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Abstract

Income elasticity dynamics of health expenditure is considered for the OECD and the

Eurozone over the period 1995-2014. This paper studies a novel non-linear cointegration

model with fixed effects, controlling for cross-section dependence and unobserved hetero-

geneity. Most importantly, its coefficients can vary over time and its variables can be

non-stationary. The resulting asymptotic theory is fundamentally different with a faster

rate of convergence to similar kernel smoothing methodologies. A fully modified kernel

regression method is also proposed to reduce the asymptotic bias. Results show a steep

increase in the income elasticity for the OECD and a small increase for the Eurozone.

Keywords: Cross-sectional dependence, Health expenditure, Income elasticity, Nonpara-

metric kernel smoothing, Non-stationarity, Super-consistency.

JEL Classification: C14, C23, G13, H51

1. Introduction

Panel data analysis has received a growing attention during the last two decades due to

its suitability for a wide number of applied disciplines, such as economics, finance and biol-

ogy. There exists a wealth of literature on parametric linear and non-linear panel data models
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(see Baltagi, 1995; Arellano, 2003; Hsiao, 2003). However, it is well known that parametric

panel data models may be easily misspecified with inconsistent estimations due to cross-section

dependence, non-stationarity and unobserved heterogeneity. Many of these issues can be ad-

dressed using nonparametric methods as proposed by Fan and Li (2004); Hjellvik et al. (2004);

Cai and Li (2008); Zhang et al. (2009).

Meanwhile, trending econometric modelling of non-stationary processes has also gained

a great deal of attention in recent years. Trends are the dominant characteristic in most

economic, financial and climate data, and therefore cointegration models are now one of the most

commonly used frameworks to capture long term relationships among trending macroeconomic

time series. Thus, Phillips (2001) provide a review on the development and challenges on trends

modelling which is often impossible to be explained by parametric models. In this regard,

extensive literature focuses on time-varying coefficient trending models using nonparametric

and semi-parametric estimation methods. The latter include linear models with coefficients

that change as a function of a time scale. First, Robinson (1989) studies linear regression

models with time-varying coefficients for stationary processes, which is generalized to non-

stationary processes and correlated errors by Chang and Martinez-Chombo (2003) and Cai

(2007a) amongst others. Gao and Hawthorne (2006) propose using a semi-parametric time

series specification to model the trend in global and hemispheric temperature series while at the

same time allowing for the inclusion of some explanatory variables in a parametric component.

In the oceanography literature, Reikard (2009) has used these trends modelling in oceanic

energy production. Chen et al. (2017) have recently applied it to an autoregressive model of

the realized volatility of S&P 500 index returns. Kristensen (2012); Orbe et al. (2005); Phillips

et al. (2017); Casas et al. (2017) study multi-equations cases. Finally, Phillips et al. (2017) study

non-linear cointegration models in which the structural coefficients may evolve smoothly over

time, giving two different limit distributions with different convergence rates in the different

directions of the functional parametric space. Both rates are faster than the usual root-nh rate.

As far as we know, little work in this vast literature has been done on estimating the

time-varying trend function in a panel data model. This paper extends the work of Phillips

et al. (2017) to panel data and it proposes a non-linear cointegration model with time-varying

coefficients and fixed effects. The aim is to describe the non-linear trending phenomenon in

panel data analysis, likewise allowing for cross-section dependence on both the regressors and

the residuals, as well as non-stationarity of the regressors. More specifically, we consider the

following model,
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Yi,t =X′i,tβt + αi + ui,t,

Xi,t =Xi,t−1 + νi,t, i = 1, · · · , N, t = 1, · · · , T, (1)

where βt are unknown functions of t/T and αi reflects the unobservable individual effects.

In summary, model (1) captures potential drifts in the relationship between Yt and Xt over

time. Such a modelling structure is especially useful for time series data over long horizons

where economic mechanism are likely to evolve and be subjected to institutional change or

regulatory conditions. A clear example is the evolution of the cost of health care in developed

countries whose alarming increase in the past decades can risk its sustainability. This concern

has escalated after the global financial crisis (GFC), especially in the Eurozone where many

health care systems are funded by taxes. That funding has dropped alongside salaries and

employment rate. We answer two main questions based on our results: (1) Whether the price

of health care has changed over the last two decades in the OECD and Eurozone; and (2)

whether the post-GFC health policies in the Eurozone have achieved their objective of creating

more efficient health care systems in the Eurozone.

Model (1) is a fixed effects model where αi is allowed to be correlated with Xi,t with an

unknown correlation structure. As fixed effects are involved in panel data models, the developed

nonparametric and semi-parametric procedures eliminate the influence of these fixed effects by

treating them as nuisance parameters to obtain unbiased estimates of the model coefficients.

The objective of the theoretical part of this paper is to construct estimates for the time-

varying functional coefficient vector βt and establishing its asymptotic properties. As in Phillips

et al. (2017), a pooled kernel-weighted estimation method into the panel data framework is

proposed to eliminate the bias arising from the correlation between the regressor innovations

and the error term.

We consider both large T and N with Nh→∞, N/Th→ 0 and h, the model bandwidth to

establish the asymptotic theory. The latter condition indicates that the limit theory is mostly

useful for moderate values of N and large values of T . Generally speaking, such a joint limit

theory requires stronger conditions to establish the sequential convergence or diagonal path

convergence. As both the time series length T and the cross-section size N tend to infinity, the

resulting estimator is asymptotically normal with root-(N2Th) converge rate which is faster

than the usual root-NTh rate for non-linear models with smoothly changing coefficients and

local stationarity variables.
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Classical fixed effect (FE) models help to control for unobserved heterogeneity, by assuming

that this heterogeneity is constant over time. This assumption might not be reasonable for a

large time series. Thus, Pesaran (2006), Bai (2009) and Kneip et al. (2012) developed panel

data models with a heterogeneous factor structure in the error term. Recently, Baltagi and

Moscone (2010) use this new methodology to estimate the long-run (constant) income elastic-

ity of health care expenditure in the OECD. Their findings show that the income elasticity

decreases from around 0.9 to around 0.7 when heterogenous unobserved factors are added to

the FE model, implying that health care is a necessity good. The income elasticity decreases

to around 0.45 when variables measuring the population age structure and the rate of public

funding are included. In this paper, heterogenous unobserved factors are added to the non-

linear cointegration model with time-varying coefficients. Empirical results of this model are

not far from those of Baltagi and Moscone (2010) for the OECD, but they show smaller income

elasticities in the Eurozone during the period 1990-2014. The income elasticities dynamics of

the time-varying coefficient methods are slightly decreasing in the last decades. This suggests

that health care is not becoming a luxury good in the developed countries. The demographic

structure of countries is also related to health care expenditure. The price of health care in-

creases as the population over 65 years old increases and decreases as the population under 15

years old increases. A concave relationship appears between the health care expenditure and

the rate of government funding dedicated to health care, and it has been descending during

the last decades. This supports the positive effect of the new health care policies triggered

by the GFC. These policies aim at making the Eurozone health care system less dependent

on government funding and macro-economic shocks and they seem to be working in the right

direction.

The reminder of this paper is organized as follows. The estimation methodology, inference

properties and the asymptotic normality of the proposed estimators are established in Section

2. An extension to include heterogenous factors in the model is shown in Section 3. This

methodology is applied to study the time-varying income elasticity of health care expenditure

in Section 4. Section 5 concludes the paper. The technical proofs of the main theoretical results

are relegated to Appendix.
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2. Inference

A word on notation. We denote Ω1/2 to be any matrix such that Ω = (Ω1/2)(Ω1/2)′. We use

||A|| to denote {tr(A′A)}1/2, ⇒ to denote weak convergence, bxc to denote the largest integer

≤ x, and B(Ω) to denote Brownian motion with the covariance matrix Ω. We use Kmn to denote

the commutation matrix of order mn×mn, i.e. the matrix for which vecA> = KmnvecA where

A is any m× n matrix (Kmn is unique).

Set τ = bTδc where b·c denotes integer part and δ ∈ (0, 1) is the sample fraction corre-

sponding to observation t.

2.1. Time-varying coefficient panel data models with fixed effects

Consider a panel data model of the form

Yi,t =
d∑
j=1

Xi,t,jβt,j + αi + ui,t

=X′i,tβt + αi + ui,t, i = 1, · · · , N, t = 1, · · · , T, (2)

where Xi,t = (Xi,t,1, · · · , Xi,t,d)
′, βt = (βt,1, · · · , βt,d)′ and all βt are unknown functions, αi

reflects the unobservable individual effect, T is the time series length and N is the cross-section

size. Note that αi is allowed to be correlated with Xi,t through some unknown structure, and

hence is a sequence of fixed effects. For the purpose of identifiability, we assume
∑N

i=1 αi = 0

throughout the paper. We assume Xi,t is a unit-root process (thus it is non-stationary) with

generating mechanism such as

Xi,t = Xi,t−1 + νi,t, t = 1, · · · , T ; i = 1, · · · , N, (3)

with a common initialization at t = 0 satisfying (Phillips and Moon (1999)) E||Xi,0||4 <∞

ωi,t = (ν ′i,t, ui,t)
′ = C(L)εi,t =

∞∑
j=0

Cjεi,t−j, (4)

where (i) C(L) =
∑∞

j=0CjLj, Cj is a sequence of fixed (d + 1) × d matrices across j, L is the

lag operator; (ii) εi,t is a d-dimensional sequence of random vectors across i and over t with

E(εi,t) = 0,E(εi,tε
′
i,t) = Λi, E(εi,tε

′
j,t) = Λi,j for i 6= j, E(εi,tε

′
j,s) = 0 for any i, j and t 6= s , and,

letting εa,i,t be the ath element of εi,t with E(ε4
a,i,t) = κ4 for all i and t.
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Partition Cj = [Φj, ψj]
′ so that

νi,t =
∞∑
j=0

Φ′jεi,t−j, and ui,t =
∞∑
j=0

ψ′jεi,t−j. (5)

According to the functional limit theory for a standardized linear process (Phillips and Solo

(1992)), we have for t = bTδ0c and 0 < δ0 ≤ 1, for any i

xi,t√
T

=
1√
T

t∑
s=1

νi,s +
1√
T
xi,0 =

1√
T

bTδ0c∑
s=1

νi,s + op(1) =⇒ Bd,δ0(Ωνi),

1√
T

bTδ0c∑
s=1

ui,s =⇒ Bε,δ0(Ωui),
1√
T

bTδ0c∑
s=1

εi,s =⇒ Bε,δ0(Λi)

and let δ0(T ) = b(δ0 − h)T c, we have (Phillips and Hansen (1990))

1

T 2

T∑
t=1

xi,tx
′
i,t =

1

T

T∑
t=1

xi,t√
T

x′i,t√
T

=⇒
∫ 1

0

Bd,r(Ωνi)B′d,r(Ωνi)dr > 0,

1

T 2h

T∑
t=1

xi,tx
′
i,tKth(δ0) ∼=

xi,δ(T )√
T

x′i,δ(T )√
T

(
1

Th

T∑
t=1

K(
t− Tδ0

Th
)

)
=⇒δ0Φ(1)′Wd(Λi)Φ(1) = δ0Wd(Ωνi),

where K(·) is a kernel function, Kth(δ0) = K( t−Tδ0
Th

), Bd+1,δ(Ωi) = (Bd,δ(Ωνi)
′,Bδ(Ωui))

′ is

(d+ 1)-dimensional Brownian motion (BM) with variance matrix Ωωi
, Bε,δ(Id) is d-dimensional

