen-

horst (1995), Griffin (2002), Bekaert et al. (2009) provide evidence for the superiority of

country factors. Recently, Ando and Bai (2017) estimated the group membership of a

stock as an unknown parameter in the model, and reached the same conclusion. We clas-

sify our universe of 1815 stocks into six geographical regions, in line with Bekaert et al.

(2014) and Breitung and Eickmeier (2015). The regions are: North America, Latin Amer-

ica, Asia-Pacific, Western Europe, Emerging Europe, and Middle-East & Africa (MEA).

This classification will be used to identify the region-specific factors in our model. The

region composition is reported in Table 1. We use the following six sectors classified

by Bloomberg: Basic Materials, Communications, Consumer Cyclical, Consumer Non-

cyclical, Diversified, Energy, Financial, Industrial, Technology and Utilities.

Below we report a graphical representation of our model.

Visual representation of our model
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(𝑟1,⋅𝑡)

(𝑟2,⋅𝑡)

(𝑟3,⋅𝑡)

[ 𝐹𝐼𝑁𝐴𝑁𝐶𝐼𝐴𝐿𝑡, 𝐺𝐿𝑂𝐵𝐴𝐿𝑡 ]

𝑅𝐸𝐺𝐼𝑂𝑁1𝑡
𝑛1 × 1

𝑛2 × 1

𝑛3 × 1

Group-specific factors Global factors

𝑅𝐸𝐺𝐼𝑂𝑁2𝑡

𝑅𝐸𝐺𝐼𝑂𝑁3𝑡

Unobservable

Unobservable

Observable

3.4 Summary statistics

Table 2 reports the summary statistics of simple returns (in %), market capitalisation,

total assets and total debt of the 1815 companies contained in the final dataset. Simple

returns are non-Gaussian for all regions and sectors. In our empirical application, we use

log-returns such that the empirical distribution appears more Gaussian. We report the

average pair-wise Pearson correlation coefficient among the stocks in each group (region

or sector), which gives a snapshot of the dependence between firms in each region and

sector. The region Middle East & Africa has the lowest value, with a coefficient of 0.159,

which can be expected given the economic diversity of this area. North America and

Western Europe have a correlation of 0.378 and 0.424, respectively. The sector with the

highest level of linear dependence is Energy, at 0.362. The balance sheet data are in line

with expectations. For instance, North-American and Western European stocks have

the highest average market capitalisation. The biggest companies in the final dataset

are Apple (US); Vodafone (WestEur); GazProm (EmEur); China Petroleum (Asia). We

exclude financial stocks from our analysis, given the peculiar nature of their balance sheet.

Consequently, energy stocks are the highest capitalised, with a mean value of $25 billion

and a median of $8 billion. Utilities and energy stocks are the ones with larger assets

and debt, in line with the infrastructures needed for the business.

[Table 2 about here.]

4 Estimation results

In this section, we present the estimated factors (one global and six regional), their

corresponding time-varying loadings and we explore the benefits of allowing the loadings

to vary over time in terms of model fit and misspecification.
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4.1 Mapping the estimated factors to exogenous variables

Figure 1 plots the estimated global factor and the regional factors for Asia-Pacific, Emerg-

ing Europe, Latin America, Middle-East Africa, North America and Western Europe. The

factors are estimated by PCA from the model with static loadings shown in Eq. (6) and

they are rotated such that they are positively correlated with the stock market index of

the biggest country in the region.

The global factor in Panel 1a captures a source of global risk uncorrelated with US

financial stocks, and its fluctuations are related to the overall trend of equity markets

during our sample period. Together with the global factor, we plot a double-sided two-

month moving average. Even after taking into account the shocks coming from US

financial institutions, in 2008 the stocks of the major stock markets around the world

experienced a substantial drop. This can be attributed to financial contagion [Bekaert

et al. (2014)]. Other periods of consecutive negative returns can be seen in 2011 (around

the sovereign-debt crisis) and between the end of 2014 and the beginning of 2015 (the

period corresponding to a large drop in oil price).

Our model also allows to disentangle global and region-specific factors. The regional

factors capture shocks that affect only the firms in that region. We find that the impact

of the global financial crisis in 2007-2008 was so pervasive that in 2008 there were very

large region-specific negative shocks in all six regions (though the regional factors are

orthogonal to the global factor and the observable US financial risk). However, their

magnitude is smaller than the shocks coming from the global factor, and other shocks

become more evident. All the regional factors display heteroscedasticity, in particular

around periods of market turmoil. For instance, the estimated factors for Latin America

and Emerging Europe display large negative consecutive shocks and excess volatility

during the oil shocks of 2014-2015. Specifically, countries of Latin America with large oil

reserves (e.g. Mexico) may have been particularly hit by the decrease in oil price that

started at the end of 2014. Lower oil prices have a negative impact on oil producers

and on countries whose GDP highly depend on oil exports, while they have a positive

effect on companies whose costs depend on oil price (e.g. airlines) and for net importer

countries. This could also explain the divergence of performance between Western Europe

and Emerging Europe (which includes Russia) in the last part of the sample.

[Figure 1 about here.]

Table 3 reports, in Panel A, the correlation among the six regional factors. The spar-

sity of the loading matrix allows the estimated regional factors to be correlated because

they do not interact in the model. The North America factor is most highly correlated

with Latin America (which includes Mexico) and Western Europe, with correlation co-

efficients of 0.429 and 0.483, respectively. Emerging Europe has the highest correlation

13



with Latin America with a correlation coefficient of 0.441. Since the former region in-

cludes Russia and the latter Brazil, this connection may be due to the presence of large

oil companies in the stock market indexes of these countries. The Middle-East Africa

factor is uncorrelated with North America, Latin America and Western Europe, while it

is mildly correlated with Asia-Pacific and Emerging-Europe, with a correlation coefficient

of 0.210 and 0.131, respectively.

As a robustness check, in Panel B of Table 3 we report the correlation coefficients

between the first principal component of the six regional portfolios and the global PC,

the S&P500 index, and S&P500 Financials index, respectively, where the factors are

extracted separately from portfolios of stock returns in the relevant region. As expected,

the first PC for North America correlates almost perfectly with the S&P500 index and the

S&P500 Financials, with a correlation coefficient of 0.962 and 0.847, respectively. The

firms based in Western Europe also closely mimic the pattern of the US stock markets,

with correlations as high as 0.821 for the S&P500 index. The Middle-East&Africa (MEA)

factor is the least correlated with the fluctuations of the US stock market. All factors,

except the MEA, are highly correlated with a global factor, with coefficients ranging from

0.889 to 0.968. This pattern motivates the distinction of global and regional variation in

our model.

Finally, in Panel C of Table 3 we report the correlation coefficients between the

estimated global and regional factors, the S&P500 index, and the S&P500 Financials

index, without orthogonalising the dependent variables against the S&P500 Financials

index. We notice that in this case there is a high correlation between Global and North

America factors and both S&P500 and S&P500 Financials, which implies the presence

of contagion effects of shocks coming from the US stock markets. The orthogonalisation

with respect to the S&P500 Financials index therefore is a natural approach to separate

the global risk from the US financial sector risk.

