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Abstract

We propose a nonparametric estimator of the empirical distribution function (EDF) of

the latent spot variance of the log-price of a financial asset. We show that over a fixed time

span our realized EDF (or REDF)—inferred from noisy high-frequency data—is consistent

as the mesh of the observation grid goes to zero. In a double-asymptotic framework, with

time also increasing to infinity, the REDF converges to the cumulative distribution function

of volatility, if it exists. We exploit these results to construct some new goodness-of-fit tests

for stochastic volatility models. In a Monte Carlo study, the REDF is found to be accurate

over the entire support of volatility. This leads to goodness-of-fit tests that are both correctly

sized and relatively powerful against common alternatives. In an empirical application, we

recover the REDF from stock market high-frequency data. We inspect the goodness-of-fit of

several two-parameter marginal distributions that are inherent in standard stochastic volatility

models. The inverse Gaussian offers the best overall description of random equity variation,

but the fit is less than perfect. This suggests an extra parameter (as available in, e.g., the

generalized inverse Gaussian) is required to model stochastic variance.
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1 Introduction

Stochastic volatility is a central concept in financial economics with numerous implications for cap-

ital allocation, asset- and derivatives pricing, or risk management. It is therefore essential to select

a model for stochastic volatility that is able to reproduce the main features observed in data from

financial markets, such as the implied volatility surface, as closely as possible. There is, however, no

consensus about which model is “best,” as the extensive list of papers on stochastic volatility sug-

gests (the literature is too big to count, but a partial and necessarily incomplete set of specifications

proposed in the literature can be found in Andersen, Benzoni, and Lund, 2002; Barndorff-Nielsen

and Shephard, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Christoffersen, Jacobs, and

Mimouni, 2010; Comte and Renault, 1998; Gatheral, Jaisson, and Rosenbaum, 2014; Heston, 1993;

Hull and White, 1987, and the references therein).

The goodness-of-fit of a stochastic volatility model can be assessed in several ways. If the

parameters are estimated with a method of moment-based estimator, a standard diagnostic check

is available via a test of overidentifying restrictions (see also, e.g., Gallant, Hsieh, and Tauchen,

1997). This approach can be highly inefficient, however, as it depends on the selection of moment

conditions and the associated estimation of the weighting matrix, which may produce significant

size distortions in finite samples (Andersen and Sørensen, 1996).

Another idea is to compare the model-implied distribution of volatility with a nonparamet-

ric empirical measure of it (e.g., Aı̈t-Sahalia, 1996). In a continuous-time setting, for instance,

a model is often formulated via a stochastic differential equation for the variance process (or a

transformation thereof, such as the square root or natural logarithm). This, in turn, implies that

the marginal distribution of spot volatility (at least in the stationary case) belongs to a particular

class of distributions. So if the underlying volatility was observed, a specification test based on the

distance—with respect to a suitable norm—between the empirical distribution function (EDF) and

the marginal distribution imposed by the model would be feasible. However, as spot volatility is

not directly observed, this approach is not immediately applicable.

The recent access to financial high-frequency data has alleviated these concerns, as it enables

the computation of an essentially error-free measure of realized volatility, allowing for a more direct

evaluation of the goodness-of-fit of stochastic volatility models. Inspired by the above, a common

approach is to compare (conditional) moments of the integrated variance of a parametric model with

a nonparametric estimator hereof (see, e.g., Bollerslev and Zhou, 2002; Corradi and Distaso, 2006;

Dette and Podolskij, 2008; Dette, Podolskij, and Vetter, 2006; Todorov, 2009; Todorov, Tauchen,
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and Grynkiv, 2011; Vetter and Dette, 2012). Zu (2015) proposes a test based on a de-convolution

kernel density estimator of the distribution of the integrated variance, Lin, Lee, and Guo (2013,

2016) resort to the empirical characteristic function, while Bull (2017) proposes a wavelet-based

test. As pointed out by Todorov and Tauchen (2012), however, the mapping between the probability

distribution of the spot and integrated variance is in general not one-to-one. Thus, goodness-of-fit

tests based on the latter suffer from lack of power against some alternatives, due to the smoothing

entailed by integrating spot volatility over a discrete time interval.

In this article, we therefore propose to construct goodness-of-fit tests for stochastic volatility

models that are based on a realized EDF (REDF hereafter) of spot volatility. We build on the

work of Li, Todorov, and Tauchen (2013, 2016), who show that estimation of the EDF amounts to

pinning down the occupation–or local—time of volatility. We first retrieve an estimate of the latent

spot variance at any point in time by employing a Foster and Nelson (1996) rolling window-type

estimator, which is computed on small blocks of high-frequency data. The main distinction is that

we allow the asset price to be recorded at the highest resolution—i.e. the tick-by-tick level—so

that instantaneous variance can be recovered as accurately as possible. This is crucial if the whole

distribution, including the tails, is of interest and not only measures of central tendency, such as

the mean or median.

At this sampling frequency, however, the data are invariably contaminated by frictions in the

trading process, collectively known as microstructure noise (see, e.g. Hansen and Lunde, 2006). This

complicates the issue a lot. The derived problem of estimating the integrated—or cumulative—

variance process in the presence of noise has received substantial attention in the literature (see,

e.g. Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008; Jacod, Li, Mykland, Podolskij, and

Vetter, 2009; Zhang, Mykland, and Aı̈t-Sahalia, 2005). We here adapt the pre-averaging approach

of Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Podolskij and Vetter (2009a,b) and show

how it can be applied to design a consistent spot variance estimator from polluted high-frequency

data (an alternative procedure is presented in Zu and Boswijk, 2014). The REDF is then built from

the recovered sample path.

We show that under mild conditions the REDF is a consistent noise- and jump-robust estimator

of the EDF over any fixed time interval, thus expanding Li, Todorov, and Tauchen (2013, 2016)

to the noisy framework. Next, we let the time horizon tend to infinity and are able to prove a

functional CLT for the REDF. This amounts to establish convergence of what van der Vaart and

Wellner (2007) call an empirical process indexed by an estimated function. Here, however, time is

continuous and the observations are not i.i.d.
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The theoretical results are refined into two new goodness-of-fit tests for measuring the discrep-

ancy between the marginal density implied by a candidate stochastic volatility model and the non-

parametric gauge at the EDF represented by the REDF. The first is reminiscent to a Kolmogorov-

Smirnov statistic for an observed process, while the second is based on a weighted L2 norm. Both

are trivial to compute once the REDF has been constructed, but there are a number of subtle

technical problems that render the asymptotic distribution hard to evaluate, making it difficult

to set critical regions and determine p-values. This is to some extent related to the complexities

encountered in a classical setup, when the parameters of the model under the null are estimated.

We resolve the issue via a parametric bootstrap (based on, e.g., Bull, 2017, and described in the

Supplementary Appendix), which leads to fast evaluation of the t-statistic.

The paper is organized as follows. In Section 2, we cover the setting, assumptions, and introduce

the EDF of volatility. In Section 3, the properties of the REDF are analysed. The asymptotic theory

for our goodness-of-fit tests is also developed here. Section 4 is devoted to a Monte Carlo study of

the REDF and an assessment of the size and power properties of the associated goodness-of-fit tests.

The REDF is found to be accurate over the entire support of volatility. This leads to goodness-

of-fit tests that are both correctly sized and relatively powerful against common alternatives. An

empirical application is conducted in Section 5, where we recover the REDF from stock market

high-frequency data and test the goodness-of-fit of several marginal distributions that are induced

by mainstream stochastic volatility models. The inverse Gaussian offers the best overall description

of random equity variation, but the fit is less than perfect. This suggests an extra parameter (as

available in, e.g., the generalized inverse Gaussian) is required to model stochastic variance. We

conclude in Section 6. The proofs appear in a supplementary web appendix.

2 The setting

Let X = (Xt)t≥0 denote the efficient log-price process of a financial asset, which is defined on

a filtered probability space
(
Ω,F , (Ft)t≥0,P

)
. As consistent with no-arbitrage (e.g., Delbaen and

Schachermayer, 1994), we assume X is an Itô semimartingale:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, for t ∈ [0, T ], (2.1)

where X0 is F0-measurable, (bt)t≥0 is a locally bounded, predictable drift, (σt)t≥0 is an adapted,

càdlàg volatility, (Wt)t≥0 a Brownian motion, and (Jt)t≥0 is a jump process:

Jt =

∫ t

0

∫
R
δ(s, z)1{|δ(s,z)|≤1}(µ− ν)(d(s, z)) +

∫ t

0

∫
R
δ(s, z)1{|δ(s,z)|>1}µ(d(s, z)), (2.2)
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where µ is a Poisson random measure on (R+,R), ν(d(s, z)) = ds⊗ λ(dz) is a compensator, and λ

is a σ-finite measure on R. Also, δ : Ω× R+ × R → R is a predictable function. We assume there

exists a sequence (τk)k≥1 of Ft-stopping times↗∞ such that |δ(ω, s, z)| ∧ 1 ≤ Γk(z) for all (ω, s, z)

with s ≤ τk(ω) and
∫
R Γk(z)2λ(dz) <∞ for all k ≥ 1.

We collect assumptions about the drift and volatility of X below.

Assumption 1 We assume that for each p ≥ 1 and t ≥ 0, E
[
|bt|p

]
+E
[
|σt|p] ≤ C for some constant

C. In addition, σ has to fulfill at least one of the following conditions:

(i) There exists H ∈ (0, 1) such that for each p ≥ 1, s ≥ 0, r > 0, and a constant C (dependent on

H and p):

E
[(

sup
s≤t≤s+r

|σt − σs|
)p]
≤ CrpH . (2.3)

(ii) σ has the representation:

σt = σ0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs +

∫ t

0

σ̃′sdBs +

∫ t

0

∫
R
δ̃(s, z)(µ− ν)(d(s, z)), (2.4)

where σ0 is F0-measurable, E
[
|b̃t|p

]
+ E

[
|σ̃t|p] + E

[
|σ̃′t|p] ≤ C for some constant C and for each

p ≥ 1 and t ≥ 0, while B is a Brownian motion independent of W , δ̃ is a predictable function, and

|δ̃(ω, t, z)| ∧ 1 ≤ Γ̃(z) for all (ω, t, z) and some Γ̃ : R→ R such that
∫
R Γ̃(z)2λ(dz) <∞.

Assumption 1 places some moment conditions on bt and σt. While it is general and encompasses

many volatility models applied in practice, it may feel a bit restrictive. The assumption can be

relaxed, but this entails that a constant ι > 0 (restricting the rate at which the sample size T →∞

and time gap ∆n → 0, cf. Section 3) has to be bounded from below, while it can be arbitrarily

small with the above setup.

Assumption 1(i) is a smoothness condition. It implies σ is continuous, so that it can be approx-

imated by a locally constant process over short time intervals. The condition covers both “rough”

volatility models and long-memory processes (e.g., Comte and Renault, 1998; Gatheral, Jaisson,

and Rosenbaum, 2014) with Hurst exponent H < 1/2 and H > 1/2 (standard Brownian motion is

the intermediate value H = 1/2), respectively.

Assumption 1(ii), which says σ is an Itô semimartingale, is common in the literature. It al-

lows volatility to exhibit fairly unrestricted jump dynamics (at the expense of excluding fractional

Brownian motion as in 1(i)) and also enables a leverage effect, as it does not restrict the correlation

structure between the increments of X and σ.
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Next, we define the EDF of volatility, which in the continuous-time setting is given by the

function:

FT (x) =
1

T

∫ T

0

1{Vt≤x}dt, (2.5)

where Vt ≡ σ2
t .

1

Assumption 2 FT is a.s. continuous.

This condition is fulfilled by most stochastic volatility models. It does not require σ to be continuous

nor does it impose the existence of a density.

The right-hand side of (2.5) can be written T−1
∫ T

0
g(Vt)dt, where g(v) = 1{v≤x}.

2 Then, if FT is

absolutely continuous with respect to the Lebesgue measure—which is stronger than Assumption

2—and g is a bounded or non-negative Borel function:

1

T

∫ T

0

g(Vt)dt =
1

T

∫
R+

g(x)dFT (x) =
1

T

∫
R+

g(x)fT (x)dx, (2.6)

where fT = F ′T . The EDF thus encapsulates all the information about (Vt)t≥0 available in [0, T ]

and can be viewed as a pathwise version of the distribution function of volatility.

