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Abstract

We develop novel multivariate state-space models wherein the latent states

evolve on the Stiefel manifold and follow a conditional matrix Langevin distribution.

The latent states correspond to time-varying reduced rank parameter matrices, like

the loadings in dynamic factor models and the parameters of cointegrating relations

in vector error-correction models. The corresponding nonlinear filtering algorithms

are developed and evaluated by means of simulation experiments.
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1 Introduction

The coefficient matrix of explanatory variables in multivariate time series models can be

rank deficient due to some modelling assumptions, and the parameter constancy of the

rank deficient matrix may be questionable. This may happen, for example, in the factor
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model, which construct very few factors by using a large number of macroeconomic and

financial predictors, while the factor loadings are suspect to be time-varying. Stock and

Watson (2002) state that it is reasonable to suspect temporal instability taking place in

factor loadings, and later Stock and Watson (2009) and Breitung and Eickmeier (2011)

find empirical evidence of instability. Another setting where instability may arise is in

cointegrating relations (see e.g. Bierens and Martins (2010)), hence in the the reduced

rank cointegrating parameter matrix of a vector error-correction model.

There are solutions in the literature to the modelling of the temporal instability of

reduced rank parameter matrices. Such parameters are typically regarded as unobserved

random components and in most cases are modelled as random walks on a Euclidean

space; see for example Del Negro and Otrok (2008) and Eickmeier et al. (2014). In these

works, the noise component of the latent processes (factor loading) is assumed to have a

diagonal covariance matrix in order to alleviate the computational complexity and make

the estimation feasible, especially when the dimension of the system is high. However, the

random walk assumption on the Euclidean space cannot guarantee the orthonormality of

the factor loading (or cointegration) matrix, while this type of assumption identifies the

loading (or cointegration) space. Hence, other identification restrictions on the Euclidean

space are needed. Moreover, the diagonality of the error covariance matrix of the latent

processes contradicts itself when a permutation of the variables is performed.

In this work we develop new state-space models on the Stiefel manifold, which do not

suffer from the problems on the Euclidean space. It is noteworthy that Chikuse (2006) also

develops state-space models on the Stiefel manifold. The key difference between Chikuse

(2006) and our work is that we keep the Euclidean space for the measurement evolution of

the observable variables, while Chikuse (2006) puts them on the Stiefel manifold, which is

not relevant for modelling economic time series. By specifying the time-varying reduced

rank parameter matrices on the Stiefel manifold, their orthonormality is obtained by

construction, and therefore their identification is guaranteed.

The corresponding recursive nonlinear filtering algorithms are developed to estimate

the a posteriori distributions of the latent processes of the reduced rank matrices. By

applying the matrix Langevin distribution on the a priori distributions of the latent

processes, conjugate a posteriori distributions are achieved, which gives great convenience

in the computational implementation of the filtering algorithms. The predictive step of

the filtering requires to solve an integral on the Stiefel manifold, which does not have a

closed form. To compute this integral, we resort to Laplace method.

The paper is organized as follows. Section 2 introduces the general framework of the

vector models with time-varying reduced rank parameters. Two specific forms of the

time-varying reduced rank parameters, which the paper is focused on, are given. Section
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3 discusses some problems in the prevalent literature on modelling the time dependence of

the time-varying reduced rank parameters, which underlie our modelling choices. Then,

in Section 4 we present the novel state-space models on the Stiefel manifold. Section 5

presents the nonlinear filtering algorithms that we develop for the new state-space models.

Section 6 presents several simulation based examples. Finally, Section 7 concludes and

gives possible research extensions.

2 Vector models with time-varying reduced rank

parameters

Consider the multivariate time series model with partly time-varying parameters

yt = Atxt +Bzt + εt, t = 1, ..., T, (2.1)

where yt is a (column) vector of dependent variables of dimension p, xt and zt are vectors

of explanatory variables of dimensions q1 and q2, At and B are p× q1 and p× q2 matrices

of parameters, and εt is a vector belonging to a white noise process of dimension p,

with positive-definite covariance matrix Ω. For quasi-maximum likelihood estimation, we

further assume that εt ∼ Np(0,Ω).

The distinction between xt and zt is introduced to separate the explanatory vari-

ables between those that have time-varying coefficients (At) from those that have fixed

coefficients (B). In the sequel we always consider that xt is not void (ie q1 > 0). The ex-

planatory variables may contain lags of yt, and the remaining stochastic elements (if any)

of these vectors are assumed to be weakly exogenous. Equation (2.1) provides a general

linear framework for modelling time-series observations with time-varying parameters,

embedding multivariate regressions and vector autoregressions. For an exposition of the

treatment of such a model using the Kalman filter, we refer to Chapter 13 of Hamilton

(1994).

We assume furthermore that the time-varying parameter matrix At has reduced rank

r < min(p, q1). This assumption can be formalized by decomposing At as αtβ
′
t, where αt

and βt are p× r and q1× r full rank matrices, respectively. If we allow both αt and βt to

be time-varying, the model is not well focused and hard to explain, and its identification

is very difficult. Hence, we focus on the cases where either αt or βt is time-varying, that

is, on the following two cases:

Case 1: At = αtβ
′, (2.2)

Case 2: At = αβ′t. (2.3)
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Next, we explain how the two cases give interesting alternatives to modelling different

kinds of temporal instability in parameters.

The case 1 model (equations (2.1)-(2.2)) ensures that the subspace spanned by β is

constant over time. This specification can be viewed as a cointegration model allowing for

time-varying short-run adjustment coefficients (the entries of αt) but with time-invariant

long-run relations (cointegrating subspace). To see this, consider that model (2.1) cor-

responds to a vector error-correction form of a cointegrated vector autoregressive model

of order k with X t as the dependent variables, if yt = ∆X t, xt = X t−1, zt contains

∆X t−i for i = 1, ..., k − 1, as well as some predetermined variables. There are papers

in the literature arguing that the temporal instability of the parameters in both station-

ary and non-stationary macroeconomic data does exist and cannot be overlooked. For

example, Swanson (1998) and Rothman et al. (2001) give convincing examples in investi-

gating the Granger causal relationship between money and output using nonlinear vector

error-correction model. They model the instability in α by means of regime-switching

mechanisms governed by some observable variable. An alternative to that modelling

approach is to regard αt as a totally latent process.