[Table 3 about here.]

4.1.1 The connection with Fama-French factors

To understand what type of risk our factors are capturing, we use canonical correlation

analysis (CCA) to map the estimated factors to the three Fama-French (FF) factors

(market, value, and size).

Table 4 reports the (squared) maximum canonical correlation between the linear com-

binations of estimated factors and FF market, value and size factors. Panel A reports

the canonical correlation between all three factors, i.e. [Ot, Gt, Fj,t], for j = 1, . . . , R,

while Panel B reports the results using only the regional factors. We use five sets of FF

region-specific factors: Asia-Pacific (excluding Japan), Europe, Global, Global excluding

US, and North America. Overall, we find that the spaces spanned by the FF factors and
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by the factor estimated in this paper are very similar. This leads us to conclude that

our model to a large degree captures the risk to which firms are exposed. In particular,

our three factors for Asia-Pacific, Western Europe and North America agree with the FF

factors constructed with stocks in the respective regions, with canonical correlations up

to 0.958 in North America’s case. Only for Europe’s case, the FF factors have a compa-

rable canonical correlation with both our Western Europe and North America estimated

factors, as reported in Panel B. This is possibly due to the integration between Europe

and the US.

[Table 4 about here.]

4.2 Factor loadings

Our model allows to estimate, for each stock, the parameters (mean, variance and per-

sistence) driving the dynamics of the stock’s exposure to each factor. In this section, we

present the results for two selected stocks, and for the aggregation by either region or

sector.

4.2.1 The factor exposure of two large firms

Figure 2 displays the estimated time series of the three factor loadings for two large firms:

IBM and Tenaris. We choose to analyse these two firms individually because they are

likely to be exposed to global determinants that are difficult to quantify, and our model

can provide guidance in their identification.

Figures 2a - 2c plot the financial, global and regional factor loadings for IBM, re-

spectively. On average, this firm is most exposed to financial risk, with a factor loading

fluctuating around a level of 0.6Ṡince the dependent variable is standardised, the factor

loadings’ economic magnitude corresponds to β standard deviations for one standard de-

viation increase in the factor. The global and regional factor loadings fluctuate around

a similar long-run mean of about 0.3 but with different AR(1) parameters (0.5 for the

global and -0.22 for the regional factors, respectively). A large AR(1) implies that the

process spends a long time away from the long-run average.

Figures 2d - 2f plot the financial, global and regional factor loadings for Tenaris, re-

spectively. Tenaris is a global company, headquartered in Luxembourg and with business

in over 20 countries. It deals with the construction, distribution and service of steel pipes.

Our model identifies this company as highly exposed to both observed and unobserved

global factors. However, these exposures have very different dynamics. On the one hand,

the exposure to the financial factor is constant around a value of 0.537 with a negligible

variance that makes the AR(1) not identifiable. On the other hand, the exposure to

the global factor follows an AR(1) coefficient of 0.94 close to a unit root, suggesting a

persistent exposure of Tenaris to global shocks.
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Our factor loadings closely follow the idiosyncratic variations of stock returns and

identify some firm-specific events that the factors are not able to capture. For instance,

the financial factor in Figure 2a shows some negative spikes, which appear regularly in

October from 2011 to 2015. These can be caused by either third quarter earning an-

nouncements or the expiration of stock options. We can rule out dividend payments as

a cause, as these happened quarterly in that period of time. Furthermore, the regional

factor in Figure 2c exhibits a large drop in the third week of October 2014, which cor-

responds to the announcement by IBM of a large fall in sales,4 while the stock market

was rallying upwards. In that moment, the covariance between the market and IBM

return switched from positive to negative. These events caused the loading to become

temporarily negative, before reverting to its long run mean.

[Figure 2 about here.]

4.2.2 Aggregate results

Table 5 reports the average magnitude of the factor loadings, their persistence (AR(1)

parameter) and their volatilities, aggregated by either region or sector. The loading

magnitude is estimated via OLS from a static loading model, while the AR(1) parameter

and the variance are estimated via maximum likelihood estimation from Eq. (1). The

table also reports the percentage of stocks whose loadings vary so little that they are

indistinguishable from the OLS estimates. We set a loading volatility threshold to 0.01,

under which it is very difficult to identify the autoregressive parameter, and consider

such loadings static. Assuming that the goal of an equity investor is to estimate the

systematic risk of a set of stocks correctly, factor loadings with large AR(1) coefficients

indicate stocks with very persistent shocks to their exposure to the factors.

First, we discuss the results by regions. The firms listed in North America are the

most exposed to the financial factor. The second most exposed group is Western Eu-

rope, with an average factor loading of 0.461. These firms, together with firms listed

in Latin America and Emerging Europe are relatively more exposed to financial shocks

than to global or regional shocks. Conversely, firms listed in MEA are more exposed to

regional than global shocks. Firms listed in the Asia-Pacific region are least exposed to

the US financial risk. We report the percentage of firms, within each group, with an

AR(1) parameter larger than 0.5, defining them as firms with very persistent factor load-

ings. Table 5 shows that the regional factor loadings are the most persistent, implying

higher predictability of regional systematic risk compared to financial and global risk, in

particular for Asia-Pacific and MEA.

Second, we analyse the results by sectors. As to be expected, financial firms are the

most exposed to the financial factor. However, we do not find much variation across

4Source: “IBM shares tumble as profits and sales fall”, Financial Times (20 October 2014).
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sectors. Utilities stocks are the least exposed to the financial factor. Energy stocks are

most highly exposed to the estimated global factor and Consumer Non-cyclical stocks are

the least exposed. This is in line with expectations, since Consumer Non-Cyclical stocks

(e.g. food, beverages and tobacco) should be less likely to follow global trends.

[Table 5 about here.]

5 The benefits of using time-varying factor loadings

In this section, we compare the residuals obtained from a multi-level factor model with

static loadings with those obtained from our model. We provide evidence that our model

has an unambiguously higher goodness of fit. We discuss the significant deviations be-

tween our factor loadings and the static ones estimated by OLS. Finally, we show that

allowing the loadings to be time-varying has an impact on standard residual-based mis-

specification tests and on the estimation of the number of factors following Bai and Ng

(2002).

5.1 Model fit

The model specification in Eq. (5) nests the two-level factor model with static loadings

as special case, where it is assumed that Λt ≡ Λ. The static specification for the N stocks

takes the form:

rt = ΛF ∗t + et, (12)

where Λ is an N × m matrix of loadings parameters and F ∗t contains m factors, some

global and some region-specific. The model in Eq. (12) has been used by Breitung and

Eickmeier (2015) to study the comovements of real economic variables and by Goyal et al.

(2008) to estimate NYSE- and NASDAQ-specific factors for stock returns.