2.1 A discrete and noisy high-frequency record of X

The main difficulty is that FT is latent, because σ is not observable. The aim of this paper is

therefore to construct a consistent estimator of FT , while making the above minimal assumptions

about X.

Of course, in an ideal world with no markets frictions and continuous trading—i.e. if the entire

trajectory of X is available—we can recover the volatility process perfectly and also the exact time

and size of jumps in X (in constrast to the drift, which cannot be consistently estimated in finite

time, not even if it is constant, see, e.g., Merton, 1980; Foster and Nelson, 1996), but this setup is not

realistic. In practice, we operate with discrete high-frequency data, which we assume are available

at times i∆n, for i = 0, 1, . . . , n, where ∆n is the time gap between consecutive observations and

1In probability theory, FT (x) =
∫ T

0
1{Yt≤x}dt is called the occupation—or local—time of the stochastic process

Y (e.g., Geman and Horowitz, 1980). This convention was adopted by Li, Todorov, and Tauchen (2013, 2016), who

applied it to high-frequency volatility estimation. We normalize FT by T here, as we are heading toward a setting

with stationary volatility and an asymptotic theory with T →∞.
2Much work in the high-frequency literature studies integrals of the form

∫ T
0
g(Vt)dt, where g is smooth (e.g.,

Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard, 2006; Jacod and Rosenbaum, 2013). Here, in contrast,

g is discontinuous, which makes the theory a lot more inaccessible.
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n = bT/∆nc is the sample size (equidistant sampling is convenient here, but it can weakened). In

a near-ideal world, the database then constitutes a high-frequency record of X, i.e. (Xi∆n)ni=0, and

the estimator proposed by Li, Todorov, and Tauchen (2013, 2016) can be applied without further

ado.

The microstructure of financial markets adds measurement error, however, which implies that

we do not observe X directly (e.g., due to bid-ask bounce or price discreteness). Instead, we record

a contaminated log-price Z, which we assume is related to X as follows:

Zi∆n = Xi∆n + Ui∆n , for i = 0, 1, . . . , n, (2.7)

where U is a centered (i.e., E(Ui∆n) = 0) and i.i.d. noise process with U ⊥⊥ X.

Assumption 3 E(|U |r) <∞ for every r > 0.

The moment condition is not standard in the high-frequency literature, but it is merely made for

technical convenience. In the proofs, we only assume moments of U exist up to some order (for

instance, in Lemma 2.1 we require the 4th moment to be finite).

We define the noisy log-return:

∆n
i Z = Zi∆n − Z(i−1)∆n , for i = 1, . . . , n. (2.8)

To deal with the noise, we pre-average the return series (see, e.g., Jacod, Li, Mykland, Podolskij,

and Vetter, 2009; Podolskij and Vetter, 2009a,b):

Z̄i =
kn−1∑
j=1

g

(
j

kn

)
∆n
i+jZ, for i = 0, . . . , n− kn + 1, (2.9)

where kn is a positive integer, while g is a kernel function.

Any g : [0, 1] 7→ R with g continuous and piecewise C1 with Lipschitz derivative g′, such that

g(0) = g(1) = 0 and
∫ 1

0
g(x)2dx > 0 is permitted. We follow the default choice in the literature by

setting g(x) = min(x, 1− x).

The selection of kn entails a trade-off. The intuition is that while pre-averaging lessens the noise,

it also smooths out the underlying volatility of X. This can render it hard to construct estimates

of spot volatility that fit the tails of the distribution if a too wide pre-averaging window is applied.

As shown by Jacod, Li, Mykland, Podolskij, and Vetter (2009), an optimal kn is achieved via:

kn =
θ√
∆n

+ o(∆−1/4
n ), (2.10)

where θ > 0 is a tuning parameter, which controls the balance struck between the above forces

in small samples. As consistent with prior work, we base our analysis on θ = 1/3 and set kn =

bθ/
√

∆nc.
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2.2 The realized EDF

We now exploit the pre-averaged high-frequency data to form local estimates of Vt. The estimator

we propose is both inherently jump- and noise-robust and can therefore be plugged into a “realized”

version of the EDF (or REDF, as defined in (2.16)). It is computed on small blocks of pre-averaged

returns. We denote the number of increments in a block by a sequence of positive integers hn with

hn∆n → 0 and hn/kn →∞, as ∆n → 0, so the time span of the block is decreasing, but there is an

increasing amount of data within it.

Then, we set:

Ṽi∆n =
1

hn
√

∆n

hn−1∑
m=0

(
Z̄i+m

)2
, for i = 0, 1, . . . , n− hn − kn + 1. (2.11)

As the notation suggests, Ṽi∆n is an estimator of the spot variance at time i∆n, i.e. Vi∆n . It

is convenient to extend this definition to t ∈ [0, T ]. We do this by setting Ṽt = Ṽi∆n , for t ∈

((i− 1)∆n, i∆n], while for t > (n−hn− kn + 1)∆n: Ṽt = Ṽ(n−hn−kn+1)∆n , thus holding the final spot

variance estimate fixed up to time T .

Finally, we introduce the following constants, which depend on the weight function:

ψ1 =

∫ 1

0

g′(s)2ds and ψ2 =

∫ 1

0

g(s)2ds.3 (2.12)

With this notation in hand, we have the following result for our preliminary estimator of the spot

volatility.

Lemma 2.1 Suppose that Assumption 3 holds. For each t ∈ [0, T ], as ∆n → 0,

Ṽt
P−→ θψ2Vt +

1

θ
ψ1ω

2, (2.13)

where ω2 = var(Ui∆n).

To strip out the residual noise variation, we need an estimator of ω2. There are several options

around (e.g., Bandi and Russell, 2006; Hansen and Lunde, 2006; Oomen, 2006) and each one has

3In the proofs, after freezing volatility locally, ψn1 = kn
∑kn
j=1

(
g( j
kn

) − g( j−1
kn

)
)2

and ψn2 = 1
kn

∑kn−1
j=1 g2( j

kn
)

appear in the conditional expectation of V̂i∆n
. As ∆n → 0, ψni → ψi and the error has order ψni − ψi = O

(
∆

1/2
n

)
,

for i = 1, 2. This means we can work with ψi in the expressions below, and this substitution has no impact on the

asymptotic analysis. In contrast, ψni can differ materially from ψi if kn is small. As a practical recommendation, it

is therefore better to work with ψni .
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it own merits and disadvantages (see, e.g., Gatheral and Oomen, 2010, for a comparison). In this

paper, we adopt the following:

ω̂2 = − 1

n− 1

n∑
i=2

∆n
i Z∆n

i−1Z
P−→ ω2, (2.14)

so that

V̂t =
1

θψ2

Ṽt −
ψ1

θ2ψ2

ω̂2 P−→ Vt. (2.15)

The subtraction of the bias implies V̂t can be negative in finite samples. Nevertheless, not a single

point estimate fell below zero neither in our simulations nor empirical work.

We then construct the REDF:

Fn,T (x) =
1

T

∫ T

0

1{V̂t≤x}dt, (2.16)

3 Asymptotic properties of the REDF

In this section, we cover the asymptotic theory of the REDF. In Section 3.1, we deal first with

consistency for the EDF in the infill setting, where we assume that the noisy log-price is recorded

over ever shorter intervals but the total time elapsed is constant, as formalized by ∆n → 0 with

T fixed. In the following Section 3.2, we then further assume high-frequency data are collected on

an expanding time window by also letting T → ∞ and deduce convergence toward the marginal

distribution function. We exploit these theoretical insights to develop some new goodness-of-fit

tests for stochastic volatility models in Section 3.3.

3.1 Infill setting

We start this section with showing that Fn,T is a consistent estimator of the EDF.

Theorem 3.1 Suppose that Assumption 2 – 3 hold true. Then, for each T > 0, as ∆n → 0,

sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ P−→ 0. (3.1)

It is worth noting that Fn,T is consistent for FT , even though it is based on pre-averaged returns

that are not filtered for jumps. This intrinsic robustness is a relatively unique feature of this type

of estimator, although it is shared by the realized Laplace transform of Todorov and Tauchen

(2012). In their work it is due to the properties of the cosine function, while here it stems from the

construction of the spot volatility estimator in (2.11).
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This is opposite to the estimation of integrated variance, where realized variance—either noise-

robust or not—converges to the quadratic variation, which includes the sum of the squared jumps in

X, and we need to enforce some robustification (e.g., truncation or bipower variation) to recover the

continuous variation of X (e.g., Barndorff-Nielsen and Shephard, 2004; Jing, Liu, and Kong, 2014;

Mancini, 2009; Podolskij and Vetter, 2009a). As an aside, we note Li, Todorov, and Tauchen (2013)

only prove consistency of the jump-truncated statistic in the presence of discontinuous X and no

microstructure noise, but this can also be extended to the non-truncated estimator. Nonetheless,

it may be preferable to truncate in practice, as it can act as a safeguard against finite sample

distortions induced by jumps. Even if X is continuous, there is no cost in doing so asymptotically.

We follow that idea in the empirical section.4

We define Qn,T (α) = inf
{
x : Fn,T (x) ≥ α

}
and QT (α) = inf

{
x : FT (x) ≥ α

}
as the uniquely

determined α-quantile of Fn,T and FT , for α ∈ (0, 1). Then, using the uniform convergence in

probability of Fn,T , we deduce Qn,T (α) is a consistent estimator of QT (α). As it is an implication

of Lemma 21.2 in van der Vaart (1998), we omit a proof.

Corollary 3.2 Suppose that Assumption 2 – 3 hold. Then, for each T > 0, if QT (α) is continuous

at α and as ∆n → 0:

Qn,T (α)
P−→ QT (α). (3.2)

3.2 Joint infill and long-span setting

The goal here is to extend the above analysis (with T fixed) to estimation of the stationary distri-

bution function, F . To do so, we study an asymptotic framework, where the time span T → ∞

jointly with ∆n → 0. The key result is a feasible CLT for the REDF, which enables us to compute

the accuracy with which the marginal distribution can be recovered from the data. To facilitate

the derivation of this theory we require some additional assumptions on the volatility process.

Assumption 4 (Vt)t≥0 is stationary and strongly mixing with mixing coefficient function α(t) =

O(t−γ), as t→∞ and for some γ > 1.

The stationarity condition in Assumption 4 is standard. We also restrict the memory of the volatility

process, so that (Vt)t≥0 is not “too” strongly dependent. This implies that FT (as an estimator of

the marginal distribution, F ) is consistent, as T →∞. We can exploit this to deduce that Fn,T also

4Moreover, unless X is continuous, truncation is sort of necessary if the aim is to derive rates of convergence for

measures of the continuous variation of X.
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converges in probability to F , once we show that the estimation error embedded in the recovery of

the volatility path is asymptotically negligible (as ∆n → 0 fast enough, because the discretization

error accumulates with T ). Moreover, it is an essential part in showing the weak convergence of

the empirical processes that we construct in the derivation of our goodness-of-fit test statistics in

Section 3.3.

The mixing condition is slightly weaker than the comparable assumptions made in the literature

on joint infill and long-span asymptotics (see e.g. Todorov and Tauchen (2012) and Andersen,

Thyrsgaard, and Todorov (2018)). It encompasses several stochastic volatility models, for instance a

large class of processes driven by Brownian motion (e.g., Heston, 1993) or the Lévy-driven Ornstein-

Uhlenbeck model of Barndorff-Nielsen and Shephard (2001), where volatility is governed by general

(positive) processes.5,6 As a result, the setup is not restrictive in practice as it can capture a wide

variety of marginal distributions.

Next, we replace the pathwise smoothness imposed on the EDF of volatility from Assumption

2 with the following condition.

Assumption 5 F is differentiable with bounded derivative f .

Finally, we will for technical convenience also assume that the price process X is continuous. 7

Theorem 3.3 Suppose that Assumption 3 – 5 hold true. If either of the following conditions is

fulfilled:

(i) Assumption 1(i) with H ∈ (0, 1), hn � ∆
− 4H+1

4H+2
n and T 1/2+ι∆

H
4H+2

−ι
n → 0 as ∆n → 0 and T →∞

for some ι > 0, or

(ii) Assumption 1(ii), hn � ∆
−3/4
n and T 1/2+ι∆

1/8−ι
n → 0 as ∆n → 0 and T →∞ for some ι > 0.

