
Department of Economics and Business Economics 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Realizing Correlations Across Asset Classes 

 

Niels S. Grønborg, Asger Lunde, Kasper V. Olesen 

and Harry Vander Elst 

 

CREATES Research Paper 2018-37 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Realizing Correlations Across Asset Classes∗

Niels S. Grønborga†

Kasper V. Olesenb‡

Asger Lundeb

Harry Vander Elstc§

aDepartment of Economics and Business Economics, Aarhus University, CREATES & The Danish Finance Institute
bDepartment of Economics and Business Economics, Aarhus University & CREATES

cColler Capital & ECARES

∗The authors acknowledge support from CREATES - Center for Research in Econometric Analysis of
Time Series, and thank the AU Ideas Pilot Center, Stochastic and Econometric Analysis of Commodity
Markets, for financial support. This paper was written while Vander Elst was visiting CREATES. The
paper has benefitted immensely from comments by members of the PhD committees of Olesen and
Vander Elst, seminar participants at Aarhus University, Lund University, University of Zürich, confer-
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Realizing Correlations Across Asset Classes

Abstract

We introduce a simple and intuitive approach of modeling and forecasting

correlations for use in portfolio optimization. The model is composite in

nature and consists of elements based on a bivariate realized volatility model.

Importantly, our framework allows for volatility spill-overs between assets

which provide an edge compared to competing models when forming port-

folios. We apply the model to high-frequency data for commodity markets

and demonstrate significant economic gains for an investor basing portfolio

decisions on our modeling framework. This gain is significant in economic

terms, even after imposing realistic constraints on short selling and portfolio

turnover.

Keywords: Commodities, futures markets, portfolio selection, Realized

Beta GARCH.

JEL Classification: C58, G11, G17.
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1. Introduction

The traded volume in commodity markets has increased significantly in recent years

and these markets provide exciting new possibilities for portfolio diversification. Di-

versification has been a keyword in the financial literature since the concept of portfo-

lio selection was formalized by Markowitz (1952), but the diversification benefits from

including commodities might be different than people think. There is, for example,

a widespread belief in the popular press and among hosts of financial TV shows that

adding gold to a portfolio will dramatically reduce the risk of the portfolio.1 There

are certainly cases where a large reduction in portfolio variance can be achieved by

adding gold to the portfolio, but in general the benefits will depend on the correlation

between gold and the portfolio as well, as how it is added to the portfolio, i.e. does the

investor choose a long or a short position in gold. Furthermore, diversification benefits

from adding gold to a portfolio are time-varying as correlations vary over time.

In this paper we consider an investor who holds an equity portfolio as represented

by S&P 500 futures, and we explore the potential diversification benefits from includ-

ing selected commodity futures contracts in the portfolio. The lesson from Markowitz

(1952) is that correlations alone determine the optimal portfolio composition, therefore

it is important for the investor to know the correlations between the returns of all as-

sets in her portfolio. In case the correlations vary over time, she will need a model to

forecast how the correlations change in order to select portfolio weights. We illustrate

the impact of correlation dynamics on the optimal portfolio composition and we start

out by presenting two simple examples, which serve to illustrate that correlations do

1In an interview with CNBC (December 30, 2014), Jim Cramer, the host of the TV show MAD Money,

put it this way: ”I consider gold as an insurance policy.” and the article explains that gold is attractive

because ”it tends to go up when everything else goes down”.
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indeed change over time.

The top panel of Figure 1 presents three different measures of the correlation be-

tween the return of gold futures and the return of the S&P 500 E-mini futures contract

over the period from early 2007 to the end of 2014. The blue line represents the un-

conditional correlation. If it is assumed that the correlation is constant, the correla-

tion can be estimated by the sample correlation of daily returns of the two contracts.

Note, that the unconditional correlation is low and slightly positive over this sample

indicating that gold futures, contrary to popular beliefs, actually move in the same

direction as the S&P 500 futures and that diversification benefits may be smaller than

expected.2 The assumption of constant correlation may be too restrictive. The green

line presents the estimates of the correlation obtained from a rolling window analy-

sis, where the correlation is estimated by the sample correlation of 60 observations on

daily frequency. The result varies a lot over time. This analysis suggests that the corre-

lations are not only time-varying, but also, that correlations change sign multiple times

over the sample. We observe that the correlation can change from positive to negative

several times within a single year and that changes can be quite dramatic. In 2008-

2009 the correlation changes from -0.5 to 0.5 in a matter of months. This could have

huge implications for portfolio choice and thus diversification benefits. Finally, the

red line represents the realized correlation of the two contracts. High-frequency data

has become available for many commodity futures contracts and based on intradaily

observations we can obtain a very accurate estimate of the true, unknown, correlation

between the gold and S&P 500 futures contracts. The line is much more volatile than

the green line. The question is whether this represents a more informative estimate

2In a simple portfolio with long positions in two assets, the portfolio variance is increasing in the

correlation between the assets. If the investor expects a negative correlation and the actual correlation

is positive, the portfolio variance will be larger than expected.
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and whether this will translate into larger diversification benefits for the investor?

[Figure 1 about here.]

Gold is often mentioned because of its diversification potential, but other com-

modities are equally interesting. The price of crude oil is often used as an indicator of

the state of the world economy and could represent a big potential for diversification.

As a second example, the bottom panel of Figure 1 presents the three different mea-

sures of correlation between prices of crude oil futures and the S&P 500 E-mini futures

prices. First of all, we note that the unconditional correlation is much higher than for

gold, indicating that crude oil is in general higher correlated with S&P 500 than gold

is. Secondly, we notice that there is significant time-variation in the correlation, both

when estimated on a rolling window and when we consider the realized correlation.

Finally we note that, as it was the case with gold, the realized correlation has the po-

tential to be more informative than the estimate based on the daily observations.

In this paper we will go beyond the two commodities presented in Figure 1 and

consider a portfolio of S&P 500 E-mini futures and six different commodities futures

in order to mimic an investor who seeks diversification benefits from the inclusion of

commodities into a equity portfolio.

Empirically, correlations are not constant and portfolio selection requires models

for forecasting the time-varying correlations. The availability of high-frequency data

has spurred a large interest in the academic literature of modeling and forecasting fi-

nancial time series. On the one hand, these forecasting models might prove valuable

for investors who seek to choose portfolio weights in order to maximize expected re-

turn in a manner which suits their respective risk preferences, but on the other hand,

the high-frequency models might require investors to rebalance their portfolios too

frequently. In real life, the investors face transaction costs as well as potential short-

selling and turnover constraints in this process and might not benefit from the use of
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high-frequency models. Additionally, if many assets are considered, it can result in

very complex problems with a large number of correlations, which can make forecast-

ing very challenging.

This paper makes several interesting contributions. First, we propose a composite

modeling approach, that allows us to model and forecast the covariance matrix of

many assets. Secondly, we propose to use the Realized Beta GARCH model of Hansen

et al. (2014) to incorporate the information from high-frequency return data. Third, we

propose an intuitive graphical device to asses the performance of the portfolios over

time. Finally, we demonstrate economically significant gains from using our proposed

approach.

The phrase MacGyver style modeling is popularized by Engle (2009), it refers to

the practice of building a multivariate model from a set of bivariate models, which is

pioneered by Ledoit et al. (2003). We apply this idea by constructing a large covariance

matrix for all the assets in our analysis based on the estimates of the pairwise correla-

tions between the assets. Certain regularity conditions have to be satisfied and these

are discussed in Hautsch et al. (2012) and Lunde et al. (2016).

We suggest to model the pairwise correlations using the Realized Beta GARCH

model of Hansen et al. (2014), which allows us to obtain precise volatility estimates

based on the available high-frequency data and to model volatility spillover between

assets. High-frequency data presents not only exciting possibilities, but also chal-

lenges in the form of microstructure effects. We rely on the methodologies presented in

Barndorff-Nielsen & Shephard (2007) and Barndorff-Nielsen et al. (2011) to deal with

these challenges.