Panel A of Table 6 reports the goodness of fit of specifications (5) and (12), measured

by the R2 coefficient of the regressions averaged within regions and sectors. We choose

this method over a joint likelihood-ratio test of the overall fit because this shows in which

regions/sectors the time-varying loading model provides the largest improvements. We

find that there is an improvement of around 25% by using time-varying parameters. The

biggest improvement of 28% is for the firms listed in Middle East & Africa, which are the

ones where the idiosyncratic component plays a prominent role. As showed in Table 2,

this group of stocks has the lowest average pair-wise correlation, which is caused by

the economic and political differences of these countries that might have limited their

economic integration. Regions where the OLS estimator provided the highest average

R2 are the ones that are more integrated (North America and Western Europe). Thus,
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the time-varying specification provides a connection between the common factors and the

idiosyncratic characteristics of each stock.

Furthermore, we can compare the distribution of λi,t with the theoretical distribution

of the OLS estimator of λi in Eq. (12). Since the least-squares estimator is normally

distributed, we expect 5% of the observations (bT (0.05)c = 26) to lie outside the 95%

confidence interval (CI). We define the number of times the factor loadings ai, bi and ci

are outside the 95% confidence interval of the OLS estimator as:

nFi =
T∑
t=1

1(
ai,t /∈{âi±1.96

√
V ar(âi)}

), (13)

nGi =
T∑
t=1

1(
bi,t /∈{b̂i±1.96

√
V ar(b̂i)}

), (14)

nRi =
T∑
t=1

1(
ci,t /∈{ĉi±1.96

√
V ar(ĉi)}

), (15)

for i = 1, . . . , N stocks. We then average nFi , n
G
i and nRi by region and sector and report

the results in Panel B of Table 6. We find that in all groups of stocks there is a larger

than expected number of significant deviations from the OLS loadings estimates.

[Table 6 about here.]

Since we estimate the loadings conditionally at each time t, we can also identify in

which year and for which factors there are more deviations from the OLS estimates, i.e.

at what time a static specification will tend to underestimate or overestimate the model

factor exposure. Fig. 3 reports, for every year, the cross-sectional average of the number

of significant deviations from OLS in the six world regions.

We find that in North America, in 2008, the exposure of the average firm to financial

risk would have been underestimated or overestimated 25 out of 52 weeks, if it was

estimated assuming constant loadings. In 2009, the number is very similar and the same

holds true for stocks listed in Western Europe, Emerging Europe, and Asia-Pacific. Even

though the great financial crisis is affecting the estimation of the factor loadings of all

stocks, in the Middle-East&Africa and Latin America, the estimation of the regional

factor loadings is the most affected.

[Figure 3 about here.]

5.2 Misspecification tests

We further explore the effect of time-varying factor loadings on the Bai and Ng (2002)

estimator of the number of factors, on residual heteroscedasticity, and on serial correla-

tion.
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First, we estimate the number of factors using the Bai and Ng (2002) criteria on the

returns matrix, the residuals from a static model and the residuals from a time-varying

loading model. Bai and Ng (2002) propose various modifications of information criteria

for model selection with an additional penalty that is a function of both N and T . We

use

ICp1(k) = ln(V (k, F̃ k)) + k

(
N + T

NT

)
ln

(
N + T

NT

)
, (16)

where V (k, F̃ k) is the average residual variance of a factor model with k factors. ICp1(k)

can be used for estimating the number of factors as a standard information criterion:

k̂ = arg min
0≤k≤kmax

PC1(k). (17)

Second, we implement a White-type test under the null of homoscedasticity, estimating

the following auxiliary regression:

ê2
i,t = αi + γiF̂

∗2
i,t + ui,t, ui,t ∼ N(0, σ2

u,i), (18)

for i = 1 . . . , N stocks, where F̂ ∗i,t contains the three factors specific to stock i, estimated

by PCA. The test statistic is equal to the R2, times the sample size T , and it is distributed

as a χ2 with degrees of freedom equal to the number of factors. The properties of the

test are studied by Mikkelsen (2017), who proves that this test is equivalent to testing

for constant loadings. Finally, we test the null hypothesis of no serial correlation of the

error term ê2
i,t up to the p-th lag using the Breusch-Godfrey test (up to lags two and five).

The test statistic is equal to R2 times the sample size and it is distributed as a χ2 with

degrees of freedom equal to T − p.
Table 7 reports the results. The Bai and Ng (2002) ICp1 criterion finds that ten

factors are needed to describe the variation in our panel of 1815 firms from 50 countries.

Given that we include eight factors, we expect the residuals to have two omitted factors.

However, when we apply the ICp1 criterion to the residuals, it suggests to use five factors,

and only when allowing the factors to vary over time this number decreases to three.

Thus, the structural instability of the loadings has an influence on the Bai and Ng (2002)

number of factors estimator.

For the heteroscedasticity and serial correlation tests, in Table 7 we report the per-

centage of stocks for which we reject the null at 99% confidence level. We find that 51%

of firms have time-varying loadings, which implies that the volatility of returns is not

entirely captured by the static-loadings model. When loadings are allowed to change

over time, only 5% of stock returns have time-varying volatility. The results on the se-

rial correlation tests are less strong. The percentage of firms that exhibit residual serial

correlation up to lag five is reduced from 31% to 21%.
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[Table 7 about here.]

6 Global comovements of stock returns: new evi-

dence

In this section, we use variance decomposition methods to analyse the comovements of

the large panel of stock returns. Variance decomposition has been used extensively to

interpret the estimates of factor models. Among others, Breitung and Eickmeier (2015)

assess the degree of comovement of groups of variables. In particular, the higher the

(average) share of variance explained by common factors compared to the idiosyncratic

variance, the higher the comovements. However, this method provides one number for

the whole sample and often two or more sample periods are compared to assess whether

there was an increase in commonality. Our model allows to overcome this limitation,

estimating a conditional variance decomposition at each time t. In what follows, we

compare the two decompositions.

6.1 Static variance decomposition

Table 8 reports the static variance decomposition. The firms listed in North America

and Western Europe have the highest commonality, while the ones listed in the MEA

region have the largest idiosyncratic component. This is in line with the results reported

in Table 5.

[Table 8 about here.]

6.2 Time-varying variance decomposition

Our model allows calculation of the share of variance explained by the factors at each

point in time. Hence, we can capture possible shifts in the importance of some factors

and connect them to macro events. The variance of the returns on stock i at time t,

conditional on the estimated factor loadings, can be written as:

vart(ri,t | λ̂i,t) = â2
i,t var(Ot) + b̂2

i,t var(Gt) + ĉ2
i,t var(Fk,t)1{i∈Rk}, (19)

for i = 1, . . . , N , t = 1, . . . , T , and assuming that the factors and the errors are condition-

ally orthogonal. Ot is an observable global factor, Gt is an unobservable (latent) global

factor and Fk,t is an unobservable factor specific to stocks in region Rk, for k = 1, . . . , K.