BM with variance matrix Id, Wd(Ωνi) = Bε,δ(Ωνi)Bε,δ(Ωνi)
′ is a Wishart variate with d degree

of freedom and mean matrix Ωνi , and

Ωωi
= C(1)′ΛiC(1) =

[
Φ(1)′ΛiΦ(1) Φ(1)′Λiψ(1)

ψ(1)′ΛiΦ(1) ψ(1)′Λiψ(1)

]
=

[
Ωνi Ωνui

Ωνiui Ωui

]
,

i = 0, 1, ..., N , with C(1) =
∑∞

j=0Cj, Φ(1) =
∑∞

j=0 Φj, and ψ(1) =
∑∞

j=0 ψj. Here Ωωi
is the

partitioned long run variance matrix of ωi,t = (ν ′i,t, ui,t)
′, and denotes that

Ωω =

[
Φ(1)′Λ0Φ(1) Φ(1)′Λ0ψ(1)

ψ(1)′Λ0Φ(1) ψ(1)′Λ0ψ(1)

]
≡

[
Ων Ωνu

Ωνu Ωu

]
, (6)

where Λ0 = limN→∞ Λi. The limit theory also involves the partitioned components of the

one-sided long run variance matrix

∆ωi
=

[
∆νi ∆νiui

∆′νiui ∆ui

]
=
∞∑
j=0

E[ωi,0ω
′
i,j], (7)
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and assumes that ∆ω > 0 exists such that as N →∞,

lim
N→∞

1

N

N∑
i=1

∆ωi
= ∆ω ≡

[
∆ν ∆νu

∆νu ∆u

]
. (8)

The aim of this paper is to construct consistent estimates for the time-varying coefficient

vector βt before establishing the asymptotic properties of the estimators. As in Robinson (2012)

and Cai (2007b), we propose that the coefficient vector βt satisfies

βt,j = βj(
t

T
), t = 1, · · · , T, (9)

where all βj’s are unknown smooth functions.

Two classes of nonparametric methods are developed to estimate the coefficient functions β

without taking the first difference to remove the fixed effects. In this paper, we propose using

a pooled dummy variable approach to estimate βt, which is more efficient than the averaged

method (see for example Chen et al., 2012, for detailed discussion).

Before presenting this method, we introduce the following notation:

Ỹ = (Y ′1 , Y
′

2 , · · · , Y ′N)′, Y ′i = (Yi,1, Yi,2, · · · , Yi,T )′

X̃ = (X1,1, · · · , X1,T , X2,1, · · · , X2,T , · · · , XN,1, · · · , XN,T )′,

B̃(X,β) = (X ′1,1β1, · · · , X ′1,TβT , X ′2,1β1, · · · , X ′2,TβT , · · · , X ′N,1β1, · · · , X ′N,TβT )′,

α0 = (α1, α2, · · · , αN)′, D0 = IN ⊗ iT ,
α = (α2, · · · , αN)′, D = (−iN−1, IN−1)′ ⊗ iT ,
ũ = (u′1, · · · , u′N)′, ui = (ui,1, · · · , ui,T )′,

(10)

where ⊗ denotes the Kronecker product, ik is the k×1 vector of ones and Ik is the k×k identity

matrix. Rewriting model (2) in a matrix format yields

Ỹ = B̃(X,β) +D0α0 + ũ. (11)

As
∑N

i=1 αi = 0 as per the identification, model (2) can be rewritten in matrix form as

Ỹ = B̃(X,β) +Dα + ũ. (12)

We adopt the Nadaraya-Watson (NW) type local level regression estimator (or local con-

stant) to estimate time-varying coefficients

β(·) = [β1(·), · · · , βd(·)]′.
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Under certain smoothness conditions on β for some fixed δ0 ∈ (0, 1), we have

βt ≡ β(
t

T
) = β(δ0) +O

(
t

T
− δ0

)
, (13)

when t/T is in a small neighbourhood of δ0.

For the given 0 < δ0 < 1, define M̃ ′ = [M ′
1, · · · ,M ′

N ] with Mi = [Xi,1, · · · , Xi,T ]′. Based on

the local approximation of β in (13), we have B̃(X,β) ≈ M̃β(δ0).

Let K(·) denote the kernel function and h be a bandwidth, denote W̃ (δ0) = IN⊗W (δ0) with

W (δ0) = diag
[
K(1−δ0T

Th
), · · · , K(T−δ0T

Th
)
]
. The pooled nonparametric dummy variable estimation

method is given as follows.

For given 0 < δ0 < 1, minimize the loss function

L(β, α) =
[
Ỹ − M̃β(δ0)−Dα

]′
W̃ (δ0)

[
Ỹ − M̃β(δ0)−Dα

]
(14)

with respect to β(δ0) and α.

Taking the derivative of (14) with respect to α and setting the result to zero, we obtain

α̂ := α̂(δ0) =
[
D′W̃ (δ0)D

]−1

D′W̃ (δ0)
{
Ỹ − M̃β(δ0)

}
. (15)

Replacing α in (14) by α̂, we obtain the concentrated weighted least squares:[
(INT − SNT )(Ỹ − M̃β(δ0))

]′
W̃ (δ0)

[
(INT − SNT )(Ỹ − M̃β(δ0))

]
=
[
Ỹ − M̃β(δ0)

]′
W̃ ∗(δ0)

[
Ỹ − M̃β(δ0)

]
(16)

where W̃ ∗(δ0) = K̃(δ0)′W̃ (δ0)K̃(δ0) and K̃(δ0) ≡ INT − SNT = INT −D[D′W̃ (δ0)D]−1D′W̃ (δ0).

Observe that for any δ0, K̃(δ0)Dα = 0.

Hence, the fixed effects term Dα is eliminated in (14). By the definition of W̃ ∗(δ0) and the

fact K̃(δ0)Dα = 0, we have

W̃ ∗(δ0) =K̃(δ0)′W̃ (δ0)K̃(δ0) = W̃ (δ0)K̃(δ0) = W̃ (δ0)(INT − SNT )

=W̃ (δ0)− W̃ (δ0)D[D′W̃ (δ0)D]−1D′W̃ (δ0). (17)

Minimizing (16) with respect to β, we obtain the estimate of β(δ0) as

β̂(δ0) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)Ỹ

=(
N∑
i=1

T∑
t=1

x′i,tKth(δ0)(xi,t − x̄i + x̄))−1(
N∑
i=1

T∑
t=1

x′i,tKth(δ0)(Yi,t − Ȳi + Ȳ )), (18)
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where x̄i and x̄ is kernel-weighted average. The β̂(δ0) is called NW type local dummy variable

estimator of β(δ0) and its asymptotic distribution is given in the following theorem.

We need to introduce the following regularity conditions to establish the asymptotic results.

Here and in the sequel, define µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du for j = 0, 1, 2.

Assumption 1. The probability kernel function K(·) is symmetric and Lipschitz continuous

with a compact support [−1, 1] with µ0 = 1.

Assumption 2. The coefficient function β(·) is continuous with |β(δ0 + z)−β(δ0)| = O(|z|γ)
as z → 0 for some 1/2 < γ ≤ 1 and any δ0 ∈ (0, 1).

Assumption 3. (i)Let εi,t is d-dimensional random vectors across i and over t and assume

that εi,t are possibly correlated, and heteroscedastic over the cross section with E(εi,t) = 0,

E(εi,tε
′
i,t) = Λi, E(εi,tε

′
j,t) = Λi,j for i 6= j, E(εi,tε

′
j,s) = 0, for any i, j and t 6= s; and

E[||εi,t||4+γ0 ] < ∞ for γ0 > 0; (ii) There exists positive definite matrices Λ0 and ΣΛ, such

that as N →∞,

lim
N→∞

1

N

N∑
i=1

Λi = Λ0 and lim
N→∞

1

N

N∑
i,j=1

Λi,j = ΣΛ.

Furthermore, there exists Σν,u > 0, such that as N →∞,

lim
N→∞

1

N

N∑
i,j=1

E(Φ(1)′εi,sε
′
i,tψ(1)ψ(1)′εj,tε

′
j,sΦ(1)|Ft−1,N) = Σν,u, (19)

where Ft,N = σ{εi,s : 1 ≤ i ≤ N, 1 ≤ s ≤ t} is a σ-field.

(iii)The linear process (nonrandom) coefficient matrices Cj ≡ [Φj, ψj]
′
(d+1)×d satisfy

∑∞
j=0 j

3 ||Cj|| <
∞.

Assumption 4. The bandwidth h satisfies that Th → ∞ and Nh → ∞, and N/Th → 0, as

T,N →∞ simultaneously. 1

Let

∆t
νū(δ0) = lim

N→∞

1

N

∑
l≤t

{
(
T∑
s=1

Ksh(δ0))−1

T∑
s=1

Ksh(δ0)E[νi,lui,s]

}
, (20)

1The condition Nh→∞ and N/Th→ 0 are required to eliminate the bias effect. The condition (N/Th)→ 0

indicates that the limit theory is most likely to be useful in practice when N is moderate and T is large. (We can

expect such data configurations in multi-country macroeconomic data, for example, when we restrict attention

to groups of countries such as OECD nations or developing countries. )
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and denote

CK∗(2) =ν0

∫ 1

−1

(

∫ 1

s

K(t)dt)2ds+ (

∫ 1

−1

K(t)

∫ 1

t

K(u)dudt)2, and

CK∗(1, 2) =

∫ 1

−1

K2(t)(

∫ t

−1

∫ 1

s

K(u)duds)dt+

∫ 1

−1

K(t)(

∫ 1

t

K(u)du)(

∫ t

−1

K(s)ds)dt. (21)

Theorem 1. Suppose assumptions 1-4 are satisfied and N1/2Th1+γ = o(1). Then for any fixed

0 < δ0 < 1,

(a) as T,N →∞ simultaneously

N1/2Th

{
β̂(δ0)− β(δ0)−

[
M̃ ′W̃ ∗(δ0)M̃

]−1
(
N

T∑
t=1

Kth(δ0)
(
∆νu −∆t

νū(δ0)
))}

L
=⇒N

(
0,

CK∗
(1− CK)2

Ω−1
ν Σν,uΩ

−1
ν

)
, (22)

where

CK =

∫ 1

−1

∫ 1

−1

min(s+ 1, r + 1)K(s)K(r)dsdr,

CK∗ ≡ CK∗(1) + CK∗(2) − 2CK∗(1, 2) with CK∗(1) = ν0 , CK∗(2), CK∗(1, 2) are defined in (21),

∆νu, ∆t
νū(δ0), Ων and Σν,u are defined in (8), (20), (6) and (19) respectively;

(b) Specially, if νi,t and ui,t are uncorrelated across i and over t, then as N, T → ∞ with

N/Th→ 0,

N1/2Th
{
β̂(δ0)− β(δ0)

}
L

=⇒N
(

0,
CK∗

(1− CK)2
Ω−1
ν Σν,uΩ

−1
ν

)
. (23)

Remark 1. If {ui,t} and {νi,t} are correlated, we do not attain N1/2Th consistency with pooled

dummy variable estimator β̂(δ0), because of the persistence of bias effects (which has an order of

root N). A fully modified (FM) regression technique based on Phillips et al. (2017) is developed

to eliminate the bias effect in this non-stationary panel data case.