Then, for fixed x ∈ R+, it holds that

√
T
(
Fn,T (x)− F (x)

) d−→ N(0,Σ(x)), (3.3)

5Assume that V is a solution of the stochastic differential equation: dVt = b̃(t, Vt)dt + σ̃(t, Vt)dWt, where

σ̃(t, Vt) ≤ K
(
1 + |Vt|1/2

)
, for some K > 0. If there exists an S such that for all |s| ≥ S and t ≥ 0, b(t, s) ≤ −γ, for

some γ > 0, Theorem 2 in Veretennikov (1988) implies that α(t) = O(t−γ).
6If V is of the form dVt = −κVtdt + dZκt, where κ > 0 and Z is a positive Lévy process (e.g., a subordinator)

with Lévy measure ν, then it follows from Jongbloed, van der Meulen, and van der Vaart (2005) that V is stationary

if
∫∞

2
ln(x)ν(dx) < ∞. If further E

[
|V1|p

]
< ∞, for some p > 0, there exists a > 0 such that α(t) = O(e−at). The

decay of the mixing coefficient can even be deduced if the driving process in volatility is a fractional Brownian motion

(see, e.g., Magdziarz and Weron, 2011).
7This assumption can be relaxed at the cost of making the rates in 3.3 more tedious to derive.
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where Σ(x) = 2
∫∞

0

(
Ft(x, x)− F (x)2

)
dt with Ft(x, y) = P (V0 ≤ x, Vt ≤ y).

Notice that the asymptotic variance, Σ(x), is non-stochastic, so that the usual machinery of

stable convergence from high-frequency analysis is not required to conclude that
√
T
(
Fn,T (x) −

F (x)
)
/
√

Σ(x)
d−→ N(0, 1).

In Theorem 3.3, the block length hn is always selected so that the discrepancy between the

empirical process associated with the REDF and the EDF vanishes at the fastest possible rate. In

order to control this error, we have to restrict the relative speed at which T →∞ and ∆n → 0. The

least binding is to take hn as indicated. Note that hn is an increasing function of the smoothness

of volatility. In particular, if σ is a continuous semimartingale (i.e., H = 1/2), the rate at which
√
T
(
Fn,T (x)− FT (x)

)
converges to zero is T 1/2+ι∆

1/8−ι
n . If volatility is smoother (H → 1), the rate

of convergence improves to T 1/2+ι∆
1/6−ι
n , whereas it gets arbitrarily slow as H → 0. The intuition

is that it is virtually impossible to retrieve spot variance from a “rough” path. On the other hand,

if H = 1/2 the optimal choice of hn and the associated speed condition is unchanged, irrespective

of whether volatility is allowed to jump or not.

The noise-robustness of Fn,T plays a critical role in determining the above condition. To compare,

if there was no error in our measurement of X, a standard non-noise-robust realized measure suffices

for estimation of spot volatility (see, e.g., Jacod and Protter, 2012). Here, the rate condition

improves to T 1/2+ι∆
1/4−ι
n → 0 with H = 1/2, as is consistent with the fixed T asymptotic theory

in Li, Todorov, and Tauchen (2013). The deterioration of the speed condition is due to the added

complexity from retrieving volatility robustly, which cuts the rate of convergence in half. This

problem is well-known in the literature on estimation of integrated variance (see, e.g., Zhang,

Mykland, and Aı̈t-Sahalia, 2005; Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2008; Jacod,

Li, Mykland, Podolskij, and Vetter, 2009). Moreover, while a convergence rate of (almost) ∆
1/8
n is

slow, it is optimal for extraction of spot variance in noisy diffusion models (e.g., Aı̈t-Sahalia and

Jacod, 2014, p. 296).

The asymptotic variance in Theorem 3.3 depends crucially on the memory of the process. If a

series is highly dependent, which is true empirically for volatility, it becomes harder to recover the

distribution of the process, which results in larger values of Σ(x) and wider confidence intervals for

F (x). The only way to compensate for this effect is to collect a larger sample.

Σ(x) can be computed either analytically or, for example, by numerical integration. As shown

by Dehay (2005), however, for finite T :

var
(√

T
(
FT (x)− F (x)

))
= 2

∫ T

0

(
1− t

T

)(
Ft(x, x)− F (x)2

)
dt. (3.4)
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The reduction by (1 − t/T ) in the true variance of FT is an edge effect. We compute (3.4) in the

simulation section, as it provides an infeasible assessment for the accuracy of the approximation in

(3.3) for finite T . On the other hand, if ∆n is not small enough to ignore the pathwise discretization

error, there is an extra source of randomness in Fn,T induced by the estimation of spot volatility.

As such, (3.4) may actually understate the variation of Fn,T .

To estimate Σ(x), we fix ξ ∈ (0, 1/3) and set:

Σn,T (x) = 2

∫ T ξ

0

(
1− t

T ξ

)(
Ft,n,T (x)− Fn,T (x)2

)
dt, (3.5)

where

Ft,n,T (x) =
1

T − T ξ

∫ T−T ξ

0

1{V̂s+t≤x,V̂s≤x}ds. (3.6)

Then, as shown in the proof of Theorem 3.3, Σn,T (x)
P−→ Σ(x).

In practice, we may also be interested in determining how accurate the associated quantile(s) of

F are estimated (e.g., for risk management reporting). These questions are, of course, intertwined.

Indeed, from the assumed existence of the density f and Corollary 21.5 in van der Vaart (1998), we

deduce the following result.

Corollary 3.4 Suppose that the conditions of Theorem 3.3 are fulfilled. Then, for any α ∈ (0, 1)

with f
(
Q(α)

)
> 0, it holds that

√
T
(
Qn,T (α)−Q(α)

) d−→ N

(
0,

Σ
(
Q(α)

)
f
(
Q(α)

)2

)
. (3.7)

Thus, inference about any given quantile is feasible, so long as an estimator of the density function

of the marginal distribution evaluated at that quantile is available.

3.3 Goodness-of-fit of the volatility distribution

The preceding theory shows that Fn,T converges to the stationary distribution function of volatility,

as ∆n → 0 and T →∞. In this section, we build upon this analysis to construct realized extensions

of some classical goodness-of-fit tests for the volatility process. To this end, we first derive a

functional central limit theorem for the process Gn,T =
{√

T
(
Fn,T (x)− F (x)

)
, x ∈ R+

}
.

Theorem 3.5 Suppose that the conditions of Theorem 3.3 are fulfilled. Then, Gn,T converges

weakly in Cb(R+) equipped with the uniform metric to a Gaussian process, GF , with mean zero and

covariance function Σ(x, y) = cov
(
GF (x), GF (y)

)
.
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Note that Theorem 3.5 can also be extended to the empirical process associated with the quantile

estimator: GQ
n,T =

{√
T
(
Qn,T (α)−Q(α)

)
, α ∈ (0, 1)

}
.

As shown in Lemma A.3 in the appendix, Σ(x, y) can be consistently estimated by

Σn,T (x, y) =

∫ T ξ

0

(
Ft,n,T (x, y) + Ft,n,T (y, x)− 2Fn,T (x)Fn,T (y)

)
dt, (3.8)

for ξ ∈ (0, 1/3), where

Ft,n,T (x, y) =
1

T − T ξ

∫ T−T ξ

0

1{
V̂s+t≤x,V̂s≤y

}ds. (3.9)

Appealing to Theorem 3.5, we can now construct the test statistics for our goodness-of-fit tests,

which evaluate the fit of an assumed stochastic volatility model:

rKS(F ) = sup
x∈R+

∣∣Gn,T (x)
∣∣ and rL2(F ) =

∫
R+

Gn,T (x)2w(x)dx, (3.10)

where w : R+ → R+ is a continuous weight function.

rKS resembles a classical Kolmogorov-Smirnov test for an observed process, whereas rL2 is a

realized version of the goodness-of-fit test based on a weighted L2 norm. The latter nests several

existing tests, such as the Cramer-von-Mises (i.e., w(x) = f(x)) or Anderson-Darling (i.e., w(x) =

f(x)/[F (x)(1 − F (x))]). rKS has the advantage that it is rather trivial to implement, once the

REDF is constructed. On the other hand, the literature suggests that an L2 statistic, at least in

the i.i.d. setting, may be more powerful in finite samples, but it can also be tedious to compute, if

a closed-form expression for w is unavailable. This is, for example, the case for a Cramer-von-Mises

test if the marginal density is unknown or hard to evaluate.

Corollary 3.6 Suppose that the conditions of Theorem 3.3 are fulfilled. Then, it holds that

rKS(F )
d−→ sup

x∈R+

|GF (x)| and rL2(F )
d−→
∫
R+

|GF (x)|2w(x)dx. (3.11)

Now, suppose we are interested in testing the fit of a stochastic volatility model, indexed by

a known parameter vector υ. Later in this section, we return to the question of how parameter

estimation affects the proposed tests. We let Fυ(x) = P(Vt ≤ x; υ) describe the marginal distribution

of the model.8 The null—and associated alternative—hypothesis is then written as:

H0 : F = Fυ and Ha : F 6= Fυ. (3.12)

8As υ 7→ Fυ is not one-to-one, in general, the model itself is not fully identified by Fυ, unless further constraints

are imposed on the drift and volatility (e.g., Aı̈t-Sahalia, 1996; Bibby, Skovgaard, and Sørensen, 2005).

13



It follows that—under H0—rKS(Fυ)
d−→ supx∈R+

|GFυ(x)|, whereas rKS(Fυ)
P→ ∞ under Ha,

because the alternative means there is at least one x, such that Fn,T (x)
P9 Fυ(x). An equivalent

result holds for rL2(F ). As large values of the t-statistics discredit that F = Fυ, the tests are

therefore one-sided.

A drawback of this approach is that the limiting distribution of rKS(F ) and rL2(F ) depends on

the model under H0. This differs from the classical theory, for example the Kolmogorov-Smirnov

statistic in the i.i.d. case with F continuous and known (see, e.g., van der Vaart, 1998). Even

there, however, the asymptotic distribution is not readily available if the parameters describing Fυ

are estimated, as we do below, although in that setting it often suffices to prepare a single table of

family-wise critical values in advance—e.g., as in Lilliefors (1967, 1969)—if Fυ belongs to a location-

scale family. This is due to the fact that the limiting distribution, in that case, does not depend

on nuisance parameters of F , only the functional form of the probability distribution (e.g., David

and Johnson, 1948). This is not true here, and we are therefore forced to retrieve critical values

through simulation on a case-by-case basis. In Appendix B, we offer a detailed recipe of how this

procedure works both for Corollary 3.6 and 3.8.

In principle, we can construct a t-statistic that can be evaluated independently of F . To explain

how, define ||f ||w =
√∫

R+
w(x)f(x)2dx, such that E

[
||GF ||2w

]
<∞.

The other ingredient is a normalizing constant:

Σ̃ =

∫
R+

Σ(x)w(x)dx, (3.13)

with Σ̃ <∞. Then, we set:

T (F ) =
||Gn,T ||2w

Σ̃
. (3.14)

We can then define a test statistic that rejects H0, if we observe that T (F ) > χ2
1−α, where χ2

1−α

is the (1 − α)-quantile of a chi-squared distribution with one degree of freedom. Let αT (F ) be the

significance level achieved by such a test. The following proposition summarizes the details.

Proposition 3.7 Suppose that the conditions of Theorem 3.3 are fulfilled. Then, for any α ∈

(0, 0.215), it holds that under H0:

lim
∆n→0,T→∞

αT (F ) ≤ α, (3.15)

while under Ha:

P
(
T (F ) > c

)
→ 1, (3.16)

for any c > 0.
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We can thus construct a goodness-of-fit test for which critical values are readily available, however

it achieves a significance level of at most α and may therefore be overly conservative for some F .

Moreover, while the constant Σ̃ can be calculated under H0, so that no estimation is required, it is

complicated to derive for many common stochastic volatility models. We therefore do not explore

this test further.

In practice, the parameter vector υ is typically unknown and not fixed a priori. It therefore has

to be estimated, which invalidates the previous analysis (assuming Fυ known). The intuition is that

the estimation moves the model-implied marginal distribution closer to the EDF, making inference

based on the preceding theory too conservative, as is well-known from the traditional literature on

goodness-of-fit testing.

The complication brought about by parameter estimation can be viewed as a different testing

problem that applies if we are interested in testing an entire class of stochastic volatility processes,

as opposed to a particular member of that class.

