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Mutual Fund Selection for Realistically Short Samples

Abstract

Performance of mutual fund selection methods is typically assessed using long samples
(long time series). It is, however, very often of interest how well the methods perform
in shorter samples. We carry out an extensive simulation study based on an empirically
motivated skill distribution. For both short and long samples, we present evidence
of large differences in performance between popular fund selection methods. In an
empirical analysis, we show that the differences documented by the simulations are
empirically relevant.
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I. Introduction

How to select the best performing mutual funds ex-ante is a long standing problem for

practitioners and academics alike. The problem is of immense interest not only because of

the size of the mutual fund industry, but also because the selection of the best mutual funds

has real welfare implications for individual investors. The academic literature on mutual

fund selection generally documents impressive properties for long sample periods. Investors

may, however, not be interested in historic fund performance many years in the past, but

only care about performance in more recent periods. Similarly, researchers routinely apply

the fund selection methods on shorter rolling windows in order to analyze the dynamics of

fund performance. For these reasons, it is very important to understand how fund selection

methods perform in small samples and to compare the performance of the various methods

when used in short sample periods.

The contribution of this paper is to provide a first comparison of how various popular

fund selection methods work for realistically small samples understood in the sense of short

sample periods. We ask whether there are material differences in performance between various

fund selection methods, when applied to small samples. The analysis is relevant because

there is no guarantee that the methods, which perform best on large samples are also the

ones that perform best on small samples. If a selection method only works well for large

sample sizes, say 20 years of monthly returns data, we are concerned that the ability to select

well-performing funds is driven, to some extent, by survivor bias.

The literature on fund selection is extensive, see e.g. Bollen and Busse (2004), Avramov

and Wermers (2006), Mamaysky et al. (2008), Guercio and Reuter (2014), Groenborg et al.

(2017), and the survey of Jones and Wermers (2010). In addition to the academic literature, a

large industry of investment advisers offer guidance on fund selection and there are thousands

of registered investment advisers in the US.

Previous literature compare different mutual fund selection methods with fairly large

1



samples compared to what we do in this paper. Barras et al. (2010) use a sample of 32 years,

Ferson and Chen (2015) use a sample of 17 years, while Harvey and Liu (2018) use a sample

of 27 years in their simulation studies. Andrikogiannopoulou and Papakonstantinou (2018)

show that the analysis in Barras et al. (2010) is overly conservative using simulation studies

based on samples of at least 180 monthly observations.

The methods we compare are in the spirit of Carhart (1997). The paper is concerned

with fund selection methods that rely on traditional alphas, which has long been a popular

performance measure. The method of Carhart (1997) compares fund returns, net of transaction

costs and management fees, to a set of benchmark portfolios that mimic systematic risk

exposures. In this framework, the value a fund manager adds per period to the investor is net

alpha multiplied by the size of the investment.1 The mutual fund literature has shown that

prediction of alpha is related to various fund characteristics. These include: fund size (Chen

et al. (2004)), industry concentration (Kacperczyk et al. (2005)), return gap (Kacperczyk et al.

(2008)), active share (Cremers and Petajisto (2009)), coefficient of determination (Amihud

and Goyenko (2013)), and a time-varying skill index (Kacperczyk et al. (2014)). Furthermore,

a recent paper by Uppal and Zaffaroni (2017) shows that the alpha component of mispricing

is a lot more important than the beta component of asset mispricing.

The mutual fund literature has identified problems with traditional alpha measures. Ferson

and Lin (2014) argue that shortcomings with traditional alphas can be caused by a number

of reasons such as asymmetric information between fund managers and investors, nonlinear

payoffs, time-varying model parameters, and market incompleteness. These problems may

imply that some covariance terms between fund returns and the pricing kernel are excluded

from a traditional benchmark model (see e.g. Glode (2011)). Although the literature

documents many problems with traditional alpha measures, our paper only considers fund

selection methods that measure performance with traditional alphas.
1A different approach has recently been suggested by Berk and van Binsbergen (2015). Their measure of

fund manager skill is defined as a funds’ assets under management multiplied by gross alpha. This measure
differs from the net-alpha approach, as it measures the value a fund manager extracts from capital markets.
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The first class of models that we consider is the relatively simple bootstrap procedures of

Kosowski et al. (2006) and Fama and French (2010). The second class is the false discovery

rate methods of Barras et al. (2010) and Ferson and Chen (2015). Finally, we consider the

novel expectation maximization approach of Harvey and Liu (2018) as the third class of

selection methods.

To asses the small sample performance of fund selection methods, we set up an extensive

simulation study, where funds are drawn from a Gaussian Mixture Distribution (GMD),

allowing us to construct three groups of funds with bad performance, neutral performance,

and good performance, respectively. The GMD poses realistic challenges in identifying which

distribution a fund is drawn from. For example, the distribution of funds with neutral

performance overlaps with the distribution of funds with good performance. The parameters

of the GMD skill distribution are chosen based on a comprehensive empirical analysis of US

equity mutual funds.

We uncover several interesting findings. Firstly, we document large differences in perfor-

mance between the different fund selection methodologies when applied to small samples of

60 monthly observations. Secondly, we find that the simple bootstrap methods and the false

discovery rate methods outperform the advanced expectation maximization method for small

samples.

After presenting results for the small sample simulation study, we compare these to a

similar large sample simulation study. We find large variations in performance across different

methods and also large differences compared to the small sample setting. Therefore, inference

on small sample performance based on large sample simulations can be misleading.

Lastly, we conduct an empirical analysis, where we apply each of the seven fund selection

methodologies to a series of subsamples. In line with our simulation study, we show that the

different approaches lead to very different results.

The remainder of this paper is structured as follows. Section II presents the different fund

selection methods in detail. Section III describes our data set. In Section IV we set up our
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simulation framework and present the main results for the small sample analysis. Section

V represents the large sample simulation results. Section VI is devoted to an empirical

comparison of the analyzed methods, while some concluding remarks are presented in Section

VII. Various details are delegated to the Appendix.

II. Mutual Fund Selection Methods

This section presents the mutual fund selection methods. First in subsection II.A we introduce

mutual fund selection methods, then we present our benchmark method in subsection II.B.

Subsection II.C presents bootstrap methods, subsection II.D presents methods based on the

false discovery rate, and subsection II.E presents the structural modeling approach based on

the expectation maximization algorithm.

II.A. Introduction

When developing a fund selection methodology, it is essential to specify an underlying skill

distribution. A common feature for existing mutual fund selection methods is the assumption

that the true skill of a mutual fund manager is drawn from different skill distributions or

groups. In line with most of the literature, we define different skill groups based on the ability

of fund managers to generate net alpha, α. Net alpha is defined as the excess return (above

the risk-free rate) generated by a fund after controlling for common risk factors and fees. The

net alphas are estimated from an asset pricing model such as the Carhart (1997) four-factor

model. More details about how we estimate the alphas in the benchmark model follow in

subsection II.B. We consider skilled fund managers, unskilled fund managers, and neutral

(zero-alpha) fund managers, and rely on the following definition of the three skill groups:

• Skilled fund managers have sufficient stock-picking skills to more than recover trading

costs and expenses (α > 0).

• Unskilled fund managers have insufficient stock-picking skills to recover trading costs
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and expenses (α < 0).

• Zero-alpha fund managers have stock-picking skills just sufficient to recover trading

costs and expenses (α = 0).

We assume that each group has its own skill distribution such that the skill for all funds

is a composite distribution. We label the fractions of skilled, unskilled, and zero-alpha funds

by π+, π−, and π0, respectively. The composite skill distribution for all funds is illustrated in

Figure I. The figure shows a Gaussian Mixture Distribution (GMD) for three unobserved

skill distributions with π+ = 11%, π− = 59%, π0 = 30%. The parameters of the GMD are

determined by the empirical properties of our data set of US equity mutual funds, cf. Section

III. Furthermore, the figure depicts fund groups with different annualized means, αs, and

standard deviations, σs, for s = +,−, 0.2

[Figure I about here.]

Due to the unobserved nature of the true underlying fund manager skill, the composite

skill distribution poses a major challenge with respect to inference on the cross-section of

fund alphas. That is, as the three underlying skill distributions overlap for some values of

alpha, a fund selection method can perceive a true zero-alpha fund as skilled due to luck. In

the more extreme case, a mutual fund selection method can even confuse a truly skilled fund

as unskilled as the outcome of extreme bad luck.3 Consequently, the accuracy associated

with the methods’ ability to disentangle true skill from luck is essential for inference about

mutual fund performance and selection.
2 The GMD is characterized by the annualized mean parameters α+ = 1.32%, α− = −1.77%, and α0 = 0%,

and the annualized standard deviations σ+ = 0.38%, σ− = 0.61%, and σ0 = 0.50%.
3Barras et al. (2010) assume that the two extreme distributions do not overlap, whereas Ferson and Chen

(2015) solve the problem by introducing power and confusion parameters.
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II.B. Benchmark Model

We define risk-adjusted performance (alpha) in terms of the extension of Jensen (1968) and

Fama and French (1993) introduced by Carhart (1997). The four-factor model is expressed as

Ri,t = αi + biRmt + siSMBt + hiHMLt + miMOMt + εit

= αi + β′iXt + εit, (1)

where Ri,t is fund manager i’s excess return in period t over the one-month Treasury bill rate,

Rmt is the excess return of the market index and SMBt, HMLt and MOMt are the returns of

factor portfolios related to size, book-to-market, and momentum, respectively. βi is a vector

of bi, si, hi, and mi and Xt is a vector of the four common risk factors at time t. εi,t is fund

i’s idiosyncratic return residual at time t, which is assumed to have a zero mean with an

independent and identical normal distribution.4 In this framework, the true stock-picking

skill of mutual fund manager i is measured by its alpha, αi.

Inference on the stock-picking ability of a mutual fund is based on a traditional two-stage

procedure. First, we estimate alphas via fund-by-fund OLS regressions, and second we

perform hypothesis tests under a null of zero abnormal performance (αi = 0). The estimate

of the fraction of skilled (unskilled) funds is the fraction of funds that have a significant

and positive (negative) alpha. We compute fund t-statistics with Newey and West (1987)

heteroskedasticity and autocorrelation consistent standard deviation estimates. We use a 5%

level of significance when not stated otherwise. This approach forms a natural benchmark for

other fund selection methodologies.

The drawback of the benchmark approach is that we undertake a multiple testing problem.