2.2. Pooled FM-nonparametric kernel estimation

Let ∆̂νu and ∆̂t
νū(δ0) denote the consistent estimates of ∆νu and ∆t

νū(δ0) satisfying
√
N(∆̂νu−

∆̂νu) = op(1) and

1

Th

T∑
t=1

Kth(δ0)||
√
N(∆̂t

νū(δ0)−∆t
νū(δ0))|| = op(1),

for any 0 < δ0 < 1.
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Recall that M̃ ′W̃ ∗(δ0)Ỹ can be rewritten as M̃ ′W̃ ∗(δ0)Ỹ =
∑N

i=1

∑T
t=1 xi,t(Yi,t − Ȳi +

Ȳ )Kth(δ0). We define the “bias-corrected” FM kernel estimator of the functional coefficient

as

β̂PFM(δ0) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1
(
M̃ ′W̃ ∗(δ0)Ỹ−N

T∑
t=1

Kth(δ0)(∆̂νu − ∆̂t
νū(δ0))

)

≡

(
N∑
i=1

T∑
t=1

x′i,t(xi,t − x̄i + x̄)Kth(δ0)

)−1( N∑
i=1

T∑
t=1

Kth(δ0)
{
x′i,t(Yi,t − Ȳi + Ȳ )− (∆̂νu − ∆̂t

νū(δ0))
})

,

(24)

where x̄i =
(∑T

t=1Kth(δ0)
)−1∑T

t=1 Kth(δ0)xi,t and x̄ =
(
N
∑T

t=1 Kth(δ0)
)−1∑N

i=1

∑T
t=1Kth(δ0)xi,t.

Since
√
N(∆̂νu − ∆νu) = op(1) and 1

Th

∑T
t=1Kth(δ0)||

√
N(∆̂t

νū(δ0) − ∆t
νū(δ0))|| = op(1) for

any 0 < δ0 < 1, the asymptotic distribution of β̂PFM(δ0) is obtained directly from Theorem 1.

Theorem 2. Suppose that the assumptions in Theorem 1 are satisfied. We then have

N1/2Th
(
β̂PFM(δ0)− β(δ0)

)
L

=⇒ N(0,
CK∗

(1− CK)2
Ω−1
ν Σν,uΩ

−1
ν ), (25)

as N, T →∞, for any fixed 0 < δ0 < 1.

Practical implementation of FM-nonparametric kernel regression requires the estimation of

the one-sided long-run covariance matrix ∆νu and ∆t
νū(δ0). Consistent estimates of Ωω are

likewise required to construct a consistent estimate of the covariance matrix. Following the

approach of Phillips et al. (2017) for time series data, consistent estimates of ∆̂νu, ∆̂t
νū(δ0) and

Ω̂ω can be constructed using averages over i = 1, · · · , N . More specifically, let ω̂i,t = (ν ′i,t, ûi,t)
′,

ûi,t = yi,t−X′i,tβ̂(t/T )− α̂i be the estimated residuals. Since νi,t = xi,t−xi,t−1, let 0 < τ∗ < 1/2,

which can be arbitrary small. We may construct the estimated autocovariances

Γ̂i,ω(j) =
1

τ ∗T − τT

τ∗T∑
t=τT +1

ω̂i,t−jω̂
′
i,t, j = 0, 1, · · · , lT (≡ li), i = 1, 2, · · · , N,

where τT = bτ∗T c and τ ∗T = b(1−τ∗)T c, which are used to define the averaged kernel estimators

∆̂ω =
1

N

N∑
i=1

∆̂i,ω, ∆̂i,ω =

lT∑
j=0

W (
j

lT
)Γ̂i,ω(j),

Ω̂ω =
1

N

N∑
i=1

Ω̂i,ω, Ω̂i,ω =

lT∑
j=−lT

W (
j

lT
)Γ̂i,ω(j), (26)
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we then have the following estimator

∆̂νu =
1

N

N∑
i=1

∆̂i,νu, ∆̂t
νū(δ0) =

1

N

N∑
i=1

∆̂t
i,νū(δ0), (27)

with

∆̂t
i,νū(δ0) = (

T∑
s=1

Ksh(δ0))−1

T∑
l=1

T∑
s=1

Ksh(δ0)I(l ≤ t)W (
s− l
lT

)Γ̂i,νu(s− l), −lT ≤ s− l ≤ lT ,

where W (·) is a lag kernel function and (li ≡)lT < T is the lag truncation number which tends

to infinity as T → ∞ To ensure the consistency of ∆̂νu and ∆̂t
νū, the kernel function W (·) is

assumed to be bonded W (0) = 1, and W (−x) = W (x) such that
∫ 1

−1
W 2(x)dx < ∞ and with

Parzen’s exponent q ∈ [0,∞) such that kq = lim
x→0

1−W (x)
|x|q < ∞ (Andrews (1991)) As is well

known in the nonparametric literature, the choice of the bandwidth li is important in the limit

behavior of Ω̂ω and ∆̂ω. In the asymptotic theorem, we need the stronger result that satisfies
√
N(∆̂νu −∆νu) = op(1) and 1

Th

∑T
t=1Kth(δ0)||

√
N(∆̂t

νū(δ0)−∆t
νū(δ0))|| = op(1).

In the present nonparametric case, kernel methods are used to estimate the varying-coefficient

functions, which in turn complicates the form of the estimated residuals and makes the proof

of the consistency much more difficult. On the other hand, the asymptotic bias of the kernel

estimates also affects the consistency of ∆̂ω and Ω̂ω.

Assumption 5. The lag kernel W (·) has Parzen exponent q > 1/2, and the bandwidth param-

eter lT tends to infinity with lT/T → 0, and l2qT /T → ε > 0 when lT →∞ as T →∞.

Proposition 1. Suppose that the assumptions in Theorem 1 and assumption 5 are satisfied,

and lT = o
(

T
log(Th)

)
, we have

√
N(∆̂νu −∆νu) = op(1),

√
N

∣∣∣∣∣
∣∣∣∣∣ 1

Th

T∑
t=1

Kth(δ0)(∆̂t
νū(δ0)−∆t

νū(δ0))

∣∣∣∣∣
∣∣∣∣∣ = op(1),

and √
N(Ω̂ω − Ωω) = op(1),

as N, T →∞ simultaneously.

The “bias-corrected” FM kernel estimator of the functional coefficient can now be expressed

as

β̂PFM(δ0) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1
(
M̃ ′W̃ ∗(δ0)Ỹ−N

T∑
t=1

Kth(δ0)(∆̂νu − ∆̂t
νū(δ0))

)
≡
[
M̃ ′W̃ ∗(δ0)M̃

]−1 (
M̃ ′W̃ ∗(δ0)Ỹ− bias

)
, (28)
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and

bias =
[
M̃ ′W̃ ∗(δ0)M̃

]−1
{
N

T∑
t=1

Kth(δ0)(∆̂νu − ∆̂t
νū(δ0))

}

=
[
M̃ ′W̃ ∗(δ0)M̃

]−1
(
NZT ∆̂νu −N

T∑
t=1

Kth(δ0)∆̂t
νū(δ0)

)
,

where

∆̂ν,u =

lT∑
j=0

W (
j

lT
)

(
1

N

N∑
i=1

Γ̂i(j)

)
=

lT∑
j=0

W (
j

lT
)

 1

N(τ ∗T − τT )

N∑
i=1

τ∗T∑
t=τT +1

ûi,tν
′
i,t+j

 ,

and,

T∑
t=1

Kth(δ0)∆̂t
νū(δ0)

=(ZT )−1

T∑
t=1

Kth(δ0)

(
T∑
s=1

T∑
l=1

I(l ≤ t)Ksh(δ0)W (
s− l
lT

)

(
1

N

N∑
i=1

Γi(|s− l|)

))

=(ZT )−1

T∑
t=1

Kth(δ0)

 T∑
s=1

T∑
l=1

I(l ≤ t)Ksh(δ0)W (
s− l
lT

)

 1

N(τ ∗T − τT )

N∑
i=1

τ∗T∑
t=τT +1

ûi,tν
′
i,t+|s−l|

 .

Meanwhile, we also need the estimator of α to obtain the residual ûi,t, which is given by the

average across t

α̂ =
1

τ ∗T − τT

τ∗T∑
t=τT +1

α̂(
t

T
).

3. Adding Unobservable Factors

The use of panel data models like

Yi,t = αi + µt + X′i,tβ + uit, (29)

with Xi,t = (Xi,t,1, . . . , Xi,t,d)
′ and β = (β1, . . . , βd)

′, are more flexible to account for country

and time heterogeneities such as geographical location or size, business cycles and bias from

the omission of country-specific variables. Panel data models, such as (29), assume that het-

erogeneity is constant over time for each cross-section i. However, this might not be true for

large T . Recently, Pesaran (2006), Bai (2009) and Kneip et al. (2012) have developed panel

data models with a factor structure in the error term,
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Yi,t = X′i,tβ + Ftλi + ui,t (30)

which allows the unobservable individual effects to vary with time. Term λi = (λ1i, . . . , λri)
′ are

unobserved individual loadings and Ft = (F1,t, . . . , Fr,t) are the unobserved common factors.

Thus, factors represent common shocks in time such as business cycles, technological shocks or

health crises. Loadings on the other hand, express the heterogeneous impact of those shocks

for different countries. Note that when r = 2, F1t = 1 for all t and λ2i = 1 for all i, then model

(30) reduces to the classical individual and time effects model (29). Model (30) is estimated in

three steps: i) a classical panel data model is fitted assuming there are no factors, ii) factors are

calculated from the residuals using principal components, and iii) coefficients b are estimated

using a panel data model without factors with a new dependent variable, Yi,t − F̂tλ̂i.
Section 2 shows the inference of the Nadaraya-Watson (NW) estimator for model (2) which

is an extension of (29) with coefficients varying over time. This model accounts for unobserved

fixed effects in coefficient αi and for fixed time effects if Xi,t,1 is one for all i and t. The FM

estimator corrects for the bias generated by non-stationary variables in the model, but it fails

to correct for the bias from omitted variables with heterogeneous effects.

The contribution of this section is the proposition of an extension of model (30) with time-

varying coefficients, which will automatically pick up changes in relationships over time, allow

for non-stationary regressors and account for heterogenous effects of unobservable factors. The

model proposed is,

Yi,t = X′i,tβt + αi + Ftλi + ui,t

with Xi,t possibly a unit root process. Coefficients βt are estimated with a three steps procedure

like for model (30):

i) Using (24) to estimate βt for each time t as if the data process was of type (2).

ii) If other unknown factors explain the dependent variable, thenWi,t = Yi−X′i,tβt = Ftλi+εi,t,

which also can be written like Wi = Fλi + εi with Wi and εi vectors of length T and F a

T × r matrix. The least square objective function is

tr[(W − FΛ′)(W − FΛ′)′],

defining Λ = (λ1, λ2, . . . , λN)′. Thus, the common factor F is obtain with principal com-

ponent analysis from matrix WW ′/N to ensure the identificability of F . This differs from
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Gao and Xia (2017) whose time-varying factors are estimated using nonparametric tech-

niques, assuming that these factors are the same for each cross-section. The estimation of

FΛ′ can be inconsistent for large values of N and fixed T . However, it is consistent under

large N, T as explained in Bai (2009).

iii) Given F and Λ, the new estimate

β̂PFM(δ0) =

(
N∑
i=1

T∑
t=1

x′i,t(xi,t − x̄i + x̄)Kth(δ0)

)−1

·

(
N∑
i=1

T∑
t=1

Kth(δ0)
{
x′i,t(Yi,t − Ȳi + Ȳ − Ftλi)− (∆̂νu − ∆̂t

νū(δ0))
})

(31)

There is a long literature on how to choose the number of unobserved factors, r, in step ii).

