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Abstract

This paper examines the Taylor rule in the context of United States monetary policy

since 1965, particularly with respect to the zero-lower-bound era of the federal

funds rate from 2009 to 2016. A nonlinear Taylor rule is developed which features

smooth transitions in the first two moments of the federal funds rate. This flexible

specification is found to usefully capture observed nonlinearity, while accounting for

the well-documented structural changes in monetary policy formation at the Federal

Reserve in the last fifty years, and especially in the recent zero-lower-bound era.
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1 Introduction

The beauty of the Taylor rule and the primary reason for its longevity is its simplicity; the

central bank is seen to use a straightforward interest-rate rule when conducting monetary

policy. Indeed, the popularity of the rule has survived its well-documented instability.

It is an undeniable fact, however, that after the financial crisis of 2007–2009 the United

States economy experienced a sharp contraction in economic activity and a prolonged slow

recovery. At the same time, the federal funds rate fell and remained at its effective lower

bound of zero for a protracted period of time. This period of policy at the zero lower bound

calls into question the applicability of a simple linear reaction function linking inflation

and economic activity to the short-term interest rate. Consequently, this paper develops

and estimates a nonlinear Taylor rule that maintains the simplicity and tractability of the

original and also accommodates the nonlinearity induced by the zero-lower bound.

The original Taylor rule (Taylor 1993) represented the target short-term interest rate

as a linear function of inflation and output gap. The Taylor rule aligns nicely with the

dual mandate of the Federal Reserve (introduced in 1977) which requires that the Board of

Governors and the FOMC must act to dampen the business cycle and provide a measure

of stability to the economy by promoting “maximum employment, stable prices, and

moderate long-term interest rates.” The last point can be achieved by inducing inflation

to fall, which is one of the two key explanatory variables in the Taylor rule. The second

key explanatory variable (output gap) relates to employment via Okun’s (1962) law.

Several variations to the simple linear Taylor rule have been proposed during the last

twenty years. Gonzales and Vera (2002), Nikolsko-Rzhevskyy, Papell and Prodan (2014),

and Creel and Hubert (2015) replace the output gap variable with the negative unemploy-

ment gap. Other papers vary the linear Taylor rule by way of the assumed time horizon

used by the monetary authority; they may use current data, lagged (backward-looking)

data, or expected (forward-looking) data. Others have experimented with including ex-

planatory variables in addition to the contemporaneous values of the inflation and output

gap. For instance, Clarida, Gaĺı and Gertler (1998), Taylor (1999b, 2001), Casellina and

Uberti (2008), Aizenman, Hutchison and Noy (2011), and Caporale, Helmi, Çatık, Ali

and Akdeniz (2018) all use the real exchange rate in the estimation of their Taylor rule

models. By contrast, the Taylor rule papers by Fuhrer and Tootell (2008), Bauducco,
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Buĺı̌r and Čihák (2008), Alcidi, Flamini and Fracasso (2011), Kasäı and Naraidoo (2012),

Lee and Son (2013), and Roskelley (2016) all feature some variable representing activity

in the financial markets.

A wealth of literature on the Taylor rule has found that the historically unusual

high values of the federal funds rate between 1978 and 1983, coinciding with the Fed-

eral Reserve Chair transitions from Burns to Miller and from Miller to Volcker, pose

serious parameter instability problems for the estimation of the linear Taylor rule in

this era. A variety of nonlinear Taylor rule model specifications, which include smooth

transitions, thresholds, Markov-switching and time-varying parameters, have been previ-

ously proposed to accommodate the apparent structural instabilities (Kim, Osborn and

Sensier 2005, Boivin 2006, Petersen 2007, Koustas and Lamarche 2012).

As already mentioned, the approach taken in this paper is to propose a nonlinear

model for the interest rate that explicitly accounts for the era spent in the proximity of

the zero lower bound after 2008, where the Taylor rule relationship ’breaks down’ (Martin

and Milas 2013, Bhar and Malliaris 2016). The majority of the Taylor rule literature

avoids this problematic era entirely by restricting estimation to time periods ending in or

before 2007. In this paper, the smooth transition regression zero-lower-bound (STR–ZLB)

model for the Taylor rule is introduced. Specifically, this smooth transition specification

also extends to the conditional variance in the federal funds rate, permitting the error

variance to adjust in line with the persistence observed during the period in which the

federal funds rate was at the zero lower bound, see Figure 1. This feature not only adjusts

the the Taylor rule in the presence of the zero lower bound but it also permits modelling of

recovery from the lower bound, a feature that is consistent with recent observed behaviour.

