
Department of Economics and Business Economics

Aarhus University

Fuglesangs Allé 4

DK-8210 Aarhus V

Denmark

Email: oekonomi@au.dk

Tel: +45 8716 5515

Fast and Wild: Bootstrap Inference in Stata Using boottest

James G. MacKinnon, Morten Ørregaard Nielsen, David

Roodman and Matthew D. Webb

CREATES Research Paper 2018-34

mailto:oekonomi@au.dk

Fast and Wild: Bootstrap Inference in Stata Using boottest

David Roodman
Open Philanthropy Project

San Francisco, CA, United States
david.roodman@openphilanthropy.org

James G. MacKinnon
Queen’s University

Kingston, Ontario, Canada
jgm@econ.queensu.ca

Morten Ørregaard Nielsen
Queen’s University

Kingston, Ontario, Canada
and CREATES, Aarhus University, Denmark

mon@econ.queensu.ca

Matthew D. Webb
Carleton University

Ottawa, Ontario, Canada
matt.webb@carleton.ca

November 4, 2018

Abstract
The wild bootstrap was originally developed for regression models with heteroskedasticity

of unknown form. Over the past thirty years, it has been extended to models estimated by
instrumental variables and maximum likelihood, and to ones where the error terms are (per-
haps multi-way) clustered. Like bootstrap methods in general, the wild bootstrap is especially
useful when conventional inference methods are unreliable because large-sample assumptions
do not hold. For example, there may be few clusters, few treated clusters, or weak instru-
ments. The Stata package boottest can perform a wide variety of wild bootstrap tests, often
at remarkable speed. It can also invert these tests to construct confidence sets. As a post-
estimation command, boottest works after linear estimation commands including regress,
cnsreg, ivregress, ivreg2, areg, and reghdfe, as well as many estimation commands based
on maximum likelihood. Although it is designed to perform the wild cluster bootstrap, boottest
can also perform the ordinary (non-clustered) version. Wrappers offer classical Wald, score/LM,
and Anderson-Rubin tests, optionally with (multi-way) clustering. We review the main ideas
of the wild cluster bootstrap, offer tips for use, explain why it is particularly amenable to com-
putational optimization, state the syntax of boottest, artest, scoretest, and waldtest, and
present several empirical examples for illustration.

Keywords: boottest, artest, waldtest, scoretest, Anderson-Rubin test, Wald test, wild boot-
strap, wild cluster bootstrap, score bootstrap, multi-way clustering, few treated clusters

JEL Codes: C15, C21, C23, C25, C36.

1 Introduction
It is common in social science research to assume that the error terms in regression models are
correlated within clusters. These clusters might be, for example, jurisdictions, villages, firm types,
classrooms, schools, or time periods. This is why many Stata estimation commands offer a cluster
option to implement a cluster-robust variance matrix estimator, or CRVE, that is robust to both
intra-cluster correlation and heteroskedasticity of unknown form. Inference based on the standard
errors produced by this option can work well when large-sample theory provides a good guide to

1

the finite-sample properties of the CRVE. This will typically be the case if the number of clusters
is large, if the clusters are reasonably homogeneous, in the sense that they are similar in size and
have similar variance matrices, and—for regressions estimating treatment effects—if the number of
treated clusters is not too small. But inference can sometimes be misleading when these conditions
do not hold.

One way to improve inference when large-sample theory provides a poor guide is to use the
bootstrap. The idea is to generate a large number of bootstrap samples that mimic the distribution
from which the actual sample was obtained. Each of them is then used to compute a bootstrap test
statistic, using the same test procedure as for the original sample. The bootstrap P value is then
calculated as the proportion of the bootstrap statistics that are more extreme than the actual one
from the original sample. See, among many others, Davison and Hinkley (1997) and MacKinnon
(2009) for a general introduction.

In general, bootstrap inference will be more reliable the more closely the bootstrap data-
generating process (DGP) matches the (unknown) true DGP; see Davidson and MacKinnon (1999).
For many regression models, the wild bootstrap (Wu, 1986; Liu, 1988) frequently does a good job
of matching the true DGP. It is implemented by multiplying the residuals from the original linear
model by certain random weights in order to construct bootstrap samples with dependent variables
that are related to the independent variables by the same linear model. Cameron, Gelbach, and
Miller (2008), hereafter CGM (2008), adapted this approach to models with clustered errors, hold-
ing the random weights fixed within each cluster in each bootstrap replication. Simulation evidence
suggests that bootstrap tests based on the wild and wild cluster bootstraps often perform well; see,
among others, Davidson and MacKinnon (2010), MacKinnon (2013), and MacKinnon and Webb
(2017a).

A less well-known strength of the wild bootstrap is that, in many important cases, its simple
and linear mathematical form lends itself to extremely fast implementation. As we will explain
in Section 5, the combined algorithm for generating a large number of bootstrap replications and
computing a test statistic for each of them can often be condensed into a few matrix formulas. For
the linear regression model with clustered errors, viewing the process in this way opens the door
to fast implementation of the wild cluster bootstrap.

The post-estimation command boottest implements several versions of the wild cluster boot-
strap, which include the ordinary (non-clustered) wild bootstrap as a special case. It supports:

• inference after OLS estimation with regress;

• inference after restricted OLS estimation with cnsreg;

• inference after the wild restricted efficient bootstrap of Davidson and MacKinnon (2010)
for two-stage least squares, limited information maximum likelihood, and other instrumental
variables (IV) methods, as with ivregress and ivreg2 (Baum, Schaffer, and Stillman, 2007);

• inference after maximum likelihood (ML) estimation via the “score bootstrap” (Kline and
Santos, 2012) with such ML-based commands as probit, logit, glm, sem, gsem, and the
user-written cmp (Roodman, 2011);

• multi-way clustering, even after estimation commands that do not support it;

• models with one-way fixed effects, estimated with areg, reghdfe (Correia, 2016), xtreg,
xtivreg, or xtivreg2 with the fe option;

• inversion of tests of one-dimensional hypotheses to derive confidence sets;

2

• plotting of the corresponding confidence functions.

Section 2 of this paper describes the linear regression model with one-way clustering and explains
how to compute cluster-robust variance matrices. Section 3 describes the key ideas of the wild
cluster bootstrap and then introduces several variations and extensions. Section 4 discusses multi-
way clustering and associated bootstrap methods. Section 5 explains the techniques implemented in
boottest to speed up execution of the wild cluster bootstrap, especially when the number of clusters
is small relative to the number of observations. Section 6 discusses extensions to instrumental
variables estimation and to maximum likelihood estimation. Section 7 describes the syntax of the
boottest package. Finally, Section 8 illustrates how to use the program in the context of some
empirical examples.

2 Regression models with one-way clustering
Consider the linear regression model

y = Xβ + u, (1)

where y and u are N×1 vectors of observations and error terms, respectively,X is an N×k matrix
of covariates, and β is a k × 1 parameter vector. The observations are grouped into G clusters,
within each of which the error terms may be correlated. Model (1) can be rewritten as

yg = Xgβ + ug, g = 1, . . . , G, (2)

where the vectors yg and ug and the matrix Xg contain the rows of y, u, and X that correspond
to the g th cluster. Each of these objects has Ng rows, where Ng is the number of observations in
cluster g.

Conditional on X, the vector of error terms u has mean zero and variance matrix Ω =
E(uu′ |X), which is subject to the key assumption of no cross-cluster correlation:

E(ugu
′
h |X) = 0 if g 6= h.

Thus Ω is block-diagonal with blocks Ωg = E(ugu
′
g |X). We make no assumptions about the

entries in these blocks, except that each of the Ωg is a valid variance matrix (positive definite and
finite).

The ordinary least squares (OLS) estimator of β is

β̂ = (X ′X)−1X ′y, (3)

and the vector of estimation residuals is

û = y −Xβ̂. (4)

The conditional variance matrix of the estimator β̂ is

Var
(
β̂ |X

)
= (X ′X)−1X ′ΩX(X ′X)−1. (5)

This expression cannot be computed, because it depends on Ω, which by assumption is not known.
The feasible analog of (5) is the cluster-robust variance estimator (CRVE) of Liang and Zeger
(1986). It replaces Ω by the estimator Ω̂, which has the same block-diagonal form as Ω, but with
Ω̂g = ûgû

′
g for g = 1, . . . , G. This leads to the CRVE

V̂ = m(X ′X)−1X ′Ω̂X(X ′X)−1, Ω̂ = blockdiag(Ω̂1, . . . , Ω̂G), (6)

3

where the scalar finite-sample adjustment factor, m, will be defined below. The center factor in (6)
is often more conveniently computed as

X ′Ω̂X =
G∑

g=1
X ′gûgû

′
gXg. (7)

It should be clear that Ω̂ is in no sense a consistent estimator of Ω, because both are N × N
matrices. However, the “sandwich” estimator V̂ defined in (6) is consistent, in the sense that the
inverse of the true variance matrix defined in (5) times V̂ converges to an identity matrix as G→∞.
A proof of the consistency of the CRVE for general one-way clustering under weak distributional
assumptions that allow both G and the Ng to increase with N is provided in Djogbenou, Mac-
Kinnon, and Nielsen (2018).1

When the error terms in the regression model (1) are potentially heteroskedastic, but uncorre-
lated, we have the “robust” case in informal Stata parlance. This is a special case of the clustered
model (2) in which each cluster contains just one observation. For this model, the CRVE is simply
the heteroskedasticity-robust variance estimator of Eicker (1963) and White (1980).

We now write Ω̂ in a way that will facilitate our discussion of fast computation in Section 5.
We define S as the G×N matrix which by left-multiplication sums the columns of a data matrix
cluster-wise. For example, SX is the G × k matrix of cluster-wise sums of the columns of X.
Note that S′S is the N × N indicator matrix whose (i, j)th entry is 1 or 0 according to whether
observations i and j are in the same cluster. Left-multiplying by S′ expands a matrix with one row
per cluster to a matrix with one row per observation, by duplicating entries within each cluster.

We also adopt notation used for the family of colon-prefixed “broadcasting” operators in Stata’s
matrix programming language, Mata. For example, if A and B have the same dimensions, then
A :*B is the Hadamard (elementwise) product. But if v is a column vector while B is a matrix, and
if the two have the same number of rows, then v :*B is the columnwise Hadamard product of v with
the columns of B. As in Mata, we give :* lower precedence than ordinary matrix multiplication.
For later use, we note that, if v is a column vector, then the :* operator obeys the identities

(v :*A)′ = A′ :*v′ = v′ :*A′, (8)
v :*AB = (v :*A)B, (9)
AB :*v′ = A(B :*v′), (10)

A(v :*B) = (A :*v′)B. (11)

In terms of these constructs, the CRVE in (6) is

V̂ = m(X ′X)−1X ′Ω̂X(X ′X)−1, Ω̂ = û :*S′S :* û′. (12)

By Stata convention, the small-sample correction m in (6) and (12) is

m = G

G− 1 ×
N − 1
N − k

. (13)

This choice has the intuitive property that, in the limiting case of G = N, i.e. the “robust” case,
the expression reduces to the classical N/(N − k) correction factor.

1The first consistency result for a CRVE, which required that the Ng and Ωg be the same for all clusters, appeared
in White (1984). These assumptions were weakened in Hansen (2007) to allow the Ωg to vary across clusters and
further weakened in Carter, Schnepel, and Steigerwald (2017), which, however, effectively assumed that the error
terms are very nearly normally distributed.

4

The CRVE in (12) allows for the possibility that individual observations within each cluster
are not independent of each other. In other words, for purposes of estimation, the effective sample
size may be less than the formal sample size N. In the extreme case of complete within-group
dependence, the cluster becomes the effective unit of observation, and the effective sample size
becomes G.

The large-sample theory of the CRVE (Carter, Schnepel, and Steigerwald, 2017; Djogbenou,
MacKinnon, and Nielsen, 2018) is based on the assumption that G→∞ rather than N →∞.2 This
appears to be why Stata has long used the t(G−1) distribution to obtain P values for cluster-robust
t-statistics, a practice supported by the theory in Bester, Conley, and Hansen (2011). However this
theory can be misleading when G is small, or the clusters differ greatly in size or in the structure of
their variance matrices, or (in the treatment case) if there are few treated clusters. In some cases,
it can result in severe overrejection. Simulation results that show the severity of this overrejection
may be found in MacKinnon and Webb (2017b, 2018) and Djogbenou, MacKinnon, and Nielsen
(2018), among others. In extreme cases, tests at the .05 level can reject well over 60% of the time.

The “effective number of clusters” developed in Carter, Schnepel, and Steigerwald (2017) often
provides a useful diagnostic, which can be computed using the package clusteff; see Lee and
Steigerwald (2018). Inference based on the t(G− 1) distribution is likely to be unreliable when G∗,
the effective number of clusters, is much smaller than G, especially when G∗ is less than about 20.
In such cases, the wild cluster bootstrap and the t(G − 1) distribution may yield inferences that
differ sharply. However, there is no reason to restrict the use of the wild cluster bootstrap to such
cases. Because boottest is so fast, we recommend using it all the time, at least for final results.

3 The wild cluster bootstrap
Bootstrap methods for hypothesis testing involve generating many bootstrap samples that resemble
the actual one, computing the test statistic for each of them, and then deciding how extreme the
original test statistic is by comparing it with the distribution of the bootstrap test statistics.
This sort of bootstrapping often works well. In some cases, it provides an asymptotic refinement,
which means that, as the sample size increases, the bootstrap distribution approaches the actual
distribution faster than does the asymptotic distribution that is normally relied upon (such as the
t or chi-squared). This type of theoretical result holds for test statistics that are asymptotically
pivotal, such as most t-statistics.

In this section, we discuss the wild cluster bootstrap (WCB), which was proposed in CGM
(2008) and the validity of which was proved in Djogbenou, MacKinnon, and Nielsen (2018). It is a
generalization of the ordinary wild bootstrap (WB), which was developed in Liu (1988) for the non-
clustered, heteroskedastic case, following a suggestion in Wu (1986) and commentary thereon by
Beran (1986). Härdle and Mammen (1993) appears to have been the first paper to call the method
“wild,” observing that it “. . . can be thought of as attempting to reconstruct the distribution of
each residual through the use of one single observation.”

3.1 The algorithm

The bootstrap method most deeply embedded in Stata—via the bootstrap prefix command—is a
nonparametric bootstrap that, when applied to regression models, is often called the “pairs boot-
strap.” In the estimation context set out in the previous section, this bootstrap would typically

2An alternative large-sample framework assumes that G is small (or fixed) and Ng → ∞ for all g, and combines
this with restrictions on the intra-cluster dependence; see, e.g., Hansen (2007).

5

operate by resampling (yg,Xg) pairs at the cluster level (Field and Welsh, 2007). This is asymptot-
ically valid, but some of the bootstrap samples may not resemble the actual sample, especially if the
cluster sizes vary a lot. In a difference-in-differences context with few treated clusters, the treatment
dummy could even equal zero for all observations in some bootstrap samples. For these reasons,
the pairs cluster bootstrap can work poorly in some cases; see Bertrand, Duflo, and Mullainathan
(2004) and MacKinnon and Webb (2017a).

In the wild cluster bootstrap, all the bootstrap samples have the same covariates X. If the
bootstrap samples are denoted by an asterisk and indexed by b, only the bootstrap error vector
u∗b, and hence also the bootstrap dependent variable y∗b, differs across them. In particular, the
vectors y∗b are generated, cluster by cluster, as

y∗bg = Xgβ̈ + u∗bg , u∗bg = v∗bg üg, (14)

where β̈ is an estimate of β, and üg is the vector of residuals for cluster g computed using β̈. The
scalar v∗bg is an auxiliary random variable with mean 0 and variance 1, sometimes referred to as
a “wild weight.” It is often drawn from the Rademacher distribution, meaning that it takes the
values −1 and +1 with equal probability. The choice of β̈, and hence also üg, will be discussed
just below. Using the matrix S defined above, we can rewrite the wild bootstrap DGP as

y∗b = Xβ̈ + u∗b, u∗b = ü :*S′v∗b, (15)

where v∗b is a G× 1 vector with g th element v∗bg .
Because the v∗bg are independent of X and the üg and have mean 0 and variance 1, multiplying

the üg by v∗bg as in (14) preserves the first and second moments of the üg. Specifically, let E∗ denote
expectation conditional on the data, y and X, so that only the v∗bg are treated as random. Then
it is not difficult to see that

E∗(u∗bg) = 0,

E∗(u∗bg u
∗b
h
′) = 0 when g 6= h, and

E∗(u∗bg u
∗b
g
′) = ügü

′
g.

Up to this point, we have used β̈ and ü to denote vectors of parameter estimates and residuals,
without specifying precisely how they are computed. One possibility is that β̈ = β̂ and ü = û,
where β̂ is the vector of OLS estimates for the model (1) and û is the associated vector of residuals.
Another possibility is that β̈ = β̃ and ü = ũ, where β̃ denotes least squares estimates of (1) subject
to whatever restriction(s) are to be tested and ũ denotes the associated vector of residuals. For
example, if we wish to test whether βj = 0, where βj is the j th element of β, we would set β̃j = 0
and obtain the remaining elements of β̃ by regressing y on every column of X except the j th.

These two choices lead to two variants of the wild cluster bootstrap, which we call WCU (for
wild cluster unrestricted) and WCR (for wild cluster restricted). CGM (2008) referred to WCR as
the wild cluster bootstrap with the null imposed. Section 3.2 discusses why it is generally better to
use the WCR variant. To explain how both work, we continue to use the generic notation β̈ and
ü.

For concreteness, we suppose that our objective is to test the hypothesis that βj = 0. Then the
WCU and WCR algorithms are as follows.

1. Regress y on X to obtain β̂, û, and V̂ as given in (3), (4), and (12).

6

2. Calculate the usual cluster-robust t-statistic for the hypothesis that βj = 0,

tj = β̂j√
V̂jj

, (16)

where V̂jj is the j th diagonal element of V̂ .