The null is thus a composite hypothesis:

H0 : ∃υ ∈ Υ : F = Fυ and Ha : ∀υ ∈ Υ : F 6= Fυ, (3.17)

where Υ is the admissible parameter space (i.e., Υ = {(κ, v0, ξ) ∈ R3
+ : 2κv0 ≥ ξ2} for the Heston

(1993) model due to the Feller condition).

We assume a consistent estimator of υ, say υ̂, has been found and introduce a pseudo empirical

process G̃n,T =
{√

T
(
Fn,T (x) − Fυ̂(x)

)
, x ∈ R+

}
. At a theoretical level, the problem then arises

because the parameters of the underlying distribution typically cannot be recovered at a convergence

rate faster than T−1/2, i.e υ̂− υ = Op(T
−1/2). This cancels with the

√
T scaling in the construction

of G̃n,T , so that the estimation error inevitably affects the asymptotic distribution.9

Corollary 3.8 Suppose that the conditions of Theorem 3.3 are fulfilled. In addition, we assume υ̂

is asymptotically linear with influence function ψ and that
∂Fυ
∂υ

(x) is bounded and continuous in

both υ and x over the set R+× Ῡ for a neighbourhood Ῡ around υ. Then, G̃n,T converges weakly in

Cb(R+) equipped with the uniform metric to a Gaussian process of the form GFυ −
∂Fυ
∂υ

> ∫
ψdGFυ .

9A standard rate of convergence is required in the following. Although we are not aware about the presence of

so-called “super” consistent estimators in the stochastic volatility literature—at least not in the stationary setting—

we point out that if υ̂ − υ = op(T
−1/2) the sampling error is asymptotically negligible and the problem reverts back

to Corollary 3.6. On the other hand, a slower rate of convergence implies the error is blown up by the
√
T scaling

and then our approach just goes out the window.
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The requirement that υ̂ should be asymptotically linear is fulfilled by most
√
T -consistent estimators

proposed in the literature (e.g., Bickel, Klaassen, Ritov, and Wellner, 1998).

4 Simulation study

We now appraise our estimator of the EDF of spot variance introduced at the end of Section 2 via

Monte Carlo simulation. We also evaluate the size and power properties of the two goodness-of-fit

tests for the marginal distribution of volatility proposed in Section 3.3.

Starting at X0 = 0, the efficient log-price is a Heston (1993)-type process:

dXt =
√
VtdWt,

dVt = κ
(
v0 − Vt

)
dt+ ξ

√
VtdBt,

(4.1)

where W and B are correlated standard Brownian motions with E[dWtdBt] = ρdt and ρ = −
√

0.5

(recall that σt =
√
Vt). The other parameters are κ = 0.05, v0 = 1, and ξ = 0.2, which is calibrated

to our empirical data and broadly aligns with previous studies (see, e.g, Aı̈t-Sahalia and Kimmel,

2007).

In this model, the law of Vt (conditional on Vs, for s < t) is—up to a scale factor—non-central chi-

square with d = 4v0κξ
−2 degrees of freedom and non-centrality parameter λ =

4κe−κ(t−s)

ξ2(1− e−κ(t−s))
Vs

(e.g., Cox, Ingersoll, and Ross, 1985). As t → ∞, the conditional distribution converges to a

Gamma(2κv0ξ
−2, 2κξ−2) (interpreted as shape and scale parameters), which is also the marginal

(or unconditional) law of Vt for any finite t, if V0 is drawn from this distribution. We do that here.

The variance of FT (x) in (3.4) is then computed from these expressions by numerical integration of

the joint density function.

We simulate 10,000 “continuous-time” paths with 23, 400 updates per unit of time T . We

discretize the whole system by an Euler approach. To gauge how close the REDF is to the population

counterpart, we extract a coarser grid of n = 2, 340T log-price increments. This emulates a financial

market, where new transactions arrive regularly every tenth second over a 6.5 hour trading day,

which is aligned to the sample sizes in our empirical work. We add i.i.d. noise Zi∆n = Xi∆n +Ui∆n

with Ui∆n ∼ N(0, ω2), where ω2 is set by fixing the noise-to-signal ratio (e.g., Oomen, 2006):

γ =

√
ω2

∆n

∫ 1

0
Vtdt

. As consistent with Christensen, Oomen, and Podolskij (2014) and our findings

below, we assume that γ = 0.5.10 Thus, (Zi∆n)ni=0 comprises our discretely observed sample used

to estimate the spot variances.

10We made a robustness check with γ = 2.0 as in Aı̈t-Sahalia, Jacod, and Li (2012). The pre-averaging estimator
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Figure 1: Estimation of the EDF.

Panel A: Sample path of σt. Panel B: EDF and REDF.
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Note. This figure plots a simulated path of σt in Panel A. The associated EDF of Vt, FT , appears in Panel B (solid line). We estimate

FT with Fn,T over 1,000 simulations and plot the average (dashed line). The version proposed in Li, Todorov, and Tauchen (2013, 2016)

based on 1- and 5-minute sparse sampling is shown as a comparison (’×’ and ’◦’). The dotted line is an infeasible estimate that has

access to the whole record of X, (Xi∆n )ni=0. It illustrates how minimal smoothing renders it hard to track the tails of the volatility

distribution, even in absence of noise.

In Figure 1, we examine how Fn,T recovers FT . We set T = 1 and freeze volatility across

replica to keep the estimation target fixed. The sample path of σt is shown in Panel A, while the

associated EDF appears in Panel B. We report our estimator and compare it to Li, Todorov, and

Tauchen (2013). We construct the latter statistic from 1- and 5-minute low-frequency returns. As

recommended in their work and to facilitate comparison, hn is set throughout so that it spans about

1.5 hours worth of data.

At the 1-minute resolution, the Li, Todorov, and Tauchen (2013) estimator is severely distorted

by market frictions, which leads to a systematic upward bias. This was to be expected, as it

is not resistant to noise. On the other hand, while the 5-minute statistic does not accumulate

any discernable bias, it delivers imprecise estimates, resulting in a highly overdispersed REDF. In

contrast, as our noise-robust estimator is able to capitalize on tick-by-tick information, it is more

accurate. This suggests the inferior rate of convergence embedded in pre-averaging is more than

offset by being able to employ all the data.

Next, we vary σt randomly in each iteration and estimate FT as above. In Figure 2, we plot the

was hardly affected by this change, while the sparse estimator was substantially more biased, due to the amplification

of the noise.
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Figure 2: Mean relative bias and absolute error.

Panel A: Relative bias. Panel B: Absolute error.
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Note. This figure plots the average relative bias in Panel A and absolute error in Panel B of our realized estimator of the EDF of spot

variance (’+’). As a comparison, we also plot the Li, Todorov, and Tauchen (2013) no-noise estimator based on 1- and 5-minute sparse

sampling (’×’ and ’◦’).

relative error Qn,T (α)/QT (α)−1 in Panel A and absolute error
∣∣Qn,T (α)−QT (α)

∣∣ in Panel B, which

are averaged across Monte Carlo trials, for the vector of quantiles α = (0.05, 0.10, . . . , 0.95)′. As is

evident—and consistent with Figure 1—our estimator is less biased, especially in the tails. Overall,

the REDF proposed in this paper is roughly unbiased over a large spectrum of the distribution with

a relative error within a few percent. This is further corroborated by Panel B. In general, while all

estimators do a relatively poorer job at fitting the tails of the distribution of spot variance, there

are again substantial improvements by applying our estimator.

We now turn to estimation of the marginal distribution of volatility based on Theorem 3.3.

We work with T = 250, corresponding to the number of trading days in about a year. This

relatively low value is meant to be conservative and illustrate the potential of our estimator. As a

comparison, T = 2, 077 in our empirical work in Section 5. Note that n is kept fixed relative to T ,

so that ∆n is constant. In Figure 3, we report point estimates—for the first 100 realizations—and

sample averages across all 10,000 simulations of Fn,T (x) and kernel densities of the asymptotic pivot
√
T
(
Fn,T (x) − F (x)

)
/
√

Σ(x)
d−→ N(0, 1) evaluated at five distinct points, which cover a variety of

low-to-high volatility states, i.e. F (x) = 0.10, 0.25, 0.50, 0.75 and 0.90. We see that in general the

REDF is unbiased and correctly scaled. If we look far in the tails, in particular the right-hand one,

the density estimate is slightly skewed towards the center, which is intuitive due to the natural
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Figure 3: Inference about marginal distribution, T = 250.

Panel A: Point estimate. Panel B: Kernel density.
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Note. In Panel A, we report point estimates of Fn,T (x) for the first one hundred Monte Carlo replica and sample averages across

all simulations, for F (x) = 0.10, 0.25, 0.50, 0.75 and 0.90. In Panel B, we plot kernel density estimates (with bandwidth selection via

Silverman’s rule of thumb) of the standardized statistic
√
T
(
Fn,T (x) − F (x)

)
/
√

Σ(x). The Gaussian curve is superimposed as a visual

reference point. Throughout, ∆n = 1/2, 340 and T = 250.

bounds on Fn,T . Still, the limiting distribution provides a good description of the finite sample

variation of Fn,T .

Last but not least, we explore the properties of the realized Kolmogorov-Smirnov and Cramer-

von-Mises (i.e., a weighted L2 norm with w(x) = f(x)) goodness-of-fit test. This piece of analysis

is based on a shorter run of 1,000 Monte Carlo replica due to the increased computational cost of

the resampling scheme. We draw 500 bootstrap samples in each simulation trial and inspect both

the setting where v is known and estimated. We follow Corradi and Distaso (2006) and recover

the parameters via v̂ using GMM to match the sample mean, variance, plus the first and second

autocovariance of the bias-corrected pre-averaged bipower variation of Podolskij and Vetter (2009a)

to the corresponding model-based moments of integrated variance (the former is consistent for the

latter).

To be able to define a measure of the testing power we simulate from another model, i.e. the

log-normal—or exponential Ornstein-Uhlenbeck—process, which is the solution of the stochastic

differential equation:

d lnVt = κ(v0 − lnVt)dt+ ξdBt, (4.2)

where v = (κ, v0, ξ) = (0.08,−0.3, 0.45) is comparable to what we observe in the real data. We
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leave the leverage correlation unchanged at ρ = −
√

0.5.

In Table 1, we report the size and power of the test for a nominal significance level of α = 5%

and T = 250, 500, 1, 000, and 2, 000. As seen, the test is roughly unbiased and has a rejection

rate close to α. We next comment on the power, as reported in the second half of Table 1. It is

calculated as the rejection rate achieved by simulating log-normal volatility and testing the square-

root process. H0 in the setting without estimation is here based on the configuration of the Heston

(1993) model with the true parameters used to simulate volatility for the size analysis. As shown,

the test has moderate power if the sample size is small, but the rejection rate increases steadily as T

grows larger. At T = 2, 000, the power is in the 60–90% range. The largest choice of T corresponds

to about eight years worth of high-frequency data, which is widely available for many assets in

practice. The impact of parameter estimation is to “flatten” the power curve by adding an upward

bias for small T , while dampening it for large T . We conjecture that this effect is caused by the

inherent sampling error in the pre-averaged bipower variation, which leads to systematic upward

biases in the estimate of both the mean reversion and volatility-of-volatility coefficient κ and ξ.11

The misspecification of the dynamic properties of the system invariably yields simulated critical

values that are slightly off and this effect appears more pronounced under the alternative. Finally,

we notice the realized Kolmogorov-Smirnov test has slightly higher power than our weighted L2

statistic, which is a somewhat surprising finding compared to the classical results for i.i.d. data.

5 Empirical application

We here illustrate the application of our new nonparametric estimator of the EDF of spot variance

and the associated goodness-of-fit tests to real high-frequency data. We construct the Fn,T measure

from tick data based on selected exchange-traded funds (ETFs) that cover different sectors of the

U.S. stock market. In addition to a proxy for the market index (ticker symbol SPY), we add the

nine industry portfolios of the S&P 500, yielding a total of ten securities.12 High-frequency data was

11The Heston (1993) model has an ARMA(1,1) representation for the integrated variance. We can exploit this

structure by casting the whole system into state-space representation and then use a Kalman filter to extract a

filtered (or smoothed) volatility series before estimating the model, as discussed in Barndorff-Nielsen and Shephard

(2002) (see also, e.g., Todorov, Tauchen, and Grynkiv, 2011, for an alternative approach). This tends to deliver less

biased parameter estimates. However, we do not pursue this idea here.
12There is also a 10th sector ETF (XLRE), which is a diversified portfolio of companies exposed to real estate.

