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Abstract

Many economic theories imply a linear relationship with constant parameters between fi-

nancial or macroeconomic variables. While the linear model with constant parameters is

often disputed in the literature, this model specification is rarely tested. This paper pro-

poses a new and intuitively appealing test for model specification tailored for applications

in finance and macroeconomics. Importantly, the test allows for autocorrelation, which is

often present in these applications. We demonstrate impressive properties of the test in a

realistic simulation study and obtain important insights from empirical applications.
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1 Introduction

The financial and macroeconomic literatures contain many examples of theories that imply linear

relationships with constant parameters between financial or macroeconomic variables. A few

prominent examples include: tests of theories such as the CAPM of Sharpe (1964) and Lintner

(1965); the arbitage pricing theory of Ross (1976) or factor models in the spirit of Fama and

French (1993), all of which are typically centered around linear regression models with constant

parameters; much of the literature concerned with predicting the equity premium, as summarized

in Welch and Goyal (2008), which is based on simple regression models; factor models in the

spirit of Stock and Watson (2002), which rely on a linear model with constant factor loadings;

several papers in the macro-finance and macroeconomics literatures, where a simple linear policy

rule with constant coefficients in the spirit of Taylor (1993) is assumed, see for example Ang and

Piazzesi (2003) and Clarida et al. (2000).

The linear model with constant parameters is often disputed in the literature, and several

interesting papers consider variations of the linear model with time-varying parameters. OLS

estimates based on rolling windows are often used as evidence against constant parameters, but

formal testing procedures are rarely carried out. As an example, Figure 1 presents an update of

Figure 1 in the influential paper by Ang and Chen (2007).1 The top panel of Figure 1 presents

a time-series plot of rolling 60 month window OLS estimates of the market beta of a portfolio

of value stocks (red line) and a line representing the OLS estimates based on the full sample

of observations (blue line). The bottom panel of Figure 1 presents the corresponding plot for a

portfolio of growth stocks. The rolling window estimates of market beta of the value portfolio

varies considerably over time, while the market beta of the growth portfolio is closer to the

full sample OLS estimate. The graphical inspection of rolling window estimates indicates time-

variation, but ultimately leaves the analyst to make a judgement call. A formal test would be

more convincing.2

This paper introduces a new way to test for time variation in model parameters. Typically,

we have a simple null hypothesis in mind, namely that the model is linear and parameters are

constant. We compare the estimates obtained under the null hypothesis to those obtained by a

very flexible nonparametric regression model. Our test allows the user to specify a model under

the null and compare the resulting estimates to those of a nonparametric alternative. If the

resulting standardized test statistic is too large, it means that the model assumed under the null

1The figure in Ang and Chen (2007) presents the time series of rolling window market betas for both value
and growth in the same plot and does not include the full sample OLS estimates. The sample has been updated
and ends in July 2016.

2We formally test for parameter stability in the CAPM over the long run in in section 4.1.
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Figure 1: Time-varying market betas. The figure reproduces and updates Figure 1 of Ang and Chen (2007) and
illustrates the potential time variation in the beta from the regression model, Ri,t = αi + βiRm,t + εi,t, where
Ri,t is the excess return on a portfolio, i = value, growth, Rm,t is the excess return on the market portfolio and
εi,t is the residual. The top panel presents the market beta of a portfolio of value stocks. The red line is the
60 month rolling window estimate of beta and the blue line is the full sample OLS estimate. The bottom panel
presents the same estimates for a portfolio of growth stocks. The estimates are based on a sample of monthly
returns from July 1926 to July 2016.
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hypothesis is too restrictive. The test is easily implemented with bootstrap methods, where the

distribution of the test statistic under the null hypothesis can be simulated.

In an extensive simulation study, we show that the empirical rejection rates are very close to

nominal levels when the null hypothesis is true and that the test has good power against various

realistic alternatives.

Testing for time variation in the parameters of regression models is by no means a new idea.

In the following we highlight some important contributions to the field, but we do not present

an exhaustive list.3

Early work in the field include the CUSUM tests of Brown et al. (1975), the supremum tests

of Andrews (1993), and the double maximum test of Bai and Perron (1998), all of which are used

frequently in the literature. Lin and Teräsvirta (1994) propose an LM-type test, where parameter

constancy is tested against a parametric alternative. This test is similar to the one we propose,

but instead of a parametric alternative we chose a nonparametric one. Elliott and Müller (2006)

present an LR-type test in which parameters are allowed to vary over time in a very flexible way.

They prove that asymptotically no power is lost by leaving the particular form of time variation

unspecified. Their test is very easy to implement, and the authors document impressive small-

sample properties. Cai (2007) and Chen and Hong (2012) present tests very similar to the one

we propose. As with our approach, their tests are based on the difference between OLS and

a nonparametric regression model, but, where we test on the estimated parameters directly,

Chen and Hong (2012) and Cai (2007) test on the fitted values of the regression model and the

residuals, respectively. Du et al. (2013) develop a very general framework, where both equality

and inequality constraints can be imposed in nonparametric regression models, and propose using

bootstrap methods to test the validity of the constraints.

In the financial literature notable contributions have been made by Ang and Kristensen

(2012) and Guo et al. (2017). Ang and Kristensen (2012) propose testing whether nonparametric

estimates of the parameters in a conditional version of the CAPM are constant, and develop a

framework for doing so. Guo et al. (2017) rely on a different approach where the parameters of

a conditional CAPM are estimated using splines. The shapes of the splines are determined by

a relatively low number of parameters, and shape constraints on the splines can be tested based

on tests of these parameters.

