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Abstract

We consider a Bayesian vector autoregressive (VAR) model allowing for an explicit prior

specification for the included variables’ ‘steady states’ (unconditional means) for data mea-

sured at different frequencies. We propose a Gibbs sampler to sample from the posterior

distribution derived from a normal prior for the steady state and a normal-inverse-Wishart

prior for the dynamics and error covariance. Moreover, we suggest a numerical algorithm
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for computing the marginal data density that is useful for finding appropriate values for the

necessary hyperparameters. We evaluate the proposed model by applying it to a real-time

data set where we forecast Swedish GDP growth. The results indicate that the inclusion

of high-frequency data improves the accuracy of low-frequency forecasts, in particular for

shorter time horizons. The proposed model thus facilitates a simple and helpful way of

incorporating information about the long run through the steady-state prior as well as

about the near future through its ability to cope with mixed frequencies of the data.

JEL Classification numbers: C11, C32, C52, C53

Keywords: VAR, state space models, macroeconometrics, marginal data density, forecast-

ing, nowcasting, hyperparameters.

I. Introduction

The vector autoregressive model (VAR) is a commonly used tool in applied macroecono-

metrics, in part motivated by its simplicity. Over the years, VAR models have developed

in many different directions under both frequentist and Bayesian paradigms. The Bayesian

approach offers the attractive ability to easily incorporate soft restrictions and shrinkage,

which ameliorates the issue of overparametrization. Within the Bayesian framework itself,

a large number of papers have developed prior distributions for the parameters in VAR

models. Many of these are, in one way or another, variations of the Minnesota prior pro-

posed by Litterman (1986) (see for example the book chapters Del Negro and Schorfheide,

2011; Karlsson, 2013). Gains in computational power have led to further alternatives in

the choice of prior distribution as intractable posteriors can efficiently be sampled using

Markov Chain Monte Carlo (MCMC) methods such as the Gibbs sampler (Gelfand and

Smith, 1990; Kadiyala and Karlsson, 1997).

One of the Bayesian developments of the VAR model is the steady-state prior proposed

by Villani (2009). It is based on a mean-adjusted form of the VAR where the unconditional
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mean is explicitly parameterized. This seemingly innocuous reparametrization is motivated

by the fact that practitioners and analysts often have prior information regarding the

steady-state (or unconditional mean) readily available, e.g. inflation targeting by central

banks. In the standard parametrization a prior on the unconditional mean is only implicit

as a function of the other parameters’ priors. Since the forecast in a stationary VAR

converges to the unconditional mean, a prior for this parameter can help retaining the long

run forecasts in the direction implied by theory, even if the model is estimated during a

period of divergence.

In empirical macroeconomics, VARs have typically been hypothesized and estimated

on a quarterly basis, see e.g. Adolfson et al. (2007); Stock and Watson (2001), which is

related to the fact that many variables of interest are unavailable at higher frequencies.

In the cases when some variables included are available at different frequencies, such as

quarterly for macroeconomic and daily for financial data, the variables at higher frequency

have traditionally been aggregated to the lowest frequency present.

The data aggregation incurs a loss of information for variables measured throughout

the quarter: the aggregated quarterly values are typically sums or means of the constituent

months, and any information carried by a within-quarter trend or pattern will be disre-

garded by the data aggregation. From a forecasting perspective an analyst will be uncon-

sciously forced to disregard part of the information set when constructing a forecast from

within a quarter as the most recent realizations are only available for the high-frequency

variables. Another motivation for utilizing higher frequencies of the data is that the num-

ber of observations is increased. A VAR estimated on data collected over, say, ten years

makes use of 120 observations of the monthly variables instead of being limited to the 40

aggregated quarterly observations.

Multiple approaches to dealing with the problem of mixed frequencies are available in

the literature. Mixed data sampling (MIDAS) regression and MIDAS VAR proposed by

Ghysels et al. (2007) and Ghysels (2016), respectively, use fractional lag polynomials to
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regress a low-frequency variable on lags of itself as well as high-frequency lags of other

variables. This approach is predominantly frequentist, although Bayesian versions are

available (Ghysels, 2016; Rodriguez and Puggioni, 2010). A second approach, which is

the focus of this work, is to exploit the ability of state-space modelling to handle missing

observations (Harvey and Pierse, 1984). Eraker et al. (2015), concerned with Bayesian

estimation, used this very idea to treat intra-quarterly values of quarterly variables as

missing data and proposed measurement and state-transition equations for the monthly

VAR. Schorfheide and Song (2015) considered forecasting using a construction along the

lines of Carter and Kohn (1994) and provided empirical evidence that the mixed-frequency

VAR (MF-VAR) improved forecasts of eleven US macroeconomic variables as compared to

a quarterly VAR.

The main contribution of this paper is the proposal of a mixed-frequency steady-

state Bayesian VAR, which effectively combines the steady-state parametrization of Vil-

lani (2009) with the state-space representation and filtering for mixed-frequency data of

Schorfheide and Song (2015). The proposed model accommodates explicit modelling of

the unconditional mean with data measured at different frequencies. In order to employ

the model in a realistic forecasting situation, we construct a real-time data set consist-

ing of Swedish macroeconomic data, which we use to forecast Swedish GDP growth. The

combination of a steady-state prior and mixed-frequency data is found to be helpful as we

see improved forecasting accuracy as compared to quarterly models as well as a mixed-

frequency VAR without the steady-state prior. Moreover, we investigate the role of the

hyperparameters and the empirical Bayes strategy for selection defined by maximizing the

marginal data density at every forecast origin. The set of selected hyperparameters is

relatively stable throughout the forecast evaluation period, whereby we can corroborate

previous findings that a maximization approach is relatively close to an adequately fixed

selection.

The structure of the paper is as follows. Section II describes the main methodology,
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Section III develops an estimator for the marginal data density and Section IV gives an

illustrative application forecasting Swedish GDP growth. Section V concludes.

II. Combining a mixed-frequency vector autoregres-

sion with steady-state beliefs

The mixed-frequency method adopted in this work is a state space-based model which fol-

lows the work by Eraker et al. (2015); Mariano and Murasawa (2010); Schorfheide and Song

(2015). There are several modelling approaches available for handling mixed-frequency

data, including MIDAS (Ghysels et al., 2007), bridge equations (Baffigi et al., 2004) and

factor models (Giannone et al., 2008; Mariano and Murasawa, 2003). We do not review

these further here, but instead refer the reader to the survey by Foroni and Marcellino

(2013) and the comparison by Kuzin et al. (2011).