We document impressive diversification benefits from including commodities in a

portfolio exercise. When forming the minimum variance portfolio based on our model

framework, the volatility is reduced by more than 20% compared to a portfolio con-
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sisting only of S&P 500 futures. This effect is not purely from including more assets,

but depends highly on the ability to produce good forecasts of the covariance ma-

trix. Portfolios based on the Realized Beta GARCH model are shown to have lower

volatilities than portfolios based on existing models, as for example the Dynamic Con-

ditional Correlation GARCH of Engle (2002a) and the multivariate high-frequency-

based volatility models of Noureldin et al. (2012). These results are robust to different

assumptions regarding constraints on short selling and portfolio turnover. The Re-

alized Beta GARCH model combined with our framework is also shown to perform

very well when we consider a momentum strategy. We show that among many al-

ternatives, this combination results in the portfolio, which is most desirable to the in-

vestor, both in terms of returns based measures and in terms of utility based measures.

The Realized Beta GARCH model’s ability to capture volatility spillover is shown to

be particularly important, when we consider the momentum strategy. Finally, we doc-

ument that the McGyver style modeling alone is not responsible to the good results as

the chosen bivariate model has great impact on the results.

The remainder of this paper is organized as follows. Section 2 presents the data set

used in the analysis. Section 3 introduces the Realized Beta GARCH model and the

McGyver style modeling approach. Section 4 presents a comprehensive and realistic

analysis of the economic gains from using our proposed framework. Finally Section 5

concludes.

2. High-Frequency Futures Data

The high-frequency futures data used in this study are acquired from Tick Data Inc.,

and includes three metal commodity futures, three energy commodities, and one eq-

uity index. Time series of futures prices are constructed using software provided by
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Tick Data. As futures contracts eventually expire, each time series consists of data for

multiple futures contracts. The roll-over from one contract to the next is set to occur

when the next contract becomes the most traded. For more details see Christoffersen

et al. (2018). The sample period starts at January 3, 2007 and ends December 31, 2014.

We consider S&P 500 E-minis, copper, gold, silver, heating oil, light crude oil, and

natural gas futures in this analysis. Table 1 presents contract specific information for

the futures considered in this analysis. All seven contracts have traded for a long pe-

riod of time. Silver started trading in 1983 whereas the S&P 500 E-minis is the most

recently introduced contract and started trading in 1997. All contracts are traded on

the exchanges in New York and prices are in U.S. dollars. On each trading day there

is a break in the trading. For the seven contracts, the breaks are relatively short and

completely overlapping. Table 1 presents average numbers of daily trades for each of

the futures calculated for four different years. These numbers illustrate the massive

inflow of capital into the seven futures contracts over the last decade focusing only on

trades in the most active contract. S&P 500 E-minis have been traded heavily through-

out the sample. In 2005 there were on average more than 1,000 daily trades in each of

the commodity contracts, and in 2007 this number was at least doubled for all the con-

tracts. Crude oil in particular experienced a remarkable capital inflow and the average

number of daily trades increased from 3,962 to 50,425.3 The average numbers of daily

trades increased again for all commodities from 2007 to 2010 and from 2010 to 2013

the numbers increased again for five of the six commodities. The average number of

trades for crude oil was approximately 130,000 for both 2010 and 2013, a noteworthy

amount considering that the underlying of a futures contract is 1,000 barrels of crude

32006 was the inception year for many large energy ETFs, such as the United States Oil Fund, which

explains a large part of this development.

7



oil and that each trade can consist of more than one futures contract.4

[Table 1 about here.]

Selection of the six commodities is based on two criteria. First, relatively short and

overlapping trading breaks, which means that we have many trades for the different

contracts occurring at roughly the same time.5 This is very useful when considering

the intraday correlations. Second, a high number of trades that allows for very precise

estimation of the volatilities and the correlations between the contracts. We choose

2007 as the starting point for our analysis as a high number of intradaily observations

are available for all contracts. To include more than six commodities would be helpful

for diversification, but other contracts suffer from long trading breaks and low vol-

ume, which limits the applicability and benefits of the high-frequency methodology.

In Section 4, we demonstrate that the use of high-frequency methods leads to impres-

sive diversification benefits relative to models based on daily observations, therefore

we limit our attention to the six commodities presented above.

Daily transaction data for the selected commodities is cleaned following Barndorff-

Nielsen et al. (2009). Further details are in Appendix A.

3. Modeling and Forecasting Correlations

Modeling volatilities and correlations is an important task, not only for portfolio se-

lection, but also for many other purposes in financial economics. The class of GARCH

models has been extensively studied in the literature and many specifications both in

the univariate and multivariate setup exist.

4We do not report trading volumes, but the information is available from Tick Data Inc.

5The fact that the trading breaks are short and overlapping means that we can ignore them when

constructing the realized measures.
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GARCH models can be divided in two categories depending on the information

set, Ft = σ (Xt,Xt−1, . . .), they rely on. Classical GARCH models rely on a low-

frequency information set where, for modeling the returns ri,t of n assets,Xt =
(
r0,t, r1,t,

..., rn,t
)′. As pointed out by Andersen et al. (2003), classical GARCH models tend to

react slowly to changes in volatility and correlations. A new generation of GARCH

models, studied by Engle (2002b), rely on a richer information set spanned by Xt =(
r0,t, x0,t, r1,t, x1,t, ..., rn,t, xn,t

)′, where xi,t denotes a set of realized measures computed

with high-frequency data for asset i. Multivariate models that include measures for

the realized correlation between asset i and asset j, yi,j,t, have also been developed.

Realized measures of volatilities and correlations computed from high-frequency data

can potentially provide more accurate measurements of the latent volatility and cor-

relations. This greatly enriches the information set of GARCH models and allows for

faster detection of large changes in volatility and correlations.

3.1 REALIZED VOLATILITY MEASURES

Correlations and covariances are key elements in portfolio theory, realized covariances

are therefore of immense importance in this paper. Realized covariances have been

studied in great detail by Barndorff-Nielsen & Shephard (2004). We follow the original

implementation of the estimators closely and provide only a general overview, while

referring the reader to the original paper for a detailed presentation.

It is well known that high-frequency transactions are not recorded over a homoge-

neous grid of time coordinates, and synchronization is required to make the estimation

techniques considered here feasible. To compute realized covariances, a homogeneous

grid of evenly spaced prices is created using previous-tick interpolations, which is con-

sidered by Dacorogna et al. (2001).

Two issues make the measurement of daily integrated covariances from high-fre-
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quency prices challenging. On the one hand asynchronous trading generates mi-

crostructure effects at high-frequencies which, depending on the chosen estimator,

can lead to downward biases in covariances as pointed out by Epps (1979), but on

the other, a set of trading imperfections generate noise in observed prices, which mod-

ifies the properties of realized measures and particularly those of realized volatilities.

We deal with the microstructure issues in two ways.

The first way relies on results from studies of equities, which show that the im-

pact of microstructure effects on the realized measures are immaterial when sparse

sampling is applied, see e.g. Barndorff-Nielsen & Shephard (2007). Microstructure

effects in commodity markets are relatively sparsely documented, which leads us to

rely on a conservative choice of 15 minutes sampling with 15 seconds sub-sampling.

We can reasonably expect this to yield noisy but unbiased measures of the integrated

covariance matrix.

The second way relies on multivariate realized kernel introduced by Barndorff-

Nielsen et al. (2011), which is a class of estimators that are robust to measurement

errors and microstructure effects induced by asynchronous trading. Specifically, non-

flat-top realized kernels are used to ensure positive semi-definiteness. Further details

are presented in Appendix A.

All the realized measures are computed using the transactions data described in

the previous section. We do not consider jump robust estimators in this study. For

more details on this see e.g. Christensen et al. (2014) and Vander Elst & Veredas (2017).

3.2 REALIZED BETA GARCH

We model all the pairwise correlations between the assets in the analysis. Pairwise cor-

relations are later used to construct a larger covariance matrix for all the assets as ex-

plained in Section 3.3. To incorporate realized measures of volatility and co-volatility,
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the bivariate Realized Beta GARCH, which we will refer to as RBG, of Hansen et al.

(2014) is used. The RBG is a dynamic model that models the conditional covariance

matrix of returns similar to other GARCH models. However, the information set is

richer and includes both the realized volatilities of assets i and j on day t, xi,t and xj,t,

and the realized correlation between the two on day t, yi,j,t. As the marginal models

which are used for assets i and j are identical, we provide details for asset i only. Let

hi,t be the conditional variance of asset i, and let h̃i,t := log hi,t, and x̃i,t := log xi,t.