Chen and Hong (2012) carry out a large simulation study, and the authors demonstrate that

their proposed test statistic performs satisfactorily when compared to the tests of Brown et al.

(1975), Andrews (1993), Lin and Teräsvirta (1994), Bai and Perron (1998) and Elliott and Müller

3The interested reader is referred to Perron (2006) for an excellent review of the literature on structural
changes.
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(2006). Thus, Chen and Hong (2012) serve as our benchmark and we carry out simulations in

the same framework and present comparable results.

The test of Chen and Hong (2012) does not allow for autocorrelation, but in our proposed

framework it is possible to take this into account. We demonstrate that our test is superior to

the test of Chen and Hong (2012) in the presence of autocorrelation, while the two tests have

similar performance when errors are IID or heteroskedastic.

Autocorrelation is often present in the disturbances of economic models, and it should be

handled in a reasonable way. A case can be made that, because autocorrelation is the result of

model misspecification, the econometrician should try to adjust her model in order to alleviate

this problem, for example by including lags of the dependent and explanatory variables, instead

of accounting for the autocorrelation in the disturbances. Many existing tests assume a well-

specified model, see Chen and Hong (2012) for example, and do not consider autocorrelation.

The problem with this approach is that a particular economic model does not necessarily leave

the econometrician with the freedom to make such adjustments. If the structure imposed by an

economic model does not allow the econometrician to account for autocorrelation when specifying

the model, then allowing for autocorrelation in the disturbances becomes essential. Our approach

allows for the presence of autocorrelation, and simulation results show that the empirical level

of the test is close to the nominal level in this case.

We uncover several interesting empirical findings. First we consider the long-run CAPM

regression model in Figure 1, where our test rejects the linear model with constant parameters

for both the portfolio of value stocks and for the portfolio of growth stocks. Ang and Chen

(2007) find the book-to-market effect to be strong in the post-1963 sample. When testing on

this period we reject the linear model for constant parameters for the portfolio of value stocks

and for a book-to-market strategy. Thus, our results largely support the work of Ang and Chen

(2007). Second, we test the specification of simple policy rules as presented in Taylor (1993)

and present evidence against constant parameters. Third, we test for constant parameters in

a predictive regression of equity premium on dividend yield, as considered in Welch and Goyal

(2008), and reject the model with constant parameters. This result supports the methodology of

Dangl and Halling (2012) and Johannes et al. (2014) and the findings of, among others, Pesaran

and Timmermann (2002) and Paye and Timmermann (2006). Fourth, we consider the five-factor

model of Fama and French (2015) and demonstrate that while inference based on full sample

OLS estimates might indicate a well-specified asset pricing model in terms of zero alpha, it does

not guarantee that the model does not suffer from other misspecifications. Finally, we test the

relationship known as Okun’s law.
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The rest of this paper is organized as follows. Section 2 introduces the test statistic. Section

3 investigates the properties of our test in a large simulation study with realistic data generating

processes. Section 4 considers five different applications of the proposed test. Finally, Section 5

concludes.

2 Testing Model Specification

Models with time-varying parameters have become very popular, see for example Ang and Chen

(2007) or Dangl and Halling (2012), but this choice of model is rarely made based on a test

for correct model specification. Notable exceptions include Ang and Kristensen (2012) and Guo

et al. (2017), both of which test for time variation in the parameters of the CAPM. The proposed

test in this paper is inspired by Cai (2007) and Chen and Hong (2012). The idea behind the test

is to estimate the model by the nonparametric Local Linear Regression Model and compare the

estimates to the ones obtained by a parametric estimation method.

The test we introduce is based on the time-varying parameter model, considered by, among

others, Chen and Hong (2012). The time-varying parameter model is specified as

Yt = Xtθt + εt, for t =
1

T
, . . . , 1, (1)

where T denotes the sample size and Xt contains d explanatory variables. We will estimate

θt using a nonparametric estimator and compare it to the OLS estimate, which is obtained by

assuming that θt is constant. The next section presents the nonparametric estimator of θt.

2.1 Nonparametric Regression

In (1) the time-varying parameters take the form θt = (θt,1, . . . , θt,d)
′, where we assume that

θj,t = θj(t) are unknown functions for j = 1, . . . , d. The model and its estimation was first con-

sidered by Robinson (1989, 1991). Nonparametric estimation of the model was further considered

in Orbe et al. (2000, 2005) and Cai (2007).4

In this paper we choose the local linear estimator as our nonparametric estimator, where at

any point in time t the unknown function θ(s), where s = 1
T , . . . , 1, is approximated around t by

a linear function

θ(s) ≈ θ(t) + θ(t)′(s− t). (2)

4In Chapter 9 of Li and Racine (2007) this type of model is called a semiparametric smooth coefficient model
to separate it from the full-fledged nonparametric cases where Yt = g(Xt)+εt, where g() is an unknown function.
While this classification is more accurate we stick with the terminology normally used in the literature and refer
to Yt = Xtg(t) + εt as a nonparametric model to avoid confusion.
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We adopt the following notation and define θ(t) = θt and θ′(t) = θ′t. At any point in time

t ∈ [0, 1], θ̂t and θ̂′t minimize the objective function:

1∑
s=1/T

[Ys −Xsθt +Xsθ
′
t(s− t)]

2
kst,

where kst = k
(
s−t
h

)
/h. Here, k is a kernel function and h is the bandwidth. We focus exclusively

on θ̂t. Further details are in Appendix A.