State space representation of the mixed-frequency model

To cope with mixed observed frequencies of the data, we assume the system to be evolving

at the highest available frequency, which implies that many high-frequency observations

for low-frequency variables are simply missing data. By doing so, the approach naturally

lends itself to a state-space representation of the system, in which the underlying monthly

series of the quarterly variables become the latent states of the system.

Let zt = (z′m,t, z
′
q,t)
′ denote the underlying high-frequency vector in the system, consist-

ing of nm monthly and nq quarterly variables. Note that the time t here takes the highest

frequency, i.e. monthly. Furthermore, we denote by yt what is observed at time t. The

empirical problem that is often present is that what is observed varies over time such that

the dimension nt of yt is not always equal to n = nm + nq.

The observed data yt is generally supposed to be some linear aggregate of Zt = (z′t, . . . , z
′
t−p+1)′
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such that

yt =

ym,t
yq,t

 =

Inm 0

0 Mq,t


Inm 0

0 Λq

Zt = MtΛZt, (1)

where Mq,t and Λq are deterministic selection and aggregation matrices, respectively.

We let Mq,t be the nq identity matrix Inq if all quarterly variables are observed at time t

so that yq,t = ΛqZt. In the remaining periods, Mq,t is an empty matrix such that yt = ym,t.

More complicated observational structures can easily be accomodated using the very same

approach; instead of being empty or a full In matrix, Mt can have rows deleted which

correspond to unobserved variables. This idea is briefly revisited later in Section II when

discussing ragged edges.

The aggregation matrix Λq represents the assumed aggregation scheme of unobserved

high-frequency latent observations zq,t into occasionally-observed low-frequency observa-

tions yq,t. We employ a quarterly average such that if t is the final month of a quarter,

then yq,t = 1
3
(yq,t + yq,t−1 + yq,t−2). It is, however, possible to use other schemes (see e.g.

Mariano and Murasawa, 2010).

To enable modelling despite the variation in the observational structure, a model is

assumed for the underlying high-frequency variable. More specifcally, a VAR(p) for zt is

employed such that

Π(L)zt = Φdt + ut, ut ∼ Nn(0,Σ), (2)

where Π(L) = (In−Π1L−Π2L
2− · · · −ΠpL

p) is a p-th order invertible lag polynomial, dt

is an m× 1 vector of deterministic components and Φ is an n×m matrix of parameters.

The model in (2) is a conventional VAR specification, but, in the spirit of Villani (2009),
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we instead employ the mean-adjusted form as

Π(L)(zt −Ψdt) = ut, ut ∼ Nn(0,Σ), (3)

where Ψ = [Π(L)]−1Φ, if it is stationary. It can be readily confirmed that E(zt) = Ψdt := µt,

and thus µt is the unconditional mean—steady state—of the process. The steady-state

representation (3) requires an explicit prior on the steady state parameters. However,

common practice applies a loose prior on Φ in (2), which implicitly defines an intricate

(but loose) prior on Ψ and, subsequently, µt. We argue that in many applications, the

parametrization in (3) is more convenient as it allows for a more natural elicitation of prior

beliefs. In what follows, we will extend the work of Villani (2009) such that (3) may still

constitute a viable option in the presence of mixed frequencies.

We build on the work by Schorfheide and Song (2015) to set up a Gibbs sampling pro-

cedure in conjunction with simulation smoothing in a state-space framework which makes

it possible to sample from the posterior distribution of the parameters. The approach rests

on the previously established notion that low-frequency series are aggregates of unobserv-

able high-frequency series. The aggregation equation in (1) and the high-frequency model

in (3) constitute the measurement and state equations, respectively, summarized as

yt = MtΛZt, (4)

Zt+1 = Wt+1ψ + F (Π)(Zt −Wtψ) + εt, (5)

εt ∼ N(0,Ω(Σ)),

where Wt = [(dt ⊗ Ip), . . . , (dt−p+1 ⊗ Ip)]′ and ψ = vec(Ψ). The model is now written in
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companion form, where

Π = (Π1, . . . ,Πp), F (Π) =

 Π

In(p−1) 0n(p−1)×p

 , Ω(Σ) =

 Σ 0n×n(p−1)

0n(p−1)×n 0n(p−1)

 .

We assume here that the aggregation requires no more than p lags. If the aggregation

scheme at time t depends on lags beyond t − p it is possible to simply append blocks of

zeros to F (Π) without changing the model itself (with corresponding changes to Ω(Σ)).

As an example, consider a bivariate VAR model with three lags and one monthly and

one quarterly variable in which the quarterly variable is observed at the last month of each

quarter. Using the intra-quarter average as the aggregation scheme,

yt =

 zm,t

1
3
(zq,t + zq,t−1 + zq,t−2)

 =

1 0

0 1


︸ ︷︷ ︸

Mt

1 0 0 0 0 0

0 1
3

0 1
3

0 1
3


︸ ︷︷ ︸

Λ


zt

zt−1

zt−2

 ,

if t ∈ {Mar, Jun, Sep, Dec}. Thus, whenever t corresponds to an end-of-quarter month,

MtΛ relates the monthly variables in Zt to the observables yt appropriately. When t does

not correspond to an end-of-quarter month, Mt in the above display is instead Mt = (1, 0)

and thus simply selects the monthly variable.

Incorporating prior beliefs

We consider a normal prior for the parameters in Ψ and a normal-inverse Wishart as a

joint prior for the VAR coefficients and error covariance. Thus, the prior used is

(Π,Σ) ∼MNIW (Π,ΩΠ, S, ν), (6)
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such that

Σ ∼ IW (S, ν), vec(Π′)|Σ ∼ Nn2p(vec(Π′),Σ⊗ ΩΠ).

The main diagonal of ΩΠ is set to be

ωii =
λ2

1

(lλ2sr)2
for lag l of variable r , i = (l − 1)p+ r

where λ1 is the overall tightness and λ2 determines the lag decay rate; the inclusion of sr

adjusts for differences in measurement scale of the variables. A more thorough exposition

of the normal inverse Wishart prior is given by Karlsson (2013). In Section III we discuss

how to estimate the marginal data density, which is used in Section E to select λ1 and λ2

by maximization of the marginal data density.