3. For the WCU bootstrap, set β̈ = β̂ and ü = û. For the WCR bootstrap, regress y on X
subject to the restriction that βj = 0 to obtain β̃ and ũ, and set β̈ = β̃ and ü = ũ.

4. For each of B bootstrap replications:

(a) Using (15), generate a new set of bootstrap error terms u∗b and dependent variables y∗b.
(b) By analogy with step 1, regress y∗b on X to obtain β̂∗b and û∗b, and use the latter in

(12) to compute the bootstrap CRVE V̂ ∗b.
(c) Calculate the bootstrap t-statistic for the null hypothesis that β∗bj = β̈j as

t∗bj =
β̂∗bj − β̈j√

V̂ ∗bjj

, (17)

where V̂ ∗bjj is the j th diagonal element of V̂ ∗b. For the WCR bootstrap, the numerator
of (17) can also be written as β̂∗bj , because β̈j = 0.

5. For a one-tailed test, use the distribution of all the t∗bj to compute the lower-tail or upper-tail
P value,

P̂ ∗L = 1
B

B∑
b=1

I(t∗bj < tj) or P̂ ∗U = 1
B

B∑
b=1

I(t∗bj > tj), (18)

where I(·) is the indicator function. For a two-tailed test, compute either the symmetric or
the equal-tail P value,

P̂ ∗S = 1
B

B∑
b=1

I
(
|t∗bj | > |tj |

)
or P̂ ∗ET = 2 min(P̂ ∗L , P̂ ∗U). (19)

The former is appropriate if the distribution of tj is symmetric around a mean of zero. In
that case, if B is not very small, P̂ ∗S and P̂ ∗ET will be similar. If the symmetry assumption is
violated, which it will be when β̂j is biased, it is better to use P̂ ∗ET. Asymmetry becomes a
greater concern when we extend the WCB to instrumental variables estimation in Section 6.1,
because IV estimators are biased towards the corresponding OLS estimators.

We make a few observations on this algorithm. First, whether the WCR or WCU bootstrap
is used in step 3, the t-statistic calculated in step 4b tests a hypothesis, β = β̈, that is true by
construction in the bootstrap samples, because β̈ is used to construct the samples in step 4a. Since
the bootstrap distribution is generated by testing a null hypothesis on samples from a DGP for
which the null is correct, the resulting bootstrap distribution should mimic the distribution of the
sample test statistic, tj , when the null hypothesis of interest, βj = 0, is also correct.

Second, because the small-sample correction factor m defined in (13) and used in the CRVE
(12) affects both tj and the t∗bj proportionally, the choice of m does not affect any of the bootstrap
P values.

7

The third observation about the algorithm is that it does not produce standard errors (which
is why boottest does not attempt to compute them). Instead, inference is based on P values
and confidence sets; the latter are discussed below in Section 3.5. One could compute the standard
deviation of the bootstrap distribution of β̂∗b and then use it for inference in several ways. However,
this approach relies heavily on the asymptotic normality of β̂ in a case where large-sample theory
may not apply. Higher-order asymptotic theory for the bootstrap (Davison and Hinkley, 1997,
Chapter 5) predicts that this approach should not perform as well as the algorithm discussed
above, and Monte Carlo simulations in CGM (2008) confirm this prediction.

The last observations relate to the number of bootstrap samples, B. Given a significance level α,
it is usually desirable to choose B such that α(B+1) is an integer (Davidson and MacKinnon, 2004,
pp. 163–164). To see why, suppose that we violate this condition by setting B = 20 and α = 0.05
when we are performing a one-sided test using P̂ ∗U in (18). We could form a sorted list containing
the actual test statistic tj and the bootstrap statistics t∗bj ; this list would have 21 members. If tj
and the t∗bj obey the same distribution (which must be true asymptotically under the null, and we
assume to be approximately true in finite samples), then tj is equally likely to take any rank in the
sorted list. As a result, P̂ ∗U can take on just 21 possible values, with equal probability: 0.0, 0.05,
0.10, . . . , 1.0. Only the first of these would result in P̂ ∗U < 0.05. Thus the probability of rejecting
the null would be 1/21, and not the desired 1/20. But if instead we set B = 19, P̂ ∗U could take
on 20 values, and the probability of rejecting the null would be exactly 1/20. For nearly the same
reason, if we are using the equal-tail P value defined in (19), we should choose α(B + 1)/2 to be
an integer.

The argument in the previous paragraph implicitly assumes that tj equals any of the t∗bj with
probability zero. However, there are only 2G unique sets of draws for the Rademacher distribution.
One of these has v∗bg = 1 for all g, so that the corresponding bootstrap sample is the same as the
actual sample. Therefore, each of the t∗bj equals tj with probability 2−G.3 When this happens, it is
not entirely clear how to compute a bootstrap P value; see Davison and Hinkley (1997, Chapter 4)
for a discussion of this issue. The most conservative approach is to change the strict inequalities in
(18) and (19) into non-strict ones, which would cause the P value to be larger whenever tj equaled
any of the t∗bj . boottest does not currently do so. To avoid the problem of having tj equal any of
the t∗bj with non-trivial probability, it is better to use another auxiliary distribution instead of the
Rademacher when G is small; see Section 3.4.

3.2 Imposing the null on the bootstrap data generating process

The bootstrap algorithm defined above lets the wild bootstrap DGP (15) either impose the restric-
tion being tested (WCR) or not (WCU). Usually, it is better to impose the restriction. For any
bootstrap DGP like (15) that depends on estimated parameters, those parameters are estimated
more efficiently when restricted estimates are used (Davidson and MacKinnon, 1999). Intuitively,
since inference involves estimating the probabilities of obtaining certain results under the assump-
tion that the null is true, inference is improved by using bootstrap datasets in which the null in
fact holds. Simulation evidence on this issue is presented in, among many others, Davidson and
MacKinnon (1999) and Djogbenou, MacKinnon, and Nielsen (2018).

For this reason, boottest uses the restricted estimates β̃ and restricted residuals ũ by default.4
Nevertheless, boottest does allow the use of unrestricted estimates. This can be useful in two

3For symmetric tests, one of the unique sets of Rademacher draws has v∗bg = −1 for all g, leading to t∗bj = −tj .
Therefore, each of the |t∗bj | equals |tj | with probability 21−G.

4For the mechanics of restricted OLS in Stata, see [P] makecns and [R] cnsreg.

8

situations. First, WCU makes it possible to invert a hypothesis test to calculate confidence intervals
for all parameters using just one set of bootstrap samples, whereas WCR requires constructing many
sets of bootstrap samples to do so; see Davidson and MacKinnon (2004, Section 5.3) and Section 3.5.
Thus, if the computational cost of WCR is prohibitive (although it rarely is with boottest), WCU
is a practical alternative. Second, even when WCR is computationally manageable, WCU offers
a robustness check. Often WCR P values modestly exceed WCU P values. When they are not
close, this may indicate that the test results are unreliable (MacKinnon and Webb, 2017b); we will
demonstrate such a case in Section 8.3.

3.3 General and multiple linear restrictions

The algorithm given above for wild cluster bootstrap inference is readily generalized to hypotheses
involving any number of linear restrictions on β. We can express a set of q such restrictions as

H0 : Rβ = r, (20)

where R and r are fixed matrices of dimensions q × k and q × 1, respectively.
When q = 1, the t-statistic in (16) is replaced by

t = Rβ̂ − r√
RV̂ R′

, (21)

with r a scalar, and the bootstrap t-statistic in (17) is replaced by

t∗b = R(β̂∗b − β̈)√
RV̂ ∗bR′

. (22)

For the WCR bootstrap, the numerator of expression (22) reduces to Rβ̂∗b − r because Rβ̈ =
Rβ̃ = r. For the WCU bootstrap, it reduces to R(β̂∗b − β̂). In both cases, the hypothesis being
tested on the bootstrap samples is true in the bootstrap DGP.

When q > 1 in (20), the t-statistic (21) is replaced by the Wald statistic

W = (Rβ̂ − r)′(RV̂ R′)−1(Rβ̂ − r), (23)

and the bootstrap t-statistic (22) is replaced by the bootstrap Wald statistic

W ∗b =
(
R(β̂∗b − β̈)

)′(RV̂ ∗bR′)−1(R(β̂∗b − β̈)
)
. (24)

The vector that appears twice in the quadratic form (24) is the numerator of (22), and the discussion
that follows that equation applies here too. We will sometimes, by a slight abuse of terminology,
call this vector the Wald numerator and the matrix that is inverted in (24) the Wald denominator.
Because W ≥ 0, only one type of bootstrap P value, namely, P̂ ∗U, is relevant when q > 1. Thus the
P value for the bootstrap Wald test is simply the fraction of the W ∗b that exceed W.

3.4 The distribution of the auxiliary random variable

After equation (14), we noted that the auxiliary random variable v∗bg that multiplies the residual
vectors üg in the bootstrap DGP—the “wild weight”—is usually drawn from the Rademacher
distribution, taking the values −1 and +1 with equal probability. Under this distribution, E∗(v∗bg) =
0 and E∗((v∗bg)2) = E((v∗bg)4) = 1, so multiplying the residuals by v∗bg ensures that the first, second,

9

and fourth moments of the residuals are preserved by the errors in the bootstrap samples. In
fact, the Rademacher distribution is the only distribution that preserves first, second, and fourth
moments. However, because its third moment is 0, it imposes symmetry on the distribution of
the bootstrap error terms. Even if the elements of üg are skewed, the elements of u∗bg will not
be. To that extent, the bootstrap errors become unrepresentative of the original sample errors.
Unfortunately, there does not exist any auxiliary distribution that preserves all of the first four
moments (MacKinnon, 2015, pp. 24–25).

Other distributions that have been proposed include:

1. The Mammen (1993) two-point distribution, which takes the value 1 − φ with probability
φ/
√

5 and the value φ otherwise, where φ = (1 +
√

5)/2 is the golden ratio. One can confirm
that E∗(v∗bg) = 0, and that E∗((v∗bg)2) = E∗((v∗bg)3) = 1. This means that the Mammen
distribution preserves the first three moments of the residuals. Because its fourth moment
is 2, it magnifies the kurtosis of the bootstrap errors. However, it does have the smallest
kurtosis among all distributions with the same first three moments.

2. The Webb (2014) six-point distribution. As noted at the end of Section 3.1, the Rademacher
distribution can yield only 2G distinct bootstrap samples. This is true for all two-point
distributions. The six-point distribution reduces, but does not totally eliminate, this problem
by assigning probability 1/6 to each of 6 points, namely, ±

√
1/2, ±

√
2/2 = ±1, and ±

√
3/2.

Its first three moments are 0, 1, and 0, like the Rademacher, so that it preserves first and
second moments, and also imposes symmetry on the bootstrap errors. Its fourth moment is
7/6, which enlarges kurtosis only slightly.

3. The standard normal distribution, for which the first four moments are 0, 1, 0, and 3. This
choice allows for an infinite number of possible bootstrap samples. It preserves the first two
moments, but it imposes symmetry, and the large fourth moment greatly magnifies kurtosis.

4. The gamma distribution with shape parameter 4 and scale parameter 1/2, as suggested by
Liu (1988). Like the Mammen distribution, this has third moment equal to 1. However, its
fourth moment of 9/2 greatly enlarges kurtosis.

Simulation studies suggest that wild bootstrap tests based on the Rademacher distribution
perform better than ones based on other auxiliary distributions; see Davidson, Monticini, and Peel
(2007), Davidson and Flachaire (2008), and Finlay and Magnusson (2016), among others. However,
the Webb six-point distribution is preferred to the Rademacher when G is less than 10 or perhaps
12. boottest offers all of these distributions and defaults to the Rademacher; see the weighttype
option in Section 7.

3.5 Inverting a test to construct a confidence set

Any test of a hypothesis of the form Rβ = r implies a confidence set, which at level 1−α consists
of all values of r for which P (the P value for the test) is no less than α. It is easiest to see this
in the case of a single linear restriction of the form βj = βj0, where βj is the j th element of β.
The confidence set then consists of all values of βj0 for which the bootstrap P value for the test of
βj = βj0 is equal to or greater than α.

Viewing a test as a mapping from values of βj0 to P values, the confidence set is the inverse
image of the interval [α, 1]. For bootstrap tests based on the algorithm of Section 3.1, this mapping
is given by one of the bootstrap P values in step 5. When the bootstrap test that is inverted

10

is based on a t-statistic, as all the tests we discuss are, the resulting interval is often called a
studentized bootstrap confidence interval. These intervals may be equal-tailed, symmetric, or one-
sided, according to what type of bootstrap P value is used to construct them.

As discussed in Section 3.2, it is generally preferable to impose the null hypothesis when per-
forming a bootstrap test. This is equally true when constructing a confidence interval. However,
WCU does have a computational advantage over WCR in the latter case. For hypotheses of the
form βj = βj0, inverting a bootstrap test means finding values of βj0 such that the associated
bootstrap P values are equal to α. With WCU, finding these values is straightforward because, by
definition, the WCU bootstrap DGP does not depend on the null hypothesis. Therefore, as we vary
βj0, the bootstrap samples do not change, and hence only one set of bootstrap samples needs to be
constructed. Determining the bounds of the confidence set merely requires solving (16) for βj0 and
plugging in the values for tj that correspond to appropriate quantiles of the bootstrap distribution.
For example, an equal-tailed studentized WCU bootstrap confidence interval is obtained by plug-
ging in the α/2 and 1− α/2 quantiles of the distribution of the t∗bj , while a symmetric interval is
obtained by plugging in the 1− α quantile of the distribution of the |t∗bj |.

For the WCR bootstrap, by contrast, the bootstrap samples depend on the null, and so they
must be recomputed for each trial value of βj0. In this case, it is essential for the convergence of
the algorithm that the same set of v∗bg values be used in each iteration. An iterative search in which
each step requires a simulation could be computationally impractical. Fortunately, as we discuss in
Section 5, the WCR bootstrap can be made to run extremely fast in many applications. Moreover,
the search for bounds can be implemented so as to minimize re-computation by pre-computing
all quantities in the WCR algorithm that do not depend on βj0. Since boottest embodies this
strategy, it is typically able to invert WCR bootstrap tests quickly. That said, it is often worthwhile
to compute a WCU-based confidence interval too, since it provides a robustness check.

By default, boottest begins the search for confidence interval bounds by picking two trial values
for βj0, low and high, at which P < α. boottest then calculates the P value at 25 evenly spaced
points between these extreme bounds. From these 25 results, it selects those adjacent pairs of points
between which the P value crosses α, and then finds the crossover points via an iterative search.
In instrumental variables applications (Section 6.1), when identification is weak, the confidence set
constructed in this way may consist of more than one disjoint segment, and these segments may be
unbounded; see Section 8.4.

We have focused on the most common case, in which just one coefficient is restricted. However,
boottest can invert any linear restriction of the form Rβ = r, in which R is now a 1× k vector,
and r is a scalar. For example, if the restriction is that β2 = β3, R is a row vector with 1 as
its second element, −1 as its third element, and every other element equal to 0. Under the null
hypothesis, r = 0. In this case, the confidence set contains all values of r for which the bootstrap
P values are equal to or greater than α.

4 Multi-way clustering
In Section 2, we assumed that error terms for observations in different clusters are uncorrelated. In
some settings, this assumption is unrealistic. In modeling panel data at the firm level, for example,
one might expect correlations both within firms over time and across firms at a given time. The
variance and covariance patterns are typically unknown in both dimensions. Cameron, Gelbach,
and Miller (2011), hereafter CGM (2011), and Thompson (2011) separately proposed a method for
constructing cluster-robust variance matrices for the coefficients of linear regression models when

11

the error terms are clustered in two or more dimensions.5 The theoretical properties of the multi-
way CRVE were analyzed by MacKinnon, Nielsen, and Webb (2017), Menzel (2017), and Davizies,
D’Haultfaeuille, and Guyonvarch (2018), where the former two papers also proposed and studied
bootstrap methods for multi-way clustered data.

In the next subsection, we define the multi-way CRVE and discuss some practical considerations
in computing it. Then, in Section 4.2, we discuss how to combine multi-way clustering with the
wild bootstrap.

4.1 Computing the multi-way CRVE

boottest allows multi-way clustering along an arbitrary number of dimensions. For ease of ex-
position, however, we consider the two-way case. We index the G clusters in the first dimension
by g and the H clusters in the second dimension by h. We attach subscripts G and H to objects
previously defined for one-way clustering, such as S and Ω, to indicate which clustering dimension
they are associated with. Similarly, the subscript “GH” indicates clustering by the intersection
of the two primary clustering dimensions. The compound subscript “G,H” refers to the two-way
clustered matrices proposed in CGM (2011) and Thompson (2011) and defined below.

The two-way CRVE extends the one-way CRVE in an intuitive manner. Recall from (6) that
the one-way CRVE is built around the matrix Ω̂, which has i, j entry equal to ûiûj if observations
i and j are in the same cluster and 0 otherwise. The two-way CRVE is obtained by augmenting
that definition: Ω̂G,H is the matrix with i, j entry equal to ûiûj if observations i and j are in the
same G-cluster or the same H-cluster, and 0 otherwise.

