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Abstract

In this paper we present the Edgeworth expansion for the Euler approximation
scheme of a continuous diffusion process driven by a Brownian motion. Our method-
ology is based upon a recent work [22], which establishes Edgeworth expansions associ-
ated with asymptotic mixed normality using elements of Malliavin calculus. Potential
applications of our theoretical results include higher order expansions for weak and
strong approximation errors associated to the Euler scheme, and for studentized ver-
sion of the error process.

Keywords: diffusion processes, Edgeworth expansion, Euler scheme, limit theo-
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1 Introduction

In this work we consider a one-dimensional continuous stochastic process (Xt)t∈[0,1] that
satisfies the stochastic differential equation

dXt = a(Xt)dt+ b(Xt)dWt with X0 = x0, (1.1)

where (Wt)t∈[0,1] is a Brownian motion, defined on a filtered probability space
(
Ω,F , (Ft)t∈[0,1],P

)
.

A simple and effective numerical scheme for the solution of (1.1) is the Euler approxima-
tion scheme, which is given as follows. Let ϕn : R+ → R+ be the function defined by
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ϕn(t) = i/n when t ∈ [i/n, (i + 1)/n). The continuous Euler approximation scheme is
described by

dXn
t = a

(
Xn
ϕn(t)

)
dt+ b

(
Xn
ϕn(t)

)
dWt with Xn

0 = x0. (1.2)

The probabilistic properties of the Euler approximation scheme have been investigated
in numerous papers. We refer to the classical work [3, 4, 9, 11, 12, 13] among many
others. Asymptotic results in the framework of non-regular coefficients can be found in
e.g. [2, 6, 8, 19].

In this paper we are aiming to derive an Edgeworth expansion for the error process

Un = Xn −X. (1.3)

Let us recall the classical convergence result for (Unt )t∈[0,1] from [9].

Theorem 1.1. [9, Theorem 1.2] Assume that the functions a, b are globally Lipschitz and
a, b ∈ C1(R). Then we obtain the stable convergence

V n :=
√
nUn

dst−→ V on C([0, 1]) (1.4)

equipped with the uniform topology, where V = (Vt)t∈[0,1] is the unique solution of the
stochastic differential equation

dVt = a′(Xt)Vtdt+ b′(Xt)VtdWt −
1√
2
bb′(Xt)dBt with V0 = 0, (1.5)

and (Bt)t∈[0,1] is a new Brownian motion defined on an extension of the probability space(
Ω,F , (Ft)t∈[0,1],P

)
and independent of the σ-field F .

We will see later that the limiting process V is an F-conditional Gaussian martingale
with F-conditional zero mean. In particular, for each t > 0, Vt has a mixed normal
distribution. The aim of this work is to derive an Edgeworth expansion associated with
Theorem 1.1. More specifically, for any regular q-dimensional random variable F and any
given times 0 < T1 < . . . < Tk ≤ 1, we would like to determine the function pn : Rk×Rq →
R such that it holds

sup
f∈Cq,k

∣∣∣∣E[f(V n
T1 , . . . , V

n
Tk
, F )]−

∫
Rk×Rq

f(z, x)pn(z, x)dzdx

∣∣∣∣ = o(1/
√
n) (1.6)

for a large class of functions Cq,k. The methodology is based upon the work of Yoshida [22],
which applies Malliavin calculus and stable convergence to obtain the Edgeworth expansion
associated with mixed normal limits. Another key ingredient in the derivation of (1.6) is
the stochastic expansion of the error process Un and a non-degeneracy condition, which
turns out to be rather complex in the case k > 1. Related articles include [7, 15, 16], which
have studied Edgeworth expansions associated to covariance estimators, power variations
and the pre-averaging estimator.
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The paper is structured as follows. Section 2.1 presents various definitions and nota-
tion. Sections 2.2 and 2.3 are devoted to derivation of Edgeworth expansion for multivari-
ate weighted quadratic functionals, which plays a crucial role in the asymptotic analysis
of the Euler scheme. In Section 3 we investigate the second order stochastic expansion
of the standardised error process associated with the Euler approximation scheme. The
Edgeworth expansion for the error process is investigated in Section 4. Section 5 is devoted
to several applications of our theoretical results, including asymptotic expansion of the
weak and strong approximation errors, and density expansion for the studentized version
of the error process. Some proofs are presented in Section 6.

2 Background

2.1 Definitions and notation

In this subsection we introduce basic notation, some elements of Malliavin calculus and
the definition of stable convergence in law.

All vectors x ∈ Rk are understood as column vectors; ‖x‖ stands for Euclidean norm
of x and x? denotes the transpose of x. For x ∈ Rk and m ∈ Zk+ we set xm :=

∏k
j=1 x

mj
j

and |m| =
∑k

j=1mj . For any function f : R→ R we denote by f (l) its lth derivative; for

a function f : Rk × Rq → R and α = (α1, α2) ∈ Zk+ × Zq+ the operator dα is defined via
dα = dα1

x1d
α2
x2 . The set C lp(Rk) (resp. C lb(Rk)) denotes the space of l times continuously

differentiable functions f : Rk → R such that all derivatives up to order l have polynomial
growth (resp. are bounded). For a matrix A ∈ Rk×k and a vector x ∈ Rk we write A[x⊗2]
to denote the quadratic form x?Ax; similarly, for x, y ∈ Rk we write y[x] for the linear
form y?x. Finally, i :=

√
−1.

We now introduce some notions of Malliavin calculus (we refer to the books of Ikeda
and Watanabe [18] and Nualart [14] for a detailed exposition of Malliavin calculus). The
set Lp denotes the space of random variables with finite pth moment and we use the
notation L∞− = ∩p>1Lp; the corresponding Lp-norms are denoted by ‖ · ‖Lp . Define
H = L2([0, 1], dx) and let 〈·, ·〉H denote the usual scalar product on H. We denote by Dl

the lth Malliavin derivative operator and by δl its unbounded adjoint (also called Skrokhod
integral of order l). The space Dl,p is the completion of the set of smooth random variables
with respect to the norm

‖Y ‖l,p :=

(
E[|Y |p] +

l∑
m=1

E[‖DmY ‖pH⊗m ]

)1/p

.

For any smooth k-dimensional random variable Y the Malliavin matrix is defined via
σY := (〈DYi, DYj〉H)1≤i,j≤k. We write ∆Y := det σY for the determinant of the Malliavin
matrix. Finally, we set Dl,∞ = ∩p≥2Dl,p. We sometimes use the notation Dl,p(Rk) to
denote the space of all k-dimensional random variable Y such that Yi ∈ Dl,p.

We use the notation Yn
dst−→ Y to denote the stable convergence in law. We recall

that a sequence of random variables (Yn)n∈N defined on (Ω,F ,P) with values in a metric
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space E is said to converge stably with limit Y , written Yn
dst−→ Y , where Y is defined

on an extension (Ω,F ,P) of the original probability space (Ω,F ,P), iff for any bounded,
continuous function g and any bounded F-measurable random variable Z it holds that

E[g(Yn)Z]→ E[g(Y )Z], n→∞. (2.1)

The notion of stable convergence is due to Renyi [17]. We also refer to [1] for properties
of this mode of convergence.

Finally, for two vector fields V0 and V1 we denote by Lie[V0;V1] the Lie algebra gen-

erated by V1 and V0. That is, Lie[V0;V1] = span
(⋃∞

j=0 Σj

)
, where Σ0 = {V1} and

Σj = {[V, Vi]; V ∈ Σj−1, i = 0, 1} (j ≥ 1) with the Lie bracket [·, ·]. Lie[V0;V1](x) stands
for Lie[V0;V1] evaluated at x.

2.2 Edgeworth expansion associated with mixed normal limits: The
quadratic case

In this subsection we will study the (second order) Edgeworth expansion associated with
certain quadratic functionals of Brownian motion that will be crucial for the treatment of
the error process V n. Indeed, we will see later that the dominating martingale term in the
expansion of V n has a quadratic form. The results are similar in spirit to [22, Theorem
4], but we will require quite different non-degeneracy arguments.

On a filtered Wiener space (Ω,F , (Ft)t∈[0,1],P) we consider a k-dimensional random
functional Zn, which admits the decomposition

Zn = Mn + n−1/2Nn, (2.2)

where Mn and Nn are tight sequences of random variables. We assume that Mn, which
will have a quadratic form, converges stably in law to a mixed normal variable M :

Mn
dst−→M, (2.3)

where the random variableM is defined on an extension (Ω,F ,P) of the original probability
space (Ω,F ,P) and, conditionally on F , M has a normal law with mean 0 and conditional
covariance matrix C ∈ Rk×k. In this case we use the notation

M ∼MN(0, C).

For concrete applications it is often useful to consider the Edgeworth expansion for the pair
(Zn, Fn), where Fn is another q-dimensional random functional satisfying the convergence
in probability

Fn
P−→ F.

Obviously, such a framework is important when the statistic at hand does not only depend
on the sequence Zn, but also on an external random variable F (in this case we may set
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Fn = F ). In the statistical context the most useful application is the case where Fn
P−→ C.

In this situation we obtain by properties of stable convergence that

F−1/2
n Zn

d−→ Nk(0, idk)

when Fn ∈ Rk×k is positive definite and idk denotes the identity matrix. Thus, the
asymptotic expansion of the law of (Zn, Fn) would imply the Edgeworth expansion for the

studentized statistic F
−1/2
n Zn.

In the next step we embed the previous static framework into a martingale setting. We
assume that the leading term Mn is a terminal value of some continuous (Ft)-martingale
(Mn

t )t∈[0,1], that is Mn = Mn
1 . We also consider stochastic processes (Mt)t∈[0,1] and

(Cnt )t∈[0,1] with values in Rk and Rk×k respectively, such that

M = M1, Ct = 〈M〉t, Cnt = 〈Mn〉t, Cn = 〈Mn〉1. (2.4)

Here the process (Mt)t∈[0,1], defined on extended probability space (Ω,F ,P), represents the
stable limit of the continuous (Ft)-martingale (Mn

t )t∈[0,1], while Cn denotes the quadratic
covariation process associated with Mn.

Now, we shall introduce a particular type of quadratic functionals. For a sequence
of time points (Tj)1≤j≤k not depending on n with 0 < T1 < . . . < Tk, we consider a
sequence of partitions πn = (ti)1≤i≤mn of [0, 1] such that 0 = t0 < t1 < . . . < tmn
and that {Tj}1≤j≤k ⊂ {ti}1≤i≤mn for every n ∈ N. Here tj may depend on n though
we omit n for notational simplicity. Let Ii = [ti−1, ti) and |Ii| = ti − ti−1. Suppose
that n4

∑mn
i=1 |Ii|5 = O(1) as n → ∞. Next, we consider a strongly predictable kernel

Kn = (Kn,j)1≤j≤k : Ω× [0, 1]→ Rk satisfying

Kn,j(t) = Kn,j(ti−1) for t ∈ Ii and Kn,j(t) = 0 if t ≥ Tj .