The case 1 model also includes as particular case the factor model with time-varying

factor loadings. In the factor model context, the factors f t are extracted from a number

of observable predictors xt by using the r linear combinations f t = β′xt. Note that f t

is latent since β is unknown. Then the corresponding factor model (neglecting the Bzt

term) takes the form

yt = αtf t + εt, (2.4)

where αt is matrix of the time-varying factor loadings. The representation is quite flexible

in the sense that yt can be equal to xt and then we reach exactly the same representation

as Stock and Watson (2002), but we also allow them to be distinct. In Stock and Watson

(2002), the factor loading matrix α is time-invariant and the identification is obtained by

imposing the constraints q1α = β and α′β = β′α = α′α/q1 = q1β
′β = Ir. Notice that

if α is time-varying but β time-invariant, these constraints cannot be imposed.

The case 2 model (equations (2.1) and (2.3)) can be used to account for time-varying

long-run relations in cointegrated time series, as βt is changing. Bierens and Martins

(2010) show that this may be the case for the long run purchasing power parity. In the

case 2 model, there exist p−r linearly independent vectors α⊥ that span the left null space

of α, such that α′⊥At = 0. Therefore, the case 2 model implies that the time-varying

parameter matrix βt vanishes in the structural vector model

γ ′yt = γ ′Bzt + γ ′εt, (2.5)

for any column vector γ ∈ sp(α⊥), where sp(α⊥) denotes the space spanned by α⊥, thus
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implying that the temporal instability can be removed in the above way. Moreover, xt

does not explain any variation of γ ′yt.

Another possible application for the case 2 model is the instability in the factor com-

position. Considering the factor model yt = αf t + εt, with time-invariant factor loading

α, the factor composition may be slightly evolving through βt in f t = β′txt.

3 Issues about the specification of the time-varying

reduced rank parameter

In the previous section, we have introduced two models with time-varying reduced rank

parameters. In this section, in order to motivate our choices presented in Section 4, we

discuss the specification in the literature of the dynamic process governing the evolution

of the time-varying parameters.

Since the sequences αt or βt in the two cases are unobservable in practice, it is quite

natural to write the two models into the state-space form with a measurement equation

like (2.1) for the observable variables and transition equations for αt or βt. To build the

time dependence in the sequences of αt or βt is of great practical interest as it enables one

to use the historical time series data for conditional forecasting, especially by using the

prevalent state-space model based approach. How to model the evolution of these time-

varying parameters, nevertheless, is an open issue and needs careful investigation. Almost

all the works in the literature of time series analysis hitherto only deal with state-space

models on the Euclidean space. See for example the books by Hannan (1970), Anderson

(1971), Koopman (1974), Durbin and Koopman (2012), and more recently Casals et al.

(2016).

Consider for example the factor model (2.4) with time-varying factor loading αt, but

notice that the following discussion can be easily adapted to the cointegration model,

where only βt is time-varying. The traditional state-space framework on the Euclidean

space assumes that the elements of the time-varying matrix αt evolve like random walks

on the Euclidean space, see for example Del Negro and Otrok (2008) and Eickmeier et al.

(2014). That is,

vec(αt+1) = vec(αt) + ηt, (3.1)

where vec denotes the vectorization operator, and the sequence of ηt is assumed to be a

Gaussian strong white noise process with constant positive definite covariance matrix Ση.

Thus, (2.1) and (3.1) form a vector state-space model, and the Kalman filter technique

can be applied for estimating αt.

A first problem of the model (3.1) is that the latent random walk evolution on the
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Euclidean space is strange. Consider the special case p = 2 and r = 1: in Figure 1, points

1–3 are possible locations of the latent variable vec(αt) = (α1t, α2t)
′. Suppose that the

next state αt+1 evolves as in (3.1) with a diagonal covariance matrix Ση. The circles

centered around points 1–3 are contour lines such that, say, almost all the probability

mass lies inside the circles. The straight lines OA and OB are tangent lines to circle 1

with A and B the tangent points; the straight lines OC and OD are tangent lines to circle

2; and the straight lines OE and OF are tangent lines to circle 3. The angles between

the tangent lines depend on the location of the points 1-2-3: generally the more distant

a point from the origin, the smaller the corresponding angle despite some special ellipses.

The plot shows that the distributions of the next subspace based on the current point

differ for different subspaces (angle for 3 and 2 smaller than angle for 1); even for the

same subspace (points 2 and 3), the distribution of the subspace is different (angle for 3

smaller than angle for 2).

- insert Figure 1 about here -

A second problem is the identification issue. The pair of αt and β should be identified

before we can proceed with the estimation of (2.1) and (3.1). If both α and β are time-

invariant, it is common to assume the orthonormality (or asymptotic orthonormality)

α′α/q1 = Ir or α′α = Ir to identify the factors and then to estimate them by using the

principle components method. But when αt is evolving as (3.1), the orthonormality of

αt can never be guaranteed for all t on the Euclidean space.

The alternative solution to the identification problem is to normalize the time-invariant

part β as (Ir, b
′)′. The normalization is valid when the upper block of β is invertible, but

if the upper block of β is not invertible, one can always permute the rows of β to find

an invertible submatrix of order r rows for such a normalization. The permutation can

be performed by left-multiplying β by a permutation matrix P to make its upper block

invertible. In practice, it should be noted that the choice of the permutation matrix P is

usually arbitrary and casual.

Even though the model defined by (2.1) and (3.1) is identified by some normalized β,

if one does not impose any constraint on the elements of the positive definite covariance

matrix Ση, the estimation can be very difficult due to computational complexity. A

feasible solution is to assume that ηt is cross-sectionally uncorrelated. This restriction

reduces the number of parameters, alleviates the complexity of the model, and makes the

estimation much more efficient, but it may be too strong and imposes a priori information

on the data. However, a third problem then arises. In the following two propositions, we

show that any design like (2.1) and (3.1) with the restriction that Ση is diagonal is casual

in the sense that it may lead to contradiction since the normalization of β is arbitrarily

chosen.
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Proposition 3.1. Suppose that the reduced rank coefficient matrix At in (2.1) with rank

r has the decomposition (2.2). By choosing some permutation matrix P β (p × p), the

time-invariant component β can be linearly normalized if the r × r upper block b1 in

P ββ =

(
b1

b2

)
(3.2)

is invertible. Then the corresponding linear normalization is

β̃ = P ββb
−1
1 =

(
Ir

b2b
−1
1

)
, (3.3)

and the time-varying component is re-identified as α̃t = αtb
′
1. Assuming that the time-

varying component evolves as follows

vec(α̃t+1) = vec(α̃t) + ηαt , (3.4)

consider another permutation P ∗β 6= P β with the corresponding α̃∗t , β̃
∗
, b∗1 and ηα∗t . The

variance-covariance matrices of ηαt and ηα∗t are both diagonal if and only if b1 = b∗1.

Proof. See Appendix A.