As a practical matter, we might try to compute Ω̂G,H as Ω̂G + Ω̂H . But if observations i and
j were in the same G-cluster and the same H-cluster, this would double count: entry i, j would be
2ûiûj . To eliminate this double counting, we instead compute

Ω̂G,H = Ω̂G + Ω̂H − Ω̂GH . (25)

Replacing Ω̂ in equation (6) by Ω̂G,H gives us the two-way CRVE,

V̂G,H = V̂G + V̂H − V̂GH , (26)

where we have used (25) and the linearity of (6) in Ω̂.
By analogy with the standard Stata small-sample correction for the one-way case given in (13),

CGM (2011) suggested redefining V̂G,H as follows:

V̂G,H = mGV̂G +mH V̂H −mGH V̂GH , (27)

where the three scalarm factors are computed as in (13). The number of clusters used in computing
mGH is the number of non-empty intersections between G and H clusters, which may be less
than the product G ·H. CGM (2011)’s cgmreg program uses these factors, as does cgmwildboot
(Caskey, 2010), which is derived from cgmreg. However, another popular implementation of multi-
way clustering, ivreg2 (Baum, Schaffer, and Stillman, 2007), takes the largest of mG, mH , and
mGH and uses it in place of all three. (The largest is always mG or mH .) This choice carries over
to programs that work as wrappers around ivreg2, including weakiv (Finlay, Magnusson, and
Schaffer, 2016), xtivreg2 (Schaffer, 2010), and reghdfe (Correia, 2016).

boottest uses CGM (2011)’s choices for the m factors in (27). One reason is that this helps
to address a practical issue that arises in computing the multi-way CRVE. Computing the matrix

5CGM (2011) provided the ado package cgmreg to implement this method in Stata; see
faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles.

12

V̂G,H in (27) involves subtraction, so in finite samples the result is not guaranteed to be positive
definite. When it is not, the Wald statistic can be negative, or the denominator of the t-statistic
can be the square-root of a negative number. Multiplying the negative term in (27) by a smaller
factor, i.e. by mGH instead of the larger of mG and mH , increases the chance that V̂G,H is positive
definite.

Nevertheless, the possibility that V̂G,H is not positive definite still needs to be confronted. A
fuller solution proposed in CGM (2011) starts by taking the eigendecomposition V̂G,H = UΛU ′.
Then it censors any negative eigenvalues in Λ to zero, giving Λ+, and builds a positive semi-definite
variance matrix estimate

V̂ +
G,H = UΛ+U ′. (28)

This solution, however, has some disadvantages. First, there appears to be no strong theoretical
justification for (28). Second, because V̂ +

G,H is only positive semi-definite, not positive definite,
it does not guarantee that Wald and t-statistics will have the right properties.6 Third, replacing
V̂G,H by V̂ +

G,H may often be unnecessary, because the relevant quantity RV̂G,HR
′ in the denomi-

nator of the test statistic can be positive definite—which is what is needed—even when V̂G,H is
not. Modifying V̂G,H in that case may unnecessarily change the finite-sample distribution of the
test statistics. Fourth, as a byproduct of computational choices that dramatically increase speed,
boottest never actually computes V̂G,H ; see Section 5. It would have to do that in order to com-
pute the eigendecomposition, and consequently the computational burden of doing so would be
substantial.

For these reasons, boottest does not modify V̂G,H in the manner of CGM (2011). If this results
in a test statistic that is invalid, the package simply reports the test to be infeasible.

4.2 Wild-bootstrapping the multi-way CRVE

The wild bootstrap and the multi-way CRVE appear to have been combined first in the Stata
package cgmwildboot (Caskey, 2010). Bringing them together raises several practical issues, in
addition to those discussed in the context of the one-way wild cluster bootstrap.

The asymptotic properties of the multi-way CRVE are analyzed in MacKinnon, Nielsen, and
Webb (2017). That paper also presents simulations which suggest that CRVE-based inference is
unreliable in certain cases, including when the number of clusters in any dimension is small and/or
the cluster sizes are very heterogeneous. It also discusses several methods for combining the wild
and wild cluster bootstraps with the multi-way CRVE, proves their asymptotic validity, and shows
by simulation that they can lead to greatly improved inferences.

The first practical issue that arises in wild-bootstrapping the multi-way CRVE is what to do
when some of the bootstrap variance matrices, V̂ ∗b, are not positive definite. In their simulations,
MacKinnon, Nielsen, and Webb (2017) apply the CGM (2011) correction (28) to these, too. In
contrast, boottest merely omits instances where the test statistic is degenerate from the boot-
strap distribution and decrements the value of B accordingly.7 Like the CGM (2011) approach,
deleting infeasible statistics from the bootstrap distribution is atheoretical. However, reassuringly,
re-running the Monte Carlo experiments of MacKinnon, Nielsen, and Webb (2017) with the eigen-

6One could ensure positive-definiteness by taking absolute values of eigenvalues instead of censoring negative ones
to 0, as Stock and Watson (2008, Remark 8) suggest in a different context. But this would not address the other
concerns listed above.

7For computational reasons, it is easier simply to omit these “degenerate” bootstrap samples than to replace them
with new ones. However, it means that α(B + 1) will probably not be an integer whenever any bootstrap samples
have to be omitted.

13

decomposition procedure disabled suggests that the change has little effect in the cases examined
in those experiments.8

The second practical issue is that, in contrast with the one-way case, the choice of small-sample
correction factors now affects results. boottest applies CGM (2011)’s proposed values for mG,
mH , and mGH in (27) also to each bootstrap sample for the reasons discussed above. Since each
component of (27) is scaled by a different factor, the scaling affects the actual and bootstrap CRVEs
differently. Although the impact is likely minor in most cases, it might not be when at least one
of G and H is very small. An alternative would be to set all three factors to max{mG,mH}, as
ivreg2 does (or would, if it were bootstrapped). If this were done for both the actual and bootstrap
CRVEs, it would be equivalent to using no small-sample correction at all.

The third issue is that the elegant symmetry of the multi-way CRVE formula does not carry
over naturally to the wild bootstrap. The wild cluster bootstrap is designed to preserve the pattern
of correlations within each cluster for one-way clustering, but it cannot preserve the correlations in
two or more dimensions at once. Therefore, we must now distinguish between the error clustering(s)
and the bootstrap clustering. In bootstrapping, should we draw and apply one “wild weight” for
each G-cluster, or for each H-cluster, or perhaps for each GH-cluster? The implementation in
boottest supports all these choices and defaults to the last of them; see the bootcluster() option
in Section 7.9 Monte Carlo experiments in MacKinnon, Nielsen, and Webb (2017) suggest that wild
bootstrap tests typically perform best when the bootstrap applies clustering in the dimension with
fewest clusters.

However, even this strategy fails in at least one case, namely, in treatment models where treat-
ment occurs in only a few clusters, with or without a difference-in-differences structure. Here, the
WCR bootstrap can dramatically underreject and the WCU bootstrap dramatically overreject. In
this context, MacKinnon and Webb (2018) proposed turning to a subcluster bootstrap, in which
the bootstrap error terms are clustered more finely than the CRVE. The subcluster bootstrap of
course includes the ordinary wild bootstrap as a limiting case. We demonstrate the potential of
this approach in Section 8.3.

5 Fast execution of the wild cluster bootstrap for OLS
It is easy to implement the one-way wild cluster bootstrap in Stata’s ado programming language.
However, this is computationally extremely inefficient. This section explains how to speed up the
wild cluster bootstrap in the Stata environment. The efficiency gains make the wild cluster boot-
strap feasible for datasets with millions of observations, even with a million bootstrap replications,
and even when running the bootstrap test repeatedly in order to invert it and construct confidence
sets. The main proviso is that the number of clusters for the bootstrap DGP should not be too
large.

Moving from Stata’s ado programming language to its compiled Mata language accounts for
some of the gain in speed. However, when the number of clusters G is small relative to N, a
much more substantial gain arises by taking advantage of linearity and the associativity of matrix
multiplication to reorder operations. The wild cluster bootstrap turns out to be especially amenable
to such tricks, which are explained in detail below and could be used with any programming
language. The asymptotic computational complexity of using B bootstrap samples decreases from
O(NB) to O(G2B).

8Stata code and results for the modified simulations are posted at davidroodman.com/david/MNW2017.zip.
9The default of bootstrap clustering at the GH level was chosen for symmetry and because it works even when G

or H is extremely small, not because it is generally the best choice.

14

To illustrate the computational methods employed by boottest, we use Stata’s “nlsw88”
dataset, which is an extract from the National Longitudinal Surveys of Young Women and Mature
Women. We fit a linear regression model to wage (hourly wage) with covariates tenure (years in
current job), ttl_exp (total work experience), collgrad (a dummy for college graduates), and a
constant. There are 2217 observations, clustered into 12 industries. We test the null hypothesis
that βtenure, the coefficient on tenure, is equal to 0, against the alternative βtenure 6= 0.

We first implement the WCR bootstrap test of this hypothesis in the ado language, as in CGM
(2008)’s “bs_example.do"10 and cgmwildboot. To prepare the ground, the following code sets the
random number seed (to ensure exact replicability) and loads the dataset. It then takes two steps
to simplify subsequent programming: recoding the industry identifier to run sequentially from 1 to
12 in the new variable clustid, and then sorting the data by this variable:

set seed 293867483
webuse nlsw88 , clear
drop if industry ==. | tenure ==.
egen clustid = group (industry)
sort clustid , stable

The next code block applies the WCR to test βtenure = 0. The code imposes the null on the
bootstrap DGP, takes Rademacher draws, runs B = 999 replications, and computes the symmetric,
two-tailed P value, P̂ ∗S :

program define wild1
syntax , b(integer) // get passed parameter , number of bootstrap replications

quietly {
regress wage tenure ttl_exp collgrad , cluster (industry) // unconstrained model
scalar t = abs(_b[tenure] / _se[tenure]) // test statistic
local G = e(N_clust) // number of clusters

regress wage ttl_exp collgrad // base for DGP: model with null imposed
predict XB // restricted fit
predict u, resid // restricted -fit residuals

local exceedances 0
forvalues i=1/ `b' { // for each bootstrap replication ...

gen byte v = cond(runiform () <.5 ,1 , -1) in 1/`G' // Rademacher draws -> first G rows of v
gen ystar = XB + u * v[clustid] // bootstrap outcome
regress ystar tenure ttl_exp collgrad , cluster (clustid) // bootstrap regression
drop v ystar

if abs(_b[tenure] / _se[tenure]) > t {
local `++ exceedances ' // count replication t statistics exceeding full - sample t

}
}

}
display _n "p value for _b[tenure]=0: " `exceedances '/`b' // symmetric , two - tailed p value

end

One subtlety in the code warrants explanation. In the line that generates ystar, the expression
“v[clustid]” exploits the ado language’s ability to treat a variable as a vector. For each observa-
tion, the expression obtains the value of clustid, between 1 and 12, and looks up the corresponding
entry in v, whose first 12 rows hold the Rademacher draws for a given replication, one for each
industry cluster.

Having prepared the data and code, we run the latter on the former:
. wild1 , b (999)

10Available at http://faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles.

15

http://faculty.econ.ucdavis.edu/faculty/dlmiller/statafiles

p value for _b[tenure]=0: .2952953

When running Stata 15.1 in Windows on a single core of an Intel i7-8650 in a Lenovo laptop, this
bootstrap test takes 7.19 seconds.

Next, we translate the algorithm rather literally into Mata. In contrast to the ado version, the
Mata version must perform OLS and compute the CRVE itself, according to (3), (7), and (12). We
will not explain every line; readers can consult the relevant Mata documentation:

mata set matastrict off
mata set matalnum off
mata set mataoptimize on

void wild2 (real scalar B) { // takes one argument , the number of replications
Y = st_data (., "wage ")
X = st_data (., " tenure ttl_exp collgrad ")
Xr = st_data (., " ttl_exp collgrad ") // X for restricted model
clustid = st_data (., " clustid ")
cons = J(rows(X) ,1 ,1); X = X, cons; Xr = Xr , cons
info = panelsetup (clustid , 1) // Records start and stop obs numbers for each cluster
k = cols(X); G = rows(info)

R0 = 1,0,0,0 // R * beta = coefficient on tenure

betatilde = invsym (cross (Xr ,Xr)) * cross (Xr ,Y) // restricted OLS
XB = Xr * betatilde // restricted fit
utilde = Y - XB // restricted fit residuals

t = J(B+1 ,1 ,.) // 1st entry will be real t stat; remaining will be replication t stats
for (i=1; i <=B+1; i++) {

if (i >1) { // except for first iteration , construct a bootstrap Y
v = 2*(runiform (G ,1) :< .5) :- 1 // Rademacher draws
Y = XB + utilde :* v[clustid] // bootstrap dependent variable

}

invXX = invsym (cross (X,X))
betastarhat = invXX * cross (X,Y) // bootstrap regression fit
ustarhat = Y - X * betastarhat // bootstrap regression residuals

Gammahat = J(k,k ,0) // will accumulate CRVE
for (g=1; g <=G; g++) { // loop over clusters to compute CRVE

u_g = panelsubmatrix (ustarhat , g, info)
X_g = panelsubmatrix (X , g, info)
uX = cross (u_g ,X_g)
Gammahat = Gammahat + cross (uX ,uX)

}
t[i] = abs(R0 * betastarhat) / sqrt(R0 * invXX * Gammahat * invXX * R0 ') // t stat

printf ("p value for _b[tenure]=0: %f", mean(t[1] :< t [|2\\.|]))
}

A trick introduced here is to run the replication loop B + 1 times in order to compute the actual
and bootstrap test statistics with the same code. In the first (extra) iteration, we set every element
of v∗ to 1, which forces y∗1 = y.

We run this Mata version of the code with B = 9999 replications:
. wild2 (9999)
p value for _b[tenure]=0: .289128913

Despite the tenfold increase in the number of replications, the run time falls by more than half, to
3.0 seconds. This shows how much more efficient it can be to use Mata compared with ado-based
bootstrapping. To be fair, the slowness of the ado implementation is not pure inefficiency. For
example, regress computes the matrix (X ′X)−1 in order to estimate the parameter covariance
matrix, but it does not estimate the parameters themselves via β̂ = (X ′X)−1X ′y as in the Mata

16

code. Rather, it solves X ′Xβ̂ = X ′y, which is slower but more numerically stable when X is
ill-conditioned (Gould, 2010). However, much of the work that regress does in our context is
redundant, including a check for collinearity of the regressors in every bootstrap replication.

The code above is not fully optimized for Mata. We will gain further efficiency through careful
analysis of the mathematical recipe. Our strategy includes these steps:

1. Consolidate the algorithm into a series of equations expressing the computations.

2. Combine steps by substituting earlier equations into later ones.

3. Use the linearity and associativity of matrix multiplication to reorder calculations.

Two main techniques fall under the heading of item 3:

a. Multiplying by thin, dimension-reducing matrices first. For example, if A is 1 × 100 and
B and C are 100 × 100, computing (AB)C takes 20,000 scalar multiplications (and nearly
as many additions) while A(BC) takes 1,010,000. More generally, since the final output of
each replication is a scalar test statistic, constructing large, for example N × N or N × B,
matrices during the calculations is typically inefficient, because these matrices will eventually
be multiplied by thin matrices to produce smaller ones. Reordering calculations can allow
dimension-reducing multiplications to occur early enough so that the large matrices are never
needed.

b. “Vectorizing” loops via built-in matrix operations. Mata programs are pre-compiled into
universal byte code, and then, at run time, translated into environment-specific machine
language. The two-step process produces code that runs more slowly than code produced in
a single step by an environment-specific C or Fortran compiler. But Mata’s built-in operators,
such as matrix multiplication, and some of its functions, are implemented in C or Fortran and
are fully pre-compiled, making them very fast. In Mata, for example, matrix multiplication is
hundreds of times faster when using the built-in implementation than when running explicit
for loops of scalar mathematical operations. Similarly, left-multiplication by S, defined in
Section 2, can be performed with the fast panelsum() function included in Stata since version
13.0.11

We next demonstrate how to perform the above steps in the context of the wild cluster bootstrap.
First, we show that when q = 1 (leaving treatment of the case with q ≥ 1 to Appendix A), each
wild-bootstrap Wald statistic can be written as

v∗b
′a(mv∗b′BB′v∗b)−1a′v∗b,

where v∗b is the G-vector of wild weights, a is also G × 1, and B is G × G. The small matrices
a and B are fixed across replications, and so only need to be computed once. With care, they
can be built without creating large intermediate matrices. It is then convenient to compute all the
bootstrap Wald numerators and denominators at once via a′v∗ and B′v∗, where v∗ is the G × B
matrix with bth column equal to v∗b.

11This approach, which boottest currently takes, has the disadvantage that it requires the data to be sorted by
cluster, which can be a costly operation in very large datasets. One could instead compute groupwise column sums
without sorting, via a hash table.

17

The following equations consolidate the computations required to perform the bth bootstrap
replication (all of which were presented earlier). The equations start after the OLS regression of
(1), which yields the residuals ü and estimates β̈:

u∗b = ü :*S′v∗b, (bootstrap errors) (29)
y∗b = Xβ̈ + u∗b, (bootstrap sample) (30)
β̂∗b = (X ′X)−1X ′y∗b, (bootstrap OLS fit) (31)
û∗b = y∗b −Xβ̂∗b, (bootstrap residuals) (32)
V̂ ∗b = m(X ′X)−1X ′

(
û∗b :*S′S :*(û∗b)′

)
X(X ′X)−1, (bootstrap CRVE) (33)

W ∗b = (β̂∗b − β̈)′R′(RV̂ ∗bR′)−1R(β̂∗b − β̈). (bootstrap Wald statistic) (34)

Focusing first on the Wald numerator in (34), R(β̂∗b − β̈), observe that

β̂∗b = (X ′X)−1X ′y∗b = (X ′X)−1X ′(Xβ̈ + u∗b) = β̈ + (X ′X)−1X ′u∗b. (35)

As a result, the numerator can be computed as

R(β̂∗b − β̈) = R(X ′X)−1X ′u∗b (by (35))
= R(X ′X)−1X ′(ü :*S′v∗b) (by (29))
=
(
R(X ′X)−1X ′ :* ü′

)
S′v∗b (by (11))

=
(
S(ü :*X(X ′X)−1R′)

)′
v∗b. (by (8)) (36)

These rearrangements flip the role of S in a way that reduces computation. The second and
third lines left-multiply the vector v∗b by S′, to expand it from height G to height N, then mul-
tiply the result by another large matrix. In contrast, the last line left-multiplies the tall matrix
ü :*X(X ′X)−1R′ by S in order to collapse it from length N to length G; and it does so before
involving the G-vector v∗b, the entries of which therefore need not be duplicated across observations
within clusters.