That is, when we simply count the number of skilled and unskilled funds based on the
4Ferson and Schadt (1996) propose a conditional version of the benchmark model to account for time

variation in factor loadings. Kosowski et al. (2006) and Barras et al. (2010) find no material impact on their
results when accounting for time-varying risk taking. In the remainder of this paper, we therefore use the
unconditional benchmark model.
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estimated t-statistics at a 5% significance level, the probability that we wrongfully reject at

least one null hypothesis will be greater than 5%. That probability is increasing with the

number of comparisons and therefore with the number of funds. Wrongfully rejecting a null

hypothesis of zero alpha means labeling a fund with zero alpha as being skilled or unskilled.

Controlling for the multiple comparisons is therefore essential, when attempting to select the

best (or worst) mutual funds. As an additional benchmark model we extend the benchmark

model above with the Bonferroni correction that accounts for the multiple comparisons by

decreasing the level of significance.

Several papers address the problem of selecting the best funds. We concentrate on popular

papers that measure performance by the funds’ net alphas. We consider three different classes

of models and compare them to the two benchmarks presented above. The first class of

models are simple bootstrap methods. Kosowski et al. (2006) and Fama and French (2010)

both suggest to use the bootstrap to perform more reliable inference on the performance

of individual funds. The second class of models include Barras et al. (2010) and Ferson

and Chen (2015) and tackles the multiple comparison problem by controlling for the false

discovery rate. Finally, the framework of Harvey and Liu (2018) constitutes our third class of

models and relies on a structural modeling approach.

II.C. The Bootstrap Method

Kosowski et al. (2006) and Fama and French (2010) use bootstrap selection methods in order

to separate manager skill from luck.5 The studies argue that the necessity of the bootstrap

method arises due to complex distributional properties of the cross-section of fund alphas.

Ignoring this, and using the benchmark model, results in rejection rates that differ from their

nominal level (of 5%).

We use the two bootstrap methods to simulate null distributions of neutral performance

by means of the resampling schemes introduced in the papers. We estimate alphas with the
5We outline both bootstrap methods step-by-step in Appendix A.

7



benchmark model in Equation (1). The bootstrap resampling implies that the simulated

null distributions of fund returns only depend on sampling variation, as they are generated

under the null of zero abnormal performance. We use the bootstrap methods to infer whether

individual funds are skilled (unskilled) or lucky (unlucky). We do this by comparing the

actual distribution of estimated fund t̂(α)-statistics from Equation (1) with bootstrapped

distributions of fund t-statistics. We prefer to draw inferences based on t-statistics rather than

on the alphas themselves as these are pivotal statistics independent of unknown population

parameters.

Although the two bootstrap methods impose the same null distribution for simulated

statistics, they use different resampling schemes. Kosowski et al. (2006) use a residual

resampling approach for each individual fund, whereas Fama and French (2010) jointly

resample both excess fund and factor returns.

The different bootstrap resampling schemes of Kosowski et al. (2006) and Fama and French

(2010) result in one significant difference. Consider the benchmark model in Equation (1),

then for a given bootstrap simulation run and conditional on the realization of the common

risk factors, the Fama and French (2010) method takes the cross-sectional distribution of

the residuals into consideration, whereas the method of Kosowski et al. (2006) assumes

independence between the residuals across funds. This difference leads to wide confidence

intervals for the Fama and French (2010) method relative to the Kosowski et al. (2006) method.

The wider confidence intervals of the Fama and French (2010) method is a consequence

of using the same time index for all funds within a given bootstrap run to capture the

cross-correlation of fund returns, while the narrower confidence intervals of the Kosowski et al.

(2006) method arise due to pooling over time by randomly drawing some funds’ residuals in

down market periods and other funds’ residuals in up market periods (cf. Blake et al. (2017)).

Further, Blake et al. (2014) argue that the bootstrap methods of Kosowski et al. (2006)

and Fama and French (2010) can result in biased estimates. They argue that by assigning

equal resampling weights to all observations, the bootstrap method puts too large weights on
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observations in the tails of the true but unknown sampling distributions.

A common problem for both resampling schemes is that any autocorrelation structure in

fund excess returns is lost. This problem can be mitigated by resampling blocks of timeseries

instead of single time indices, cf. Politis and Romano (1994).

Finally, although both bootstrap methods account for complex distributional properties of

the cross-section of alpha, we still end up with a multiple hypothesis problem when we infer

the fractions of skilled, unskilled, and zero-alpha funds. The reason is that we simply count

the number of rejected null hypotheses. That is, for funds with a positive alpha estimate

from Equation (1), we test the null hypothesis H0: αi ≤ 0 against the alternative H1: αi > 0.

In contrast, for funds with a negative alpha estimate, we test the null hypothesis H0: αi ≥ 0

against the alternative H1: αi < 0. Hence, when we count the number of significant funds,

each at a 5% significance level, the probability that we wrongfully reject at least one null

hypothesis of zero alpha will be greater than 5%. The probability is also increasing in the

number of hypothesis tests that we perform.

II.D. The False Discovery Rate Method

Barras et al. (2010) and Ferson and Chen (2015) introduce variants of the false discovery

rate method (FDR) for mutual fund selection.6 We use both methods to obtain estimates for

the proportions of unskilled, zero-alpha and skilled funds.

The FDR method accounts for multiplicity by utilizing a high significance level thus

balancing the trade-off between Type I and Type II errors. By the use of a high significance

level, the FDR method attains high statistical power which decreases the probability of

committing type II errors. Although a high significance level increases the power of a test,

it also increases the potential for confusion between good and bad funds. Confusion is the

extreme case where a fund is perceived as skilled (unskilled), when it is in fact truly unskilled

(skilled).
6We outline both FDR methods step-by-step in subsections in Appendix A.
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Barras et al. (2010) assume that a truly skilled fund cannot be perceived as an unskilled

fund and vice-versa. In comparison, Ferson and Chen (2015) explicitly model the confusion

parameter. Notably, Ferson and Chen (2015) show that their model nests the model of Barras

et al. (2010) when assuming power of one and zero confusion.

The FDR method of Ferson and Chen (2015) also extends the bootstrap methods by

Kosowski et al. (2006) and Fama and French (2010). The two bootstrap methods simulate

the cross-section of fund alphas under the null of zero abnormal performance, which accounts

for multiplicity under the null that all funds have zero abnormal performance. In comparison,

the method of Ferson and Chen (2015) accounts for multiplicity by allowing funds to have

alpha different from zero.

II.E. The Structural Model Method

The method of Harvey and Liu (2018) takes a structural approach to model the fraction

of skilled, unskilled and zero-alpha funds.7,8 That is, Harvey and Liu (2018) model the

cross-sectional alpha distribution by imposing structure with a Gaussian Mixture Distribution

(GMD), which they estimate with an expectation-maximization (EM) algorithm.

Harvey and Liu (2018) argue that the benchmark model approach for fund selection is

comparable to a panel regression model with fixed effects. They argue that this is the case,

as a non-random alpha is assumed for each fund. The model by Harvey and Liu (2018)

advocates the use of a random effects counterpart, which assumes that fund alphas are drawn

independently from the same cross-sectional distribution. Their approach allows them to

pool information from the cross-sectional alpha distribution to reduce noise of individual

alpha estimates.
7Harvey and Liu (2018) only consider two skill groups, but their methodology is readily extendable to

three groups.
8We present estimation details of the model by Harvey and Liu (2018) Appendix A.
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III. Mutual Fund Data

III.A. Fund Selection

We examine monthly observations between June 1992 and December 2017. We focus on

actively managed no-load open-end US domestic equity funds. The returns are measured

after expense ratios and trading costs. The data is available from the Center for Research in

Security Prices (CRSP) database.9

Our sample is originally free of survivorship bias, but we further select funds with a

minimum of 60 monthly return observations and we impose a number of screens in order

to mitigate omission, incubation, and back-fill biases; see Elton et al. (2001) and Evans

(2010). For individual fund shareclasses, we exclude shareclasses that do not report a year

of organization and we exclude shareclass return observations prior to the reported year

of organization. We also exclude shareclasses that invest less than 80% of their portfolio

holdings in common stock or have initial total net assets (TNA) below $5 million in their first

month to enter our sample. We avoid a look-ahead bias by allowing shareclasses to remain in

our sample if their TNA subsequently decrease below $5 million. Finally, we include only

no-load shareclasses.

Until July 2003, the CRSP database lists different shareclasses from the same fund as

unique funds. In order to combine multiple shareclasses into specific funds, we use shareclass

names and share class returns to identify shareclasses from the same fund. Conditional on our

selected screens, we combine multiple shareclass returns to individual fund portfolio returns.

Specifically, we calculate a monthly fund net return by weighting shareclass net returns with

the proportion of fund TNA represented by each shareclass at the beginning of each month.

We calculate a monthly fund TNA by summing across shareclasses.10 Subsequently, the
9Further details about the data set are available in Appendix B.

10Return observations need not be contiguous. However, after a missing return we delete the following-
month return. We delete following-month returns due to CRSP database convention of filling following-month
returns with the funds’ cumulated return since last nonmissing return.
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CRSP database matches shareclasses into fund portfolios.

Our final sample is an unbalanced panel of 1,481 funds that exist for at least 60 months

during our sample period. We investigate the performance of all investment objectives, as

well as performance for investment styles: aggressive growth (96), growth (849), growth

and income (430) and income (106). Appendix B describes how we classify funds into the

different investment styles. We start our sample in June 1992 as the category aggressive

growth, conditional on our fund screens, contains its first fund with a 60 month return history

from this point forward.

Table I shows the number of funds in existence, average TNA, average excess returns,

average standard deviations, and average higher order moments for the full sample period as

well as for six five-year subperiods. We consider five-year subperiods because this is what

is typically considered by the previous literature in rolling window analysis. For the same

reasons, we will later use the 60-month period to define a short sample for our simulation

study. Panel A shows statistics for all investment objectives, while panels B-E show statistics

for individual investment styles. We show the descriptive statistics both for all funds (at

least one observation) and for funds with at least 60 observations (available in the entire

subsample).

We see from Panel A that there are initially 145 funds with 60 monthly return observations

in the first five years of our sample and that this number increases to 1,481 during the entire

1992-2017 period. In Panel C we see that this increase is mainly driven by a large expansion

in growth funds. From Table I, we also see that aggressive growth funds (Panel B) deliver

the largest average excess return over the entire evaluation period. However, we also see that

this larger average excess return has a larger average standard deviation. The excess returns

have small negative skewness and small positive excess kurtosis.