2 Models for the Taylor rule

The traditional rule for target short-term interest rate in the United States introduced by

Taylor (1993) is given by

it = α0 + α1πt + α2yt,

in which yt is the output gap, measured as the difference between the real GDP and

the estimated potential real GDP, and πt is year-on-year percentage change in aggregate
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Figure 1: The quarterly-averaged United States federal funds rate from 1965:Q1 to

2018:Q1. The shadow rate plotted when the effective federal funds rate is at

the zero lower bound is that of Wu and Xia (2015).

prices (actual inflation). For the years from 1987 to 1992, Taylor proposed that the output

and inflation gaps entered this reaction function with equal weights of 0.5, and that the

equilibrium real interest rate and the inflation target were identically equal to 2%, yielding

parameter values α0 = 1, α1 = 1.5, and α2 = 0.5.

The Taylor rule can be interpreted to mean that the Federal Reserve raises the federal

funds rate target for the short-term nominal interest rate when inflation rises above its

desired level and/or the output level rises above trend. Of course, the target output

deviation from its natural rate is zero because output cannot exceed potential output in

the long run. The Taylor rule assumes a small positive inflation rate because deflation is

considered a worse outcome for the economy than controlled inflation. For discussion, see

Nikolsko-Rzhevskyy and Papell (2013).

A static Taylor rule model would have a poor fit to the data because of the well-

documented persistence in short-term interest rates. Accordingly, it is usual to assume

that central banks do not adjust interest rates abruptly but rather smooth them. See

Goodfriend (1991), and Rudebusch (2002, 2006) for an extended discussion of monetary
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policy inertia and interest rate smoothing. Clarida et al. (1998) suggested an interest rate

smoothing whereby the standard rule is augmented by a lag of the interest rate,

it = (1− α3)(α0 + α1πt + α2yt) + α3it−1 = α0 + α1πt + α2yt + α3it−1, (1)

where α0, α1, and α2 are the long-run coefficient values. Fuhrer (1997) suggested an even

more dynamic decision rule with lags on inflation and output gap as well.

Even the augmented version of the Taylor rule, however, cannot be wholly operative

in the case where the interest rate approaches the zero lower bound.

Reifschneider and Williams (2000) were among the first to point out that the original

Taylor rule is inferior to nonlinear specifications when it comes to stabilization capability

in the presence of the zero lower bound. In the vicinity of the zero lower bound, the original

formulation of the Taylor rule is no longer applicable due to its failure to account for the

implied positive constraint on the interest rate. Liquidity traps were largely considered to

be a theoretical textbook phenomenon until February 12, 1999, when the Bank of Japan

announced the lowering of overnight interest rates to be ‘as low as possible’ in an attempt

to avoid a downward deflationary spiral, see Jung, Teranishi and Watanabe (2005). This

situation brought about heightened research interest in monetary policy at the zero lower

bound.1

As an example, consider the following nonlinear specification of the interest rate due

to Ruge-Murcia (2006). Let the nominal interest rate, it, take the form of a limited

dependent variable generated by an underlying unobserved latent index, i∗t , as follows:

it =

i
∗
t if i∗t > 0

0, otherwise.

(2)

The unobserved latent index, i∗t , is called the shadow rate. Now let the dynamics of i∗t be

generated by

i∗t = α +

p∑
j=1

φjit−j + β′xt + εt, (3)

where α ≥ 0, and xt is a vector of explanatory variables. Combining (2) and (3)

means that i∗t is censored and that the behaviour of it is described by a Tobit model

1The European Central Bank introduced negative interest rates in 2014, and the Japanese call rate

was set negative for the first time in early 2016.
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Amemiya (1984). The error εt has mean zero and the conditional error variance follows a

GARCH(1,1) model. Consequently, Eεtεt−j = 0 for j 6= 0. Although Ruge-Murcia (2006)

uses this model for bond pricing, it can easily be employed as a nonlinear Taylor rule.