Returns for asset i, ri,t are modeled with the following univariate Realized GARCH

model

ri,t = µi + eh̃i,t/2zi,t,

h̃i,t = ai + bih̃i,t−1 + ci x̃i,t−1 + dih̃j,t + τi,1zi,t−1 + τi,2

(
z2

i,t−1 − 1
)

(1)

x̃i,t = ξi + ϕih̃i,t + δi,1zi,t + δi,2

(
z2

i,t − 1
)
+ ui,t,

where zi,t ∼ i.i.d.N (0, 1) and ui,t ∼ i.i.d.N (0, σui) are mutually independent, and θi :=

(µi, ai, bi, ci, di , τi,1, τi,2, ξi, ϕi, δi,1, δi,2, hi,1)
′ is the vector of parameters in the model. In

the following we also consider a restricted version of the RBG model, where di = 0

for all assets. We refer to this model as Restricted Realized Beta GARCH, RBG.r. For

details on the univariate Realized GARCH see Hansen et al. (2012).

To model the dynamics of the correlations we consider

z
(
ρj,i,t

)
= aji + bjiz

(
ρj,i,t−1

)
+ cjiz

(
yj,i,t−1

)
(2)

z
(
yj,i,t

)
= ξ ji + ϕjiz

(
ρj,i,t

)
+ νj,t,

where z (ρ) := 1
2 log 1+ρ

1−ρ denotes the Fisher transform, θj,i := (aji, bji, cji , ξ ji, ϕji, ρj,i,1)
′

is the vector of parameters in the joint model, and νj,t ∼ i.i.d
(

0, σνj

)
. The last two
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equations in (1) and (2) are measurement equations required for the specification of

the conditional density f
(
xj,t, yj,i,t

∣∣rj,t, ri,t, xi,t,Ft−1
)
. The measurement errors uj,t and

νj,t are assumed independent of zi,t and zj,t but allowed to be mutually correlated

Σ = Var


ui,t

uj,t

νj,t

 =


σ2

ui
σui,uj σui,νj

• σ2
uj

σuj,νj

• • σ2
νj

 . (3)

Estimation follows Hansen et al. (2014) and relies on maximum likelihood estimation.

Forecasting is also outlined in Hansen et al. (2014) and we can obtain k-step ahead

forecasts of conditional variances of assets i and j and their conditional correlation,

these are denoted hi,t+k|t, hj,t+k|t and ρi,j,t+k|t, respectively. Details for estimation and

forecasting are presented in Appendix B.

3.3 BUILDING THE COVARIANCE MATRIX

Individual commodity correlations are of limited interest when forming a portfolio.

This leads us to combine the forecasts of all the pairwise correlations into a forecast of

the full covariance matrix, Ht+k|t, for the n assets. We construct this matrix using the

techniques presented in Lunde et al. (2016). This composite covariance matrix has the

typical element

Hi,j,t+k|t = ρi,j,t+k|t

√
hi,t+k|thj,t+k|t.

Several methods can be applied to ensure that Hi,j,t+k|t is positive definite. Hautsch

et al. (2012) and Lunde et al. (2016) rely on eigenvalue cleaning. We choose to solve

the problem by applying a short-selling constraint, as discussed in Jagannathan & Ma

(2003).

The elementwise construction of the covariance matrix helps us avoiding the chal-
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lenges arising from the estimation of the full covariance matrix, see e.g. Hayashi &

Yoshida (2005), Aı̈t-Sahalia et al. (2010), Christensen et al. (2010), Zhang (2011), Fan

et al. (2012), Bibinger et al. (2014), and Engle et al. (2017).

3.4 ALTERNATIVES TO THE RBG MODEL

We produce forecasts of the covariance matrix based on the RBG model and we are

interested in the model’s implications for portfolio selection. We will compare the

performance of the resulting portfolio to the performances of portfolios based on nine

other forecasting models of the covariance matrix.

The competing models can be classified into two groups, where models in the first

group rely on daily information and models in the second group, like the RBG model,

rely on daily information as well as realized measures.

3.4.a Models with Daily Information Only

The first model is very simple and heavily used in the industry. We call the model

RW.r2. The forecast of the covariance matrix is simply the covariance matrix of the

daily returns calculated based on a rolling 60-day window. The RW.r2 model places

the same weight on observations from the previous day as on observations from 60

days ago. This might be too restrictive. Therefore, we also consider a 60-day rolling

window model, where the observations are weighted according to the RiskMetrics

model, see Mina & Xiao (2001). We call this model RWRM.r2 and choose an expo-

nential decay rate of 0.97. The third model is the Dynamic Conditional Correlation

GARCH of Engle (2002a), referred to as the DCC model in this paper. We also con-

sider a version of the DCC model, which is based on the McGyver approach, where

the covariance matrix is constructed from covariance forecasts from bivariate models.

This model is referred to as DCC.2.
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3.4.b Models with Daily Information and Realized Measures

The first two models we consider are very simple and based exclusively on the mul-

tivariate realized kernel. The first, RW.RK, is based on the realized kernel based on a

60-day rolling window. Likewise, the RWRM.RK is based on a 60-day rolling window,

where observations are weighted with an exponentially decaying function. We also

consider the scalar and the diagonal versions of the HEAVY models of Noureldin et al.

(2012). We denote the scalar version HEAVY.sc, and the diagonal version HEAVY.dg,

respectively.

As mentioned in Section 3.2 we also consider a restricted version of RBG, which

we call RBG.r. The two HEAVY models, HEAVY.sc and HEAVY.dg rely on the same

methodology to construct a composite covariance matrix from pairwise correlations

as the RBG and RBG.r models.

4. Performance Evaluation and Economic Gains

The true test of our forecasts of the covariance matrix is whether this forecast will allow

an investor to make better decisions with respect to portfolio selection. We consider an

investor who chooses n = 7 portfolio weights for a portfolio consisting of six different

commodity futures and the S&P 500 E-mini futures. She follows a dynamic trading

strategy, where she obtains a forecast of the covariance matrix for the next day, Ht+1|t,

and chooses portfolio weights, wt, accordingly to rebalance her portfolio every day.6

We assume that the investor has to obey very general restrictions on short selling and

6Weekly or monthly rebalancing could also be considered but the daily evaluation allows for the

longest evaluation period. Results for weekly rebalancing are presented in Appendix C.
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is limited to a certain amount of turnover. The investor faces the following problem.

min
wt

w′tHt+1|twt

s.t. w′tι = 1, (4)∣∣w′t∣∣ ι ≤ 1 + 2s, (5)

|wkt| ≤ w̄, k = 1, . . . , n (6)

w′tµt ≥ µ0, (7)

TOt ≤ δ, (8)

where ι is an n × 1 vector of ones. (4) ensures that portfolio weights sum to one.

(5) is a short-selling constraint, where s determines the percentage of short positions

allowed as presented in Lunde et al. (2016). If s = 0, no short selling is allowed. (6)

ensures that no single asset gets too large a weight in the portfolio. (7) specifies a

minimum required return of the portfolio, given the vector of expected returns, µt. (8)

is constraining the turnover in the portfolio, where turnover is defined as

TOt =
n

∑
i=1

∣∣∣∣wi,t+1 − wi,t

(
1 + ri,t+1

1 + rp,t+1

)∣∣∣∣ . (9)

Alternatively, the investor might choose an equal weighted portfolio, also called

a 1/n portfolio. This portfolio has been documented to have good performance, see

DeMiguel et al. (2009), and we include it as a benchmark in our analysis.

The portfolio exercise is repeated following a rolling window scheme, where the

models are estimated based on an estimation window and the portfolio is formed out

of sample. Estimation is based on 750 days, meaning that the first portfolio return is

realized on December 17, 2009 and the last on December 31, 2014. This leaves us with

1294 daily portfolio returns in our evaluation period.
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4.1 THE MINIMUM VARIANCE PORTFOLIO

The global minimum variance portfolio is often considered for economic evaluation in

the literature. As argued by Ledoit & Wolf (2018) and Engle et al. (2017) it presents a

clean problem, in the sense that the performance of a model for the covariance matrix

is not influenced by the estimation of expected returns. In addition to the portfolio

volatility, the out-of-sample Sharpe ratio of the minimum variance portfolio has been

analysed by Haugen & Baker (1991), Jagannathan & Ma (2003), Nielsen & Aylursub-

raminian (2008), Ledoit & Wolf (2018) and Engle et al. (2017). Finally, Ledoit & Wolf

(2018) and Engle et al. (2017) note that mutual funds are now offering global minimum

variance products to their investors. In this analysis we do not consider the global min-

imum variance portfolio in its strictest sense, as we need to impose the short-selling

constraint in (5) to ensure invertibility of the covariance matrix as discussed in Jagan-

nathan & Ma (2003). As the investor in the classical minimum variance problem is not

constrained in terms of short selling or turnover, we choose w̄ and δ very high to make

sure that (6) and (8) are non-binding and we ignore the constraint in (7).