Finally, we follow Villani (2009) and let the prior for the unconditional mean be normal,

ψ = vec(Ψ) ∼ Nnm(ψ,ΩΨ).

Sampling from the posterior distribution

In order to sample from the intractable posterior distribution of latent variables and param-

eters given the data, p(Π,Σ, ψ, Z|Y ), a Gibbs sampler is applied here which decomposes

the posterior into three blocks of full conditional densities which is easy to sample from.

Mathematical details concerning the posterior distributions can be found in the Supple-

mentary material, Appendix C, whereas additional information regarding the simulation

smoothing technique used is available in Appendix D.

The three blocks that compose the Gibbs sampler are

p(Z|Π,Σ, ψ, Y ), p(Π,Σ|ψ,Z), and p(ψ|Π,Σ, ψ, Z),

where it can be observed that the parameters (Π,Σ) and ψ are independent of Y given
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Z. Conditional on the parameters, the unobservables can be sampled using a simulation

smoother (Durbin and Koopman, 2002, 2012). The Kalman filter is initialized by condi-

tioning on the first p observations, where any missing observations are replaced by the most

recent observation. Given this initialization, the simulation smoother can be applied using

the mean-adjusted processes y∗t = yt −MtΛWtψ and Z∗t = Zt −Wtψ in (4)–(5) and then

adding Wtψ to the resulting draws of Z∗t .

The MNIW prior for (Π,Σ) is conjugate for the Gaussian likelihood, and thus the

conditional posterior is in the same family of distributions by standard results (Karlsson,

2013). Similarly, the conditional posterior of ψ derived by Villani (2009) appears in the

same fashion while also conditioning on the unobservables. Thus, the conditional posterior

of ψ is normal.

Forecasting with ragged edges

In real-time forecasting, publication delays generally cause the available information sets

to possess ragged edges for both single- and mixed-frequency data sets. The simplest way

to handle these ragged edges is to use as final period in the sample the most recent time

point at which all variables are observed, denoted by T ∗, effectively discarding observations

from time periods with incomplete data. This, however, is inefficient as it does not make

use of all the available information. A second approach is to forecast conditional on the

observations that do exist at t > T ∗, which can be done in numerous ways. Within

our framework, this is easily accomplished by simply treating the missing observations at

t = T ∗ + 1, . . . , T as regular missing data, as also suggested by Bańbura et al. (2015);

Schorfheide and Song (2015). Thus, by adjusting the selection matrix Mt accordingly at

the ragged-edge time points, we can also make draws from the posterior distribution of

the missing high-frequency variables. More specifically, if zm,t is missing at time t, the

procedure simply amounts to dropping the row of Mt that corresponds to this variable.
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III. Estimation of the marginal data density

Since the various high-dimensional prior distributions that are popular in the literature

are usually parameterized by a low-dimensional vector of hyperparameters, it is of great

importance to choose these auxiliary parameters appropriately. A crude way is to rely on

what has become default values. In fact, many authors resort to an overall tightness of

λ1 = 0.2 and a lag decay of λ2 = 1 (for examples, see Canova, 2007; Carriero et al., 2015a;

Villani, 2009). As applications vary, it is natural to believe that also the hyperparameters

may need to change.

Multiple approaches that aid in the selection of hyperparameters exist, among which

some of the more prominent methods include using hierarchical prior distributions or by

maximization of the marginal data density (MDD). The former is e.g. studied by Giannone

et al. (2015), who treat the vector λ of hyperparameters as additional parameters and

specify a prior for these parameters, yielding a hierarchical prior p(θ|λ)p(λ). As remarked

by the authors, if a flat prior for λ is specified, then the posterior distribution of the

hyperparameters, p(λ|y), is proportional to the marginal data density. Thus, the second

approach entails selecting values of the hyperparameters that maximize the MDD, as these

also maximize the posterior of the hyperparameters under a flat hyperprior. This route—an

empirical Bayes approach—is the one we choose, and was also taken by e.g. Carriero et al.

(2012); Schorfheide and Song (2015).

An estimator of the marginal data density

The MDD is not analytically tractable under the modelling situation described in Section

II, but can be estimated using the improved Chib (1995) estimator proposed by Fuentes-

Albero and Melosi (2013).
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The quantity of interest to estimate is the MDD, which is

p(Y |λ) =

∫
p(Y,Π,Σ, ψ, Z|λ)d(Π,Σ, ψ, Z).

In slight abuse of notation, in what follows we omit the dependence on the hyperparameters.

The method is a refinement of Chib (1995) insofar as the existence of an analytical

expression for p(Π,Σ|ψ,Z, Y ) is exploited, which reduces the need for two reduced Gibbs

steps to only one. The idea is to decompose the MDD as

p(Y ) =
p(Y |Π,Σ, ψ)p(Π,Σ)

p(Π,Σ|ψ, Y )

p(ψ)

p(ψ|Y )
.

Fuentes-Albero and Melosi (2013) suggest to evaluate the terms analytically—if possible—

at some measure of centrality (i.e. posterior mode, median or mean); when not possible,

numerical approximations are necessary. Let p denote a known density and p̂ one which is

estimated in a sense that will be made precise, and let Ã denote a matrix with elements

being the posterior means of the respective elements of A. The MDD is estimated by

p̂(Y ) =
p(Y |Π̃, Σ̃, ψ̃)p(Π̃, Σ̃)

p̂(Π̃, Σ̃|ψ̃, Y )

p(ψ̃)

p̂(ψ̃|Y )
,

where p(Y |Π̃, Σ̃, ψ̃) is the data likelihood, p(Π̃, Σ̃) is the prior for (Π,Σ), and p(ψ̃) is the

prior for ψ, with all three terms evaluated at the posterior centers. The two denominator

terms require numerical approximations, which is accomplished by a reduced Gibbs step and

the Rao-Blackwellization technique (Gelfand et al., 1992), respectively. More specifically,

we let

p̂(Π̃, Σ̃|ψ̃, Y ) =
1

R

R∑
i=1

p(Π̃, Σ̃|ψ̃, Z(i), Y ), (7)

where Z(i) are draws from p(Z|ψ̃, Y ). The marginal posterior p(ψ|Y ) is estimated using
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draws from the original Gibbs sampler as

p̂(ψ̃|Y ) =
1

R

R∑
i=1

p(ψ̃|Π(i),Σ(i), Z(i), Y ).