The aforementioned sequence of quadratic type martingales Mn = (Mn,j)1≤j≤k is defined
by

Mn,j
t =

√
n

mn∑
i=1

Kn,j(ti−1)

∫ ti∧t

ti−1∧t

∫ s

ti−1

dWrdWs, t ∈ [0, 1]. (2.5)

Let K : Ω× [0, 1]→ R be a continuous adapted process and set

Ijs =
1

2

∫ Tj

s
K(r)2dr, s ∈ (Tj−1, Tj ]. (2.6)

Our first set of conditions relates the kernel Kn to K and introduces some integrability
assumptions, which are similar in spirit to assumptions imposed in [22]. Recall that
F ∈ Rq, set ` = k + q + 8 and let 1

3 < d < 1
2 .

(B1) (i) Kn(t) ∈ D`+1,∞(Rk) and there exists a density Dr1,...,rmK
n(t) representing each

derivative such that

sup
r1,...,rm∈(0,1),
t∈[0,1], n∈N

∥∥Dr1,...,rmK
n(t)

∥∥
Lp < ∞

for every p > 1 and m = 0, 1, . . . , `+ 1.
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(ii) For every p > 1 and j = 1, . . . , k,

sup
1≤i≤mn

sup
t∈(ti−1,ti)

∥∥Kn,j(t)−K(t)1{t<Tj}
∥∥
`,p

= O(n−d)

as n→∞.

(iii) For every p > 1 and j = 1, ..., k,

sup
s∈(Tj−1,Tj)

∥∥∥∥∥∥
[

Ijs
Tj − s

]−1
∥∥∥∥∥∥
Lp

< ∞.

From (B1)(i), (ii) we deduce that

Cn,jt = 〈Mn,j〉t
P−→ Cjt =

1

2

∫ t∧Tj

0
K(s)2ds.

Furthermore, (B1)(iii) implies (
CjTj − C

j
Tj−1

)−1 ∈ L∞− (2.7)

for j = 1, . . . , k. In particular, detC−1 ∈ L∞− for C = (Cj1∧j21 )1≤j1,j2≤k.

Now, let us set

Ĉn =
√
n(Cn − C), F̂n =

√
n(Fn − F ), (2.8)

where Cn = Cn1 with Cnt = (〈Mn,j1 ,Mn,j2〉)1≤j1,j2≤k. In the validation of the asymptotic
expansion a truncation functional sn : Ω→ Rk will play an important role; see Section 6.4
for its explicit definition. We set `∗ = 2[q/2] + 4 and present the next set of assumptions
that determines the asymptotic distribution of the vector (Mn

· , Nn, Ĉn, F̂n) along with
some new integrability conditions.

(B2) (i) F ∈ D`+1,∞(Rq), supr1,...,rm∈(0,1) ‖Dr1,...,rmF‖Lp < ∞ for every p > 1 and m =
1, ..., `+ 1. Moreover r 7→ DrF and (r, s) 7→ Dr,sF (r ≤ s) are continuous a.s.

(ii) Fn ∈ D`+1,∞(Rq), Nn ∈ D`+1,∞(Rk) and sn = (sjn) ∈ D`,∞(Rk). Moreover,

sup
n∈N

{∥∥Ĉn∥∥`,p +
∥∥F̂n∥∥`+1,p

+
∥∥Nn

∥∥
`+1,p

+
∥∥sn∥∥`,p} < ∞

for every p > 1.

(iii) (Mn, Nn, Ĉn, F̂n)
dst−→ (M,N, Ĉ, F̂ ) for a random vector (M,N, Ĉ, F̂ ) defined

on an extension of (Ω,F , P ).

(iv) For u ∈ Rk and v ∈ Rq, the conditional expectations E
[
Ĉ|M1 = z

]
[u⊗2],

E
[
F̂ |M1 = z

]
[v] and E

[
N |M1 = z

]
are in the polynomial ring D`∗,∞(R)[z]

(with coefficients in D`∗,∞(R)).
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Finally, we will require a non-degeneracy condition on the pair (Mn
t , F ). Let us introduce

the process

Xjt = (Mn,1
1 , ...,Mn,j−1

1 ,Mn,j
t , F ).

(B3) (i) For each j = 1, ..., k, there exists a sequence (τ jn)n∈N ⊂ (Tj−1, Tj) such that

supn τ
j
n < Tj and that

sup
t∈[τ jn,Tj ]

P
[

detσXjt
< sjn

]
= O(n−ν)

for some ν > `/6.

(ii) lim supn→∞ E
[
(sjn)−p

]
<∞ for every p > 1 and j = 1, . . . , k.

2.3 Random symbols σ, σ and the main result

In order to present the Edgeworth expansion for the pair (Zn, Fn) we need to define two
random symbols σ and σ, which play a crucial role in what follows. We call σ the adaptive
(or classical) random symbol and σ the anticipative random symbol. The adaptive random
symbol σ is defined by

σ(z; iu, iv) =
1

2
E
[
Ĉ|M1 = z

]
[(iu)⊗2] + E

[
N |M1 = z

]
[iu] + E

[
F̂ |M1 = z

]
[iv].

Let K(t) = (K(1)1{t<Tj})1≤j≤k. The anticipative random symbol σ is defined by

σ(iu, iv) =
1

2

∫ 1

0
K(t)[iu]σt(iu, iv)dt (2.9)

where

σt(iu, iv) =

(
− 1

2
DtC[u⊗2] +DtF [iv]

)2

+

(
− 1

2
DtDtC[u⊗2] +DtDtF [iv]

)
.

The derivative DtDt stands for lims↑tDsDt. The full random symbol is defined by

σ = σ + σ

and has the form

σ(z; iu, iv) =
∑
α

cα(z)(iu)α1(iv)α2 (2.10)

where α = (α1, α2) ∈ Zk+ × Zq+.
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Under conditions of the previous subsection, the non-degeneracy of F is ensured and
it has a differentiable density function pF . Thus, the following function pn is well defined:

pn(z, x) = E
[
φ(z; 0, C)|F = x]pF (x) (2.11)

+ n−1/2
∑
α

(−dz)α1(−dx)α2

{
E
[
cα(z)φ(z; 0, C)|F = x

]
pF (x)

}
.

For positive numbers R and γ, E(R, γ) denotes the set of measurable functions f : Rk+q →
R such that |f(z, x)| ≤ R(1 + |z| + |x|)γ for all z ∈ Rk and x ∈ Rq. The error of the
approximation of the distribution of (Zn, Fn) by pn is evaluated by the quantity

∆n(f) =

∣∣∣∣E[f(Zn, Fn)
]
−
∫
f(z, x)pn(z, x)dzdx

∣∣∣∣
for f ∈ E(R, γ). The main result of this section is the following.

Theorem 2.1. Suppose that Zn is given by (2.2) with Mn defined by (2.5). Suppose that
(B1), (B2) and (B3) are satisfied. Then

sup
f∈E(R,γ)

∆n(f) = o(n−1/2) (2.12)

as n→∞ for any positive numbers R and γ.

3 Stochastic expansion of the error process

In this section we derive explicit expressions for the first and second order approximation
of the normalised error process V n. The following well known lemma, which presents an
explicit solution of an affine stochastic differential equation, will be a helpful tool.

Lemma 3.1. Assume that (Yt)t∈[0,1] is the unique strong solution of the stochastic differ-
ential equation

dYt = (ctYt + c̃t)dt+ (dtYt + d̃t)dWt with Y0 = y0, (3.1)

where (ct)t∈[0,1], (c̃t)t∈[0,1], (dt)t∈[0,1], (d̃t)t∈[0,1] are predictable stochastic processes. Then
the process (Yt)t∈[0,1] exhibits an explicit solution given by

Yt = Σt

[
y0 +

∫ t

0
Σ−1
s

(
(c̃s − dsd̃s)ds+ d̃sdWs

)]
, (3.2)

Σt = exp

(∫ t

0
dsdWs +

∫ t

0

(
cs −

1

2
d2
s

)
ds

)
.

Proof. The proof follows a classical route for solutions of inhomogeneous differential equa-
tions. First, we recall that the process Σ satisfies the stochastic differential equation
dΣt = ctΣtdt + dtΣtdWt, which is shown by applying Itô’s formula to the function
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f(x, y) = exp(x + y). Now, setting Zt = y0 +
∫ t

0 Σ−1
s (c̃s − dsd̃s)ds +

∫ t
0 Σ−1

s d̃sdWs, we
conclude by the product formula that

Yt = y0 +

∫ t

0
ΣsdZs +

∫ t

0
ZsdΣs + 〈Z,Σ〉t

= y0 +

∫ t

0
(c̃s − dsd̃s)ds+

∫ t

0
d̃sdWs +

∫ t

0
csZsΣsds+

∫ t

0
dsZsΣsdWs +

∫ t

0
dsd̃sds

= y0 +

∫ t

0
(csYs + c̃s)ds+

∫ t

0
(dsYs + d̃s)ds

and the proof is complete.

Applying the same type of proof as in Lemma 3.1, we deduce that the limiting process
V introduced at (1.5) can be written explicitly as

Vt = − 1√
2

Σt

∫ t

0
Σ−1
s bb′(Xs)dBs,

where the process (Σt)t≥0 is defined by

Σt = exp

(∫ t

0
b′(Xs)dWs +

∫ t

0

(
a′ − 1

2
(b′)2

)
(Xs)ds

)
. (3.3)

Since the process Σ is F-measurable, we see that V is an F-conditional Gaussian martin-
gale with F-conditional mean zero.

In the first step we will obtain an explicit representation of the leading term of the
normalised error process V n defined at (1.4). This stochastic expansion can be also found
in the proof of [9, Theorem 1.2]. Nevertheless, we will prove this result for the sake of
completeness.

Theorem 3.2. Let us consider the process

V
n
t = −

√
nΣt

∫ t

0
Σ−1
ϕn(s)bb

′(Xn
ϕn(s))(Ws −Wϕn(s))dWs, (3.4)

where Σ is defined in (3.3). Then it holds that

sup
t∈[0,1]

|V n
t − V

n
t |

P−→ 0.

We remark at this stage that the process (Σ−1
t V

n
t )t∈[0,1] is a continuous martingale of

quadratic form with random weights. Thus, second order Edgeworth expansion for the
functional V

n
t can be deduced from the corresponding expansion for the pair (Σt,Σ

−1
t V

n
t ).