For each day in the out-of-sample evaluation period, portfolio weights, wt, are con-

structed based on the covariance forecasts from each model. We obtain time series of

portfolio returns for all the models, and we base the evaluation of the models on the

realized volatility, σp,t+1 =
√

w′tRCt:t+1wt, of the returns over the evaluation period.

We present the average realized portfolio volatility, σ̄p, as well as the ratio of the av-

erage of the relalized portfolio volatility to the average of the realized volatility of a

portfolio consisting exclusively of S&P 500 futures, VR = σ̄p/σ̄S&P.

Comparing means of realized volatilities for eleven different models is problematic

as it involves a multiple comparison problem. We suggest to use the Model Confidence

Set, MCS, of Hansen et al. (2011) to compare the time series of realized volatilities from
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the different models. The MCS will provide us with a set of models, which includes

the best model (the lowest realized volatilities) with a given probability. The size of

this set is data dependent and it could contain all the models or any other (non-empty)

subset of the models, even just a single model. The MCS results are in the form of a

set of p-values, one for each model. Low p-values, say below 0.1, indicate that the

corresponding model can be excluded from the set of the best models. We denote the

p-values estimated based on realized volatilities as pMCS(σp,t).

Table 2 presents the average annualized realized portfolio volatilities σ̄p along with

the MCS p-values, pMCS(σp,t), for the eleven different models. Results are presented

for three different short-selling constraints, s = 0%, s = 25%, and s = 50% . These

portfolios are not based on any turnover constraints.

The results in Table 2 shows that the RBG and RBG.r models perform very well.

The two models lead to the lowest realized portfolio volatilities and for no short-

selling (s = 0%) they are both included in the MCS as the only models. When short

selling is allowed (s = 25% and s = 50%), the RBG.r model is the only model in

the MCS based on a 10% level. For all models, except the 1/n portfolio and for all

three levels of short selling, the variance ratios are below one indicating that there

are benefits from diversification compared to a portfolio consisting only of S&P 500.

The DCC model is the best performer of the models, which rely on daily information

only. Finally, we see that the 1/n portfolio leads to the worst performance in this case,

where we only consider the variance. The variance ratio is higher than one, which

illustrates that simply adding commodities is not enough. In order to obtain diversi-

fication benefits the covariance matrix must be estimated. The results also highlight

that the McGyver style modeling alone is not driving the results. The HEAVY.sc,

HEAVY.dg, and DCC.2 models all apply the McGyver style modeling approach, but

underperform compared to the RBG and RBG.r models. The fact that the RBG and
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RBG.r models deliver similar results indicate that modeling the volatility spillover is

not very important in this particular exercise.

[Table 2 about here.]

4.1.a Short Selling and Turnover

The results in Table 2 are not subject to any turnover constraints.7 In Table 3 we present

the MCS p-values corresponding to the RBG model and investigate effects of varying

short-selling constraints, s, and turnover constraints, δ.

Table 2 shows that the RBG model performs very well under strict short-selling

constraints. When s = 0% the RBG model is always included in the MCS and is the

last model in the set. For low values of δ, the RBG model remains in the MCS as

the amount of short selling allowed increases. For liberal short-selling and turnover

constraints, the RBG model is excluded from the MCS based on a 10% level. In all

these cases, the RBG.r model is the last model in the MCS (p-values are not reported

here).

[Table 3 about here.]

4.1.b Time-Variation of Relative Performance of Different Models

In the very influential paper of Welch & Goyal (2008), plots of cumulative errors are

used to analyze performance of different return prediction models and to pin point

periods in which a particular model performs very well or very poorly. We suggest

to use a very similar graphical device to compare the performance of portfolios based

on forecasts from different models. We also suggest using this approach to compare

performance of a portfolio, when considering different short-selling constraints. We

7δ = 100 such that (8) is non-binding.
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plot the cumulative realized volatility of a portfolio, σp,t,cum = ∑t
τ=1 σp,τ, over time.

The cumulative realized portfolio volatility is not an intuitive number in its own right,

but it allows us to compare the performance of different portfolios. We suggest to

augment the graphical approach of Welch & Goyal (2008) with a second plot, which

highlights performance within a particular year.

In Figure 2 we present the cumulated volatility for the minimum variance portfolio.

The figure presents results for the minimum variance portfolio based on three different

models, the RBG model, the DCC model, and the HEAVY.dg model, the bottom panel

additionally includes a portfolio consisting exclusively of S&P 500 futures contracts.

The DCC model is chosen as it results in the lowest volatility of all the models using

daily data. The HEAVY.dg model is chosen as it results in the lowest volatility of all

the existing high-frequency models. The portfolios are formed without short-selling

constraints and are not subject to any turnover constraints. The bottom plot highlights

the relative performance of the portfolios within the individual years by resetting the

cumulative volatility every year.

The top panel of Figure 2 shows that a lower portfolio volatility can be obtained

by using the RBG model. The cumulated volatility of the portfolio based on the RBG

model increases more slowly than the volatilities of the portfolios based on the com-

peting models throughout the sample. The bottom panel shows that the good perfor-

mance of the RBG model is not caused by any particular subperiod with good perfor-

mance, but that it consistently leads to lower volatility year after year. We can also see

that including the commodities in the portfolio leads to a lower volatility than for a

portfolio consisting only of S&P 500 futures. The diversification benefits are clear in

every year in our evaluation sample and in 2010 and 2011 the improvements are quite

dramatic.

[Figure 2 about here.]
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The results in Figure 2 are based on an assumption of no limits to short-selling. In

Figure 3 we investigate the effects of short-selling constraints on the volatility of the

portfolio based on the RBG model.

The top panel of Figure 3 shows that the diversification benefits are largest when

the investor has some flexibility in terms of taking short positions. Interestingly we see

that the portfolio volatility is essentially identical for s = 25% and s = 50% indicating

that the constraint is non-binding for a large part of the evaluation period. In the

bottom panel we see that the effects of allowing short selling are largest in the first

three years of the evaluation period, whereas the three volatilities are essentially the

same in the last two years.

[Figure 3 about here.]

We conclude, that if the objective of the investor is to minimize the volatility of

the portfolio, then commodities should be included in the portfolio. The covariance

matrix, which is used to find the portfolio weights, should be based on either the RBG

or the RBGr model. These results are robust to various constraints regarding short

selling and turnover.

4.1.c Squared Returns

The results in Table 2, Table 3, Figure 2, and Figure 3 are all based on realized portfolio

volatility, σp,t+1 =
√

ω′tRCt:t+1ωt. In Appendix C we present the results of Table 2,

where the portfolio variance is estimated by daily squared returns.

In general we find that the models using daily data perform best when the portfolio

is evaluated based on daily returns, and that the high-frequency models perform best

when evaluation is based on high-frequency returns.
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4.2 MOMENTUM STRATEGY

To implement any strategy, where (7) is considered, one must specify a model for the

expected return vector, µt, and specify a target return µ0. Following Ledoit & Wolf

(2018) and Engle et al. (2017) one can use the momentum factor of Jagadeesh & Titman

(1993) to specify µt and choose a value for µ0.8 We choose the target return to be

the average of the momentum for all the assets, if this quantity is positive, that is

µ0 = max(0, µ̄).

4.2.a Financial Evaluation

For each model we solve the portfolio problem for different values of s and δ and

obtain daily returns for the momentum portfolio. Following Ledoit & Wolf (2018) and

Engle et al. (2017) we present, for each model, the out-of-sample Sharpe Ratio, SR,

calculated as the ratio of the the average out-of-sample return and the out-of-sample

standard deviation of the returns.9 We also compute the Sharpe Ratio of a portfolio

consisting exclusively of S&P 500 futures, SRS&P, and present the ratio of SR/SRS&P.

The limitations of the Sharpe ratio, as presented in e.g. Marquering & Verbeek (2004),

Colacito & Engle (2006), and King et al. (2010) are well understood and an economic

evaluation of model performance cannot be based on this ratio alone.