Thus, Kneip et al. (2012) propose a sequential testing procedure to find the best dimension,

Onatski (2010) propose the eigenvalues differences which can work well for stationary and non-

stationary factors and Ahn and Horenstein (2013) propose the eigenvalue ration and growth

ratio criteria which work well in small samples. A comprehensive survey of these methodologies

can be found in Bada and Liebl (2014). Due to the possibility of non-stationary variables in

our sample, Onatski (2010) criterion is chosen for this paper’s application in Section 4.

4. Application

There is growing concern about the sustainability of health care systems in developed coun-

tries. Figure 1 shows a steady increase of average health care expenditure (HCE) during the

past two decades in the Eurozone and OECD (continuous lines). The rate of increase reduces

only slightly after the GFC, even though the drop in GDP (dashed lines) in 2008 is very im-

portant. Thus, Morgan and Astolfi (2015) explain that the share of GDP devoted to health

care has steadily increased in the OECD from 2000 to 2009, suffering an important downturn

in 2010 and 2011, increasing at a slower pace thereafter. On the other hand, the WHO’s report

on the effects of the GFC in European health systems (Mladovsky et al. (2012)) concludes that

the response has been heterogeneous amongst European countries: some countries have made

their health system more efficient, others have extended health benefits to ensure access for low-

income groups, while others have cut investment and increased patient charges. Clearly, the

GFC represents an economic shock which has trigged the implementation of new health policies
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aim at reducing the sensibility of health systems to these economic shocks and at making them

less dependent on public revenues.

Fig. 1. Mean value of log-HCE (continuous lines) and log-GDP (dashed lines) per capita in

the Eurozone and the OECD countries during the period 1995-2014.
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The consensus in the literature is that the main factor that drives HCE is income. Previous

work using parametric cross-sectional data show elasticities of HCE from around 1.20 to 1.50

in the OECD(Kleiman, 1974; Newhouse, 1977; Getzen, 2000), meaning that health care in the

OECD is a luxury good. Technically, the cross-sectional models look like,

Ȳi = α + X̄
′
iβ + ut, i = 1, . . . , N (32)

where N is the number of countries in the sample. Variables are recorded over a number of

years t = 1, . . . , T and the dependent variable, Ȳi, is calculated as the average value of Yi,t over

all years of country i. Similarly, the regressors X̄i = (X̄i,1, . . . , X̄i,d)
′ are calculated for each

country where X̄i,k is the average over time of Xi,t,k. The error term must be uncorrelated with

the regressors. The coefficients of model (32) are easily estimated with ordinary least squares

(OLS) and often the model is fitted over different time periods to understand the dynamics of

coefficients β = (β1, . . . , βd)
T .

Model (32) can suffer from sample bias, country effects and endogeneity. Some previous

results in panel data models such as (29), see Gerdtham et al. (1992), continue showing elastic-

ities greater than 1 for the OECD. New studies have shown that most variables in this system

are non-stationary and when the model reflects this fact, results state that health care is a

16



necessity rather than a luxury (see Baltagi and Moscone, 2010; Samadi and Homaie Rad,

2013). A detailed summary of papers in this field can be found in Table 1 in Lago-Peñas et al.

(2012). As mentioned in Section 3, panel data models such as (29) assume that heterogeneity

is constant over time for each cross-section i. However, this might not be true for large T .

This is corrected by adding unobservable factors as in Pesaran (2006), Bai (2009) and Kneip

et al. (2012) amongst others with models such as (30), which is used in Baltagi and Moscone

(2010) to estimate the long-run income elasticity of HCE for the OECD, obtaining values of

β̂ statistically smaller than 1. The inclusion of time-varying coefficients and non-stationary

regressors panel data models (31) may be the answer to correct all possible biases arising in

this problem and to show the evolution of the relationship between income and HCE over time.

4.1. Data

The dependent variable in our study is the log of total HCE per capita PPP (constant 2011

international $) for country i and year t, denoted by lhe. The proxy for income is the log

of the GDP per capita PPP (constant 2011 international $) in our model variable, lgdp. It

is reasonable to think that these elasticities change over time in a smooth way, these changes

cannot be reflected with constant coefficient models. Authors such as Jewell et al. (2003) show

that both series lhei,t and lgdpi,t in panel data model (29) are stationary but for a few structural

breaks and that time specific effects (µt) must be included in the model to mitigate the cross-

section dependence. On the other hand, Baltagi and Moscone (2010) show that lhei,t and lgdpi,t

are non-stationary, which causes erroneous inference in the results of classical models that must

satisfy the assumption of stationarity in all variables.

The literature has also validated some demographic variables such as the population ratio

over 65 and under 15 years old as possible determinants of HCE (see Leu, 1986; Hitiris and

Posnett, 1992, amongst others), denoted in the model as Pop65 and Pop14, respectively. These

studies also report a positive significant relationship between the public finance share of health

care and the total HCE. The Public variable in our study is calculated as the % government

expenditure in public health care. In a nutshell, the set of variables in the study are: Yi,t = lhei,t,

Xi,t = (lgdpi,t, Pop65i,t, Pop14i,t, Publici,t)
′.

The period under study starts in 1995 and runs until 2014 for 20 countries in the Eurozone

(Austria, Belgium, Cyprus, Germany, Estonia, Finland, France, Greece, Ireland, Italy, Lithua-

nia, Luxembourg, Latvia, Macedonia, Malta, Netherlands, Portugal, Slovak Republic, Slovenia
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and Spain) and for 34 countries in the OECD (Australia, Austria, Belgium, Canada, Chile,

Czech Republic, Germany, Denmark, Estonia, Finland, France, Greece, Hungary, Ireland, Ice-

land, Israel, Italy, Japan, Luxembourg, Latvia, Mexico, Netherlands, New Zealand, Norway,

Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United King-

dom and United States). The two main questions under study are: 1) the relationship between

per capita income and HCE; and 2) the influence of non-income variables on HCE. All variables

were downloaded from the Worldbank dataset.

4.2. Is health care a luxury in developed countries?

Results in Table 1 show the estimates of models (32), (29) and (30) and their 95% con-

fidence intervals in brackets. Functions in R package plm by Croissant and Millo (2008) are

used to obtained coefficients of the last two models and also R package phtt is used to obtain

the unobserved factors of (30). The lgdp coefficients of (32) for both the Eurozone and the

OECD are over 1, even when other non-income variables are included in the model. This is in

concordance with Kleiman (1974); Newhouse (1977); Leu (1986); Getzen (2000). Whereas, the

FE estimates with time and individual fixed effects are significantly below 1 at 5% level. This

differs from the results of Hitiris and Posnett (1992) who use a pooled estimator for panel data

with two dummy variables to mimic αi in model (29) and obtains values of β̂ over 1. The OLS

high R2 adjusted and the non-stationarity variables suggest a case of spurious regression. The

coefficients of models (30) are similar to those obtained by Baltagi and Moscone (2010), with

long-run income elasticities under 1.

Focussing on panel data models with fixed effects, Figure 2 shows the income elasticity

estimates of HCE from FE models with unobserved factors and the corresponding with time-

varying coefficients, models (30) and (31) respectively. The estimated number of unobserved

factors is calculated using criterion in Onatski (2010) and implemented in the phtt R package by

Bada and Liebl (2014). The continuous blue line corresponds to the income elasticity estimates

of model (30) and the light blue band is its 95% confidence interval. Similarly, the black line

and grey confidence interval corresponds to the NW estimates of (31) and the red line with

orange confidence intervals corresponds to FM estimates of (31). The latter corrects for the

bias arising when there is correlation between the regressor innovations and the error term.

The FE with unobservable factors income elasticities (white line and black bands) are sig-

nificantly smaller than 1 at 5% level, with values around 0.9 for the Eurozone and under 0.8
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Fig. 2. Estimated income elasticity of health care expenditure during the period 1990-2014 for

the Eurozone and the OECD countries (left to right). The plots show the estimated values of

the coefficients at each year and their 95% confidence interval (bands). The white line with dark

bands refer to the FE with unobserved factors models, the continuous line with light grey band

refer to the NW estimates of a time-varying coefficient FE model with unobserved factors, and

the dash line with medium grey band refers to the FM estimates of a time-varying coefficient

FE model with unobserved factors.
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for the OECD. This model implies that the expected price of health care is greater in the Eu-

rozone than in the OECD countries. On the other hand, the time-varying coefficient models

with unobservable factors (denoted as NW and FM below) show that the price of health care

is lower for the Eurozone. The NW income elasticity estimates of HE (continuous line with

light grey bands) are stable over the time period 1995-2014 with values a bit over 0.6 in the

Eurozone and 0.75 in the OECD. The FM income elasticity estimates (dash lines with medium

grey bands) are a bit higher than the NW estimates during the pre-GFC, but the 95% confi-

dence intervals of both estimators overlap during the whole sample period. Most importantly,

both estimates display a decreasing trend over time, which is explained by the fact that most

countries in the Eurozone, first the Nordic countries and the rest after the GFC, have applied

new health care policies to make their systems more efficient (Mladovsky et al. (2012)). This

same trend appears in the time-varying coefficient estimates of the OECD, which in this case

are not statistically different from the FE estimates.
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4.3. Do age structure and public expenditure affect the price of health care?

As reported in Fisher (1990); Alemayehu and Warner (2004), the health bill of the young is

the lowest in a health care system while the largest, by a large difference, is the health bill of the

elderly. Moreover, more than one-third of people’s lifetime health spending will accrue in the

last years (Zweifel et al., 1999; Alemayehu and Warner, 2004). Thus, it is expected to obtain

a positive relationship of HCE and Pop65 and a negative relationship of HCE and Pop14. In

Table 1, as in Leu (1986); Hitiris and Posnett (1992), the OLS estimated coefficients of (32)

are non-significant for Pop65 and Pop14 variables. Pop65 variable is significant for the FE

and FE model with unobserved factors, but with counterintuitive negative signs. The NW and

FM coefficient estimates of Pop65 in Figure 3 are positive and slightly increasing with higher

values for the Eurozone. Regarding the Pop14 variable, the NW and FM coefficient estimates

of model (31) are significant and, as expected, negative. This negative relationship is larger for

the OECD.

Finally, all estimators report a positive significant relationship between government public

investment and HCE (Table 1 and third row of Figure 3). Interestingly, the NW and FM

estimates show a decreasing trend accentuated after the GFC. As Liaropoulos and Goranitis

(2015) report, the source of financing health care is the core of all developed countries health

policies. However, a universal health system based on employment contributions alone might

not be feasible in a society that is becoming older, with people living longer and that has the

same retirement age as before. The findings indicate that the latest reforms aiming at dissociate

health care from public funding are working in the right direction.

In conclusion, the FM estimates of a time-varying coefficients FE model with unobserved

factors report very fitting results to the initial expectations and in concordance with the latest

health care policies. These estimates converge to the NW values at the end of the sample

period. Although, the pointwise 95% confidence intervals do always overlap. The expected price

of health care is lower in the Eurozone than in the OECD, although the Eurozone countries,

in average, pay more to keep their elderly and young healthy. There is a similar relationship

between the government financing of health care and the HCE in both regions.
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5. Conclusions

A time-varying coefficient panel data model using fixed effects is estimated with nonpara-

metric kernel smoothing techniques in this paper. The two main theoretical contributions

are: i) the asymptotic theory of this estimator which shows a faster rate of convergence than

other nonparametric estimators of non-linear models with time-varying coefficients and local

stationary variables; and ii) the derivation of a second bias-corrected estimator to tackle the

bias arising from the correlation between the regressor innovations and the equation error. In

addition, the inclusion of a term of heterogenous unobserved factors has been proposed.