However, as the inception date of this fund is rather recent, we exclude it from consideration due to the limited

availability of high-frequency data. Further information about the ETFs is available at http://www.sectorspdr.com/.
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Table 1: Properties of the realized goodness-of-fit tests.

Size Power

rKS(F ) rL2(F ) rKS(F ) rL2(F )

v v̂ v v̂ v v̂ v v̂

T = 250 0.063 0.083 0.056 0.076 0.114 0.398 0.091 0.302

500 0.050 0.066 0.052 0.064 0.198 0.432 0.127 0.334

1000 0.026 0.031 0.030 0.040 0.453 0.541 0.299 0.407

2000 0.047 0.040 0.050 0.041 0.923 0.717 0.849 0.573

Note. The table reports rejection rates of the goodness-of-fit tests for stochastic volatility models proposed in Section 3.3. rKS(F )

(rL2(F )) is the realized Kolmogorov-Smirnov (Cramer-von-Mises) test. The number of Monte Carlo simulations is 1,000 with 500

bootstrap samples used to compute critical values for the t-statistic in each trial. v (v̂) is based on the true (estimated) parameter vector.

The power is calculated as the rejection rate achieved by simulating log-normal volatility and testing whether the Heston (1993) process

is the true model. Further details are available in the main text.

acquired from the TAQ database and comprise a complete series of trades and quotes for each stock

for the sample period July 2008 – September 2016. The analysis here is based on transaction data,

which were filtered for outliers as in Christensen, Oomen, and Podolskij (2014) and subsequently

pre-ticked to an equidistant 10-second grid from 9:30am to 4:00pm EST, resulting in T = 2, 077

days of n = 2, 340 intraday returns.13 A list of ticker symbols and descriptive statistics of the

sample are presented in Table 2.

The calculation of V̂t proceeds as in Section 2 – 4 in terms of tuning parameters, but we add trun-

cation as an extra level of protection. A pre-averaged increment is removed if |Z̄i| ≥ q1−α

√
ÎV∆$

n ,

where q1−α is the 1− α quantile of the standard normal distribution, ÎV is the daily pre-averaged

bipower variation, and $ ∈ (0, 0.25) controls how fast the cutoff goes to zero with ∆n (Z̄i =

Op

(
∆

1/4
n

)
, if X is continuous). We set α = 0.001 and $ = 0.20, which is a standard configuration.

We also account for the diurnal pattern in intraday spot volatility. We follow the standard approach

in the literature, which is to compute the average value of V̂t at each time point of the day over the

sample. The diurnal factor is then estimated by normalizing the sum of these averages to one. We

correct V̂t by this quantity and use the adjusted time series to construct Fn,T . In Panel A of Figure

4, we show a kernel-based estimate of the probability density function implied by the variance of

13Trading at NYSE terminates early at 1:00pm on a few regularly scheduled business days each year in observance

of upcoming holidays. We do not collect data after the exchange has officially closed, as there is typically very little

liquidity, and therefore use a shorter sample of n = 1, 260 log-price increments on these days.
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Table 2: Descriptive statistics of high-frequency data.

goodness-of-fit test (p-value)

code effective σ γ gamma log-normal inverse gaussian

sample rKS(F ) rL2(F ) rKS(F ) rL2(F ) rKS(F ) rL2(F )

XLB 0.749 0.219 0.232 0.001 0.000 0.009 0.002 0.166 0.094

XLE 0.929 0.249 0.117 0.000 0.000 0.035 0.018 0.389 0.344

XLF 0.920 0.264 0.910 0.000 0.000 0.000 0.000 0.017 0.008

XLI 0.789 0.188 0.335 0.000 0.000 0.022 0.016 0.277 0.261

XLK 0.728 0.174 0.524 0.000 0.000 0.146 0.101 0.021 0.043

XLP 0.690 0.131 0.568 0.011 0.003 0.063 0.039 0.014 0.023

XLU 0.754 0.176 0.389 0.000 0.000 0.211 0.149 0.040 0.066

XLV 0.737 0.151 0.358 0.000 0.000 0.017 0.012 0.111 0.075

XLY 0.746 0.186 0.245 0.006 0.006 0.001 0.000 0.138 0.089

SPY 1.000 0.175 0.135 0.009 0.002 0.110 0.061 0.493 0.541

Note. The table reports descriptive statistics of our equity high-frequency data. “code” is the ticker symbol, “effective sample” is

the fraction of previous-tick interpolated 10-second prices originating from a new transaction rather than a repetition (a measure of

liquidity), σ is annualized volatility based on a pre-averaged bipower variation of Podolskij and Vetter (2009a), while γ is the noise-to-

signal ratio defined in the main text. These numbers are computed daily and averaged over the sample. The p-value is for the realized

Kolmogorov-Smirnov and Cramer-von-Mises goodness-of-fit test with marginal distribution under H0 indicated by the designated column

label.

SPY, as representative of our data.

We compute rKS(F ) and rL2(F ) with three choices of F under H0. The first are the gamma

and log-normal distribution inherent in the square-root and log-normal diffusion models that were

introduced in the simulation section. Furthermore, we also inspect the goodness-of-fit of a non-

Gaussian Ornstein-Uhlenbeck process (Barndorff-Nielsen and Shephard, 2001). The latter is a

pure-jump specification (i.e., in contrast to the other candidates, it has no Brownian part) with

SDE:

dVt = −κVtdt+ dLt, (5.1)

where Lt is a subordinator with Lévy measure νL(dx).

To maintain a tractable setting, we proceed as in Todorov, Tauchen, and Grynkiv (2011). We

assume the distribution of the increments of the volatility process corresponds to that of a tempered
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Figure 4: Properties of stochastic variance in SPY.

Panel A: PDF of spot variance. Panel B: QQ plot.
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Note. In Panel A, we plot a kernel-based estimate of the probability density function of spot variance for SPY. In Panel B, we create a

QQ plot, where the quantiles of Fn,T (on the x-axis) are mapped against the quantiles of a fitted distribution function F (on the y-axis).

The gamma, log-normal and inverse Gaussian distribution are included for the latter comparison.

stable process (e.g., Rosiński, 2007), which—in particular—means it has a Lévy density:

νV (dx) = c
e−λx

x1+α
dx, for x > 0, (5.2)

where c > 0, λ > 0 and α < 1. The Lévy measure of the background driving process νL(dx) can

then be backed out from νV (dx), see e.g., Barndorff-Nielsen and Shephard (2001). We fix α = 0.5,

so that the distribution of volatility is inverse Gaussian, i.e. Vt ∼ IG(µ, ν) with:

µ = c

√
π

λ
, ν = 2πc2, (5.3)

and

f(x;µ, ν) =

√
ν

2πx3
exp

{
− ν

2µ2x
(x− µ)2

}
, for x > 0, (5.4)

is the density function of Vt.

The procedure in Section 4 is applied to report a p-value for the t-statistic. The exception is

that we boost the number of boostrap samples to 1,000 for higher precision. The non-Gaussian

Ornstein-Uhlenbeck process is discretized and simulated as explained in the appendix of Todorov,

Tauchen, and Grynkiv (2011).14

14As in Meddahi (2003), we exploit the ARMA(1,1) structure for the integrated variance of this model to com-
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In Table 2, we present the outcome of these efforts, while Panel B of Figure 4 shows a QQ-style

plot, where the quantiles of Fn,T (on the x-axis) are compared to the quantiles of the best fitting

distribution function F in each class (on the y-axis). The graph should align with the 45◦-line if

the model is correct. As readily seen, the gamma distribution does not capture stochastic equity

variance very well. The main problem with the square-root process is that it cannot generate

a sufficient level of volatility-of-volatility (via ξ) without violating the Feller restriction, which is

binding in practice. The p-values of the log-normal model are higher on average, but it also does not

deliver an acceptable fit of the data across sectors. Although there are a few close calls, for example

XLK, XLU and SPY, the model is generally rejected at standard levels of significance. In contrast,

the p-values of the inverse Gaussian are typically much higher. This is in line with Todorov and

Tauchen (2012), and it appears relatively consistent across the ETF space. Nevertheless, the latter

sometimes also struggles a bit (depending a bit on which t-statistic we ask), for instance it does not

capture return variation exhibited by the highly volatile financial sector ETF (XLF).

6 Conclusion

We construct a nonparametric jump- and noise-robust realized measure of the EDF of the latent

volatility of a general Itô semimartingale sampled at high-frequency on a fixed time interval. We

extend previous work of Li, Todorov, and Tauchen (2013, 2016) in the noise-free setting and prove

that in the presence of microstructure noise the pre-averaged version of their estimator is consistent

in the infill asymptotic limit. The resistance to market frictions enables our statistic to fully

exploit information about volatility available in tick-by-tick high-frequency data, which improves

its accuracy in a simulation study.

In a subsequent analysis, we let the time span tend to infinity. We show that our estimator

then converges to the marginal distribution function of volatility. This result is subject to some

rate conditions, which are more restrictive in the presence of jumps or roughness in volatility. We

establish a functional CLT, from which we prove the validity of a family of goodness-of-fit tests

for stochastic volatility models. The limiting distribution of our t-statistic depends on the true

model under the null hypothesis, but critical values can be found via simulation. We show how the

pute the relevant moments: E[IVt] = c

√
π

λ
, var(IVt) =

c
√
π

λ3/2κ2
(e−κ + κ − 1), cov(IVt, IVt−1) =

√
πc2

4λ3

(1− e−κ)2

κ2
,

and cov(IVt, IVt+j) = e−κcov(IVt, IVt+j−1) for j ≥ 2. We also calculated these expressions based on the ARMA

coefficients reported in the appendix of Todorov, Tauchen, and Grynkiv (2011), but the results differ and we suspect

there are some typos in that paper.
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procedure can be adapted to the case with parameter estimation.

We apply the theory to high-frequency data from several ETFs that track different sectors of

the U.S. stock market. The marginal distribution embedded in several classes of popular stochastic

volatility models is tested against our nonparametric measure. There is strong evidence against

the gamma or log-normal distribution, while the inverse Gaussian—implied by the class of non-

Gaussian Ornstein-Uhlenbeck processes of Barndorff-Nielsen and Shephard (2001) with tempered

stable increments—has more support. These findings are consistent with Todorov, Tauchen, and

Grynkiv (2011), but in disagreement with Corradi and Distaso (2006).

Our paper can serve as a starting point for building more refined models of stochastic volatility.

It appears natural, for example, to inspect the properties of the generalized inverse Gaussian (GIG)

as the marginal distribution of volatility. It has the PDF:

f(x; a, b, p) =
(a/b)p/2

2Kp(
√
ab)

x(p−1)e−(ax+b/x)/2, for x > 0, (6.1)

where Kp is the modified Bessel function of the second kind, while a ≥ 0, b ≥ 0 and p a real number

are the parameters, such that ab 6= 0. The GIG is self-decomposable (necessary and sufficient for

stationary solutions of (5.1) to exist) and nests the gamma distribution as b→ 0 (with a > 0) and

the inverse Gaussian if p = −1/2. The extra degree of freedom may just be enough for a complete

description of equity variance. We leave this assessment for future research.

25



A Appendix

We here prove the theoretical results presented in the main text. As usual, the localization procedure

in Jacod and Protter (2012, Section 4.4.1) implies we can assume that bt, σt, b̃t, σ̃t, σ̃
′
t and the jump

component of X are bounded for the infill setting with T fixed, i.e. Lemma 2.1, Theorem 3.1 and

Corollary 3.2. Also, to preserve notation C denotes a generic constant that changes value from one

line to the next.

Proof of Lemma 2.1

Fix a t > 0. If t ∈ ((i− 1)∆n, i∆n], we set tn = i∆n to highlight the dependence on n and note that

Vtn → Vt, because σ is càdlàg. Thus, our job is to establish:

Ṽi∆n − θψ2Vtn −
1

θ
ψ1ω

2 P−→ 0.

We start by introducing an approximation of the pre-averaged return series Z̄i, in which the stochas-

tic volatility process is fixed locally in each computation:

Ȳi,i+m =
kn−1∑
j=1

g

(
j

kn

)(
σi∆n∆n

i+m+jW + ∆n
i+m+jU

)
,

and then we deduce the claim based on Ȳi,i+m, i.e.