In order to quantify the difference to the 1/n portfolio we present the mean ab-

solute deviation from equal-weighted portfolio weights, MAD, which is computed

as

MAD =
1
n

n

∑
i=1

∣∣∣∣wi −
1
n

∣∣∣∣ .

8At time t we define momentum for asset i as the geometric average of the previous 12 monthly

returns on the asset, but exclude the most recent month.

9This measure is called the Information Ratio (IR) in Engle et al. (2017).
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To asses the economic significane of our proposed framework we follow the tradi-

tion of West et al. (1993), Fleming et al. (2001), Rime et al. (2010), and Karstanje et al.

(2013) and assume quadratic utility, which will allow us to further evaluate the eco-

nomic performance of each model. Assume that the wealth, W, of the investor evolves

according to the following

Wt+1 = Wt
(
1 + rp,t+1

)
,

then, under the assumption of quadratic utility, the utility of the investor at the end of

period t + 1 is

U (Wt+1) = Wt+1 −
ρ

2
W2

t+1 = Wt
(
1 + rp,t+1

)
− ρ

2
Wt
(
1 + rp,t+1

)2 ,

where ρ is a parameter controlling the risk preferences of the investor. The amount

of wealth invested each period is assumed to be constant meaning the ρ relates to the

relative risk aversion, γ, as γ = ρW
1−ρW . The initial wealth, W0, is set to 1. For this

investor the average realized utility is

U =
1
T

T−1

∑
t=0

Ut+1 =
1
T

T−1

∑
t=0

(
1 + rp,t+1 −

γ

2(1 + γ)

(
1 + rp,t+1

)2
)

which is shown by West et al. (1993) to provide a consistent estimate of expected utility.

Methods based on realized measures often lead to very high turnover in the port-

folio. For each forecasting method we present the average turnover, TO, defined as

the average over time of the expression in (9). While turnover is interesting in its own

right, it is also very important in the context of transaction costs. Transaction costs

have been analyzed by Marquering & Verbeek (2004), Han (2006), King et al. (2010),

and Karstanje et al. (2013). In the presence of fixed proportional transaction costs, τ,
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the average realized utility can be expressed as

1
T

T−1

∑
t=0

(
1 + rp,t+1 − τTOt+1 −

γ

2(1 + γ)

(
1 + rp,t+1 − τTOt+1

)2
)

.

Specifically, we can find τbe, which is the break-even transaction cost. That is, τbe is the

proportional cost per period, which eliminates any utility from using a specific model

to construct portfolio weights. If transaction costs are higher than τbe, the strategy is

too expensive and should not be undertaken.

We suggest to compare the realized utility from the different forecasting models by

applying the MCS. We estimate the MCS based on the time series of realized utility

from each model, and denote the corresponding p-values pMCS(Ut).

In Table 4 we present SR, SR/SRS&P, MAD, TO, τbe, and pMCS(Ut) for momentum

strategies based on the eleven different models. When forming the portfolios we are

allowing for some degree of short selling, s = 0.5, and we do not impose any turnover

restrictions.

The first column of Table 4 shows that using the RBG model leads to a much higher

annualized Sharpe Ratio than any of the other models. The second column shows that

only the RBG model, the DCC model, and the RM.r2 model lead to higher Sharpe Ra-

tios than a portfolio consisting of only S&P 500 futures. The equal weighted portfolio

performs worst of all the models in this exercise. The large difference in performance

between the RBG model and the RBGr model indicates that the volatility spillover

effect is particularly important in this context. The question is, whether the good per-

formance comes at the price of too high turnover in the portfolio. The fourth column

shows that turnover is indeed highest for the RBG model. The fifth column indicates,

however, that the average realized utility from using the RBG model will remain pos-

itive for relatively high levels of trading costs. Finally, the sixth column shows that the
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RBG model leads to the highest realized utility. When realized utilities are compared

using the MCS, the RBG model is the only model in the set.

[Table 4 about here.]

4.2.b Short Selling and Turnover

The results in Table 4 are based on the assumption that s = 0.5, indicating that some

degree of short selling is allowed. The results further assume that the turnover con-

straint is not binding, δ is high. In Table 5 we investigate the effects of these assump-

tions and consider the out of sample Sharpe Ratio of the momentum portfolio based

on the RBG model for different combinations of s and δ.

The results in Table 5 show that in order to benefit from a better model for the

covariance matrix, the investor must be allowed a certain turnover in the portfolio

and also some degree of short selling. Not surprisingly, we find the best performance,

when turnover and short selling constraints are quite liberal. Interestingly the RBG

model can perform decently, outperforming the S&P 500 portfolio (average annual SR

of 0.82) even when no short-selling is allowed, as long as limits to turnover are not too

strict. In fact turnover restrictions seem to matter more than short-selling restrictions

as the model is struggling to perform for high values of s, when δ is low.

[Table 5 about here.]

4.2.c Performance Fee

Finally, we can use the average realized utility to compare two models, say m1 and

m2. This approach is also considered by Karstanje et al. (2013). We assume that we

include fixed costs in every period equal to φ in the average realized utility for the

returns based on m2. By equating the average realized utility of the two models, we
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can evaluate how much the investor is willing to pay to switch from m1 to m2. We

interpret φ as a performance fee and choose it to ensure that

T−1

∑
t=0

(
1 + rm1

p,t+1 −
γ

2(1 + γ)

(
1 + rm1

p,t+1

)2
)

=
T−1

∑
t=0

(
1 + rm2

p,t+1 − φ− γ

2(1 + γ)

(
1 + rm2

p,t+1 − φ
)2
)

, (10)

where rm1
p,t+1 and rm2

p,t+1 denote the returns at time t + 1 from the portfolio based on

forecasts from models m1 and m2, respectively. A positive value of φ will mean that

an investor will pay to use m2 in stead of m1. A negative value of φ indicates that an

investor requires compensation to use m2 in stead of m1.

Table 6 presents the performance fees, which an investor, with preferences specified

as above, would be willing to pay to switch from a model in the rows to a model in the

columns. These results are based on the momentum strategy where some short selling

is allowed, s = 0.5, and there are no turnover constraints.

The first row of Table 6 contains only negative numbers. This means that an in-

vestor with the stated preferences would have to be compensated to use any other

model than the RBG model. The compensation ranges from 4 to 8 bps per day and

thus represents a significant quantity in an economic sense. Again we find evidence

that the 1/n model is inferior to all other models as the last column contains only

negative numbers.

[Table 6 about here.]

4.2.d Portfolio Value

The results for the momentum portfolio presented above are largely based on time

averages over the evaluation period, but it is also interesting to investigate how the
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value of the portfolio has evolved over time. Based on the vector of daily returns for

the futures contracts, rt+1, and the portfolio weights at time t, ωt, we can calculate the

portfolio return at time t + 1 as rp,t+1 = ω′trt+1. The value of the momentum portfo-

lio is analysed in Figure 4, where the cumulated portfolio value, rp,t,cum = ∑t
τ=1 rp,τ,

is plotted. The sub-plots illustrate the relative performance within a given year. The

plot includes values of portfolios based on three different models, the RBG, the DCC

model, and the HEAVY.dg model, along with a portfolio consisting exclusively of

S&P 500 futures. The DCC and HEAVY.dg models are chosen as they are the best

performing alternative models based on daily returns and high-frequency returns, re-

spectively.

The top panel of Figure 4 clearly shows that the RBG model outperforms the ex-

isting models during our entire evaluation period. Interestingly, the HEAVY.dg and

DCC models struggle to outperform the S&P 500 portfolio, indicating that good co-

variance forecasts are extremely important for managing portfolios and obtaining ben-

efits from diversification. In the bottom panel we see that the performance of the RBG

model compared to the S&P 500 portfolio is particularly strong in 2011. There is ev-

idence of diversification benefits in all years except 2013, where an investor would

have been better off by investing only in S&P 500 futures.

[Figure 4 about here.]