Proposition 3.2. Suppose that the reduced rank coefficient matrix At in (2.1) with rank

r has the decomposition (2.3). By choosing some permutation matrix P α (p × p), the

constant component α can be linearly normalized if the r × r upper block a1 in

P αα =

(
a1

a2

)
(3.5)

is invertible. The corresponding linear normalization is

α̃ = P ααa
−1
1 =

(
Ir

a2a
−1
1

)
, (3.6)

and the time-varying component is re-identified as β̃t = βta
′
1. Assuming that the time-

varying component evolves as follows

vec(β̃t+1) = vec(β̃t) + ηβt , (3.7)

consider another permutation P ∗α 6= P α with the corresponding α̃∗, β̃
∗
t , a

∗
1 and ηβ∗t . The

variance-covariance matrices of ηβt and ηβ∗t are both diagonal if and only if a1 = a∗1.

Proof. See Appendix B.

The two corollaries below follow Propositions 3.1 and 3.2 immediately, showing that

the assumption that the variance-covariance matrix Ση is always diagonal for any linear

normalization is inappropriate.
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Corollary 3.3. Given the settings in Propostion 3.1, the variance-covariance matrices of

the error vectors in forms like (3.4) based on different linear normalizations, cannot be

both diagonal if b1 6= b∗1 where b1 and b∗1 are the upper block square matrices in forms like

(3.2).

Corollary 3.4. Given the settings in Proposition 3.2, the variance-covariance matrices

of the error vectors in forms like (3.7) based on different linear normalizations, cannot be

both diagonal if a1 6= a∗1 where a1 and a∗1 are the upper block square matrices in forms

like (3.5).

One may argue that there is a chance for the two covariance matrices to be both

diagonal, i.e., when b1 = b∗1. It should be noticed that the condition b1 = b∗1 does

not imply that P = P ∗. Instead, it implies that the permutation matrices move the

same variables to the upper part of β with the same order. If this is the case, the two

permutation matrices P and P ∗ are distinct but equivalent as the order of the variables

in the lower part is trivial for linear normalization.

Since the choice of the permutation P and the corresponding linear normalization is

arbitrary in practice, which is simply the order of xt (yt for case 2), the models with

different P are telling different stories about the data. In fact, the model has been

over-identified by the assumption that Ση must be diagonal. Consequently, the model

becomes β-normalization dependent, and the β-normalization imposes some additional

information on the data. This can be serious when the forecasts from the models with

distinct normalizations of α give totally different results. A solution to this ”unexpected”

problem may be to try all possible normalizations of α and do model selection, that is,

after estimating every possible model, pick the best model according to an information

criterion. However, this solution is not always feasible because the number of possible

permutations for α , which is equal to q1(q1 − 1)...(q1 − r + 1), can be huge. When the

number of predictors is large, which is common in practice, the estimation of each possible

model based on different normalization becomes a very demanding task.

Stock and Watson (2002) propose the assumption that the cross-sectional dependence

between the elements in ηt is weak and the variances of the elements are shrinking with

the increase of the sample size. Then the aforementioned problem may not be so serious,

as, intuitively, different normalizations with diagonal covariance matrix Ση may produce

approximately or asymptotically the same results.

We have shown that the modelling of the time-varying parameter matrix in (2.2) as a

process like (3.1) on the Euclidean space involves some problems. Firstly, the evolution of

the subspace spanned by the latent process on the Euclidean space is strange. Secondly,

the process does not comply with the orthonormality assumption to identify the pair of αt

and β. Thus, a linear normalization is employed instead of the orthonormality. Thirdly,

8



the state-space model on the Euclidean space suffers from the curse of dimensionality, and

hence the diagonality of the covariance of the errors is often used with the linear normal-

ization in order to alleviate the computational complexity when the dimension is high.

This leads to two other problems: firstly, the diagonality assumption is inappropriate in

the sense that different linear normalizations may lead to a contradiction; secondly the

model selection can be a tremendous task when there are many predictors.

In the following section, we propose that the time-varying parameter matrices αt and

βt evolve on the Stiefel manifold, instead of the Euclidean space, and we show that the

corresponding state-space models do not suffer from the aforementioned problems.

4 State-space models on the Stiefel manifold

4.1 The Stiefel manifold and the matrix Langevin distribution

Before presenting the state-space models on the Stiefel manifold, we introduce some con-

cepts and terms. The Stiefel manifold Va,b, for dimensions a and b such that a ≥ b, is a

space whose points are b-frames in Ra. A set of b orthonormal vectors in Ra is called a

b-frame in Ra. The Stiefel manifold is a collection of a× b full rank matrices X such that

X ′X = Ib; if b = 1, the Stiefel manifold is the unit circle if a = 2, sphere if a = 3, and

hypersphere if a > 3. The link with the modelling presented in Section 2 and developed in

the next subsection is that the time-varying matrix αt of (2.2) is assumed to be evolving

in Vp,r (instead of a Euclidean space), and βt of (2.3) in Vq1,r. Hence, each αt and βt is

by definition orthonormal.

We also need to replace the assumption (3.1) that the distribution of vec(αt+1) condi-

tional on vec(αt) is Np×r(vec(αt),Ση) by an appropriate distribution defined on Vp,r, and

likewise for vec(βt+1). A convenient distribution for this purpose is the matrix Langevin

distribution (also known as von Mises-Fisher distribution) denoted by ML(a, b,F ). A

random matrix X ∈ Va,b follows a matrix Langevin distribution if and only if it has the

probability density function

fML(X|a, b,F ) =
etr {F ′X}

0F1(
a
2
; 1
4
F ′F )

, (4.1)

where etr{Q} stands for exp{tr{Q}} for any full rank square matrix Q, F is a a × b

matrix, and 0F1(a/2; F ′F /4) is called (0, 1)-type hypergeometric function with arguments

a/2 and F ′F /4. The hypergeometric function 0F1 is unusual due to a matrix argument,

see Herz (1955), and it is actually the normalizing constant of the density defined in (4.1),

that is,

0F1

(
a

2
;
1

4
F ′F

)
=

∫
etr {F ′X} [ dX], (4.2)
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where [ dX] = ∧a−bj=1 ∧bi=1 x
′
b+j dxi ∧i<j x′j dxi, stands for the differential form of a Haar

measure on the Stiefel manifold, xi is a column vector of X, and ∧ is the exterior product

of vectors.

The density function (4.1) is obtained from a normal density for a random matrix Z

of dimension a× b, defined as vec(Z) ∼ Na×b(vec(M), Ia ⊗Σ) (where M is a matrix of

dimension a× b, and Σ is a positive definite matrix of dimension b× b) by imposing that

Z ′Z = Ib. The parameter F of (4.1) is then equal to MΣ−1.