2.1.1 Linear approximation

The assumption in (2) is that the unknown function can be approximated well at a given point

in time by a linear function. Ang and Kristensen (2012) relies on the local constant model,

meaning that they rely on a simpler specification in (2). For specific applications the local

constant specification might be sufficient, while other applications might require more flexible

specifications. Note that rejection of the null hypothesis, as with any test, does not imply that

the nonparametric regression model represents the true data generating process (DGP). The

important thing is to select an estimation technique which, in case regression parameters are not

constant, leads to consistent estimates significantly different from those obtained by OLS.

2.2 Hypothesis testing

Consider the following null-hypothesis, as presented in Cai (2007)

H0 : θt,j − fj(t,φ) = 0 for j = 1, . . . , d,

where fj(t,φ) is a family of candidate functions indexed by the unknown parameter vector φ. In

the case of the linear model with constant parameters the candidate function is of a particularly

simple form, namely fj(t,φ) = φj for all j and φ̂j is the OLS estimate of the j-th parameter.

We can then present the hypothesis of interest as

H0 : θt − φ = 0 for t =
1

T
, . . . , 1,

H1 : θt − φ 6= 0 for at least one t.
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If we denote the vector of OLS estimates for the j parameters by φ̂, an asymptotically pivotal

statistic for tests of this type of hypotheses can be formulated as

W =
[
(θ̂1/T − φ̂)′ . . . (θ̂1 − φ̂)′

]
Ω̂−1


θ̂1/T − φ̂

...

θ̂1 − φ̂

 , (3)

where Ω̂ is an estimate of the Td× Td-dimensional covariance matrix of the difference between

the two estimators. The elements of this matrix are fairly simple to calculate but the size of

the matrix makes inversion both time consuming and potentially unreliable. This problem is

similar to one faced in Patton and Timmermann (2010), where the authors develop a test for a

monotonic relationship between returns on securities. The authors face the problem that testing

on all potential pairs of security returns leads to a very high number of parameter restrictions.

They solve their problem by focusing their test on the smallest difference between the returns of

two adjacent securities, arguing that if the smallest difference is positive, then all differences are

positive. Inspired by this paper we propose the following solution.

To avoid dealing with Ω, we instead consider the following hypothesis

H0 : θt − φ = 0 for t =
1

T
, . . . , 1, (4)

H1 : max
t=1/T,...,1

θt − φ 6= 0.

This hypothesis can be tested by defining

wt =
(
θ̂t − φ̂

)′
Ω̂−1t

(
θ̂t − φ̂

)
(5)

and then considering the following test statistic

Wmax = max
t=1/T,...,1

wt.

Note, that the calculation of Wmax only requires us to estimate the T different d × d blocks on

the diagonal of Ω, and not all Td × Td elements. A test statistic based on the supremum is

used by Andrews (1993) to detect unknown breakpoints. For any t, the covariance matrix for

the difference of the estimators is given by

Ωt =V
(
θ̂t − φ̂

)
= V

(
θ̂t

)
+ V

(
φ̂
)
− cov

(
θ̂t, φ̂

)
− cov

(
θ̂t, φ̂

)′
. (6)
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A suitable estimator Ω̂t could be, for example, a White or Newey-West type estimator. This

approach requires inversion of T individual d× d matrices in (5) and not a Td×Td matrix as in

(3). Further details are available in Appendix B.

2.2.1 Testing jointly

Ang and Kristensen (2012) carry out their test on alpha and beta individually, while our proce-

dure tests the coefficients of the model jointly. Testing on the coefficients individually can lead

to rejection levels which are different from nominal levels of the test and the severity of this

problem increases for regression models with more variables, as for example the five factor model

of Fama and French (2015).

2.2.2 Other candidate functions

The linear model with constant parameters is not the only interesting candidate function. Some

applications are simpler and might require a test based on a candidate function where parameters

are constant and known to the analyst. We consider one such case in Section 4.2, where we

apply our test to a policy rule in the spirit of Taylor (1993). Other applications might be more

complicated. It is also possible to test whether the linear approximation in (2) is sufficient,

and thus test the Local Linear model against other members of the class of Local Polynomial

Regression models.

2.2.3 Assymptotic distribution

Delgado and Manteiga (2001) show that test statistics such as the one we propose, under certain

conditions, converge in distribution to the supremum of the sum of a zero mean Gaussian process

and a bias term. The authors note that such asymptotic tests are difficult to implement in

practice and, in line with Patton and Timmermann (2010), advocate using bootstrap procedures

for inference.

2.3 Bootstrap inference

Similarly to Cai (2007) and Chen and Hong (2012), finite sample inference will be based on the

Wild Bootstrap. Under the null hypothesis the model from (1) is

Yt = Xtφ+ εt,
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and can be estimated by OLS. Let ε̂φ,t denote the estimated residuals under the null hypothesis.

Bootstrap samples can be generated by

Y ∗t = Xtφ̂+ s∗t ε̂φ,t,

where s∗t is a draw from the Rademacher distribution. W ∗max can be estimated based on Y ∗t and

by repeating the process the distribution of the test statistic under the null hypothesis can be

constructed.

A notable difference to Cai (2007) and Chen and Hong (2012) is that both papers base their

bootstrap on the non-parametric residuals, whereas we rely on the the residuals obtained under

the null.