5. Conclusion

In this paper we have applied a McGyver style modeling approach based on the Re-

alized Beta GARCH model. We have demonstrated that an investor can obtain sig-

nificant diversification benefits from including commodities in an equity portfolio if

she models and forecasts the covariance matrix using our proposed methodology. Re-
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sults are robust to various specifications of short-selling and turnover constraints. If

the investor considers a momentum strategy we show that using our method leads to

the most valuable portfolio as long as the investor is allowed a certain turnover in the

portfolio. The results are robust to the introduction of trading costs. Interestingly, our

approach clearly outperforms an equal-weighted portfolio in all exercises considered

here. This means that diversification benefits are not simply a results of including more

assets, but are also heavily affected by our ability to forecast covariances. The Realized

Beta GARCH model outperforms other models using the McGyver style modeling ap-

proach, meaning that this approach alone is not sufficient to achieve the economically

meaningful gains, which we document. Finally, we find that it is very important to

allow for volatility spillover between assets when considering a momentum strategy,

but less important when the only objective is to minimize portfolio volatility.
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A. Realized measures

Let pv
t,i be the intraday arbitrage-free log-price recorded at time t on day v for asset i

and define the corresponding intraday log-returns as

rv
tm,i = pv

tm,i − pv
tm−1,i, m = 1, ..., nv

i . (11)

Returns for asset i are based on the nv
i intraday prices recorded on a trading period

ranging from after 5:15PM on day v− 1 until just before 5:15PM on day v, the period

of trading considered. Time coordinates are scaled to evolve in the unit interval [0, 1]

associated with one period of trading and for each asset we define a partition, πnv
i
=

[0 = ti
0 < ti

1 < ... < ti
nv

i
= 1]. If ∀i, j = 1, ..., d : πnv

i
= πnv

j
, for the d assets, the baseline

realized covariance among the elements of rv,t = {rv
t,i}i=1,...,d over [0, 1] is defined as

RCv :=
nv

∑
m=1

rv,tmr′v,tm , where nv = nv
1 = nv

2 = ... = nv
d. (12)

High-frequency transactions are not recorded over a homogeneous grid of time coordi-

nates, and synchronization is required to make our selected estimation techniques fea-

sible. To compute realized covariances, a homogeneous grid of evenly spaced prices is

created using previous-tick interpolations as introduced in Dacorogna et al. (2001). De-

noting a fixed grid of times containing nδ points by Gδ = [δ < ... < mδ < ... < nδδ ≤

1], where δ denotes the calendar time sampling frequency, synchronous prices are con-

structed along the nδ points of the grid as pv
mδ,i = pv

tj,i
, where j = max(j′ | tj′ ≤ mδ)

and tj ≤ mδ < tj+1. Realized covariances are then computed using the returns ob-

tained from the synchronized grid of high-frequency prices and are denoted by RC(δ)
v .

Microstructure biases are treated using two approaches. Firstly, sparse sampling
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of the realized covariances, δ = 15 minutes, is applied with sub-sampling every 15

second. At this frequency the impact of microstructure noise on realized measures is

known to be immaterial (see e.g. Barndorff-Nielsen & Shephard (2007) for details). To

the best of our knowledge, microstructure effects induced on realized measures have

not been thoroughly analyzed in the literature for commodities and justifies the con-

servative choice of RC(15 min), which is very likely to be a noisy but unbiased measure

of the integrated covariance matrix. Secondly, the multivariate realized kernel (MRK)

introduced by Barndorff-Nielsen et al. (2011) is used. MRK is a class of estimators that

is robust to measurement errors and microstructure effects induced by asynchronous

trading. The MRK is based on a homogeneous series of high-frequency prices that are

constructed using refresh time (see Barndorff-Nielsen et al. (2011) for details). Specifi-

cally, non-flat-top realized kernels are used to ensure positive semi-definiteness,

Kv(p) =
H

∑
h=−H

k
(

h
H + 1

)
Γv,h, Γv,h =

nv

∑
j=|h|+1

rv,tjr
′
v,tj−h

, (13)

where k(x) is the non-stochastic Parzen kernel function, Γv,h is the realized auto co-

variance function, H = c?ξ4/5n3/5, c? =
{

k′′(0)2

k0,0
•

}1/5
, k0,0
• =

∫ ∞
0 k(x)2dx, and ξ2 =

ω2√
T
∫ 1

0 σ4
udu

which is estimated as in Barndorff-Nielsen et al. (2011).
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B. Estimation and forecasting

B.1 ESTIMATION

Following Hansen et al. (2014) we adopt Gaussian specifications for the marginal and

conditional densities implying that the maximum likelihood estimators of the variance-

covariance parameters are given by

σ̂2
ui
=

1
T

T

∑
t=1

û2
i,t, σ̂uj,ui =

1
T

T

∑
t=1

ûi,tûj,t, σ̂νj,ui =
1
T

T

∑
t=1

ûi,tν̂j,t, (14)

and

Ω̂ =
1
T

T

∑
t=1

Ûj,tÛ′j,t, where Ûj,t =

ûj,t

ν̂j,t

−
σ̂uj,ui /σ̂2

ui

σ̂νj,ui /σ̂2
ui

 ûi,t. (15)

The parameters are then estimated by maximizing

` (θ) = −1
2

(
`zi (θi) + `ui (θi) + `zj|zi

(θ) + `uj,νj|ui
(θ)
)

, (16)

where θ =
(

θ′i , θ′j, θ′j,i

)′
and `zi (θi) = ∑T

t=1

[
h̃i,t (θi) + z2

i,t (θi)
]
, `ui (θi) = T

[
log σ̂2

ui
(θi)+

1
]
, `uj,νj|ui

(θ) = T
[
log det Ω̂ (θ) + 2

]
, and

`zj|zi
(θ) =

(
T

∑
t=1

log
{[

1− ρ2
j,i,t (θ)

]
hj,t (θ)

}
+

(
zj,t (θ)− ρj,i,t (θ) zi,t (θ)

)2

1− ρ2
j,i,t (θ)

)
, (17)

as we can compute ρj,i,t = z−1 {aji + bjiz
(
ρj,i,t−1

)
+ cjiz

(
yj,i,t−1

)}
independently of

hj,t and zj,t recursively for t = 2, . . . , T. For details on the multivariate Realized Beta

GARCH see Hansen et al. (2014).
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B.2 FORECASTS

The exposition in the main text presents only one-step ahead forecasts, but point fore-

casts are readily computable for different steps in the framework of the RBG model.

The system of equations follows directly from the previous section

h̃i,t+1 = ai + ciξi + (bi + ci ϕi)h̃i,t + ciδi(zi,t) + τi(zi,t) + ciui,t

h̃j,t+1 = aj + cjξ j + (bj + cj ϕj)h̃j,t + cjδj(zj,t) + τj(zj,t) + cjuj,t (18)

ρ̃j,i,t+1 = aji + cjiξ ji + (bji + cji ϕji)ρ̃j,i,t + cjiνj,t,

where ρ̃j,i,t := z(ρj,i,t), δk(zk,t) := δk,1zk,t + δk,2
(
z2

k,t − 1
)
, τk(zk,t) := τk,1zk,t + τk,2

(
z2

k,t −

1
)

for k = i, j. As pointed out by Hansen et al. (2014), the system of equations in (18)

is seen to have a VARMA(1,1) representation by writing Ṽt+1 =
(
h̃i,t, h̃j,t, ρ̃j,i,t

)′. This

implies that

Ṽt+1 = C + AṼt + Bεt, (19)

where εt = (δi(zi,t), τi(zi,t), δj(zj,t), τj(zj,t), ui,t, uj,t, νj,t)
′ and

C =


ai + ciξi

aj + cjξ j

aji + cjiξ ji

 , A =


bi + ci ϕi 0 0

0 bj + cj ϕj 0

0 0 bji + cji ϕji



B =


ci 1 0 0 ci 0 0

0 0 cj 1 0 cj 0

0 0 0 0 0 0 cji

 .

The k-step ahead forecasts can be computed as E(Ṽt+k|Ft) = Ṽt+k|t = AkṼt +∑k−1
j=0 AjC.

The RBG model is expressed using non-linear functions of the objects of interest im-

plying for instance that E[z−1(ρj,i,t+k)|Ft] 6= z−1(E[ρj,i,t+k|Ft]). This require us to
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base forecasts of volatilities and correlations on simulation methods or alternatively

on a bootstrapping procedure. We apply the simulation based approach on which

more details are provided in the section below.

B.2.a Simulation Approach

Let Vt =
(
hj,t, hi,t, ρi,j,t

)′ denote the vector of non-transformed variables, the function

f : R2 × [0, 1] y R3 such that f−1(Ṽt) = Vt, and start from the VARMA(1,1) specifica-

tion in Eq. (19). From this, one can recursively construct point forecasts as

Ṽt+k = C + AṼt+k−1 + Bεt+k−1. (20)

The one-step ahead forecast Vt+1|t does not require simulation since it isFt-measurable.