All these factors have unconditional variance equal to one. Thus, if we are interested in

the share of variance explained by each of the factors at each time t, we can define the
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following quantities:

FVi,t =
â2
i,t

vart(ri,t | λ̂i,t)
(Financial),

GVi,t =
b̂2
i,t

vart(ri,t | λ̂i,t)
(Global),

RVi,t =
ĉ2
i,t

vart(ri,t | λ̂i,t)
(Regional),

where FVi,t is the share of variance explained by the financial factor at time t, and GVi,t

and RVi,t are defined accordingly. Calculating the cross-sectional average of the quantities

above provides a measure of the importance of different drivers for the comovements of

groups of stocks (e.g. within one region, one sector, one country).

Fig. 4 shows the share of variance explained by each factor, averaged across all N

stocks in the portfolio. The graphs shows that, on average, the financial factor is the

most pervasive, with a share of variance explained around 15%. However, during the

GFC, there was a considerable increase in the exposure of stocks to financial shocks,

which corroborates the evidence of contagion from the financial sector to other areas of

the economy. Regional and sectoral figures shed more light on the heterogeneity of this

effect. Furthermore, Fig. 4b shows that the share of variance explained by all the common

factors increased by 10% by the end of 2008.

[Figure 4 about here.]

Figs. 5 - 6 plot the share of variance explained by the three factors for each region.

For the stocks in all regions, the contribution of all factors increases during the Financial

Crisis, hence the comovements increase. The increase in comovement at the outset of the

crisis varies across regions and, for instance in Asia-Pacific and Western Europe, some

stocks start to become more sensitive to global shocks already at the end of 2007 or

the beginning of 2008. We find evidence of increased comovements during the European

sovereign-debt crisis, recording positive spikes in the financial factor contribution in 2011

for Western Europe and for Emerging Europe. In Middle East & Africa, the regional

factor is the most important throughout the sample.

[Figure 5 about here.]

[Figure 6 about here.]

Figs. 7 - 9 plot the share of variance explained by the three factors in each sector. The

most interesting cases are the ones where the variance shares increase during the sample.
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For example, the variance of the stocks in the Energy sector start to be highly explained

by the global factor from the beginning of 2015. This is the direct effect of shocks from the

oil market: Energy companies were hit by a very low price of oil, due to overproduction,

shale-gas as a substitute product, and a reduced demand from China. In addition, the

Utilities and Basic Materials sector experiences a large increase in the importance of

the global factor from 2015. As expected, these firms, providing for instance gas and

electricity, are subject to demand shocks that are specific to their area, and they are also

very sensitive to interest rate changes due a high debt/equity ratio.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

7 Dynamics of the loadings and the profile of the

firm

In this section, we investigate if the firm-specific estimates that we obtain from our model

- in particular loading persistence and variance - are associated with different types of

firms. This research question is motivated by Ang et al. (2017), who show that creating

portfolios for asset pricing tests destroys information and leads to larger standard errors

than using individual stocks. Our goal is to test whether the dynamics of the beta of the

factors are related to the size and the leverage of the firm and to its expected returns.

This information, gathered only from market prices, could be used in asset allocation

models.

7.1 Size effect

Figure 10 reports the median market capitalisation (at the end of the sample) by loading

variance, persistence, and magnitude quantiles. The figure is composed of three panels

and each one reports three sets of bars, one for each factor. Since the data set of securities

comprises the constituents of large stock market indexes, we do not expect a strong size

effect for every quantile.

We find that bigger firms have larger exposure to financial and regional common

factors, while there is no clear difference across global factor loading quantiles [Figure 10c].

For instance, the firms in the bottom quantile of financial factor loadings have a median

market capitalisation of $1 billion, while the ones in the top quantile have 15$ billion.

This evidence is in line with the finding of Fama and French (2017) that a global version of

their factor model is not able to price the cross-section of stock returns. Furthermore, we
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find that stocks with high loading uncertainty, approximated by loading variance, tend

to be larger (from two to three times bigger) than firms with little variation of factor

loadings. In Fig. 10a we can see that the effect exists for the financial and global factors

only. This is an extension of Armstrong et al. (2013), who also analyse the cross-section

of firms with loading uncertainty, but using a single-factor CAPM with US stocks. There

is no difference in size between firms with difference persistence parameters [Figure 10b].

In conclusion, we find that large firms tend to have large exposures to US financial

and regional factors, and these exposures are more volatile than those of small firms.

[Figure 10 about here.]

7.2 Leverage effect

Figure 11 reports the expected change in the leverage ratio from January 2010 and Jan-

uary 2016, by loading variance, persistence and magnitude quantiles. Each panel reports

three sets of bars, one for each of the factors. Financial stocks are excluded. We use the

average of the change in leverage ratio (at quarterly frequency) instead of the leverage

ratio because various authors have shown that firms adjust their leverage towards a target

ratio [see, e.g. Halling et al. (2016)], and we find that the average leverage does not vary

substantially across stocks.

Figure 11a shows that firms with higher variance of the financial factor loading have

an average change in leverage ratio closer to zero than firms with low variance of the

financial factor loading. This implies that large changes in factor loadings are connected

to positive and negative changes to leverage ratio that cancel each other out, which result

in large changes in the systematic risk of the firm.

One would expect the leverage of a firm to be connected to regional factors such as

interest rate shocks. However, Figure 11c and 11a show that firms with high leverage

have a low average exposure to the regional factor and a high variance of its loading.

[Figure 11 about here.]

7.3 Expected returns

Figure 12 reports the expected weekly returns, expressed in basis points, as a function of

loading variance, persistence and magnitude. Expected returns are the average log-return

for each stock in the data set, excluding financial stocks, from January 2010 until January

2016.

We find that expected returns are increasing in the variance of financial and global

factor loadings, while they are decreasing in the variance of the regional factor loading

[Figure 12a]. The decreasing relationship is in line with the finding of Armstrong et al.
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(2013) for US stocks. However, our model suggests that there is a premium for holding

stocks with large variance in the exposure to the global factor. This pattern cannot

be explained by cross-sectional differences in returns volatility. Furthermore, expected

returns are decreasing in the persistence of financial and global factor loadings, implying

that there is no premium for holding firms with highly persistent factor exposures.

[Figure 12 about here.]

8 Conclusions

In this paper, we studied the dynamics of the systematic risk in a large portfolio of

1815 firms from 54 countries with weekly return observations covering the period 13

January 2006 to 8 January 2016. We proposed a two-level factor model with time-

varying loadings that captures financial, global, and regional risk to estimate common

components in stock returns. The global and regional factors are latent and estimated via

principal components. The loadings evolve as autoregressive processes and are estimated

via maximum likelihood.