In the next step we need to determine the second order stochastic expansion for the
standardised error process (V n

t )t∈[0,1]. Apart from rather complex approximation tech-
niques, the result of Lemma 3.1 is crucial for the next theorem. We remark that this
statement has an interest in its own right.
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Theorem 3.3. Assume that the functions a, b are globally Lipschitz and a, b ∈ C2(R).
Define the process (Rnt )t≥0 via

dRnt =

(
1

2
√
n
a′′(Xt)(V

n
t )2 +

√
nb
(
(b′)2 − a′

)
(Xn

ϕn(t))(Wt −Wϕn(t)) (3.5)

−
√
naa′(Xn

ϕn(t))(t− ϕn(t))−
√
n

2
b2a′′(Xn

ϕn(t))(Wt −Wϕn(t))
2

)
dt

+
( 1

2
√
n
b′′(Xt)(V

n
t )2 +

√
n
(
b(b′)2 − b2b′′

2

)
(Xn

ϕn(t))(Wt −Wϕn(t))
2

−
√
nab′(Xn

ϕn(t))(t− ϕn(t))
)
dWt = Rnt (1)dt+Rnt (2)dWt

Then the process
√
nRn is tight and we have that

√
n sup
t∈[0,1]

∣∣∣∣V n
t −

(
V
n
t + Σt

∫ t

0
Σ−1
s

(
dRns − b′(Xs)R

n
s (2)ds

))∣∣∣∣ P−→ 0.

Theorem 3.3 implies that, for any fixed t ∈ [0, 1], we have the stochastic expansion
V n
t = Σt(M

n
t + n−1/2Nn

t ) with

Mn
t = Σ−1

t V
n
t , Nn

t =
√
n

∫ t

0
Σ−1
s

(
dRns − b′(Xs)R

n
s (2)ds

)
+ oP(1). (3.6)

In the next section we will determine the stable central limit theorem for the triplet
(Mn

t ,
√
n(Cnt − Ct), Nn

t )t∈[0,1].

4 Stable central limit theorems and Edgeworth expansion

4.1 Central limit theorems

Having derived the stochastic expansion for the standardised error process (V n
t )t∈[0,1] in

the previous section, we now need to prove the stable central limit theorem required in
assumpion (B2)(iii). For this purpose we introduce the following auxiliary processes:
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Ant (1) = n

∫ t

0
Σ−1
s b

(
(b′)2 − a′

)
(Xn

ϕn(s))
(
ϕn(s+ n−1)− s

)
dWs (4.1)

− n
∫ t

0
Σ−1
s ab′(Xn

ϕn(s))(s− ϕn(s))dWs

+ n

∫ t

0
Σ−1
s

(
b(b′)2 − b2b′′

2

)
(Xn

ϕn(s))(Ws −Wϕn(s))
2dWs,

Ant (2) = 2n3/2

∫ t

0

(
Σ−1
s bb′(Xn

ϕn(s))
)2 (

ϕn(s+ n−1)− s
) (
Ws −Wϕn(s)

)
dWs, (4.2)

Ant (3) = n

∫ t

0
Σ−1
s a

(
(b′)2 − a′

)
(Xn

ϕn(s)) (s− ϕn(s)) ds (4.3)

− n

2

∫ t

0
Σ−1
s

(
b2a′′ + b2b′b′′ − 2b(b′)3

)
(Xn

ϕn(s))
(
Ws −Wϕn(s)

)2
ds.

Our first asymptotic result is the following stable central limit theorem.

Proposition 4.1. Assume that conditions of Theorem 3.3 are satisfied. Then it holds
that

Ln := (Mn, An(1), An(2))
dst−→ L =

∫ ·
0
vsdWs +

∫ ·
0

(us − v?svs)1/2dBs on C([0, 1])3,

(4.4)

where (Bt)t∈[0,1] is a 3-dimensional Brownian motion defined on an extension (Ω,F ,P) of
the original probability space and independent of F , and the processes vs = (v1

s , v
2
s , v

3
s),

us = (uijs )1≤i,j≤3 are defined by

v1
s = v3

s = 0, v2
s = Σ−1

s

(
b(b′)2 − ab′ + a′b

2
− b2b′′

4

)
(Xs),

u12
s = u21

s = u23
s = u32

s = 0,

u11
s =

1

2

(
Σ−1
s bb′(Xs)

)2
, u33

s =
1

3

(
Σ−1
s bb′(Xs)

)4
, u13

s = u31
s = −1

3

(
Σ−1
s bb′(Xs)

)3
,

u22
s =

1

3
Σ−2
s

(
b2
[(

(b′)2 − a′
)2

+

(
(b′)2 − bb′′

2

)(
4(b′)2 − 3bb′′

2
− a′

)]
+ (ab′)2 − abb′

(
3(b′)2 − a′ − bb′′

) )
(Xs).

Proof. Note that Ln is a continuous martingale with mean zero. According to [10, Theorem
IX.7.3], it is sufficient to prove that

〈Ln〉t
P−→
∫ t

0
usds, 〈Ln,W 〉t

P−→
∫ t

0
vsds, 〈Ln, Q〉t

P−→ 0, ∀t ∈ [0, 1],
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where the last statement should hold for any bounded continuous martingale Q with
〈W,Q〉 = 0. The first two statements follow by a straightforward but tedious computation

taking into account that Xn
s

P−→ Xs for any s ∈ [0, 1], sups∈[0,1] |ϕn(s) − s| → 0 and the
continuity of involved processes/functions. The third condition is a consequence of the
formula 〈

∫ ·
0 wsdWs, Q〉t =

∫ t
0 wsd〈W,Q〉s = 0 for any predictable process (ws)s∈[0,1].

As a consequence of the previous result we deduce the joint stable central limit theorem
for the triplet (Mn

t , N
n
t ,
√
n(Cnt − Ct))t∈[0,1].

Proposition 4.2. Assume that conditions of Theorem 3.3 are satisfied. Then it holds
that

(Mn, Nn,
√
n(Cn − C))

dst−→
(
L1,

1

2

∫ ·
0

Σs

(
a′′ + b′′ − b′b′′

)
(Xs)(L

1
s)

2ds+ L2 +A(3), L3

)
:= (M,N, Ĉ) on C([0, 1])3, (4.5)

where the process L = (L1, L2, L3) has been introduced in Proposition 4.1 and the process
(At(3))t∈[0,1] is defined as

At(3) =

∫ t

0
Σ−1
s

(
1

2
a(b′)2 +

1

2
b(b′)3 − 1

2
aa′ − 1

4
a′′b2 − 1

4
b2b′b′′

)
(Xs)ds.

Proof. First of all, it holds that supt∈[0,1] |Ant (3)−At(3)| P−→ 0, which is due to [9, Theorem

7.2.2]. Secondly, using the identities (Wb − Wa)
2 − (b − a) = 2

∫ b
a (Ws − Wa)dWs and∫ b

a (Ys−Ya)ds =
∫ b
a (b−s)dYs, which hold for any b > a and any continuous semimartingale

Y , we obtain that √
n(Cnt − Ct) = Ant (2).

Furthermore, observing the definition (3.5) of the process Rn, we deduce the identity

Nn
t =
√
n

∫ t

0
Σ−1
s

(
dRns − b′(Xs)R

n
s (2)ds

)
+ oP(1)

= Ant (1) +Ant (3) +
1

2

∫ t

0
Σ−1
s (V n

s )2
(
a′′ + b′′ − b′b′′

)
(Xs)ds+ oP(1).

Now, due to convergence (4.4) in Proposition 4.1 and the properties of stable convergence

we deduce that (Mn, An(1), An(2), An(3),Σ, X)
dst−→ (L1, L2, L3, A(3),Σ, X) on C([0, 1])6.

Hence, by [10, Theorem VI.6.22] and continuous mapping theorem for stable convergence
applied to the function H : C([0, 1])6 → C([0, 1])3

H(y) :=

(
y1, y2 + y4 +

1

2

∫ ·
0
y5(s)−1(y1(s)y5(s))2

(
a′′ + b′′ − b′b′′

)
(y6(s))ds, y3

)
we obtain that

(Mn, Nn,
√
n(Cn − C))

dst−→ (M,N, Ĉ) on C([0, 1])3.

This completes the proof of Proposition 4.2.
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We remark that the 3-dimensional limiting process (M,N, Ĉ) is an F-conditional Gaus-
sian martingale. This property will help us to compute the classical random symbol
σ(z, iu, iv) in the next section.

4.2 Multivariate Edgeworth expansion associated with the Euler scheme

Let us now consider fixed time points 0 = T0 < T1 < . . . < Tk ≤ 1. In this section we will
investigate the multivariate Edgeworth expansion for the vector (V n

T1
, . . . , V n

Tk
). We recall

the representation introduced at (3.6):

V n
Tj = ΣTj (M

n
Tj + n−1/2Nn

Tj ) with

Mn
Tj = Σ−1

Tj
V
n
Tj , Nn

Tj =
√
n

∫ Tj

0
Σ−1
s

(
dRns − b′(Xs)R

n
s (2)ds

)
+ oP(1).

According to the Edgeworth expansion theory demonstrated in Section 2, we will first
derive the density expansion for the vector (ΣTj ,M

n
Tj

+ n−1/2Nn
Tj

)1≤j≤k.

We define the k-dimensional (Ft)-martingale with componentsMn,j := (Mn
min(t,Tj)

)t∈[0,1],

which obviously satisfies the terminal condition M j,n
1 = Mn

Tj
for j = 1, . . . , k. Simi-

larly, we set Nn,j = Nn
Tj

. We introduce the set of increasing numbers (ti)0≤i≤mn via

{ti} = {j/n : j = 0, . . . , n} ∪ {T1, . . . , Tk}. In the notation of Section 2.2 the martingale
Mn,j satisfies the representation (2.5) with

Kn,j(s) = −Σ−1
ϕn(s)bb

′(Xn
ϕn(s))1[0,Tj)(ϕn(s)) and K(s) = −Σ−1

s bb′(Xs). (4.6)

The anticipative random symbol σ is then defined through the identity (2.9). Now, we
turn our attention to the adaptive random symbol σ.

We consider a q := (k + q)-dimensional random variable

G = (ΣT1 , . . . ,ΣTk , F ),

where F is a q-dimensional random functional. From Proposition 4.2 we readily deduce
the stable convergence(

Mn, Nn,
√
n(Cn − C)

) dst−→
(
M,N, Ĉ

)
(4.7)

where Mn = (Mn,1, . . . ,Mn,k) and Nn = (Nn,1, . . . , Nn,k). Now, we need to determine
the mixed normal representation of the vector (M,N, Ĉ). Note that the F-conditional
mean of the first and the third component is zero, which is due to Proposition 4.2. On the
other hand, the F-conditional mean of N is not vanishing. Observing the representation
of N in Proposition 4.2 and applying Itô’s formula we conclude that

µj := E[N j |F ] =

∫ Tj

0
v2
sdWs +ATj (3) +

1

2

∫ Tj

0
Σs

(
a′′ + b′′ − b′b′′

)
(Xs)

(∫ s

0
u11
r dr

)
ds,
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where the processes v2, u11 and A(3) have been introduced in Propositions 4.1 and 4.2.
Furthermore, the F-conditional covariance structure of the vector (M,N, Ĉ) is fully de-
termined by Proposition 4.2. Thus, setting µ = (µ1, . . . , µk), we may write

(M1, N, Ĉ) ∼MN

(0, µ, 0),

Θ11 Θ12 Θ13

Θ21 Θ22 Θ13

Θ31 Θ32 Θ33

 .