The matrix F has a singular value decomposition UDV ′, where U ∈ Va,b, V is a

b × b orthogonal matrix, and D = diag{d1, d2, ..., db} is a diagonal matrix with singular

values d1 ≥ d2 . . . ≥ db ≥ 0. Each pair of the column vectors in U and V corresponds to

a singular value in D. Notice that the hypergeometric function in (4.1) has the property

that

0F1

(
a

2
;

1

4
F ′F

)
= 0F1

(
a

2
;

1

4
D2

)
. (4.3)

It can be shown that the density function (4.1) has maximum value exp(
∑b

i=1 di) at

Xm = UV ′, called the modal orientation of the matrix Langevin distribution. The mode

is unique if min(di) > 0. The diagonal matrix D is called concentration as it controls how

tight the distribution is in the following sense: the larger di, the tighter the distribution is

around the corresponding i-th column vector of the modal orientation matrix. For more

details about the matrix Langevin distribution, see for example, Prentice (1982), Chikuse

(2003), Khatri and Mardia (1977), and Mardia (1975).

The density function (4.1) is rotationally symmetric around Xm, in the sense that

the density at H1XH
′
2 is the same as that at X for all orthogonal matrices H1 (of

dimension a×a) and H2 (of dimension b×b) such that H1U = U and H2V = V (hence

H1XmH
′
2 = Xm).

Figure 2 illustrates the Stiefel manifold and Figure 3 three matrix Langevin (not

normalized) densities ML(2, 1,F ) where F = UDV ′ = (1/
√

2, 1/
√

2)′D, setting V (a

scalar) equal to 1, for three values of D (a scalar); the smaller D, the flatter the density.

In Figure 2, the modal orientation U = (1/
√

2, 1/
√

2)′ is shown for the densities of Figure

3, and the point at which the density values are minimal, this point being equal to −U .

The densities are shown on Figure 3 as functions of the angle θ shown on Figure 2, for

θ between 0 and 2π, instead of being shown as lines above the unit circle. Rotational

symmetry in this example means that if we premultiply the random vector X by any

orthogonal 2×2 matrix H1 that does not modify the modal orientation, the densities are

not changed.

- insert Figure 2 about here -

- insert Figure 3 about here -
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4.2 Models

Chikuse (2006) develops a state-space model whose observable and latent variables are

both evolving on Stiefel manifolds. For economic data, it is not appropriate to assume

that the observable variables evolve on a Stiefel manifold, so that we keep the assumption

that yt evolves on a Euclidean space in the measurement equation (2.1).

We define two state space models corresponding to the case 1 and 2 models intro-

duced in Section 2, with latent processes evolving over the Stiefel manifold and following

conditional matrix Langevin distributions:

Model 1: yt = αtβ
′xt +Bzt + εt,

αt+1|αt ∼ ML(p, r,atDV
′), (4.4)

Model 2: yt = αβ′txt +Bzt + εt,

βt+1|βt ∼ ML(q1, r, btDV
′), (4.5)

with the constraints that atV
′ = αt and btV

′ = βt, respectively. We assume in addition

that the error εt and αt+1 or βt+1 are mutually independent. The parameters of the ML

distributions of the models are chosen so that the previous state of αt or βt is the modal

orientation of the next state. Thus the transitions of the latent processes are random

walks on the Stiefel manifold and evolve in the matrix Langevin way.

The models (4.4) and (4.5) are not yet identified due to the fact that the pairs between

at or bt and the nuisance parameter V can be arbitrarily chosen, and therefore the time-

invariant β and α are not identified as well. The identification problem can be solved by

imposing V = Ir. Then the identified version of the models is

Model 1: yt = αtβ
′xt +Bzt + εt,

αt+1|αt ∼ ML(p, r,αtD), (4.6)

Model 2: yt = αβ′txt +Bzt + εt,

βt+1|βt ∼ ML(q1, r,βtD). (4.7)

The new state-space models in (4.6) and (4.7) do not have the problems mentioned

in Section 3, due to the fact that both αt and βt are points in the Stiefel manifold. By

construction, orthonormality is ensured, that is α′tαt = Ir for Model 1, and similarly

β′tβt = Ir for Model 2. If the space spanned by the columns of αt (or the columns of βt)

is subjected to a rotation, the model is fundamentally unchanged. Indeed, in the case of

Model 1, let H be an orthogonal matrix (p×p), and define the rotation α̃t = Hαt. Then

α̃′tα̃t = α′tH
′Hαt = α′tαt = Ir. A similar reasoning holds for Model 2.
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More simple versions of the models in (4.6) and (4.7) are obtained by assuming that

the evolutions of αt and βt are independent of their previous states, with the same modal

orientations α∗ and β∗ across time:

Model 1∗ : yt = αtβ
′xt +Bzt + εt,

αt ∼ ML(p, r,α0D), (4.8)

Model 2∗ : yt = αβ′txt +Bzt + εt,

βt ∼ ML(q1, r,β0D). (4.9)

If we assume that the random variation of αt+1 in (4.6) or βt+1 in (4.7) are inside the

subspace spanned by αt or βt (hence α0 or β0), then we have another two state space

models. The corresponding conditional distributions of αt+1 and βt+1 become truncated

matrix Langevin distributions with the density functions:

f(αt+1|αt)

{
∝ etr {Dα′tαt+1} , if sp(αt+1) = sp(αt) or sp(α0)

= 0, otherwise.
(4.10)

f(βt+1|βt)

{
∝ etr

{
Dβ′tβt+1

}
, if sp(βt+1) = sp(βt) or sp(β0)

= 0, otherwise.
(4.11)

These two models can be interesting if the spaces spanned by the time-varying αt and βt

are expected to be invariant over time.

Denote ∆ = (α1, ...,αT ) in Model 1 or (β1, ...,βT ) in Model 2; and let Ft−1 =

(x1, z1,y1, ...,yt−1,xt, zt) represent all the observable information up to time t− 1, such

that E(yt|Ft−1) = A′txt +Bzt; and let Y = (y1, ...,yT ).

