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University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark.

June 19, 2018

Abstract

In this paper we propose a straightforward approach to obtain a more efficient esti-
mate of the integrated variance of an asset through a cross-sectional combination with
a futures contract written on it. Our method constructs a variance-preserving series
with reduced noise size as a linear combination of the underlying asset and the futures
and base measurement of the integrated variance on this new series. We first illustrate
how a theoretically but infeasible optimal series can be obtained and then suggest a
feasible procedure to attain noise reduction. In a simulation study we verify how preva-
lent estimators of integrated variance applied to such noise-reduced series outperform
estimators applied directly to the asset price. Finally, we apply the method to an
empirical data set and, through the stabilized signature plot, we show how the noise
reduced series provides consistent integrated variance estimates using naive realized
measures at very high frequencies.
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1 Introduction

Since the pioneering paper by Andersen et al. (2000) the high-frequency econometrics

literature has seen a spurt of noise robust estimators of the QV of an asset; among the

others we can name the aformentioned Jacod et al. (2009), Barndorff-Nielsen et al. (2008),

Christensen et al. (2010b), Zhang et al. (2005), Zhang (2006), Bandi and Russell (2008).

These estimators all try to smooth out the noise with a weight or kernel function working

on the time dimension. Further, some of these estimators also enjoy an optimal rate of

convergence. In the present paper we do not aim at providing a new estimator of the IV,

rather our objective is to show that the problem can be approached (and somehow solved)

from a totally different perspective.

We propose a novel noise reducing methodology obtained via linear combination of different

price series with the same variance. This creates a variance-preserving series whose noise

variance can be minimized with an appropriate weighting function. In this paper we specif-

ically focus on estimating volatility of the S&P 500 index using high-frequency data of the

SPY obtained from the TAQ database as a proxy;1 this allows us to work on two differ-

ent directions. We begin by discussing in details the relationship between a futures and its

underlying asset; following Mirone (2017) we show that under the classical semimartingale

framework the two financial instruments must, by no arbitrage, share the same integrated

variance (IV) or, more generally, the same quadratic variation (QV). We then introduce the

noise reduction methodology offering both a theoretical and a feasible approach on how to

construct the noise reduced series (Z). Further, we discuss how the same approach can be

implemented on an asset traded on different markets as long as the microstructure noise

processes differ.

The essence of our method is akin to the preaveraging methodology (Jacod et al., 2009), with

the main difference that our proposal aims at smoothing out the noise by averaging over the

cross-section of returns instead of the time dimension. Our novel methodology produces a

variance preserving series less affected by microstructure noise, which allows practitioners to

implement their favourite realized measure in order to more efficiently retrieve the quadratic

variation of the series.

In Section 3 and Section 4 we show that the trivial realized variance computed on the noise

reduced series (Z) grants consistent results at frequencies as high as five - ten seconds, al-

lowing to take advantage of an incredibly higher number of observations compared to the

commonly used five minutes frequency.

As our approach requires estimation of the covariance of returns in a high-frequency and

1The use of an ETF as a proxy for the market index is common practice in the literature.
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asynchronous framework, we will build on the work of Renò (2003); Hayashi and Yoshida

(2005); Christensen et al. (2010a) and discuss to which extent our methodology is affected

by the Epps effect (Epps, 1979). In this context, two different synchronization methods

are investigated; the so-called previous tick interpolation and the refresh time discussed in

Barndorff-Nielsen et al. (2011).

The remainder of the paper is structured as follows. Section 2 introduces the framework and

thoroughly illustrates the noise reduction methodology. Section 3 presents a comprehensive

simulation study to appraise and investigate the sensitivity of the procedure to different

factors. Empirical results on the SPY and E-mini S&P 500 futures are given in Section 4.