Due to F-conditional Gaussianity of the limit (M1, N, Ĉ), the adaptive symbol σ has the
following form:

σ(z, iu, iv) =
(Θ31Θ−1

11 z)[(iu)⊗2]

2
+ (µ+ Θ21Θ−1

11 z)[iu] z, u ∈ Rk. (4.8)

Combining two random symbols, we end up with the approximative density

p(Zn,G)
n (z, y, x) = E[φ(z; 0, C)|G = (y, x)]pG(y, x)

+n−1/2
∑
j

(−dz)mj (−dx)nj
(
E [cj(z)φ(z; 0, C)|G = (y, x)] pG(y, x)

)
, (4.9)

with (z, x, y) ∈ Rk × Rk × Rq, as in (2.11).

In this setting, however, the kernels Kn,j and K are defined by (4.6), and the func-
tionals cα(z) in the representation (2.10) of the full random symbol σ and also in (4.9) are
associated with σ of (4.8) and σ of (2.9).

In the following we will assume the following condition:

(A) The functions a and b are in C∞(R) and all their derivatives of positive order are
bounded.

Under (A) conditions of Theorem 2.1 can be slimed down. Recall that the variables Ijs are
defined by (2.6).

(C1) For every p > 1 and j = 1, ..., k,

sup
s∈(Tj−1,Tj)

∥∥∥∥∥∥
[

Ijs
Tj − s

]−1
∥∥∥∥∥∥
Lp

< ∞.

Recall that ` = k + q + 8.

(C2) F ∈ D`+1,∞(Rq), supr1,...,rm∈(0,1) ‖Dr1,...,rmF‖Lp < ∞ for every p > 1 and m =
1, ..., `+ 1. Moreover, r 7→ DrF and (r, s) 7→ Dr,sF (r ≤ s) are continuous a.s.

(C3) detσG ∈ L∞−.

Under the aforementioned conditions we obtain the following theorem, which is proved
in Section 6.4.
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Theorem 4.3. Suppose that conditions (A), (C1), (C2) and (C3) are fulfilled. Then, for
every pair of positive numbers (K, γ),

sup
h∈E(K,γ)

∣∣∣∣E[h(Zn, G)]−
∫
Rk×Rk×Rq

h(z, y, x)p(Zn,G)
n (z, y, x)dzdydx

∣∣∣∣ = o(n−1/2)

as n→∞.

As a consequence of Theorem 4.3 we finally obtain the approximative density of the
pair (Vn, F ) for Vn = (V n

T1
, . . . , V n

Tk
) and an external q-dimensional random variable F .

Corollary 4.4. We set

p(Vn,F )
n (z, x) =

∫
Rk+

1

y1 · · · yk
p(Zn,G)
n (z1/y1, . . . , zk/yk, y1, . . . , yk, x) dy. (4.10)

Under the conditions of Theorem 4.3 we obtain that

sup
h∈E(K,γ)

∣∣∣∣E[h(Vn, F )]−
∫
Rk×Rq

h(z, x)p(Vn,F )
n (z, x)dzdx

∣∣∣∣ = o(n−1/2).

Theorem 4.3 relies on the non-degeneracy of G. We will discuss some sufficient con-
ditions in the following subsections. When k ≥ 2, the non-degeneracy becomes a global
problem and it is not so straightforward to consider the question in full generality. How-
ever, a localization method provides a practical solution.

4.3 On condition (C1)

In this section we will give a sufficient condition for (C1). We are working in the setting
of Section 4.2 imposing assumption (A). We consider the following condition:

(C1]) (i) infx∈R |b(x)| > 0.

(ii) There exists a compact set B ⊆ R such that

(a) infx∈Bc |b′(x)| > 0,

(b)
∑∞

j=1 |b(j)(x)| 6= 0 for each x ∈ B.

For example, in the setting of null drift, if Xt visits the set {x : b′(x) = 0} after some
time, then Σt does not diffuse there and we never get non-degeneracy of Σt thereafter.
This explains the necessity of a global condition like (C1])(ii)(a). As a matter of fact, such
a degenerate case is essentially in the scope of the classical expansion for a martingale with
an exactly normal limit (cf. [20]). Now we have the following result.

Proposition 4.5. Condition (C1) holds under (A) and (C1]).
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Proof. We need to show that

sup
s∈(Tj−1,Tj)

∥∥∥∥∥∥
[

Ijs
Tj − s

]−1
∥∥∥∥∥∥
Lp

< ∞ (4.11)

for every p > 1 and j = 1, . . . , k. Let s ∈ (Tj−1, Tj). Recalling (2.6), we have

Ijs
Tj − s

=
1

2

1

Tj − s

∫ Tj

s
Σ−2
r {bb′(Xr)}2dr

≥ 1

2
inf

r∈[s,Tj ]
Σ−2
r ×

1

Tj − s

∫ Tj

s
{bb′(Xr)}2dr.

By (C1]) and the compactness of B, there exist a finite set N ⊂ B, a positive constant c
and an integer m ≥ 2 such that

{bb′(x)}2 ≥ min
z∈N

cm/2(1 ∧ |x− z|m) (4.12)

for all x ∈ R. Indeed, by (C1])(i) and (ii)(a), there exists a positive constant c′ such that
infx∈Bc{bb′(x)}2 ≥ c′. For each z ∈ B, by (C1])(ii)(b), there exists an integer jz ≥ 1 such
that b(jz)(z) 6= 0 and b′(x) = ((jz−1)!)−1b(jz)(z)(x−z)jz−1+· · · for all x near z. Therefore,
from (C1])(i), for each z ∈ B, there exists a positive constant cz and a neighborhood Bz
such that {bb′(x)}2 ≥ cz(1 ∧ |x − z|mz) for all x ∈ Bz, with mz = (jz − 1)2 ≥ 0. Since B
is compact, one can find a finite set N ⊂ B such that B ⊂ ∪z∈NBz, and hence

{bb′(x)}2 ≥ min
z∈N

(
min
z′∈N

cz′
)(

1 ∧ |x− z|maxz′∈N mz′
)

for all x ∈ B since there exists z for each x ∈ B such that x ∈ Bz. If we set c =(
min{c′,minz∈N cz}

)2/m
for m = max{2,maxz∈N mz} we obtain (4.12).

Let δ > 0 and B0 := {x : dist (x,N ) < 2δ}. Let si = s + i(Tj − s)/n. Then, there
exists n0 ∈ N independent of s such that for n ≥ n0,

P
[

1

Tj − s

∫ Tj

s
{bb′(Xr)}2dr ≤

1

n3m/2

]
≤ P

[
cm/2

Tj − s

∫ Tj

s
min
z∈N

(1 ∧ |Xr − z|m)dr ≤ 1

n3m/2

]
≤ P

[
c

Tj − s

∫ Tj

s
min
z∈N

(1 ∧ |Xr − z|2)dr ≤ 1

n3

]
≤

n∑
i=1

P
[

c

Tj − s

∫ si

si−1

min
z∈N

(1 ∧ |Xr − z|2)dr ≤ 1

n4

]

=
n∑
i=1

P
[

c

Tj − s

∫ si

si−1

min
z∈N

(1 ∧ |Xr − z|2)dr ≤ 1

n4
, inf
r∈[si−1,si]

min
z∈N
|Xr − z| < n−1/2

]

≤
∑
z∈N

n∑
i=1

P
[

c

Tj − s

∫ si

si−1

(1 ∧ |Xr − z|2)dr ≤ 1

n4
, sup
u∈[si−1,si]

|Xr − z| < n−1/3

]
+O(n−L)
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where L is any positive number independent of s; in fact, on the event
{

infr∈[si−1,si] |Xr−
z| < n−1/2

}
for z ∈ N , the process X keeps supr′∈[si−1,si] |Xr′−z| < n−1/3 with probability

1 − O(n−L−1), and minz′∈N |Xr′ − z′| = |Xr′ − z| for n ≥ n0 since the points in N are
isolated. The first term of the right-hand side of the above inequality is bounded by

∑
z∈N

n∑
i=1

P
[

c

Tj − s

∫ si

si−1

|Xr − z|2dr ≤
1

n4
, Xr ∈ B0 for all r ∈ [si−1, si]

]

=
∑
z∈N

n∑
i=1

P
[

1

si − si−1

∫ si

si−1

|Xr − z|2dr ≤
1

cn3
, Xr ∈ B0 for all r ∈ [si−1, si]

]
for large n. Since on the bounded set B0, the process Xr behaves like a Brownian motion,
the last probability is bounded by c−1

1 n exp(−c1n) for some positive constant c1 inde-
pendent of s ∈ (Tj−1, Tj), which follows from a similar inequality to [18, Lemma 10.6].
Consequently, we obtain (4.11) by using the estimate

sup
s∈(Tj−1,Tj)

E[Γ−ps ] = sup
s∈(Tj−1,Tj)

∫ ∞
0

ptp−1P[Γs < t−1]dt

≤
∞∑
n=0

p(n+ 1)3mp/2 sup
s∈(Tj−1,Tj)

P[Γs < n−3m/2] < ∞

for Γs = (Tj − s)−1
∫ Tj
s {bb

′(Xr)}2dr and p > 1.

4.4 On condition (C3) for non-degeneracy of G in the case k = 1

The problem of non-degeneracy of σG can be reduced to local properties of the stochastic
differential equations in the case k = 1. Consider a system of stochastic differential
equations in Stratonovich form

dXt = V 0(Xt)dt+ V 1(Xt) ◦ dWt, X0 = (x0, 1, f) (4.13)

for a (2 + q)-dimensional process Xt = (X
(j)
t )j=1,2,3, where V i = (V

(j)
i )j=1,2,3 (i = 0, 1)

are vector fields. The elements of V i’s are specified as follows:

V
(1)
0 (x) = ã(x1) := a(x1)− 1

2
b(x1)b′(x1), V

(1)
1 (x) = b(x1),

V
(2)
0 (x) = ã′(x1)x2 =

{
a′(x1)− 1

2

(
b′′(x1)b(x1)− (b′(x1))2

)}
x2,

V
(2)
1 (x) = b′(x1)x2.