The application of these new methodologies to shine a light in the evolution of the price of

health care in developed countries is the empirical contribution of this paper. The estimation of

time-varying income elasticities of HCE show that health care is more expensive in the OECD

than in the Eurozone, but in any case it is far away from becoming a luxury good. In fact,

the income elasticities are decreasing. Age demographics and government funding rate are also

significantly related to the HCE. In particular, the relationship between government funding

and HCE is decreasing after the GFC.

There are some limitations in this paper. This paper assumes that the regressor innovations

and equation error are individually independent but serially correlated. A future topic is to

accommodate such dependence on nonparametric estimates of these panel data models.
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Fig. 3. Coefficient estimates of Pop65, Pop14 and Public variables (top to bottom) during

the period 1990-2014 for the Eurozone and OECD countries (left to right). The plots show the

estimated values of the coefficients at each year and their 95% confidence interval (bands). The

white line with dark bands refer to the FE with unobserved factors models, the continuous line

with light grey band refer to the NW estimates of a time-varying coefficient FE model with

unobserved factors, and the dash line with medium grey band refers to the FM estimates of a

time-varying coefficient FE model with unobserved factors.
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Proofs of main results

Proof of Theorem 1 (a). Observe that

β̂(δ0)− β(δ0) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)Ỹ− β0(δ0)

=

{[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)B̃(X, β)− β(δ0)

}
+
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)Dα +
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)ũ

=ΞNT (1) + ΞNT (2) + ΞNT (3). (33)

By the definition of W̃ ∗(δ0), we have

ΞNT (2) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)Dα

=
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′K̃(δ0)′W̃ (δ0)
[
K̃(δ0)Dα

]
. (34)

Observe that for any δ0, K̃(δ0)Dα = 0. We have ΞNT (2) = 0. For ΞNT (1), by Assumption 2

and Taylor approximation (13), we find that

ΞNT (1) =
[
M̃ ′W̃ ∗(δ0)M̃

]−1

M̃ ′W̃ ∗(δ0)B̃(X,β)− β(δ0)

=OP (hγ). (35)

Then, using Lemmas 1-2, (35) in conjunction with the condition N1/2Th1+γ = o(1), we can

prove (22) in Theorem 1.

Lemma 1. Suppose that Assumptions 1, 3 and 4 are satisfied. Then as T,N →∞ simultane-

ously, for any 0 < δ0 < 1

1

NT 2h2
M̃ ′W̃ ∗(δ0)M̃

p−→ (1− CK)Ων , (36)

where Ων ≡ Φ(1)′Λ0Φ(1) defined in (6), CK =
∫ 1

−1

∫ 1

−1
min(s+ 1, r + 1)K(s)K(r)dsdr.

Proof. Take a neighborhood NT,δ0 = [b(δ0 − h)T c, b(δ0 + h)T c] of bδ0T c and let δ(T ) = b(δ0 −
h)T c. From the BN decomposition (Phillips and Solo (1992)), we have for t ≥ δ(T )

xi,t =
t∑

s=1

νi,s + xi,0 =
t∑

s=1

¯̄νi,s + ν̃i,0 − ν̃i,t + xi,0

=[

δ(T )∑
s=1

¯̄νi,s + ν̃i,0 − ν̃i,δ(T ) + xi,0] + [
t∑

s=δ(T )+1

¯̄νi,s] + [ν̃i,δ(T ) − ν̃i,t]

≡xi,δ(T ) + ηi,t + ξi,t, (37)
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where ¯̄νi,t = (
∑∞

j=0 Φ′j)εi,t ≡ Φ(1)′εi,t, and ν̃i,t =
∑∞

j=0 Φ̃′jεi,t−j with Φ̃j =
∑∞

k=j+1 Φk. Note

that the summability condition
∑∞

j=0 j||Φj|| < ∞ in Assumption 3 ensures
∑∞

j=0 ||Φ̃j|| < ∞
(Phillips and Solo (1992)), so that ξi,t = Op(1).

We first prove the following asymptotic representation

M̃ ′W̃ ∗(δ0)M̃ =
N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)
+Op(N(Th)3/2 + T 2h), (38)

where η̄i = 1
ZT

∑T
t=1Kth(δ0)ηi,t and ZT =

∑T
t=1Kth(δ0).

By the definition W̃ ∗(δ0) and (17), we have

M̃ ′W̃ ∗(δ0)M̃ =M̃ ′W̃ (δ0)(INT − SNT )M̃

=M̃ ′W̃ (δ0)M̃ − M̃ ′W̃ (δ0)SNTM̃,

where SNT = D[D′W̃ (δ0)D]−1D′W̃ (δ0). We will prove that

M̃ ′W̃ (δ0)SNTM̃ =
1

ZT

N∑
i=1

[
T∑
t=1

xi,tKth(δ0)

][
T∑
t=1

xitKth(δ0)

]′

− 1

NZT

[
N∑
i=1

T∑
t=1

xi,tKth(δ0)

][
N∑
i=1

T∑
t=1

xi,tKth(δ0)

]′
. (39)

To do so, we first consider the term [D′W̃ (δ0)D]−1. We have

[
D′W̃ (δ0)D

]−1

=


1
ZT
− 1

NZT
− 1
NZT

. . . − 1
NZT

− 1
NZT

1
ZT
− 1

NZT
. . . − 1

NZT
...

...
...

− 1
NZT

− 1
NZT

. . . 1
ZT
− 1

NZT

 .

By standard arguments, we have

M̃ ′W̃ (δ0)SNTM̃(δ0) = M̃ ′W̃ (δ0)D[D′W̃ (δ0)D]−1D′W̃ (δ0)M̃

=
1

ZT

N∑
i=1

T∑
s,t=1

xi,tx
′
isKth(δ0)Ksh(δ0)− 1

NZT

N∑
i,j=1

T∑
s,t=1

xi,tx
′
jsKsh(δ0)Kth(δ0)

=
1

ZT

N∑
i=1

[
T∑
t=1

xi,tKth(δ0)

][
T∑
t=1

xi,tKth(δ0)

]′
− 1

NZT

[
N∑
i=1

T∑
t=1

xi,tKth(δ0)

][
N∑
i=1

T∑
t=1

xi,tKth(δ0)

]′
.
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Combining (37) and (39), we have

M̃ ′W̃ ∗(δ0)M̃ = M̃ ′W̃ (δ0)(INT − SNT )M̃

=
N∑
i=1

T∑
t=1

xi,tx
′
i,tKth(δ0)− 1

ZT

N∑
i=1

[
T∑
t=1

Kth(δ0)xi,t

][
T∑
t=1

Kth(δ0)xi,t

]′

+
1

NZT

[
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

][
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

]′

=
N∑
i=1

T∑
t=1

(xi,t − xi,δ(T ))(xi,t − xi,δ(T ))
′Kth(δ0) +

1

NZT

[
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

][
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

]′

− 1

ZT

N∑
i=1

{
T∑
t=1

(xi,t − xi,δ(T ))Kth(δ0)

}{
T∑
t=1

(xi,t − xi,δ(T ))
′Kth(δ0)

}

=
N∑
i=1

T∑
t=1

{
ηi,tη

′
i,t − η̄iη̄′i

}
Kth(δ0) + 2

N∑
i=1

T∑
t=1

ηi,tξ
′
i,tKth(δ0) +

N∑
i=1

T∑
t=1

ξi,tξ
′
i,tKth(δ0)

− 2

ZT

N∑
i=1

{
T∑
t=1

Kth(δ0)ηi,t

}{
T∑
t=1

Kth(δ0)ξ′i,t

}
− 1

ZT

N∑
i=1

{
T∑
t=1

Kth(δ0)ξi,t

}{
T∑
t=1

Kth(δ0)ξ′i,t

}

+
1

NZT

[
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

][
N∑
i=1

T∑
t=1

Kth(δ0)xi,t

]′

=
N∑
i=1

T∑
t=1

(
ηi,tη

′
i,t − η̄iη̄′i

)
Kth(δ0) + 2

N∑
i=1

T∑
t=1

ηi,tξ
′
i,tKth(δ0) +

N∑
i=1

T∑
t=1

ξi,tξ
′
i,tKth(δ0)

− 2ZT

N∑
i=1

η̄iξ̄
′
i − ZT

N∑
i=1

ξ̄iξ̄
′
i +NZT x̄x̄

′

≡
N∑
i=1

T∑
t=1

(
ηi,tη

′
i,t − η̄iη̄′i

)
Kth(δ0) + 2R1,NT +R2,NT − 2R3,NT −R4,NT +R5,NT , (40)

where ξ̄i = 1
ZT

∑T
t=1Kth(δ0)ξi,t and x̄ = 1

NZT

∑N
i=1

∑T
t=1Kth(δ0)xi,t.
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Next, note that

E||R1,NT || ≤
N∑
i=1

T∑
t=1

Kth(δ0)E||ηit||||ξit||

≤
√

2Th
N∑
i=1

T∑
t=1

Kth(δ0)E|| ηit√
2Th
||||ξit||

≤
√

2Th
N∑
i=1

T∑
t=1

Kth(δ0)

√
E|| ηit√

2Th
||2E||ξit||2

=
√

2Th
T∑
t=1

Kth(δ0)O(
N∑
i=1

||Λi||) = O(N(Th)3/2), (41)

and

E||R3,NT || ≤
N∑
i=1

ZTE||η̄i||||ξ̄i||

≤
√

2(Th)5/2(ZT )−1

N∑
i=1

{
E|| 1

Th

T∑
t=1

ηit√
2Th

Kth(δ0)||2E|| 1

Th

T∑
t=1

Kth(δ0)ξit||2
}1/2

=
√

2(Th)5/2(ZT )−1O(
N∑
i=1

||Λi||) = O(N(Th)3/2). (42)

Similar argument above, we can show that

E||R2,NT || = O(NTh), and E||R4,NT || = O(NTh). (43)

Noting that {
∑N

i=1 εi,t, Ft,N} is a martingale difference array with mean 0, where Ft,N = σ{εi,s :

1 ≤ i ≤ N, 1 ≤ s ≤ t}. We next use the central limit theorem for a martingale difference array

(Hall and Heyde (1980)), we can prove that

1√
NT

N∑
i=1

xi,δ(T ) ≡
1√
T

δ(T )∑
t=1

(
1√
N

N∑
i=1

Φ(1)′εi,t

)
L

=⇒ N(0, δ0Φ(1)′ΣΛΦ(1)),

as both T and N tend to infinity. So we have

N∑
i=1

T∑
t=1

xi,tKth(δ0) =
N∑
i=1

xi,δ(T )

T∑
t=1

Kth(δ0) +
N∑
i=1

T∑
t=1

(ηit + ξit)Kth(δ0)

=Op(Th
√
NT +N1/2(Th)3/2),

and the we have

R5,NT =
1

NZT

[
N∑
i=1

T∑
t=1

xitKth(δ0)

][
N∑
i=1

T∑
t=1

xitKth(δ0)

]>
=O(

1

NTh
)×OP ((Th

√
NT )2 + (N1/2(Th)3/2)2) = OP (T 2h). (44)
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Combing (40)–(44), (38) is proved.