Conclusions are discussed in Section 5

2 Framework and Method

In this section we delineate our framework in which price and volatility processes are

modelled. We also introduce an infeasible method of noise reduction that is of theoretical

interest and a feasible method to be applied in practice. Henceforth, we work on a filtered

probability space (Ω,F ,F = (Ft),P) that satisfies the usual hypotheses, that is, it is right

continuous and complete.

2.1 The relation between the integrated variances of futures and

its underlying asset

In consonance with the prevalent literature, we assume that the latent efficient log-price

process S follows an Itô semimartingale; that is,

St = S0 +

∫ t

0

bs ds+

∫ t

0

σs dWs, (1)

where b is locally bounded, σ is càdlàg and predictable, and W is a standard Wiener process.

It is worth mentioning that the assumption on S can be generalized to accommodate jumps.2

Our method, which serves as a prewhitening filter, is not affected by the assumption imposed

on S, but relies on the noise structure as will be discussed in the sequel. The primary interest

of this paper concerns the estimation of the integrated variance, defined as quadratic variation

of S, i.e.,

2For example, S can take the form of Grigelionis representation as in theorem 2.1.2 in Jacod and Protter
(2011).
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IVt(S) = [S, S]t =

∫ t

0

σ2
s ds. (2)

A well known result in the semimartingale theory is that the integrated variance can be

consistently estimated by the realized variance, which is constructed as the sum of squared

difference of the process on a grid with vanishing mesh. In details, let τ
(n)
i : 0 ≤ i ≤ n denote

the sampling times of the price process, which is a grid of finite partitions of the interval

[0, t]. The realized variance spanning the same time window is computed as

RVt(S) =
n∑
i=1

(S
τ
(n)
i
− S

τ
(n)
i−1

)2. (3)

Then, as long as the mesh of the observations grid goes to zero the realized variance converges

in probability to IV: max1≤i≤n |τ (n)i − τ
(n)
i−1| → 0 as n→∞, RVt(S)

P−→ IVt(S). However, it

has long been documented that realized variance does not converge when applied to empirical

data. The volatility signature plot introduced by Andersen et al. (2000) typically visualizes

the explosive behaviour of realized variance at ultra high frequencies, suggesting that the

price process cannot simply be modelled as a semimartingale. Instead, it is argued that

though the latent efficient price can be modelled as a semimartingale, the observed price

has an extra noise component arising from market microstructure features, such as bid-ask

bounces, discreteness of prices and outliers. In other words, if S? denotes the observed price,

then

S? = S + ε(S), (4)

where ε(S) captures all sources of microstructure noise. The “contaminated” price process

is no longer a semimartingale and thus the realized variance constructed in (3) no longer

consistently estimate the integrated variance. At mild sampling frequencies, say 5, 10 or 30

minutes, the effect of noise is typically moderate to negligible; hence, in practice, realized

variance computed at these frequencies is often used as estimator of the integrated vari-

ance. A less heuristic choice of the sampling frequency has also been proposed by Bandi

and Russell (2008) with their optimal sampling RV (RV ∗). Various others estimators have

been proposed to address the issue of microstructure noise, including the two-scale realized

variance (TSRV) (Zhang et al., 2005) and the multi-scale realized variance (MSRV) (Zhang,

2006), which consistently estimate the integrated variance (provided the noise process is

temporally independent and identically distributed) or the realized kernel (RK) (Barndorff-

Nielsen et al., 2008) and the pre-averaging (PA) estimator (Jacod et al., 2009) which are

robust to temporally dependent noise.

It should be pointed out that all aforementioned methods tackle noise by a transformation
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of the (observed) price process, say S?. In this paper, however, we adopt a different perspec-

tive. Instead of transforming the price process S?, we seek to mitigate the effect of noise by

combining S? with a different time series which enjoys the same variance as S. To this end,

we will expand on Mirone (2017) and specifically focus on a futures, F , written on the series

of interest, S.