If εt contains autocorrelation, another bootstrap approach is needed. We rely on the sta-

tionary bootstrap of Politis and Romano (1994), where the block length is chosen according to

Politis and White (2004) and Patton et al. (2009).5

3 Simulation

This section presents the results of a series of experiments to assess the performance of our

proposed test statistic in finite samples. We consider a bivariate specification of Xt in (1), where

the first column of Xt is a vector of ones. We refer to the first element of θt as αt and to the

second element as βt. All simulations are based on the same common structure from Chen and

Hong (2012) where

Yt = αt + βtXt + εt (7)

Xt = 0.5Xt−1 + ηt (8)

εt =
√
htut (9)

We carry out simulations for six different specifications of αt and βt in (7). These specifications

are illustrated in Figure 2 and presented in detail below. The first panel of Figure 2 represents

a DGP where the null hypothesis is true, and the model can reasonably be estimated by OLS.

The top right panel and the two middle panels, respectively, represent single, multiple, and

temporal structural breaks, and are very important in a financial context. The bottom left

panel represents a DGP with smoothly changing elements of θt. Finally, the bottom right panel

represents a realization of a DGP where the elements of θt follow independent unit root processes.

5Matlab codes for the stationary bootstrap and block length selection are kindly made available by Andrew
Patton on his website, http://public.econ.duke.edu/~ap172/.
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Figure 2: Parameters of the DGP. The figure presents the different specifications of αt and βt considered in the
simulation study. The plots are constructed based on a sample size of 100 observations. The bottom right panel
presents one potential realization of αt and βt with the unit root specification of DGP.P5.
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The six different specifications of αt and βt are identical to those of Chen and Hong (2012)

and formally defined as follows.

Constant parameters

Yt = 1 + 0.5Xt + εt (DGP S.1)

Single structural break

Yt =

1 + 0.5Xt + εt, t ≤ 0.3T

1.2 +Xt + εt, Otherwise
(DGP P.1)

Multiple structural breaks

Yt =


0.6 + 0.3Xt + εt, 0.1T ≤ t ≤ 0.2T and 0.7T ≤ t ≤ 0.8T

1.5 +Xt + εt, 0.4T ≤ t ≤ 0.5T

1.0 + 0.5Xt + εt, Otherwise

(DGP P.2)

Non-persistent temporal structural breaks

Yt =

1 + 0.5Xt + εt, t ≤ 0.4T and t ≥ 0.6T,

1.5 +Xt + εt, Otherwise
(DGP P.3)

Smooth structural changes

Yt = F (τ)(1 + 0.5Xt) + εt (DGP P.4)

F (τ) = 1.5− 1.5 exp(−3(τ − 0.5)2), τ =
t

T
.

Unit root in parameters

Yt = ρ1,t + ρ2,tXt + εt (DGP P.5)

ρi,t = ρi,t−1 + ui,t, ui,t ∼ NID(0, 1/15), i = 1, 2.

We assume that ηt ∼ NID(0, 1) in (8), and in (9) we consider four different specifications of ht

and ut.

Case 1: ht = 1 and ut ∼ NID(0, 1), so that εt is normal IID.

Case 2: ht = 0.2 + 0.8ε2t−1 and ut ∼ NID(0, 1), so that εt contains ARCH(1) effects.

Case 3: ht = 0.2 + 0.5X2
t and ut ∼ NID(0, 1), so that εt|Xt ∼ N(0, f(Xt)), with f(Xt) =

0.2 + 0.5X2
t .
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Case 4: ht = 0.2 + 0.8ε2t−1 and ut = 0.9ut−1 + ξt, where ξt ∼ NID(0, 0.22), so that εt is

heteroskedastic and autocorrelated.

Cases 1-3 are similar to the specifications in Chen and Hong (2012), while case 4 is similar to one

considered in Cai (2007).6 Note, that Chen and Hong (2012) consider only the IID specification,

Case 1, in their simulation study of (DGP P.1)-(DGP P.5), whereas we consider all four cases

for all six specifications of αt and βt.

In addition to the results forWmax, we also present results for the heteroskedasticity consistent

version of the test of Chen and Hong (2012), Ĥhet. The test is defined as

Ĥhet =

√
hTQ̂− ÂH√

BH
,

where Q̂ = T−1
∑T
t=1 (X ′tθt −X ′tφ)

2
, and ÂH and B̂H are defined in Chen and Hong (2012). In

Chen and Hong (2012) the authors rely on a technique called reflection around the boundaries

to make the behavior of the estimator at the boundary points similar to the behavior at interior

points. We do not use this technique in the present simulation study. Inference for Ĥhet is

based on bootstrap distributions obtained from the nonparametric residuals, as suggested by the

authors.

3.1 Results

In order to ensure comparability, we use the uniform kernel and the rule-of-thumb bandwith

used in Chen and Hong (2012), meaning that the bandwith is chosen as h = (1/
√

12)T−1/5. For

Cases 2 and 3 the calculation of the test statistic is based on White standard errors, while no

correction is used in Case 1. The calculation of the test statistic in Case 4 is based on Newey-

West standard errors. Empirical rejection rates for (DGP S.1) at the ten percent level based on

5000 simulations and 499 bootstraps are presented in Table 1. The empirical rejection rates for

(DGP S.1) from Cases 1-3 are very similar to the results presented in Chen and Hong (2012).