By assumption 4, we have OP (N(Th)3/2 + T 2h) = op(NT
2h2) in (38). Next we only need

to prove

1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

) p−→ Ων(1− CK), (45)

as N, T →∞ simultaneously. Then we only need to prove that

E

[
1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)]
−→ Ων(1− CK), (46)

and

E

([
1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)]
− E

[
1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)])2

−→ 0,

(47)

where

E

[
1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)]

=
Φ′(1)

NT 2h2

T∑
t=1

Kth(δ0)
N∑
i=1

E

 t∑
s=δ(T )+1

εi,sε
′
i,s −

1

Z2
T

T∑
s,t=1

Kth(δ0)Ksh(δ0)
s∧t∑

l=δ(T )+1

εi,lε
′
i,l

Φ(1)

=
Φ′(1)

T 2h2

T∑
t=1

Kth(δ0)

[
(t− δ(T )− 1)− 1

Z2
T

T∑
s,t=1

Kth(δ0)Ksh(δ0)(s ∧ t− δ(T )− 1)

]
(

1

N

N∑
i=1

Λi)Φ(1)

−→(1− CK)Φ′(1)Λ0Φ(1) = (1− CK)Ων ,

and

E

[
1

NT 2h2

N∑
i=1

T∑
t=1

Kth(δ0)
(
ηi,tη

′
i,t − η̄iη̄′i

)]2

=
1

(NT 2h2)2

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E
[(
ηi,tη

′
i,t − η̄iη̄′i

) (
ηj,sη

′
j,s − η̄j η̄′j

)]
=

1

(NT 2h2)2

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E(ηi,tη
′
i,tηj,sη

′
j,s) +

1

(NT 2h2)2

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E(η̄iη̄
′
iη̄j η̄

′
j)

− 2

(N2T 2h2)2
ZT

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E(ηi,tη
′
i,tη̄j η̄

′
j)
.
= I(1) + I(2) + I(3),
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with

I(1) =
1

(NT 2h2)2

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E(ηi,tη
′
i,tηj,sη

′
j,s)

=
1

(NT 2h2)2

N∑
i,j=1

T∑
s,t=1

Kth(δ0)Ksh(δ0)E

Φ′(1)
t∑

t1,t2=δ(T )+1

εi,t1εi,t2Φ(1)Φ′(1)
s∑

s1,s2=δ(T )+1

εj,s1εj,s2Φ(1)


≤ 1

N2T 2h2

T∑
s,t=1

Kth(δ0)

Th

Ksh(δ0)

Th

N∑
i,j=1

t∨s∑
t1,t2,s1,s2=δ(T )+1

E
(
Φ′(1)εi,t1ε

′
i,t1

Φ(1)Φ′(1)εj,s1ε
′
j,s1

Φ(1)
)

=
1

N

T∑
s,t=1

Kth(δ0)

Th

Ksh(δ0)

Th

 1

NT 2h2

N∑
i=1

t∨s∑
k,l=δ(T )+1

E(Φ′(1)εi,kε
′
i,kΦ(1)Φ′(1)εi,lε

′
i,lΦ(1))

+
1

NT 2h2

N∑
i,j=1

t∨s∑
k,l=δ(T )+1

E
(
Φ′(1)εi,kε

′
i,lΦ(1)Φ′(1)εj,kε

′
j,lΦ(1)

) −→ 0. (48)

Similar argument with (48), we can also prove that I(2) → 0, and I(3) → 0. Then (47) is

proved. Thus, (36) is completely proved.

Lemma 2. Suppose that Assumptions 1, 3-4 are satisfied. Then, we have, for any 0 < δ0 < 1,

1√
NTh

{
M̃ ′W̃ ∗(δ0)ũ−N

T∑
t=1

Kth(δ0)(∆νu −∆t
νū(δ0))

}
L

=⇒ N(0, CK∗Σν,u), (49)

as T,N →∞ simultaneously, where CK∗ ≡ CK∗(1) + CK∗(2)− 2CK∗(1, 2) with CK∗(1) = ν0,

CK∗(2) = ν0

∫ 1

−1

(

∫ 1

s

K(t)dt)2ds+

(∫ 1

−1

K(t)(

∫ 1

t

K(u)du)dt

)2

,

and

CK∗(1, 2) =

∫ 1

−1

K2(t)(

∫ t

−1

∫ 1

s

K(u)duds)dt+

∫ 1

−1

K(t)(

∫ 1

t

K(u)du)(

∫ t

−1

K(s)ds)dt,

∆νu and ∆t
νū are defined in (8) and (20), respectively.

Proof. Similar argument with M̃ ′W̃ ∗(δ0)M̃ in Lemma 1 and denote ūi = 1
ZT

∑T
t=1Kth(δ0)ui,t,
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we have

M̃ ′W̃ ∗(δ0)ũ = M̃ ′W̃ (δ0)ũ− M̃ ′W̃ (δ0)SNT ũ

=
N∑
i=1

T∑
t=1

(xit − xi,δ(T ))uitKth(δ0)− 1

ZT

N∑
i=1

{
T∑
t=1

(xit − xi,δ(T ))Kth(δ0)

}{
T∑
t=1

uitKth(δ0)

}

+
1

NZT

[
N∑
i=1

T∑
t=1

xitKth(δ0)

][
N∑
i=1

T∑
t=1

uitKth(δ0)

]

=
N∑
i=1

T∑
t=1

(ηit + ξit)uitKth(δ0)− 1

ZT

N∑
i=1

{
T∑
t=1

(ηit + ξit)Kth(δ0)

}{
T∑
t=1

uitKth(δ0)

}

+

[
1√
N

N∑
i=1

T∑
t=1

Kth(δ0)

ZT
xit

][
1√
N

N∑
i=1

T∑
t=1

uitKth(δ0)

]

=
N∑
i=1

T∑
t=1

(ηi,t + ξi,t)(uit − ūi)Kth(δ0) +Op(Th
1/2)

≡
N∑
i=1

T∑
t=1

Si,t(uit − ūi)Kth(δ0) +Op(Th
1/2). (50)

Next, we only need to prove that

1√
NTh

{
N∑
i=1

T∑
t=1

Si,t(uit − ūi)Kth(δ0)−N
T∑
t=1

Kth(δ0)(∆νu −∆t
νū)

}
L

=⇒ N(0, CK∗Σν,u). (51)

From the BN decomposition, we have for t ≥ δ(T ), ui,t = ¯̄ui,t + (ũi,t−1 − ũi,t), where

¯̄ui,t = (
∑∞

j=0 ψ
′
j)εt ≡ ψ(1)′εi,t, and ũi,t =

∑∞
j=0 ψ̃

′
jεi,t−j with ψ̃j =

∑∞
k=j+1 ψk. Note that

T∑
t=1

Kth(δ0)Si,t∆ũi,t =
T∑
t=1

Kth(δ0)Si,tũi,t −
T∑
t=1

Kth(δ0)Si,tũi,t−1

=
T∑
t=1

Kth(δ0)Si,tũi,t −
T∑
t=1

Kth(δ0)νi,tũi,t−1 −

{
T∑
t=1

K(t−1)h(δ0)Si,t−1ũi,t−1 +
T∑
t=1

∆Kth(δ0)Si,t−1ũi,t−1

}

=KTh(δ0)Si,T ũi,T −
T∑
t=1

Kth(δ0)νi,tũi,t−1 −
T∑
t=1

∆Kth(δ0)Si,t−1ũi,t−1,
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and

T∑
t=1

Kth(δ0)∆ũi,t

=
T∑
t=1

Kth(δ0)ũi,t −
T∑
t=1

{
K(t−1)h(δ0) + (Kth(δ0)−K(t−1)h(δ0))

}
ũi,t−1

=KTh(δ0)ũi,T −
T∑
t=1

∆Kth(δ0)ũi,t−1.

By virtue of Assumption 1, KTh(δ0) = 0 with probability 1, which indicates that

T∑
t=1

Kth(δ0)Si,t(−∆ũi,t) =
T∑
t=1

Kth(δ0)νi,tũi,t−1 +
T∑
t=1

∆Kth(δ0)Si,t−1ũi,t−1 (52)

and

T∑
t=1

Kth(δ0)(−∆ũi,t) =
T∑
t=1

∆Kth(δ0)ũi,t−1. (53)

Let Vi,t =
∑t

j=δ(T )+1 εi,j. Using BN decomposition again, Si,t = xi,t − xi,δ(T ) = Φ(1)′Vi,t +

ν̃i,δ(T ) − ν̃i,t, and (52), we have

T∑
t=1

Kth(δ0)Si,tui,t =
T∑
t=1

Kth(δ0)
(
Si,tε

′
i,tψ(1)− Si,t∆ũi,t

)
=

T∑
t=1

Kth(δ0)(Φ(1)′Vi,t + ν̃i,δ(T ) − ν̃i,t)ε′i,tψ(1) +

(
T∑
t=1

Kth(δ0)νi,tũi,t−1 +
T∑
t=1

∆Kth(δ0)Si,t−1ũi,t−1

)
,

and

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0) (Si,tui,t −∆νu)

)

=
1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)Φ(1)′Vi,t−1ε
′
i,tψ(1)

)
+

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)Φ(1)′(εi,tε
′
i,t − Λ0)ψ(1)

)

+
1√
N

N∑
i=1

(
1

Th

T−1∑
t=1

Kth(δ0)(ũi,tνi,t+1 −
∞∑
j=0

ψ̃′jΦj+1)

)
− 1√

N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)ψ(1)′(εi,tν̃i,t − Φ̃0)

)

+
1√
N

N∑
i=1

(
1

Th

T∑
t=1

∆Kth(δ0)Si,t−1ũt−1

)
+

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)ν̃i,δ(T )ε
′
i,tψ(1)

)

≡ 1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)Φ(1)′Vi,t−1ε
′
i,tψ(1) +R1,i,T (1) +R1,i,T (2) +R1,i,T (3) +Op(

√
N

Th
)

)
.