Our analysis yields three main findings. First, we find that the estimated factors are

linear combinations of Fama and French’s market, value, and size factors. Thus, we are

able to capture the same source of risk. Second, we find that the relative importance of

unobserved regional and global factors is time-varying: when unexpected events happen

globally, loadings on global factors increase. For instance, Energy stocks were more

highly exposed to global shocks, both during the Great Financial Crisis and from the

beginning of 2015. Finally, the dynamics of the factor loadings are related to the profile

of a company. Expected returns are higher when the variance of financial and global

factor loadings is large, while not so pronounced when the variance of the regional factor

loading is large, in line with Armstrong et al. (2013). We find that expected returns

are lower when the variance of the regional factor loadings is large and higher when the

variance of financial and global factor loadings is large. Furthermore, our model suggests

that there is a premium for holding stocks whose global systematic risk is more volatile.

Finally, expected returns are decreasing in the persistence of financial and global factor

loadings, implying that there is no premium for holding firms with highly persistent factor

exposures.
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Table 1: Universe of securities

The table reports the countries that make up each region, and for each country it reports the following
variables: Ticker is the Bloomberg ticker that identifies the stock market index; #Stocks is the number
of companies that became members of the index during the period from 10 January 2003 to 19 May
2017; Avg.Active is the average number of index members at the beginning of every month in the sample
period; Full is the number of stocks with complete price time series - missing values are filled with the
previous value as long as there are no more than four consecutive missing; Jan06-Jan16 is the number
of complete price series, when restricting the sample from 13 January 2006 to 8 January 2016.

#Complete

Region Country Ticker #Stocks Avg.Active Full Jan06-Jan16

North America Canada SPTSX60 Index 101 60 61 65
North America US OEX Index 167 100 120 123
Latin America Mexico MEXBOL Index 72 35 23 33
Latin America Argentina MERVAL Index 53 16 32 34
Latin America Brazil IBOV Index 129 66 43 56
Latin America Chile IPSA Index 71 40 41 55
Latin America Peru SPBLPGPT Index 89 33 20 27
Latin America Venezuela IBVC Index 18 15 0 12
Asia-Pacific Japan TPXL70 Index 125 70 96 101
Asia-Pacific China SSE50 Index 151 50 24 33
Asia-Pacific HongKong HSCEI Index 83 40 28 48
Asia-Pacific India SENSEX Index 48 30 34 39
Asia-Pacific Indonesia LQ45 Index 122 45 46 59
Asia-Pacific Korea KOSPI50 Index 86 50 49 57
Asia-Pacific Taiwan TW50 Index 83 50 66 73
Asia-Pacific Thailand SET50 Index 110 50 61 75
Asia-Pacific NewZealand NZSX15G Index 33 15 16 20
Asia-Pacific Australia AS31 Index 95 50 49 57
Western Europe Austria ATX Index 39 20 23 24
Western Europe Belgium BEL20 Index 37 20 20 26
Western Europe Denmark KFX Index 34 20 24 27
Western Europe Finland HEX25 Index 37 25 23 26
Western Europe France CAC Index 63 40 43 47
Western Europe Germany DAX Index 46 30 36 38
Western Europe Ireland ISEQ Index 91 53 15 22
Western Europe Luxembourgh LUXXX Index 21 10 5 5
Western Europe Netherlands AEX Index 47 20 20 23
Western Europe Norway OBX Index 67 26 22 34
Western Europe Portugal PSI20 Index 38 20 20 22
Western Europe Spain IBEX Index 61 35 30 33
Western Europe Sweden OMX Index 41 30 35 35
Western Europe Switzerland SMI Index 34 21 26 26
Western Europe UK UKX Index 203 102 110 133
Emerging Europe Croatia CRO Index 61 26 7 21
Emerging Europe CzechRepublic CCTX Index 14 8 6 7
Emerging Europe Estonia TALSE Index 25 16 5 7
Emerging Europe Hungary BUX Index 28 13 11 14
Emerging Europe Latvia RIGSE Index 44 29 7 9
Emerging Europe Malta MALTEX Index 26 18 4 4
Emerging Europe Lithuania VILSE Index 46 29 9 13
Emerging Europe Poland WIG20 Index 46 20 20 32
Emerging Europe Romania ROTXEUR Index 24 12 3 6
Emerging Europe Russia CRTX Index 49 16 5 7
Emerging Europe Serbia BELEX15 Index 26 15 0 15
Emerging Europe Turkey XU030 Index 77 30 44 51
Emerging Europe Ukraine PFTS Index 27 19 0 7
MEA Egypt HERMES Index 80 39 42 55
MEA Qatar DSM Index 38 20 2 25
MEA UAE ADSMI Index 69 61 11 19
MEA Morocco MOSEMDX Index 81 51 27 35

Total 3256 1709 1464 1815
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Table 2: Descriptive statistics

The table reports the summary statistics for the 1815 companies that remained in the final data set. The
original number of firms in each country is reported in Table 1. Panel A reports the cross-sectional average
of the summary statistics of simple returns. Panel B reports average market capitalisation, total assets
and debt. Min and Max are the minimum and maximum over time and across all stocks in a group
(i.e. the absolute min and max). The remaining statistics are N -averages of the relevant coefficient:
Mean, Med and are the cross-sectional averages of mean and median; StDev, Skw and Krt are the
average standard deviation, skewness and kurtosis; ρ(1) is the OLS estimate of the first autocorrelation
coefficient; ADF is the statistics for the Augmented Dickey-Fuller test, which is run with a constant,
time trend and one lag. The critical value at 95% significance is -3.41 and the null hypothesis is the
presence of a unit root. Finally, Pearson is the average pair-wise correlation of the stocks in the relevant
group.

Panel A: Stock returns

Mean Med Min Max StDev Skw Krt ρ(1) ADF Pearson #

Returns(%)
North America 0.202 0.223 -35.903 45.019 4.298 -0.007 4.440 -0.057 -16.535 0.378 188
Latin America 0.275 0.082 -28.376 48.919 5.353 0.311 4.671 -0.023 -15.923 0.265 217
Asia-Pacific 0.265 0.123 -35.674 42.507 5.248 0.181 4.131 -0.027 -16.037 0.237 562
Western Europe 0.186 0.213 -58.848 55.163 5.087 -0.020 4.369 -0.046 -16.590 0.424 521
Emerging Europe 0.099 0.029 -31.425 39.595 5.863 0.169 4.697 0.004 -15.360 0.269 193
MEA 0.143 -0.065 -25.218 38.627 4.997 0.345 5.247 -0.004 -16.158 0.159 134

Basic Materials 0.190 0.055 -35.674 48.919 5.954 0.208 4.490 0 -15.823 0.268 208
Communications 0.173 0.119 -30.810 47.807 4.886 0.119 4.335 -0.047 -16.260 0.246 147
Energy 0.158 0.096 -35.714 48.309 5.527 0.035 4.275 -0.035 -16.382 0.362 122
Consumer, Cyclical 0.261 0.170 -28.809 38.201 5.348 0.153 4.358 -0.026 -16.015 0.245 212
Financial 0.205 0.112 -40.133 55.163 5.294 0.156 4.924 -0.032 -16.159 0.272 366
Technology 0.159 0.165 -25.818 34.320 5.067 0.050 3.960 -0.036 -16.162 0.267 79
Industrial 0.196 0.123 -58.848 48.148 5.357 0.126 4.364 -0.018 -16.038 0.256 293
Consumer, Non-cyclical 0.283 0.211 -31.425 41.759 4.343 0.129 4.288 -0.050 -16.465 0.206 262
Utilities 0.176 0.131 -26.030 28.125 4.276 0.029 4.075 -0.048 -16.551 0.225 103
Diversified 0.210 0.048 -23.529 30.195 5.211 0.181 4.436 -0.013 -15.876 0.256 23

Panel B: Balance sheet

Market Cap ($bil.) Tot Assets ($bil.) Tot Debt ($bil.)