Suppose that the vector fields V
(3)
i (i = 0, 1) are smooth and their derivatives of positive

order are bounded, and that the q-dimensional random variable F is represented by the

third element of XT as F = X
(3)
T , T ∈ (0, 1]. In the case F = 0, Xt is (X

(1)
t , X

(2)
t ) and V i

are (V
(1)
i , V

(2)
i ) (i = 0, 1) respectively. By definition, X

(1)
T = XT and X

(2)
T = ΣT .
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The Lie algebra generated by V i (i = 0, 1) at x ∈ R2+q is denoted by Lie[V 1, V 0](x),
namely, it is the linear span of the vectors in ∪∞i=0Vi with V0 = {V 1(x)}, Vi = {[V j(x),V];V ∈
Vi−1} (i ∈ N), where [V,W ](x) = DV (x)W (x)−DW (x)V (x) with DV (x) being the deriva-
tive of V at x. A simple criterion for non-degeneracy of σG is provided by the Hörmander
condition (see Section 2.3.2 in [14] for details).

Proposition 4.6. Let k = 1. For a constant X0, if span Lie[V 1, V 0](X0) = R2+q, then
(C3) holds.

A variation is the case where F has a component XT , that is, F = (XT , F1); F1 may

be empty. If we have a representation F1 = X
(3)
T , then Proposition 4.6 remains valid.

The non-degeneracy problem for σG becomes a global one when k > 1 since we need
non-degeneracy of ΣT2 − ΣT1 , but the support of ΣT1 is no longer compact. Though we
could assume some strong condition that gives uniform non-degeneracy over the whole
space, it would be a quite restrictive solution. Instead, in Section 4.5, we will consider
a different way by slightly modifying Theorem 4.3, but such modification keeps the error
bound of the approximation meaningful in practice.

4.5 Localization

To convey the idea simply, we shall only treat the case F = (XTj )j=1,...,k, while more
general cases can be formulated in a similar manner.

Let us consider the situation of Section 4.4 with the system (4.13) of stochastic differ-

ential equations for Xt = (X
(1)
t , X

(2)
t ) = (Xt,Σt).

(D) Lie[V 1, V 0](x, 1) = R2 for x ∈ I.

For positive numbers K and γ, let E(K, γ, I) be the set of measurable functions h :
R3k → R such that h(z, y, x) = 0 when xj ∈ Ic for some j ∈ {1, ..., k− 1}, x = (xj)j=1,...,k,
and that |h(z, y, x)| ≤M(1 + |z|+ |y|+ |x|)γ for all (z, y, x) ∈ R3k.

Denote by (Xt(s, x),Σt(s, (x, y))) the stochastic flow defined by{
dXt(s, x) = ã(Xt(s, x))dt+ b(Xt(s, x)) ◦ dWt,

dΣt(s, (x, y)) = ã′(Xt(s, x))Σt(s, (x, y))dt+ b′(Xt(s, x))Σt(s, (x, y)) ◦ dWt

with (Xs(s, x),Σs(s, (x, y))) = (x, y), 0 ≤ s ≤ t ≤ 1. Assume conditions (A), (C1) and
(D). Then by Proposition 4.6 and Theorem 4.3, for each xj−1 ∈ I and yj−1 > 0, there
exists a density

q(j)
n

(
ζj , ηj , xj |yj−1, xj−1

)
= p

(
V nTj
−V nTj−1

,y−1
j−1ΣTj (Tj−1,(xj−1,yj−1)),XTj (Tj−1,xj−1)

)
n

(
ζj , ηj , xj

)
with initial value (ΣTj−1 , XTj−1) = (yj−1, xj−1) of the system starting at time Tj−1 that
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gives the asymptotic expansion

E
[
hj
(
V n
Tj − V

n
Tj−1

, y−1
j−1ΣTj , XTj

)∣∣ΣTj−1 = yj−1, XTj−1 = xj−1

]
−
∫
R3

hj(ζj , ηj , xj)q
(j)
n

(
ζj , ηj , xj |yj−1, xj−1

)
dζjdηjdxj

= o(n−1/2)

uniformly in hj ∈ E(K, γ) for every (K, γ) ∈ (0,∞)2. Indeed, q
(j)
n

(
ζj , ηj , xj |yj−1, xj−1

)
is

the density pn(ζj , ηj , xj) in the one-step case starting from time Tj−1 and the initial values

X0 = xj−1 ∈ I and Σ0 = 1. Then we obtain a function q
(Zn,G)
n (z, y, x) that approximates

the distribution of (Zn, G) with G = ((ΣTj )j=1,...,k, (XTj )j=1,...,k):

q(Zn,G)
n (z, y, x) =

k∏
j=1

q(j)
n

(
zj − zj−1, y

−1
j−1yj , xj

∣∣yj−1, xj−1

)
y−1
j−1

for (z, y, x) =
(
(zj)j=1,...,k, (yj)j=1,...,k, (xj)j=1,...,k

)
, (z0, y0) = (0, 1). We should remark

that this function is defined only when xj−1 ∈ I for j = 1, ..., k. Now we give a localized
version of Theorem 4.3.

Theorem 4.7. Suppose that Conditions (A), (C1) and (D) are fulfilled for some finite
closed interval I. Let G = ((ΣTj )j=1,...,k, (XTj )j=1,...,k). Then, for every pair of positive
numbers (K, γ),

sup
h∈E(K,γ,I)

∣∣∣∣E[h(Zn, G)]−
∫
Rk×Rk×Rk

h(z, y, x)q(Zn,G)
n (z, y, x)dzdydx

∣∣∣∣ = o(n−1/2)

as n→∞.

For a sketch of the proof of Theorem 4.7, we notice that the function h admits the
estimate

|h(z, y, x)| ≤ M1

k∏
j=1

(
1 + |zj |+ |yj |+ |xj |)γ1

for some (M1, γ1) ∈ (0,∞)2. Then repeated use of the approximation yields the desired
error bound.

The asymptotic expansion for (Vn, (XTj )j=1,...,k) as in Corollary 4.4 also follows under
conditions of Theorem 4.7.

5 Applications

5.1 Strong and weak error expansions

As the first application of the density expansion introduced in (4.10) we study the strong
and the weak approximation error associated with the Euler approximation scheme.
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Proposition 5.1. (Weak and strong approximation errors) Suppose that conditions of
Theorem 4.3 are satisfied.

(i) (Strong approximation error) Let pVnn (z) be the marginal density obtained from p
(Vn,F )
n (z, x),

defined at (4.10), by projection onto the first component and let Un = (Xn
T1
, . . . , Xn

Tk
)−

(XT1 , . . . , XTk). Then we obtain the following expansion for the Lp-norm of the ap-
proximation error

E[‖Un‖p]1/p = n−1/2

(∫
Rk
‖z‖ppVnn (z)dz

)1/p

+ o(n−1/2).

(ii) (Weak approximation error) Consider a function f ∈ C2(Rk) such that the second

derivative of f has polynomial growth. Setting p
(Vn,F )
n (z, x) = p1(z, x)+n−1/2p2(z, x)

we deduce the asymptotic expansion

E[f(Xn
T1 , . . . , X

n
Tk

)− f(XT1 , . . . , XTk)]

= n−1

∫
Rk×Rk

(
〈∇f(x), z〉 · p2(z, x) +

1

2
z?Hessf(x)z · p1(z, x)

)
dzdx+ o(n−1).

Proof. Part (i) of the statement is a direct consequence of Corollary 4.4 applied to the
function h(z) = ‖z‖p. Now, we set Xn = (Xn

T1
, . . . , Xn

Tk
) and X = (XT1 , . . . , XTk). To

obtain part (ii) of Proposition 5.1 we apply Taylor expansion to conclude that

f(Xn)− f(X) = 〈∇f(X),Xn −X〉+
1

2
(Xn −X)?Hessf(X)(Xn −X)

+
1

2
(Xn −X)? (Hessf(Yn)−Hessf(X)) (Xn −X),

for some random vector Yn ∈ Rk with ‖Yn −X‖ ≤ ‖Xn −X‖. In particular, Yn P−→ X.
Observe that

E [(Xn −X)? (Hessf(Yn)−Hessf(X)) (Xn −X)]→ 0 as n→∞,

which is due to f ∈ C2(Rk). We deduce the expansion

E[f(Xn
T1 , . . . , X

n
Tk

)− f(XT1 , . . . , XTk)]

= n−1

∫
Rk×Rk

(
〈∇f(x), z〉 · p2(z, x) +

1

2
z?Hessf(x)z · p1(z, x)

)
dzdx+ o(n−1)

since, according to Theorem 4.3 and Corollary 4.4 applied to F = (XT1 , . . . , XTk), it holds
that ∫

Rk×Rk
〈∇f(x), z〉 · p1(z, x)dzdx = 0,

because the dz-integral is taking over an odd function in z. This completes the proof of
Proposition 5.1.
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We remark that the weak error expansion of Proposition 5.1(ii) has been obtained in
[3, 4] for k = 1 and the discrete Euler scheme. Furthermore, the authors proved that the
error of the expansion in Proposition 5.1(ii) is O(n−2), which is more precise than o(n−1).
We note however that the theory developed in [3, 4] is not sufficient to obtain the density
expansion (4.10) of Corollary 4.4.

5.2 Studentized statistics

In this part we will apply results of Section 4.2 to derive the density of the studentized
statistic. To avoid complex notations, we restrict our attention to the case k = 1.

To this end, let T ∈ [0, 1]. We note that V n
T = ΣTZ

n
T and VT ∼ MN(0, ST ) with

ST = Σ2
TCT . Then, the studentized statistic is

V n
T√
ST

=
ZnT√
CT

(5.1)

Hence, it suffices to derive the density of the studentized statistic ZnT /
√
CT .

We write (4.8) in the form

σ(z, iu, iv) = H1z(iu)2 + (H2 +H3z)(iu)

Moreover, we restructure (2.9) as

σ(iu, iv) =H4(iu)3 +H5(iu)(iv) +H6(iu)5 +H7(iu)(iv)2 +H8(iu)3(iv). (5.2)

Adding these two random symbols, we obtain the full random symbol

σ(z, iu, iv) =

7∑
j=1

cj(z)(iu)mj (iv)nj . (5.3)

where the components of (m,n) = ((mj , nj))1≤j≤7 and c(z) = (cj(z))1≤j≤7 are given by

(m,n) = ((1, 0), (2, 0), (1, 1), (3, 0), (1, 2), (3, 1), (5, 0))

and
c(z) = (H2 +H3z,H1z,H5,H4,H7,H8,H6) .