(54)
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We show that 1√
N

∑N
i=1 R1,i,T (k)→p 0, k = 1, 2, 3 as N, T →∞ with N/Th→ 0. Note that

E

∣∣∣∣∣
∣∣∣∣∣ 1√
N

N∑
i=1

R1,i,T (1)

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1

N

N∑
i,j=1

E||R1,i,TR
′
1,j,T ||

≤ 1

N

N∑
i,j=1

1

T 2h2

T∑
t=1

K2
th(δ0)E||(εi,tε′i,t − Λ0)(εj,tε

′
j,t − Λ0)′||||Φ(1)||2||ψ(1)||2

=O(
1

Th
). (55)

Thus, (1/
√
N)
∑N

i=1R1,i,T (1) = op(1). Next, we show that (1/
√
N)
∑N

i=1 R1,i,T (2)→p 0 by prov-

ing E||(1/
√
N)
∑N

i=1R1,i,T (2)||2 → 0 as N, T → ∞. Note that E||(1/
√
N)
∑N

i=1R1,i,T (2)||2 ≤
NE||R1,i,T (2)||2 and following lemma 16 on pp.1105 in Phillips and Moon (1999),

E ||R1,i,T (2)||2 = tr (E(vec(R1,i,T (2))vec(R1,i,T (2))′)) since E(R1,i,T (2)) = 0

=
1

T 2h2

T−1∑
t=1

T−1∑
s=1

Kth(δ0)Ksh(δ0)E

{
(
∑∞

j=0

∑∞
k=0 ψ̃

′
jεi,t−jε

′
i,t+1−kΦk)(

∑∞
p=0

∑∞
q=0 Φ′pεi,s+1−pε

′
i,s−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′

}

=
2

T 2h2

b2Thc∑
t=δ(T )+1

Kth(δ0)

b2Thc−1∑
l=0

K(t+l)h(δ0)


∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0

E(ψ̃′jεi,t−jε
′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′



=
2

T 2h2

b2Thc∑
t=δ(T )+1

K2
th(δ0)

b2Thc−1∑
l=0


∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0

E(ψ̃′jεi,t−jε
′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′



+
2

T 2h2

b2Thc∑
t=δ(T )+1

K2
th(δ0)

b2Thc−1∑
l=0

∆K l
th(δ0)


∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0

E(ψ̃′jεi,t−jε
′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


where ∆K l

th(δ0) = K(t+l)h(δ0)−Kth(δ0) < l
Th

. If we show

∞∑
l=0


∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0

E(ψ̃′jεi,t−jε
′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′

 <∞,
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then it follows that E||(1/
√
N)
∑N

i=1 R1,i,T (2)||2 = O( N
Th

)→ 0, observe that

∞∑
l=0


∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0

E(ψ̃′jεi,t−jε
′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


=
∞∑
l=0

(
∞∑
k=0

∞∑
j=0

tr(Φ′kΦk+l ⊗ ψ̃′jψ̃j+l)

)
+
∞∑
l=0

 ∞∑
j=0

∞∑
k=0∨(1−l)

tr
{

(Φ′kψ̃k+l−1 ⊗ ψ̃′jΦj+l+1)Kd

}
+ (ν4 − 3)

∞∑
l=0

∞∑
j=0

tr

(
(Φ′j+1 ⊗ ψ̃′j)(

d∑
l=1

el,l ⊗ el,l)(Φj+l+1 ⊗ ψ̃j+l)

)

=
∞∑
l=0

(
∞∑
j=0

∞∑
k=0

tr(Φ′kΦk+l)ψ̃
′
jψ̃j+l

)
+
∞∑
l=0

 ∞∑
j=0

∞∑
k=0∨(1−l)

ψ̃′k+l−1ΦkΦ
′
j+l+1ψ̃j


+ (ν4 − 3)

∞∑
l=0

∞∑
j=0

tr

(
(Φ′j+1 ⊗ ψ̃′j)(

d∑
l=1

el,l ⊗ el,l)(Φj+l+1 ⊗ ψ̃j+l)

)
≡I + II + III,

where el,l is the (d × d) matrix where the (l, l)th element is one and other elements are zeros.

Since tr(A⊗B) = tr(A)tr(B) and tr(A) ≤ (rows(A))1/2||A|| (see lemma 9 in Phillips and Moon

(1999)), we have

I =
∞∑
l=0

tr(
∞∑
k=0

Φ′kΦk+l)(
∞∑
j=0

ψ̃′jψ̃j+l)

≤

[
∞∑
l=0

∣∣∣∣∣tr(
∞∑
k=0

Φ′kΦk+l)

∣∣∣∣∣
] [

∞∑
l=0

∣∣∣∣∣
∞∑
j=0

tr(ψ̃jψ̃
′
j+l)

∣∣∣∣∣
]

≤ d

(
∞∑
k=0

||Φk||

)2( ∞∑
k=0

||ψ̃k||

)2

<∞, by Assumption 3

and

II ≤
∞∑
k=1

∞∑
j=0

||Φk||||ψ̃k−1||||ψ̃j||||Φj+1||+
∞∑
l=1

(
∞∑
k=0

∞∑
j=0

||Φk||||ψ̃k+l−1||||ψ̃j||||Φj+l+1||

)

≤

(
∞∑
j=0

||Φj||

)2( ∞∑
j=0

||ψj||

)2

+

(
∞∑
l=0

∞∑
k=0

||Φk||||ψ̃k+l||

)(
∞∑
l=0

∞∑
j=0

||ψ̃j||||Φj+l||

)

≤

(
∞∑
j=0

||Φj||

)2( ∞∑
j=0

||ψj||

)2

+

(
∞∑
k=0

||Φk||
∞∑
k=0

||ψ̃k||

)(
∞∑
j=0

||ψ̃j||
∞∑
j=0

||Φj||

)
≤∞.
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Similarly, we can show that for some M > 0

III ≤M

(
∞∑
j=0

||Φj||

)2( ∞∑
j=0

||ψj||

)2

<∞.

Thus, we prove that

E||(1/
√
N)

N∑
i=1

R1,i,T (2)||2 = O(
1

Th
)→ 0. (56)

Also, we can show by modifying the arguments used above that

E

∣∣∣∣∣
∣∣∣∣∣ 1√
N

N∑
i=1

R1,i,T (3)

∣∣∣∣∣
∣∣∣∣∣
2

= O(

√
1

Th
),

which combining (54)-(56), we have the first term in (50)

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0) (Si,tuit −∆νu)

)

=
1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1√
N

N∑
i=1

Vi,t−1ε
′
i,t

)
ψ(1) +Op(

√
N

Th
)

=
1

Th

T∑
t=1

(
1√
N

N∑
i=1

∑
s<t

Kth(δ0)Φ(1)′εi,sε
′
i,tψ(1)

)
a.s.
=

1

Th

T∑
t=1

W1,t,N . (57)

Similar argument with (54), we next prove the sencod term in (50)

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)
(
Si,tūi −∆t

νū(δ0)
))

=
1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1√
N

N∑
i=1

(
1

ZT

T∑
l=1

∑
l 6=s≤t

Klh(δ0)εi,sε
′
i,l

))
ψ(1) +Op(

√
N

Th
)

a.s.≡ 1

Th

T∑
t=1

W2,t,T . (58)

Recall that
∑T

t=1 Kth(δ0)(−∆ũi,t) =
∑T

t=1 ∆Kth(δ0)ũi,t−1 and denote ε̄i = 1
ZT

∑T
t=1 Kth(δ0)εi,t,
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Similar argument with (54) and using BN decomposition, we have

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)
(
Si,tūi −∆t

ν,ū(δ0)
))

≡ 1√
N

N∑
i=1

 1

Th

T∑
t=1

Kth(δ0)

Si,tūi − T∑
s=1

Ksh(δ0)

ZT

t∑
j=δ(T )+1

E(νi,jui,s)


=

1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1

ZT

T∑
l=1

∑
l 6=s≤t

Klh(δ0)εi,sε
′
i,l

)
ψ(1)

)

+
1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1

ZT

∑
s≤t

Ksh(δ0)εi,sε
′
i,s −

1

ZT

∑
s≤t

Ksh(δ0)

)
ψ(1)

)

− 1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)

(
ν̃i,tε̄i −

∑
s≤t

Ksh(δ0)

ZT
Φ̃t−s

)′
ψ(1)

)

+
1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)

{
1

ZT

T∑
s=1

∆Ksh(δ0) (Si,tũi,s−1 − E(Si,tũi,s−1))

})

+
1√
N

N∑
i=1

(
1

Th

T∑
t=1

Kth(δ0)ν̃i,δ(T )ε̄
′
iψ(1)

)

≡ 1√
N

N∑
i=1

1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1

ZT

T∑
l=1

∑
l 6=s≤t

Klh(δ0)εi,sε
′
i,l

)
ψ(1)

+
1√
N

N∑
i=1

(R2,i,T (1) +R2,i,T (2) +Op(

√
N

Th
) a.s., say. (59)

Let Wt,s = 1
ZT

(
Kth(δ0)

∑
l≥sKlh(δ0) +Ksh(δ0)

∑
l≥tKlh(δ0)

)
, we have

1√
N

N∑
i=1

1

Th

T∑
t=1

Kth(δ0)Φ(1)′

(
1

ZT

T∑
l=1

∑
l 6=s≤t

Klh(δ0)εi,sε
′
i,l

)
ψ(1)

=
1√
NTh

1

ZT
Φ(1)′

N∑
i=1

(
T∑
t=1

∑
s 6=t

Kth(δ0)
∑
l≥s

Klh(δ0)εi,sε
′
i,t

)
ψ(1)

=
1

2
√
NTh

1

ZT

N∑
i=1

T∑
t=1

∑
s 6=t

{
Kth(δ0)

∑
l≥s

Klh(δ0) +Ksh(δ0)
∑
l≥t

Klh(δ0)

}
Φ(1)′εi,sε

′
i,tψ(1)

=
1

Th

T∑
t=1

(
1√
N

N∑
i=1

∑
s<t

{
Wt,s(δ0)Φ(1)′εi,sε

′
i,tψ(1)

})

≡ 1

Th

T∑
t=1

W2,t,N (60)
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Next we only need to show that 1/
√
N
∑N

i=1R2,i,T (k)→p 0, k = 1, 2. which follows by modifying

the arguments used above in (55) and (56). Thus, (58) is proved.

So far, combining (57) and (58), we have

1√
NTh

{
N∑
i=1

T∑
t=1

Si,t(uit − ūi)Kth(δ0)−N
T∑
t=1

Kth(δ0)(∆νu −∆t
ν,ū(δ0))

}
a.s.
=

1

Th

T∑
t=1

(W1,t,T −W2,t,T ) ≡ 1

Th

T∑
t=1

Ut,T .

To prove (51), we only need to prove

1

Th

T∑
t=1

Ut,N
L

=⇒ N(0, CK∗ΩνΩu). (61)

Denote W∗t,s(δ0) = Kth(δ0)−Wt,s(δ0), we have

Ut,N ≡ W1,t,N −W2,t,N

=
N∑
i=1

(
1√
N

∑
s<t

W∗t,s(δ0)Φ(1)′εi,sε
′
i,tψ(1)

)
{Ut,N , Ft,N} is a martingale difference array with mean 0, where Ft,N = σ{εi,s : 1 ≤ i ≤ N, 1 ≤
s ≤ t} is a σ-filed. Next we use the central limit theory for martingale difference array. For

any ε > 0, it is easy to check that

1

T 2h2
E(Ut,NU ′t,NI(||Ut,N ||2 ≥ εTh)|Ft−1,N)→ 0,

as N, T →∞ simultaneously. Furthermore, we can also prove that

1

T 2h2

T∑
t=1

E(Ut,NU ′t,N |Ft−1,N)

=
1

T 2h2

T∑
t=1

∑
s<t

W∗2t,s(δ0)

(
1

N

N∑
i,j=1

E
(
Φ(1)′εi,sε

′
i,tψ(1)ψ(1)′εj,tε

′
j,sΦ(1)|Ft−1,N

))
=CK∗Σν,u + op(1)

because of

1

T 2h2

T∑
t=1

∑
s<t

W∗2t,s(δ0) =
1

T 2h2

T∑
t=1

∑
s<t

(Kth(δ0)−Wt,s(δ0))2

=
1

T 2h2

T∑
t=1

∑
s<t

(
K2
th(δ0) +W2

t,s(δ0)− 2 Kth(δ0)Wt,s(δ0)
)

→CK∗ ≡ CK∗(1) + CK∗(2)− 2CK∗(1, 2),
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where

1

T 2h2

T∑
t=1

∑
s<t

K2
th(δ0) =

1

T 2h2

T∑
t=1

K2
th(δ0)(t− δ(T ))→

∫ 1

−1

K2(u)du ≡ ν0 ≡ CK∗(1),

and

1

T 2h2

T∑
t=1

∑
s<t

W2
t,s(δ0) =

1

T 2h2

1

2

T∑
t=1

∑
s6=t

W2
t,s(δ0)

=
1

T 2h2

T∑
t=1

K2
th(δ0)

T∑
s 6=t

(
∑
l≥s

Klh(δ0)

ZT
)2 +

1

T 2h2

T∑
t=1

∑
s 6=t

Kth(δ0)Ksh(δ0)(
∑
l≥s

Klh(δ0)

ZT
)(
∑
l≥t

Klh(δ0)

ZT
)

=ν0

∫ 1

−1

(

∫ 1

s

K(t)dt)2ds+

(∫ 1

−1

K(t)(

∫ 1

t

K(u)du)dt

)2

≡ CK∗(2)

by noting Wt,s =Ws,t, and

1

T 2h2

T∑
t=1

∑
s<t

Kth(δ0)Wt,s(δ0)

=
1

T 2h2

T∑
t=1

Kth(δ0)
∑
s<t

{
Kth(δ0)

∑
l≥s

Klh(δ0)

ZT
+Ksh(δ0)

∑
l≥t

Klh(δ0)

ZT

}

=
1

T 2h2

T∑
t=1

K2
th(δ0)

∑
s<t

∑
l≥s

Klh(δ0)

ZT
+

1

T 2h2

T∑
t=1

Kth(δ0)
∑
l≥t

Klh(δ0)

ZT

∑
s<t

Ksh(δ0)

→
∫ 1

−1

K2(t)(

∫ t

−1

∫ 1

s

K(u)duds)dt+

∫ 1

−1

K(t)(

∫ 1

t

K(u)du)(

∫ t

−1

K(s)ds)dt ≡ CK∗(1, 2).