[Table I about here.]
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III.B. Benchmark Performance Results

Table II shows annualized alphas, factor loadings, and coefficients of determination for equal-

weighted portfolios from the four-factor benchmark model in Equation (1).11 The annualized

alpha for a portfolio of funds reveals whether funds on average produce risk-adjusted returns

different from that implied by the four common risk factors. Similar to previous studies,

the benchmark model results in a significantly negative annualized alpha equal to -1.00%

for the full sample period. From Panel A, we also find that aggressive growth funds tilt

towards small capitalization and low book-to-market stocks, while income funds tilt towards

large capitalization- and high book-to-market stocks. In Panel B, we present annualized

alpha estimates for each of the five-year periods. The alphas are decreasing (becoming more

negative) over time until the last subperiod where they increase again.

[Table II about here.]

We investigate if the residuals from the benchmark model in Equaton (1) are well behaved

as assumed; normality, homoskedasticity, and no first order serial correlation. We reject

normality (see Jarque and Bera (1987)) for 49.43% of the funds, we reject homoskedasticity

(see White (1980)) for 58.88% of the funds, and we reject first order serial independence (see

Ljung and Box (1978)) for 11.21% of the funds. The fact that we find such irregularities in

the residuals from the benchmark model motivates the use of bootstrap based methods.

We investigate further the 11.21% of fund residuals that suffer from first order serial

dependence. For the relevant funds, we estimate the following AR(1) process:

εi,t = γεi,t−1 + ui,t, (2)

where we find an average γ̂-estimate of 0.08. We use this average value as input to generate

first order serial dependence in our simulation study. The first order serial correlation is
11The results based on using value-weighted returns are available upon request.
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significant, but small, and applies to only a limited fraction of the funds. It is therefore an

empirical question whether it is important to take serial correlation into account.

III.C. Parameter Inputs

We select a three-component Gaussian Mixture Distribution as the specification for our skill

distribution and find the inputs for the GMD by picking empirical values using the Ferson

and Chen (2015) method. We apply the method via a 60-month rolling window estimation

procedure from June 1992 to December 2017, where we move the window 12 months forward

for each estimation run.12

From the estimation procedure, we obtain 22 sets of skilled, unskilled, and zero alpha

fund estimates, as well as their alpha estimates. We then take the mean across the estimates

and obtain estimates for the drawing probabilities (π) and location parameters (α) of the

GMD. We further obtain scale parameters (σ) for skilled and unskilled funds, by taking the

standard deviation across α-estimates. This procedure implies that we only have to motivate

the scale parameter of the zero-alpha fund distribution. We set this equal to σ0 = 0.50%

annually, as this provides overlaps between the densities of the GMD. Figure I shows the

true density of the GMD based on our chosen parameter values.

We recognize that the parameter values that we use as inputs for the simulation study can

affect the simulation results. For example, we find relatively high fractions of skilled funds only

in the early part of of our sample, cf. Section VI Table VII. The time variation in the fractions

of fund skill can therefore be used to motivate alternative drawing probabilities. Another

variation is related to the numerical size of the location parameters for skilled and unskilled

funds. Higher numerical values of the location parameters increase the signal-to-noise ratio

in the simulated data and increases the precision of the selection methods. Finally, the scale

parameters control the variation of the location parameters. Increasing the scale parameters

leads to more noise in the simulated data and therefore less precision of the selection methods.
12Note that for the last estimation, we only move the rolling window seven months as this maintains the

five-year period of the window such that the estimation period becomes January 2013 to December 2017.
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IV. Small Sample Simulation Study

IV.A. Simulation Design

We evaluate the small sample properties of the mutual fund selection methods via a compre-

hensive Monte Carlo simulation study.13 We generate a balanced return panel for each Monte

Carlo simulation, where excess returns are simulated from the four-factor benchmark model:

Ri,t = αi + β′iXt + εi,t, (3)

εi,t = γεi,t−1 + ui,t,

Xt ∼ N (0,ΣX),

ui,t ∼ N (0,Ωu).

As illustrated in Figure I, we simulate fund skill, αi, from a three-component GMD.

We use the parameter inputs from Section III.C in the simulations. That is, we generate

our composite skill distribution in every Monte Carlo simulation by drawing π+ = 11%

skilled funds with annual α+ ∼ N (1.32%, 0.38%2), π− = 59% unskilled funds with annual

α− ∼ N (−1.77%, 0.61%2), and π0 = 30% zero-alpha funds with annual α0 ∼ N (0%, 0.50%2).

Our skill distribution frequently draws a skilled or unskilled fund, which should provide a

challenge for the mutual fund selection methods. Further, the βi’s are individual fund OLS

factor loadings from the benchmark model in Equation (1), ΣX is an empirical covariance

structure of the factor portfolio returns and Ωu is a residual covariance matrix.

We simulate residuals in two different settings. In the first setting we assume that residuals

are serially uncorrelated, γ = 0, and in the second setting we assume that residuals are

generated by an AR(1) process with γ = 0.08.

For both settings we further investigate how contemporaneous residual cross-correlations

impact our results by considering three correlation schemes. The reason we simulate funds
13We provide an in depth description of our data generating processes in Appendix C.
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with contemporaneous dependence is to classify how well the mutual fund selection methods

capture herding behavior, which is the tendency of funds to follow the crowd and load on

similar non-priced residual risks over time (see e.g. Wermers (1999)). In the first scheme

we assume zero correlation across fund residuals. In the second scheme we select a common

cross-correlation coefficient ρ for all off-diagonal elements in the covariance matrix Ωu. In the

third scheme we select empirical correlation coefficients to apply the actual cross-sectional

data heterogeneity. The average correlation coefficient for this scheme is 0.07, while the

average of the absolute value of the correlation coefficients is 0.21.14 Common for all schemes

is that the diagonal elements of Ωu contain variance estimates from fitted residuals of Equation

(1).

IV.B. Simulation Results for Small Samples

In this set of simulation results we consider N = 500 funds over T = 60 months. So, the

small sample is with respect to the time series dimension, not the cross-sectional dimension,

of the data set. We present simulation results for no serial dependence in Table III and for

serial dependence in Table IV.

[Table III about here.]

[Table IV about here.]

Comparing Tables III and IV, we see that their results are very similar. Therefore,

allowing for serial dependence hardly changes the results. So, the small (but significant)

serial correlation documented in the data set, cf. Section III.B, appears to be of no materiel

importance. For this reason we concentrate on describing the results in Table III in more

detail.
14The correlation coefficients are estimated for 929 funds that have 60 monthly return observations over

the last five years of our sample.
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Table III shows estimates of the simulated cross-sectional skill distributions generated

by Equation (3). Skill estimates are presented for the seven mutual fund selection methods

described above: benchmark model (1), benchmark model with a Bonferroni correction (2),

Kosowski et al. (2006) (3), Fama and French (2010) (4), Barras et al. (2010) (5), Ferson and

Chen (2015) (6), and Harvey and Liu (2018) (7). In Panel A we consider zero correlation

between all funds (ρ = 0). In Panel B we use fixed pairwise correlation coefficients of ρ = 0.3,

while Panel C presents results based on the empirical correlation coefficients that match

actual cross-sectional data heterogeneity. We present the bias and RMSE for each simulation

scenario.

The bias and RMSE are defined as follows:

Biass = 1
M

M∑
m=1

π̂m,s − πs, (4)

and

RMSEs =

√√√√ 1
M

M∑
m=1

(π̂m,s − πs)2, (5)

for s = +,−, 0. We also summarize the average absolute bias and the average RMSE across

all skill distribution estimates where Avg. Abs. Bias = 1
S

∑S
s=1 |Biass| and Avg. RMSE =

1
S

∑S
s=1 RMSEs.

Let us first consider the case with zero pairwise correlation, ρ = 0 (Panel A). The small

sample simulations show that the smallest bias and RMSEs are obtained for the Fama and

French (2010) method. The methods of Kosowski et al. (2006) and Ferson and Chen (2015)

also follow with fairly good performance. The performance of the other methods is a lot

worse as measured by their bias and RMSE. The new Harvey and Liu (2018) method has

about the same bias as the benchmark model and lower bias than the adjusted benchmark

model, while its RMSE is larger than both the benchmark and the adjusted benchmark. For

the Harvey and Liu (2018) method, the bias is small for neutral funds and large for skilled
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funds compared to the benchmark.

For a fixed pairwise correlation of ρ = 0.3 (Panel B), the small sample simulation results

show that the preferred methods are the Kosowski et al. (2006) and Ferson and Chen (2015)

methods. For ρ = 0.3, we also find that the bootstrap method of Kosowski et al. (2006)

has a lower bias than the bootstrap method of Fama and French (2010) and that the latter

method identifies too many zero-alpha funds. This result seems puzzling, as the Fama and

French (2010) method should have better performance when the residual cross-correlation

coefficient is high. The finding is the result of the relatively large confidence intervals of the

Fama and French (2010) method. Across the small sample simulations for ρ = 0.3, we find

for all hypothesis tests that the 90% confidence intervals of the Fama and French (2010)

method are 8.3 times wider, on average, relative to those from the method of Kosowski et al.

(2006). This helps explain why the bootstrap method of Fama and French (2010) identifies

too many zero-alpha funds in small sample simulations when the cross-correlation between

fund residuals is high.

The results based on the empirical correlation coefficients (Panel C) are similar to the

results with zero correlation, namely where the lowest bias and RMSE are obtained using

the Fama and French (2010) method, followed by the methods of Kosowski et al. (2006)

and Ferson and Chen (2015). Again, the new Harvey and Liu (2018) method has similar

performance to the two benchmark models.

Overall, the small sample simulation properties vary a lot across the seven models that

we consider. We see that the Kosowski et al. (2006) and Fama and French (2010) bootstrap

methods and the false discovery rate method of Ferson and Chen (2015) have the most

attractive properties for realistically short sample periods.

V. Large Sample Simulation Study

We use the same simulation design as for the small sample simulation study except that we

consider T = 307 months instead of T = 60. So, now we consider a sample that corresponds
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to more than 25 years of time series observations which is similar to our empirical sample.

The sample is large with respect to the time series dimension, not the cross-section. We focus

on the case of no serial dependence. The structure and contents of Table V is similar to that

of Table III.

[Table V about here.]

Table V shows that the smallest bias and RMSE are obtained for the false discovery rate

methods of Barras et al. (2010) and Ferson and Chen (2015) and the bootstrap method of

Fama and French (2010). The Harvey and Liu (2018) has larger average bias and average

RMSE than the benchmark model. Its bias is low for neutral performance and high for skilled

funds compared to the benchmark.

For ρ = 0.3 (Panel B), we now also find that the Fama and French (2010) bootstrap

method has the lowest bias across all selection methods. In comparison to the small sample

simulations in Table III, the length of the average 90% confidence intervals for the hypothesis

tests of the Fama and French (2010) bootstrap method is reduced by 8.1%. The reduction in

the average length of the 90% confidence intervals leads to a smaller bias, as the method now

rejects more null hypotheses of zero fund skill.