V̌i∆n ≡
1

hn
√

∆n

hn−1∑
m=0

Ȳ 2
i,i+m − θψ2Vtn −

1

θ
ψ1ω

2 P−→ 0. (A.1)

Now, it is readily seen that for each m ≥ 0, ∆
−1/4
n Ȳi,i+m has (conditionally on F(i+m)∆n) mean zero

and variance equal to kn
√

∆nψ
n
2Vtn +

1

kn
√

∆n

ψn1ω
2. Furthermore,

kn
√

∆nψ
n
2Vtn +

1

kn
√

∆n

ψn1ω
2 − θψ2Vtn −

1

θ
ψ1ω

2 P−→ 0.

as n→∞. It follows that

1

hn
√

∆n

hn−1∑
m=0

E
[
Ȳ 2
i,i+m | F(i+m)∆n

]
− θψ2Vtn −

1

θ
ψ1ω

2 P−→ 0,

and therefore suffices to prove that

1

hn
√

∆n

hn−1∑
m=0

(
Ȳ 2
i,i+m − E

[
Ȳ 2
i,i+m | F(i+m)∆n

]) P−→ 0.
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To this end, we note that

∆−1
n E

[(
Ȳ 2
i,i+m − E

[
Ȳ 2
i,i+m | F(i+m)∆n

])(
Ȳ 2
i,i+l − E

[
Ȳ 2
i,i+l | F(i+l)∆n

])]
≤ C, for |m− l| ≤ kn,

∆−1
n E

[(
Ȳ 2
i,i+m − E

[
Ȳ 2
i,i+m | F(i+m)∆n

])(
Ȳ 2
i,i+l − E

[
Ȳ 2
i,i+l | F(i+l)∆n

])]
= 0, for |m− l| > kn.

Thus,

E

[(
1

hn
√

∆n

hn−1∑
m=0

(
Ȳ 2
i,i+m − E

[
Ȳ 2
i,i+m | F(i+m)∆n

]))2
]
≤ C

kn
hn
→ 0,

and (A.1) follows.

We are thus left with the assertion:

Sn = Ṽi∆n − V̌i∆n

P−→ 0. (A.2)

To prove this we define X ′′(κ) = (δ1{Γ≤κ})?(µ−ν) and B′′(κ) = B′′−(δ1{Γ>κ}?ν) for each κ ∈ (0, 1),

where B′′t =
∫ t

0
bsds +

∫ t
0

∫
R δ(s, z)1{|δ(s,z)|>1}µ(d(s, z)). Moreover, we let Ωn(κ) denote the set on

which the Poisson process µ
(
[0, s]× {z : Γ > κ}

)
has no jumps on the interval (t, t+ (kn + hn)∆n].

Note that Ωn(κ)↗ Ω, as n→∞. On Ωn(κ), ∆n
jZ = σi∆n∆n

jW+∆n
jU+∆n

jB
′′(κ)+∆n

j Y
′+∆n

jX
′′(κ),

for j = i + 1, . . . , i + hn + kn, where Y ′t =
∫ t
i∆n∧t(σs − σi∆n)dWs. Now, from the inequality (Jacod

and Protter, 2012, p. 260):

|(x+ y + z + w)2 − x2| ≤ εx2 +
C

ε
(y2 + z2 + w2)

with

x =
Ȳi,i+m

∆
1/4
n

, y =
X̄ ′′i+m(κ)

∆
1/4
n

, z =
Ȳ ′i+m

∆
1/4
n

, and w =
B̄′′i+m(κ)

∆
1/4
n

,

we find that on Ωn(κ):

|Sn| ≤
1

hn

hn−1∑
m=0

[
ε

∣∣∣∣ Ȳi,i+m
∆

1/4
n

∣∣∣∣2 +
C

ε

(∣∣∣∣X̄ ′′i+m(κ)

∆
1/4
n

∣∣∣∣2 +

∣∣∣∣ Ȳ ′i+m
∆

1/4
n

∣∣∣∣2 +

∣∣∣∣B̄′′i+m(κ)

∆
1/4
n

∣∣∣∣2
)]

.

As |∆n
i B
′′(κ)| ≤ C∆n, uniformly in i, we see that∣∣∣∣B̄′′(κ)

∆
1/4
n

∣∣∣∣ ≤ C∆1/4
n .

Then, by means of the Burkholder-Davis-Gundy inequality:

E
[
|Ȳ ′i+m|2 | F(i+m)∆n

]
≤ Ckn∆nE

[
sup

s∈[i∆n,(i+hn+kn)∆n]

|σs − σi∆n|2 | F(i+m)∆n

]
. (A.3)
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As σ is càdlàg and can be assumed to be bounded, the last term converges to zero. Next, for the

components involving Ȳi,i+m, it holds that (Podolskij and Vetter, 2009a, Lemma 1):

E
[
|Ȳi,i+m|2 | F(i+m)∆n

]
≤ K∆1/2

n . (A.4)

In addition, from Lemma 2.1.5 in Jacod and Protter (2012):

E
[∣∣X̄ ′′i+m(κ)

∣∣2] ≤ C∆nknξ(κ),

where ξ(κ) =
∫
{z:Γ(z)≤κ} Γ(z)2λ(dz). This, along with (A.3) – (A.4), implies that:

E
[
|Sn|1{Ωn(κ)}

]
≤ Cε+

C

ε

(
ξ(κ) + E

[
sup

s∈[i∆n,(ihn+kn)∆n]

|σs − σi∆n|2
]

+ ∆1/4
n

)
.

Furthermore, for all η > 0, {|Sn| > η} ⊂ Ωn(κ){ ∪
(
{|Sn| > η} ∩ Ωn(κ)

)
. Markov’s inequality then

yields that

P
(
|Sn| > η

)
≤ P

(
Ωn(κ){

)
+

1

η

(
Cε+

C

ε

(
ξ(κ) + E

[
sup

s∈[i∆n,(ihn+kn)∆n]

|σs − σi∆n|2
]

+ ∆1/4
n

))
.

With n→∞, it follows that

lim sup
n→∞

P
(
|Sn| > η

)
≤ 1

η

(
Cε+

C

ε
ξ(κ)

)
. (A.5)

As this is true for all ε, κ ∈ (0, 1), we can pick ε = ξ(κ)1/2. Doing so and letting κ→ 0 verifies (A.2)

and hence completes the proof of Lemma 2.1. �

Proof of Theorem 3.1

The proof follows the structure of Lemma 1 and Theorem 1 in Li, Todorov, and Tauchen (2013).

We start by showing that P
(
Vt = x

)
= 0. By assumption, FT is continuous almost surely, so letting

FT (x−) = limy↑x FT (y), it holds that P
(
FT (x) 6= FT (x−)

)
= 0. Hence,∫ T

0

P
(
Vt = x

)
dt = E

[ ∫ T

0

(1{Vt≤x} − 1{Vt<x})dt

]
= TE

(
FT (x)− FT (x−)

)
= 0.

Thus, P(Vt = x) = 0 for a.e. t ∈ [0, T ]. Next, we show the pointwise consistency of Fn,T (x). We

therefore fix x ∈ R+ and notice that

E
[∣∣Fn,T (x)− FT (x)

∣∣] ≤ 1

T

∫ T

0

E
[∣∣1{V̂t≤x} − 1{Vt≤x}

∣∣]dt
=

1

T

∫ T

0

E
[∣∣(1{V̂t≤x} − 1{Vt≤x}

)
1{Vt 6=x}

∣∣]dt.
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Applying Lemma 2.1 and Lebesgue’s dominated convergence theorem (twice), we deduce that

E
[∣∣Fn,T (x) − FT (x)

∣∣] → 0, which implies the pointwise consistency, Fn,T (x)
P−→ FT (x). As Fn,T

and FT are non-decreasing functions and FT is continuous a.s., this convergence is locally uniform

(see, e.g., Resnick, 1998). Furthermore, as the paths of σt are càdlàg, for any η > 0 there exists

some constant M such that P(supt∈[0,T ] Vt > M) < η, which means that P(FT (M) 6= 1) < η. In

turn,

P
(

sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
≤ P

(
sup

x∈[0,M ]

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
+ P

(
sup
x≥M

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
≤ P

(
sup

x∈[0,M ]

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
+ P

(
sup
x≥M

∣∣Fn,T (x)− Fn,T (M)
∣∣ > ε

3

)
+ P

(
sup
x≥M

∣∣Fn,T (M)− FT (M)
∣∣ > ε

3

)
+ P

(
sup
x≥M

∣∣FT (M)− FT (x)
∣∣ > ε

3

)
≤ P

(
sup

x∈[0,M ]

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
+ P

(
1− Fn,T (M) >

ε

3

)
+ P

(∣∣Fn,T (M)− FT (M)
∣∣ > ε

3

)
+ P

(
1− FT (M) >

ε

3

)
.

Taking lim sup and using the pointwise and locally uniform convergence:

lim sup
n→∞

P
(

sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
≤ 2η,

and since η is arbitrary, this shows that

P
(

sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ > ε

)
→ 0,

as ∆n → 0. �

Two auxiliary results

As in the paper, we will throughout this section assume that X is continuous.

Lemma A.1 Suppose that Assumption 1 (i) with H ∈ (0, 1) and 3 – 5 hold true, as does the rate

condition T 1/2+ι∆
H

4H+2
−ι

n → 0, as ∆n → 0 and T →∞, for some ι > 0 and hn � ∆
− 4H+1

4H+2
n . Then,

√
T sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ P−→ 0. (A.6)

Proof. The proof consists of three parts. First, we show that for each i and p ≥ 2:

E
[
|V̂i∆n − Vi∆n|p

]
≤ C

[(
kn/hn

)p/2
+
(
hn∆n

)pH
+ ∆p/4

n

]
. (A.7)
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Note that

V̂i∆n − Vi∆n = R(1)
n +R(2)

n +R(3)
n +R(4)

n +R(5)
n , (A.8)

where

R(1)
n =

1

θψ2

1

hn
√

∆n

hn−1∑
m=0

X̄2
i+m − σ2

i∆n
W̄ 2
i+m,

R(2)
n =

1

θψ2

2

hn

hn−1∑
m=0

∆−1/2
n X̄i+mŪi+m,

R(3)
n =

1

θψ2

1

hn

hn−1∑
m=0

(
∆−1/2
n Ū2

i+m −
ψ1

θ
ω2
)
,

R(4)
n =

ψ1

θ2ψ2

(ω2 − ω̂2),

R(5)
n = σ2

i∆n

(
kn∆

1/2
n ψn2
θψ2

− 1

)
+

1

θψ2

1

hn

hn−1∑
m=0

σ2
i∆n

(
∆−1/2
n W̄ 2

i+m − kn∆1/2
n ψn2

)
.

Consider the random variable:

Sn =
lnkn−1∑
m=0

Ym =
kn∑
i=1

S(i)
n ,

where (Ym)m≥1 are mean zero and (kn − 1)-dependent, such that for each i S
(i)
n =

∑ln
m=0 Yi−1+mkn

is a sum of independent random variates and supm∈N E
[
|Ym|p

]
≤ C. Applying the discrete Hölder

and Burkholder inequality, we obtain for each p ≥ 2:

E
[
|Sn|p

]
≤ kp−1

n

kn∑
i=1

E
[
|S(i)
n |p
]
≤ kpnl

p/2
n .

This observation leads to

E
[∣∣R(2)

n

∣∣p]+ E
[∣∣R(3)

n

∣∣p]+ E
[∣∣R(5)

n

∣∣p] ≤ C
(
kn/hn

)p/2
+ C∆p/4

n ,

E
[∣∣R(4)

n

∣∣p] ≤ C
(
∆n/T

)p/2
.