Next, we vectorize expression (36) to compute all the bootstrap Wald numerators at once:

R(β̂∗ :– β̈) =
(
S(ü :*X(X ′X)−1R′)

)′
v∗, (37)

where β̂∗ is the k × B matrix whose columns are formed by the β̂∗b vectors, and v∗ is as defined
earlier. Within the factor ü :*X(X ′X)−1R′, multiplication should proceed from right to left,
because R′ is thin (it is k × q, where here q = 1). Left-multiplication by the sparse matrix S is
performed with the Mata panelsum() function.

Equation (37) illustrates why the computational complexity (run time) of the wild cluster
bootstrap need not be O(NB). The calculations within the outer parentheses, which produce a
G-vector, have to be performed only once, and their computational cost depends on N, but not B.
The situation is reversed in the next step: The cost of multiplying this pre-computed G-vector by
the G×B matrix v∗ is O(GB), which of course depends on B, but not on N. Thus, provided G is
not too large, it can be feasible to make B as high as 99,999 or even 999,999, regardless of sample
size.

We turn now to the Wald denominator in (34). Using the identity (11) and substituting the
formula for V̂ ∗b in (33) into the Wald denominator in (34), we obtain

RV̂ ∗bR′ = mR(X ′X)−1X ′
(
û∗b :*S′S :*(û∗b)′

)
X(X ′X)−1R′

= m
(
R(X ′X)−1X ′ :*(û∗b)′

)
S′S

(
û∗b :*X(X ′X)−1R′

)
= mJ∗b

′
J∗b, (38)

18

where the G× q matrix J∗b is

J∗b = S
(
û∗b :*X(X ′X)−1R′

)
. (39)

Again, matrix multiplications should be done from right to left.
When q = 1, the X(X ′X)−1R′ term in (39) is a column vector, and we can vectorize (39) over

all replications as

J∗ = S
(
X(X ′X)−1R′:* û∗

)
, (40)

(RV̂ R′)∗ = m · colsum(J∗:*J∗), (41)

in which û∗ is the N × B matrix with typical column û∗b, J∗ is the G × B matrix with typical
column J∗b, and, with some abuse of notation, (RV̂ R′)∗ is the 1 × B vector of all the bootstrap
Wald denominators.

This formulation is still not computationally efficient, however. In an intermediate step, it
constructs the N×B matrix û∗, which can be impractical in large datasets. We therefore substitute
the formula for û∗ into (40) and reorder certain operations. Note first, using (32), (35), and (30),
that

û∗b = y∗b −X
(
β̈ + (X ′X)−1X ′u∗b

)
= u∗b −X(X ′X)−1X ′u∗b = MXu

∗b, (42)

where the orthogonal projection matrixMX = I−X(X ′X)−1X ′ yields residuals from a regression
on X. Vectorizing over replications, (42) is û∗ = MXu

∗. Substituting this into (40), we find that

J∗ = S
(
X(X ′X)−1R′:*MXu

∗)
= S

(
X(X ′X)−1R′:*MX(ü :*S′v∗)

)
(by (29))

= S
(
X(X ′X)−1R′:*MX

)
(ü :*S′v∗) (by (9))

=
(
S(X(X ′X)−1R′:*MX :* ü′)S′

)
v∗. (by (11)) (43)

The last line, like equation (37) for the numerator, postpones multiplication by the G×B matrix
v∗ until everything else has been calculated.

As it stands, however, expression (43) is still computationally expensive, because MX is an
N × N matrix. However, this problem is surmounted in the same way. We replace MX by
I−X(X ′X)−1X ′ and rearrange one last time to find that

J∗ =
(
S
(
X(X ′X)−1R′:*(I−X(X ′X)−1X ′) :* ü′

)
S′
)
v∗

=
(
S
(
X(X ′X)−1R′:* I :* ü′

)
S′ − S

(
X(X ′X)−1R′:*X(X ′X)−1X ′:* ü′

)
S′
)
v∗. (44)

The first term can be simplified through the identities S(a :* I :* b′)S′ = S diag(a :* b)S′ = diag(S(a :* b)),
for a and b suitably conformable column vectors. The second term can be rearranged using the
identities (9) and (10). We finally obtain

J∗ =
(
diag

(
S(X(X ′X)−1R′:* ü)

)
−S(X(X ′X)−1R′:*X)(X ′X)−1(S(ü:*X)

)′)
v∗. (45)

This formulation avoids the construction of large intermediate matrices and postpones multiplica-
tion by the G × B matrix v∗ until the final step.12 Since the factor in the outer parentheses is

12In fact, boottest, unlike the sample Mata code presented in this section, does not construct the diagonal matrix
indicated in (45), because that becomes inefficient as G increases. Rather, it computes the vector that forms the
diagonal of that matrix and then subtracts it from the diagonal of the next term in (45), using an explicit for loop.

19

G × G, the computational cost of multiplying it by v∗ is O(G2B), whereas that for a more direct
application of (40) is O(NB).

The analysis so far in this section shows that the overall computational cost of the bootstrap is
O(N)+O(G2B), where the first term is the cost of the initial calculations that are not repeated for
each bootstrap sample. When G is not too large, equations (45), (41), and (37) therefore constitute
an efficient algorithm for simultaneously computing the numerators and denominators for all the
bootstrap test statistics.

The following Mata function applies these equations to the earlier example:
void wild3 (real scalar B) {

Y = st_data (., "wage ")
X = st_data (., " tenure ttl_exp collgrad ")
Xr = st_data (., " ttl_exp collgrad ")
clustid = st_data (., " clustid ")
cons = J(rows(X) ,1 ,1); X = X, cons; Xr = Xr , cons
info = panelsetup (clustid , 1)
N_G = rows(info) // number of clusters

R0 = 1,0,0,0 // R0 * beta picks out coefficient on tenure

utilde = Y - Xr * invsym (cross (Xr ,Xr)) * cross (Xr ,Y) // residuals from restricted model

invXX = invsym (cross (X,X))
v = 2*(runiform (N_G ,B+1) :< .5) :- 1 // Rademacher weights for *all* replications
v[,1] = J(N_G ,1 ,1) // insert 1s in first column to reproduce full - sample regression

XinvXXR = X * (invXX * R0 ')
SXinvXXRu = panelsum (XinvXXR , utilde , info)
numer = cross (SXinvXXRu , v) // all numerators
J = (diag(SXinvXXRu) - panelsum (X, XinvXXR , info) * invXX * panelsum (X, utilde , info)') * v
t = abs(numer) :/ sqrt(colsum (J :* J)) // all t stats

printf ("p value for _b[tenure]=0: %f", rowsum (t[1] :< t) / B)
}

This code calls panelsum() to left-multiply by S. In doing so, it takes advantage of the func-
tion’s optional middle argument, which is a weight vector. Thus S(ü :*X) in (45) becomes not
panelsum(X:*utilde, info), but panelsum(X, utilde, info), which is equivalent but slightly
faster.

Returning to our example, we run the new function:
. mata wild3 (999999)
p value for _b[tenure]=0: .290660291

The number of replications has gone up by an additional factor of one hundred, but the run time
has dropped from 3.0 to 0.69 seconds. Compared to the original (ado) implementation, the final
implementation is 10,000 times faster per replication.

Appendix A generalizes this discussion to include observation weights, one-way fixed effects,
multi-way clustering, subcluster bootstrapping, inversion of the test to form confidence sets, and
higher-dimensional hypotheses (q > 1). It shows, for example, how to avoid construction of large
matrices even when the model contains fixed effects for a a grouping that is not congruent with the
error clustering.

Having demonstrated how to dramatically speed up the wild cluster bootstrap, we end with a
word of caution. The method can backfire when a key assumption—that there are relatively few
clusters in the bootstrap DGP—is violated. For example, the G × B wild weight matrix v∗ can
become untenably large if G is of the same order of magnitude as N. In many contexts, if G is
large, the bootstrap will be unnecessary, because large-sample theory will apply and tests based on
standard distributions such as the t distribution will be reliable. However, that is not always the

20

case. For example, in multi-way clustering, the last term on the right-hand side of (26) can contain
a large number of clusters. Another possibility is that the value of G used in the bootstrap DGP
may be larger than the actual value. This may be desirable when there are treatment effects that
affect only a few clusters, as mentioned at the end of Section 4.2.

boottest is also written to minimize, or at least mitigate, the computational burden when G
is large. It uses specially optimized code for the extreme “robust” case, in which G = N. If the
number of clusters is large yet smaller than N, it switches to a more direct implementation of
(40). In either case, an issue distinct from computational burden may arise: The storage needed
for the G × B matrix v∗ may exceed available RAM. Performance will then degrade sharply as
virtual memory is cached to disk. To forestall such a slowdown, the user can invoke boottest’s
matsizegb() option, which partitions v∗ horizontally into chunks, creating and destroying each in
turn; see Section 7.

6 Extensions to IV, GMM, and maximum likelihood
The tests that boottest implements are not limited to models estimated by OLS. In this section, we
briefly discuss boottest implementations of the wild bootstrap in the context of other estimation
methods.

6.1 The wild restricted efficient bootstrap for IV estimation

Davidson and MacKinnon (2010) (DM) proposed an extension of the wild bootstrap to linear
regression models estimated with instrumental variables. We consider the model

y1 = Y2γ +X1β + u1, (46)
Y2 = X1Π1 +X2Π2 +U2, (47)

where y1, Y2, X1, and X2 are the observation vectors or matrices for the dependent variable,
the endogenous (or instrumented) variables, the included exogenous variables, and the excluded
exogenous variables (instruments), respectively. Equation (46) is the structural equation for y1,
and equation (47) is the reduced-form equation for Y2. The matrices Y2, Π1, Π2, and U2 all have
one column for each endogenous variable on the right-hand side of (46).

DM allowed for correlation between corresponding elements of u1 and U2, and for heteroskedas-
ticity, but not for within-cluster dependence. We will instead consider the clustered case, to which
DM’s “wild restricted efficient” (WRE) bootstrap naturally extends (Finlay and Magnusson, 2016).
Once again, we make no assumption about the within-cluster error variances and covariances. We
merely assume that, if observations i and j are in different clusters, then E(u1iu1j), E(u1iu2j), and
E(u2iu

′
2j) are identically zero, where u1i is the ith element of u1 and u2j is the column vector made

from the j th row of U2.
Like the WCR bootstrap, the WRE bootstrap begins by fitting the model subject to the null

hypothesis, which in DM is that γ = 0. Imposing this restriction on (46) makes OLS estimation
appropriate. DM suggested a technique for estimating the reduced form (47) which yields more
efficient estimates than simply regressing Y2 on X1 and X2. The residual vector from the OLS fit
of (46) is added as an extra regressor in (47). This explains the word “efficient” in the name of the
procedure.

As implemented in boottest, the WRE bootstrap admits null restrictions other than γ = 0.
It can test any linear hypothesis involving any elements of γ and β. To achieve this generalization,

21

boottest fits the entire system using maximum likelihood, subject to Rδ = r, where δ = [γ ′ β′]′.13

Because there is only one structural equation, the ML estimates of δ are actually limited-information
maximum likelihood (LIML) estimates. Appendix B derives the restricted LIML estimator used
by boottest. Like classical LIML, this estimator can be computed analytically, without iterative
searching. Since the estimates of Π1 and Π2 are also ML estimates, they are asymptotically
equivalent to the efficient ones used in DM’s procedure.

Having obtained estimates of all coefficients under the null hypothesis—that is, γ̃, β̃, Π̃1, and
Π̃2—the WRE bootstrap works in the same way as the WCR bootstrap. It next computes the
restricted-fit residuals,

ũ1 = y1 − (Y2γ̃ +X1β̃),
Ũ2 = Y2 − (X1Π̃1 +X2Π̃2).

To generate each WRE bootstrap sample, these residuals are then multiplied by the wild weight vec-
tor v∗b, which, in the standard one-way-clustered case, has one element per cluster. This preserves
the conditional variances of the error terms, their correlations within clusters, and their correlations
across equations. For the bth bootstrap sample, the simulated values for all endogenous variables
are then constructed as follows:

y∗b1 = Y ∗b2 γ̃ +X1β̃ + u∗b1 , u∗b1 = ũ1 :*S′v∗b, (48)
Y ∗b2 = X1Π̃1 +X2Π̃2 +U∗b2 , U

∗b
2 = Ũ2 :*S′v∗b, (49)

where it should be noted that Y ∗b2 is actually generated before y∗b1 .
After the bootstrap datasets have been constructed, various estimators can be applied. boottest

currently supports two-stage least squares (2SLS), LIML, k-class, Fuller LIML, and generalized
method of moments (GMM) estimators. Wald tests may then be performed for hypotheses about
the parameters. The WRE also extends naturally to multi-way clustering and the subcluster boot-
strap. boottest supports all these possibilities, except that, for GMM estimation, it does not
recompute the moment-weighting matrix for each bootstrap replication.

Unfortunately, some of the techniques introduced in Section 5 to speed up execution do not work
for IV estimators. The problem is that the bootstrap estimators are nonlinear in v∗b. For example,
if Z∗b = [Y ∗b2 X1] is the full collection of right-hand-side bootstrap data in the y∗b1 equation and
X = [X1 X2] is the same for the Y2 equation, then the 2SLS estimator is given by

δ̂∗b =
(
(Z∗b)′PXZ∗b

)−1(Z∗b)′PX y∗b1 ,

where PX = X(X ′X)−1X ′. This estimator is nonlinear in Z∗b, which contains Y ∗b2 , which is
linear in v∗b. The resulting overall nonlinearity prevents much of the reordering of operations that
is possible for OLS.

This computational limitation does not apply to the Anderson-Rubin (AR) test, which is also
available in boottest. To perform an AR test of the hypothesis that γ = γ0, we subtract Y2γ0
from both sides of (46) and substitute for Y2 from (47):

y1 − Y2γ0 = Y2(γ − γ0) +X1β + u1

= (X1Π1 +X2Π2 +U2)(γ − γ0) +X1β + u1

= X1
(
Π1(γ − γ0) + β

)
+X2Π2(γ − γ0) +U2(γ − γ0) + u1. (50)

13boottest can also use the unrestricted fit, as in the WCU bootstrap DGP after OLS, but simulation results in
DM suggest that this is a very bad idea.

22

If the instrumentsX2 are valid, it must be valid to apply OLS to (50), that is, to regress y1−y2γ0 on
X2 while controlling for X1. If the hypothesis γ = γ0 is correct and the X2 are valid instruments,
then the coefficient on X2 in this regression model is zero. The AR test is computed as the Wald
test that the coefficient on X2 equals zero. It is then interpreted as a joint test of the hypothesis
γ = γ0 and of the overidentifying restrictions that the instruments are valid. Because the test
does not involve estimating any coefficients on instrumented variables, and hence does not require
that the rank condition (Π2 has full rank) is satisfied, it is robust to instrument weakness (Baum,
Schaffer, and Stillman, 2007).

Note that the AR test is exact under classical assumptions because it tests rather than as-
sumes the key condition of instrument validity. For this reason, it may seem odd to bootstrap
the AR test. However, we have allowed equations (46) and (47) to have error terms that may
be heteroskedastic and/or correlated within clusters. Since the AR test is not exact under these
conditions, bootstrapping it should generally improve its finite-sample properties.

When the WRE bootstrap is used to estimate the distribution of an AR test statistic, it varies
only the left-hand side of (50) as it constructs bootstrap samples. In particular, using (48) and
(49), the bootstrap values of the left-hand side of (50) for cluster g are

y∗b1g − Y ∗b2g γ0 = ỹ1 − Ỹ2γ0 + (ũ1g − Ũ2gγ0)v∗bg .

Therefore, the WRE bootstrap of an AR test can be implemented as a WCR bootstrap test of the
hypothesis that the coefficients on X2 are all zero in regression (50).

We stress that the AR test has a different null hypothesis than the other tests we consider.
It tests not only that the coefficients on Y2 take certain values, but also that the instruments are
valid, in the sense that the overidentifying restrictions are satisfied. In consequence, its results need
to be interpreted with great care, especially if the test is inverted in order to construct a confidence
set for γ. If the test tends to reject the null for most trial values of γ, this may simply indicate
that the instrument validity assumption should be rejected rather than that γ is being estimated
with high precision; see Davidson and MacKinnon (2014).

6.2 The score bootstrap

The “score bootstrap” adapts the wild bootstrap to the class of extremum estimators, which includes
maximum likelihood (ML) and generalized method of moments (GMM). The notion of a residual,
which is central to the wild bootstrap, does not carry over directly to extremum estimators in
general. Instead of working with residuals, the score bootstrap works with the contributions to the
scores, which are the derivatives of the objective function with respect to the parameters. Hu and
Zidek (1995) and Hu and Kalbfleisch (2000) showed how to apply the pairs bootstrap to scores.
Kline and Santos (2012) applied the wild bootstrap instead, producing what they dub the score
bootstrap.

Consider the probit model for binary data, yi = I
(
Φ(xiβ) > 0

)
, where Φ(·) is the cumulative

standard normal distribution function. It would make no sense to apply the wild bootstrap to such
a model, because the “residuals” would equal either −Φ(xiβ̂) or 1−Φ(xiβ̂), depending on whether
the dependent variable equaled 0 or 1.

Although there is no reason to use the score bootstrap in the context of the linear regression
model in Section 2, it is illuminating to see how it would work. If, for estimation purposes, the
error terms are assumed to be normally and independently distributed with variance σ2, then the
log-likelihood contribution of observation i is

`i(β, σ) = −1
2 log(2πσ2)− 1

2σ2 (yi − xiβ)2. (51)

23

The vector of derivatives of (51) with respect to β is (yi − xiβ)xi/σ
2. Evaluating this at β̈ and

summing over all observations yields the score vector

s = 1
σ2X

′ü =
G∑

g=1
sg, sg = 1

σ2X
′
güg,

where sg is the score subvector corresponding to the g th cluster. Similarly, the negative of the
Hessian matrix, the matrix of second derivatives of the log-likelihood for the entire sample, is
−H = X ′X/σ2.