We compare the large sample simulations with the small sample simulations in Table III.

The Kosowski et al. (2006), Fama and French (2010), and Ferson and Chen (2015) methods

have the most attractive properties for realistically short sample periods. For long samples,

the Barras et al. (2010) method enters the set of preferred models and the Kosowski et al.

(2006) method exits it.

Thus, the preferred methods for selecting mutual funds are different for realistically small

samples and large samples. For this reason, any inference on small sample performance based

on large sample simulations should be met with some skepticism.
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VI. Empirical Comparison of Mutual Fund Selection Methods

We apply the selection methods more directly to the mutual fund data set. We estimate the

fraction of unskilled, zero-alpha, and skilled funds, respectively, for the full sample period

from 1992-2017 and for the six five-year subsamples from Table I. We compare the results

across mutual fund selection methods.

[Table VI about here.]

Table VI shows the empirical results for the entire sample period. Each panel shows the

estimated fractions of unskilled, neutral, and skilled funds for the different investment styles:

Panel A for all investment styles, panel B for aggressive growth funds, panel C for growth

funds, panel D for growth and income funds, and panel E for income funds. The fraction of

unskilled, neutral, and skilled funds are about the same across investment styles for a given

fund selection method. So, investment style is only of minor importance when comparing

fund selection methods.

All methods except Harvey and Liu (2018) (informally) identify two skill distributions in

the data, namely unskilled and neutral funds. We see this because they find that roughly

zero percent of the funds are skilled, π+ ≈ 0. Only the benchmark model finds skilled funds

(0.7%), however not more than we would expect to be Type I errors. Additionally, our

simulation results suggest that the benchmark model overestimates the fraction of skilled

funds. The finding of no skilled funds is consistent with the mutual fund literature in general,

cf. Carhart (1997).

The benchmark model and the adjusted benchmark model both find that most of the

funds have neutral performance (76% and 99%, respectively). The same results are found

by the false discovery rate method of Barras et al. (2010) (64%). In contrast, the bootstrap

methods of Kosowski et al. (2006) and Fama and French (2010) as well as the false discovery

rate method of Ferson and Chen (2015) find that most of the funds are unskilled (79%, 79%,

and 86%). The large fraction of unskilled funds identified by the methodology of Ferson and
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Chen (2015) is noteworthy in light of our simulation results. Our results indicate that this

approach underestimates the fraction of unskilled funds.

We find that there is a lot of variation in the empirical results across selection methods.

This is similar to our simulation results, where the benchmark model and Barras et al. (2010)

find the most zero alpha funds. This could indicate that they are overly conservative. In the

simulation study we find that the bootstrap methods and the Ferson and Chen (2015) method

are the most precise for small samples. These methods produce very similar results empirically

by finding mostly unskilled funds and classifying the remaining funds as zero-alpha funds.

The empirical findings based on the methodology of Harvey and Liu (2018) are very

different from the other six methods. This method only finds unskilled funds.15 The simulation

results for this method are also very different from the other methods, both for small and

large samples.

[Table VII about here.]

Table VII shows the estimated fractions of unskilled, neutral, and skilled funds for each

of the subperiods for all investment styles.

The Harvey and Liu (2018) model still only detects one skill group for all five-year periods;

unskilled funds. So, here the results are unchanged compared to the full sample.

Otherwise, the fraction of unskilled, neutral, and skilled funds vary considerably across

the subsamples and across selection methods.

We find some skilled funds when we consider five-year subsamples which is in contrast

to the full sample period where the fraction of skilled funds was approximately zero for all

selection methods and investment styles. Still with the notable exception of Ferson and Chen

(2015), all models indentify very low fractions of skilled funds. The Ferson and Chen (2015)

method identifies very high fractions of skilled funds in the first two sub-periods (20% and
15When we use a two-component GMD specification, we find that the two GMD components have identical

location and scale parameter estimates. Therefore, we do not test whether the model with two GMD
components provide an improvement over a one component specification.
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32%), but no skilled funds in the last part of our sample. For the 1992-1997 period, the

different results could partly be due to the popularization of the Fama and French (1993)

SMB and HML factors around 1993. Cremers and Petajisto (2009) find that the active share

of actively managed funds decreases over time. They argue that recent data is influenced by

”closet indexing” among active funds. This could also indicate less skill in more recent data.

The two benchmark models and the Barras et al. (2010) method find that the majority

of funds are neutral during all subsamples. Likewise, Ferson and Chen (2015) find that the

majority of funds are unskilled in all sample periods. For those four methods the subsample

results are similar to the entire sample results.

For the boothstrap methods of Kosowski et al. (2006) and Fama and French (2010) the

results change over time. In the first two subperiods (1992-1997 and 1997-2002) the majority

of funds have neutral skills, while thereafter the majority are unskilled, similar to the entire

sample period. The fraction of unskilled and neutral funds for the two bootstrap methods is

quite different. This is due to the larger confidence intervals of the Fama and French (2010)

method compared to the Kosowski et al. (2006) method. The finding of less unskilled funds

in the earlier part of our sample period is consistent with Kosowski et al. (2006), Barras et al.

(2010), and Ferson and Chen (2015) who find that fund performance becomes worse in more

recent data.

VII. Conclusion

We set up a simulation study based on an empirically motivated composite skill distribution

and investigate the performance of seven popular fund selection methodologies. We document

significant differences in performance between the methodologies for both short and for long

sample periods. Furthermore, we show that the relative performance of the models differs for

short and long samples. This indicates that inference on short sample performance based on

simulations with long samples can be misleading.

We carry out an empirical analysis of the selection methodologies for US equity mutual
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funds. We show that the differences in performance of the selection methods are empirically

relevant for short subsamples as well as for a larger sample.
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A. Mutual Fund Selection Methods

This appendix describes how we implement the non-benchmark mutual fund selection methods

that we include in our study. Subsection A.1 describes the bootstrap method of Kosowski

et al. (2006), subsection A.2 describes the bootstrap method of Fama and French (2010),

subsection A.3 describes the false discovery rate method of Barras et al. (2010), subsection

A.4 describes the false discovery rate method of Ferson and Chen (2015), and subsection A.5

describes the structural modeling approach by Harvey and Liu (2018).

A.1. The Kosowski et al. (2006) Bootstrap Method

To employ the Kosowski et al. (2006) bootstrap, we estimate the four-factor benchmark

model in Equation (1) for fund i and save the parameter estimates, the t̂(α̂i)-statistic and the

time series of fitted residuals {ε̂it, t = Ti0, ..., Ti1}. Time indices Ti0 and Ti1 denote the first

and last monthly return for fund i. Next, we draw with replacement a pseudo time series of

residuals, {ε̂b
i,tε
, tε = sb

Ti0
, ..., sb

Ti1
}, where b is an index for the bootstrap simulation run and

time indices sb
Ti0
, ..., sb

Ti1
are drawn uniformly from fund i’s original time indices Ti0, ..., Ti1.

Under the null hypothesis of zero abnormal performance, we generate pseudo excess returns:

Rb
i,t = β̂iXt + ε̂b

i,tε
, (6)

where the excess return series for fund i is generated with the original parameter estimates,

factor returns in their original historical ordering, and the resampled vector of residuals.

We then regress the pseudo excess returns on the original set of factor returns,

Rb
i,t = αb

i + βb
iXt + ε̃i,t, (7)

and save the estimate of t̂(α̂b
i). We estimate t̂(α̂b

i) with a Newey and West (1987) heteroskedas-

ticity and autocorrelation adjusted standard error. Note that the true values of the saved
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bootstrapped statistics are zero, as implied by the data generating process in Equation (6).

To form cross-sectional bootstrap distributions of t̂(α̂b
i) we repeat the outlined procedure for

all funds i = 1, ..., N across b = 1, ..., 1, 000 bootstrap iterations.

In order to perform inference, we sort the cross-sectional bootstrapped statistics in

descending order for each bootstrap simulation. This produces N probability density functions

(PDFs), which solely depend on sampling variation. Inference is drawn for each fund by

comparing actual t̂ (α̂i)-estimates sorted in descending order with sorted bootstrap PDFs.

Conditional on the sign of the sorted t̂(α̂i)-estimate, we test the null hypothesis of zero

abnormal performance against either positive abnormal performance (αi > 0) or negative

abnormal performance (αi < 0).

As an example, suppose that the best ex post performing fund in terms of its t-statistic

has a t̂ (α̂i)-estimate that is larger than the 5% upper tail cutoff value of the corresponding

bootstrapped PDF. We then draw the conclusion that the top-performing fund has a higher

t-statistic than what can be attributed to luck alone. We compute estimates of skilled,

unskilled, and zero-alpha funds by the counts of significant and insignificant fund t-statistics.

We choose a 5% upper or lower tail cutoff values conditional on the sign of t̂ (α̂i) in each

hypothesis test corresponding to our significance level.

A.2. The Fama and French (2010) Bootstrap Method

To employ the method of Fama and French (2010), we estimate α̂i and the t̂(αi)-statistic from

the four-factor benchmark model in Equation (1) for each fund i. We uniformly draw, with

replacement, a common time index for all funds, tF F = sb
T0 , ..., s

b
T1 , where T0, ..., T1 denote the

first and the last month of the fund sample that we investigate. This is done by resampling

excess returns according to the common time-index, tF F , and deducting fund i’s estimated

alpha at all resampled time-periods where fund i has a monthly excess return observation.

We drop a fund in a bootstrap simulation run if that fund has less than 12 monthly resampled

returns. For fund i, we generate a pseudo excess return series under the null hypothesis of
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zero abnormal performance. Further, we resample the common risk factors according to

the time index tF F , which allows us to regress the zero-alpha excess returns on the jointly

resampled set of factor returns:

Rb
i,tF F
− α̂i = αb

i + βb
iX

b
tF F

+ ε̃i,t. (8)

From Equation (8), we save t̂(α̂b
i) and repeat the outlined procedure for all funds i = 1, ..., N

across b = 1, ..., 1, 000 bootstrap iterations. We estimate t̂(α̂b
i) with a Newey and West (1987)

heteroskedasticity and autocorrelation adjusted standard error. Inference is performed similar

to the Kosowski et al. (2006) bootstrap method.