IV. Using real-time data to forecast Swedish GDP

growth

In this section, we assess the forecasting ability of the model that we propose. The assess-

ment is carried out by checking its out-of-sample predictive accuracy based on the Swedish

quarterly GDP growth data. The quarterly steady-state Bayesian VAR model has been

applied in several previous studies, see for example, Adolfson et al. (2007); Clark (2011);

Iversen et al. (2016); Österholm (2008); Villani (2009). The model is a small-scale macroe-

conomic VAR model for Swedish data including GDP growth, unemployment rate, CPI

inflation, industrial production index and the economic tendency indicator. The economic

tendency indicator is the main indicator published in the National Institute of Economic

Research’s (NIER) Economic Tendencies Survey. All series, except the forecasting target

GDP growth, are available monthly.

Data

We construct a real-time data set by combining available data from Statistics Sweden,

OECD and the National Institute of Economic Research (NIER). From Statistics Sweden

we collect real-time vintages of real GDP, of which we take log-differences to obtain GDP

growth. The OECD’s main economic indicators archive contains real-time data on the

harmonized unemployment rate, the consumer price index (CPI) as well as an index of in-
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Table 1
Summary of the real-time data set

Series Transformation Source Frequency
GDP growth ln ∆ Statistics Sweden∗ Quarterly
Harmonized unemployment rate None OECD MEI† Monthly
Consumer price index ln ∆ OECD MEI† Monthly
Index of industrial production ln ∆ OECD MEI† Monthly
Economic tendency indicator (0, 1) NIER‡ Monthly

Sources:
∗ Working-day and seasonally adjusted GDP in constant prices
† OECD’s Main economic indicators (MEI) revisions analysis database
‡ The (quasi-)real-time data made available by Billstam et al. (2016)

dustrial production (IP).1 We leave the unemployment rate as it is, but take log-differences

of also CPI and IP. Finally, we retrieve the economic tendency indicator (ETI) from the

National Institute of Economic Research, which recently published a (quasi-)real-time data

set that includes the ETI. We standardize the series to have mean and variance (0, 1)

instead of (100, 100). Table 1 contains a summary of the data used.

Real-time data

In constructing a real-time forecasting scenario, the goal is to have data which mirror

exactly what the forecaster had available in the corresponding time period. The publication

of the monthly vintages by Statistics Sweden of GDP and OECD of its main economic

indicators and the attempt by Billstam et al. (2016) to create a real-time dataset for the

NIER’s Economic Tendencies Survey make it possible to create a situation which resembles

the reality to a high degree. In the application, we focus on end-of-month forecasting and

thus do not treat mid-month publications any differently from publications on the final day

of the month.

The ETI is constructed based on surveys to households and business in Sweden and is

1OECD also provides data for Swedish GDP using both constant and current prices. However, for the
series using constant prices, the reported series was not seasonally adjusted over the period 2000M10–
2007M02. For this reason, we instead turn to Statistics Sweden to obtain a GDP series which is seasonally
adjusted over the entire time span.
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published as an index with mean and variance standardized to be equal to 100. The raw

data underlying the ETI is typically not revised, with the exception of correcting apparent

errors. In order to construct a quasi-real-time dataset, Billstam et al. (2016) note that

it involves taking the necessary raw data seasonally adjusted and standardized, with the

appropriate series being weighted altogether and then re-standardized. The dataset is thus

referred to as ‘quasi’ for mainly two reasons: first, it is based on today’s methods for

standardization and weighting, and second, it may contain corrections of errors. However,

Billstam et al. (2016) argue that for evaluating out-of-sample forecast performance, ‘the

quasi-real-time data should ... be close to a perfect substitute to actual real-time data’.

Figure 1 displays the revision tendencies for four arbitrary observations from March,

June, September and December in 2000, 2004, 2008 and 2012, respectively. As the fig-

ure illustrates, some of the series are subject to larger revisions than others, occasionally

exhibiting large jumps.

Publication delays

Figure 2 displays the structure of publication delays for the five series throughout the

sample period. For the monthly variables, the delay is in general consistent over time,

with unemployment and inflation generally being published within two months, industrial

production within three and ETI in the concurrent month. The delay for GDP growth

varies between 2 and 5 months.

The missing cells in the publication delay for the unemployment rate is caused by a

lack of vintage data during this period in the OECD database. As a proxy in our data set

we take the first new publication and use this to impute the missing vintages by assuming

a two-month publication delay throughout the period with missing data.
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Figure 1. Revision tendencies
Notes: The figures display how observations change across vintages for four fixed time
points.
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Notes: Each cell represents one month and its color corresponds to the number of months
since the most recent observation was published. The delay is computed end of month; a
zero-period delay means that the observation is available at the end of the current month.
The missing cells in (a) stem from temporary non-publication of vintages (see text for more
information).
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Forecasting setup and evaluation

We consider a forecasting situation similar to that studied by Schorfheide and Song (2015).

We forecast GDP growth 0–8 quarters ahead at the end of every month, where the 0-step

forecast denotes the forecast of the current quarter. Because of publication lags and mixed

frequencies of the data, the available information varies and most notably so depending on

the relative position of the month within the quarter.

To be able to gauge the relative performance of the MF-BVAR with a steady-state prior

(abbreviated by MF-SS), we also include the MF-BVAR with a Minnesota prior (MF-

Minn), as well as quarterly-frequency versions with both priors (QF-SS and QF-Minn,

respectively).2 For the mixed-frequency models, we employ the ragged-edge forecasting

approach discussed in Section II, whereas the quarterly models are estimated and forecasted

using complete quarters. All models use a lag length of p = 4.

In the application of the Gibbs sampler to numerically approximate the posterior dis-

tribution, we make 20,000 draws for each run and keep the final 15,000. We do so for a

recursively expanding estimation window, where the first forecast is made in January 2004

and the final in November 2015. We select the hyperparameters using adaptive grid search;

see Appendix E for more information.

Steady-state prior

As for the steady-state prior, these are presented visually in Figure 3. Where possible, we

keep largely in line with previous studies (see e.g. Ankargren et al., 2017; Österholm, 2010;

Villani, 2009).