Now consider the wild bootstrap Wald statistic (24), which can also be written as

W ∗b = (β̂∗b − β̈)′R′(RV̂ ∗bR′)−1R(β̂∗b − β̈). (52)

As noted in (36), the numerator of this statistic can be rewritten as R(X ′X)−1X ′u∗b. Therefore,

R(β̂∗b − β̈) = R(X ′X)−1
G∑

g=1
X ′gu

∗b
g

= R(X ′X)−1
G∑

g=1

(
X ′güg

)
v∗bg = −RH−1

G∑
g=1

sgv
∗b
g . (53)

From the rightmost expression here, we see that the v∗bg are generating the bootstrap variation in
the Wald numerator by perturbing the score contributions, sg. Because of the perturbations, the
full set of bootstrapped score contributions, s∗b = X ′u∗b, is not itself a score matrix, i.e., it is not
a set of observation-level derivatives of any log-likelihood. Nonetheless, the premise of the score
bootstrap is that this randomness generates information about the distribution of the score vector
from the actual sample, and hence of test statistics based upon it.

In the OLS case, the score bootstrap combines the Wald numerator (53), which is the same as
in the wild bootstrap, with a somewhat different estimate of its variance that avoids reference to
residuals and takes scores as primary quantities. This variance estimate enters the denominator
of the bootstrap Wald or score/Lagrange multiplier statistic. To show the difference, we write the
wild bootstrap CRVE as

V̂ ∗b = m(X ′X)−1

 G∑
g=1

X ′gû
∗b
g (û∗bg)′Xg

 (X ′X)−1;

see (7) and (33). The score bootstrap instead uses

V̂ ∗b = m(X ′X)−1

 G∑
g=1

X ′gu
∗b
g (u∗bg)′Xg

(X ′X)−1 = mH−1

 G∑
g=1

s∗bg (s∗bg)′
H−1.

Thus the bootstrap residuals from re-estimation on each bootstrap sample are dropped in favor of
the bootstrap errors. The latter, when multiplied by X in the formula, constitute the bootstrap
scores. In Kline and Santos (2012), s∗b is demeaned columnwise before entering this variance
estimate; see Appendix A.3.

As Kline and Santos (2012) showed, this formulation generalizes straightforwardly to tests based
on any extremum estimator for which cluster-level contributions to the score and the Hessian are
computable. This allows us to use the computational tricks of Section 5 to calculate many score

24

bootstrap statistics quickly. When the null hypothesis is imposed, the actual test statistic that
corresponds to (52) is a score or Lagrange multiplier statistic; see Wooldridge (2002, eqn. 12.68).

The score bootstrap is computationally attractive, but it does not always provide a good ap-
proximation, for two reasons. First, as mentioned just above, in the OLS case the denominator of
the score bootstrap test statistic uses bootstrap errors instead of bootstrap residuals to calculate
the variance estimate, but the test statistic that is calculated on the original data uses residuals.
Hence, the distribution of the score bootstrap test statistics cannot account for the use of residuals
instead of errors in the variance estimate. Second, in nonlinear models, because the scores and the
Hessian for all the bootstrap samples are evaluated at β̈, rather than at estimates that vary across
bootstrap samples, the score bootstrap cannot fully capture the nonlinearity of the estimator.

A dramatic example of the second issue can be found in Roodman and Morduch (2014), which
replicated the Pitt and Khandker (1998) evaluation of microcredit programs in Bangladesh. The
latter relied on a nonlinear, multi-equation ML estimator, and Roodman and Morduch (2014)
showed that the maximum likelihood estimator was bimodal. The previously unreported second
mode corresponded to negative rather than positive impact, and Wald tests performed at either
mode returned large and mutually contradictory t-statistics. In a pairs bootstrap, the second mode
was favored in a third of the replications. Because the score bootstrap estimates test statistic
distributions from the scores and Hessian computed at a single estimate, β̈, it is incapable in this
context of accurately representing the distribution of the parameter estimates of primary concern.
We suggest that the score bootstrap not be relied upon without evidence that it works well in the
case of interest.

7 The boottest command
The boottest package performs wild bootstrap tests of linear hypotheses. It is compatible with
Stata versions back to 11.0, but it runs faster in Stata versions 13.0 and later because they include
the Mata panelsum() function. The syntax is modeled on that of Stata’s built-in command for
Wald testing, test. Like test, but unlike other Stata implementations of the wild bootstrap,
boottest is a post-estimation command. It determines the context for inference from the current
estimation results.

The following three commands implement the extended example in Section 5:

webuse nlsw88 , clear
regress wage tenure ttl_exp collgrad , cluster (industry)
boottest tenure

Here, by default, boottest generates 999 wild cluster bootstrap samples using the Rademacher
distribution, with the null hypothesis imposed. It reports the t-statistic from the Wald test and its
bootstrapped P value (by default, symmetric). It then automatically inverts the test, as described
in Section 3.5, and reports the bounds of the confidence set for the default level of confidence, which
is normally 95%. Finally, it plots the “confidence curve” underlying this calculation, that is, the
bootstrap P value for the hypothesis βtenure = c as a function of c. It marks the points where the
curve crosses 0.05, which are the limits of the confidence set.

In general, boottest accepts any hypothesis statement conforming to the syntax of Stata’s
constraint define. The hypothesis is stated before the comma in a boottest command line,
and options come after. In the hypothesis definition(s), a simple reference to a regressor implies “=
0”. Similarly, the joint hypothesis βtenure = βttl_exp = 0 could be tested by:

25

Figure 1: P value surface for joint hypothesis that βtenure = βttl_exp = 0

.1
.2

.3
.4

ttl
_e

xp

−.05 0 .05 .1
tenure

0
.05
.1
.15
.2
.25
.3
.35
.4
.45
.5
.55
.6
.65
.7
.75
.8
.85
.9
.95
1

 p value

boottest tenure ttl_exp

Because the null hypothesis is now two-dimensional, boottest also depicts the confidence surface
using Stata’s twoway contour command; see Figure 1. But it does not numerically describe the
boundary of the confidence set which would result from intersecting this surface with the plane
defined by, say, P = 0.05.

Expressing more complex linear hypotheses requires the equals sign:

boottest 2* tenure + 3* ttl_exp = 4

To jointly test several complex hypotheses, each must be enclosed in parentheses:
boottest (tenure) (ttl_exp = 2)

More idiosyncratically, boottest allows the user to test hypotheses independently rather than
jointly, using curly braces. The following example has the same effect as running “boottest
tenure” and “boottest ttl_exp = 2” separately, except that it makes available the Bonferroni
and Sidak adjustments for multiple hypothesis testing (on which, see test):

boottest { tenure } { ttl_exp = 2}, madjust (bonferroni)

Parentheses may be nested within curly braces in order to test several joint hypotheses separately:

boottest {(tenure) (ttl_exp =1)} {(tenure) (ttl_exp =2)} , madj(sidak)

The boottest command can be run after application of the following estimators:

26

1. OLS, as performed by regress.

2. Restricted OLS, as performed by cnsreg.

3. Instrumental variables estimators—2SLS, LIML, Fuller’s LIML, k-class, or GMM—as fit with
ivregress or the ivreg2 package of Baum, Schaffer, and Stillman (2007). In all cases, the
WRE bootstrap is applied by default. boottest initializes the bootstrap DGP with LIML,
and in particular restricted LIML unless the user includes the nonull option. It then applies
the user’s chosen estimator on the bootstrap datasets. After GMM estimation, boottest
bootstraps only with the final moment-weighting matrix; it does not replicate the process for
computing that matrix.14 By default, Wald tests are performed. However, the Anderson-
Rubin test is available; its default hypothesis is that all instrumented variables have zero
coefficients and that the overidentifying restrictions are satisfied. After 2SLS and GMM, the
score bootstrap is also available.

4. OLS and linear IV estimators with one set of “absorbed” fixed effects, as fit with Stata’s
areg command, its xtreg and xtivreg commands with the fe option, or the user-written
xtivreg2 (Schaffer, 2010) or reghdfe (Correia, 2016).

5. Maximum likelihood (ML) estimators, as fit with commands such as probit, logit, glm,
sem, gsem, and the user-written cmp (Roodman, 2011). Here, boottest offers only the score
bootstrap. In order to re-estimate nonlinear models while imposing the null, boottest must
modify and reissue the original estimation command. This requires that the estimation pack-
age accept the standard options constraints(), iterate(), and from(). The package must
also support generation of scores via predict. Many ML-based estimation procedures in
Stata meet these criteria. Because of the computational burden that is typical of ML esti-
mation, boottest does not attempt to construct confidence sets by inverting score bootstrap
tests.

boottest detects and accommodates the choice of variance matrix type used in the estimation
procedure, be it homoskedastic, heteroskedasticity-robust, cluster-robust, or multi-way cluster-
robust. It does the same for small-sample corrections, such as with the small option of ivregress.
It also lets users override those settings during inference, accepting its own robust, cluster(),
and small options. Thus, for example, tests after regress can be multi-way clustered even though
that command does not itself support multi-way clustering. In fact, the boottest package in-
cludes the wrappers waldtest and scoretest to expose such functionality without requiring any
bootstrapping. The following code shows two examples:

regress wage tenure ttl_exp collgrad , cluster (industry)
waldtest tenure , cluster (industry age)

probit c_city tenure wage ttl_exp collgrad , cluster (industry)
scoretest tenure

A third wrapper, artest, offers the non-bootstrapped Anderson-Rubin test:

ivregress 2sls wage ttl_exp collgrad (tenure = union), cluster (industry)
artest , cluster (industry age)

14It would be better to recompute the GMM weighting matrix in each replication according to whatever algorithm
the researcher has chosen, but that has not been implemented.

27

The boottest command accepts the following options, nearly all of which are inherited by the
wrapper commands:
nonull suppresses the imposition of the null hypothesis on the bootstrap DGP.
reps(#) sets the number of replications, B. The default is 999. reps(0) requests a Wald test or,

if boottype(score) is also specified and nonull is not, a score test. The wrappers waldtest
and scoretest facilitate this usage.

seed(#) sets the initial state of the random number generator; see set seed.
ptype(symmetric | equaltail | lower | upper) chooses the P value type from those listed in

(18) and (19). It applies only to one-dimensional hypotheses. The default is symmetric.
level(#) specifies the confidence level, in percent, for any confidence sets derived; see level. The

default is usually 95. Setting it to 100 suppresses computation and plotting of the confidence
set while still allowing plotting of the confidence curve or surface.

madjust(bonferroni | sidak) requests the Bonferroni or Sidak adjustment for multiple hypoth-
esis tests. The Bonferroni P value is min(1, nP) where P is the unadjusted P value and n is
the number of hypotheses. The Sidak P value is 1− (1− P)n.

weighttype(rademacher | mammen | webb | normal | gamma) specifies the distribution for the
wild weights, v∗bg , from among the choices in Section 3.4. The default is rademacher. For the
Rademacher distribution, if the number of replications B exceeds the number of possible draw
combinations, 2G, then boottest will use each possible combination once (enumeration).

noci prevents the automatic computation of a confidence interval when it would otherwise be
computed. This can save a lot of time when the null is imposed and when B or the number of
bootstrapping clusters is large.

nograph prevents graphing of the confidence function but not the derivation of the confidence set.
small requests finite-sample corrections even after estimates that did not make them.
robust and cluster(varlist) have the traditional meanings and override settings used in estima-

tion. To cluster by several variables, list them all in cluster().
bootcluster(varname) specifies the bootstrap clustering variable(s). If more than one variable

is specified, then bootstrapping is clustered by the intersections of clustering implied by the
listed variables. The default is to cluster by the intersection of all the cluster() variables,
although this is generally not recommended with multi-way clustering; see Section 4.2. Note that
cluster(A B) and bootcluster(A B) mean different things. The first is two-way clustering
of the errors by A and B. The second is one-way clustering of the bootstrap errors by the
intersections of A and B.

ar requests the Anderson-Rubin test. It applies only to instrumental variables estimation. The
null defaults to all coefficients on endogenous (instrumented) variables being zero. If the null is
specified explicitly, then it must fix all coefficients on instrumented variables, and no others.

boottype(wild | score) specifies the bootstrap type. After ML estimation, score is the default
and only option. Otherwise, the wild or wild restricted efficient bootstrap is the default.

quietly, when working with ML estimates, suppresses display of the initial re-estimation with the
null imposed.

gridmin(# [#]), gridmax(# [#]), and gridpoints(# [#]) override the default lower and upper
bounds and the resolution of the grid search that begins the process of plotting the contour curve
or surface and, for one-dimensional hypotheses, searching for the confidence interval bounds.
By default, boottest estimates the lower and upper bounds by working with the bootstrap
distribution. It initially evaluates 25 grid points. Reducing this number can save time in
computationally demanding problems, at the cost of some crudeness in the confidence plot, as
well as the risk, if the confidence set may be disjoint, of missing one or more parts of it.

28

graphname(name[, replace]) names any confidence plots. When multiple independent hypotheses
are being tested, name will be used as a stub, producing name_1, name_2, and so on.

graphopt(string) allows the user to pass formatting options to the graph twoway command in
order to control the appearance of the confidence plot.

svmat[(t | numer)] requests that the bootstrapped test statistics be saved in return value r(dist).
This can be diagnostically useful, since it allows analysis of the simulated distribution. Sec-
tion 8.3 below provides an example. If svmat(numer) is specified, overriding the default of
svmat(t), only the test statistic numerators are returned. If the null hypothesis is that a coef-
ficient is zero, then these numerators are the estimates of that coefficient in all the bootstrap
replications.

cmdline(string) provides boottest with the command line just used to generate the estimates.
This is typically needed only when performing the score bootstrap after estimation with ml
model. In order to impose the null on an ML estimate, boottest needs to re-run the estimation
subject to the constraints imposed by the null. To do that, it needs access to the command
line that generated the results. Most Stata estimation commands save the command line in the
e(cmdline) return macro. However, if one uses Stata’s ml model command, perhaps with a
custom likelihood evaluator, no e(cmdline) is saved. The cmdline(string) option provides a
work-around, by allowing the user to pass the estimation command line manually.

matsizegb(#) limits the memory demand of the G × B matrix v∗ to prevent caching of virtual
memory to disk. The limit is specified in gigabytes. Note that this option does not limit the
actual size of v∗. Instead, it forces boottest to break the matrix into chunks no larger than
the limit, creating and destroying each chunk in turn.

8 Empirical examples
To illustrate the methods that boottest makes available, we present four empirical examples
adapted from published research.

8.1 OLS with few clusters

Gruber and Poterba (1994) studied whether tax incentives prompt self-employed people to buy
health insurance. They used a difference-in-differences design to study the impact of the passage of
the Tax Reform Act of 1986 in the U.S. The act extended a pre-existing tax subsidy for employer-
provided insurance to self-employed people as well. Thus the employed served as the comparison
group for the self-employed. The dataset spans the eight years 1983–1990, with the post-treatment
period beginning in 1988, when the law came into full effect.

CGM (2008) revisited this study using an aggregated version of the Gruber-Poterba dataset
with just 16 observations, one for each combination of year and employment type.15 They regressed
the insured fraction on dummies for employment type, the post-treatment period, and the product
thereof, with the last of these being the treatment dummy:

use http :// faculty .econ. ucdavis .edu /~ dlmiller / statafiles / collapsed
regress hasinsurance selfemployed post post_self , cluster (year)

This command estimates βpost_self, the parameter of interest, to be 0.055 with a standard error
of 0.0074 when clustering by year. To illustrate the wild cluster bootstrap, CGM (2008) tested

15Since treatment is fixed for each year and employment type, and standard errors are clustered by year, we expect
that the same analysis on disaggregated data would yield similar results.

29

the hypothesis βpost_self = 0.04. The associated t-statistic is (0.055− 0.04)/0.0074 = 2.02, which,
when evaluated against the standard normal and the t(6) distribution, yielded P values of 0.043 and
0.090, respectively. They reported that a wild bootstrap with 999 replications, Mammen weights,
and no imposition of the null returned P = 0.070. We obtain fairly similar results as follows:

. waldtest post_self = .04 , noci

Wald test:
post_self = .04

t(7) = 2.0194
Prob >|t| = 0.0832

. boottest post_self =.04 , weight (mammen) nonull noci seed (2309487)

Warning : with 8 Clusters , the number of replications , 999 , exceeds the universe of
Mammen draws , 2^8 = 256.
Consider Webb weights instead , using weight (webb).

Wild bootstrap , null not imposed , 999 replications , Wald test , bootstrapping by year ,
Mammen weights :

post_self =.04

t(7) = 2.0194
Prob >|t| = 0.0480

In the first test, following Stata convention, waldtest uses the t(G−1) distribution, and here there
are G = 8 clusters. For the bootstrap test, boottest produces an interesting warning. Although
CGM (2008) used 999 replications, with eight clusters, the two-point Mammen distribution can
only produce 256 different bootstrap samples.