In view of Theorem 4.3 and denoting C = CT , Zn = ZnT , we obtain that

p(Zn,C)
n (z, x) = φ(z; 0, x)pC(x) + n−1/2

8∑
j=1

pj(z, x)

where for each j we have

pj(z, x) = (−dz)mj (−dx)nj
(
φ(z; 0, x)pC(x)E [cj(z)|C = x]

)
.
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Note that, in this case, most of the terms are the same as in [15, Section 6]. Hence,
adopting their derivations, we easily obtain the following identities:∫

R2

g(z/
√
x)p1(z, x)dzdx = E[H2C

−1/2]

∫
R
g(y)yφ(y; 0, 1)dy

+ E[H3]

∫
R
g(y)(y2 − 1)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p2(z, x)dzdx = E[H1C

−1/2]

∫
R
g(y)H3(y)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p3(z, x)dzdx =

−1

2
E[H5C

−3/2]

∫
R
g(y)(y3 − 2y)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p4(z, x)dzdx = E[H4C

−3/2]

∫
R
g(y)H3(y)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p5(z, x)dzdx =

1

4
E[H7C

−5/2]

∫
R
g(y)(y5 − 4y3)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p6(z, x)dzdx =

−1

2
E[H8C

−5/2]

∫
R
g(y)(y5 − 7y3 + 6y)φ(y; 0, 1)dy,∫

R2

g(z/
√
x)p7(z, x)dzdx = E[H6C

−5/2]

∫
R
g(y)H5(y)φ(y; 0, 1)dy,

where
H3(y) = y3 − 3y, H5(y) = y5 − 10y3 + 15y.

Due to F = C in σt(iu, iv) of (2.9), we notice the equalities

H4 =
H5

2
and 4H6 = H7 = H8,

which leads to the following result.

Corollary 5.2. Under conditions of Theorem 4.3, the Edgeworth expansion is

pZn/
√
C(y) = φ(y; 0, 1) + n−1/2φ(y; 0, 1)(a1y + a2(y2 − 1) + a3y

3) (5.4)

where

a1 = E[H2C
−1/2]− 3E[H1C

−1/2] +
1

2
E[H5C

−3/2] + 3E[H6C
−5/2],

a2 = E[H3],

a3 = E[H1C
−1/2].

6 Proofs

Throughout this section all positive constants are denoted by C although they may change
from line to line. Furthermore, due to a standard localisation procedure (see e.g. [5]) all
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continuous stochastic processes (Yt)t∈[0,1] can be assumed to be uniformly bounded in
(ω, t) when proving Theorems 3.2 and 3.3. In particular, it applies to stochastic processes
Yt = a(l)(Xt) and Yt = b(l)(Xt) for l = 0, 1, 2. For a generic diffusion process (Yt)t∈[0,1] of
the form (1.1) with bounded coefficients we obtain the inequality

E[|Yt − Ys|p] ≤ Cp|t− s|p/2 for any p > 0 and t, s ∈ [0, 1], (6.1)

which holds due to Burkholder-Davis-Gundy inequality. We will use the notation Y n u.c.p.−→
Y to denote the uniform convergence in probability supt∈[0,1] |Y n

t −Yt|
P−→ 0. In the proofs

we will deal with sequences of stochastic processes of the form

Y n
t =

[nt]∑
i=1

ξni ,

where ξni , i = 1, . . . , n, are Fi/n-measurable random variables with E[|ξni |p] < ∞ for any
p > 0. The following statements trivially hold:

[nt]∑
i=1

E[|ξni |]→ 0 ⇒ Y n u.c.p.−→ 0 (6.2)

[nt]∑
i=1

E[ξni | F(i−1)/n]
u.c.p.−→ Yt and

[nt]∑
i=1

E[(ξni )2| F(i−1)/n]
P−→ 0

⇒ Y n u.c.p.−→ Y. (6.3)

6.1 Proof of Theorem 2.1

We will sketch the proof, basically following the ideas of [22, Theorem 4], but outlining
the difference caused by the multiple stopping in the present situation. Note that as in
[22, Theorem 4], it suffices to verify assumptions of [22, Theorem 1].

6.1.1 Construction of the truncation functional ψn from sn and other variables

Let d̄ satisfy the inequality 1/3 < d̄ < d < 1/2, where the constant d has been introduced
before assumption (B1), and define ξn by

ξn = 10−1n2d̄|Cn − C|2 + 2
[
1 + 4 detσ(Mn,F )(s

k
n)−1

]−1

+

∫
[0,1]2

(
|Cnt − Ct − Cns + Cs|nd̄

|t− s|3/8

)8

dtds.

We define Qn = (Mn, F ), Rn = (Nn, F̂n) and set

R′n = σ−1
Qn

(
n−1/2〈DQn, DRn〉H + n−1/2〈DRn, DQn〉H + n−1〈DRn, DRn〉H

)
.
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Let ψ ∈ C∞(R; [0, 1]) be a function such that ψ(x) = 1 if |x| ≤ 1/2 and ψ(x) = 0 if |x| ≥ 1.
We introduce the random truncation

ψn = ψ(ξn)ψ(n1/2|R′n|2).

Remark that ψn is well defined because so is σ−1
Qn

under the truncation by ξn. In fact, if

ξn ≤ 1, then detσQn ≥ skn/4, that is nondegenerate thanks to (B3)(ii). Therefore σ−1
Qn

makes sense on the event {ξn ≤ 1}. We are defining ψn = 0 on the event {ξn > 1} since
ψ(ξn) = 0 there. Thus, ψn is well-defined.

6.1.2 Characteristic function and its decomposition

Let Žn = (Zn, Fn) and let Žαn = Zα1
n Fα2

n for α = (α1, α2) ∈ Zk+ × Zq+. Define

ĝαn(u, v) = E
[
ψnŽ

α
n exp

(
Zn[iu] + Fn[iv]

)]
for u ∈ Rk and v ∈ Rq and let

gαn(z, x) = (2π)−(k+q)

∫
Rk+q

exp
(
− z[iu]− x[iv]

)
ĝαn(u, v)dudv. (6.4)

The existence of the integral (6.4) can be verified by the nondegeneracy of the Malliavin
covariance matrix of (Zn, Fn) under the truncation by ψn. We define the quantities

Ψ(u, v) = exp

(
− 1

2
C[u⊗2] + iF [v]

)
,

εn(u, v) = −1

2
(Cn − C)[u⊗2] + i(Fn[v]− F [v]) + in−1/2Nn[u],

ent (u) = exp

(
iMn

t [u] +
1

2
Cnt [u⊗2]

)
,

Lnt (u) = ent (u)− 1 and
◦
e (x) =

∫ 1

0
esxds.

Finally, we introduce the functions

Φ1,α
n (u, v) = ∂αE

[
en1 (u)Ψ(u, v)εn(u, v)

◦
e (εn(u, v))ψn

]
,

Φ2,α
n (u, v) = ∂αE

[
Ln1 (u)Ψ(u, v)ψn

]
.

The existence of Φ1,α
n (u, v) and Φ2,α

n (u, v) involving en1 (u)Ψ(u, v) is ensured by the trun-
cation ψn. Let us set

Φ0,α
n (u, v) = ∂αE

[
Ψ(u, v)ψn

]
.

Then ĝαn(u, v) possess the decomposition

ĝαn(u, v) = Φ0,α
n (u, v) + Φ1,α

n (u, v) + Φ2,α
n (u, v).
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6.1.3 Error bound

We apply [22, Theorem 1] by verifying conditions [B1], [B2]`, [B3] and [B4]`,m,n therein
under our assumptions (B1), (B2), (B3). Remark that “`” therein corresponds to ď + 3,
where ď = k+q. Condition [B1] follows from (B2)(iii) and a standard central limit theorem
with a mixed normal limit. Condition [B2]` is verified by (B2)(i), (B1)(i)-(ii), (B2)(ii) and
the definition of ξn.

Condition [B3] is verified as follows. Cn,j and Cj are expressed as

Cn,jt = n

mn∑
i=1

∫ mn

i=1
Kn,j(tj−1)2

∫ ti∧t

ti−1∧t

(∫ s

ti−1

dWr

)2

ds

and

Cjt =
1

2

∫ t∧Tj

0
K(s)2ds.

Routinely, we have

sup
n∈N

∥∥∥∥nd̄ sup
t∈[0,1]

∣∣Cn,jt − Cjt
∣∣∥∥∥∥
p

< ∞

for every p > 1 from (B1)(i) and (ii). Therefore, [B3](i) follows as

P[|ξn| > 1/2] ≤ P[nd̄|Cn1 − C1| ≥ 1] + P[detσXk1
≤ skn]

+P
[ ∫

[0,1]2

(
|Cnt − Ct − Cns + Cs|nd̄

|t− s|3/8

)8

dtds ≥ 1

10

]
→ 0

as n→∞ thanks to (B3)(i) and (B1)(ii). By the definition of ξn, on the event {|ξn| < 1},
n(1−a)/2|Cn−C| ≤ 1 for large n, which is [B3](ii). Moreover, [B3](iii) follows from (B3)(ii)
since lim supn→∞ E

[
1{|ξn|≤1} detσ−pXk1

]
≤ lim supn→∞ E

[
4p(skn)−p

]
<∞.

Condition [B4]`,m,n(i) is rephrased as (B2)(iv). The present σ is in S(ď + 3, 5, 2) in
particular; see [22, p. 892] for the relevant definitions. Thus, [22, Theorem 1] gives the
error bound

sup
f∈E(R,γ)

∆n(f) = o(n−1/2)

if the following two conditions are fulfilled:

lim
n→∞

n1/2Φ2,α
n (u, v) = ∂αE

[
Ψ(u, v)σ(iu, iv)

]
(6.5)

for u ∈ Rk, v ∈ Rq and α ∈ Zď
+, and

sup
n

sup
(u,v)∈Λ0

n(ď,d)

n1/2|(u, v)|ď+1−ε∣∣Φ2,α
n (u, v)

∣∣ < ∞ (6.6)
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for some ε = ε(α) ∈ (0, 1) for every α ∈ Zď
+, where Λ0

n(ď, d̄) = {(u, v) ∈ Rď; |(u, v)| ≤ nd̄/2}.
We obtain (6.5) as in [22, Eq. (41)], except for the parts concerning the derivation of

[22, Eqs. (38) and (43)] by a non-degeneracy argument. We shall show (6.6). By using
duality twice for the double stochastic integrals, we have

n1/2Φ2,α
n (u, v)

= n
∑

a0,a1:a0+a1=α

ca0,a1

mn∑
i=1

∫ ti

ti−1

∫ ti

r
E
[
∂a0Kn(ti−1)[iu]∂a1Dr

{
ens (u)Ds

(
Ψ(u, v)ψn

)}]
dsdr

for some constants ca0,a1 . We have

Dr

{
ens (u)Ds

(
Ψ(u, v)ψn

)}
= ens (u)Ψ(u, v)σ(n, r, s; iu, iv)

= FnsGsHn
sσ(n, r, s; iu, iv),

where

Fns = exp

(
Mn
s [iu] + F [iv]

)
,

Gs = exp

(
− 1

2

(
C1 − Cs)[u⊗2]

)
,

Hn
s = exp

(
1

2

(
Cns − Cs

)
[u⊗2]

)
and σ(n, r, s; iu, iv) is a polynomial random symbol of fourth order in (u, v) with coeffi-
cients in D`−2,∞(R).