The quasi-likelihood function for Model 1 based on Gaussian errors takes the form

f(Y ,∆|θ) =
T∏
t=1

(2π)−
p
2 |Ω|−

1
2 exp

{
−1

2
ε′tΩ

−1εt

}
etr
{
Dα′t−1αt

}
0F1(

p
2
; 1
4
D2)

, (4.12)

where θ = (β,B,Ω,D,α0), εt = yt −αtβ′xt −Bzt.
The quasi-likelihood function for Model 2 based on Gaussian errors takes the form

f(Y ,∆|θ) =
T∏
t=1

(2π)−
p
2 |Ω|−

1
2 exp

{
−1

2
ε′tΩ

−1εt

}
etr
{
Dβ′t−1βt

}
0F1(

p
2
; 1
4
D2)

, (4.13)

where θ = (α,B,Ω,D,β0), εt = yt −αβ′txt −Bzt.
We treat the initial values α0 and β0 as the parameters to be estimated, but of course

they can be regarded as given.
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5 The filtering algorithms

In this section, for the models (4.6) and (4.7) defined in the previous section, we pro-

pose nonlinear filtering algorithms to estimate the a posteriori distributions of the latent

processes based on the Gaussian error assumption in the measurement equations.

We start with Model 1 which has time-varying αt. The filtering algorithm consists of

two steps:

Predict : f(αt|Ft−1) =

∫
f(αt|αt−1)f(αt−1|Ft−1)[dαt−1], (5.1)

Update : f(αt|Ft) ∝ f(yt|αt,Ft−1)f(αt|Ft−1), (5.2)

where the symbol [dαt−1] stands for the differential form for a Haar measure on the Stiefel

manifold. The predictive density in (5.1) represents the a priori distribution of the latent

variable before observing the information at time t. The updating density, which is also

called the filtering density, represents the a posteriori distribution of the latent variable

after observing the information at time t.

The prediction step is quite tricky in the sense that even if we can find the joint

distribution of αt and αt−1, which is the product f(αt|αt−1)f(αt−1|Ft−1), we must inte-

grate out αt−1 over the Stiefel manifold. The density kernel f(αt−1|Ft−1) appearing in

the integral in the first line of (5.2) comes from the previous updating step and is quite

straightforward as it is proportional to the product of the density function of yt−1 and

the predicted density of αt−1, see the updating step in (5.2).

The initial condition for the filtering algorithm can be a Dirac delta function f(α0|F0)

such that f(α0|F0) = ∞ when α0 = U 0 where U 0 is the modal orientation and zero

otherwise, but the integral
∫
f(α0|F0)[dα0] is exactly equal to one.

The corresponding nonlinear filtering algorithm is recursive like the Kalman filter in

linear dynamic systems. We start the algorithm with

f(α1|F0) ∝ etr{DU ′0α1}, (5.3)

and proceed to the updating step for α1 as follows:

f(α1|F1) ∝ etr{H1α
′
1Jα1 +C ′1α1}, (5.4)

where H1 = −1
2
β′x1x

′
1β, J = Ω−1, C1 = U 0D+ Ω−1(y1−Bz1)x′1β. Then we move to

the prediction step for α2 and obtain the integral as follows:

f(α2|F1) =

∫
f(α2|α1)f(α1|F1)[dα1], (5.5)

where

f(α2|α1) =
etr {Dα1

′α2}
0F1(

a
2
; 1
4
D2)

, (5.6)
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due to (4.1) and (4.3), and f(α1|F1) in (5.4). Hence, we have

f(α2|α1)f(α1|F1) = ξ · etr{Dα′1α2} · etr{Hα′1Jα1 +C ′1α1}, (5.7)

where ξ does not depend on α1 and α2. Unfortunately there is no closed form solution

to the integral (5.5) in the literature.

Another contribution of this paper is that we propose to approximate this integral by

using the Laplace method. (see Wong (1989, Chapters 2 and 9) for a detailed exposition).

Rewrite the integral (5.5) as

f(α2|F1) = ξ

∫
h(α1) exp{p · g(α1)}[dα1], (5.8)

where p is the dimension of yt,

h(α1) = etr{Dα′1α2} ≤ exp

{
r∑
i=1

di

}
, (5.9)

is bounded, and

g(α1) = tr{H1α
′
1Jα1 +C ′1α1}/p, (5.10)

which is twice differentiable with respect to α1 and is assumed to be convergent to some

nonzero value when p→∞.

Then the Laplace method can be applied since the Taylor expansion on which it is

based is valid in the neighbourhood for any point on the Stiefel manifold. It follows that,

with p→∞, the integral (5.5) can be approximated by

f(α2|F1) ≈ ξ h(U 1) exp{p g(U 1)},

∝ etr{DU ′1α2} (5.11)

where

U 1 = arg max
α1

etr{H1α
′
1Jα1 +C ′1α1}. (5.12)

Given f(α2|F1) ∝ etr{DU ′1α2}, then it can be shown that f(α2|F2) has the same

form as (5.4) with H2 = −1
2
β′x2x

′
2β, C2 = U 1D + Ω−1(y2 −Bz2)x′2β.

Thus, by induction, we have the following proposition for the recursive filtering algo-

rithm for state-space Model 1.

Proposition 5.1. Given the state-space Model 1 in (4.6) with the quasi-likelihood func-

tion (4.12) based on Gaussian errors, the Laplace approximation based recursive filtering

algorithm for αt is given by

Predict : f(αt|Ft−1) ∝ etr{DU ′t−1αt}, (5.13)

Update : f(αt|Ft) ∝ etr{H tα
′
tJαt +C ′tαt}, (5.14)
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where H t = −1
2
β′xtx

′
tβ, J = Ω−1, Ct = U t−1D + Ω−1(yt −Bzt)x′tβ, and

U t−1 = arg max
αt−1∈Vp,r

etr{H t−1α
′
t−1Jαt−1 +C ′t−1αt−1}. (5.15)

Likewise, we have the recursive filtering algorithm for the state-space Model 2.

Proposition 5.2. Given the state-space Model 2 in (4.7) with the quasi-likelihood func-

tion (4.13) based on Gaussian errors, the Laplace approximation based recursive filtering

algorithm for βt is given by

Predict : f(βt|Ft−1) ∝ etr{DU ′t−1βt}, (5.16)

Update : f(βt|Ft) ∝ etr{Hβ′tJ tβt +C ′tβt}, (5.17)

where H = −1
2
α′Ω−1α, J t = xtx

′
t, Ct = U t−1D + xt(yt −Bzt)′Ω−1α, and

U t−1 = arg max
βt−1∈Vq1,r

etr{Hβ′t−1J t−1βt−1 +C ′t−1βt−1}. (5.18)

Several remarks related to the propositions follow.

Remark 5.3. The distributions of predicted and updated αt and βt in the recursive fil-

tering algorithms are conjugate.

The predictive distribution and the updating or filtering distribution are both known as

the matrix Langevin-Bingham (or matrix Bingham-von Mises-Fisher) distribution; see for

example Khatri and Mardia (1977). This feature is desirable as it gives great convenience

in the computational implementation of the filtering algorithms.