Wmax and Ĥhet both perform satisfactorily in the first three cases. For the smaller sample sizes

of 100 and 250 observations, Wmax performs somewhat better than Ĥhet. For 500 observations,

both produce rejection rates relatively close to the nominal level of 10%. Results for Case 4 are

very different. Rejection rates are further from nominal levels than for Cases 1-3. The test of

Chen and Hong (2012) is not designed for autocorrelation, and, unsurprisingly, Ĥhet is severely

size distorted in this case. The empirical rejection rates of Wmax for Case 4 are satisfactorily

close to the nominal level, but more observations are required to achieve results comparable to

6We consider a greater amount of heteroskedasticity in Case 2. The parameter is 0.8 in this analysis and 0.5
in Chen and Hong (2012)
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Cases 1-3. Based on the results in Table 1 we limit our analysis of (DGP P.1)-(DGP P.5) in the

following to the Wmax statistic.

Table 1: Rejection rates of Wmax at the 10% level.

Case 1 Case 2 Case 3 Case 4
100 250 500 100 250 500 100 250 500 100 250 500

DGP S.1
Wmax 9.9 9.6 10.1 8.8 9.8 9.8 9.3 9.9 9.7 20.5 16.5 12.9

Ĥhet 17.7 13.6 12.3 17.0 12.9 11.8 18.1 14.8 12.7 96.4 89.5 74.4

Empirical rejection rates at the ten percent level (multiplied by 100) of Wmax and Ĥhet from 5000 simulations
from (DGP S.1). The test statistic is based on White standard errors in Cases 2 and 3 and Newey-West standard
errors in Case 4. Inference is based on 499 bootstrap replications.

Rejection rates for (DGP P.1)-(DGP P.5) are presented in Table 2 and based on 499 bootstrap

replications and 1000 simulations. The empirical rejection rates for Case 1 are very similar to

Chen and Hong (2012) for (DGP P.1)-(DGP P.5).7 The test suffers from low power in the case

of multiple structural breaks, (DGP P.2), when the residuals contain autocorrelation, but apart

from this case, power is, in general, good for samples of 500 observations.

Table 2: Rejection rates of Wmax at the 10% level.

Case 1 Case 2 Case 3 Case 4
100 250 500 100 250 500 100 250 500 100 250 500

DGP P.1 43.5 79.8 97.4 43.4 90.9 99.4 23.6 54.0 85.6 51.6 89.8 97.0
DGP P.2 44.2 86.7 99.3 38.0 86.6 99.5 28.4 72.2 98.0 18.0 27.0 47.9
DGP P.3 50.6 90.6 99.9 48.3 90.5 98.9 32.0 73.4 97.9 60.3 88.1 96.0
DGP P.4 42.3 79.3 97.3 44.2 90.1 99.4 33.8 75.4 98.3 42.0 61.2 77.3
DGP P.5 99.3 100 100 96.3 100 100 95.2 99.9 100 61.9 92.4 98.6

Empirical rejection rates at the ten percent level (multiplied by 100) of Wmax from 1000 simulations from
(DGP P.1)-(DGP P.5). The test statistic is based on White standard errors in Cases 2 and 3 and Newey-West
standard errors in Case 4. Inference is based on 499 bootstrap replications.

3.1.1 Bandwidth Selection

In the simulation exercise and in the empirical application we rely on a rule-of-thumb bandwidth

for the nonparametric estimator. Very strong cases for data-driven bandwidth selection are made

by Loader (1999) and Li and Racine (2004). We choose the rule-of-thumb specification in spite

of its undesirable properties to ensure comparability with the simulation study in Chen and

Hong (2012). Chen and Hong (2012) show that their results are not affected by changing the

bandwidth.

7Chen and Hong (2012) consider rejections based on empirical critical values (ECV) in their power study,
(DGP P.1)-(DGP P.5). In this case the 5%-level ECV is the 95% quantile of the distribution of the test statistic
obtained from the 5000 simulations of (DGP S.1). We base our inference on bootstrap methods as discussed
above.
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4 Empirical applications

This section presents five empirical applications based on important financial and macroeconomic

theories. The first application is the long-run CAPM of Ang and Chen (2007), the second is a

test of the policy rule proposed in Taylor (1993), the third is a return predictability model from

Welch and Goyal (2008), the fourth is the five factor model from Fama and French (2015), and

finally the fifth application is a test of Okun’s law.

For empirical applications, we rely on the Breusch-Godfrey test to detect autocorrelation and

the Breusch-Pagan test for heteroskedasticity. Wmax is based on White standard errors when

the null hypothesis of homoskedasticity is rejected and on Newey-West standard errors when the

null hypothesis of no autocorrelation is rejected.

4.1 CAPM in the long run

Ang and Chen (2007) introduce a conditional CAPM with time-varying betas that can account

for the long-run spread in the average returns of book-to-market sorted portfolios. The model

is motivated in part by the graphical inspection of 60 months rolling window OLS estimates of

the market beta of two different portfolios as presented in Figure 1. The analysis is based on the

book-to-market sorted decile portfolios of Davis (1994) and Davis et al. (2000), which together

with market return and the T-bill rate are available from the data library of Kenneth French.8

The rolling window estimates of Ang and Chen (2007) are based on the following model

Ri,t = αi + βiRM,t + εi,t, i = {value, growth}, (10)

where Ri,t is the excess return of portfolio i at time t, RM,t is the excess market return and εi,t

is an error term.