We improve on this example by imposing the null, as advised by CGM (2008) and in Section 3.2,
drawing from the six-point Webb distribution, increasing the number of bootstrap samples to
B = 999, 999, and inverting the test to derive a 95% confidence interval for βpost_self:

. boottest post_self =.04 , reps (999999) weight (webb)

..........................
Wild bootstrap , null imposed , 999999 replications , Wald test , bootstrapping by year ,
Webb weights :

post_self =.04

t(7) = 2.0194
Prob >|t| = 0.0756

95% confidence set for null hypothesis expression : [.03851 , .07106]

8.2 OLS with multi-way clustering

Michalopoulos and Papaioannou (2013) (MP) investigated the effect of pre-colonial ethnic institu-
tions on comparative regional development in African countries. They proxied regional variation in
economic activity by satellite images of light density taken at night. In Section 4 of MP, geographic
pixels of size 0.125× 0.125 decimal degrees are the unit of analysis. Their specification is

yp,i,c = ac + γIQLi + λPDp,i,c +Z ′p,i,cΨ +X ′i,cΦ + ζp,i,c,

where yp,i,c represents economic activity in pixel p in the historical homeland of ethnicity i in
country c. Controls include country-level fixed effects (ac), log population density (PDp,i,c), pixel-
level variables (Zp,i,c), and ethnicity-country-level variables (Xi,c). The predictor of interest is

30

IQLi, which represents the degree of jurisdictional hierarchy, beyond the local level, for ethnic
institutions.

In the regression we replicate—from MP Table V, Panel A, column 10—the dependent variable
is the log of average pixel luminosity in 2007–08. The N = 66,173 observations come from G = 49
countries and H = 94 ethno-linguistic groups. The two clustering dimensions have 295 non-empty
intersections. We reproduce this regression using the MP data file16 and CGM (2011)’s multi-way
clustering command, cgmreg.17

use pixel -level -baseline -final , clear
global pix lnkm pixpetro pixdia pixwaterd pixcapdist pixmal pixsead pixsuit pixelev pixbdist
global geo lnwaterkm lnkm2split mean_elev mean_suit malariasuit petroleum diamondd
global poly capdistance1 seadist1 borderdist1
encode pixwbcode , gen(ccode) // make numerical country identifier
cgmreg lnl0708s i. ccode centr_tribe lnpd0 $pix $geo $poly , cluster (ccode pixcluster)

The coefficient estimate of interest, for cntr_tribe, is 0.156. The standard error, two-way clustered
by ethno-linguistic group and country, is 0.048, yielding a t-statistic (reported in MP as a z-statistic)
of 3.228 for the null hypothesis that γ = 0. This implies a 95% confidence interval of [0.061, 0.251].

As discussed in Section 4.2, there are three natural choices for the level of bootstrap clustering
in this case: by ethno-linguistic group, by country, or by the intersection of the two. Simulation
results in MacKinnon, Nielsen, and Webb (2017) favor clustering in the dimension with the fewest
clusters, which, in this case, is the G = 49 countries. For illustration, we perform tests for all
three levels. Also for illustration, we move to Stata’s fixed-effect linear regression command, areg.
The latter cannot perform multi-way clustering, so we do not bother to specify clustering during
estimation. However, we can use the waldtest wrapper to calculate the appropriate P value.
Additionally, we simply add the cluster() option to the boottest command lines. We then use
the bootcluster() option to control the level of bootstrap clustering:

areg lnl0708s centr_tribe lnpd0 $pix $geo $poly , absorb (ccode)
waldtest centr_tribe , cluster (ccode pixcluster)
set seed 2309487 // for exact reproducibility of results
boottest centr_tribe , reps (9999) clust (ccode pixcluster) bootclust (ccode)
boottest centr_tribe , reps (9999) clust (ccode pixcluster) bootclust (pixcluster)
boottest centr_tribe , reps (9999) clust (ccode pixcluster) bootclust (ccode pixcluster)

The three calls to boottest return 95% confidence intervals of [0.055, 0.249], [0.045, 0.264], and
[0.054, 0.249], respectively. These differ only slightly from the original [0.061, 0.251]. This is not
surprising, because even the coarsest clustering dimension here contains 49 clusters. The number
of clusters is probably large enough that the performance of non-bootstrap tests and confidence
intervals is close to their asymptotic behavior.

8.3 Difference-in-differences with few treated clusters

Conley and Taber (2011) (CT) observed that, in difference-in-differences estimation with few treated
clusters, the cluster-robust CRVE can be severely biased. In response, CT proposed a particular
application of randomization inference. MacKinnon and Webb (2017b) showed that the wild cluster
bootstrap also fails in this setting: The WCU bootstrap overrejects, and the WCR bootstrap
underrejects. Later, MacKinnon and Webb (2018) proposed the subcluster bootstrap mentioned
in Section 4.2 as a way to reduce the extent of the problem. We illustrate these findings in the
context of an empirical example studied in CT.

16Available at econometricsociety.org/content/supplement-pre-colonial-ethnic-institutions-and-contemporary-african-development-0.
17web.archive.org/20170406170058/http://gelbach.law.upenn.edu/~gelbach/ado/cgmreg.ado.

31

econometricsociety.org/content/supplement-pre-colonial-ethnic-institutions-and-contemporary-african-development-0
web.archive.org/20170406170058/http://gelbach.law.upenn.edu/~gelbach/ado/cgmreg.ado

CT studied the impact on college enrollment of state-level merit scholarship programs using
data from Current Population Surveys for all states and the District of Columbia, covering 1989–
2000.18 During the study period, ten states adopted such programs. CT regressed an individual-
level dummy for eventual college enrollment on dummies for sex, race, state, year, as well as the
treatment variable, which is a dummy for the availability of state-level scholarships. One of the
CT specifications evaluates the average impact of all ten states’ programs, and another focuses on
the most famous program, Georgia’s HOPE, by dropping the other nine treatment states from the
sample. In both cases, standard errors are clustered by state. If G1 denotes the number of clusters
in which treatment occurs, these models have N = 42,161, G = 51, and G1 = 10 for the merit
scholarship regressions and N = 34,902, G = 42, and G1 = 1 for the HOPE scholarship regressions.
Thus the HOPE regressions illustrate the extreme case in which there is just one treated cluster.

We first consider the model with ten states. We apply six variants of the wild cluster bootstrap
to test the hypothesis that the scholarship programs were not associated with college enrollment.
Three impose the null hypothesis, and three do not. Within each triplet, the first variant clusters
the bootstrap errors by state, the level at which they are clustered in the CRVE. The second
variant clusters the bootstrap errors by state-year combination, and the third variant clusters them
by individual. Clustering by individual means not clustering at all, so this variant is actually the
ordinary wild bootstrap.

infile coll merit male black asian year state chst using regm.raw , clear
set seed 3541641
regress coll merit male black asian i.year i.state , cluster (state)
gen individual = _n // unique ID for each observation
boottest merit , reps (9999) gridpoints (10) // defaults to bootcluster (state)
boottest merit , reps (9999) gridpoints (10) nonull
boottest merit , reps (9999) gridpoints (10) bootcluster (state year)
boottest merit , reps (9999) gridpoints (10) nonull bootcluster (state year)
boottest merit , reps (9999) gridpoints (10) bootcluster (individual)
boottest merit , reps (9999) gridpoints (10) nonull bootcluster (individual)

The last two commands are especially demanding: Memory usage temporarily rises by about
4.5GB. The primary cause is the construction of a wild weight matrix v∗ with one row for each of
the 42,161 observations (“clusters” for bootstrapping purposes) and one column for each of the 9,999
replications19. When the null hypothesis is imposed, the computational burden of constructing and
multiplying the large matrices is compounded by the search for confidence interval bounds, which
requires re-running the bootstrap for many trial values (see Section 3.5). The “gridpoints(10)”
options save a bit of time by instructing boottest to evaluate 10 instead of the default 25 evenly
spaced values in its initial search for confidence interval bounds. The cost of that choice is that the
confidence curve plots, which we do not look at here, are rougher. On the hardware referenced in
Section 5, the penultimate command takes 9.7 minutes.20

We next run the same tests for Georgia’s HOPE program alone. This time, we condense the
boottest commands into a loop, and take advantage of boottest’s svmat option to save the t-
statistics from each bootstrap sample. To give insight into the behavior of the wild cluster bootstrap
here, we plot histograms for all six distributions:

regress coll merit male black asian i.year i. state ///
if ! inlist (state ,34 ,57 ,59 ,61 ,64 ,71 ,72 ,85 ,88) , cluster (state)

local gr 0
foreach bootcluster in state " state year" individual {

18Data are available at economics.uwo.ca/people/conley_docs/code_to_download.html.
19Actually, it has 10,000 columns, because an extra one is inserted as in the model code in Section 5.
20In Stata/MP, using 4 processors cuts the run time to 5.6 minutes.

32

economics.uwo.ca/people/conley_docs/code_to_download.html

Table 1: Estimates, P values, and 95% confidence intervals for scholarship programs

Treatment group Ten states Georgia only
Estimate 0.0337 0.0722
Cluster-robust s.e. 0.0127 0.0108
t-statistic 2.664 6.713
P values and confidence intervals: P val. Conf. int. P val. Conf. int.
t(G− 1) 0.010 [0.008, 0.059] 0.000 [0.050, 0.094]
Bootstrap by state, restricted 0.020 [0.007, 0.067] 0.495 [−2.787, 1.307]
Bootstrap by state, unrestricted 0.025 [0.005, 0.063] 0.000 [0.050, 0.095]
Bootstrap by state-year, restricted 0.037 [0.003, 0.066] 0.291 [−5.375, 4.700]
Bootstrap by state-year, unrestricted 0.041 [0.002, 0.066] 0.094 [−0.013, 0.157]
Bootstrap by individual, restricted 0.031 [0.004, 0.064] 0.390 [−0.099, 0.246]
Bootstrap by individual, unrestricted 0.033 [0.003, 0.064] 0.392 [−0.096, 0.240]

foreach nonull in "" nonull {
boottest merit , reps (9999) gridpoints (10) bootcl (` bootcluster ')

`nonull ' svmat
mat dist = r(dist)
svmat dist
histogram dist1 , xline (`r(t)') title ("` bootcluster ' `nonull '") ///

xtitle ("") ytitle ("") ylabel (, angle (horizontal)) name(gr `++gr ', replace)
drop dist1

}
}
graph combine gr1 gr3 gr5 gr2 gr4 gr6 , imargin (tiny) xcommon ycommon

Table 1 presents parameter estimates, cluster-robust standard errors, and t-statistics for the ten-
state and Georgia-specific regressions, along with six bootstrap P values and the associated 95%
confidence intervals.21 For the ten-state regression, the P values and confidence intervals are similar
to one another, which is to be expected given the numbers of clusters (51) and number of treated
clusters (10). In contrast, the Georgia-only P values and confidence intervals vary radically. As
predicted by the theory in MacKinnon and Webb (2017b, 2018), the WCR bootstrap test strongly
rejects and the WCU bootstrap test does not reject when the bootstrap errors are clustered by
state. Clustering the bootstrap errors by state-year intersections instead of by state reduces, but
does not eliminate, the disagreement. However, “clustering” the bootstrap errors by individual
(that is, using the ordinary wild bootstrap) brings the restricted and unrestricted bootstrap tests
into very good agreement, with almost identical P values and confidence intervals.

The simulated distributions for the six Georgia-specific bootstrap t-statistics are displayed in
Figure 2. In all six plots, a vertical line marks the actual t-statistic of 6.713. In the two left-
most panels, we see the degenerate behavior of the bootstrap distribution with clustering at the
state level: It is bimodal when the null is imposed (WCR), and unimodal and narrow when it is
not imposed (WCU). Bootstrapping with finer clustering produces much more plausible-looking
distributions. They suggest that it would not be unusual to obtain a t-statistic as large as 6.713
even if the HOPE program had no impact.

8.4 IV estimation

Levitt (1996) studied the short-term elasticity of the crime rate with respect to the incarceration
rate in a U.S. state panel covering 1973–1993. To identify causal impacts, the study instrumented

21The top rows of Table 1 match the results in column C of Tables 1 and 2 in CT.

33

Figure 2: Wild bootstrap distributions of t-statistic in Conley and Taber (2011) difference-in-
differences evaluation of Georgia’s HOPE program, varying the bootstrap clustering and whether
the null is imposed

0

.1

.2

.3

.4

−40 −20 0 20 40

state

0

.1

.2

.3

.4

−40 −20 0 20 40

state nonull

0

.1

.2

.3

.4

−40 −20 0 20 40

state year

0

.1

.2

.3

.4

−40 −20 0 20 40

state year nonull

0

.1

.2

.3

.4

−40 −20 0 20 40

individual

0

.1

.2

.3

.4

−40 −20 0 20 40

individual nonull

prisoners per capita with a set of dummies representing the somewhat arbitrarily timed progression
of lawsuits over prison overcrowding. For example, if a court temporarily took control of a prison
system, prison growth tended to slow at the onset of control and accelerate after control ended.

The definition of the overcrowding-lawsuit instrumental variables is complex, so we will omit
most details here. Levitt (1996) divided the life cycle of an overcrowding lawsuit into six stages and
subdivided these into three substages. Starting from a dataset provided by Steven Levitt, which
may not exactly match that used in the study, we computed and added these variables. We also
pre-computed some per-capita variables and logarithms thereof.22

Separately for violent and property crime, Levitt regressed year-on-year log changes (D.lViolentpop
and D.lPropertypop in our regressions) on the previous year’s log change in prisoners per capita
(LD.lpris_totpop). In the 2SLS regressions, the latter is instrumented with interactions of
stage and substage as factor variables. State-level demographic and economic controls, all first-
differenced, include log income per capita, unemployment, log police per capita, the metropolitan
population fraction, the fraction that is black, and various age group fractions. Year and state dum-
mies are included in the specification we copy here. Standard errors are robust to heteroskedasticity
only.

This code produces our best replications of the original regressions, and runs some bootstrap
tests:
use Levitt , clear
set seed 8723419

22Data and preparation code are available at davidroodman.com/david/Levitt.zip.

34

davidroodman.com/david/Levitt.zip

Figure 3: Confidence curve for short-term elasticity of violent and property crime rate with respect
to imprisonment rate, using a Wald test with the wild restricted efficient bootstrap, in the context
of Levitt (1996) fixed-effects IV regressions

.561.1780

.2

.4

.6

.8

1

.05

-2 -1 0 1 2

Violent crime

-.681 .148-1.550

.2

.4

.6

.8

1

.05

-2 -1 0 1 2

Property crime

.407

foreach crimevar in Violent Property {
ivregress 2sls D.l`crimevar 'pop ///

(LD. lpris_totpop = ibnL. stage #i (1/3) L. substage) D.(lincomepop unemp lpolicepop ///
metrop black a*pop) i.year i.state , robust

boottest LD. lpris_totpop , clust (state year) bootclust (year) ptype (equaltail) ///
gridmin (-2) gridmax (2) graphname (`crimevar ', replace) ///
graphopt (xtitle ("") ytitle ("") title (`crimevar ' crime) ///
ylabel (, angle (horizontal)))

}
graph combine Violent Property , imargin (tiny) ysize (2.5) iscale (*1.5)

From ivregress, we obtain elasticity estimates of −0.456 (standard error 0.170) for violent crime
and −0.243 (0.106) for property crime, as opposed to −0.379 (0.180) and −0.261 (0.117) in Levitt
(1996, Table VI, cols. 3 and 6). For a more extensive discussion of this study, see Roodman (2017).

The boottest command line above treats the specification in a more modern way. It two-way
clusters the standard errors by state and year, and then bootstraps the distribution of the resulting t-
statistic using the WRE (see Section 6.1). It computes the equal-tail P value, which is recommended
for IV applications, in which bias toward the OLS estimate tends to make the confidence curve
asymmetric (Davidson and MacKinnon, 2010). The bootstrap is clustered by the coarsest error-
clustering dimension, which is the year. Surprisingly, this procedure produces 95% confidence sets
that are disjoint and unbounded. The confidence set for violent crime is (−∞, 0.178]∪ [0.561,+∞)
and that for property crime is (−∞,−1.546] ∪ [−0.681, 0.148] ∪ [0.407,+∞).

The confidence plots presented in Figure 3 show exactly how these confidence sets were obtained.
The boottest command line above customizes their appearance using “gridmin(2) gridmax(2)"
to set their horizontal bounds and graphopt() to pass options to the underlying graph command.
For violent crime, only the interval between 0.178 and 0.561 does not belong to the 95% confidence
set, because the bootstrap P values are less than .05 only in that interval. Similarly, for property
crime, only the two intervals between −1.546 and −0.681 and between 0.148 and 0.407 do not

35

belong to the 95% confidence set. These types of confidence sets may seem odd, but they can often
arise when the instruments are weak; see Dufour (1997).

9 Conclusion
We have discussed in detail the Stata package boottest, which calculates several versions of the
wild bootstrap for tests of linear restrictions on linear regression models with heteroskedastic errors,
one-way clustering, or multi-way clustering. The package also calculates the wild restricted efficient
bootstrap (Davidson and MacKinnon, 2010) for models with one or more endogenous explanatory
variables, with or without clustering, and the score bootstrap (Kline and Santos, 2012) for a variety
of nonlinear models.

The mathematical structure of the wild cluster bootstrap, especially for models estimated by
OLS, lends itself to efficient implementation, thus removing computational cost as a barrier to use.
As we explained in Section 5, boottest takes advantage of this, and the code is remarkably fast,
even when both the number of observations and the number of bootstrap replications are very
large.

The empirical examples of Section 8 reinforce a well-known message from simulation studies
(e.g., Cameron, Gelbach, and Miller, 2008; Davidson and MacKinnon, 2010; Finlay and Magnusson,
2016; Djogbenou, MacKinnon, and Nielsen, 2018): Results from wild bootstrap tests are often very
similar to those from tests relying on large-sample theory, but not always. In particular, when the
assumptions of asymptotic theory are far from being satisfied—for example, when there are few
clusters, very unbalanced clusters, few treated clusters, or weak instruments—the bootstrap-based
tests and the tests based on large-sample theory may lead to very different inferences. In these
cases, indeed in almost all cases, it is preferable to rely on bootstrap-based tests, since they typically
exhibit better finite-sample properties.