Taylor and Williams (2011) suggested a specification to accommodate the zero lower

bound within the framework in the Taylor rule, given by,

it = max{0, E[(1− α3)(α0 + α1πt + α2yt) + α3i
∗
t−1]} (4)

where i∗t−1 denotes the lagged level of the interest rate that would occur in the absence of

the zero lower bound. It is in fact the unconstrained shadow rate and replaces the actual

rate in (1).

Left-censoring of monetary policy reaction functions has been previously estimated

using a Tobit approach by authors such as Kato and Nishiyama (2005) and Huang (2015).

Equation (4) is not an econometric model, but its structure is similar to the model of Ruge-

Murcia (2006), in which the observable interest rate is prevented from becoming negative,

so that the zero-lower-bound constraint is binding.

While these nonlinear specifications based on censoring provide easy-to-estimate alter-

natives to the simple linear Taylor rule, they are not developed any further here. Rather,

our approach is to develop a dynamic model of the interest rate at the zero lower bound

that describes the nonlinearity imposed by this constraint but also recognises that the be-

haviour of the error variance must be adapted to account for the existence of the bound.

3 A zero-lower-bound smooth transition model

The model proposed here is based on the same idea as the smooth transition autoregressive

target zone (STARTZ) model due to Lundbergh and Teräsvirta (2006). The STARTZ

model characterises the behaviour of an exchange rate that is restricted to fluctuate

within a band and is a discrete-time version of the continuous time model of Krugman

(1991). The dynamic behaviour of the exchange rate is very different when it approaches

a boundary it cannot breach from what it is further away from these bounds. The present

situation is somewhat simpler than that of the target zone as the interest rate only has a
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(zero) lower bound. The conditional mean component of the model embeds both a Taylor

rule regime and a zero-lower-bound regime and is defined as follows:

it = (α0 + α1πt + α2yt + α3it−1)Gm(it−1) + (α4 + α5it−1)(1−Gm(it−1)) + εt

= (α∗0 + α1πt + α2yt + α∗3it−1)Gm(it−1) + α4 + α5it−1 + εt

= i◦tGm(it−1) + α4 + α5it−1 + εt, (5)

where εt is white noise, Eεt = 0 and Eε2t = σ2. The conditional variance of εt will be

considered later. In the lower bound regime, the linear Taylor rule breaks down and

inflation and the output no longer predict the interest rate, hence their absence from that

regime. The parameters α∗0 = α0 − α4 and α∗3 = α3 − α5 have been constructed for the

ease of estimation. If needed, the original parameters α0 and α3 can be recovered from

these relations.

The transition function Gm(·) of the STARTZ model is a generalized logistic function

because the smooth pasting assumption is essential to the modelling of an exchange rate

in the target zone. Since this assumption is not needed here and transition variable it ≥ 0

almost surely, we follow Lanne and Saikkonen (2005) who suggested the use of the function

G(it−1): (0,∞) → [0, 1]. Their suggestion of using the cumulative distribution function

of the single parameter gamma distribution as the transition function is adopted here.

Consequently the transition function in (5) is given by

Gm(it−1) = Gm(it−1; γm) =
1

Γ(γm)

∫ it−1

0

e−ssγm−1ds, (6)

where γm is the shape parameter and the implied scale parameter has been set equal to

one.

This form of the transition function (6) is properly known as a regularized lower

incomplete gamma function, and is a bounded, monotonically increasing function of it−1. It

does not have a closed-form representation, so its values have to be computed numerically.2

When Gm(it−1) = 1, the behaviour of the interest rate is determined by the linear dynamic

Taylor rule, whereas whenGm(it−1)→ 0, which happens when the interest rate approaches

zero, the Taylor rule is no longer operational. More generally, the interest rate for a given

2In the application the two-parameter gamma c.d.f. was also tried, but using it barely increased the

maximum value of the likelihood and substantially slowed down convergence.
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it−1 ≥ 0 is a convex combination of the Taylor rule equation and a simple AR(1) model

for it−1.