2The implementation of the Minnesota prior is a standard implementation whose prior for dynamic
coefficients and the error covariance is the same as described in Section II and Equation (6) in particular.

18



5
6
7
8
9

10

2000 2005 2010 2015
Year

(a) Unemployment rate

-1.0

-0.5

0.0

0.5

1.0

2000 2005 2010 2015
Year

(b) Inflation rate

-4

0

4

2000 2005 2010 2015
Year

(c) Industrial production

-0.5

0.0

0.5

2000 2005 2010 2015
Year

(d) Economic tendency indicator

-4

-2

0

2

2000 2005 2010 2015
Year

(e) GDP growth

Figure 3. Steady-state priors
Notes: The shaded areas in the figures correspond to 95 % prior probability intervals of
the variables, with the dashed line showing the prior mean.
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Figure 4. Root mean squared forecast errors by forecast horizon and model

Forecasting performance

To evaluate the forecasting ability, we consider both point and density forecasts.

Point forecasts

We start by comparing the point forecasts with respect to the root mean squared forecast

error (RMSFE) in Figure 4.

The figure clearly shows that the MF-SS model performs better in the short to middle

horizons and is caught up with by QF-SS and QF-Minn in the long horizon at two years.

Interestingly, both of the MF models perform well for short horizons, but after that MF-

Minn is closer to its quarterly counterpart. It is worth noting that the results display

the same relative ordering as previous studies: Villani (2009) finding QF-SS to outperform

QF-Minn, and Schorfheide and Song (2015) demonstrating that MF-Minn performed better

than QF-Minn in the short run. Thus, the results indicate that there is additional merit

in combining the mixed-frequency model with a steady-state prior. Overall, although the

differences are moderate, the results suggest that MF-SS is to be preferred.
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Figure 5. Root mean squared forecast errors by forecasting horizon, within-quarter origin
and model

Breaking the results down by each forecast origin’s within-quarter position, the picture

remains largely unchanged in pattern, as is shown in Figure 5.

MF-SS is dominating in each group, but the difference compared to MF-Minn in particu-

lar is often negligible. Overall, no drastic differences are present between the within-quarter

forecast origins. However, the value of recent publications can be seen by the fact that the

nowcasting ability improves with the month of origin within the quarter.

In order to see how the relative performance has evolved over time, Figure 6 shows

the cumulative RMSFE. Interestingly enough, in the pre-crisis period the Minnesota-based

models exhibits smaller RMSFEs than the steady-state models, while in the post-crisis

period the mixed-frequency models start to outperform the quarterly ones.
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Figure 6. Evolvement of nowcast (0-step) root mean squared forecast errors over the
evaluation period by model

Density forecasts

For density forecasts, we compute the probability integral transform zt =
∫ yt
−∞ pt(u)du,

where pt is the predictive density and yt the outcome of GDP growth (Diebold et al., 1998).

Using the MCMC draws, we approximate the transform by zt+h = R−1
∑R

r=1 I(yt+h <

ŷ
(r)
t+h|t), where ŷ

(r)
t+h|t denotes the h-step ahead forecast of GDP growth at time t in iteration

r. If the predictive density coincides with the true, the sequence {zt+h} is a dependent

sequence of variates with marginal distribution U(0, 1).

Histograms for zt+h are provided in Figure 7, where the horizontal line corresponds

to the bin height that would be if the transforms were indeed U(0, 1) variables. None of

the models perform strikingly well with the performance deteriorating with h. MF-SS and

MF-Minn appear to do a decent job for h = 0 and less so for h = 1 and discouragingly

worse for the long-run forecasts.

Finally, the interval forecasts are evaluated by computing the coverage rates of the

predictive intervals. That is, for a nominal coverage of 100(1 − α)% the corresponding
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interval is computed and we then average over hits and misses in the evaluation period to

obtain the empirical coverage rate. Figure 8 plots the nominal rates against the empirical.

The mixed-frequency models again show somewhat better results for short horizons, as

they tend to be closer to the diagonal line. For the nowcast, there is some distortion for

intervals with higher nominal coverage, but this disappears for the 1-step forecast. The

QF-SS model tends to have too high empirical coverage for lower nominal coverage levels,

but too low empirical coverage for higher nominal. For the 4-step and 8-step forecasts, all

models exhibit this pattern to some degree.

The role of hyperparameter selection

The previous section relies on an empirical Bayes strategy for selecting hyperparameters,

and at this point it is warranted to ask: what is the role of the hyperparameters for

the models’ forecasting performance? Previous studies in this regard include Carriero

et al. (2015a, 2012); Giannone et al. (2015). Carriero et al. (2012) conduct a grid search

for the overall tightness λ1 in a large Bayesian VAR used for forecasting bond yields,

whereas Carriero et al. (2015a) systematically study specification choices in Bayesian VARs,

including hyperparameter selection by maximizing the marginal data density. Giannone

et al. (2015), on the other hand, conduct a fully Bayesian analysis and employ a hierarchical

model in which priors are assigned to the hyperparameters. Both Carriero et al. (2012)

and Carriero et al. (2015a) find that the selection tends to be stable over time and that

the advantages compared with using a fixed set of hyperparameters is minimal; similarly,

Schorfheide and Song (2015) found the selection to be stable and resorted to using fixed

values. However, the main advantage of maximizing the marginal data density lies in

the approach being a principled and transparent way. Additionally, the specific set of

hyperparameters which yields a good forecasting performance may not be obvious; the

optimal level of shrinkage is intimately tied to the dimension of the model, as discussed by

Bańbura et al. (2010); Carriero et al. (2012); De Mol et al. (2008). Marginal data density
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stabilizes in the second half of the evaluation sample.

maximization can be used as a means of identifying appropriate hyperparameter values.