Figure 3 presents four panels. The top panels contain the full sample OLS estimates in

blue, the rolling window OLS estimates in red and the nonparametric estimates of αi in (10)

in green, for the value portfolio on the left hand side and for growth on the right hand side,

respectively. The bottom panels present the corresponding estimates of β in (10) from the same

three estimation techniques. The estimates of α and β vary substantially for the portfolio of

value stocks, while the variation is smaller for the portfolio of growth stocks.

It is interesting that the rolling window estimates are more volatile than the nonparametric

ones. Even though the two methods are similar, they rely on a different kernel specification. The

rolling window estimation can be seen as a one-sided uniform kernel based on 60 observations

8http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3: Time-varying parameters. The figure presents the estimates from the regression model, Ri,t =
αi + βiRM,t + εi,t, where Ri,t is the excess return on a portfolio, i = value, growth, RM,t is the excess return
on the market portfolio and εi,t is the residual. The top panels present the estimates of α of a portfolio of value
stocks on the left hand side and a portfolio of growth stocks on the right hand side. The bottom panels present
the estimates of β. The nonparametric estimates are presented with green lines, the full sample estimates are
presented in blue, and 60 month rolling window estimates are presented in red. The estimates are based on a
sample of monthly returns from July 1926 to July 2016.
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and a constant approximation of the unknown parameters, while the nonparametric estima-

tor is based on a linear approximation using a two-sided uniform kernel with a bandwidth of

(1/12)1/2 ∗ (T )−1/5, meaning that the estimator uses 154 observations (two times bandwidth) in

this particular application.

The graphical analysis in Figure 3 is complemented by a formal test, and the P values for

Wmax are presented in Table 3. The table contains results for the portfolio of value stocks,

the portfolio of growth stocks and the difference between the two. The difference between the

two is called the book-to-market strategy in Ang and Chen (2007). The table also contains

the P values of the Breusch-Godfrey test, which indicates that the presence of autocorrelation

cannot be rejected in most cases. At a five percent level we reject the linear model with constant

parameters for the portfolios of value and for the book-to-market strategy, while the null is

rejected for the portfolio of growth stocks at a ten percent level.

Table 3: Empirical results for the long run CAPM.

1926:07-2016:07 1926:07-1963:06 1963:07-2016:07
Wmax BG Wmax BG Wmax BG

Value 0.0040 0.0000 0.0180 0.0171 0.0100 0.0000
Growth 0.1022 0.0065 0.0000 0.0048 0.0721 0.1187
BM 0.0020 0.0021 0.0000 0.1616 0.0140 0.0001

Observations 1083 444 639

The table presents P values from the Wmax test in the model: Ri,t = αi + βiRM,t + εi,t, where Ri,t is the excess
returns of the value portfolio, the growth portfolio and the difference between the two, respectively and rm,t is the
excess return on the market portfolio. P values for Wmax are based on 499 bootstrap replications. P values for
the Breusch-Godfrey test for autocorrelation are presented in the BG columns. Wmax is based on White standard
errors when autocorrelation is rejected and on Newey-West standard errors when it cannot be rejected. Results
are presented for the full sample from July 1926 through July 2016 and two subsamples.

At a five percent level we reject the linear model with constant parameters for the portfolio

of value stocks and the book-to-market strategy for the post-1963 subsample, while we reject the

null hypothesis for the portfolio of growth stocks at a ten percent level.

We conclude that in particular for the post-1963 period, these results support the results in

Ang and Chen (2007), and justify the use of a model with time-varying parameters to explain

the book-to-market effect, which is found to be strongest in this period. Our findings support

the results of Ang and Kristensen (2012) and Guo et al. (2017).

4.2 Taylor rule

Taylor (1993) suggests that a good policy rule would cause a central bank to change the federal

funds rate when the price level changes or when real income changes. The following simple policy
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rule is suggested

rt = pt + 0.5yt + 0.5(pt − 2) + 2,

= 4 + 0.5yt + 1.5(pt − 2). (11)

The rule relates the federal funds rate, rt, to the rate of inflation pt, and real GDP output gap, yt.

Data for this application are measured at a quarterly frequency and are available from 1954:Q3

to 2016:Q4, resulting in 250 observations. The data are available from the website of the Federal

Reserve Bank of St. Louis.9 Four data series have been downloaded. r is the effective federal

funds rate (FEDFUNDS), using the end of period option for quarterly aggregation. The inflation

rate is calculated from the GDP deflator (GDPDEF) as the rate of inflation over the previous

year. Finally, yt is calculated as the percentage deviation of real GDP (GDPC1) to real potential

GDP (GDPPOT).

The policy rule represents a linear model, where the parameters are known to the analyst

a priori. Our proposed test is well suited for such a situation. To test whether the parameters in

(11) are constant, we specify the test statistic slightly differently and let the vector (4, 0.5, 1.5)′

replace the OLS estimator, φ̂, in (5) and we remove any estimation uncertainty related to φ̂ in

the estimate of Ωt in (6).

Results of the analysis are presented in Table 4. The Breusch-Godfrey test strongly rejects

the null hypothesis of no autocorrelation with a P value of 0.0000. Based on 499 bootstrap

replications the null hypothesis of constant parameters is strongly rejected with a P value of

0.0000. The period after 1982 is of particular interest and is often awarded extra attention in

the literature, see for example Clarida et al. (2000). Results for this period are also presented in

Table 4 and confirm the results for the full sample period.

Based on this analysis we conclude that the parameters of the simple version of the Taylor

rule in (11) are not constant.