A.3. The Barras et al. (2010) False Discovery Rate Method

We employ the Barras et al. (2010) FDR method to estimate fractions of skilled, unskilled

and zero-alpha funds. Barras et al. (2010) estimate the fraction of zero-alpha funds as:

π̂0(λ) = Ŵ (λ)
N

1
1− λ, (9)

where λ is a significance threshold above which p-values of fund alphas are assumed to be

generated by zero-alpha funds, Ŵ (λ) is the number of funds with an alpha p-value higher

than the significance threshold λ and N is the number of funds in our sample. We select an

optimal significance threshold, λ∗ ∈ [0.30, 0.70], following the bootstrap method by Storey

(2002), which minimizes the mean squared error of the point estimator π̂0(λ). The fund

p-values required to compute Ŵ (λ) are obtained with the Kosowski et al. (2006) bootstrap

procedure, where we account for potential asymmetry in funds’ estimated t-statistics by

calculating bootstrapped p-values as in Davidson and MacKinnon (2004). Note that to

calculate p-values we do not sort the cross-sectional bootstrap statistics. Instead we calculate
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double sided p-values as:

p̂i = 2 ·min
(

1
B

B∑
b=1
I{t̂bi > t̂i},

1
B

B∑
b=1
I{t̂bi < t̂i}

)
, (10)

where B = 1, 000 is the number of bootstraps, t̂i is the empirical OLS estimate from Equation

(1) for fund i, t̂bi is a bootstrapped t-statistic for fund i from the Kosowski et al. (2006)

method, and I{·} is an indicator function that takes on the value 1 if the statement in curly

brackets is true.

To correct for false discoveries, we estimate the fraction of funds that are expected to

exhibit significant performance purely by chance:

F̂+ (γ) = F̂− (γ) = π̂0 · γ/2, (11)

where F̂+ (γ) and F̂− (γ) are the estimated fractions of lucky and unlucky funds at a given

significance level γ, respectively. We estimate the final fractions of skilled and unskilled funds

by subtracting the expected fraction of funds that have significant performance purely by

chance from the fractions of significantly outperforming, Ŝ+(γ), and underperforming funds,

Ŝ−(γ):

π̂+(γ) = Ŝ+(γ)− π̂0 · γ/2, (12)

π̂−(γ) = Ŝ−(γ)− π̂0 · γ/2.

The fractions Ŝ+(γ) and Ŝ−(γ) are determined from the p-values calculated with Equation

(10) at a given significance level γ. Similar to selecting λ∗, we select a sufficiently high

significance level, γ∗ ∈ [0.30, 0.50], with a bootstrap method that minimizes the MSE of the

point estimators π̂+(γ) and π̂−(γ). Further, we truncate estimated fractions of skilled and

unskilled funds at zero if negative.16

16Details on the bootstrap methods for selecting λ∗ and γ∗ are available in an appendix available at Laurent
Barras’s personal web site.
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A.4. The Ferson and Chen (2015) False Discovery Rate Method

Ferson and Chen (2015) propose a generalization of the FDR by Barras et al. (2010). We

employ their generalization and follow their three-stage estimation procedure with a fixed

significance level of γ = 20%.

In the first estimation stage, we perform three bootstrap simulations with the Fama and

French (2010) method. First, we simulate the cross-section of mutual fund alphas by imposing

zero abnormal performance under the null hypothesis. This produces two critical values t+

and t−, where t+ is a value above which 10% of bootstrapped t-statistics are placed when

the null of zero abnormal performance is true. Similarly, t− is a value below which 10% of

bootstrapped t-statistics are placed when the null of zero abnormal performance is true.

Second, we simulate the cross-section of alphas under the alternative that funds are truly

good and centered around α+ > 0. This simulation produces a parameter estimate, φ̂+,

reflecting the power of the test for good funds and a parameter estimate, δ̂−, which reflects

the confusion of the test for good funds. The power parameter is the fraction of bootstrapped

t-statistics above t+, while the confusion parameter is the fraction of bootstrapped t-statistics

below t−.

Third, we simulate the cross-section of alphas under the alternative that funds are truly

bad and centered around α− < 0. Again, we obtain a power parameter estimate, φ̂−, and

a confusion parameter estimate δ̂+. The power parameter is the fraction of bootstrapped

t-statistics below t− and the confusion parameter is the fraction of bootstrapped t-statistics

above t+.

In the second estimation stage, we apply the information contained in the power and

confusion parameter estimates from the actual cross-section of funds. We denote Ŝ− and

Ŝ+ as the fraction of funds with significant under- and over performance, respectively. We

compute Ŝ− as the fraction of empirical t-statistics below t− and we calculate Ŝ+ as the
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fraction of empirical t-statistics above t+. Then, we minimize the MSE of the equations:

Ŝ− = π̂0 · γ/2 + φ̂−π̂− + δ̂−π̂+, (13)

Ŝ+ = π̂0 · γ/2 + φ̂+π̂+ + δ̂+π̂−.

We numerically minimize the MSE of Equations (13) with respect to the two unknowns

π̂+ and π̂− subject to the Kuhn-Tucker conditions π̂+ ≥ 0, π̂− ≥ 0 and π̂+ + π̂− ≤ 1. This

gives us estimates for fractions of skilled, unskilled, and zero-alpha funds due to the relation

π0 = 1− π+ − π−.

In the third estimation stage, we search for the best values of α− and α+ in terms of

model fit. That is, we perform a grid search across a range of alpha values, repeating the

first two stages of the estimation procedure thus obtaining candidate estimates for skilled,

unskilled, and zero-alpha funds. In our empirical analysis, we search across the annualized

alpha values α ∈ ±[0.48%, 4.80%] with increments of ±0.48%.17 For each set of alpha values,

we obtain fund alpha t-statistics based on the implied simulated mixture distribution, which

we compare to fund alpha t-statistics estimated from actual data.

A formal comparison between the simulated mixture distribution and the actual data in

terms of goodness of fit is determined by the Pearson χ2 statistic:

Pearson χ2 =
K∑

k=1

(Ok −Mk)2

Ok

, (14)

where K is the number of cells, Ok is the number of fund alpha t-statistics coming from cell

k in the data, and Mk is the number of fund alpha t-statistics coming from cell k using the

model. The null hypothesis of the Pearson χ2 test is that the observed frequency distribution

is the same as the model frequency distribution. This implies that the lowest Pearson

χ2-statistic across our range of alpha values produces our final estimates of the fractions for
17In our simulation study, we search across the annualized alpha values α ∈ ±[2.4%, 7.2%] with increments

of ±2.4%. We use higher values of alpha in the simulation study to obtain larger values of the power
parameters φ− and φ+.

33



skilled, unskilled, and zero-alpha funds.

A.5. Harvey and Liu (2018) Noise Reduced Alpha Model

In order to estimate fractions of skilled, unskilled, and zero-alpha funds in our simulation

study, we employ the Noise Reduced Alpha (NRA) model of Harvey and Liu (2018) up to

a three-component GMD and apply their four-stage estimation procedure. The GMD is

characterized by the following parameters:

θ = ({πl}G
l=1, {µl}G

l=1, {σ2
l }G

l=1), (15)

where πl are the weights, µl are the means and σ2
l are the variances for the G = 3 mixture

components.

In the first estimation stage, we denote K = [θ′
,B′

,Σ′ ] as the parameters to be estimated.

B and Σ contain the individual fund-by-fund slope estimates and residual standard error

estimates from the four-factor benchmark model in Equation (1). For the first iteration, K0,

we initialize the EM algorithm with equation-by-equation OLS estimates for B and Σ. For

the initialization of GMD parameters, we randomly draw economically meaningful values

for the mean and variance parameters, and random values for the weight components such

that the relation ∑G
l=1 πl = 1 is kept. More specific, in our empirical study we guess prior

to the estimation that skilled funds have an annual mean parameter of µ+ ∈ [0.1%, 20%],

unskilled funds have an annual mean parameter of µ− ∈ [−0.1%,−20%] and zero-alpha funds

are centered around an annual mean parameter of zero. For all skill groups, we guess that

the annual standard deviation of the mean parameter is σl ∈ [0.1%, 10%].18 The initial values

of the component weights are selected from a sequential procedure where the first weight π1

is set to a random value w1 ∈ [0, 1]. The guess for the second component weight, π2, is set to

a random value over the interval w2 ∈ [0, 1− w1] such that the final guess for π3 becomes
18In the simulation study, we initialize the annualized mean parameters as µ+ ∈ [0.1%, 5%] and µ− ∈

[0.1%, 5%]. Further, we initialize the annualized standard deviations as σl ∈ [0.1%, 5%].
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w3 = 1−w1 −w2. To avoid a local optimum for the EM algorithm, we generate 100 different

sets of starting values for the parameter θ in each estimation run.

The second stage of the estimation uses the parameters from the s-th iteration of the

EM algorithm, K(s), to calculate the expected value of the log complete likelihood function.

The log complete likelihood function is stated with respect to the conditional fund alpha

distribution A, current parameter values, and excess fund returns denoted R:

L(K|K(s)) = EA|R,K(s) [log f(R,A|K)],

= EA|R,K(s) [
N∑

i=1
log f(Ri,t|αi,βi, σi)f(αi|θ)]. (16)

The closed-form solution of L(K|K(s)) does most likely not exist. Therefore, we implement

a Monte Carlo EM algorithm, which replaces the expectation in Equation (16) with the

sample mean. The sample mean is calculated from simulating M = 100 alpha cross-section

samples from the conditional fund alpha distribution A|R:

L̂(K|K(s)) = 1
M

M∑
m=1

[
N∑

i=1
log f(Ri,t|αm

i ,βi, σi)f(αm
i |θ)]. (17)

In the third stage of the estimation procedure, we maximize L̂(K|K(s)) by updating

parameter estimates from K(s) to K(s+1). This is a simple task, as we update fund parameters

B and Σ, and parameters governing the GMD, θ, separately. That is, we rewrite Equation

(17) to:

L̂(K|K(s)) =
N∑

i=1

1
M

M∑
m=1

logf(Ri,t|αm
i ,βi, σi) + 1

M

M∑
m=1

N∑
i=1

logf(αm
i |θ), (18)

where the first part depends on B and Σ, and the latter part depends on θ. We update B and

Σ according to their exact Maximum Likelihood Estimate (MLE), while we update GMD

parameters using responsibilities calculated from the E-step of the algorithm.19

19The formulas for parameter updates are available in Appendix A of Harvey and Liu (2018).

35



The fourth stage of the EM algorithm works by iterating between stages two and three.

We achieve convergence at the s-th iteration of the EM-algorithm if the difference between

all parameters in θs−1 and θs are below some threshold δlim or the iteration counter s hits an

upper predefined limit Slim.