Figure 9 illustrates the trajectories of selected hyperparameters throughout the evalua-

tion sample for all four models considered. It is somewhat striking that the selected value

of the overall tightness parameter hovers around 0.2–0.3 showing little variability in all four

panels. The value of the selected lag decay parameter varies to a larger extent, yet seems

to stabilize when the sample period extends beyond 2009–10. The hyperparameter values

the quarterly models stabilize around—λ1 = 0.2 and λ2 = 1 or λ2 = 2—are exactly the

values discussed by Canova (2007) as default values that generally work well. In the case of

the mixed-frequency models, a less tight prior is selected for the Minnesota-based model,

whereas the model with a steady-state prior selects a lag decay around 1.5. Thus, fixing the
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Notes: Each line represents a unique combination of (λ1, λ2) from the first step of the
adaptive grid search (see Section E). The points represent the corresponding root mean
squared forecast errors using the maximizers of the marginal data density. The maximizing
approach generally performs well, but not necessarily the best at each horizon.

hyperparameters to the values the selection approach stabilizes at will likely yield a similar

performance. However, the figure shows that what these values are varies across model

and prior configurations. Finally, for larger models additional shrinkage is anticipated to

be warranted, as demonstrated by Bańbura et al. (2010); Carriero et al. (2012); De Mol

et al. (2008).

The differences in forecasting performance with respect to the choice of hyperparame-

ter values is shown in Figure 10, where lines correspond to one of the 49 combinations of
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(λ1, λ2) used in the first step of the adaptive grid search (see Section E).3 The forecasting

accuracy among the hyperparameter combinations included vary greatly between config-

urations. For the quarterly Minnesota model, some hyperparameter values result in very

poor performance, whereas for the mixed-frequency model with a steady-state prior the

differences are relatively small for all horizons. In general, selecting hyperparameters based

on maximization of the marginal data density appears to, in some sense, be a robust strat-

egy. Poor hyperparameter values are avoided in all cases, but the best performance at each

horizon is not achieved. Nevertheless, the maximizing pair appears to offer a decent balance

and overall forecasting ability, as some of the fixed hyperparameter combinations forecast

well for some horizons but relatively worse for others (e.g. the lines initially below the

circles in the MF-SS pane eventually cross the circled line indicating poorer performance).

V. Conclusion

In this paper we present a mixed-frequency vector autoregressive model estimated using

Bayesian methods, which incorporates prior beliefs about the steady states—the uncondi-

tional means—of the included variables. Previous literature has already established that

there is value in using mixed-frequency data and avoiding temporal aggregation for fore-

casting purposes and this finding is also presented in our results for forecasting Swedish

GDP growth in a real-time data set. Additionally, Villani (2009) demonstrated the virtue

of a steady-state prior in the single-frequency case and we find that this improves forecasts

also in the mixed-frequency model.

We also revisit the question of the role of hyperparameter selection. In our application,

3The figure only includes the root mean squared forecast errors (RMSFE) from the first step of the
grid search since some of the values present in the second or third steps only occur once or a couple of
times. Thus, their RMSFE values would be based on a single or a handful of forecasts and as such would
be associated with a large amount of uncertainty. The included lines are all based on the same number of
forecasts.
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we take an empirical Bayes approach and select hyperparameters which maximize the

marginal data density. The main conclusion is that the set of selected hyperparameters

shows a limited degree of variability over the evaluation period, thus indicating that a fixed

set of hyperparameters will perform similarly. However, maximizing the marginal data

density is a transparent and principled way and can, at the very least, be used to find

appropriate values to fix the hyperparameters at in the sequel.

On the downside, none of the evaluated models—quarterly and mixed-frequency VARs

with Minnesota or steady-state priors—demonstrate adequate density forecasting abilities

for horizons beyond the very short term. Studies such as Clark (2011), Carriero et al.

(2015b) and Carriero et al. (2016) suggest that incorporating stochastic volatility can be

helpful for density forecasting. As a result, developing mixed-frequency Bayesian VAR

models which allow for more flexibility of the innovation variance is on our current research

agenda.
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Bańbura, M., Giannone, D., and Reichlin, L. (2010). ’Large Bayesian vector auto regres-

sions’. Journal of Applied Econometrics, 25, pp. 71–92.
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Supplementary materials to ‘A mixed-frequency Bayesian vector

autoregression with a steady-state prior’

A. Replication files

The data set and all files used for producing the results in the paper are available at

https://doi.org/10.5281/zenodo.1145828.

B. MCMC algorithms

Algorithm 1 presents the main steps of the Gibbs sampler that can be employed to sample

from the posterior distribution.

Algorithm 1 Gibbs sampler for mixed-frequency steady-state Bayesian VAR

1: for j = 1, . . . , R do
2: Draw Z(j) from p(Z|Σ(j−1),Π(j−1), ψ(j−1))
3: Draw (Π,Σ)(j) from p(Π,Σ|ψ(j−1), Z(j))
4: Draw ψ(j) from p(ψ|Π(j),Σ(j), Z(j))
5: end for

As discussed in the main text, the first step is carried out by use of the simulation

smoother, which is described in more detail in Appendix D. The second and third steps

amount to draws from the normal-inverse-Wishart and multivariate normal distributions,

respectively, for which the posterior moments are given in Appendix C.

Section III mentions a reduced Gibbs step for estimating the marginal data density.

Such a step entails estimating the full model as usual and computing the posterior mean

ψ̃. Next, draws {Z(j)} from p(Z|ψ̃, Y ) are obtained using Algorithm 2, which is the main

MCMC algorithm with the alteration that ψ is fixed at ψ̃.

The draws {Z(j)} obtained from Algorithm 2 are used to compute (7), after which the

marginal data density estimate can be computed.
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Algorithm 2 Reduced Gibbs step

1: for j = 1, . . . , R do
2: Draw Z(j) from p(Z|Π(j−1),Σ(j−1), ψ̃, Y )
3: Draw (Π,Σ)(j) from p(Π,Σ|ψ̃, Z(j), Y )
4: end for

C. Posterior distributions

When conditioning on latent states and unconditional mean, the model is a standard VAR

for (zt −Ψdt) and the resulting posteriors follow standard results, available in for example

Karlsson (2013). Thus, the posterior distribution for the dynamic coefficients is

vec(Π′)|Z,Σ, ψ ∼ N(vec(Π
′
),Σ⊗ ΩΠ),

or, equivalently

Π′|Z,Σ, ψ ∼MN(Π
′
,Σ,ΩΠ)

where

Ω
−1

Π = Ω−1
Π + Z̃ ′1:T−1Z̃1:T−1, Π = ΩΠ(Ω−1

Π Π + Z̃ ′1:T−1z̃2:T ).