North America 48.914 123.886 32.957
Latin America 7.167 25.520 8.288
Asia-Pacific 8.613 30.583 7.715
Western Europe 16.858 97.682 29.290
Emerging Europe 2.844 10.154 2.135
MEA 1.892 4.852 1.056

Basic Materials 8.542 12.783 3.379
Communications 17.890 24.288 7.650
Energy 24.144 39.474 7.284
Consumer, Cyclical 10.100 17.669 6.051
Financial 14.880 198.829 56.687
Technology 24.436 16.209 2.529
Industrial 8.835 14.648 4.461
Consumer, Non-cyclical 17.451 13.819 3.540
Utilities 10.148 28.427 10.190
Diversified 4.394 17.717 3.129
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Table 3: Correlation between factors and exogenous variables

Panel A reports the correlation matrix of the six estimated factors. Panel B reports the correlation
between the regional factors (each estimated by the first PC of a portfolio of the relevant stocks) and a
global factor, the S&P500 index and S&P500 Financials index. Panel C reports the correlation between
the estimated global and regional factors, the S&P500 index and S&P500 Financials index, i.e. before
orthogonalising against the S&P500 Financials index.

Panel A: Correlation between regional factors

(1) (2) (3) (4) (5) (6)

North America (1) 1
Latin America (2) 0.429 1
Asia-Pacific (3) 0.294 0.460 1
Western Europe (4) 0.483 0.374 0.361 1
Emerging Europe (5) 0.215 0.441 0.406 0.422 1
MEA (6) -0.044 0.097 0.210 -0.025 0.131 1

Panel B: PC1

Glob PC S&P500 S&P Fin

North America 0.902 0.962 0.847
Latin America 0.909 0.766 0.638
Asia-Pacific 0.904 0.685 0.557
Western Europe 0.968 0.821 0.708
Emerging Europe 0.889 0.688 0.597
MEA 0.348 0.225 0.177

Panel C: Global and regional factors

S&P500 S&P Fin

Global 0.718 0.570
North America 0.663 0.689
Latin America 0.291 0.277
Asia-Pacific 0.183 0.158
Western Europe 0.402 0.445
Emerging Europe 0.212 0.250
MEA 0.009 0.007

31



Table 4: Mapping estimated factors and Fama-French 3 factors

The table reports the maximum squared canonical correlations between the market, size and value factors constructed by Fama and French, and the three
orthogonal factors (S&P500 Financials, a global factor and a regional factor). Panel B reports the same but using only the regional factors.

Panel A: Three factors and Fama-French

North America Latin America Asia-Pacific Western Europe Emerging Europe MEA

Asia Pacific ex Japan 3 Factors 0.765 0.780 0.876 0.760 0.763 0.746
Europe 3 Factors 0.830 0.814 0.817 0.961 0.834 0.790
Global 3 Factors 0.922 0.875 0.894 0.927 0.874 0.856
Global ex US 3 Factors 0.840 0.816 0.857 0.927 0.817 0.777
North America 3 Factors 0.958 0.891 0.888 0.895 0.886 0.885

Panel B: Regional factor and Fama-French

North America Latin America Asia-Pacific Western Europe Emerging Europe MEA

Asia Pacific ex Japan 3 Factors 0.056 0.064 0.265 0.055 0.078 0.088
Europe 3 Factors 0.214 0.078 0.051 0.204 0.047 0.015
Global 3 Factors 0.308 0.090 0.115 0.133 0.030 0.014
Global ex US 3 Factors 0.129 0.060 0.133 0.179 0.044 0.034
North America 3 Factors 0.371 0.098 0.072 0.122 0.024 0.004
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Table 5: Model estimates

The table reports the average magnitude of the factor loadings, their persistence (AR(1) parameter) and their volatilities, aggregated by either region or sector.
The magnitude of the loadings is estimated via OLS from a static loadings model, while the AR(1) parameter and variance are estimated via maximum likelihood
estimation from Eq. (1). The table also reports the percentage of stocks whose loadings vary so little that we consider them constant.

ri,t = ai,tOt + bi,tGt +

R∑
j=1

ci,tFj,t1{i∈Jj} + ei,t

ai,t = (1− φOi )āi + φOn ai,t−1 + ηOi,t, ηOi,t ∼ iidN(0, qOi )

bi,t = (1− φGi )b̄i + φGn bi,t−1 + ηGi,t, ηGi,t ∼ iidN(0, qGi )

ci,t = (1− φji )c̄i + φjnci,t−1 + ηji,t, ηji,t ∼ iidN(0, qji )

Financial Global Regional

Avg aOLS
i AR(1)>0.5 Std ai,t #static(%) Avg bOLS

i AR(1)>0.5 Std bi,t #static(%) Avg cOLS
i AR(1)>0.5 Std ci,t #static(%) Tot

North America 0.519 16 0.222 5 0.225 20 0.193 5 0.248 29 0.179 10 188
Latin America 0.330 19 0.156 20 0.285 29 0.126 29 0.282 33 0.140 15 217
Asia-Pacific 0.266 17 0.234 5 0.267 28 0.187 11 0.317 36 0.156 9 562
Western Europe 0.461 18 0.244 4 0.354 30 0.148 12 0.302 28 0.154 14 521
Emerging Europe 0.312 13 0.241 8 0.307 24 0.154 15 0.276 28 0.168 16 193
MEA 0.088 11 0.203 13 0.158 29 0.157 28 0.353 40 0.223 9 134

Basic Materials 0.322 11 0.227 11 0.370 30 0.167 13 0.260 27 0.171 11 208
Communications 0.357 20 0.202 8 0.255 26 0.149 20 0.299 33 0.149 17 147
Energy 0.369 22 0.190 7 0.432 45 0.145 7 0.239 29 0.173 11 122
Consumer, Cyclical 0.358 14 0.243 5 0.249 21 0.176 15 0.325 35 0.150 15 212
Financial 0.387 11 0.263 6 0.269 27 0.175 13 0.313 36 0.165 8 366
Technology 0.352 23 0.219 5 0.250 24 0.154 18 0.304 34 0.157 18 79
Industrial 0.350 15 0.213 10 0.301 27 0.164 15 0.297 32 0.160 12 293
Consumer, Non-cyclical 0.306 23 0.221 5 0.234 23 0.171 16 0.300 30 0.165 10 262
Utilities 0.295 22 0.194 13 0.249 34 0.140 17 0.339 29 0.177 15 103
Diversified 0.346 17 0.188 13 0.264 30 0.146 13 0.365 39 0.117 17 23
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Table 6: Goodness of fit

In Panel A, the table reports the goodness of fit of our model compared with a static model where the
loadings are estimated using OLS; in Panel B, the number of times the time-varying λit is outside the
95% confidence interval of the static λi, estimated with OLS. The numbers reported are averages of the
total number in each group. Note that T = 521 and T × 0.05 = 26.