In order to model an implied persistent regime for the interest rate at the zero lower

bound, the variance of εt also has to be time-varying and appropriately parameterized.

The conditional variance is decomposed as in the well known ARCH model Engle (1982).

Thus εt = zth
1/2
t , where zt ∼ iidN (0, 1). The conditional variance ht is a function of it−1

given by

ht = δ + (d− δ)Gv(it−1), (7)

where

Gv(it−1) = Gv(it−1; γv) =
1

Γ(γv)

∫ it−1

0

e−ssγv−1ds. (8)

Both d and δ are positive parameters, with δ very close to zero, and, consequently,

d − δ > 0. When the interest rate is close to zero, Gv(it−1) is also expected to either

equal zero or be very close to zero, in which case the error variance is small. In this sense,

the zero-lower-bound constraint is not strictly binding, but by design is unlikely to be

crossed without the action of a sufficient exogenous shock. 3 The error variance increases

with it−1 and approaches d when the interest rate is sufficiently large. The model defined

by (5), (6), (7) and (8) may be called the smooth transition regression zero-lower-bound

(STR–ZLB) Taylor rule model.

4 Log-likelihood, score and the information matrix

The log-likelihood function of the STR–ZLB model for observation t has the form

`t = k − 1

2
lnht −

ε2t
2ht

, (9)

where

εt = it − i◦tGm(it−1)− α4 − α5it−1

for t = 1, ..., T . Let the mean parameter vector be θm = (α∗0, α1, α2, α
∗
3, α4, α5, γm)′ and

the variance parameter vector be θv = (δ, d, γv)
′ and further set θ = (θ′m, θ

′
v)
′. Then the

3The model does permit very small negative interest rates to occur and so could feasibly be used

outside of the United States context.
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score for observation t equals
∂`t
∂θ

= (
∂`t
∂θ′m

,
∂`t
∂θ′v

)′. (10)

In (10), the partial derivatives w.r.t. the mean parameters are

∂`t
∂θm

=
εt
ht

(Gm(it−1), πtGm(it−1), ytGm(it−1), it−1Gm(it−1), 1, it−1, i
◦
t

∂Gm(it−1)

∂γm
)′

=
εtsmt
ht

,

with

∂Gm(it−1)

∂γm
= −ψ(γm)Gm(it−1) +

1

Γ(γm)

∫ it−1

0

e−ssγm−1(ln s)ds (11)

=
1

Γ(γm)

∫ it−1

0

e−ssγm−1(ln s− ψ(γm))ds,

where ψ(γm) is the digamma function. The partial derivatives w.r.t. the variance param-

eters are

∂`t
∂θv

=
1

2ht
(
ε2t
ht
− 1)(1−Gv(it−1), Gv(it−1), (d− δ)

∂Gv(it−1)

∂γv
)′

=
1

2ht
(
ε2t
ht
− 1)svt, (12)

where, analogous to (11),

∂Gv(it−1)

∂γv
= −ψ(γv)Gv(it−1) +

1

Γ(γv)

∫ it−1

0

e−ssγv−1(ln s)ds. (13)

The information matrix for observation t is given by

I(θ0) =

 E
∂`t
∂θm

∂`t
∂θ′m
|θm=θ0m

0

0′ E
∂`t
∂θv

∂`t
∂θ′v
|θv=θ0v

 ,
where θ0m and θ0v are true parameter vectors,

E
∂`t
∂θm

∂`t
∂θ′m
|θm=θ0m

= E
1

h0t
s0mt(s

0
mt)
′ (14)

and

E
∂`t
∂θv

∂`t
∂θ′v
|θv=θ0v =

1

2
E

1

h0t
s0vt(s

0
vt)
′, (15)

where s0mt and s0vt are the true values (true parameter values under H0) of smt and svt,

respectively, and h0t is the true value of the conditional variance ht. There are no closed

form expressions for the expectations (14) and (15).
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5 Estimation of the STR–ZLB Taylor rule

The data used here comprise quarterly United States time series for the period 1965:Q1 to

2018:Q1 for a total of 213 observations. The dependent variable is the quarterly averaged

effective federal funds rate, derived from the monthly time series found in the FRED

databases and expressed in basis points. For the contemporaneous output gap measure,

real-time real GDP data obtained from the Philadelphia Federal Reserve are used and the

gap is constructed as the difference between GDP and potential GDP, where the latter

is constructed using a quadratic filter of actual GDP.4 Finally, inflation is calculated

as the percentage annual change in the real-time GDP deflator, also obtained from the

Philadelphia Federal Reserve.