We start an estimation run with 100 initial guesses of θ and save computational time

via three intermediate optimization steps. The first intermediate step sets soft thresholds

at δlim = 10−1 and Slim = 30, which produces 100 rough sets of parameter estimates as

candidates for an optimum. We rank the candidates according to their optimized component

log likelihood function and select the 20 best parameter sets. In the second intermediate step

we set tougher thresholds at δlim = 10−2 and Slim = 50, and rerun the EM-algorithm with

the best parameter sets from the previous optimization step. This produces 20 candidates for

an optimum, which we rank according to their optimized component log likelihood function.

Finally, we select the 10 best sets of parameter estimates and rerun the EM-algorithm at

the computationally demanding thresholds δlim = 10−3 and Slim = 100. After this final

optimization step, we obtain the optimal parameter set, K∗ = [θ∗,B∗,Σ∗], according to the

optimized component log likelihood function.

B. Mutual Fund Sample Description

In this appendix we provide a detailed description of our mutual fund sample. We document

how we exclude passive- and load share classes, how we mitigate omission-, incubation-, and

back-fill bias, how we combine multiple share classes and how we classify funds’ investment

objective using information obtained from the CRSP Survivor Bias Free Mutual Fund

Database.

B.1. Exclusion of Passive Fund Share Classes

We exclude passive mutual fund share classes from the original data if the CRSP index_-

fund_flag equals "B", "D", or "E", corresponding to index-based funds, pure index funds, or
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index fund enhanced, respectively. The variable index_fund_flag is available from 2003 and

onwards. Therefore, we also search fund names for the keyword "index" and remove fund

share classes where this is the case. Further, we also exclude exchange traded fund (ETF)

share classes and exchange traded note (ETN) share classes if the CRSP et_flag equals either

"F" or "N".

B.2. Exclusion of Load-Fund Share Classes

We obtain information on front- and rear-loads from the CRSP variables front_load and

rear_load. We exclude all load share classes, i.e. share classes that have ever had a load

larger than 0%.

B.3. Omission-, Incubation-, and Back-Fill Bias Screens

In order to avoid omission bias (e.g. Elton et al. (2001)) and incubation and back-fill bias

(e.g. Evans (2010)) we use information from a number of CRSP database variables. First, we

exclude share class return observations prior to the reported year of share class organization.

This is done with the variable first_offer_dt, which reports the first date a fund was offered.

Second, if the date where a share class was first offered is missing, then we exclude that share

class from our sample. Third, we exclude share classes that initially have less than $5 million

TNA. Share classes that subsequently fall below $5 million in assets under management are

allowed to remain in the sample. We use the CRSP variable mtna to find the date where a

fund share class is eligible to enter our sample.

B.4. Combining Multiple Share Classes

The CRSP database lists different share classes with the variable crsp_fundno and assigns

share classes into fund portfolios by the variable crsp_portno for funds that are active

after July 2003. Therefore, for fund share classes that are inactive after July 2003, we

combine multiple share classes into specific fund portfolios by investigating the name and

37



monthly returns of individual share classes by using the CRSP variables fund_name and

mret, respectively.

B.5. Fund Classification by Investment Objective

We focus on active no-load open-end US domestic equity fund share classes. We define

equity share classes as classes that at some point in time have 80% or more common stocks

in their portfolio and use the CRSP variable per_com to find the first date for funds to

be eligible in our sample. Conditional on our chosen fund screens, our resulting sample

of 1,481 domestic equity funds are each assigned one of four broad investment objectives.

We classify funds as aggressive growth, growth, growth and income, or income funds using

objective codes from Wiesenberger (1962-1993), Strategic Insight (1993-1998) and Lipper

(1998-present). We select the first available investment objective to classify a fund throughout

its life. That is, after combining multiple share classes, we let the first available share class

investment objective determine the investment objective of the entire fund. Our classification

of investment objectives is listed as follows:

• Aggressive Growth: Wiesenberger: AGG, AG; Strategic Insight: AGG; Lipper: CA.

• Growth: Wiesenberger: G, G-S, S-G, GRO, LTG; Strategic Insight: GRO; Lipper: G.

• Growth and Income: Wiesenberger: GCI, G-I, G-I-S, G-S-I, I-G, I-G-S, I-S-G, S-G-I,

S-I-G, GRI; Strategic Insight: GRI; Lipper: GI.

• Income: Wiesenberger: I, I-S, IEQ, ING; Strategic Insight: ING; Lipper: EI, EIEI.

C. Simulation Study Details

This appendix provides details regarding the simulation study in Section IV.
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C.1. Data Generating Process: Factor Returns and Residuals

In order to simulate factor returns in Equation (3), we draw from the normal distribution

Xt ∼ N (0,ΣX). ΣX is the empirical covariance structure of the factor portfolio returns

which we model via a Cholesky factorization. The covariance matrix ΣX is given as:

ΣX =



σ2
MKT σMKT,SMB σMKT,HML σMKT,MOM

σMKT,SMB σ2
SMB σSMB,HML σSMB,MOM

σMKT,HML σSMB,HML σ2
HML σHML,MOM

σMKT,MOM σSMB,MOM σHML,MOM σ2
MOM


. (19)

For this 4 × 4 symmetric and positive definite matrix, we find C = (cij)i,j=1,...,4 s.t.

ΣX = CCT where C is a square lower triangular matrix. We now calculate cij recursively as:

cjj =

√√√√Σjj,X −
j−1∑
s=1

c2
js, (20)

cij = 1
cjj

(Σij,X −
j−1∑
s=1

Σis,XΣjs,X), for i > j.

The implication of the equations above is that we can simulate correlated factor portfolio

returns by simulating standard normal variates. That is, we can generate the four factor

returns component by component at each time t as:

Xk =
k∑

s=1
cksYs, k = 1, ..., 4, (21)

Ys
i.i.d.∼ N (0, 1).

Similar to generating correlated factor portfolio returns, we follow the same Cholesky

factorization when we impose different correlation structures in fund residual series. Consider
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the covariance matrix of the fund residual series:

Ωu =



ω2
11 ω12 . . . ω1N

ω21 ω2
22 . . . ω2N

... ... . . . ...

ωN1 ωN2 . . . ω2
NN


. (22)

As an example, if we want a correlation coefficient of ρ = 0.3 for all non diagonal elements,

then we model the covariance between fund i and j as:

ωij = ρij

√
ω2

iiω
2
jj, (23)

where ωii and ωjj are standard deviation estimates of fitted residual series for fund i and

j. When we simulate with empirically motivated correlation coefficients, we estimate these

for all funds with 60 return observations in the last five years of our sample (January 2013 -

December 2017). We choose this period since this is when most funds exist simultaneously

(929 funds). In each Monte Carlo simulation, we generate excess returns for 500 funds.

Therefore, we draw 500 random funds and use their pairwise correlation coefficients in every

simulated panel of excess returns.

Note that due to numerical instability, the covariance matrix in Equation (22) can be

rank deficient. When this is the case, we use an eigenvalue decomposition performed by the

MATLAB function cholcov().
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Figure I: Composite Distribution of Mutual Fund Manager Skill

This figure shows the unobserved alpha-distributions for skilled, unskilled, and zero-alpha funds (solid red,
blue, and green lines respectively), and the observed composite distribution of all mutual fund alphas,
(dashed black line). The figure shows the true underlying fund alpha distributions and resulting composite
distribution used in the simulation study. The distributions are characterized by the following parameter
values, which are obtained from empirical data: π+ = 0.11 , π− = 0.59, π0 = 0.30; α+ = 1.32%,
α− = −1.77%, α0 = 0%; σ+ = 0.38%, σ− = 0.61% and σ0 = 0.50%. The α’s and σ’s are stated with their
annualized values.
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Table I: Descriptive Statistics

This table shows the number, TNA, returns in excess of the risk-free rate, standard deviations-, skewness
coefficients-, and kurtosis coefficients of excess returns of U.S. no-load open-end equity funds existing
between June 1992 and December 2017. The statistics are presented for all investment objectives and for
investment styles: aggressive growth, growth, growth and income, and income in panels A-E, respectively. In
each panel for a given subperiod, the first and second columns show the number of funds in existence, the
third and fourth columns show the average fund TNA in $ million, the fifth and sixth columns show the
annualized average fund excess returns in percent(12 ∗Avg(Ri,t)), the seventh and eighth columns show the
annualized average standard deviations of fund excess returns in percent(

√
12 ∗ Std(Ri,t)), the ninth and

tenth columns show the average skewness coefficients of fund excess returns, and the eleventh and twelfth
columns show the average kurtosis coefficients of fund excess returns. Odd numbered columns contain
statistics for all funds that have at least one return observation in a given subperiod, while even numbered
columns contain statistics for all funds that have 60 return observations in a given subperiod. Each
subperiod consists of 60 months and the entire evaluation period consists of 307 months.

Funds TNA Exc. Ret.(%) Std. Dev.(%) Skewness Kurtosis
Period ≥1 ≥60 ≥1 ≥60 ≥1 ≥60 ≥1 ≥60 ≥1 ≥60 ≥1 ≥60

Panel A: All Investment Styles
92-97 466 145 284.28 325.47 10.50 10.45 11.82 10.66 -0.29 -0.23 2.73 2.92
97-02 767 284 592.93 641.60 2.41 3.24 19.97 20.10 -0.26 -0.40 3.18 3.52
02-07 958 420 672.37 721.83 6.71 7.18 11.83 12.97 -0.48 -0.61 3.45 4.17
07-12 1473 530 773.50 837.20 -0.49 -0.22 20.38 20.53 -0.38 -0.44 3.16 3.42
12-17 1503 918 1099.25 1240.23 13.61 14.03 10.00 10.53 -0.16 -0.21 3.04 3.17
13-17 1473 929 1149.42 1320.27 12.89 13.14 9.94 10.40 -0.19 -0.21 3.20 3.24
92-17 2279 1481 698.32 772.31 6.64 6.90 15.08 15.66 -0.47 -0.57 4.22 4.70

Panel B: Aggressive Growth Funds
92-97 32 1 75.82 84.31 10.45 11.06 16.93 13.14 -0.02 -0.08 2.85 3.01
97-02 60 20 308.37 340.66 5.09 6.47 25.52 27.67 -0.18 -0.25 3.27 3.69
02-07 67 33 285.03 295.81 8.18 9.09 14.74 15.11 -0.36 -0.50 3.30 3.61
07-12 87 40 425.72 441.41 0.76 0.28 22.50 22.08 -0.47 -0.43 3.38 3.44
12-17 75 59 763.61 797.12 13.61 14.03 11.63 11.88 -0.27 -0.31 3.15 3.23
13-17 75 60 803.96 843.84 13.94 14.21 11.61 11.71 -0.29 -0.32 3.22 3.35
92-17 123 96 383.55 404.49 7.87 8.08 18.82 18.69 -0.51 -0.52 4.50 4.74