Suppose that in the market there are two additional assets: a risk-free asset, B, whose dy-

namics is given by dBt = rtdt, where r is the short rate process, and a futures written on St

with maturity T greater than t. We denote the latent efficient log futures price by Ft and

analogously denote by F ?
t the observed futures price. The noise contaminating the futures

is denoted by ε
(F )
t , and the processes are linked by the following equation:

F ?
t = Ft + ε

(F )
t . (5)

Our method is based on the close relation between the integrated variance of the underlying

and the futures written on it. The efficient futures price, Ft, is the unique price that would be

determined in a market that admits no free lunch. The well known fundamental theorem of

asset pricing (Delbaen and Schachermayer, 1994) entails existence of the risk neutral measure

Q. Moreover, if Xt = exp(St) and Yt = exp(Ft) are the price processes of the underlying

asset and the futures respectively, then we have the following relation (see, e.g., Björk, 2009)

Ys = EQ[XT |Fs ], s ≤ T. (6)

In general, Equation (6) admits no closed form solution unless we impose additional assump-

tions on the interest rate process r. An appealing specification of r might be the CIR process

(Cox et al., 1985), which together with other assumptions leads to a closed-form solution for

F (see, Ramaswamy and Sundaresan, 1985). A detailed discussion about such specifications

can be found in Mirone (2017) or Lunde et al. (2017). In this section, we make the simple

assumption that the short rate process r is deterministic. This assumption seems to be overly

strict as it completely disregards the stochasticity of the short rate. However, simulation

results in Section 3 suggest that assuming r to be deterministic might be innocuous and,

more importantly, this assumption allows us to obtain estimators easy to use and, at the

same time, more efficient. When the short rate is deterministic, Equation (6) leads to

Ys = EQ[XT e
−

∫ T
0 ru du |Fs]e

∫ T
0 rudu = Xse

−
∫ s
0 rudue

∫ T
0 rudu = Xse

∫ T
s rudu. (7)

Taking logarithms on both sides of (7) we see that the log-prices F and S are linked through
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Fs = Ss +

∫ T

s

rudu (8)

A straightforward consequence of Equation (8), is that the integrated variances, or equiva-

lently, the quadratic variations of F and S coincide; i.e.,

IVt(F ) = [F, F ]t = [S, S]t = IVt(S). (9)

Similar evidence has also been studied in Rossi and Santucci de Magistris (2013), where the

authors assume the interest rate to have negligible variation.

An immediate corollary of (8) is that, IVt(F ) and IVt(S) are also identical to the quadratic

covariation between F and S, that is,

IVt(F ) = IVt(S) = [F, S]t. (10)

Hence, any estimator of the integrated variance of the futures or the quadratic covariation be-

tween the underlying and a futures written on it also serves as an estimator of the integrated

variance of the underlying asset, and vice versa.

2.2 Infeasible noise reduction by virtue of futures

Certainly, estimation of IVt(F ) is complicated by the presence of a further source of

noise proper of the futures market (possibly correlated with the noise process affecting S).

Nonetheless, a reliable estimator can be constructed for IVt(F ) directly. Yet, we propose

to tackle the problem from another perspective. Equations (8) and (9) illustrate the close

relation between an asset and its corresponding futures contracts. Naturally, noises con-

taminating the futures price and the underlying asset price, namely ε(F ) and ε(S) respec-

tively, might also be closely related. Consider the extreme but heuristic case where ε(F ) and

ε(S) are perfectly negatively correlated, that is, ρ(ε
(F )
t , ε

(S)
t ) = −1. In this case, the series

Z = 1
2
S? + 1

2
F ? is noise-free and has exactly the same integrated variance as S (and F ),

i.e., IVt(Z) = IVt(S). The integrated variance of S can then be consistently estimated by

RVt(Z), the realized variance of Z, which is also the most straightforward estimator avail-

able.

No doubt perfect negative correlation between ε(S) and ε(F ) is an unrealistic assumption.