Several papers consider the simple Taylor rule in a different form from that presented in (11),

where parameters are not known, but have to be estimated. See for example Ang and Piazzesi

(2003), who consider

rt = β0 + βyyt + βp(pt − 2) + εt, (12)

to establish a baseline before introducing more advanced policy rules. Time variation of policy

rules has also been considered by Ang and Bekaert (2002), who estimate a regime-switching

model for the short rate. Our test, if the null hypothesis is rejected, can provide justification for

9fred.stlouisfed.org
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such approaches. Results for our test for the specification in (12) are presented in Table 4. The

Breusch-Godfrey test rejects the null hypothesis of no autocorrelation in both the full sample

as well as in the subsample. Based on 499 bootstrap samples the null hypothesis of constant

parameters is rejected for both samples on a 10% level.

Table 4: Empirical results for the Taylor rule.

1954:Q3-2016:Q4 1983:Q1-2016:Q4
Wmax BG Wmax BG

Known parameters, (4, 0.5, 1.5)′ 0.0000 0.0000 0.0040 0.0000

Unknown parameters, (α̂, β̂y, β̂p)′ 0.0401 0.0000 0.0641 0.0000

Observations 250 136

The table presents values from the Wmax test in the model: rt = α+βyyt+βp(pt−2)+εt, where rt is the effective
federal funds rate, yt is real GDP output gap, and pt is the rate of inflation over the previous year. The first row
contains results for the tests, where α, βy , and βp are assumed known and equal to 4, 0.5, and 1.5, respectively.
The second row contains results for the case in which α, βy , and βp are unknown and must be estimated. P values
for Wmax are based on 499 bootstrap replications. P values for the Breusch-Godfrey test for autocorrelation are
presented in the BG columns. Wmax is based on White standard errors when autocorrelation is rejected, and
on Newey-West standard errors when it cannot be rejected. Results are presented for the full sample from third
quarter of 1954 through last quarter of 2016 and for a subsample.

The rejection of the Taylor rules in (11) and (12) are relevant for several papers in the

macro-finance and macroeconomic literatures. Among many others Clarida et al. (2000), Ang

and Piazzesi (2003), Christiano et al. (2005), and Smets and Wouters (2007) all rely on the

assumption of a policy rule that is linear and has constant parameters. The policy rules in these

papers are more complicated than the ones tested here. The results in Table 4 support the use

of alternative models compared to the simple ones considered in this application, but do not

guarantee that such alternative models are well specified. It would be interesting to test whether

these models are well specified and to investigate the effects of potential misspecification, but

this lies beyond the scope of this small application.

4.3 Return prediction

When it comes to predicting the equity premium, many variables have been suggested in the

literature. Welch and Goyal (2008) carry out an extensive study, where they test, one by one,

whether a large set of economic variables have any predictive power. Their study is centered

around the regression model

rt+1 = γ0 + γ1Xt + εt+1, (13)

which relates the future value of the equity premium, rt+1, to the current value of a particular

variable, Xt. We limit our attention to a single predictor that has been the focus of much

attention, namely the dividend yield.
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The data for this application are measured at monthly frequency and are available from

January 1927 to December 2012.10 Following Welch and Goyal (2008), the equity premium is

defined as the difference in the log return on the S&P 500 and the log of the Treasury-bill rate

(lagged one month). The Dividend Yield is defined as the difference between the log of dividends

and the log of the S&P 500 index (lagged one month). The sample size is 1066 observations and,

based on the Breusch-Godfrey test, the null hypothesis of no autocorrelation is strongly rejected

with a P value of 0.0002. The test of constant parameters is therefore based on the Newey-West

estimator. The P value, resulting from 499 bootstrap replications, leads to rejection of the linear

model with constant parameters with a P value of 0.0120.

Our results support, among others, the results of Paye and Timmermann (2006), Lettau and

Nieuwerburgh (2008), and Farmer et al. (2018), where stability of (13) is also rejected. The

rejection of the model with constant parameters is of particular relevance to studies such as

Dangl and Halling (2012), who allow the parameters of (13) to vary over time. The results from

our analysis justify this approach.

4.4 A five-factor asset pricing model

Fama and French (2015) introduce a new asset pricing model relying on two additional factors

compared to the celebrated model of Fama and French (1993). The five factor model is specified

in the following way:

Ri,t = αi + β1,iRM,t + β2,iSMBt + β3,iHMLOt + β4,iRMWt + β5,iCMAt + εi,t, (14)

where Ri,t and RM,t are respectively the return on a portfolio, i, and the return on the market

portfolio, M , in excess of the risk-free return. SMBt is the return on a portfolio of small

stocks minus the return on a portfolio of big stocks. HMLOt is the orthogonal HMLt factor.

HMLt is the return on a portfolio of high B/M stocks minus the return on a portfolio of low

B/M stocks. The orthogonal HMLt factor is constructed as the sum of the intercept and the

residuals of the regression of HMLt on the other four factors. RMWt is the difference in returns

on portfolios of stocks with robust and weak profitability, and CMAt is the difference in return

on stocks of conservative and agressive firms. εi,t is a disturbance with zero mean. The factors

are available at the monthly frequency, and the sample used in Fama and French (2015) contains

606 observations, with the sample period starting in July of 1963 and ending in December 2013.11

10The data are available from the website of Amit Goyal, http://www.hec.unil.ch/agoyal/.
11The data are available from the website of Kenneth French, http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html.

20



Fama and French (2015) run the regression in (14) for a large number of different portfolios.