Panel A: R2 comparison

R2 R2-OLS ∆

North America 0.707 0.459 0.248
Latin America 0.493 0.325 0.168
Asia-Pacific 0.550 0.279 0.271
Western Europe 0.686 0.464 0.222
Emerging Europe 0.586 0.329 0.256
MEA 0.506 0.226 0.280

Basic Materials 0.623 0.381 0.242
Communications 0.538 0.327 0.211
Energy 0.642 0.427 0.215
Consumer, Cyclical 0.607 0.354 0.253
Financial 0.668 0.401 0.268
Technology 0.537 0.310 0.228
Industrial 0.588 0.361 0.227
Consumer, Non-cyclical 0.547 0.289 0.258
Utilities 0.542 0.322 0.219
Diversified 0.574 0.389 0.185

Panel B: Significant deviations from OLS

Fin Glob Reg

North America 168 177 146
Latin America 89 81 138
Asia-Pacific 130 134 124
Western Europe 187 141 136
Emerging Europe 124 108 118
MEA 77 82 193

Basic Materials 133 153 133
Communications 131 99 112
Energy 128 172 134
Consumer, Cyclical 149 131 139
Financial 176 141 178
Technology 133 110 102
Industrial 121 111 121
Consumer, Non-cyclical 139 113 119
Utilities 121 108 136
Diversified 122 100 133
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Table 7: Misspecification tests

The table reports in the first column the number of factors implied by the Bai and Ng (2002) ICp1

criterion for the returns matrix, the residual matrix derived from a static loadings factor model and the
residual matrix implied by the time-varying factor loading model; in the second column the percentage
of stocks for which we reject the null at 99% confidence level using the White’s test; in the last two
columns, the Breusch and Godfrey with 2 and 5 lags, respectively

Bai-Ng02 (#) White (%) BG 1-2 (%) BG 1-5 (%)

Returns 10
Static loadings 5 51 12 31
TV loadings 3 5 9 21
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Table 8: Static variance decomposition

The table reports the average share of variance explained by the common factors in the relevant region
or sector.

Fin Glob Reg Idio

North America 29.419 8.905 7.590 54.086
Latin America 12.938 9.354 10.159 67.549
Asia-Pacific 8.513 8.723 10.600 72.163
Western Europe 22.573 13.707 10.080 53.641
Emerging Europe 10.976 10.250 11.657 67.118
MEA 1.052 3.114 18.421 77.412

Basic Materials 13.261 15.854 8.929 61.956
Communications 15.152 7.534 10.012 67.302
Energy 15.263 20.461 6.888 57.387
Consumer, Cyclical 15.513 7.603 12.264 64.620
Financial 19.084 8.531 12.405 59.980
Technology 14.354 6.824 9.759 69.063
Industrial 15.246 10.538 10.272 63.943
Consumer, Non-cyclical 11.400 6.992 10.454 71.155
Utilities 10.704 8.423 13.081 67.792
Diversified 14.379 7.898 16.624 61.099

36



Figure 1: Estimated global and regional factors

The figure plots the estimated global factor and the regional factors for Asia-Pacific, Emerging Europe,
Latin America, Middle-East Africa, North America and Western Europe. Together with the estimated
factor, we plot a double-sided two-month moving average for the global factor only. The factors are
estimated by PCA from the model with static loadings in Eq. (6). The factors are rotated to ensure
that they are positively correlated with the stock market index of the biggest country in the region.
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Figure 2: The conditional factor exposure of two large firms

The figure plots time-varying loadings estimated for IBM and Tenaris, respectively. The loadings are exposures of each stock’s returns to financial, global and
regional factors.
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Figure 3: Average deviations from OLS per year

The figure plots, for every year, the cross-sectional average of the number of significant deviations from OLS in the six world regions (Asia-Pacific, Emergin
Europe, Latin America, Middle-East and Africa, North America, Western Europe).
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Figure 4: Time-varying variance decomposition

The figure reports the average estimated conditional variance decompositions. Panel (a) shows the cross-
sectional average of the share of variance explained by each factor at each point in time. Panel (b) reports
the total share of variance explained by the factors as the sum of the three series in Panel (a).
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Figure 5: Time-varying variance decomposition (by region)

The figure reports the average estimated conditional variance decompositions, aggregated by region. In
the left column of panels, the blue line represents the percentage of variance explained by the financial
factor, yellow and orange lines represent regional and global factors, respectively. The right column of
panels shows the total share of variance explained by the factors, the sum of the left panel.
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Figure 6: Time-varying variance decomposition (by region) - continued

The figure reports the average estimated conditional variance decompositions, aggregated by region. In
the left column of panels, the blue line represents the percentage of variance explained by the financial
factor, yellow and orange lines represent regional and global factors, respectively.The right column of
panels shows the total share of variance explained by the factors, the sum of the left panel.
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Figure 7: Time-varying variance decomposition (by sector)

The figure reports the average estimated conditional variance decompositions, aggregated by sector. In
the left column of panels, the blue line represents the percentage of variance explained by the financial
factor, yellow and orange lines represent regional and global factors, respectively. The right column of
panels shows the total share of variance explained by the factors, the sum of the left panel.
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Figure 8: Time-varying variance decomposition (by sector) - continued

The figure reports the average estimated conditional variance decompositions, aggregated by sector. In
the left column of panels, the blue line represents the percentage of variance explained by the financial
factor, yellow and orange lines represent regional and global factors, respectively. The right column of
panels shows the total share of variance explained by the factors, the sum of the left panel.
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Figure 9: Time-varying variance decomposition (by sector) - continued

The figure reports the average estimated conditional variance decompositions, aggregated by sector. In
the left column of panels, the blue line represents the percentage of variance explained by the financial
factor, yellow and orange lines represent regional and global factors, respectively. The right column of
panels shows the total share of variance explained by the factors, the sum of the left panel.
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Figure 10: Relationship with firm size

The figure reports the median market capitalisation (at the end of the sample) ordered by factor loadings
variance (Panel (a)), persistence (Panel (b)) and magnitude (Panel (c)). At the end of the sample, stocks
are sorted in quantiles of either loading variance, or persistence, or magnitude. Quantile five contains
the largest value. Then, for each quantile we calculate the median market market capitalisation, and we
plot it against the quantile number.
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Figure 11: Relationship with firm leverage