10 Acknowledgments
We thank an anonymous reviewer and members of the audience at the 2018 Canadian Stata Con-
ference for helpful comments and Joshua Roxborough for research assistance. MacKinnon and
Webb thank the Social Sciences and Humanities Research Council of Canada (SSHRC) for finan-
cial support. Nielsen thanks the Canada Research Chairs program, the SSHRC, and the Center
for Research in Econometric Analysis of Time Series (CREATES, funded by the Danish National
Research Foundation, DNRF78) for financial support.

References
Baum, C. F., M. E. Schaffer, and S. Stillman. 2007. Enhanced routines for instrumental vari-
ables/GMM estimation and testing. Stata Journal 7: 465–506.

Beran, R. 1986. Discussion: jackknife, bootstrap and other resampling methods in regression
analysis. Annals of Statistics 14: 1295–1298.

Bertrand, M., E. Duflo, and S. Mullainathan. 2004. How much should we trust differences-in-
differences estimates? Quarterly Journal of Economics 119: 249–275.

Bester, C. A., T. G. Conley, and C. B. Hansen. 2011. Inference with dependent data using cluster
covariance estimators. Journal of Econometrics 165: 137–151.

36

Cameron, A. C., J. B. Gelbach, and D. L. Miller. 2008. Bootstrap-based improvements for inference
with clustered errors. Review of Economics and Statistics 90: 414–427.

. 2011. Robust inference with multiway clustering. Journal of Business & Economic Statistics
29: 238–249.

Carter, A. V., K. T. Schnepel, and D. G. Steigerwald. 2017. Asymptotic behavior of a t test robust
to cluster heterogeneity. Review of Economics and Statistics 99: 698–709.

Caskey, J. 2010. cgmwildboot. URL sites.google.com/site/judsoncaskey/data.

Conley, T. G., and C. R. Taber. 2011. Inference with “difference in differences” with a small number
of policy changes. Review of Economics and Statistics 93: 113–125.

Correia, S. 2016. Linear models with high-dimensional fixed effects: an efficient and feasible esti-
mator. Working paper, Duke University.

Davidson, J., A. Monticini, and D. Peel. 2007. Implementing the wild bootstrap using a two-point
distribution. Economics Letters 96: 309–315.

Davidson, R., and E. Flachaire. 2008. The wild bootstrap, tamed at last. Journal of Econometrics
146: 162–169.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York:
Oxford University Press.

. 1999. The size distortion of bootstrap tests. Econometric Theory 15: 361–376.

. 2004. Econometric Theory and Methods. New York: Oxford University Press.

. 2010. Wild bootstrap tests for IV regression. Journal of Business & Economic Statistics
28: 128–144.

. 2014. Confidence sets based on inverting Anderson–Rubin tests. Econometrics Journal 17:
S39–S58.

Davison, A. C., and D. V. Hinkley. 1997. Bootstrap Methods and Their Application. Cambridge,
UK: Cambridge University Press.

Davizies, L., X. D’Haultfaeuille, and Y. Guyonvarch. 2018. Asymptotic results under multiway
clustering. ArXiv e-prints, CREST.

Djogbenou, A. A., J. G. MacKinnon, and M. Ø. Nielsen. 2018. Asymptotic theory and wild boot-
strap inference with clustered errors. QED Working Paper 1399, Queen’s University, Department
of Economics.

Dufour, J.-M. 1997. Some impossibility theorems in econometrics with applications to structural
and dynamic models. Econometrica 65: 1365–1388.

Eicker, F. 1963. Asymptotic normality and consistency of the least squares estimators for families
of linear regressions. Annals of Mathematical Statistics 34: 447–456.

Field, C. A., and A. H. Welsh. 2007. Bootstrapping clustered data. Journal of the Royal Statistical
Society Series B 69: 369–390.

37

sites.google.com/site/judsoncaskey/data.

Finlay, K., L. Magnusson, and M. E. Schaffer. 2016. WEAKIV: Stata module to perform weak-
instrument-robust tests and confidence intervals for instrumental-variable (IV) estimation of
linear, probit and tobit models. Statistical Software Components, Boston College Department of
Economics. URL https://ideas.repec.org/c/boc/bocode/s457684.html.

Finlay, K., and L. M. Magnusson. 2016. Bootstrap methods for inference with cluster sample IV
models. Working paper, University of Western Australia.

Gould, W. 2010. Mata matters: Stata in Mata. Stata Journal 10: 125–142.

Gruber, J., and J. Poterba. 1994. Tax incentives and the decision to purchase health insurance:
evidence from the self-employed. Quarterly Journal of Economics 109: 701–733.

Hansen, C. B. 2007. Asymptotic properties of a robust variance matrix estimator for panel data
when T is large. Journal of Econometrics 141: 597–620.

Härdle, W., and E. Mammen. 1993. Comparing nonparametric versus parametric regression fits.
Annals of Statistics 21: 1926–1947.

Hu, F., and J. D. Kalbfleisch. 2000. The estimating function bootstrap. Canadian Journal of
Statistics 28: 449–481.

Hu, F., and J. V. Zidek. 1995. A bootstrap based on the estimating equations of the linear model.
Biometrika 82: 263–275.

Kline, P., and A. Santos. 2012. A score based approach to wild bootstrap inference. Journal of
Econometric Methods 1: 23–41.

Lee, C. H., and D. G. Steigerwald. 2018. Inference for clustered data. Stata Journal 18: 447–460.

Levitt, S. D. 1996. The effect of prison population size on crime rates: evidence from prison
overcrowding litigation. Quarterly Journal of Economics 111: 319–351.

Liang, K.-Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear models.
Biometrika 73: 13–22.

Liu, R. Y. 1988. Bootstrap procedures under some non-I.I.D. models. Annals of Statistics 16:
1696–1708.

MacKinnon, J. G. 2009. Bootstrap hypothesis testing. In Handbook of Computational Econometrics,
ed. D. A. Belsley and E. J. Kontoghiorghes, 183–213. Wiley.

. 2013. Thirty years of heteroskedasticity-robust inference. In Recent Advances and Future
Directions in Causality, Prediction, and Specification Analysis, ed. X. Chen and N. R. Swanson,
437–461. Springer.

. 2015. Wild cluster bootstrap confidence intervals. L’Actualité Économique 91: 11–33.

MacKinnon, J. G., M. Ø. Nielsen, and M. D. Webb. 2017. Bootstrap and asymptotic inference with
multiway clustering. QED Working Paper 1386, Queen’s University, Department of Economics.

MacKinnon, J. G., and M. D. Webb. 2017a. Pitfalls when estimating treatment effects with clustered
data. The Political Methodologist 24: 20–31.

38

https://ideas.repec.org/c/boc/bocode/s457684.html.

. 2017b. Wild bootstrap inference for wildly different cluster sizes. Journal of Applied
Econometrics 32: 233–254.

. 2018. The wild bootstrap for few (treated) clusters. Econometrics Journal 21: 114–135.

Mammen, E. 1993. Bootstrap and wild bootstrap for high dimensional linear models. Annals of
Statistics 21: 255–285.

Menzel, K. 2017. Bootstrap with clustering in two or more dimensions. ArXiv e-prints, New York
University.

Michalopoulos, S., and E. Papaioannou. 2013. Pre-colonial ethnic institutions and contemporary
African development. Econometrica 81: 113–152.

Pitt, M. M., and S. R. Khandker. 1998. The impact of group-based credit programs on poor house-
holds in Bangladesh: does the gender of participants matter? Journal of Political Econonomy
106: 958–996.

Roodman, D. 2011. Fitting fully observed recursive mixed-process models with cmp. Stata Journal
11: 159–206.

. 2017. The impacts of incarceration on crime. Working paper, Open Philanthropy Project.

Roodman, D., and J. Morduch. 2014. The impact of microcredit on the poor in Bangladesh:
revisiting the evidence. Journal of Development Studies 50: 583–604.

Schaffer, M. E. 2010. XTIVREG2: Stata module to perform extended IV/2SLS, GMM and
AC/HAC, LIML and k-class regression for panel data models. Statistical Software Components,
Boston College Department of Economics. URL https://ideas.repec.org/c/boc/bocode/
s456501.html.

Stock, J. H., and M. W. Watson. 2008. Heteroskedasticity-robust standard errors for fixed effects
panel data regression. Econometrica 76: 155–174.

Thompson, S. B. 2011. Simple formulas for standard errors that cluster by both firm and time.
Journal of Financial Economics 99: 1–10.

Webb, M. D. 2014. Reworking wild bootstrap based inference for clustered errors. QED Working
Paper 1315, Queen’s University, Department of Economics.

White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica 48: 817–838.

. 1984. Asymptotic Theory for Econometricians. San Diego: Academic Press.

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA:
MIT Press.

Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling methods in regression analysis.
Annals of Statistics 14: 1261–1295.

39

https://ideas.repec.org/c/boc/bocode/s456501.html.
https://ideas.repec.org/c/boc/bocode/s456501.html.

Appendices
A Methods and formulas in boottest

In this appendix, we present additional details of the discussion in Section 5 about the methods and
formulas in boottest. For example, we extend the computational framework to multi-way clus-
tering, discuss how to speed up the inversion of one-dimensional tests to form confidence intervals,
and describe the modifications needed to perform the score bootstrap efficiently.

A.1 Generalizing the wild cluster bootstrap for OLS

Section 5 presented a method for performing the wild cluster bootstrap that is optimized for the
case of few clusters. Here we generalize that exposition to incorporate:

• parameter constraints under the maintained hypothesis, if any, in addition to those under the
null hypothesis;

• null hypotheses of dimension q > 1;

• observation weights;

• one-way fixed effects;

• multi-way clustering;

• subcluster bootstrapping.

We adopt the following definitions:

• The constraints under the null hypothesis are given by Rβ = r, and there are q ≥ 1 of them.
Additional a priori constraints under the maintained hypothesis are given by R1β = r1, and
there are q1 ≥ 0 of them. For example, if applying boottest after cnsreg, the restrictions
imposed by cnsreg are R1β = r1. The latter are sometimes referred to as the “model
constraints.”

• W is an N ×N diagonal observation weighting matrix. If there are no weights, W = I.

• NFE is the number of fixed effects, if any. D is the N×N matrix, left-multiplication by which
partials out the fixed-effect dummies; that is, D demeans data within fixed-effect groups. If
there are no fixed effects, D = I.

• Because data may be clustered in several ways, c subscripts are affixed to objects whose
definitions depend on the choice of a particular clustering dimension for the errors (in the
same way that we used G, H, and GH specifically for two-way clustering in Section 4). These
objects include S, the matrix that by left-multiplication creates cluster-wise sums; Ω̂, the
“estimate” of the clustered covariance matrix of the error terms; and V̂ , the cluster-robust
covariance matrix estimate for the coefficients. Nc is the number of clusters in clustering
dimension c.

40

• The clustering-specific finite-sample adjustment factors mc are understood to be negated for
clustering intersections of odd parity, such as the GH clustering under the Section 4 notation.
Thus we condense the multi-way CRVE formula (27) into

∑
cmcV̂c, where the sum is taken

over all the different error clusterings and combinations thereof.

• The subscript c∗ indicates the clustering used in the bootstrap DGP. It may differ (e.g., in
the subcluster bootstrap) from all of the error clusterings indicated with a plain c subscript.
In the one-way wild cluster bootstrap, there is only one value for c, which also equals c∗.

If there is a model constraint R1β = r1, the restriction can equivalently be stated in terms of
an unconstrained parameter, τ , as

β = T1τ + t1, (54)
T1 = R′1⊥, (55)
t1 = R′1(R1R

′
1)−1r1, (56)

where R′1⊥ is a k × (k − q) matrix whose columns are orthogonal to the columns of R′1.23 The
parameterization (54) is such that τ exactly parameterizes the affine subspace of admissible values
for β under the constraints R1β = r1. If there is no model constraint, then we take T1 = I and
t1 = 0.

To implement the restricted bootstrap, we need to estimate the model not only under the model
constraints, but also under the null and model constraints jointly. To this end, we define

R0 =
[
R1
R

]
and r0 =

[
r1
r

]
,

so that, under both sets of constraints, R0β = r0. We obtain T0 and t0 by analogy with T1 and t1.
With this notation, we can define the constrained, weighted, fixed-effects linear regression esti-

mators

β̃= T0(T ′0X ′D′WDXT0)−1T ′0X
′D′WD(y−Xt0) + t0, (null imposed) (57)

β̂= T1(T ′1X ′D′WDXT1)−1T ′1X
′D′WD(y−Xt1) + t1, (null not imposed)

β̂∗b =T1(T ′1X ′D′WDXT1)−1T ′1X
′D′WD(y∗b−Xt1) + t1. (bootstrap estimate)

Generalizing the estimation framework in these ways forces some changes to the numerical
recipe in Section 5. We omit the details, providing just the results for the Wald numerators and
denominators. The expression for the Wald numerators in equation (37) now becomes

R(β̂∗ :– β̈) = (Sc∗(ü :*WDXAR′))′v∗, (58)

where, for conciseness, we have defined

A = (T ′1X ′D′WDXT1)−1. (59)

Up to a constant of proportionality, A is the inverse Hessian. Note thatD and Sc∗ are never in fact
constructed in order to compute the numerators. Rather, left-multiplication by each is carried out
through more direct manipulation of the data. For Sc∗ , this is done by summing columns within
bootstrapping clusters, and for D it is done by demeaning columns within fixed-effect groups.

23In practice, the matrix R′1⊥ is constructed from an eigendecomposition; see [P] makecns for details.

41

More complications arise when computing the Wald denominators. To see why, we again start
by assuming that q = 1. The penultimate statement of the formula for J∗, a key factor in the
denominators—see (44)—generalizes to

J∗c = K∗cv
∗, (60)

K∗c = Sc
(
WDXAR′:*D :* ü′

)
S′c∗−Sc

(
WDXAR′:*DXAX ′D′W :* ü′

)
S′c∗

= Sc
(
WDXAR′:*D :* ü′

)
S′c∗−Sc

(
WDXAR′:*DX

)
A
(
Sc∗(ü :*WDX)

)′
. (61)

Again, we omit details. Notice that these quantities are indexed by c; for multi-way clustering, they
must be computed for all the different error clustering and combinations thereof.24 The results are
then summed in a revised equation (41) for the full set of Wald denominators:

(RV̂ R′)∗ = colsum
(∑

cmcJ
∗
c :*J∗c

)
= colsum

(
v∗ :*

(∑
cmcK

∗
c
′K∗c

)
v∗
)
. (62)

The last rearrangement in (62) is novel: It aims once more to defer involvement of the matrix
v∗, this time by summing over clusterings first. The computational costs for the two alternatives
in (62) depend on the dimensions of the matrices involved: K∗c is Nc × Nc∗ , and v̂∗ is Nc∗ × B.
boottest chooses between the two versions based on an estimate of their relative computational
costs.

Note that (61) introduces a new complication, namely, an isolated instance of the large N ×N
matrix D in the first term. Because it is not positioned as left-multiplying against a data matrix,
we cannot avoid constructing it merely by interpreting its presence as demeaning a data matrix
within fixed-effect groups. In Section 5, we did not allow for fixed effects, so there D = I, which
we avoided constructing by invoking the identity a :* I :* b′ = diag(a :* b). However, that approach
will not work now.

As we have done several times earlier, we will avoid constructing the troublesome matrix by
substituting a formula for it, then rearranging the larger expression. In this case, the formula is

D = I− FF ′W ,

where F is a data matrix of the fixed-effect dummies and W is a diagonal matrix holding the
weight shares of each observation within its fixed-effect group (or, if observations are not weighted,
the reciprocal of the number of observations in its group). If we substitute for D in the first term
in (61) and expand it, using (9) and (10), we obtain:

Sc(WDXAR′:*D :* ü′)S′c∗
= Sc(WDXAR′:* I :* ü′)S′c∗− Sc(WDXAR′:*FF ′W :* ü′)S′c∗
= Sc diag(WDXAR′:* ü)S′c∗− Sc(WDXAR′:*F)(F ′W :* ü′)S′c∗

=Sc diag
(
WDXAR′ :*ü

)
S′c∗−Sc

(
WDXAR′ :*F)(Sc∗(Wü :*F)

)′
. (63)

In general, if a is a column vector, then the Nc×NFE matrix Sc(a :*F), the type of expression
found twice on the right-hand side of (63), is a so-called crosstab: Each entry (i, j) is the sum of
those elements of a belonging to the ith cluster in clustering c and the j th fixed-effect group. We

24If a function such as panelsum() is used to create left-multiplication by the Sc matrices, then the various matrices
being summed must in some iterations be re-sorted according to a different clustering, which is a potentially costly
operation; panelsum() requires sorted data. If the clusterings are not too fine, this cost can be reduced substantially
by preliminarily collapsing (cluster-wise summing) these matrices to the level of the intersection of all the different
error clusterings.

42

symbolize this crosstab by CTc,FE(a). It can be computed directly without constructing the large,
sparse matrix F . The left-hand term of (63) is a crosstab too, of WDXAR′ :* ü′ with respect to
the clusterings c and c∗, i.e. CTc,c∗(WDXAR′ :* ü′). Drawing these threads together, we rewrite
(61) as

K∗c = CTc,c∗(WDXAR′ :* ü)− CTc,FE(WDXAR′)CTc∗,FE(Wü)′

−Sc(WDXAR′:*DX
)
A
(
Sc∗(ü :*WDX)

)′
. (64)

Notice that, because the residuals ü come from an estimator that controls for the fixed effects,
their (weighted) sum within each fixed-effect group is zero. If every fixed-effect group is in turn
either equal to or contained in a single cluster under clustering c∗, then CTc∗,FE(Wü) = 0, and
the second term in (64) drops out. That possibility includes the common case of the fixed-effect
grouping and the (bootstrap) error clustering coinciding. Of course, the term never arises if there
are no fixed effects.

Finally, we deal with the complications introduced by allowing q > 1. Now the q × k matrix R
is no longer a row vector. This does not hamper the calculation of the bootstrap Wald numerators
in (58), which is unchanged. However, the formulas for the denominators lose meaning. The
breakdown occurs in (40), which requires, as explained just before that equation, that R′ is a
column vector.