Remark 5.4. When estimating the predicted distribution of αt and βt, a numerical op-

timization for finding U t−1 is required.

There are several efficient line-search based optimization algorithms available in the lit-

erature which can be easily implemented and applied. See Absil et al. (2008, Chapter 4)

for a detailed exposition.

Remark 5.5. The predictive distributions in (5.13) and (5.16) are Laplace type approxi-

mations. Therefore, the dimensions of the data yt in Model 1 and the predictors in Model

2 are expected to be high enough in order to achieve good approximations.

For the high-dimensional factor models that use a large number of predictors, the filtering

algorithms are natural choices to model the possible temporal instability, while a small

value of the rank r implies the dimension reduction in forecasting. In the next section,

our finding from simulation is that, even for small p and q1, the approximations of the

modal orientations can be very good.
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Remark 5.6. The recursive filtering algorithms make it possible to use both maximum

likelihood estimation and the Bayesian analysis for the proposed state-space models.

Next, we consider the models in (4.8) and (4.9). The corresponding filtering algorithms

are similar to Propositions 5.1 and 5.2. The filtering algorithm for Model 1∗ is given by

Predict : f(αt|Ft−1) ∝ etr{Dα′0αt}, (5.19)

Update : f(αt|Ft) ∝ etr{H tα
′
tJαt +C ′tαt}, (5.20)

where H t = −1
2
β′xtx

′
tβ, J = Ω−1, Ct = α0D + Ω−1(yt −Bzt)x′tβ. And for Model 2∗

we have

Predict : f(βt|Ft−1) ∝ etr{Dβ′0βt}, (5.21)

Update : f(βt|Ft) ∝ etr{Hβ′tJ tβt +C ′tβt}, (5.22)

where H = −1
2
α′Ω−1α, J t = xtx

′
t, Ct = β0D + xt(yt − Bzt)′Ω−1α. We have the

following remarks for both models.

Remark 5.7. The predictive distributions do not depend on any previous information,

which is due to the assumption of sequentially independent latent processes.

Remark 5.8. The predictive and filtering distributions for Model 1∗ and Model 2∗ are

not approximations.

We do not need to approximate integral like (5.5). Since f(αt|Ft−1) does not depend on

αt−1 in Model 1∗ and f(βt|Ft−1) does not depend on βt−1 in Model 2∗, f(αt|Ft−1) and

f(βt|Ft−1) can be directly moved outside the integral.

The smoothing distribution is defined to be the a posteriori distribution of the latent

parameters given all the observations. We have the following two propositions for the

smoothing distributions of the state-space models.

Proposition 5.9. The smoothing distribution of Model 1 is given by

f(∆|θ,Y ) ∝
T∏
t=1

etr{H tαt
′Jαt +C ′tαt}, (5.23)

where H t = −1
2
β′xtx

′
tβ, J = Ω−1, and Ct = αt−1D + Ω−1(yt −Bzt)x′tβ.

Proposition 5.10. The smoothing distribution of Model 2 is given by

f(∆|θ,Y ) ∝
T∏
t=1

etr{Hβt′J tβt +C ′tβt} (5.24)

H = −1
2
α′Ω−1α, J t = xtx

′
t, Ct = βt−1D + xt(yt −Bzt)′Ω−1α,

There is no closed form for the smoothing distributions as the corresponding normal-

izing constants are unknown. Hoff (2009) develops a Gibbs sampling algorithm that can

be used to sample from these smoothing distributions.
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6 Evaluation of the filtering algorithms by simulation

experiments

To investigate the performance of the filtering algorithm in Proposition 5.1, we consider

several settings based on data generated from Model 1 in (4.6) for different values of its

parameters.

Recall that at each iteration of the recursive algorithm, the predictive density kernel

in (5.13) is a Laplace type approximation of the true predictive density which takes an

integral form as (5.5), and hence the resulting filtering density is an approximation as

well. It is of great interest to check the performance of the approximation under different

settings. Since the exact filtering distributions of the latent process are not available, we

resort to comparing the true (i.e. generated) value αt and the filtered modal orientation

at time t from the filtering distribution f(αt|Ft), which is U t as defined in (5.15). The

modal orientations are expected to be distributed around the true values across time if

the algorithm performs well.

Then a measure of distance between two points in the Stiefel manifold is needed for

the comparison. We consider the squared Frobenius norm of the difference between two

matrices or column vectors:

F 2(X, Y ) = ||X − Y ||2 = tr{(X − Y )′(X − Y )}

= tr{X ′X + Y ′Y −X ′Y − Y ′X}. (6.1)

If the two matrices or column vectors X and Y are points in the Stiefel manifold, then

it holds that F 2(X, Y ) = 2r − 2tr{X ′Y } ∈ [0, 4r], and F 2(X, Y ) takes the minimum 0

when X = Y (closest) and the maximum 4r when X = −Y (furthest). Thus, we employ

the normalized the distance

δ(X, Y ) = F 2(X, Y )/4r ∈ [0, 1], (6.2)

which is matrix dimension free.

Note that the modal orientation of the filtering distribution is not supposed to be

consistent to the true value of the latent process with the increase of the sample size T .

As a matter of fact, the sample size is irrelevant to the consistency which can be seen

from the filtering density (5.14). We should note that the filtering distribution in (5.14)

also has concentration or dispersion which is determined by H t, J (the inverse of Ω) and

Ct (the current information, i.e. yt, xt and zt), together with the parameters, while the

previous information has limited influence only through the orthonormal matrix U t−1.

Since the concentration of the filtering distribution does not shrink with the increase of

the sample size, we use T = 100 in all the experiments. If the filtering distribution has big

17



concentration, the filtered modal orientations are expected to be close to the true values

and hence the normalized distances close to zero and less dispersed.

The data generating process follows Model 1 in (4.6). Since we input the true param-

eters in the filtering algorithm, the difference yt−Bzt is perfectly known and then there

is no need to consider the effect of Bzt. Thus, it is natural to exclude Bzt from the data

generating process.

We consider the settings with different combinations of

• T = 100, the sample size

• p ∈ {2, 3, 10, 20}, the dimension of the dependent variable yt

• r ∈ {1, 2}, the rank of the matrix At

• xt, the explanatory variable vector has dimension q1 = 3 ensuring that q1 > r always

holds, and each xt is sampled independently (over time) from a N3(0, I3).

• β = (1,−1, 1)′/
√

3

• α0 = (1,−1, 1, ...)′/
√
p, the initial value of αt sequence for the data generating

process

• Ω = ρIp, the covariance matrix of the errors is diagonal with ρ ∈ {0.1, 0.5, 1}

• D = dIr, and d ∈ {5, 50, 500, 800}.