Turning next to R
(1)
n , we have for each i and m that

X̄i+m − σi∆nW̄i+m =
kn−1∑
j=1

g(j/kn)Ai+m+j,

where

Ai+m+j =

∫ (i+m+j)∆n

(i+m+j−1)∆n

bsds+

∫ (i+m+j)∆n

(i+m+j−1)∆n

(σs − σi∆n)dWs.
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The Burkholder inequality then implies that, for each p ≥ 2,

E
[∣∣X̄i+m − σi∆nW̄i+m

∣∣p] ≤ C
((
kn∆n

)p
+
(
kn∆n

)p/2(
hn∆n

)pH) ≤ C
(

∆p/2
n + ∆p/4

n

(
hn∆n

)pH)
,

uniformly in i and m. Using the above together with the identity |a2 − b2|p = |a− b|p|a+ b|p, plus

the discrete Hölder and Cauchy-Schwarz inequality, we deduce that:

E
[∣∣R(1)

n

∣∣p] ≤ C

hn

hn−1∑
m=0

E
[∣∣∆−1/4

n

(
X̄i+m − σi∆nW̄i+m

)∣∣p∣∣∆−1/4
n

(
X̄i+m + σi∆nW̄i+m

)∣∣p]
≤ C

(
∆p/4
n +

(
hn∆n

)pH)
,

which finishes the proof of (A.7).

We continue with the second part. We denote ηn,T = supt∈[0,T ]

∣∣V̂t − Vt∣∣ and notice that

ηn,T ≤ sup
i∈An,T

|V̂i∆n − Vi∆n|+ sup
i∈An,T

sup
t∈((i−1)∆n,i∆n]

|Vt − Vi∆n|.

where An,T = {i : 0 ≤ i ≤ [T/∆n]− hn − kn}. Now, Assumption 1(i) implies:

E
[∣∣∣ sup

t∈((i−1)∆n,i∆n]

|Vt − Vi∆n|
∣∣∣p] ≤ C∆pH

n .

This result, combined with the maximal inequality and (A.7), means that

E
[∣∣ηn,T ∣∣p] ≤ C

T

∆n

[(
kn/hn

)p/2
+
(
hn∆n

)pH
+ ∆p/4

n + ∆pH
n

]
≤ C

T

∆n

[(
kn/hn

)p/2
+
(
hn∆n

)pH]
,

which immediately delivers the bound

E
[∣∣ηn,T ∣∣p]1/p

≤ CT 1/p∆−1/p
n

[(
kn/hn

)1/2
+
(
hn∆n

)H]
.

As p can be arbitrarily large and optimizing hn � ∆
− 4H+1

4H+2
n , we deduce that

ηn,T = Op

(
T ι∆

H
4H+2

−ι
n

)
.

As for the final step in the proof, recall that by definition of ηn,T :

FT (x− ηn,T ) ≤ Fn,T (x) ≤ FT (x+ ηn,T ).

Then,

√
T
∣∣Fn,T (x)− FT (x)

∣∣ ≤ √T ∣∣FT (x+ ηn,T )− FT (x− ηn,T )
∣∣

≤
∣∣GT (x+ ηn,T )−GT (x− ηn,T )

∣∣+
√
T
∣∣F (x+ ηn,T )− F (x− ηn,T )

∣∣, (A.9)
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where GT (x) =
√
T (FT (x)− F (x)).

As the density of F exists and is bounded:

√
T sup
x∈R+

|F (x+ ηn,T )− F (x− ηn,T )| =
√
T sup
x∈R+

∫ x+ηn,T

x−ηn,T
f(z)dz ≤ 2K

√
Tηn,T ,

which—by the rate condition on ηn,T—implies that
√
T supx∈R+

|F (x + ηn,T ) − F (x − ηn,T )| P−→ 0.

And since ηn,T
P−→ 0, it follows that for any ε, δ > 0 there exists (n′, T ′) such that P(ηn,T > δ) ≤ ε/2

for all pairs (n, T ) with n ≥ n′ and T ≥ T ′, which adheres to the rate condition. Let γ > 0 be

given. Then,

P
(

sup
x∈R+

∣∣GT (x+ ηn,T )−GT (x− ηn,T )
∣∣ > γ

)
≤ P

(
{ sup
x∈R+

∣∣GT (x+ ηn,T )−GT (x− ηn,T )
∣∣ > γ} ∩ {ηn,T < δ}

)
+ P

(
ηn,T ≥ δ

)
≤ P

(
{ sup
|x−y|≤2δ

∣∣GT (x)−GT (y)
∣∣ > γ}

)
+ P

(
ηn,T ≥ δ

)
,

(A.10)

where GT (x) =
√
T (FT (x) − F (x)). It follows from Theorem 5.2 in Dehay (2005) that for any

ε, γ > 0 there exists δ > 0 such that the first term in (A.10) is smaller than ε/2. Hence,

P
(

sup
x∈R+

∣∣GT (x+ ηn,T )−GT (x− ηn,T )
∣∣ > γ

)
≤ ε.

As ε, γ are arbitrary, this verifies that supx∈R+
|GT (x + ηn,T ) − GT (x − ηn,T )| P−→ 0, concluding the

proof of Lemma A.1. �

Lemma A.2 Suppose that Assumption 1 (ii) and 3 – 5 hold true, as does the rate condition T 1/2+ι∆
1/8−ι
n →

0, as ∆n → 0 and T →∞, for some ι > 0 and hn � ∆
−3/4
n . Then,

√
T sup
x∈R+

∣∣Fn,T (x)− FT (x)
∣∣ P−→ 0. (A.11)

Proof. Recall that if σt satisfies Assumption 1(ii), the form of Vt = σ2
t is representable via (the

general version of) Itô’s Lemma:

Vt = V0 +

∫ t

0

b̄sds+

∫ t

0

σ̄sdWs +

∫ t

0

σ̄′sdBs +

∫ t

0

∫
R
δ̄(s, z)(µ− ν)(d(s, z)).

We split the variance in two: Vt = V ′t (ε) + V ′′t (ε), for each ε > 0, where

V c
t = V0 +

∫ t

0

b̄sds+

∫ t

0

σ̄sdWs +

∫ t

0

σ̄′sdBs,
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V ′t (ε) = V c
t +

∫ t

0

∫
{z:Γ̃(z)≤ε}

δ̄(s, z)(µ− ν)(d(s, z))−
∫ t

0

∫
{z:Γ̃(z)>ε}

δ̄(s, z)ν(d(s, z)),

V ′′t (ε) =

∫ t

0

∫
{z:Γ̃(z)>ε}

δ̄(s, z)µ(d(s, z)).

Moreover, we denote

Jn(ε) = {i ∈ Z : 0 ≤ i ≤ [T/∆n]− hn − kn, µ([i∆n, (i+ 1)∆n)× {z : Γ̃(z) > ε}) = 0},

Sn(ε) = ∪i∈Jn(ε)[i∆n, (i+ 1)∆n),

An,T = {i : 0 ≤ i ≤ [T/∆n]− hn − kn}.

In words, Jn(ε) is a set of indices that excludes the big jumps and Sn(ε) is the union of these. It

leads to a decomposition Fn,T (x) = Fn,T (x, ε) +Rn,T (x, ε) and FT (x) = FT (x, ε) +RT (x, ε) with

Fn,T (x, ε) =
1

T

∫
Sn(ε)

1{V̂t≤x}dt, Rn,T (x, ε) =
1

T

∫
[0,T ]\Sn(ε)

1{V̂t≤x}dt,

FT (x, ε) =
1

T

∫
Sn(ε)

1{Vt≤x}dt, RT (x, ε) =
1

T

∫
[0,T ]\Sn(ε)

1{Vt≤x}dt.

Here, F is the main term, while R is a remainder. A final piece of notation:

ηn,T (ε) = sup
i∈Jn(ε)

|V̂i∆n − Vi∆n|+ sup
i∈An,T

sup
t∈((i−1)∆n,i∆n]

|V ′t (ε)− V ′i∆n
(ε)|.

Let εn � ∆
1/8
n . The aim is to prove that

ηn,T (εn) = Op(T
ι∆1/8−ι

n ). (A.12)

We deal first with the last term of ηn,T (εn), which we call

η̃n,T (εn) = sup
i∈An,T

sup
t∈((i−1)∆n,i∆n]

|V ′t (εn)− V ′i∆n
(εn)|.

Observe that

sup
t∈((i−1)∆n,i∆n]

|V ′t (εn)− V ′i∆n
(εn)| ≤ γ

(1)
i,n + γ

(2)
i,n + γ

(3)
i,n ,

where

γ
(1)
i,n = sup

t∈((i−1)∆n,i∆n]

|V c
t − V c

i∆n
|,

γ
(2)
i,n = sup

t∈((i−1)∆n,i∆n]

∣∣ ∫ t

(i−1)∆n

∫
{z:Γ̃(z)≤εn}

δ̄(s, z)(µ− ν)(ds, dz)
∣∣,

γ
(3)
i,n = sup

t∈((i−1)∆n,i∆n]

∣∣ ∫ t

(i−1)∆n

∫
{z:Γ̃(z)>εn}

δ̄(s, z)ν(ds, dz)
∣∣.
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Application of the Burkholder and maximal inequality yield that, for any p ≥ 2,

E
[∣∣ sup

i∈An,T
γ

(1)
i,n

∣∣p] ≤ CT∆p/2−1
n . (A.13)

Moreover, for each p ≥ 2 and i, Lemma 2.1.5 in Jacod and Protter (2012) implies that

E
[∣∣γ(2)

i,n

∣∣p] ≤ C∆n

∫
{z:Γ̃(z)≤εn}

Γ̃(z)pλ(dz) + C∆p/2
n

(∫
{z:Γ̃(z)≤εn}

Γ̃(z)2λ(dz)

)p/2
≤ C

(
∆nε

p−2
n + ∆p/2

n

)
.

In view of the maximal inequality:

E
[∣∣ sup

i∈An,T
γ

(2)
i,n

∣∣p] ≤ CT
(
εp−2
n + ∆p/2−1

n

)
. (A.14)

Finally,

| sup
i∈An,T

γ
(3)
i,n | ≤ sup

i∈An,T

∫ i∆n

(i−1)∆n

∫
{z:Γ̃(z)>εn}

Γ̃(z)ν(ds, dz) ≤ C∆nε
−1
n . (A.15)

As a result, for any p ≥ 2, a combination of (A.13) - (A.15) shows that

E
[∣∣η̃n,T (mn)

∣∣p]1/p

≤ C
(
T 1/p∆1/2−1/p

n + T 1/pε1−2/p
n + ∆nε

−1
n

)
. (A.16)

Now, turn to the first term of ηn,T (εn), which is η̂n,T (εn) ≡ supi∈Jn(εn) |V̂i∆n − Vi∆n|. As in (A.8) in

the proof of Lemma A.1, we disentangle, for each i ∈ Jn(εn),

V̂i∆n − Vi∆n = R(1)
n +R(2)

n +R(3)
n +R(4)

n +R(5)
n .

It suffices to look at R
(1)
n , as the rates of the other four terms are equal. As above, utilizing

Burkholder’s inequality, we see that for each p ≥ 2, i ∈ Jn(εn) and 0 ≤ m ≤ hn − 1:

E
[∣∣X̄i+m − σi∆nW̄i+m

∣∣p] ≤ C

((
kn∆n

)p
+
(
kn∆n

)p/2E[ sup
t∈[i∆n,(i+hn)∆n]

|σt − σi∆n|p
])

≤ C
((
kn∆n

)p
+
(
kn∆n

)p/2[
(hn∆n)p/2 + hn∆nε

p−2
n +

(
hn∆n

)p
ε−pn
])

≤ C∆p/4
n

[(
hn∆n

)p/2
+ hn∆nε

p−2
n +

(
hn∆n

)p
ε−pn

]
,

uniformly in i and m. Proceeding as in the proof of Lemma A.1, it follows that

E
[∣∣R(1)

n

∣∣p] ≤ C

hn

hn−1∑
m=0

E
[∣∣∆−1/4

n (X̄i+m − σi∆nW̄i+m)
∣∣p∣∣∆−1/4

n (X̄i+m + σi∆nW̄i+m)
∣∣p]

≤ C
[(
hn∆n

)p/2
+ hn∆nε

p−2
n +

(
hn∆n

)p
ε−pn

]
.
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In conclusion, for each p ≥ 2 and i ∈ Jn(εn), we get

E
[∣∣V̂i∆n − Vi∆n

∣∣p] ≤ C
[
(kn/hn)p/2 + (hn∆n)p/2 + hn∆nε

p−2
n + (hn∆n)pε−pn

]
.

Hence, for any p ≥ 2, the maximal inequality along with kn � ∆
−1/2
n and hn � ∆

−3/4
n yield

E
[∣∣η̃n,T (εn)

∣∣p]1/p

≤ CT 1/p∆−1/p
n

[
∆1/8
n + ε1−2/p

n + ∆1/4
n ε−1

n

]
.