Nevertheless, in the forgoing paragraph we investigate the possibility of noise reduction

through a simple linear combination of S and F . We formulate the idea as follows. Let

Z(α) = αS + (1 − α)F , which is the latent efficient price of a “portfolio” consisting

of only the underlying asset and the futures, with α shares invested in the former and
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(1− α) shares in the latter. Correspondingly, the observed “noisy” price of this portfolio is

Z?(α) = αS?+(1−α)F ?, where the noise contaminating Z(α) is ε(Z(α)) = αε(S)+(1−α)ε(F ).

Evidently, for any share α ∈ R, the integrated variance of Zt(α) equals IVt(S). Hence, to

properly tackle the noise, the bottom line is in the appropriate selection of α.

We start by noting that the variance of ε
(Z(α))
t is given by

σ2

ε
(Z(α))
t

= α2σ2

ε
(S)
t

+ (1− α)2σ2

ε
(F )
t

+ 2α(1− α)ρσ
ε
(S)
t
σ
ε
(F )
t
, (11)

where σ2

ε
(S)
t

and σ2

ε
(F )
t

denote the variance of ε
(S)
t and ε

(F )
t , respectively, and ρ is the correlation

coefficient between ε
(S)
t and ε

(F )
t . We can then rearrange the terms to express σ2

ε
(Z(α))
t

as an

upward opening parabolic function of α

σ2

ε
(Z(α))
t

= (σ2

ε
(S)
t

+ σ2

ε
(F )
t

− 2ρσ
ε
(S)
t
σ
ε
(F )
t

)α2 + 2(ρσ
ε
(S)
t
σ
ε
(F )
t
− σ2

ε
(F )
t

)α + σ2

ε
(F )
t

, (12)

which is uniquely minimized at its vertex

α† =
σ2

ε
(F )
t

− ρσ
ε
(S)
t
σ
ε
(F )
t

σ2

ε
(S)
t

+ σ2

ε
(F )
t

− 2ρσ
ε
(S)
t
σ
ε
(F )
t

. (13)

The minimum of σ2

ε
(Z(α))
t

is given by

σ2

ε
(Z(α†))
t

=
(1− ρ2)σ2

ε
(S)
t

σ2

ε
(F )
t

σ2

ε
(S)
t

+ σ2

ε
(F )
t

− 2ρσ
ε
(S)
t
σ
ε
(F )
t

. (14)

From (14), we see that as long as σ2

ε
(S)
t

6= σ2

ε
(F )
t

, the minimal variance of the noise ε
(Z(α†))
t

tends to 0 as |ρ| tends to 1. It appears evident that due to the effect of the covariance term,

the convergence rate is asymmetric: σ2

ε
(Z(α†))
t

tends to 0 more rapidly when ρ → −1 than

the case where ρ → 1 as it can easily be inferred by noting that the covariance term in the

denominator will increase the overall value of the denominator for ρ < 0 and decrease it for

ρ > 0. As a consequence, the method of noise reduction performs better when ε
(S)
t and ε

(F )
t

are negatively correlated. Figure 1 allows to visualize the behavior of Equation (14) for all

possible correlation values and for different noise variance ratios. We can clearly see that the

asymmetric behavior tends to get more pronounced when the ratio of the two noise variances

approaches one; with the extreme case being σ2

ε
(S)
t

= σ2

ε
(F )
t

. In such case, the residual noise

variance will simply linearly increases in ρε(S),ε(F ) and reach its maximum σ2

ε
(Z(α†))
t

= σ2

ε
(S)
t

for

ρε(S),ε(F ) = 1.

6



Figure 1: Surface plot of the minimum residual variance
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The plot displays the minimum residual variance (σ2

ε
(Z(α†))
t

) for values of ρε(S),ε(F ) ∈ [−1, 1] and for varying

ratios of the two noise variance.