Panel C: Growth Funds
92-97 264 87 242.55 273.74 10.50 10.52 12.22 11.26 -0.27 -0.22 2.74 2.96
97-02 434 167 535.99 577.05 2.12 3.12 20.92 20.58 -0.24 -0.41 3.15 3.50
02-07 562 246 598.93 646.95 6.72 7.21 12.08 13.18 -0.45 -0.59 3.34 4.00
07-12 868 307 750.80 821.79 -0.11 0.12 20.75 20.89 -0.36 -0.43 3.15 3.41
12-17 867 532 1057.93 1187.81 13.08 13.29 10.39 10.83 -0.15 -0.20 2.98 3.11
13-17 846 542 1104.09 1261.12 13.29 13.50 10.37 10.69 -0.17 -0.20 3.13 3.20
92-17 1315 849 651.07 720.21 6.72 7.01 15.64 16.03 -0.44 -0.54 4.16 4.64

Panel D: Growth and Income Funds
92-97 151 53 410.64 471.95 10.51 10.15 10.22 9.72 -0.37 -0.24 2.70 2.88
97-02 234 91 773.30 829.66 2.25 2.71 17.45 17.75 -0.33 -0.42 3.24 3.55
02-07 269 126 860.01 904.65 6.68 6.65 10.98 12.12 -0.56 -0.68 3.72 4.56
07-12 409 155 915.63 976.47 -1.33 -0.89 19.45 19.59 -0.39 -0.45 3.16 3.40
12-17 439 267 1317.29 1494.75 11.59 11.51 9.18 9.85 -0.14 -0.21 3.08 3.19
13-17 429 265 1392.60 1612.02 12.28 12.55 9.08 9.74 -0.20 -0.21 3.28 3.30
92-17 658 430 872.66 960.09 6.35 6.51 13.70 14.67 -0.53 -0.63 4.32 4.78

Panel E: Income Funds
92-97 19 4 114.32 119.43 12.22 12.68 10.18 9.31 -0.45 -0.43 2.66 2.63
97-02 39 6 474.16 532.12 3.45 3.81 15.98 16.88 -0.24 -0.34 3.07 3.08
02-07 60 15 1099.22 1309.22 4.52 6.85 10.06 12.10 -0.49 -0.70 3.38 4.85
07-12 109 28 721.80 781.44 -1.61 -0.86 19.26 19.73 -0.37 -0.41 3.11 3.66
12-17 122 60 854.97 1032.28 11.59 11.51 9.14 9.49 -0.18 -0.27 3.23 3.56
13-17 123 62 838.66 1042.09 11.42 11.45 9.04 9.32 -0.21 -0.23 3.32 3.27
92-17 183 106 653.58 759.10 6.27 6.79 13.49 13.98 -0.50 -0.61 4.18 4.85
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Table II: Benchmark Mutual Fund Performance

This table shows annualized alphas for the unconditional four-factor model in Equation (1) for all funds as
well as for investment styles: aggressive growth, growth, growth and income, and income. In panel A
regressions for equal-weighted portfolios are based on monthly observations from June 1992 to December
2017. Panel A shows annualized estimates of intercepts (12 ∗ α̂), regression slopes (b̂, ŝ, ĥ and m̂) and
adjusted-R2. Figures in parentheses denote Newey and West (1987) heteroskedasticity and autocorrelation
consistent estimates of double-sided p-values under the null hypothesis that a parameter equals zero. Panel B
shows annualized intercept estimates in percent for equal-weighted portfolios of funds that have existed for at
least one month or the entire five-year subperiod. Equal-weighted portfolios are rebalanced monthly in order
to include all existing funds at the beginning of a given month.

Panel A: Full Sample Factor Model Estimates
12 ∗ α̂ b̂ ŝ ĥ m̂ R2

All (1,481) -1.00% 0.96 0.03 0.01 -0.01 98.70%
(0.02) (0.00) (0.08) (0.52) (0.58)

Aggressive Growth (96) -0.69% 1.04 0.30 -0.13 0.02 95.52%
(0.40) (0.00) (0.00) (0.00) (0.26)

Growth (849) -1.01% 0.98 0.05 -0.03 0.00 98.51%
(0.03) (0.00) (0.01) (0.22) (0.97)

Growth & Income (430) -1.03% 0.92 -0.05 0.10 -0.02 98.61%
(0.01) (0.00) (0.01) (0.00) (0.05)

Income (106) -0.62% 0.90 -0.05 0.13 -0.03 97.90%
(0.18) (0.00) (0.00) (0.00) (0.03)

Panel B: Annualized Alpha for Five Year Subperiods
Time Period 1992-

1997
1997-
2002

2002-
2007

2007-
2012

2012-
2017

2013-
2017

All (Obs≥1) -1.03 -1.15 -1.73 -1.83 -1.15 -1.46
All (Obs≥60) -0.85 -0.48 -1.39 -1.51 -1.02 -1.32
Aggressive Growth (Obs≥1) -1.13 -0.06 -1.85 -1.82 -1.15 -0.94
Aggressive Growth (Obs≥60) -0.73 0.94 -1.30 -2.18 -0.82 -1.37
Growth (Obs≥1) -1.06 -1.26 -1.69 -1.69 -1.10 -1.41
Growth (Obs≥60) -0.69 -0.58 -1.36 -1.37 -0.94 -1.25
Growth and Income (Obs≥1) -1.00 -1.25 -1.48 -2.05 -1.22 -1.53
Growth and Income (Obs≥60) -1.23 -0.69 –1.49 -1.60 -1.15 -1.42
Income (Obs≥1) 0.37 -0.69 -3.32 -2.18 -1.30 -1.62
Income (Obs≥60) 0.90 0.77 -1.09 -1.67 -1.35 -1.57
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Table III: Small Sample Properties with No Serial Dependence

This table shows estimates for the simulated cross-sectional skill distributions generated by Equation (3).
Skill estimates are presented for the mutual fund selection methods: benchmark model (1), benchmark model
with a Bonferroni correction (2), Kosowski et al. (2006) (3), Fama and French (2010) (4), Barras et al. (2010)
(5), Ferson and Chen (2015) (6), and Harvey and Liu (2018) (7). We present estimates based on three
different data generating processes for N = 500 funds across T = 60 months. For all results in this table
return panels are generated with serially independent residuals. In Panel A we consider fixed pairwise
correlation coefficients between all funds of ρ = 0. In Panel B we set ρ = 0.3, while Panel C presents results
based on the empirical correlation coefficients to match actual cross-sectional data heterogeneity. The true
weights of the s = +,−, 0 skill distributions are π+ = 11%, π− = 59% and π0 = 30%. For M = 100 Monte
Carlo simulation we calculate Bias and RMSE for individual skill distributions πs. Bias and RMSE use the
following definitions: Biass = 1

M

∑M
m=1 π̂m,s − πs and RMSEs =

√
1

M

∑M
m=1(π̂m,s − πs)2. We also

summarize the average absolute bias and the average RMSE across all skill distribution estimates where
Avg. Abs. Bias = 1

S

∑S
s=1 |Biass| and Avg. RMSE = 1

S

∑S
s=1 RMSEs.

(1) (2) (3) (4) (5) (6) (7)
Panel A ρ = 0
π− Bias -38.13 -53.80 2.16 2.16 -29.27 -9.30 -33.28

RMSE 38.16 53.81 2.92 2.92 29.47 10.24 46.39
π0 Bias 41.24 63.76 -7.67 -1.29 30.36 2.06 -6.21

RMSE 41.29 63.77 8.79 5.37 30.77 6.40 32.97
π+ Bias -3.11 -9.96 5.51 -0.87 -1.10 7.24 39.50

RMSE 3.37 9.97 7.44 5.66 3.05 8.09 55.89
Average Absolute Bias 27.49 42.50 5.11 1.44 20.24 6.20 26.33
Average RMSE 27.61 42.51 6.38 4.65 21.09 8.24 45.08
Panel B ρ = 0.3
π− Bias -37.60 -53.64 -2.44 -27.00 -29.23 -6.70 -32.13

RMSE 38.69 53.72 20.58 35.23 32.62 22.83 46.62
π0 Bias 40.15 63.50 -8.63 30.94 28.86 -5.38 4.13

RMSE 40.56 63.55 10.77 36.31 30.24 12.55 39.13
π+ Bias -2.55 -9.86 11.07 -3.94 0.36 12.08 27.99

RMSE 6.52 9.91 25.74 12.50 10.88 20.56 48.59
Average Absolute Bias 26.77 42.33 7.38 20.63 19.48 8.05 21.42
Average RMSE 28.59 42.39 19.03 28.01 24.58 18.65 44.78
Panel C Data Dependent
π− Bias -22.70 -49.36 2.56 -5.83 -22.70 -11.86 -32.90

RMSE 31.69 49.42 6.96 13.47 23.56 14.58 46.10
π0 Bias 31.10 58.04 -15.55 6.01 18.84 4.05 -4.98

RMSE 31.32 58.08 16.15 10.54 19.50 8.45 32.27
π+ Bias 0.26 -8.67 12.99 -0.18 3.85 7.81 37.87

RMSE 3.20 8.74 16.32 6.99 6.52 9.74 53.95
Average Absolute Bias 18.02 38.69 10.37 4.01 15.13 7.91 25.25
Average RMSE 22.07 38.75 13.14 10.33 16.53 10.92 44.11
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Table IV: Small Sample Properties with First Order Serial Dependence

This table shows estimates for the simulated cross-sectional skill distributions generated by Equation (3).
Skill estimates are presented for the mutual fund selection methods: benchmark model (1), benchmark model
with a Bonferroni correction (2), Kosowski et al. (2006) (3), Fama and French (2010) (4), Barras et al. (2010)
(5), Ferson and Chen (2015) (6) and Harvey and Liu (2018) (7). We present estimates based on three
different data generating processes for N = 500 funds across T = 60 months. For all results in this table
return panels are generated with first order serial dependence in residuals for γ = 0.08. In Panel A we
consider fixed pairwise correlation coefficients between all funds of ρ = 0. In Panel B we set ρ = 0.3, while
Panel C presents results based on the empirical correlation coefficients to match actual cross-sectional data
heterogeneity. The true weights of the s = +,−, 0 skill distributions are π+ = 11%, π− = 59% and π0 = 30%.
For M = 100 Monte Carlo simulation we calculate Bias and RMSE for individual skill distributions πs. Bias
and RMSE use the following definitions: Biass = 1

M

∑M
m=1 π̂m,s − πs and RMSEs =

√
1

M

∑M
m=1(π̂m,s − πs)2.