Merging this with (A.16):

E
[∣∣ηn,T (εn)

∣∣p]1/p

≤ CT 1/p∆−1/p
n

[
∆1/8
n + ε1−2/p

n + ∆1/4
n ε−1

n

]
≤ CT 1/p∆−1/p

n

[
∆1/8
n + ∆1/8−1/4p

n

]
,

where εn � ∆
1/8
n was used in the last line. Now, choosing large enough p implies (A.12).

Passing back to the main proof, it holds that

E
[
T−1

∫
[0,T ]\Sn(εn)

dt

]
≤ C∆nε

−2
n .

This delivers a bound for the remainder term(s):

Rn,T (x, εn) +RT (x, εn) = Op(∆nε
−2
n ). (A.17)

As V ′′t (εn) vanishes on Sn(εn), supt∈Sn(εn) |V̂t − Vt| ≤ ηn,T (εn). Then, proceeding as in (A.9) we

deduce that

√
T |Fn,T (x, εn)− FT (x, εn)| ≤

√
T
∣∣FT (x+ ηn,T (εn), εn)− FT (x− ηn,T (εn), εn)

∣∣
≤
√
T
∣∣FT (x+ ηn,T (εn))− FT (x− ηn,T (εn))

∣∣
≤
∣∣GT (x+ ηn,T (εn))−GT (x− ηn,T (εn))

∣∣+
√
T
∣∣F (x+ ηn,T (εn))− F (x− ηn,T (εn))

∣∣,
where GT (x) =

√
T (FT (x) − F (x)). Here, the second inequality is due to integrating over a larger

set. Now, arguing as in the end of the proof of Lemma A.1 and using (A.17), we conclude that

√
T sup
x∈R+

|Fn,T (x)− FT (x)| = op(1) +Op(T
1/2−ι∆1/8−ι

n ) +Op(T
1/2∆nε

−2
n ).

As εn � ∆
1/8
n , our work is done. �
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Proof of Theorem 3.3

Notice that

√
T
(
Fn,T (x)− F (x)

)
=
√
T
(
Fn,T (x)− FT (x)

)
+
√
T
(
FT (x)− F (x)

)
. (A.18)

Appealing to Lemma A.1-A.2, it holds that supx∈R+

√
T
(
Fn,T (x) − FT (x)

) P−→ 0. Furthermore, by

Theorem 4.1 in Dehay (2005) it follows that
√
T
(
FT (x)− F (x)

) d−→ N(0,Σ(x)), where

Σ(x) = 2

∫ ∞
0

(
Ft(x, x)− F (x)2

)
dt

and Ft(x, y) = P
(
σ2

0 ≤ x, Vt ≤ y
)
. We next prove the proposed estimator of the asymptotic variance

Σn,T (x)
P−→ Σ(x), for all x ∈ R+. Thus, let ξ ∈ (0, 1/3) be fixed and observe that:

Σn,T (x) = 2

∫ T ξ

0

(
Ft,n,T (x)− Fn,T (x)2

)
dt

= 2

∫ T ξ

0

(
Ft,n,T (x)− Ft,T (x)

)
dt+ 2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt+ 2T ξ

(
FT (x)2 − Fn,T (x)2

)
,

(A.19)

where Ft,T (x) =
1

T

∫ T−T ξ

0

1{Vs+t≤x,Vs≤x}ds. The last term in the above display is asymptotically

negligible by Lemma A.1 – A.2:

T ξ
∣∣FT (x)2 − Fn,T (x)2

∣∣ = T ξ
∣∣FT (x)− Fn,T (x)

∣∣∣∣FT (x) + Fn,T (x)
∣∣

≤ 2T ξ
∣∣FT (x)− Fn,T (x)

∣∣ P−→ 0.

Next,

Ft,T (x− ηn,T ) ≤ Ft,n,T (x) ≤ Ft,T (x+ ηn,T ),

hence
∣∣Ft,n,T (x)−Ft,T (x)

∣∣ ≤ Ft,T (x+ ηn,T )−Ft,T (x− ηn,T ). By definition of Ft,T , it follows that for

any z, y ∈ R+ with z > y:

Ft,T (z)− Ft,T (y) =
1

T

∫ T−T ξ

0

1{y<σ2
s+t≤z,y<σ2

s≤z}ds

≤ 1

2T

∫ T−T ξ

0

1{y<σ2
s+t≤z} +

1

2T

∫ T−T ξ

0

1{y<σ2
s≤z}ds

= FT (z)− FT (y) +O
(
T ξ−1

)
.

Taking z = x+ ηn,T and y = x− ηn,T :∫ T ξ

0

∣∣Ft,n,T (x)− Ft,T (x)
∣∣dt = T ξ

(
FT (x+ ηn,T )− FT (x− ηn,T )

)
+O

(
T 2ξ−1

)
.
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As in the proof of Lemma A.1-A.2, we can show that∫ T ξ

0

∣∣Ft,n,T (x)− Ft,T (x)
∣∣dt P−→ 0.

Finally, for the remaining term in (A.19), we first note that stationarity of (Vt)t≥0 implies that

E
[
Ft,T (x)

]
= E

[
Ft(x, x)

]
+O

(
T ξ−1

)
and E

[
FT (x)

]
= F (x). Hence,

E
[
2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt

]
= 2

∫ T ξ

0

(
Ft(x, x)− F (x)2

)
dt− 2T ξvar

(
FT (x)

)
+O

(
T 2ξ−1

)
.

Since α(t) = O(t−γ) and ξ ∈ (0, 1/3), Theorem 3.3 in Dehay (2005) implies that T ξvar
(
FT (x)

)
→ 0

as T →∞. Therefore,

E
[
2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt

]
→ Σ(x),

as T →∞. It thus suffices to show that 2
∫ T ξ

0

(
Ft,T (x)−FT (x)2

)
dt−E

[
2
∫ T ξ

0

(
Ft,T (x)−FT (x)2

)
dt
]
→

0 in L2, as
√
Tan,T → 0, ∆n → 0 and T → ∞, in order to conclude that Σn,T (x)

P−→ Σ(x). To this

end we decompose the difference as follows

2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt− E

[
2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt

]
= 2

∫ T ξ

0

(
Ft,T (x)− Ft(x, x)

)
dt

+ T ξ
(
FT (x)2 − F (x)2

)
+ 2T ξvar

(
FT (x)

)
+O

(
T 2ξ−1

)
.

By Minkowski’s Inequality, it is enough to look at each term on the right-hand side separately. We

define F̃t,T (x) = 1
T

∫ T
0

1{Vs+t≤x,Vs≤x}ds and note that F̃t,T (x) = Ft,T (x) + O
(
T ξ−1

)
, E
[
F̃t,T (x)

]
=

Ft(x, x) and

2

∫ T ξ

0

(
Ft,T (x)− Ft(x, x)

)
dt = 2

∫ T ξ

0

(
F̃t,T (x)− Ft(x, x)

)
dt+O

(
T 2ξ−1

)
.

The Cauchy-Schwarz Inequality yields that

E

[(∫ T ξ

0

(
F̃t,T (x)− Ft(x, x)

)
dt

)2
]
≤ T ξ

∫ T ξ

0

var
(
F̃t,T (x)

)
dt

= O
(
T 2ξ−1

)
,

where the last inequality follows from the calculations on p. 941 in Dehay (2005). Therefore,

2

∫ T ξ

0

(
Ft,T (x)− Ft(x, x)

)
dt→ 0
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in L2. As both FT and F are bounded by 1, the bounded convergence theorem and Theorem 3.3 in

Dehay (2005) implies that

T ξ
(
FT (x)2 − F (x)2

)
→ 0 (A.20)

in L2, as T →∞. Thus,

2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt− E

[
2

∫ T ξ

0

(
Ft,T (x)− FT (x)2

)
dt

]
→ 0

in L2, given the rate condition from Theorem 3.3. This implies that Σn,T (x)
P−→ Σ(x). �

We now state a multivariate version of Theorem 3.3.

Lemma A.3 Suppose that the conditions of Theorem 3.3 are fulfilled. Let p ∈ N be given. Then,

for any x1, . . . , xp ∈ R+,

(
Gn,T (x1), . . . , Gn,T (xp)

) d−→ N
(
0,Σ(x1, . . . , xp)

)
,

where Σ(x1, . . . , xp) is the p× p covariance matrix with elements of the form

Σ(x1, . . . , xp)ij =

∫ ∞
0

(
Ft(xi, xj) + Ft(xi, xj)− 2F (xi)F (xj)

)
dt,

for i, j = 1, . . . , p. Furthermore, let ξ ∈ (0, 1/3) be given. Then,

Σn,T (xi, xj) =

∫ T ξ

0

(
Ft,n,T (xi, xj) + Ft,n,T (xj, xi)− 2Fn,T (xi)Fn,T (xj)

)
dt

P−→ Σ(x1, . . . , xp)ij.

Proof. The first part follows by a Crámer-Rao device. Also, proving consistency of the covariance

estimator goes along the lines of the univariate case. We therefore skip it. �

Proof of Theorem 3.5

In view of Lemma A.1-A.2, we obtain that supx∈R+

√
T
(
Fn,T (x) − FT (x)

) P−→ 0. On the other

hand, Theorem 5.2 in Dehay (2005) implies a functional central limit theorem for the process

GT =
{√

T
(
FT (x)− F (x)

)
, x ∈ R+

}
. �

Proof of Corollary 3.6

This follows from Theorem 3.5 by noting that the sup and weighted L2 norm are both continuous

mappings from Cb(R+)→ R. �
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Proof of Proposition 3.7

From Corollary 3.6 the limiting distribution of rL2 under H0 is ||GF ||2w, where GF is a Gaussian pro-

cess with covariance operator Σ. The distribution can therefore be written as ||GF ||2w =
∑∞

i=1 λiΦ
2
i ,

where Φi are independent standard normal random variables, and λi are the eigenvalues of Σ (see,

e.g., Kuo, 1975). Moreover, from Bosq (2000, chapter 1) we deduce that Σ̃ =
∑∞

i=1 λi <∞, so that

E
[
||GF ||2w

]
= Σ̃. Combining this result with the fact that T (F ) is a quadratic form of mean zero

Gaussian random variables, it follows that for all α ∈ (0, 0.215):

P
(
T (F ) > α

)
= 1− P

(
T (F ) ≤ α

)
≤ 1− P

(
χ2 ≤ α

)
= P

(
χ2 > α

)
,

where the inequality is due to Székely and Bakirov (2003). This concludes the proof of the first

statement, while the second part follows upon observing that ||GF ||2w
P−→∞ under Ha. �

Proof of Corollary 3.8

The proof follows from Theorem 19.23 in van der Vaart (1998). �

B Simulation of critical values for goodness-of-fit testing

To describe how critical values for our goodness-of-fit tests are generated, we again fix the sampling

frequency at ∆n and the time horizon at [0, T ].

The stochastic volatility model is assumed to be indexed by a parameter vector υ. We discrim-

inate between the case where υ is known (I), and the more realistic setup where υ is unknown,

but a preliminary estimate υ̂ is available along with an estimate of the noise variance ω̂ (II). As a

biproduct, we emphasize that the latter approach also accounts for the estimation error induced by

the infill step, which is negligible in the limit but can be sizable in small samples.

We proceed as follows:

I. Without parameter estimation

1. Simulate a volatility path of length T based on υ.

2. Sample the path at frequency ∆n.

3. Construct the EDF, FT .

4. Calculate the t-statistic with F based on υ.
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5. Repeat step 1 – 4 B times.

II. With parameter estimation

1. Simulate a volatility path of length T based on υ̂. Call it (σt)t∈[0,T ].

2. Construct noisy log-returns at sampling frequency ∆n according to: ∆n
i Z = σ(i−1)∆n

√
∆nΦ1 +

ω̂Φ2, where Φ1 and Φ2 are independent standard normal random variables.

3. Construct the REDF, Fn,T .

4. Retrieve a new estimate of the parameter vector, denoted by υ̃, from the artificial data.

5. Calculate the t-statistic with F based on υ̃.

6. Repeat step 1 – 5 B times.

In both I. and II., the critical values are subsequently found as the α-quantile of the distribution

of t-statistics based on the above B repetitions of the simulation experiment.
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