The method now boils down to estimate IVt(S) on the noise reduced series Z(α†) which,

being affected by a dampened microstructure noise, will (in principle) result in a more precise

estimate. In practice the optimal “share”, α†, is a latent quantity which has to be estimated,

since we have no a priori knowledge about the covariance of ε
(S)
t and ε

(F )
t . For this reason we

refer to Z(α†) as the infeasible optimal series. Nonetheless, Z(α†) is of theoretical interest

as it can be interpreted as a benchmark, i.e., the optimal linear combination with minimal

noise size. In a simulation study estimation based on the infeasible series can be computed

and employed to measure performance of estimation conducted on a feasible series, as we

shall present in Section 3.

2.3 Feasible noise reduction by virtue of futures

In this subsection we propose a feasible way to estimate α† and so construct the series

Zt(α
†). Here, we deliberately refrain from considering the possible implications of the Epps

effect and leave the discussion to Section 2.5. A precise estimate of α† is complicated by the

latent nature of the noise processes and requires retrieving both the noise variances σ2

ε
(S)
t

and

σ2

ε
(F )
t

, as well as the noise correlation ρ
ε
(F )
t ,ε

(S)
t

. With the practitioner in mind we propose a

trivial way to estimate these values. As previously mentioned, we know that for any generic

asset X?
t affected by microstructure noise, as the number of observations, n, goes to infinity,
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RVt(X
?) is not a consistent estimator for [X,X]t. In this context RVt(X

?) is found to be a

consistent and asymptotically normal estimator of the quantity 2nE
[
ε
(X∗)2

t

]
rather than the

quadratic variation of the price process.3 I.e., when the frequency of observations increases

realized volatility does not estimate the true integrated volatility but rather the variance of

the contaminating noise process. It immediately follows that

σ̃2

ε
(X)
t

=
RVt(X

?)

2n
, (15)

which is a biased, but consistent estimator when n→∞.

Further, a widely employed alternative to σ̃2

ε
(X)
t

exploits the relation between return autoco-

variance and the noise variance

σ̂2

ε
(X)
t

= −
r?i r

?
i−1

n− 1
, (16)

where r?i = X?
τi
− X?

(τi−1)
. Both estimators are extremely trivial but suffer from the same

drawback; they are not consistent for coloured noise processes. While a simple adjustment to

σ̂2

ε
(X)
t

is indeed possible, it further requires the evaluation of the correlation structure of the

noise process which can be quite burdensome (e.g. see, Jacod et al. (2016)).4 As of today,

the general consensus in the literature is to simply use one of the estimators presented in

Equation (15) and Equation (16). Additionally, in Section 3 we will see that even though

do not accounting for autocorrelation of the error term leads to less precise estimates, the

feasible estimator will still perform as well as the infeasible one with no appreciable differences

between the independent and identically distributed (IID) and autocorrelated noise cases

(indifferently of the degree, and relative degree, of autocorrelation of the two noise series).

The expansion of Equation (15) and (16) to the multivariate setting is trivial. For simplicity

we assume that the two observations are perfectly synchronized (i.e. τ
(S)
i ≡ τ

(F )
i ∀ i ∈ [0, t]).5

Consider the trivial estimator of [S, F ]t

RCt(S, F ) =
n∑
i

(
S
τ
(n)
i
− S

τ
(n)
i−1

)(
F
τ
(n)
i
− F

τ
(n)
i−1

)
, (17)

which is known as the realized covariance and, in the absence of noise, as n → ∞ and

max1≤i≤n |τ (n)i − τ
(n)
i−1| → 0, RCt(S, F )

P−→ [F, S]t.

3A detailed discussion on the argument can be found, among others, in Zhang et al. (2005), Aı̈t-Sahalia
and Yu (2009).

4The methodology proposed in Jacod et al. (2016) have been investigated and no superior performance
has been registered. Additionally, as the estimation of the noise covariance matrix heavily relies on an
heuristic approach to tailor some key parameter to the series of interest and can be quite convoluted we
decided to disregard this procedure in favour of other, more convenient, estimators. The obtained results
are available upon request.