First, we will consider the case α = 0, and estimate n1/2Φ2,0
n (u, v). Let s ∈ (Tj−1, Tj).

Then Mn
s =

(
Mn,1
T1
, ...,Mn,j−1

Tj−1
,Mn,j

s , . . . ,Mn,k
s

)
. We will estimate the speed of the de-

cay of the expectations of the components of n1/2Φ2,α
n (u, v) for (u, v) ∈ Λ0

n(ď, d̄). Our
strategy is as follows. For s ∈ (τ jn, Tj), we apply the integration-by-parts formula for(
Mn,1
T1
, ...,Mn,j−1

Tj−1
,Mn,j

s , F
)

to obtain the decay |(u1, ..., uj , v1, ..., vq)|−(ď+1−ε), where u =

(u1, ..., uk) and v = (v1, ..., vq). For that, we need to show that the D-derivatives of Gs

and Hn
s up to `-times are Lp-bounded uniformly in (u, v) ∈ Λ0

n(ď, d̄) and n ∈ N, under the
truncation by ψn. We see that this property holds for Hn

s by (B1)(ii). For Gs, we verify
the property as follows. The multiple D-derivative of Gs is a linear combination of terms
of the form{ ᾱ∏
α=1

DAα

( k∑
i1,i2=j

Ii1∧i2s ui1ui2

)}
Gs

(
Aα = ra(α−1)+1, ..., ra(α), 1 ≤ a(1) ≤ a(2) ≤ · · ·

)
that is bounded by Gs times a polynomial p of random variables

max
i=j,...,k

∣∣∣∣DAαIis
Ti − s

∣∣∣∣, max
i=j,...,k

[ Iis∨Ti−1

Ti − (s ∨ Ti−1)

]−1

, max
i=j,...,k

∣∣∣∣ Iis
Ti − s

∣∣∣∣, |(ui)i=j,...,k|.
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Indeed, ∣∣∣∣DAα

( k∑
i1,i2=j

Ii1∧i2s ui1ui2

)∣∣∣∣
=

∣∣∣∣
∑k

i1,i2=j DAαIi1∧i2s /(Ti1∧i2 − s)ui1ui2∑k
i1,i2=j I

i1∧i2
s /(Ti1∧i2 − s)ui1ui2

∣∣∣∣∣∣∣∣ k∑
i1,i2=j

Ii1∧i2s /(Ti1∧i2 − s)ui1ui2
∣∣∣∣

≤
∣∣∣∣(DAαIi1∧i2s /(Ti1∧i2 − s)

)
i1,i2=j,...,k

∣∣∣∣∣∣∣∣(Ii1∧i2s /(Ti1∧i2 − s)
)−1

i1,i2=j,...,k

∣∣∣∣
×
∣∣∣∣ k∑
i1,i2=j

Ii1∧i2s /(Ti1∧i2 − s)ui1ui2
∣∣∣∣,

where we used

|S−1/2| <∼ ‖S−1/2‖op =

(
sup
v:|v|=1

S−1[v⊗2]

)1/2

≤ |S−1|1/2

for any non-degenerate symmetric matrix S. Moreover, the identity

det

(
Ii1∧i2s /(Ti1∧i2 − s)

)
i1,i2=j,...,k

=
∏

i=j,...,k

Iis∨Ti−1

Ti − (s ∨ Ti−1)

can be used to estimate the inverse matrix in the above expression.

The term pGs is Lp-bounded due to (B1)(i), (iii) and

sup
u∈Rk,ω,

s∈(Tj−1,Tj)

( k∑
i1,i2=j

Ii1∧i2s ui1ui2

)m
Gs < ∞

for every m ∈ N and j = 1, ..., k.

If j = k, then this estimate is sufficient for our use. When j < k, we also use the
non-degeneracy of the matrix

M(Tj+1, Tk) =

(
1

2

∫ Ti1∧i2

Tj

K(t)2dt

)
i1,i2=j+1,...,k

and the estimate

(C1 − Cs)[u⊗2] ≥ M(Tj+1, Tk)
[
(uj+1, ..., uk)

⊗2
]

(6.7)
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in order to obtain the decay |(uj+1, ..., uk)|−(ď+1−ε). For (6.7), we note that

k∑
i1,i2=1

∫ s∨Ti1∧i2

s
K(t)2dt ui1ui2 =

∫ 1

s

( k∑
i=1

1[0,Ti](t)ui

)2

K(t)2dt

≥
∫ 1

Tj

( k∑
i=1

1[0,Ti](t)ui

)2

K(t)2dt

=
k∑

i1,i2=j+1

∫ Ti1∧i2

Tj

K(t)2dt ui1ui2 .

By (2.7) we have

detM(Tj+1, Tk)
−1 ∈ L∞−, (6.8)

and hence (6.7) and (6.8) imply that

|(uj+1, ..., uk)|m exp

(
− 1

2

(
C1 − Cs)[u⊗2]

)
≤ Cm

∣∣M(Tj+1, Tk)
−1
∣∣m (6.9)

is L∞−-bounded uniformly in (uj+1, ..., uk) for every m ∈ N. Finally, we may use one of
the above estimates of the decay, depending on |(u1, ..., uj , v1, ..., vq)| ≥ |(uj+1, ..., uk)| or
not.

Following the proof of [22, Theorem 4], i.e. the procedure (a)-(g) therein with the
additional truncation

ψjn,s = ψ

(
2
[
1 + 4 detσ

(Mn,1
T1

,...,Mn,j−1
Tj−1

,Mn,j
s ,F

)(sjn)−1
]−1
)
,

we obtain the desired decay of

n

mn∑
i=1

∫ ti

ti−1

1
s∈(τ jn,Tj)

∫ ti

r
E
[
∂a0Kn(ti−1)[iu]∂a1Dr

{
ens (u)Ds

(
Ψ(u, v)ψn

)}]
dsdr

for α = 0. A similar estimate can be shown for a general α.

For s ∈ (Tj−1, τ
j
n), we apply the integration-by-parts formula for(

Mn,1
T1
, ...,Mn,j−1

Tj−1
, F
)

to obtain the decay |(u1, ..., uj−1, v1, ..., vq)|−(ď+1−ε). In order to obtain the decay |(uj , ..., uk)|−(ď+1−ε),
we use the nondegeneracy of

M(τ jn, Tk) =

(
1

2

∫ Ti1∧i2

τ jn

K(t)2dt

)
i1,i2=j,...,k

.

Then we repeat a similar procedure as in the previous case to obtain the desired decay.
We deduce (6.6) by combining the above estimates.
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6.2 Proof of Theorem 3.2

We state the decompositions in the differential form for the ease of exposition. Applying
Taylor expansion we conclude that

dV n
t =

√
n
(
a(Xn

ϕn(t))− a(Xt)
)
dt+

√
n
(
b(Xn

ϕn(t))− b(Xt)
)
dWt (6.10)

=
√
n (a(Xn

t )− a(Xt)) dt+
√
n
(
a(Xn

ϕn(t))− a(Xn
t )
)
dt

+
√
n (b(Xn

t )− b(Xt)) dWt +
√
n
(
b(Xn

ϕn(t))− b(X
n
t )
)
dWt

=
((
a′(Xt) + ãnt

)
V n
t + ã′nt

)
dt

+
((
b′(Xt) + b̃nt

)
V n
t −
√
nbb′(Xn

ϕn(t))(Wt −Wϕn(t)) + b̃′nt

)
dWt,

where the processes ãn, ã′n, b̃n, b̃′n are defined as

ãnt = a′(X̃n
t )− a′(Xt), ã′nt =

√
n
(
a(Xn

ϕn(t))− a(Xn
t )
)
,

b̃nt = b′(X̃ ′nt )− b′(Xt), b̃′nt =
√
n
(
b(Xn

ϕn(t))− b(X
n
t ) + bb′(Xn

ϕn(t))(Wt −Wϕn(t))
)
,

and X̃n
t , X̃

′n
t are certain random variables with |X̃n

t − Xt| ≤ |Xn
t − Xt|, |X̃ ′nt − Xt| ≤

|Xn
t −Xt|. In particular, it holds that X̃n u.c.p.−→ X and X̃ ′n

u.c.p.−→ X. Using Lemma 3.1 we
thus can write

V n
t = Σn

t

(∫ t

0
(Σn

s )−1
(
ã′ns −

(
b′(Xt) + b̃nt

)(
b̃′ns −

√
nbb′(Xϕn(s))(Ws −Wϕn(s))

))
ds

+

∫ t

0
(Σn

s )−1
(
b̃′ns −

√
nbb′(Xϕn(s))(Ws −Wϕn(s))

)
dWs

)
,

where the process Σn is defined by

Σn
t = exp

(∫ t

0
(b′(Xs) + b̃ns )dWs (6.11)

+

∫ t

0

(
a′(Xs) + ãns −

1

2

(
b′(Xs) + b̃ns

)2
)
ds

)
Comparing the representation of V n

t with (3.4), we just need to show that

Σn u.c.p.−→ Σ, (6.12)∫ t

0
Σ−1
s ã′ns ds

u.c.p.−→ 0, (6.13)∫ t

0
Σ−1
s b̃′ns dWs

u.c.p.−→ 0, (6.14)∫ t

0
Σ−1
s

(
b′(Xt) + b̃nt

)(
b̃′ns −

√
nbb′(Xϕn(s))(Ws −Wϕn(s))

)
ds

u.c.p.−→ 0, (6.15)
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where the process Σ has been defined in (3.3). Since both ãns and b̃ns are bounded as

assumed in the beginning of Section 6, and ãn
u.c.p.−→ 0, b̃n

u.c.p.−→ 0 (because X̃n u.c.p.−→ X,

X̃ ′n
u.c.p.−→ X and a, b ∈ C2(R)), we readily deduce the convergence at (6.12). To show the

convergence at (6.13) we use the decomposition ã′ns = ã′n,1s + ã′n,2s with

ã′n,1s = −
√
na′(Xn

ϕn(s))

∫ s

ϕn(s)
b(Xn

ϕn(u))dWu,

ã′n,2s =
√
n
(
a′(X ′′ns )− a′(Xn

ϕn(s))
)(

Xn
ϕn(s) −X

n
s

)
−
√
na′(Xn

ϕn(s))