The demeaned zt (in non-companion form) can be written as

z̃ =


z′1 − d′1Ψ′

...

z′T − d′TΨ′

 =


z′1
...

z′T

−

d′1Ψ′

...

d′TΨ′

 = z −


ψ′(d1 ⊗ Ip)

...

ψ′(dT ⊗ Ip)
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In companion form, we thus have

Z̃t =



z̃t

z̃t−1

...

z̃t−p+1


, Z̃1:T =



Z̃ ′1

Z̃ ′2
...

Z̃ ′T


=



z̃′1 z̃′0 · · · z̃′2−p

z̃′2 z̃′1 · · · z̃′3−p
...

...
. . .

...

z̃′T z̃′T−1 · · · z̃′T−p+1


.

The posterior for the error covariance is

Σ|Z, ψ ∼ IW (S, ν), ν = T + ν

S = S + S + (Π− Π̂)′
(

ΩΠ + (Z̃ ′1:T−1Z̃1:T−1)−1
)−1

(Π− Π̂)

Π̂ = (Z̃ ′1:T−1Z̃1:T−1)−1Z̃ ′1:T−1z̃2:T ,

S = (z̃2:T − Z̃1:T−1Π̂)′(z̃2:T − Z̃1:T−1Π̂).

To find the conditional posterior of Ψ, the results of Villani (2009) still apply as we are
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now conditioning on Z. Let

Ỹ =


z′1Π(L)′

...

z′TΠ(L)′

 =


z′1 − z′0Π′1 − z′−1Π′2 − · · · − z′−p+1Π′p

...

z′T − z′T−1Π′1 − z′T−2Π′2 − · · · − z′T−pΠ′p

 =


z′1 −

(
z′0 · · · z′−p+1

)
Π

...

z′T −
(
z′T−1 · · · z′T−p

)
Π



=


z′1 − Z ′0Π

...

z′T − Z ′T−1Π

 = z1:T − Z0:T−1Π

D =


D−1

...

D−T

 =



d′1 −d′0 · · · −d′1−p

d′2 −d′1 · · · −d′2−p
...

...
. . .

...

d′T −d′T−1 · · · −d′T−p


, D−t =

(
d′t −d′t−1 . . . −d′t−p

)

and

Θ′ =

(
ψ Π1ψ . . . Πpψ

)
.

The model in (3) can be written

Π(L)zt = Π(L)Ψdt + ut = Ψdt − Π1Ψdt−1 − · · · − ΠpΨdt−p + ut

such that

Ỹ = DΘ + U

where U = (u1, . . . , uT )′. The conditional posterior ψ|Z,Σ,Π follows from multivariate
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regression and hence

vec(Θ′) = Eψ =



Ipm

Im ⊗ Π1

...

Im ⊗ Πp


ψ.

ψ|Z,Π,Σ ∼ N(ψ,Ωψ)

Ω
−1

ψ = E′(D′D⊗ Σ−1)E + Ω−1
ψ

ψ = Ωψ(E′ vec(Σ−1Y′D) + Ω−1
ψ ψ).

In summary, the three conditional posteriors for the parameters are

Σ|Z, ψ ∼ IW (S, ν)

vec(Π′)|Z,Σ, ψ ∼ N(vec(Π
′
),Σ⊗ ΩΠ)

ψ|Z,Π,Σ ∼ N(ψ,Ωψ).

D. Simulation smoother

Handling the deterministic terms

Let Wt be as in (5) so that Wtψ = E(Zt). The original state-space model is

yt = MtΛZt

Zt+1 = Wt+1ψ + F (Π)(Zt −Wtψ) + εt.

(8)

We can note that

y∗t ≡ yt −MtΛWtψ = MtΛ(Zt −Wtψ) ≡MtΛZ
∗
t
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is the same as yt = MtΛZt. Using Z∗t = Zt −Wtψ, the formulation in (8) is equivalent to

y∗t = MtΛZ
∗
t

Z∗t+1 = F (Π)Z∗t + εt+1,

εt ∼ N(0,Ω(Σ)).

(9)

Thus, it is sufficient to provide a treatment of the Kalman filter without deterministic

components in what follows, as we can simply do any Kalman filter steps based on y∗t and

Z∗t , and then add the deterministic term appropriately.

The Durbin and Koopman (2002) simulation smoother

Assume the state-space system in (9) for the time period t = 1, . . . , T and treat in the

following the parameters as fixed and known. Applying the Kalman filter means to apply

the following equations recursively:

at = F (Π)at−1 +Kt−1vt−1, Pt = F (Π)Pt−1L
′
t−1 + Ω(Σ), vt = yt −MtΛat

Ft = MtΛPtΛ
′M ′

t , Kt = F (Π)PtΛ
′M ′

tF
−1
t , Lt = F (Π)−KtMtΛ

(10)

for t = 1, . . . , T . Note that the dimensions of vt, Ft and Kt vary deterministically as

a function of what observations are available at time t. The smoothed state vector is

computed by first evaluating

rt−1 = MtΛF
−1
t vt + L′trt (11)

backwards, i.e. for t = T, T − 1, . . . , 1 with rT = 0. Then, the smoothed mean of the latent

state, Ẑt = E(Zt|Y1:T ), is computed by applying the forwards recursion

Ẑt+1 = F (Π)Ẑt + Ω(Σ)rt, (12)
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which is initialized by Ẑ1 = a1 + P1r0. To draw from the density p(Z1:T |Y1:T ), the main

idea is to use (9) to generate pseudo-variables y+ and Z+ by drawing εt from N(0,Ω(Σ))

and using the recursions in (9). Given these pseudo-variables, the latent state is smoothed

to yield Ẑ+ = E(Z+
1:T |Y

+
1:T ). The final draw is then obtained by computing

Z̃1:T = Ẑ1:T +
(
Z+

1:T − Ẑ
+
1:T

)
.

Note that Ẑ1:T is obtained by first applying the Kalman smoother based on y∗t and Z∗t ,

which yields Ẑ∗1:T . Then, Ẑ1:T = Ẑ∗1:T + (IN ⊗ ψ′)W1:T , where W1:T = (W1, . . . ,WT )′.