5 We will discuss how to deal with asynchronous observations in Section 2.5.
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RCt(S, F ) suffer an analogous inconsistency due to microstructure noise. Hence, under the

previously stated assumptions, given (10)

RCt(S
?, F ?)→ IVt(S) + 2nE[Σ

ε
(S)
t , ε

(F )
t

], (18)

as n→∞.

Similarly, we have that

E[r?i,s ∗ r?i−1,f ] = −Σ
ε
(S)
t , ε

(F )
t
.

Consequently, we can obtain a biased (but consistent) estimate of the covariance of the two

noise series as

Σ̃
ε
(S)
t , ε

(F )
t

=
RCt(S

?, F ?)

2 ∗ n
(19)

or, rather,

Σ̂
ε
(S)
t , ε

(F )
t

= − 1

n− 1

n∑
i=2

r?i,s ∗ r?i−1,f (20)

and easily back out the correlation parameter ρ
ε
(S)
t , ε

(F )
t

. It is important to point out that as

long as we have consistency, the bias in the estimated variance-covariance matrix will not

affect the noise reduction methodology as we are interested in the ratio of the two noise

variances rather than the exact values.

All the estimators presented in this section have been investigated both in our simulation

environment and on the empirical dataset and no relevant difference among them has been

evidenced. For the sake of brevity we decide to only report results obtained using the

autocovariance estimator (Equation (16) and (20)).

Hence, our estimator for α† will be

α̂ =
σ̂2

ε
(F )
t

− ρ̂σ̂
ε
(S)
t
σ̂
ε
(F )
t

σ̂2

ε
(S)
t

+ σ̂2

ε
(F )
t

− 2ρ̂σ̂
ε
(S)
t
σ̂
ε
(F )
t

.

Consequently we will construct Zt(α̂) = α̂S?t + (1− α̂)F ?
t .

2.4 Noise reduction through cross-sectional combination over dif-

ferent markets

It is of interest to notice that the methodology discussed in Section 2.2 and Section 2.3

straightforwardly applies to any price series with the same integrated variance. Thus, an

immediate expansion would be to use the time series of the same asset traded on different

financial markets. Since the microstructure noise is thought to be dependent on the market
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microstructure itself and is heavily influenced by factors as liquidity, bid-ask spread, tick

size, etc. we can confidently assume that the noise affecting the same asset on two different

markets will, to a certain extent, differ. Leading us to the same framework previously

discussed for the stock-futures relation. Hence, in this situation, we will generally estimate

a noise-reduced time series Z(α̂) = α̂S?i + (1 − α̂)S?j , with i 6= j identifying two different

markets.

α̂ =
σ̂2

ε
(S)
t,j

− ρ̂σ̂
ε
(S)
t,i
σ̂
ε
(S)
t,j

σ̂2

ε
(S)
t,i

+ σ̂2

ε
(S)
t,j

− 2ρ̂σ̂
ε
(S)
t,i
σ̂
ε
(S)
t,j

.

Additionally, focusing on different markets opens up to the possibility of smoothing over

a larger cross-section to further strengthen the noise reduction. However, liquidity and

asynchronicity problems will become increasingly more relevant when working with more

than two time series. A detailed discussion of such issues is presented in the following

section.

2.5 Synchronization methods and the Epps effect

In this section we consider the case where S? and F ? are observed asynchronously. A

required step to implement the procedure presented in Section 2.3 is to deal with the non-

synchronous observations in order to be able to estimate the correlation between the two

noise processes. We present two methodologies to synchronize the observations and discuss

their implications.