We also summarize the average absolute bias and the average RMSE across all skill distribution estimates
where Avg. Abs. Bias = 1

S

∑S
s=1 |Biass| and Avg. RMSE = 1

S

∑S
s=1 RMSEs.

(1) (2) (3) (4) (5) (6) (7)
Panel A ρ = 0
π− Bias -38.30 -54.19 1.96 1.96 -30.04 -10.25 -35.46

RMSE 38.34 54.19 2.77 2.77 30.20 11.09 48.66
π0 Bias 41.72 64.22 -6.74 -0.44 31.47 3.60 -2.55

RMSE 41.78 64.23 8.05 4.68 31.87 7.36 36.23
π+ Bias -3.42 -10.03 4.78 -1.52 -1.42 6.65 38.01

RMSE 3.62 10.04 6.94 5.17 3.48 7.62 55.25
Average Absolute Bias 27.82 42.81 4.49 1.31 20.98 6.83 25.34
Average RMSE 27.91 42.82 5.92 4.21 21.85 8.69 46.71
Panel B ρ = 0.3
π− Bias -37.68 -53.89 -3.02 -25.25 -29.16 -6.50 -36.89

RMSE 39.19 53.98 24.28 37.07 33.87 26.16 47.61
π0 Bias 40.79 63.90 -8.81 30.56 29.75 -3.76 4.93

RMSE 41.40 63.95 11.02 38.45 31.61 13.74 38.67
π+ Bias -3.12 -10.01 11.83 -5.31 -0.58 10.26 31.96

RMSE 6.87 10.06 27.88 11.04 11.32 20.81 51.05
Average Absolute Bias 27.20 42.60 7.88 20.37 19.83 6.84 24.60
Average RMSE 29.15 42.66 21.06 28.85 25.60 20.24 45.77
Panel C Data Dependent
π− Bias -31.80 -49.89 2.49 -5.40 -22.79 -12.19 -32.36

RMSE 32.19 49.95 8.36 15.14 23.90 15.09 44.90
π0 Bias 32.06 58.75 -13.97 5.98 19.98 5.08 -4.74

RMSE 32.33 58.80 15.10 11.42 21.08 8.58 32.24
π+ Bias -0.27 -8.86 11.48 -0.58 2.81 7.11 37.09

RMSE 4.09 8.94 17.15 8.71 7.34 10.66 52.50
Average Absolute Bias 21.38 39.17 9.31 3.99 15.19 8.13 24.73
Average RMSE 22.87 39.23 13.54 11.76 17.44 11.44 43.21
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Table V: Large Sample Properties with No Serial Dependence

This table shows estimates for the simulated cross-sectional skill distributions generated by Equation (3).
Skill estimates are presented for the mutual fund selection methods: benchmark model (1), benchmark model
with a Bonferroni correction (2), Kosowski et al. (2006) (3), Fama and French (2010) (4), Barras et al. (2010)
(5), Ferson and Chen (2015) (6) and Harvey and Liu (2018) (7). We present estimates based on three
different data generating processes for N = 500 funds across T = 307 months. For all results in this table
return panels are generated with serially independent residuals. In Panel A we consider fixed pairwise
correlation coefficients between all funds of ρ = 0. In Panel B we set ρ = 0.3, while Panel C presents results
based on the empirical correlation coefficients to match actual cross-sectional data heterogeneity. The true
weights of the s = +,−, 0 skill distributions are π+ = 11%, π− = 59% and π0 = 30%. For M = 100 Monte
Carlo simulation we calculate Bias and RMSE for individual skill distributions πs. Bias and RMSE use the
following definitions: Biass = 1

M

∑M
m=1 π̂m,s − πs and RMSEs =

√
1

M

∑M
m=1(π̂m,s − πs)2. We also

summarize the average absolute bias and the average RMSE across all skill distribution estimates where
Avg. Abs. Bias = 1

S

∑S
s=1 |Biass| and Avg. RMSE = 1

S

∑S
s=1 RMSEs.

(1) (2) (3) (4) (5) (6) (7)
Panel A ρ = 0
π− Bias -21.26 -37.95 3.95 3.95 -13.47 -11.35 -28.55

RMSE 21.35 37.99 4.48 4.48 13.73 11.63 37.98
π0 Bias 16.55 42.85 -21.56 -21.33 3.91 1.73 4.98

RMSE 16.71 42.89 21.62 21.40 5.40 3.65 30.01
π+ Bias 4.71 -4.89 17.60 17.38 9.57 9.62 23.57

RMSE 4.93 5.00 17.84 17.63 9.90 9.87 36.99
Average Absolute Bias 14.17 28.57 14.37 14.22 8.98 7.57 19.04
Average RMSE 14.33 28.63 14.65 14.50 9.68 8.38 34.99
Panel B ρ = 0.3
π− Bias -21.85 -38.35 2.72 -8.94 -14.05 -10.17 -30.18

RMSE 23.09 38.67 9.28 14.47 16.55 13.90 40.30
π0 Bias 16.32 42.88 -21.99 0.55 3.19 -2.53 4.12

RMSE 16.76 43.04 22.21 5.34 5.53 5.11 30.76
π+ Bias 5.53 -4.53 19.27 8.39 10.85 12.70 26.06

RMSE 7.48 5.21 22.34 11.76 13.20 14.79 39.06
Average Absolute Bias 14.57 28.59 14.66 5.96 9.37 8.47 20.12
Average RMSE 15.78 28.97 17.94 10.52 11.76 11.26 36.71
Panel C Data Dependent
π− Bias -14.21 -28.92 4.55 2.83 -7.68 -8.77 -21.91

RMSE 14.63 29.10 5.51 5.03 8.51 9.42 30.85
π0 Bias 5.08 29.58 -24.40 -17.27 -5.84 -3.57 4.08

RMSE 5.71 29.72 24.44 17.40 6.71 4.38 25.61
π+ Bias 9.12 -0.65 19.85 14.44 13.52 12.34 17.83

RMSE 9.41 1.76 20.23 14.86 13.86 12.64 26.66
Average Absolute Bias 9.47 19.72 16.27 11.52 9.01 8.23 14.61
Average RMSE 9.92 20.19 16.73 12.43 9.69 8.81 27.70
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Table VI: Full Sample Mutual Fund Skill Fractions

This table shows estimates for groups of unskilled (π−), zero-alpha (π0), and skilled (π+) funds with at least
60 monthly return observations covering the sample period from June 1992 to December 2017. Skill
estimates are presented for all investment styles (1,481 funds) in Panel A and for investment styles:
Aggressive Growth (96 funds), Growth (849 funds), Growth and Income (430 funds), and Income (106 funds)
in Panels B-E, respectively. The table presents results for the following mutual fund selection methods:
benchmark model (1), benchmark model with a Bonferroni correction (2), Kosowski et al. (2006) (3), Fama
and French (2010) (4), Barras et al. (2010) (5), Ferson and Chen (2015) (6), and Harvey and Liu (2018) (7).

(1) (2) (3) (4) (5) (6) (7)
Panel A: All Investment Styles

π− 23.70% 0.61% 79.27% 79.27% 35.85% 85.64% 100.00%
π0 75.56% 99.39% 20.73% 20.73% 64.15% 14.36%
π+ 0.74% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel B: Aggressive Growth Funds
π− 13.54% 0.00% 77.08% 76.04% 24.24% 68.88% 100.00%
π0 86.46% 100.00% 22.92% 23.96% 75.76% 31.12%
π+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel C: Growth Funds
π− 22.85% 0.71% 79.86% 79.86% 37.97% 66.14% 100.00%
π0 76.33% 99.29% 20.14% 20.14% 62.03% 33.86%
π+ 0.82% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel D: Growth and Income Funds
π− 26.28% 1.63% 78.84% 78.84% 37.21% 80.39% 100.00%
π0 73.26% 98.37% 21.16% 21.16% 62.79% 19.61%
π+ 0.47% 0.00% 0.00% 0.00% 0.00% 0.00%

Panel E: Income Funds
π− 29.25% 4.72% 77.36% 77.36% 43.40% 67.68% 100.00%
π0 68.87% 95.28% 22.64% 22.64% 56.60% 32.32%
π+ 1.89% 0.00% 0.00% 0.00% 0.00% 0.00%
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Table VII: Five-Year Mutual Fund Skill Fractions

This table shows estimates for groups of unskilled (π−), zero-alpha (π0), and skilled (π+) funds across
five-year subperiods from June 1992 to December 2017. For each five-year sub-period, a fund is included if it
has at least 24 monthly return observations out of potentially 60 observations. Skill estimates are presented
for the following mutual fund selection methods: benchmark model (1), benchmark model with a Bonferroni
correction (2), Kosowski et al. (2006) (3), Fama and French (2010) (4), Barras et al. (2010) (5), Ferson and
Chen (2015) (6) and Harvey and Liu (2018) (7).

Time Period (1) (2) (3) (4) (5) (6) (7)
92-97 π− 9.81% 0.38% 47.55% 0.75% 9.43% 68.24% 100.00%

π0 83.02% 99.62% 48.68% 99.25% 90.57% 12.06%
π+ 7.17% 0.00% 3.77% 0.00% 0.00% 19.70%

97-02 π− 6.29% 0.39% 47.74% 0.00% 10.43% 49.39% 100.00%
π0 88.21% 99.02% 48.53% 99.61% 86.88% 19.02%
π+ 5.50% 0.59% 3.73% 0.39% 2.69% 31.59%

02-07 π− 21.98% 1.22% 72.21% 71.91% 32.27% 66.68% 100.00%
π0 76.95% 98.63% 27.79% 28.09% 67.73% 33.32%
π+ 1.07% 0.15% 0.00% 0.00% 0.00% 0.00%

07-12 π− 24.25% 0.56% 78.26% 78.08% 34.14% 88.13% 100.00%
π0 75.00% 99.44% 21.74% 21.92% 65.86% 10.85%
π+ 0.75% 0.00% 0.00% 0.00% 0.00% 1.02%

12-17 π− 13.58% 0.57% 77.02% 77.02% 27.61% 63.79% 100.00%
π0 85.75% 99.43% 22.98% 22.98% 72.39% 36.21%
π+ 0.67% 0.00% 0.00% 0.00% 0.00% 0.00%

13-17 π− 19.88% 0.58% 81.85% 81.76% 39.19% 73.16% 100.00%
π0 79.73% 99.42% 18.15% 18.24% 60.81% 26.84%
π+ 0.39% 0.00% 0.00% 0.00% 0.00% 0.00%
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