∫ s

ϕn(s)
a(Xn

ϕn(u))du,

where X ′′ns is a certain random variable with |X ′′ns −Xn
s | ≤ |Xn

s −Xn
ϕn(s)|. Since X ′′ns

u.c.p.−→
Xs and all involved objects are assumed to be bounded, we conclude by (6.1) that

E[|ã′n,2s |] ≤ Cεn

with εn → 0 as n→∞. Thus, we obtain∫ t

0
Σ−1
s ã′n,2s ds

u.c.p.−→ 0

by an application of (6.2). Now, we notice that E[ã′n,1s | F(i−1)/n] = 0 and E[|ã′n,1s |2] ≤ C.
Thus, we deduce that∫ t

0
Σ−1
s ã′n,1s ds =

∫ t

0
Σ−1
ϕn(s)ã

′n,1
s ds+

∫ t

0

(
Σ−1
s − Σ−1

ϕn(s)

)
ã′n,1s ds

u.c.p.−→ 0,

which follows by a combination of (6.2) and (6.3). Indeed, it holds that

∫ t

0
Σ−1
ϕn(s)ã

′n,1
s ds = −

√
n

[nt]∑
i=1

Σ−1
i−1
n

a′(Xn
i−1
n

)b′(Xn
i−1
n

)

∫ i
n

i−1
n

(Ws −W i−1
n

)ds+ oP(1),

and (6.3) can be applied to the last line. Consequently, we have (6.13). Finally, we show
the convergence at (6.14). Observe the decomposition

b̃′ns =
√
n
(
b′(X ′′ns )− b′(Xn

ϕn(s))
)(

Xn
ϕn(s) −X

n
s

)
−
√
nb′(Xn

ϕn(s))

(∫ s

ϕn(s)
a(Xn

u )du+

∫ s

ϕn(s)
b(Xn

u )− b(Xn
ϕn(s))dWu

)
.

As for the term ã′n,2s we deduce that E[|b̃′ns |] ≤ Cεn with εn → 0 as n → ∞. Hence,
we obtain (6.14). The proof of (6.15) combines the proof methods of (6.13) and (6.14).
Consequently,

sup
t∈[0,1]

|V n
t − V

n
t |

P−→ 0,

which completes the proof of Theorem 3.2.
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6.3 Proof of Theorem 3.3

The derivation of the second order stochastic expansion is more involved than the ex-
pansion of Theorem 3.2, but the underlying methodology is similar. For simplicity of
exposition we sometimes use the same notations as in the previous section although they
might have a different meaning. Instead of the first order approximation in the last line
of (6.10), we may further develop

dV n
t = a′(Xt)V

n
t dt+ (b′(Xt)V

n
t −
√
nbb′(Xn

ϕn(t))(Wt −Wϕn(t)))dWt (6.16)

+

(
1

2
√
n
a′′(Xt)(V

n
t )2 −

√
nba′(Xn

ϕn(t))(Wt −Wϕn(t))

−
√
naa′(Xn

ϕn(t))(t− ϕn(t))−
√
n

2
b2a′′(Xn

ϕn(t))(Wt −Wϕn(t))
2

)
dt

+
( 1

2
√
n
b′′(Xt)(V

n
t )2 −

√
n

2
b2b′′(Xn

ϕn(t))(Wt −Wϕn(t))
2

−
√
nab′(Xn

ϕn(t))(t− ϕn(t))
)
dWt + ãnt dt+ b̃nt dWt,

where ãnt and b̃nt are stochastic processes, whose negligibility in the involved asymptotic
expansions is shown in exactly the same manner as in (6.12)-(6.15) (although these terms
have a different meaning in this subsection).

Now, recall the definition of the first order approximation V
n
t at (3.4). By Lemma 3.1

this process satisfies the stochastic differential equation

dV
n
t = a′(Xt)V

n
t dt+ b′(Xt)V

n
t dWt −

√
nΣtΣ

−1
ϕn(t)bb

′(Xn
ϕn(t))(Wt −Wϕn(t))dWt

−
√
nΣtΣ

−1
ϕn(t)b

′(Xt)bb
′(Xn

ϕn(t))(Wt −Wϕn(t)))dt.

Observing the definition of the stochastic process dRnt = Rnt (1)dt+Rnt (2)dWt at (3.5), we
deduce by Lemma 3.1 and the negligibility of the terms ãnt , b̃nt the decomposition

V n
t − V

n
t = Σt

∫ t

0
Σ−1
s

((
Rns (1)− b′(Xs)R

n
s (2))

)
ds+Rns (2)dWs

)
+ oP(n−1/2),

where Σ has been defined in (3.3). This finishes the proof of Theorem 3.3.

6.4 Proof of Theorem 4.3

We will verify conditions (B1), (B2) and (B3) for Theorem 2.1 under (A), (C1), (C2) and
(C3). Recall that

K(s) = −Σ−1
s bb′(Xs),

` = 2k + q + 8, `∗ = 2[q/2] + 4 and we are assuming that a, b are in C∞(R) and all their
derivatives of positive order are bounded. As mentioned just before assumption (A), the
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functionals cα(z) in the representation (2.10) of the full random symbol σ and also in (4.9)
are associated with σ of (4.8) and σ of (2.9).

Conditions (B1)(i), (ii) are obvious. Condition (B1)(iii) is assumed by (C1). In the
present situation, F̂n = 0 since Fn = F . Condition (B2)(i) follows from (A) and (C2)(i).
(B2)(ii) will be checked later after constructing sn. Condition (B2)(iii) is already obtained
in (4.7). The property (B2)(iv) has been observed to derive the expression (4.8).

We shall consider non-degeneracy of the Malliavin covariance matrix σ(X1,X2) of (X1,X2),
where

X1 =
(
Mn,1
S1
, ...,Mn,j−1

Sj−1
,Mn,j

Sj
) and X2 =

(
ΣT1 , ...,ΣTk

)
for S1 = T1, ..., Sj−1 = Tj−1 and Sj is either s ∈ [(Tj−1 + Tj)/2, Tj ]. We will estimate the
Malliavin covariance matrix σ(X1,X2). Let θi = i/n. Let

ηi(t) =
√
n
(
W (θi ∧ t)−W (θi−1 ∧ t)

)
and

ξi(t) = n

((
W (θi ∧ t)−W (θi−1 ∧ t)

)2 − (θi ∧ t− θi−1 ∧ t
))
.

Then, as in [21], we have

DrM
n,µ
Sµ

=
n∑
i=1

2K(θi−1)ηi(Sµ)1(θi−1∧Sµ,θi∧Sµ](r)

+n−1/2
n−1∑
i=1

( n∑
i′=i+1

DrK(θi−1)ξi′(Sµ)

)
1(θi−1∧Sµ,θi∧Sµ](r)

for µ = 1, ..., j. Therefore,

σ(n, µ1, µ2) := 〈DMn
Sµ1

, DMn
Sµ2
〉H

=
n∑
i=1

∫ θi

θi−1

[
2K(θi−1)ηi(Sµ1) + n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ1)

]
1[0,Sµ1 ](r)

×
[
2K(θi−1)ηi(Sµ2) + n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ2)

]
1[0,Sµ2 ](r)dr

+OLp(n
−1/2)

= σ̃(n, µ1, µ2) +OLp(n
−1/2)

for µ1, µ2 = 1, ..., j, where σ̃(n, µ1, µ2) = σ̃1(n, µ1, µ2) + σ̃2(n, µ1, µ2) with

σ̃1(n, µ1, µ2) =

n∑
i=1

∫ θi

θi−1

(
2K(θi−1)ηi(Sµ1)

)
1[0,Sµ1 ](r)

(
2K(θi−1)ηi(Sµ2)

)
1[0,Sµ2 ](r)dr
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and

σ̃2(n, µ1, µ2) =
n∑
i=1

∫ θi

θi−1

(
n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ1)

)
1[0,Sµ1 ](r)

×
(
n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ2)

)
1[0,Sµ2 ](r)dr

for µ1, µ2 = 1, ..., j. Moreover, for G = (Gν)ν=1,...,q,

σ(n, µ, ν) := 〈DMn
Sµ , DG

ν〉H

=
n∑
i=1

∫ θi

θi−1

[
2K(θi−1)ηi(Sµ) + n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ)

]
1[0,Sµ1 ](r)

×DrG
νdr +OLp(n

−1/2)

= σ̃(n, µ, ν) +OLp(n
−1/2),

where

σ̃(n, µ, ν) =

n∑
i=1

∫ θi

θi−1

(
n−1/2

n∑
i′=i+1

DrK(θi−1)ξi′(Sµ)

)
1[0,Sµ](r)DrG

νdr

Let

σ̃(n, ν1, ν2) =

∫ 1

0
DrG

ν1DrG
ν2dr.

Then it is easy to see that the matrix[ (
σ̃2(n, µ1, µ2)

) (
σ̃(n, µ, ν)

)(
σ̃(n, µ, ν)

)? (
σ̃(n, ν1, ν2)

) ]
is nonnegative definite. As we will see, the matrix

(
σ̃(n, ν1, ν2)

)
is positive definite almost

surely. Therefore,(
σ̃2(n, µ1, µ2)

)
−
(
σ̃(n, µ, ν)

)(
σ̃(n, ν1, ν2)

)−1(
σ̃(n, µ, ν)

)?
is nonnegative definite, and hence

det

[ (
σ̃(n, µ1, µ2)

) (
σ̃(n, µ, ν)

)(
σ̃(n, µ, ν)

)? (
σ̃(n, ν1, ν2)

) ]
= det

[ (
σ̃(n, µ1, µ2)

)
−
(
σ̃(n, µ, ν)

)(
σ̃(n, ν1, ν2)

)−1(
σ̃(n, µ, ν)

)? ]
×det

(
σ̃(n, ν1, ν2)

)
≥ det

(
σ̃1(n, µ1, µ2)

)
det
(
σ̃(n, ν1, ν2)

)
=: Mn.

Now Mn converges in L∞− to

M∞ := det

[ ∫ Sµ1∧Sµ2

0
4K(t)2dt

]
µ1,µ2=1,...,j

× det

[ ∫ 1

0
DrG

ν1DrG
ν2dr

]
ν1,ν2=1,...,q
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with rate n−1/2. Define sjn by

sjn :=
1

2
M∞.

Then supn∈N
∥∥sjn∥∥`,p <∞ for every p > 1 and every j, so that (B2)(ii) holds additionally

by (A). But M∞ is non-degenerate, i.e.

M−1
∞ ∈ L∞− (6.17)

due to (C1) and (C3). This shows (B3)(ii). Moreover, the estimate Mn − M∞ =
OL∞−(n−1/2) and (6.17) proves (B3)(i). Hence, the proof of Theorem 4.3 is completed.
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