Thus, we complete the proof of lemma 2.

Proof of Proposition 1.

Proof. Let β̂t = β̂( t
T

) and recall that βt = β( t
T

). Observe that

ˆ̃u =Ỹ − M̃ β̂(δ0)−Dα̂

=ũ− B̃(X,β)− M̃ β̂(δ0)−D(α̂− α)

=
(

INT −D[D′W̃ (δ0)D]−1D′W̃ (δ0)
)(

ũ− M̃(β̂(δ0)− β(δ0))
)
− (B̃(X,β)− M̃β(δ0))

≡(INT − SNT )
(
ũ− M̃(β̂(δ0)− β(δ0))(1 + o(1))

)
,

where the term SNT = o(1). Without loss of generality, we let

ûi,t = ui,t −X′i,t(β̂t(δ0)− βt(δ0)),
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which implies that

Γ̂i,νu(j) =
1

τ ∗T − τT

τ∗T +1∑
t=τT

νi,t−jûi,t

=
1

τ ∗T − τT

τ∗T∑
t=τT +1

νi,t−jui,t −
1

τ ∗T − τT

τ∗T∑
t=τT +1

νi,t−jX
′
i,t(β̂t(δ0)− βt(δ0))

≡Γ̄i,νu(j)− Γ̃i,νu(j) (62)

for j = 0, 1, · · · , li, where τT = bτ∗T c and τ ∗T = b(1 − τ∗T )c for 0 < τ∗ < 1/2. Using (62), we

have

∆̂i,νu =

lT∑
j=0

W (
j

li
)Γ̂i,νu(j)

=

lT∑
j=0

W (
j

lT
)Γ̄i,νu(j)−

lT∑
j=0

W (
j

lT
)Γ̃i,νu(j)

≡∆̄i,νu + ∆̃i,νu. (63)

We show that
√
N(∆̂νu −∆νu) =

√
N(∆̄νu −∆νu) +

√
N ¯̃∆νu = op(1), (64)

where ∆̄νu = 1
N

∑N
i=1 ∆̄i,νu and ˜̄∆νu = 1

N

∑N
i=1

˜̄∆i,νu. We first prove that
√
N ¯̃∆νu is asymptoti-

cally negligible. Note that

√
N ¯̃∆νu =

1√
N

N∑
i=1

∆̃i,νu

=
1√
N

N∑
i=1

lT∑
j=0

W (
j

lTi
)Γ̃i,νu(j)

=
1√
N

N∑
i=1


lT∑
j=0

W (
j

lT
)

 1

τ ∗T − τT

τ∗T∑
t=τT +1

νi,t−jX
′
i,t(β̂t(δ0)− βt(δ0))

 ,

where

E

∣∣∣∣∣∣
∣∣∣∣∣∣
lT∑
j=0

W (
j

lT
)(

1

τ ∗T − τT

τ∗T∑
t=τT +1

νi,t−jX
′
i,t)

∣∣∣∣∣∣
∣∣∣∣∣∣

=E

∣∣∣∣∣∣
∣∣∣∣∣∣
lT∑
j=0

W (
j

lT
)(

1

τ ∗T − τT

τ∗T∑
t=τT +1

νi,t−j(Xi,0 +
t∑

s=1

νi,s)
′)

∣∣∣∣∣∣
∣∣∣∣∣∣

=Op(Th
√
lT/T ) = Op(h

√
lTT ).
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We will prove that

||β̂t(δ0)− βt(δ0)|| = Op(h
γ +

√
log(Th)

NT 2h2
) = Op(h

γ +

√
log(Th)

NT 2h2
) (65)

uniformly for t = τT + 1, · · · , τ ∗T . Then we have

√
N ¯̃∆νu = Op

(√
lT

√
log(Th)

T

)
= op(1), (66)

as lT = o( T
log(Th)

). To prove (65), let δ0 = t
T

, we have from (33)

β̂t − βt =

{[
M̃ ′W̃ ∗(t/T )M̃

]−1

M̃ ′W̃ ∗(t/T )B̃(X, β)− βt

}
+
[
M̃ ′W̃ ∗(t/T )M̃

]−1

M̃ ′W̃ ∗(t/T )ũ

≡Ξt
NT (1) + Ξt

NT (3), t = τT + 1, · · · , τ ∗T . (67)

From (50) and Lemma B.3 (formula (B.5)) and B.4 (formula (B.24))in Phillips et al. (2017),

we have

M̃ ′W̃ ∗(t/T )ũ =
N∑
i=1

T∑
s=1

(xi,s − xi,bt−Thc)(ui,s − ūi)Ksh(δ0) + op(
√
NTh).

We show that

sup
t

∣∣∣∣∣∣∣∣ 1

NT 2h2
M̃ ′W̃ ∗(t/T )ũ

∣∣∣∣∣∣∣∣ = max
τT≤t≤τ∗T

∣∣∣∣∣∣∣∣ 1

NT 2h2
M̃ ′W̃ ∗(t/T )ũ

∣∣∣∣∣∣∣∣ =

√
log(Th)

NT 2h2
.

Let Q̄t
i,T =

∑T
s=1Ksh(t/T )(xi,s − xi,bt−Thc)(ui,s − ūi)

max
τT +1≤t≤τ∗T

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

T∑
s=1

Ksh(δ0)(xi,s − xi,bt−Thc)(ui,s − ūi)

∣∣∣∣∣
∣∣∣∣∣

≤ max
τT +1≤t≤τ∗T

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

(Q̄t
i,T − EQ̄t

i,T )

∣∣∣∣∣
∣∣∣∣∣+ max

τT +1≤t≤τ∗T

∣∣∣∣NEQ̄t
i,T

∣∣∣∣
=op(

√
NTh(log(Th))1/2) +O(NTh) = Op(

√
NTh(log(Th))1/2) (if N/ log(Th)→ 0)

by letting c0 be some positive constant and using the Bernstein inequality, for sufficient large

C > c0 > 0, we have

P

(
max

τT +1≤t≤τ∗T

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

(Q̄t
i,T − EQ̄t

i,T )

∣∣∣∣∣
∣∣∣∣∣ > C

√
NT 2h2 log(NT )

)

≤
τ∗T∑

t=τT +1

P

(∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

(Q̄t
i,T − EQ̄t

i,T )

∣∣∣∣∣
∣∣∣∣∣ > C

√
NT 2h2 log(NT )

)

≤T exp

{
−CNT

2h2 log(NT )

c0NT 2h2

}
= O(T · (NT )−C/c0)→ 0. (68)
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Next, we show that

sup
τT +1≤t≤τ∗T

∣∣∣∣∣
∣∣∣∣∣ 1

NT 2h2

N∑
i=1

T∑
s=1

Ksh(t/T )(ηisη
′
is − η̄iη̄′i)− (1− CK)Ων

∣∣∣∣∣
∣∣∣∣∣ = op(1). (69)

Let ε∗i,t be an independent copy of εi,t and satisfy Assumption 3, where η∗i,s =
∑s

t=1 Φ(1)′ε∗i,t

and Gsh(t/T ) = hKsh(t/T ). Using Lemma B.4 (formula (B.23) and (B.25)) in Phillips et al.

(2017), we have

1

Th

2Th∑
s=1

K(
s− Th
Th

) =
1

Th

T∑
s=1

Ksh(t/T )

1

2T 2h2

T∑
s=1

η∗is(η
∗
is)
′K(

s− Th
Th

)
L
=

1

2T 2h2

T∑
s=1

ηis(ηis)
′Gsh(t/T )

do not rely on t. From (40), we have

1

NT 2h2
M̃ ′W̃ ∗(bTδ0c/T )M̃

=
1

NT 2h2

N∑
i=1

T∑
s=1

Ksh(bTδ0c/T )(ηisη
′
is − η̄iη̄′i) + oP (1)

L
=

1

NT 2h2

(
N∑
i=1

T∑
s=1

K(
s− Th
Th

)(η∗i,sη
∗′
i,s − η̄iη̄′i)

)
, (70)

uniformly for 0 < δ0 < 1. Thus, (69) is proved.

Now, we turn to consider
√
N(∆̄νu − ∆νu) = op(1) in (64). By Proposition 1 of Andrews

(1991) and using Assumption 5, we have

E||
√
N(∆̄νu −∆νu)||2 = E

∣∣∣∣∣
∣∣∣∣∣ 1√
N

N∑
i=1

(∆̄i,νu − E(∆̄i,νu) + E(∆̄i,νu)−∆νu)

∣∣∣∣∣
∣∣∣∣∣
2

=E
∣∣∣∣∆̄i,νu − E(∆̄i,νu)

∣∣∣∣2 +N ||E(∆̄i,νu)−∆νu||2

=

(
lT

τ ∗T − τT
+
N

l2qT

)
O(1) (71)

since the bandwidth parameter lT → ∞ and τ ∗T − τT = (1 − 2τ∗)T → ∞ for τ∗ ∈ (0, 1/2)

with lT/T → 0, and l2qT /T → ε > 0 for some q > 1/2 by Assumption 5, it follows that

E||
√
N(∆̄νu−∆νu)||2 → 0 with N/T → 0. Using (66) and (71), we complete the proof of (64).

The similar argument can be applied to Ω̂ω. In consequence, we have
√
N(Ω̂ω − Ωω) = op(1).
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Next we need to prove that
√
N || 1

Th

∑T
t=1Kth(δ0)(∆̂t

νū(δ0)−∆t
νū(δ0))|| = op(1). Note that

1

Th

T∑
t=1

Kth(δ0)||
√
N(∆̂t

νū(δ0)−∆t
νū(δ0))||

=
1

Th

T∑
t=1

Kth(δ0)
∑
l≤t

{
(
T∑
s=1

Ksh(δ0))−1

T∑
s=1

Ksh(δ0)|| 1√
N

N∑
i=1

(W (
s− l
lT

)Γ̂i(l − s)− E[νi,lui,s])||

}

≤ 1

Th

T∑
t=1

Kth(δ0)
1√
N

N∑
i=1

(
∑
s,l

||W (
s− l
lT

)Γ̂i(l − s)− E[νi,lui,s]||) = op(1).
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