Before estimating the STR–ZLB Taylor rule over the full timespan of the dataset, it is

interesting to see the characteristics of the dynamic linear Taylor rule before the federal

funds rate was reduced towards the zero lower bound in 2008. The estimation results over

the 170 observations from 1965:Q1–2007:Q3 are

it = 0.094
(0.234)

+ 0.131
(0.053)

πt + 0.055
(0.029)

yt + 0.900
(0.039)

it−1 + ε̂t, (16)

with standard errors in parentheses. Before the onset of the zero lower bound, it is

clear that the response coefficients to inflation and the output gap are both positive

and reasonably significant. All the magnitudes of the parameters are in line with those

reported in previous studies, see for example Rudebusch (2006) and Martin and Milas

(2010).

It is equally instructive to confirm that the dynamic linear Taylor rule breaks down

after the onset of the zero lower bound. The estimation results over the 33 observations

4A number of different filters have been used to generate potential output. These include a linear and

quadratic filters and the Hodrick-Prescott (HP) filter. The linear filter produces an output gap that is

almost exclusively positive and is thus discarded. The real-time quadratic and HP output gaps, however,

are much more commonly used in the literature Boinet and Martin (2008). As pointed out in Nikolsko-

Rzhevskyy et al. (2014), however, the HP output gap tends to empirically understate the output gap

during periods of peak unemployment in the 1970s and 1980s. More generally, Hamilton (2017) argues

convincingly that one should not apply the HP filter. As a consequence, the quadratic output gap is used

in this work.
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from 2007:Q4–2015:Q4 are

it = 0.039
(0.197)

+ 0.002
(0.084)

πt + 0.010
(0.055)

yt + 0.712
(0.114)

it−1 + ε̂t, (17)

where, as before, standard errors are in parentheses.

The difference is stark. Here the short run response to inflation and the output is

almost zero, and the equation is practically autoregressive of order one. A pure AR(1)

model fitted to this period has the following form:

it = 0.013
(0.436)

+ 0.732
(0.034)

it−1 + ε̂t. (18)

These results are consistent with the conclusions drawn in other studies such as Jung

et al. (2005) and Zhu and Chen (2017).

The STR–ZLB model (5), (6), (7) and (8) contains the pre-zero-lower-bound dynamic

Taylor rule and the zero-lower-bound regime as extreme cases. Its parameters are esti-

mated by maximum likelihood. Estimation is started from several initial values to increase

the probability that the highest local maximum found is a global maximum. The scale pa-

rameters γm and γv in (6) and (8) are replaced by ηm = ln γm and ηv = ln γv, respectively.

This transformation has the advantage that the estimation becomes computationally eas-

ier when the scale parameters γm and γv are small (the value of the function increases

rapidly with its argument). In addition, the estimate of the very small positive parameter

δ in (7) is kept positive by setting δ = k2.

The estimated conditional mean of the STR–ZLB model is given by (with standard

error estimates in parentheses)

it = (0.013
(0.299)

+0.102
(0.036)

πt+0.037
(0.020)

yt+0.936
(0.052)

it−1)Ĝm(it−1)+(0.051
(0.090)

+0.815
(0.330)

it−1)(1−Ĝm(it−1))+ ε̂t,

(19)

where

Ĝm(it−1) =
1

Γ(1.809
(1.487)

)

∫ it−1

0

e−ss
0.809
(1.487)ds.