In this example we limit ourselves to a single portfolio. 25 Size-B/M portfolios are considered

in Table 7 of Fama and French (2015). Figure 4 plots the nonparametric estimates of the time-

varying intercepts of (14) for a portfolio of big stocks with high B/M in green and compares

the estimates to the full sample OLS estimates in blue. This particular portfolio is chosen

because the authors cannot reject the null hypothesis of zero intercept in this case, indicating a

well-specified asset-pricing model. Figure 4 illustrates that, although full sample OLS estimates

might indicate a well-specified asset-pricing model, it might be on the basis of an unrealistic

assumption of constant parameters.

Nonparametric 
Full sample OLS 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
-1

0

1 Nonparametric 
Full sample OLS 

Figure 4: Time-varying alpha. The plot presents the estimates of α in the model: Ri,t = αi + βi,1RM,t +
βi,2SMBt + βi,3HMLOt + βi,4RMWt + βi,5CMAt + εi,t for the Big,High portfolio. Nonparametric estimates
are presented in green and the full sample OLS estimates are presented in blue. Estimates are presented for the
full sample of 606 monthly observations from the period 1963:7-2013:12.

The graphical analysis in Figure 4 motivates the formal testing of the linear model with

constant parameters. With a P value of 0.526 from the Breusch-Godfrey test the null hypothesis

of no autocorrelation cannot be rejected. Therefore the test for constant parameters is based on

the White correction, and the null of constant parameters is strongly rejected with a P value of

0.0000 for 499 bootstrap replications.

4.5 Okun’s law

This section investigates a relationship between changes in GDP and changes in the unemploy-

ment rate, known as Okun’s law. If one assumes that the potential output and the potential

unemployment rate are both constant, then Okun’s law implies that

∆Yt
Yt

= k − c∆ut + εt,
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where Yt is real GDP, ut is the unemployment rate and εt is an error term. Data for the U.S.

real GDP and the unemployment rate are downloaded from the website of the Federal Reserve

Bank of St. Louis.12

Quarterly percentage changes in real GDP are obtained for the period from 1948:Q2 to

2016:Q3. The Breusch-Godfrey test has a P value of 0.019, indicating that the data contain

some autocorrelation and Wmax is therefore based on the Newey-West estimator. Based on 499

bootstrap replications the linear model with constant parameters is rejected at a 10% level with

a P value of 0.084.

We conclude that our test provides some evidence against this version of Okun’s Law.

5 Conclusion

This paper provides a simple test that allows researchers to judge the appropriateness of a linear

model specification with constant parameters. The test is tailored for applications in finance

and macroeconomics and allows for autocorrelation in the disturbances. In a large simulation

study, the proposed test is shown to have empirical rejection rates very close to the nominal level

when the data are generated by the model under the null hypothesis. Furthermore, the test has

good power against various realistic alternatives. We consider five empirical applications and

demonstrate that the test is applicable in many different areas, and that valuable insights can

be obtained from the proposed test.

12fred.stlouisfed.org
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A Nonparametric Regression

This appendix presents a reformulation of the least squares problem and the corresponding Local

Linear estimator, which is very practical for implementing the test.

The time-varying parameter model is specified as in (1). As mentioned in the main text, at

any point in time t ∈ [0, 1], the Local Linear model can be viewed as the least squares estimator

of the linear regression model

k
1/2
st Ys = k

1/2
st Xsγ0,t + k

1/2
st (s− t)Xsγ1,t + k

1/2
st εs, for s =

1

T
, . . . , 1,

where kst = k
(
s−t
h

)
/h. k is a kernel function and h is the bandwidth. It is convenient to

reformulate the model. Let ust = k
1/2
st Ys, Wst = k

1/2
st Xs, Zst = k

1/2
st (s− t)Xs and ηst = k

1/2
st εs,

which gives

ust = Wstγ0,t +Zstγ1,t + ηst for s =
1

T
, . . . , 1.

or equivalently, in vector form

ut = Wtγ0,t +Ztγ1,t + ηt. (15)

The estimates of γ0,t are estimates of θ(t), whereas the estimates of γ1,t are estimates of θ′(t).

We are interested in the estimates of γ0,t only. Therefore, we define MZ = I −Zt (Z ′tZt)
−1
Z ′t

and premultiply by this matrix in (15) to obtain

MZut = MZWtγ0,t +MZηt. (16)

The least squares estimator of γ0,t is

γ̂0,t = (W ′
tMZWt)

−1
W ′

tMZut,
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B Estimation of Ω

Following the calculations in Appendix A we can find the variance of the difference between the

nonparametric estimator and the OLS estimator as

Ωt =V
(
θ̂t − φ̂

)
= V

(
θ̂t

)
+ V

(
φ̂
)
− cov

(
θ̂t, φ̂

)
− cov

(
θ̂t, φ̂

)′
(17)

= (W ′
tMZWt)

−1
W ′

tMZE(ηtη
′
t)MZWt (W ′

tMZWt)
−1

+ (X ′X)
−1
X ′E(εtε

′
t)X (X ′X)

−1

− (W ′
tMZWt)

−1
W ′

tMZE(ηtε
′
t)X (X ′X)

−1

− (X ′X)
−1
X ′E(εtη

′
t)MZWt (W ′

tMZWt)
−1
.

Ω̂t can be found by replacing E(ηtη
′
t), E(εtε

′
t), E(ηtε

′
t) and E(εtη

′
t) with suitable (autocorrelation

and) heteroskedasticity-robust estimators.
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