For k > 1, Vt+k|t is computed based on simulations as 1
S ∑S

s=1 f−1(Ṽs
t+k|t), where Ṽs

t+k|t

is obtained from Ṽs
t+k = C + AṼt+k−1 + Bεs

t+k−1. εs
t+k−1 is constructed by sampling

the residuals of the RBG model from a conditional Gaussian distribution

ζt+k :=



zi,t+k

zj,t+k

ui,t+k

uj,t+k

νj,t+k


∼ N5

0,

 I2 0

0 Σ


 , t = 1, ..., N. (21)

The simulation is performed using an estimate of the matrix Σ. Residuals for commod-

ity j, which are correlated with commodity i, can be computed using the law of motion

of correlation in Eq. (2) together with the simulated values for νj,t+k and defining

zj,t+k := ρj,i,t+kzi,t+k +
√

1− ρ2
j,i,t+k z̆j,t+k. (22)
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The assumptions regarding the distribution of ζt might be called into question and a

parametric bootstrap may be preferable in some instances. The empirical properties

of financial returns on equities standardized by realized measures do, however, have

an empirical density close to normal (see e.g. Andersen et al. (2003)). We assume that

this is also the case for commodities.
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C. Additional Results

C.1 SQUARED RETURNS

Table 7 presents results for the minimum variance portfolio, where the portfolio is

evaluated based on daily squared returns.

[Table 7 about here.]

C.2 WEEKLY REBALANCING

Table 8 presents results for the minimum variance portfolio based on realized volatil-

ity, when the portfolio is rebalanced every week.

[Table 8 about here.]
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Figure 1: Time-varying correlations. The figure contains plots of correlations between the S&P 500 E-
mini futures prices and prices for two different commodities futures prices, gold in the top
panel and oil in the bottom panel, respectively. Each panel presents three different measures
of the correlation between the S&P 500 futures price and the commodity futures price. The
blue line represents the sample correlation based on the full sample of daily observations.
The green line represents the sample correlation calculated on a moving window of 60 daily
observations. Finally, the red line represents the realized correlation based on the realized
kernel and relying on the full sample of high-frequency data.
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Figure 2: The figure compares the cumulated volatilities of the minimum variance portfolios based on
forecasts from three different models. The cumulated volatility, σp,t,cum = ∑t

τ=1 σp,τ , is based
on the realized portfolio volatility, σp,t+1 =

√
ω′tRCt:t+1ωt. Portfolio volatilities are based

on forecasts for the RBG model, the DCC model, and the HEAVYdg model. The figure also
presents the cumulated volatility for a portfolio consisting of S&P 500 futures. The portfolios
are not subject to any short-selling or turnover constraints. The bottom plot presents results
of the analysis of the main plot, when carried out on a yearly basis.
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Figure 3: The figure compares the cumulated volatility of the minimum variance portfolios based on
forecasts from the RBG model for different short-selling constraints. The cumulated volatility,
σp,t,cum = ∑t

τ=1 σp,τ , is based on the realized portfolio volatility, σp,t+1 =
√

ω′tRCt:t+1ωt. Port-
folio volatilities are based on forecasts for the RBG model, where the different lines represent
different short-selling constraints, and the results are not subject to any turnover constraints.
The bottom panel presents results of the analysis of the main plot, when carried out on a
yearly basis.
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Figure 4: The figure compares the cumulated portfolio value of the momentum portfolio based on fore-
casts from three different models. The cumulated portfolio value, rp,t,cum = ∑t

τ=1 rp,τ , is based
on daily portfolio value, rp,t+1 = ω′trt+1. Portfolio weights are based on the forecasts for the
RBG model, the DCC model, and the HEAVY.dg model. The figure also presents the cumu-
lated value for a portfolio consisting of S&P 500 futures. A certain degree of short-selling is
allowed, s = 0.5, but the results are not subject to any turnover constraints. The sub-plots
presents results of the analysis of the main plot, when carried out on a yearly basis.
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Table 1: Futures contracts.

Contract First Exchange Break Average Daily Trades Realized
Trade Covariance

2005 2007 2010 2013 S&P 500

Equity Index
S&P 500 (ES) 1997 COMEX 5.15-6.00PM 100,289 112,620 447,970 394,755 1.00

Metal
Copper (HC) 1989 COMEX 5.15-6.00PM 1,313 4,097 19,513 34,511 0.86
Gold (GC) 1984 COMEX 5.15-6.00PM 4,687 19,892 65,384 103,725 0.21
Silver (SI) 1983 COMEX 5.15-6.00PM 2,900 6,817 22,400 32,341 0.53

Energy
Heating Oil (HO) 1984 NYMEX 5.15-6.00PM 1,525 10,691 17,401 21,576 0.69
Light Crude (CL) 1987 NYMEX 5.15-6.00PM 3,962 50,425 135,008 129,535 0.98
Natural Gas (NG) 1993 NYMEX 5.15-6.00PM 2,290 15,500 41,064 54,539 0.31

The table presents contract specific information for seven futures contracts. The first column divides
the contracts into three groups and specifies the underlying asset and the corresponding symbol in
parenthesis. NYMEX and COMEX are both part of the CME Group. All times are eastern standard
times. Average daily trade numbers are calculated over the respective calendar year from all intraday
trades. Average realized covariances with S&P 500 E-minis are calculated based on realized close-close
returns for the entire sample period.
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Table 2: Realized volatility of the minimum variance portfolio for different short-selling constraints.

s = 0% s = 25% s = 50%
σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t)

RBG 10.74 0.77 [1.0000] 10.04 0.72 [0.0766] 10.03 0.72 [0.0332]
RBG.r 10.74 0.77 [0.9998] 10.01 0.72 [1.0000] 10.00 0.72 [1.0000]
HEAVY.sc 11.49 0.82 [0.0000] 10.70 0.77 [0.0000] 10.72 0.77 [0.0000]
HEAVY.dg 11.42 0.82 [0.0000] 10.61 0.76 [0.0000] 10.62 0.76 [0.0000]
MW.RK 11.23 0.80 [0.0000] 10.54 0.75 [0.0000] 10.53 0.75 [0.0008]
RM.RK 11.11 0.79 [0.0000] 10.39 0.74 [0.0000] 10.38 0.74 [0.0008]
DCC 11.06 0.79 [0.0000] 10.39 0.74 [0.0000] 10.37 0.74 [0.0000]
DCC.2 11.09 0.79 [0.0000] 10.46 0.75 [0.0000] 10.46 0.75 [0.0000]
MW.r2 11.38 0.81 [0.0000] 10.78 0.77 [0.0000] 10.77 0.77 [0.0000]
RM.r2 11.24 0.80 [0.0000] 10.61 0.76 [0.0000] 10.60 0.76 [0.0000]
1/n 15.43 1.10 [0.0000] 15.43 1.10 [0.0000] 15.43 1.10 [0.0000]
The table presents the average volatility of the minimum variance portfolio based on forecast for 11
different models. The volatility estimate at time t + 1, σp,t+1, is based on the portfolio weights obtained
from the forecast of the covariance matrix for each model at time t and the realized covariance matrix
of futures prices, RCt:t+1, such that σp,t+1 =

√
ω′tRCt:t+1ωt. In the table we present the average of

σp,t taken over the full sample, and denoted σ̄p. VR denotes the ratio of σ̄p to the average realized
volatility of a portfolio consisting exclusively of S&P 500 futures. The table also presents the p-values,
pMCS(σp,t), of the Model Confidence Set, which is based on the time series of realized portfolio volatility.
The columns present results for three different short-selling constraints. None of the results are subject
to turnover constraints.
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Table 3: MCS p-values for portfolio volatility for different short-selling and turnover constraints.

s = 0% s = 25% s = 50%
δ = 0.01 1.0000 0.5210 0.1072
δ = 0.05 1.0000 1.0000 1.0000
δ = 0.1 1.0000 1.0000 1.0000
δ = 0.5 1.0000 0.0810 0.0314
δ = 1 1.0000 0.0818 0.0342
δ = 100 1.0000 0.0766 0.0332
p-values for the RBG model. For each model the volatility estimate at time t + 1, σp,t+1, is based on the
portfolio weights obtained from the forecast of the covariance matrix at time t and the realized covari-
ance matrix of futures prices, RCt:t+1, such that σp,t+1 =

√
ω′tRCt:t+1ωt. The time series for realized

portfolio volatility resulting from the different models are compared using the Model Confidence Set.
The columns present results for three different short-selling constraints while the rows contain different
turnover constraints.
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Table 4: Financial performance measures for the momentum portfolio for all models, s = 0.5, δ = 100.