The estimated conditional variance is

ĥt = 0.150
(0.045)

+ (7.302
(3.525)

− 0.150
(0.045)

)Ĝv(it−1), (20)

with

Ĝv(it−1) =
1

Γ(11.244
(1.481)

)

∫ it−1

0

e−ss
10.244
(1.481)ds.
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Plots of the residuals ε̂t and the standardised residuals ẑt can be found in Figures 2a

and 2b, respectively. The effect of the STR–ZLB model having captured most of the time-

variation in the error variance is apparent. It appears though that the residuals contain

autocorrelation, which counters the assumption that the standardised errors εt/h
1/2
t of

the model are not serially correlated. To test this assumption, the Godfrey-Breusch test

of no error autocorrelation was applied. The test is based on

zt = φ1zt−1 + . . .+ φpzt−p + ζt = φ′zt−1 + ζt,

where zt = (zt, zt−1, . . . , zt−p+1)
′, φ = (φ1, ..., φp)

′, and ζt ∼ iidN (0, σ2
ζ ). The null hypoth-

esis is H0 : φ = 0. The robust version of the test is carried out in the TR2 form by the

following steps, see Godfrey (1978) and Wooldridge (1990):

1. Estimate the STR–ZLB model, compute the residuals z̃t and the residual sum of

squares SSR0 =
∑T

t=1 z̃
2
t .

2. Regress z̃t on h̃
−1/2
t s̃mt and z̃t−1, where the tilde implies that the elements have been

estimated under H0, and compute the sum of squared residuals SSR1.

3. Compute the test statistic LMTR
ac = T (1− SSR1/SSR0).

Under H0 and the assumption that the conditional variance is correctly specified,

LMTR
ac has an asymptotic χ2 null distribution with p degrees of freedom.

This test results in a strong rejection of the null hypothesis over the entire sample

period as well as in subperiods, which agrees with the visual inspection of the residuals.

This result is not surprising given the simple dynamic structure of the STR–ZLB model

and characteristic of all Taylor rule models based on simple interest rate smoothing. Con-

sequently, care must be exercised in making statistical inferences and, wherever possible,

robust standard errors should be employed.

6 Interpretation

Figures 3a and 3c plot the estimated transition functions on the conditional mean and

variance respectively, as a function of the transition variable it−1. The features of the
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Figure 2: Residuals and standardised residuals from the estimated STR–ZLB Taylor rule

from 1965:Q1 to 2018:Q1.

gamma transition are clear with the zero-lower-bound regime occurring for interest rates

near or below zero, and the ‘regular’ or ‘Taylor’ regime occurring for interest rates suffi-

ciently above zero. Therefore the model can also be used to accommodate small negative

interest rates. An important property of these gamma transition functions is that the

model fully arrives at the zero-lower-bound regime (Gm = 0) when it−1 ↓ 0.

As may be expected, the estimates for the “Taylor rule component” in (19) are close

to the ones in (16), whereas the AR(1) component closely resembles (18). One of the

advantages of the STR–ZLB model is that not only does it parameterise the two extremes,

it also describes the (infinitely many) states between these extremes.

The corresponding Figures 3b and 3d respectively show the estimated mean and vari-

ance transitions, plotted over the time span of the dataset. The zero-lower-bound era

from 2008 to 2016 is represented by a clear regime shift in the conditional mean. The

conditional mean does not completely reach the zero-lower-bound regime, as Gm does not

fully reach zero, but the mean value of Gm during the centre of the zero-lower-bound

era (2009:Q1–2014:Q4) is found to be 0.0152. The mean value of the quarterly averaged

federal funds rate for the same time period is it = 0.128%.

On the other hand, from Figure 3d it is clear that the transition function in the

conditional variance reflects the high degree of variability induced by the monetary policy

experiments around 1979–1982. Numerous studies in the United States monetary policy

12
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Figure 3: Estimation of the STR–ZLB Taylor rule from 1965:Q1 to 2018:Q1.
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literature have found structural breaks in the data during this time period, e.g. Taylor

(1999a), Clarida, Gaĺı and Gertler (2000), Orphanides (2004), Yoon (2011), and Yao

(2014). In these papers the error variance is assumed constant. In the present work,

however, the linear Taylor rule representation is retained for this period, but the time-

varying variance accommodates possible inadequacies in the linear rule by allowing the

conditional variance to increase during this period. Another interesting feature of the

estimation results, visible in Figure 3d, is that the conditional error variance becomes

small in the 1990s, long before the beginning of the zero-lower-bound era. This result

indicates that the ‘regular’ dynamic Taylor rule fits the data quite well during this period.