The simulation based experiment of each setting consists of the following three steps:

1. We sample from Model 1 by using the identified version in (4.6). First, simulate αt

given αt−1, and then yt given αt. We save the sequence of the latent process αt,

t = 1, ..., T .

2. Then we apply the filtering algorithm on the sampled data to obtain the filtered

modal orientation U t, t = 1, ..., T .

3. We compute the normalized distances δt(αt,U t) and report by plotting them against

the time t.

We use the same seed, which is one, for the underlying random number generator through-

out the experiments so that all the results can be replicated.

Figure 4 depicts the results from the setting p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and

d = 50. We see that the sequences of the normalized distances δt are persistent. This is

a common phenomenon throughout the experiments, and intuitively, it can be attributed

to the fact that the current δt depends on the previous one through the pair of U t and
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αt. For the low dimensional case p = 2, almost all the distances are very close to 0,

which means that the filtered modal orientations are very close to the true ones, despite

of few exceptions. However, for the higher dimensional cases p = 10 and 20, the distances

are at higher levels and are more dispersed. This is consistent with the fact that, given

the same concentration d = 50, an increase of the dimension the orthonormal matrix or

vector goes along with an increase of the dispersion of the corresponding distributions

on the Stiefel manifold, as the volume of the manifold explodes with the increase of the

dimensions (both p and r).

- insert Figure 4 about here -

Figure 5 displays the results for the same setting p ∈ {2, 10, 20}, r = 1, ρ = 0.1 but

with a much higher concentration d = 500. We see that the curse of dimensionality can be

remedied through a higher concentration as the distances for the high dimensional cases

are much closer to zero than when d = 50.

- insert Figure 5 about here -

The magnitude ρ of the variance of the errors affects the results of the filtering algo-

rithm as well, as it determines the concentration of the filtering distribution, which can

be seen from (5.14) through J and Ct (both depend on the inverse of Ω). The following

experiments apply the settings p = 2, r = 1 and d ∈ {5, 50, 500} showing the impact of

different ρ on the filtering results. Figure 6 depicts the results with ρ = 1, and Figure 7

with ρ = 0.1. We see that the normalized distances become closer to zero when a lower

ρ is applied. Their variability also decreases for the lowest value of d = 5 and for the

intermediate value d = 50. It is worth mentioning that, in the two cases corresponding to

the two bottom plots of the figures, the matrix Ct dominates the density function, which

implies that the filtering distribution resembles a highly concentrated matrix Langevin.

- insert Figure 6 about here -

- insert Figure 7 about here -

In the following experiments our focus is on the investigation of the filtering algorithm

when r approaches p. We consider the setting p = 3 with the rank number r ∈ {1, 2},
with ρ = 0.1 and d = 500. Figure 8 depicts the results. The normalized distances are

stable at a low level for the case p = 3 with r = 1, but a high level (around 0.5) in the

case p = 3 with r = 2. A higher concentration (d = 800) reduces the latter level to about

0.12, as can be seen on the lower plot of Figure 8. We conclude that the approximation of

the true filtering distribution tends to fail when the matrix αt tends to a square matrix,

that is, p ≈ r, and therefore the filtering algorithms proposed in this paper seems to be

appropriate when p is sufficiently larger than r.
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- insert Figure 8 about here -

All the previous experiments are based on the true initial value α0, but in practice

this is unknown. The filtering algorithm may be sensitive to the choice of the initial value.

In the following experiments, we look into the effect of a wrong initial value. The setting

is p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 50, and we use as initial value −α0, which is

the furthest point in the Stiefel manifold away from the true one. Figure 9 depicts the

results. We see that in all the experiments the normalized distances move towards zero,

hence the filtered values approach the true values in no more than 20 steps. After that,

the level and dispersion of the distance series are similar to what they are in Figure 4

where the true initial value is used. Thus we can conclude that the effect of a wrongly

chosen initial value is temporary.

- insert Figure 9 about here -

We have conducted similar simulation experiments for Model 2 in (4.7) to investigate

the performance of the algorithm proposed in Proposition 5.2. We find similar results to

those for Model 1. All the experiments that we have conducted are replicable using the

R code available at

https://github.com/yukai-yang/SMFilter Experiments ,

and the corresponding R package SMFilter implementing the filtering algorithms of this

paper is available at the Comprehensive R Archive Network (CRAN).

7 Concluding remarks

In this paper, we discuss the modelling of the time dependence of the time-varying reduced

rank parameters in multivariate time series models and develop novel state-space models

whose latent states evolve on the Stiefel manifold. Almost all the existing models in the

past literature only deal with the case where the evolution of the latent processes takes

places on the Euclidean space, and we point out that this approach can be problematic.

These problems motivate the development of the novel state-space models. The matrix

Langevin distribution is proposed to specify the sequential evolution of the corresponding

latent processes over the Stiefel manifold. Nonlinear filtering algorithms for the new mod-

els are designed, wherein the integral for computing the predictive step is approximated

by applying the Laplace method. An advantage of the matrix Langevin distribution is

that the a priori and a posteriori distributions of the latent variables are conjugate. The

new models can be useful when the temporal instability of some parameters of multvari-

ate models is suspected, for example, cointegration models with time-varying short-run
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adjustment or time-varying long-run relations, and factor models with time-varying factor

loading.

Further research is needed in several directions. The most obvious one is the implemen-

tation of estimation methods, which can be maximum likelihood or Bayesian inference,

and the investigation of their properties. This will enable us to apply the models to data.

In this paper, we only consider the case where the latent variables evolve on the Stiefel

manifold in a ‘random walk’ way. It will be interesting to consider the case where the

latent variables evolve on the Stiefel manifold but in a mean-reverting way.
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A Proof of Proposition 3.1

In the model (2.1) with the decomposition (2.2), both the rows of β and the order of the

variables xt are permuted by P β as follows:

Atxt = αtβ
′xt = αtβ

′P ′βP βxt. (A.1)

The time-invariant component β can be linearly normalized if the r× r upper block b1 in

(3.2) is invertible. It follows that the corresponding linear normalization defined in (3.3)

is due to

αtβ
′P ′βP βxt = αt(b

′
1, b
′
2)P βxt = αtb

′
1(b
′
1)
−1(b′1, b

′
2)P βxt = α̃tβ̃

′
P βxt, (A.2)

where α̃t = αtb
′
1 is the new time-varying component following the evolution (3.4).