In general, a bootstrap Wald denominator, RV̂ ∗bR′, is a q × q matrix with (d1, d2)th ele-
ment given by Rd1V̂

∗bR′d2
, where the d subscripts identify rows of R that express individual

constraints. A natural way to generalize the denominator formulas to higher-dimensional hypothe-
ses is to double-subscript the J and K matrices for both error clustering and null constraint row,
as follows:

J∗cd =K∗cdv
∗, (65)

K∗cd = CTc,c∗(WDXAR′d :* ü)−CTc,FE(WDXAR′d)CTc,FE(Wü)′

−Sc
(
WDXAR′d :*DX

)
A
(
Sc∗(ü :*WDX)

)′
, (66)

(RV̂ R′)∗d1,d2 = colsum
(
v∗ :*

(∑
cmcK

∗′
c,d1K

∗
c,d2

)
v∗
)
; (67)

c.f. (60), (61), and (62). Equation (67) produces a 1×B row vector of the (d1, d2)th elements of all
the bootstrap Wald denominators. Since these denominators are symmetric, the triplet of formulas
must be applied for each of the q(q + 1)/2 independent entries in such matrices. In boottest, the
denominator for each replication b is then constructed via explicit loops that extract and arrange
the bth elements from the row vectors in (67).

Once again, we have arrived at a set of formulas that together compute all the wild bootstrap
Wald numerators and denominators while minimizing explicit looping and avoiding construction
of large intermediate matrices. This time, the formulas allow for a priori linear constraints on the
model, higher-dimensional null hypotheses, observation weights, fixed effects, multi-way clustering,
and subcluster bootstrapping.

A.2 Inverting a test when imposing the null hypothesis

As explained in Section 3.5, we can form confidence sets by inverting any bootstrap test. In that
section, we focused on tests of the hypothesis that βj = βj0. More generally, however, we need
to invert a test for the linear restriction Rβ = r. (In practice, boottest can only do so when
q = 1 and r is therefore scalar.) When a bootstrap DGP satisfies the restrictions that are being

43

tested, the bootstrap distribution must be recomputed for every trial value of r, and this can
be computationally demanding. Fortunately, however, the formulas for the wild bootstrap Wald
statistic under OLS are essentially linear in r. This opens the door to substantial efficiency gains.

The linearity can be seen by tracing through how variation in r affects the various quantities
in our numerical recipe.

In analogy with equation (56), t0 is linear in r0, and thus in its subvector r. In turn, by
equation (57), β̃ is linear in t0. Thus the corresponding estimation residuals ü are, too. The
bootstrap numerators and the K∗cd factors in the denominators are also linear in ü; see equations
(58) and (66). As a result, we can express all these quantities in the form P +Qr, where P and
Q are the same for all values of r, and so only need be computed once.

Currently, after OLS (or after IV estimation when performing the Anderson-Rubin test), boottest
exploits much, but not all, of this linearity.

A.3 The score bootstrap

Adapting the methods presented here to the score bootstrap (Kline and Santos, 2012) brings sim-
plifications and one complication. For exposition, we will first consider how to compute the score
bootstrap after OLS, even though we recommend not doing this in practice; see Section 6.2.

Section 6.2 showed how, with reference to OLS, the move from the wild bootstrap to the
score bootstrap can mostly be captured with a straightforward observation and a small algebraic
change. The observation is that the inverse Hessian, which should be available for any appropriately
differentiable extremum estimator, is what we defined in equation (59) as A, up to a factor of
proportionality that affects the numerator and denominator equally and hence is irrelevant. Thus
the inverse Hessian should be used wherever A appears in equations (58), (66), and (67). The
algebraic change is to replace û∗b by u∗b in (33), the equation for the bootstrap CRVE.

Following Kline and Santos (2012), we recenter (demean) the bootstrapped score contributions,
s∗b = X ′u∗b, for each replication. This requires some changes to the computational recipe given
in Appendix A.1. For the numerators, we rearrange (58) to clarify where the scores and Hessian
enter as primary inputs:

R(β̂∗ :– β̈) = (Sc∗(ü :*WDXAR′))′v∗

= (Sc∗(W (ü :*DX)AR′))′v∗ = (Sc∗(Ws∗H−1R′))′v∗. (68)

For the denominators, recall from (42) that û∗b = MXu
∗b = u∗b − PXu∗b. This algebraic

expansion is the ultimate source of the third term of (66); see (44). Since the score bootstrap
replaces û∗b = u∗b−PXu∗b with u∗b, the third term of (66) becomes zero. Next, (39) is the initial
formula for J∗, which is a major factor in the denominator. If we generalize it for the possibilities
considered in this appendix, we get

J∗bcd = Sc(û∗b :*WDXAR′d) = Sc(W (u∗b :*DX)AR′d) = Sc(Ws∗bAR′d),

in which the bootstrapped scores are given by s∗b = u∗b :*DX.
The mathematical step of recentering s∗b by demeaning it column-wise may seem trivial. How-

ever, once more we can find some computational gains. Let ι be the N × 1 column of 1s and
Mι = I−ι(ι′Wι)−1ι′W be the associated orthogonal projection matrix that demeans data columns

44

while allowing for observation weights, W . Then

recentered J∗bcd = Sc(WMιs
∗bAR′d)

= Sc(Ws∗bAR′d)− Sc
(
Wι(ι′Wι)−1ι′Ws∗bAR′d

)
= Sc(Ws∗bAR′d)− (ι′Wι)−1Sc(Wιι′Ws∗bAR′d)
= Sc(Ws∗bAR′d)− (ι′Wι)−1Sc(Wι) colsum(Ws∗bAR′d)
= J∗bcd −wc colsum(J∗bcd), (69)

where we have implicitly defined wc = (ι′Wι)−1Sc(Wι). This is the Nc × 1 column vector whose
entries are each c-cluster’s share of the weight total—or, if there are no weights, each cluster’s share
of the number of observations.

Using (69), we once more vectorize over bootstrap replications and defer involvement of the
large matrix v∗. Expanding with (65),

recentered J∗cd = K∗cdv
∗ −wc colsum(K∗cdv

∗)
=
(
K∗cd −wc colsum(K∗cd)

)
v∗ = (recentered K∗cd)v∗ (70)

Counterintuitively, the mathematical work of recentering the bootstrapped scores can in effect be
carried out before the bootstrap.

To recap, we can execute the score bootstrap by computing the numerators using (68), com-
puting the matrices K∗cd using (66), recentering them as in (70), and then plugging the results into
the formula for the bootstrap denominators in (67).

B An analytical solution for restricted LIML
The wild restricted efficient (WRE) bootstrap of Davidson and MacKinnon (2010) brings the wild
bootstrap to instrumental variables estimation. As presented in Section 6.1, the WRE begins by
re-estimating the model of interest subject to the constraints of the null hypothesis using restricted
limited-information maximum likelihood (LIML). This appendix defines restricted LIML and de-
rives a variant of the usual analytical solution for LIML that accommodates such constraints while
still avoiding iterative search.

We begin by collecting the regressors from the structural equation (46) in the matrix Z =
[Y2 X1] with coefficient δ = [γ ′ β′]′. Given a restriction Rδ = r, we can find a matrix T and a
column vector t such that

δ = Tτ + t, (71)

where τ is the unconstrained parameter under the restriction; see (54)–(56). The main complication
in restricted LIML is that in general the restrictions involve coefficients on both endogenous and
exogenous regressors, which violates the usual partitioning between the two groups of variables that
is typically used explicitly in the estimation procedure.

Substituting (71) into (46) and rearranging, we obtain the model

y1 −Zt = ZTτ + u1, (72)
Y2 = XΠ +U2. (73)

The regressand in the structural equation is y1 −Zt and the regressor matrix is ZT . We assume
that [Y2 X] has full column rank. To ensure identification, we also need rank(ZT) ≤ rank(X),

45

for which a sufficient condition is rank(Z) ≤ rank(X). We can consolidate (72) and (73) into the
structural form,

Y Γ = XB +U , (74)

where Y = [y1 −Zt Y2], U = [u1 U2] with mean 0 and contemporaneous covariance matrix Σ,

Γ =
[

1 0
−TY τ I

]
, B =

[
TXτ 0

Π

]
, (75)

and T = [T ′Y T ′X]′. Note that the unrestricted model—and unrestricted LIML estimator—is
obtained by setting T = I and t = 0, which implies TY τ = γ and TXτ = β.

Restricted LIML is the application of ML estimation of the structural parameter vector τ , or
equivalently δ in view of (71), in the normal linear model (72) and (73). Note that this formulation
includes as a special case the most common restriction, namely, that the coefficient vector γ on the
endogenous regressors is zero. In the latter case, (73) remains in the estimation model even though
there are, in effect, no endogenous variables to instrument.

We proceed to derive the LIML estimator in the model given by (72) and (73) or, equivalently,
by (74). The quasi-log-likelihood function for a general simultaneous equations system as in (74),
after concentrating out Σ, is given by25

`c(Γ,B) = N

2 (l + 1)(1 + log 2π) + N

2 log det(Γ)− N

2 log det(N−1U ′U), (76)

where N is the number of observations and l is the number of variables in Y2 (i.e., l + 1 is the
number of equations in the system). From here forward, U = Y Γ−XB should not be interpreted
as the true error terms but rather as functions of the data and parameters. In the model (74), as
can be seen from (75), det(Γ) = 1. As a result, maximizing (76) is equivalent to minimizing the
sum of squares, det(U ′U).26

Both the structural and reduced-form residuals are needed for the WRE bootstrap. We group
the parameters by equation, into τ and Π, rather than by regressor type as above (into Γ and B).
We first concentrate out Π. For a vector a and a matrix A with the same number of rows, we have
the well-known matrix identity

det
[
a′a a′A
A′a A′A

]
= (a′a) det

(
A′A−A′a(a′a)−1a′A

)
= (a′a) det

(
A′MaA

)
. (77)

Applying this identity to det(U ′U) we find that

det(U ′U) = (u′1u1) det(U ′2Mu1U2)
= (u′1u1) det

(
(Y2 −XΠ)′Mu1(Y2 −XΠ)

)
= (u′1u1) det

(
(Mu1Y2 −Mu1XΠ)′(Mu1Y2 −Mu1XΠ)

)
. (78)

The first factor in (78), u′1u1, does not depend on Π. Since Π is unconstrained, even in restricted
LIML, and the right-hand side of (73) contains the same regressors in each equation, the second
factor in (78) can be minimized by equation-by-equation OLS regressions of Mu1Y2 on Mu1X.
In practice, using the Frisch-Waugh-Lovell Theorem, this is done by regressing Y2 on X and ü1,
the vector of LIML structural residuals, after the latter have been computed, possibly subject to

25See Davidson and MacKinnon (1993, Chapter 18) for a general reference.
26Were there only one equation in the system, this objective would reduce to the sum of the squared residuals. In

this sense, LIML is the one-stage least squares IV estimator.

46

constraints on δ. The resulting estimates of Π, say Π̈, are then used to compute the reduced-form
residuals as Y2 −XΠ̈.

The minimized residuals from regressing the columns of Mu1Y2 on Mu1X are given by the
expressionMMu1X

Mu1Y2 = MX,u1Y2, which again follows from the Frisch-Waugh-Lovell Theorem.
Therefore,

min
Π

det(U ′U) = (u′1u1) det(Y ′2M ′
u1MMu1X

Mu1Y2) = (u′1u1) det(U ′2MX,u1U2). (79)

Applying again (77) with a = MXu1 and A = MXU2, (79) becomes

min
Π

det(U ′U) = u′1u1
u′1MXu1

det(U ′MXU) = u′1u1
u′1MXu1

det(Y ′MXY), (80)

where the last equality uses the facts thatMXX = 0 and det(Γ) = 1. We assume that u′1MXu1 6=
0, i.e., that the dependent variable contains some variation not explainable by the exogenous
variables. The second factor on the right-hand side of (80) does not depend on the parameters. We
write the first factor as

κ = u′1u1
u′1MXu1

= τ ′1Z
′
1Z1τ1

τ ′1Z
′
1MXZ1τ1

, (81)

where we have defined τ1 = [1 − τ ′]′ and Z1 = [y1 − Zt ZT]. Since κ is the ratio of the sum of
squared residuals to the sum of squares of the same residuals after partialing out X, it holds that
κ ≥ 1.

It remains to minimize κ in (81) with respect to the structural coefficients τ , or, equivalently,
with respect to τ1. After some algebra, the first-order condition ∂κ/∂τ1 = 0 gives

(Z ′1Z1 − κZ ′1MXZ1)τ1 = 0. (82)

As a result, the minimization of (81) reduces to an eigenvalue problem and has the well-known
solution,

κ = 1/λmax
(
(Z ′1Z1)−1Z ′1MXZ1

)
, (83)

where λmax(·) is the function that returns the maximum eigenvalue of its argument. Note that
we do not compute the right-hand side of (83) as the minimum eigenvalue of (Z ′1MXZ1)−1Z ′1Z1
because the inverse involved cannot be assumed to exist in general.

Recalling that the first element of τ1 is 1, we remove the first row in (82) and find

T ′Z ′(y1 −Zt−ZTτ)− κT ′Z ′MX(y1 −Zt−ZTτ) = 0.

Solving for τ , we finally obtain the LIML estimator of τ ,

τ̂ =
(
T ′Z ′(I− κMX)ZT

)−1
T ′Z ′(I− κMX)(y1 −Zt).

By (71), the restricted LIML estimator of δ is

δ̂RLIML = T τ̂ + t = T
(
T ′Z ′(I− κMX)ZT

)−1
T ′Z ′(I− κMX)(y1 −Zt) + t, (84)

which can alternatively be written in terms of R and r instead of T and t by using (55) and (56).
Finally, by setting T = I and t = 0 in (84), we obtain the unrestricted LIML estimator of δ

from the formula for the restricted one as

δ̂LIML =
(
Z ′(I− κMX)Z

)−1
Z ′(I− κMX)y1. (85)

47

Note that the solution for κ computed in (83) is the usual one. It has the same mathematical rela-
tionship to the minimization problem as in a more standard derivation of LIML, and consequently
(85) is the standard LIML estimator. The relevant development here is that we derived the LIML
estimator analytically without referencing the classification of structural regressors by endogeneity.
This formulation makes it straightforward to allow arbitrary linear restrictions on the structural
coefficients.

48

Research Papers
2018

2018-16: Ulrich Hounyo and Rasmus T. Varneskov: Inference for Local Distributions at
High Sampling Frequencies: A Bootstrap Approach

2018-17: Søren Johansen and Morten Ørregaard Nielsen: Nonstationary cointegration in
the fractionally cointegrated VAR model

2018-18: Giorgio Mirone: Cross-sectional noise reduction and more efficient estimation
of Integrated Variance

2018-19: Kim Christensen, Martin Thyrsgaard and Bezirgen Veliyev: The realized
empirical distribution function of stochastic variance with application to
goodness-of-fit testing

2018-20: Ruijun Bu, Kaddour Hadri and Dennis Kristensen: Diffusion Copulas:
Identification and Estimation

2018-21: Kim Christensen, Roel Oomen and Roberto Renò: The drift burst hypothesis

2018-22: Russell Davidson and Niels S. Grønborg: Time-varying parameters: New test
tailored to applications in finance and macroeconomics

2018-23: Emilio Zanetti Chini: Forecasters’ utility and forecast coherence

2018-24: Tom Engsted and Thomas Q. Pedersen: Disappearing money illusion

2018-25: Erik Christian Montes Schütte: In Search of a Job: Forecasting Employment
Growth in the US using Google Trends

2018-26: Maxime Morariu-Patrichi and Mikko Pakkanen: State-dependent Hawkes
processes and their application to limit order book modelling

2018-27: Tue Gørgens and Allan H. Würtz: Threshold regression with endogeneity for
short panels

2018-28: Mark Podolskij, Bezirgen Veliyev and Nakahiro Yoshida: Edgeworth expansion
for Euler approximation of continuous diffusion processes

2018-29: Isabel Casas, Jiti Gao and Shangyu Xie: Modelling Time-Varying Income
Elasticities of Health Care Expenditure for the OECD

2018-30: Yukai Yang and Luc Bauwens: State-Space Models on the Stiefel Manifold
with A New Approach to Nonlinear Filtering

2018-31: Stan Hurn, Nicholas Johnson, Annastiina Silvennoinen and Timo Teräsvirta:
Transition from the Taylor rule to the zero lower bound

2018-32: Sebastian Ankargren, Måns Unosson and Yukai Yang: A mixed-frequency
Bayesian vector autoregression with a steady-state prior

2018-33: Carlos Vladimir Rodríguez-Caballero and Massimiliano Caporin: A multilevel
factor approach for the analysis of CDS commonality and risk contribution

2018-34: James G. MacKinnon, Morten Ørregaard Nielsen, David Roodman and
Matthew D. Webb: Fast and Wild: Bootstrap Inference in Stata Using boottest

	Introduction
	Regression models with one-way clustering
	The wild cluster bootstrap
	The algorithm
	Imposing the null on the bootstrap data generating process
	General and multiple linear restrictions
	The distribution of the auxiliary random variable
	Inverting a test to construct a confidence set

	Multi-way clustering
	Computing the multi-way CRVE
	Wild-bootstrapping the multi-way CRVE

	Fast execution of the wild cluster bootstrap for OLS
	Extensions to IV, GMM, and maximum likelihood
	The wild restricted efficient bootstrap for IV estimation
	The score bootstrap

	The boottest command
	Empirical examples
	OLS with few clusters
	OLS with multi-way clustering
	Difference-in-differences with few treated clusters
	IV estimation

	Conclusion
	Acknowledgments
	Methods and formulas in boottest
	Generalizing the wild cluster bootstrap for OLS
	Inverting a test when imposing the null hypothesis
	The score bootstrap

	An analytical solution for restricted LIML