Algorithm 3 Simulation smoother

1: Draw ε+
1 , . . . , ε

+
T from N(0,Ω(Σ)) and use (9) to construct Y +

1:T and Z+
1:T

2: Compute Ẑ∗1:T = E(Z∗1:T |Y ∗1:T ) and Ẑ+
1:T = E(Z+

1:T |Y
+

1:T ) by applying (10) forwards, (11)
backwards and (12) forwards

3: Compute the final draw as Z̃1:T = Ẑ∗1:T + (IT ⊗ ψ′)W1:T +
(
Z+

1:T − Ẑ
+
1:T

)

The simulation smoother can be time consuming, but the computational burden can

be alleviated by using the computational refinements presented in the Online Appendix to

Schorfheide and Song (2015).

Initialization

The simulation smoother needs to be initialized by a0 and P0. To do this, we fix Z0 =

(z0, . . . , z−p+1)′ at its observed values where applicable and fill the remaining missing entries

with the previous period’s observation. If initial observations are missing we set them to

the next available observation.

E. Hyperparameter selection

Both the Minnesota and the steady-state prior are parameterized by the same two hyper-

parameters: λ1 for overall tightness, and λ2 for lag decay. To select appropriate values for
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Figure 11. Adaptive grid search
Notes: Circles represent evaluated points in the grid and squares the maximizing pair in
each step. The figure illustrates grids of size 5, 5 and 3 in each step; in the application we
use 7, 5 and 3.

these, we employ an adaptive grid search. First, we compute the marginal data density for a

7×7 two-dimensional grid of hyperparameter values. Next, we calculate the marginal data

density for a 5×5 grid centered on the maximizing point from the first grid. Let λ
(j)
1 denote

the jth value in the first grid for λ1 and suppose that this value maximizes the marginal

data density. The endpoints in the second step’s grid are set to λ
(j−1)
1 + (λ

(j)
1 − λ

(j−1)
1 )/3

and λ
(j+1)
1 −(λ

(j+1)
1 −λ(j)

1 )/3. If λ
(j)
1 is a boundary point, we instead let the upper (or lower)

endpoint be λ
(j)
1 .

We take the same approach for the second grid of values for λ2, and thus end up with a

rectangular grid centered on the first step’s maximizer with corners inside the neighboring

points in the first grid. Finally, the third step is conducted in a similar fashion using a

3× 3 grid. Figure 11 illustrates the method visually.4

The adaptive grid search is conducted for all models at all forecasting origins. The final

forecast used is the forecast made by the model with the largest marginal data density at

that specific origin. Following some preliminary runs, the grids in the first step are set to

4For space considerations, the first step in the Figure shows only a 5 × 5 grid. In the application, we
instead use a 7× 7 grid in the first step.
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seven equally-spaced values between 0.01 and 1 for λ1. The models with the steady-state

prior use seven equally-spaced values between 0.01 and 4 for λ2, whereas the Minnesota-

based models use seven values between 0.01 and 8.

42



Research Papers 
2018 

 
 

 

 

 

2018-14: Cristina Amado, Annastiina Silvennoinen and Timo Teräsvirta: Models with 
Multiplicative Decomposition of Conditional Variances and Correlations 

2018-15: Changli He, Jian Kang, Timo Teräsvirta and Shuhua Zhang: The Shifting 
Seasonal Mean Autoregressive Model and Seasonality in the Central England 
Monthly Temperature Series, 1772-2016 

2018-16: Ulrich Hounyo and Rasmus T. Varneskov: Inference for Local Distributions at 
High Sampling Frequencies: A Bootstrap Approach 

2018-17: Søren Johansen and Morten Ørregaard Nielsen: Nonstationary cointegration in 
the fractionally cointegrated VAR model 

2018-18: Giorgio Mirone: Cross-sectional noise reduction and more efficient estimation 
of Integrated Variance 

2018-19: Kim Christensen, Martin Thyrsgaard and Bezirgen Veliyev: The realized 
empirical distribution function of stochastic variance with application to 
goodness-of-fit testing 

2018-20: Ruijun Bu, Kaddour Hadri and Dennis Kristensen: Diffusion Copulas: 
Identification and Estimation 

2018-21: Kim Christensen, Roel Oomen and Roberto Renò: The drift burst hypothesis 

2018-22: Russell Davidson and Niels S. Grønborg: Time-varying parameters: New test 
tailored to applications in finance and macroeconomics 

2018-23: Emilio Zanetti Chini: Forecasters’ utility and forecast coherence 

2018-24: Tom Engsted and Thomas Q. Pedersen: Disappearing money illusion 

2018-25: Erik Christian Montes Schütte: In Search of a Job: Forecasting Employment 
Growth in the US using Google Trends 

2018-26: Maxime Morariu-Patrichi and Mikko Pakkanen: State-dependent Hawkes 
processes and their application to limit order book modelling 

2018-27: Tue Gørgens and Allan H. Würtz: Threshold regression with endogeneity for 
short panels 

2018-28: Mark Podolskij, Bezirgen Veliyev and Nakahiro Yoshida: Edgeworth expansion 
for Euler approximation of continuous diffusion processes 

2018-29: Isabel Casas, Jiti Gao and Shangyu Xie: Modelling Time-Varying Income 
Elasticities of Health Care Expenditure for the OECD 

2018-30: Yukai Yang and Luc Bauwens: State-Space Models on the Stiefel Manifold 
with A New Approach to Nonlinear Filtering 

2018-31: Stan Hurn, Nicholas Johnson, Annastiina Silvennoinen and Timo Teräsvirta: 
Transition from the Taylor rule to the zero lower bound 

2018-32: Sebastian Ankargren, Måns Unosson and Yukai Yang: A mixed-frequency 
Bayesian vector autoregression with a steady-state prior 

 


	Abstract
	Introduction
	Combining a mixed-frequency vector autoregression with steady-state beliefs
	State space representation of the mixed-frequency model
	Incorporating prior beliefs
	Sampling from the posterior distribution

	Forecasting with ragged edges

	Estimation of the marginal data density
	An estimator of the marginal data density

	Using real-time data to forecast Swedish GDP growth
	Data
	Real-time data
	Publication delays
	Forecasting setup and evaluation
	Steady-state prior

	Forecasting performance
	Point forecasts
	Density forecasts

	The role of hyperparameter selection

	Conclusion
	References
	Replication files
	MCMC algorithms
	Posterior distributions
	Simulation smoother
	Handling the deterministic terms
	The Durbin2002 simulation smoother
	Initialization

	Hyperparameter selection