SR SR/SRS&P MAD TO τbe pMCS(Ut)
RBG 1.735 2.108 0.191 0.157 0.336 1.000
RBG.r 0.795 0.965 0.190 0.156 0.132 0.000
HEAVY.sc 0.642 0.780 0.209 0.085 0.179 0.000
HEAVY.dg 0.627 0.761 0.208 0.091 0.159 0.000
MW.RK 0.394 0.478 0.171 0.046 0.099 0.000
RM.RK 0.441 0.536 0.173 0.047 0.142 0.000
DCC 0.877 1.065 0.191 0.125 0.179 0.000
DCC.2 0.800 0.972 0.193 0.152 0.128 0.000
MW.r2 0.814 0.989 0.183 0.091 0.236 0.001
RM.r2 0.980 1.191 0.185 0.095 0.282 0.001
1/n 0.193 0.234 0.000 0.009 -1.510 0.000
The table presents financial measures of the performances of the momentum portfolios, where portfolio
weights are based on the forecasts for 11 different models. The column labeled SR contains the out
of sample Sharpe ratio of the portfolio, calculated as the ratio of average daily portfolio returns and
the corresponding standard deviation. The column labeled SR/SRS&P presents the ratio of the Sharpe
Ratio of a portfolio to the Sharpe Ration of a portfolio consisting exclusively of S&P 500 futures. MAD
is the mean absolute deviation of the portfolio weights from a 1/n portfolio. The column labeled τbe

presents the minimum average proportional trading costs, which will eliminate any gains from form-
ing a portfolio based on forecasts from a particular model. Finally, pMCS(Ut) presents the p-values of
the Model Confidence Set estimated based on the time series of realized utility from the momentum
portfolios based on the different models. A certain degree of short selling is allowed, s = 0.5, and the
results are not subject to any turnover constraints.
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Table 5: Sharpe Ratios for the momentum portfolio for different short selling and turnover constraints.

s = 0% s = 25% s = 50%
δ = 0.01 0.4986 0.5183 0.4980
δ = 0.05 0.4815 0.4215 0.3537
δ = 0.1 0.5697 0.6000 0.5730
δ = 0.5 0.8733 1.5025 1.5694
δ = 1 0.9105 1.6419 1.7333
δ = 100 0.9154 1.6415 1.7354
The table presents out of sample Sharpe Ratios of the momentum portfolios, where portfolio weights
are based on the forecasts from the RBG model. The Sharpe Ratio of the portfolio, calculated as the
ratio of average daily portfolio returns and the corresponding standard deviation. The columns present
results for three different short-selling constraints while the rows contain different turnover constraints.
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Table 6: Performance fee for the momentum portfolio for all models, s = 0.5, δ = 100.
m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

m1, RBG -0.053 -0.055 -0.067 -0.064 -0.054 -0.049 -0.048 -0.041 -0.061 -0.079
m2, RBG.r -0.002 -0.014 -0.011 -0.001 0.004 0.005 0.012 -0.008 -0.026
m3, HEAVY.sc -0.013 -0.010 0.001 0.006 0.007 0.014 -0.006 -0.024
m4, HEAVY.dg 0.003 0.013 0.018 0.019 0.026 0.006 -0.012
m5, MW.RK 0.011 0.016 0.016 0.023 0.003 -0.015
m6, RM.RK 0.005 0.006 0.013 -0.007 -0.025
m7, DCC 0.001 0.008 -0.012 -0.030
m8, DCC.2 0.007 -0.013 -0.031
m9, MW.r2 -0.020 -0.038
m10, RM.r2 -0.018
m11, 1/n
The table presents the average daily performance fee (multiplied by 100) that eliminates the utility
gains of one model compared to another model. It is the amount an investor would be willing to pay
to switch from the model in the row to the model in the column. A certain degree of short selling is
allowed, s = 0.5, and the results are not subject to any turnover constraints.

49



Table 7: Volatility of the minimum variance portfolio for different short-selling constraints.

s = 0% s = 25% s = 50%
σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t)

RBG 10.42 0.65 [0.0000] 9.34 0.58 [0.0000] 9.28 0.58 [0.0000]
RBG.r 10.70 0.66 [0.0000] 9.70 0.60 [0.0000] 9.66 0.60 [0.0000]
HEAVY.sc 11.50 0.71 [0.0000] 10.61 0.66 [0.0000] 10.62 0.66 [0.0000]
HEAVY.dg 11.43 0.71 [0.0000] 10.52 0.65 [0.0000] 10.52 0.65 [0.0000]
MW.RK 11.39 0.71 [0.0000] 10.64 0.66 [0.0000] 10.61 0.66 [0.0000]
RM.RK 11.27 0.70 [0.0000] 10.49 0.65 [0.0000] 10.47 0.65 [0.0000]
DCC 10.07 0.63 [0.0000] 8.77 0.54 [0.0000] 8.66 0.54 [0.0000]
DCC.2 9.82 0.61 [1.0000] 8.48 0.53 [1.0000] 8.34 0.52 [1.0000]
MW.r2 10.97 0.68 [0.0000] 9.87 0.61 [0.0000] 9.82 0.61 [0.0000]
RM.r2 10.54 0.65 [0.0000] 9.28 0.58 [0.0000] 9.19 0.57 [0.0000]
1/n 16.37 1.02 [0.0000] 16.37 1.02 [0.0000] 16.37 1.02 [0.0000]
The table presents the annualized volatility of the minimum variance portfolio based on forecast for 11
different models. The volatility estimate is based on squared daily returns. VR denotes the ratio of σ̄p
to the average volatility of a portfolio consisting exclusively of S&P 500 futures. The table also presents
the p-values, pMCS(σp,t), of the Model Confidence Set, which is based on the time series of squared
portfolio returns. The columns present results for three different short-selling constraints. None of the
results are subject to turnover constraints.
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Table 8: Realized volatility of the minimum variance portfolio for different short-selling constraints.

s = 0% s = 25% s = 50%
σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t) σ̄p VR pMCS(σp,t)

RBG 12.35 0.78 [1.0000] 11.60 0.73 [0.6584] 11.60 0.73 [0.4532]
RBG.r 12.38 0.78 [0.0888] 11.59 0.73 [1.0000] 11.58 0.73 [1.0000]
HEAVY.sc 12.91 0.81 [0.0066] 12.04 0.76 [0.0024] 12.05 0.76 [0.0034]
HEAVY.dg 12.83 0.81 [0.0066] 11.92 0.75 [0.0094] 11.92 0.75 [0.0144]
MW.RK 12.66 0.80 [0.0066] 11.90 0.75 [0.0218] 11.88 0.75 [0.0502]
RM.RK 12.57 0.79 [0.0066] 11.79 0.74 [0.1766] 11.77 0.74 [0.0502]
DCC 12.51 0.79 [0.0066] 11.74 0.74 [0.0218] 11.72 0.74 [0.0502]
DCC.2 12.54 0.79 [0.0066] 11.81 0.74 [0.0094] 11.80 0.74 [0.0144]
MW.r2 12.80 0.81 [0.0066] 12.12 0.76 [0.0002] 12.11 0.76 [0.0000]
RM.r2 12.68 0.80 [0.0066] 11.98 0.76 [0.0024] 11.97 0.75 [0.0034]
1/n 17.14 1.08 [0.0000] 17.14 1.08 [0.0000] 17.14 1.08 [0.0000]
The table presents the average annualized volatility of the minimum variance portfolio based on fore-
cast for 11 different models. The volatility estimate at time t+ 5, σp,t+5, is based on the portfolio weights
obtained from the forecast of the covariance matrix for each model at time t and the realized covariance
matrix of futures prices, RCt:t+5, such that σp,t+5 =

√
ω′tRCt:t+5ωt. In the table we present the average

of σp,t taken over the full sample, and denoted σ̄p. VR denotes the ratio of σ̄p to the average realized
volatility of a portfolio consisting exclusively of S&P 500 futures. The table also presents the p-values,
pMCS(σp,t), of the Model Confidence Set, which is based on the time series of realized portfolio volatil-
ity. The columns present results for three different short-selling constraints. None of the results are
subject to turnover constraints.
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