Consider another permutation P ∗β 6= P β. Similarly we have

Atxt = αtβ
′P ∗′βP

∗
βxt, (A.3)
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together with

P ∗ββ =

(
b∗1

b∗2

)
, β̃

∗
= P ∗ββb

∗−1
1 =

(
Ir

b∗2b
∗−1
1

)
, α̃∗t = αtb

∗′
1 , (A.4)

where b∗1 is also invertible. Then we can have the evolution

vec(α̃∗t+1) = vec(α̃∗t ) + ηα∗t . (A.5)

Assume that the error vector ηαt in (3.4) has zero mean and a diagonal variance-

covariance matrix. From (A.1)-(A.3), we have

At = α̃tβ̃
′
P β = α̃∗t β̃

∗′
P ∗β, (A.6)

and hence it follows that

α̃∗t = α̃tβ̃
′
P βP

∗′
βκ, (A.7)

where the q1 × r matrix κ satisfies β̃
∗′
κ = Ir. The existence of κ is guaranteed by the

fact that β has full rank and so does β̃
∗
.

So the vectorized α̃∗t+1 can be written as

vec(α̃∗t+1) = vec(α̃t+1β̃
′
P βP

∗′
βκ) = ((κ′P ∗βP

′
ββ̃)⊗ Ip) vec(α̃t+1)

= ((κ′P ∗βP
′
ββ̃)⊗ Ip) vec(α̃t) + ((κ′P ∗βP

′
ββ̃)⊗ Ip)ηαt

= vec(α̃∗t ) + ηα∗t , (A.8)

due to (3.4) and (A.5). Hence, it can be seen that ηα∗t = ((κ′P ∗βP
′
ββ̃)⊗ Ip)ηαt , and that

ηα∗t has diagonal variance-covariance matrix if and only if κ′P ∗βP
′
ββ̃ is diagonal given

that ηαt has diagonal variance-covariance matrix.

Next, we need to verify whether κ′P ∗βP
′
ββ̃ is diagonal and investigate under what

condition it will be diagonal. By substituting β̃ with (3.3), we obtain

κ′P ∗βP
′
ββ̃ = κ′P ∗βP

′
βP ββb

−1
1 = κ′P ∗ββb

−1
1 . (A.9)

And we know that, by substituting β̃
∗

with (A.4),

κ′β̃
∗

= κ′P ∗ββb
∗−1
1 = Ir. (A.10)

Since the r × r square matrix κ′P ∗ββ has full rank, it can be seen that ηα∗t has diagonal

variance-covariance matrix if and only if b1 = b∗1.

B Proof of Propositions 3.2

In the model (2.1) with the decomposition (2.3), the rows of α are permuted by P α as

follows:

Atxt = αβ′txt = P ′αP ααβ
′
txt. (B.1)
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Notice that we can remove P ′α in the equation, which means that we choose not to permute

back to the original order of the dependent variables yt. The linear normalization (3.6)

is obtained by

P ′αP ααβ
′
txt = P ′α

(
a1

a2

)
β′txt = P ′α

(
a1

a2

)
a−11 a1β

′
txt = P ′αα̃β̃

′
txt, (B.2)

where β̃t = βta
′
1 is the new time-varying component following the evolution (3.7).

Consider another permutation P ∗α 6= P α, such that

Atxt = P ∗′αP
∗
ααβ

′
txt, (B.3)

together with

P ∗αα =

(
a∗1

a∗2

)
, α̃∗ = P ∗ααa

∗−1
1 =

(
Ir

a∗2a
∗−1
1

)
, β̃

∗
t = βta

∗′
1 , (B.4)

where a∗1 is invertible. Then we can have the evolution

vec(β̃
∗
t+1) = vec(β̃

∗
t ) + ηβ∗t . (B.5)

We assume that the error vector ηβt in (3.7) has zero mean and diagonal variance-

covariance matrix. From (B.1)-(B.3), we have

At = P ′αα̃β̃
′
t = P ∗′α α̃

∗β̃
∗′
t , (B.6)

and hence it follows that

β̃
∗
t = β̃tα̃

′P αP
∗′
αδ, (B.7)

where the p× r matrix δ satisfies α̃∗′δ = Ir. The existence of δ is guaranteed by the fact

that α has full rank and so does α̃∗.

Then we get the vectorized β̃
∗
t+1:

vec(β̃
∗
t+1) = vec(β̃t+1α̃

′P αP
∗′
αδ) = ((δ′P ∗αP

′
αα̃)⊗ Iq1) vec(β̃t+1)

= ((δ′P ∗αP
′
αα̃)⊗ Iq1) vec(β̃t) + ((δ′P ∗αP

′
αα̃)⊗ Iq1)η

β
t

= vec(β̃
∗
t ) + ηβ∗t , (B.8)

due to (3.7) and (B.5). Hence, it can be seen that ηβ∗t = ((δ′P ∗αP
′
αα̃)⊗ Iq1)η

β
t , and that

ηβ∗t has diagonal variance-covariance matrix if and only if δ′P ∗αP
′
αα̃ is diagonal given

that ηβt has diagonal variance-covariance matrix.

The investigation of under what condition δ′P ∗αP
′
αα̃ is diagonal is similar to the

previous proof. By substituting α̃ with (3.6), we obtain

δ′P ∗αP
′
αα̃ = δ′P ∗αP

′
αP ααa

−1
1 = δ′P ∗ααa

−1
1 . (B.9)
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By substituting β̃
∗

with (B.4), we obtain that

δ′α̃∗ = δ′P ∗ααa
∗−1
1 = Ir. (B.10)

Since the r × r square matrix δ′P ∗αα has full rank, it can be seen that ηβ∗t has diagonal

variance-covariance matrix if and only if a1 = a∗1.
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C Figures

Figure 1: Euclidean state space for p = 2 and r = 1. Points 1–3 are possible

locations of the latent variable (α1t, α2t)
′. Circles are isodensity contours assuming

(α1,t+1, α2,t+1)
′|(α1t, α2t)

′ ∼ N2((α1t, α2t)
′, I2). See discussion in Section 2.
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Figure 2: Stiefel manifold for p = 2 and r = 1. See discussion at the end of subsection

4.1.

Figure 3: Matrix Langevin density kernels for p = 2 and r = 1. See discussion at the end

of subsection 4.1.
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Figure 4: Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and

d = 50.

Figure 5: Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and

d = 500.
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Figure 6: Normalized distances δt for the settings p = 2, r = 1, ρ = 1 and d ∈ {5, 50, 500}.

Figure 7: Normalized distances δt for the settings p = 2, r = 1, ρ = 0.1 and d ∈
{5, 50, 500}.
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Figure 8: Normalized distances δt for the settings p = 3, r ∈ {1, 2}, ρ = 0.1 and d =

{500, 800}.
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Figure 9: Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and

d = 50. The initial value of the filtering algorithm is −α0.
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