There is an alternative approach to interpreting the estimated conditional mean in

equation (19), namely, by viewing it as a linear form Taylor rule with time-varying coef-

ficients given by

it = β̂0(it−1) + β̂1(it−1)πt + β̂2(it−1)yt + β̂3(it−1)it−1 + ε̂t. (21)

The estimated intercept is β̂0(it−1) = α̂∗0Ĝm(it−1)+α̂4 = α̂0Ĝm(it−1)+α̂4(1−Ĝm(it−1)), the

response to inflation is β̂1(it−1) = α̂1Ĝm(it−1), the response to the output gap is β̂2(it−1) =

α̂2Ĝm(it−1), and the implied interest smoothing coefficient is given by β̂3(it−1) = α̂∗3Ĝm(it−1)+

α̂5 = α̂3Ĝm(it−1) + α̂5(1− Ĝm(it−1)).

The estimated time-varying coefficients β̂1(it−1), β̂2(it−1), and β̂3(it−1) are plotted

against time in Figures 4a to 4c. In Figure 4a, the horizontal line corresponds to the

value of α̂1 which is the coefficient on inflation during the linear regime. There is a sharp

transition in the value of this coefficient to the lower horizontal line at zero during the

zero-lower-bound era. This pattern is repeated in Figure 4b for the output gap parameter

α̂2. The coefficient on the lagged interest rate in Figure 4c, however, retains its magnitude

over the whole period of observation as the two estimates shown by the horizontal lines

α̂3 and α̂5 are not significantly different. It is very interesting to note that after 2015, the

estimated time-varying coefficients on inflation and the output gap both increase as the

gamma smooth transition is engaged. This feature demonstrates that the model not only

captures the transition into the lower-bound period but it is also effective in modelling

the recovery as the economy begins to emerge from the zero-lower-bound era.
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Figure 4: Shifts in the estimated time-varying Taylor rule parameters β1(it−1) (the re-

sponse to inflation), β2(it−1) (the response to the output gap), and β3(it−1) (the

interest smoothing coefficient) from the STR–ZLB Taylor rule in the vicinity of

the zero lower bound, as shown in equation (21).
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7 Conclusion

In contrast to existing nonlinear specifications of the Taylor rule, the STR–ZLB model

incorporates smooth transitions in both the conditional mean and conditional variance

of the federal funds rate. The specification of the variance is a novel addition to the

model and is crucial in ensuring that the short-term interest rate is able to remain at the

lower bound. By design, the linear Taylor rule is nested within the STR–ZLB model and

completely characterises interest rate behaviour when the lower bound is not binding. In

the vicinity of the zero lower bound, the STR–ZLB model resembles an autoregressive

process of order one for the interest rate with a vanishing variance. In this way, both

conventional and unconventional monetary policy regimes, and the transition between

them, are captured by a single model. The model is also applicable outside of the United

States because it does not entirely preclude small negative interest rates.

The log-likelihood function of the model is straightforward to derive and maximum

likelihood estimates of the model parameters are relatively straightforward to obtain. The

estimates of the linear Taylor rule component are very much as expected. The estimates

of the transition functions indicate a gradual but clear shift in the conditional mean and

conditional variance during the zero-lower bound era. The transitions in the variance

also suggest that the linear dynamic Taylor rule does not explain developments of the

Volcker period particularly well. The simple dynamic specification of the model retains

the essential structure of the Taylor rule but at the cost of serially correlated errors. Care

must therefore be exercised to ensure correct inference.
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Bauducco, S., Buĺı̌r, A. and Čihák, M.: 2008, Taylor rule under financial instability, IMF

Working Paper No. 08/18.

Bhar, R. and Malliaris, A. G.: 2016, Asset price momentum and monetary policy: time-

varying parameter estimation of taylor rules, Applied Economics 48, 5329–5339.

Boinet, V. and Martin, C.: 2008, Targets, zones, and asymmetries: a flexible nonlinear

model of recent UK monetary policy, Oxford Economic Papers 60, 423–439.

Boivin, J.: 2006, Has U.S. monetary policy changed? Evidence from drifting coefficients

and real-time data, Journal of Money, Credit and Banking 38, 1149–1173.
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