The figure reports the average quarterly change in leverage ratio (from January 2010 and January 2016)
ordered by factor loadings variance (Panel (a)), persistence (Panel (b)) and magnitude (Panel (c)). At the
end of the sample, stocks are sorted in quantiles of either loading variance, or persistence, or magnitude.
Quantile five contains the largest value. Then, for each quantile we calculate the average quarterly
change in leverage ratio (debt over assets), and we plot it against the quantile number. Financials are
excluded.
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Figure 12: Relationship with expected returns

The figure reports the average weekly stock returns from January 2010 until January 2016, expressed
in basis points (one basis point = 0.01%), ordered by factor loadings variance (Panel (a)), persistence
(Panel (b)) and magnitude (Panel (c)). Financial stocks are excluded. At the end of the sample, stocks
are sorted in quantiles of either loading variance, or persistence, or magnitude. Quantile five contains
the largest value. Then, for each quantile we calculate the average log-returns, and we plot it against
the quantile number.
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Appendix A Leverage for Financials

Figure A.1: Relationship with firm leverage for Financials

The figure reports the average quarterly change in leverage ratio (from January 2010 and January 2016) for financial firms
ordered by factor loadings variance (Panel (a)), persistence (Panel (b)) and magnitude (Panel (c)). At the end of the
sample, stocks are sorted in quantiles of either loadings variance, or persistence, or magnitude. Quantile five contains the
largest value. Then, for each quantile we calculate the average quarterly change in leverage ratio (debt over assets), and
we plot it against the quantile number.
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Appendix B Data cleaning

The number of time series observations for most stock markets is T = 835.

Egypt. Following the “Egyptian Revolution of 2011” that started on the 25th January

2011, the stock exchange closed from the 27th January until the 23rd March, which results

in 7 consecutive missing data cells for all stocks. Thus, we repeat the last value which

results in 7 zero-return observations.

Russia, Ukraine and India. Table 1 shows that both countries’ time series start

on 23rd January 2000 and ends on the 10th January 2016. This is unexpected because

both days are Sundays, and Bloomberg should have assigned the last working day of

the week to the weekly observation. However, in these countries the stock exchange

operates normally, from Monday to Friday. Thus, prices refer to the Friday close (or

the last available data point of the week) but Bloomberg reports the Sunday date. We

checked with other data providers (Datastream) that this is the case. Thus, since we are

downloading Friday to Friday data, the last observation is missing and T = 834, where

the last observation refers to the penultimate week of the data set. Note that we do not

need to shift the time series because all the other data points match across countries.

Egypt, Israel, Qatar, UAE. Weekday reference is Thursday, for religious reasons.

That is weekends are on Fridays and Saturdays. T = 835.

Korea and Taiwan. The time series start on the 22nd January 2000, and they end on

9th January 2016, which are both Saturdays. Hence, an observation is missing at the end

of the sample. T = 834.

In both countries the stock exchange operates on a traditional trading calendar. Thus,

the weekly data refers to the last working-day traded price.

Serbia. For all companies, the time series starts in December 2005. Thus, if we want

to include this country in the study we have to trim all time series. Note that, according

to Bekaert et al. (2014), Table IV, pag. 2618, the Serbian equities experienced the most

negative return over the crisis period, so it is a country worth including.

We eliminate the last observation for countries with 835 observations, and the final

time series length is T = 834.

50



Research Papers 
2018 

 
 

 

 

 

2018-20: Ruijun Bu, Kaddour Hadri and Dennis Kristensen: Diffusion Copulas: 
Identification and Estimation 

2018-21: Kim Christensen, Roel Oomen and Roberto Renò: The drift burst hypothesis 

2018-22: Russell Davidson and Niels S. Grønborg: Time-varying parameters: New test 
tailored to applications in finance and macroeconomics 

2018-23: Emilio Zanetti Chini: Forecasters’ utility and forecast coherence 

2018-24: Tom Engsted and Thomas Q. Pedersen: Disappearing money illusion 

2018-25: Erik Christian Montes Schütte: In Search of a Job: Forecasting Employment 
Growth in the US using Google Trends 

2018-26: Maxime Morariu-Patrichi and Mikko Pakkanen: State-dependent Hawkes 
processes and their application to limit order book modelling 

2018-27: Tue Gørgens and Allan H. Würtz: Threshold regression with endogeneity for 
short panels 

2018-28: Mark Podolskij, Bezirgen Veliyev and Nakahiro Yoshida: Edgeworth expansion 
for Euler approximation of continuous diffusion processes 

2018-29: Isabel Casas, Jiti Gao and Shangyu Xie: Modelling Time-Varying Income 
Elasticities of Health Care Expenditure for the OECD 

2018-30: Yukai Yang and Luc Bauwens: State-Space Models on the Stiefel Manifold 
with A New Approach to Nonlinear Filtering 

2018-31: Stan Hurn, Nicholas Johnson, Annastiina Silvennoinen and Timo Teräsvirta: 
Transition from the Taylor rule to the zero lower bound 

2018-32: Sebastian Ankargren, Måns Unosson and Yukai Yang: A mixed-frequency 
Bayesian vector autoregression with a steady-state prior 

2018-33: Carlos Vladimir Rodríguez-Caballero and Massimiliano Caporin: A multilevel 
factor approach for the analysis of CDS commonality and risk contribution 

2018-34: James G. MacKinnon, Morten Ørregaard Nielsen, David Roodman and 
Matthew D. Webb: Fast and Wild: Bootstrap Inference in Stata Using boottest 

2018-35: Sepideh Dolatabadim, Paresh Kumar Narayan, Morten Ørregaard Nielsen and 
Ke Xu: Economic significance of commodity return forecasts from the 
fractionally cointegrated VAR model 

2018-36: Charlotte Christiansen, Niels S. Grønborg and Ole L. Nielsen: Mutual Fund 
Selection for Realistically Short Samples 

2018-37: Niels S. Grønborg, Asger Lunde, Kasper V. Olesen and Harry Vander Elst: 
Realizing Correlations Across Asset Classes 

2018-38: Riccardo Borghi, Eric Hillebrand, Jakob Mikkelsen and Giovanni Urga: The 
dynamics of factor loadings in the cross-section of returns 

 


	Introduction
	Model and estimation
	A two-level factor model with time-varying loadings
	Estimation
	Principal component estimation of the latent factors
	Maximum likelihood estimation of the time-varying loadings


	Data and factors identification
	Data description
	Observed factor
	Region classification
	Summary statistics

	Estimation results
	Mapping the estimated factors to exogenous variables
	The connection with Fama-French factors

	Factor loadings
	The factor exposure of two large firms
	Aggregate results


	The benefits of using time-varying factor loadings
	Model fit
	Misspecification tests

	Global comovements of stock returns: new evidence
	Static variance decomposition
	Time-varying variance decomposition

	Dynamics of the loadings and the profile of the firm
	Size effect
	Leverage effect
	Expected returns

	Conclusions
	Leverage for Financials
	Data cleaning