We now work with the following framework. Define the observation times of S? as T nS
and those of F ? as T mF . The elements of T nS and T mF will then be denoted as τn,Sj and

τm,Fj respectively, where the observed sequences are assumed to be independent of the price

process and can be irregularly spaced and even random. To ease the notation, we will often

suppress the superscript n and m keeping in mind that the number of observations of S and

F differ.

2.5.1 Previous-tick sampling

Consider now a set of grid points (VN = νi)i=0,...,M with νi ∈ [0, T ] (say, T = 1 day),

ν0 = 0, νT = T and M is the sampling frequency. It is common practice to choose VN
equally spaced. In this case M = T/∆ with ∆ = νi − νi−1, for all i being the chosen

sampling interval.6 Once our grid points have been identified, we can define our sampling

6Typical sampling intervals adopted in the finance literature are 5, 15, 30 minutes and one hour.
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points as

τSνi = max{τS ∈ Tn : τS ≤ νi},

τFνi = max{τF ∈ Tn : τF ≤ νi},

that is, for each security we select the largest observation time up to and including the

grid point time νi as shown in Figure 2. Assumptions may be set to ensure consistency

of the realized covariance estimator using previous tick interpolation. These assumptions

mainly require the two observed time series to be “liquid enough”. 7 We decide not to work

under such assumptions but rather investigate the behaviour of the previous tick sampling

to different liquidity levels.

Figure 2: Previous Tick sampling

ν0

0 τSj τFj τSj+1 τSj+2 τFj+1 τSj+3 τSj+4

νi νi+1 νT

TτSνi+1

τFνi+1

2.5.2 Refresh time sampling

We also consider a second sampling methodology, the refresh time introduced by (Barndorff-

Nielsen et al., 2011). In this case we let the data choose the grid points (VN = νi)i=0,...,M .

We begin by identifying the first refresh time as ν1 = max(τS1 , τ
F
1 ), and then define each

subsequent grid point as

νi+1 = max(τSτSνi+1, τ
F
τFνi+1)

Figure 3: Refresh Time sampling

Stock

Futures

τSj

νi

τFj τFj+1 τFj+2

τSj+1

νi+1

τSj+2

τFj+3

νi+2

τFj+4 τFj+5

τSj+3

νi+3

τSj+4

τFj+6

νi+4

τFj+7

τSj+5

νi+5

Time

The procedure, as illustrated in Figure 3, leads to an unequally spaced time series where

each grid point is taken as soon as all asset prices have been refreshed. In this situation

7Interested readers are referred to Zhang (2011).
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we assume that the observed prices are seen exactly at the refreshed times Vn. Unlike the

Previous Tick methodology, when synchronizing using Refresh Time, the sample size M

depends on the degree of asynchronicity of the observed price series.

2.5.3 The Epps Effect

The empirical evidence that stocks correlation decrease as the sampling frequency increase

(that is to say, ρS,F → 0 as M → ∞) has been initially reported by Epps (1979) using

intraday returns data on four US stocks. After Epps’ initial work this phenomenon has been

named Epps effect and has been subsequently observed in several markets and reported by

numerous papers in the literature. Under the previously stated assumptions, it is easy to

see that in our framework we have

σ2
Z = α2σ2

S + (1− α)2σ2
F + 2α(1− α)ρS,FσSσF ,

where ρS,F = 1 and σS = σF by definition and, consequently, σ2
Z = σ2

S. However, asyn-

chronicity of the observations might trigger the Epps effect and reduce the observed correla-

tion between the series (ρ?S,F < 1). In this situation it is easy to see that σ2
Z < σ2

S for α > 0

and σ2
Z > σ2

S for α < 0. Fortunately, many papers show that the potential bias arising from

asynchronicity is strongly correlated to the frequency of the observations (see, e.g Hayashi

and Yoshida, 2005; Renò, 2003; Zhang, 2011). This implies that for sufficiently liquid series,

the Epps effect will be small or even negligible.

In Section 3.1 we present a throughout simulation study and investigate the sensitivity of our

methodology to the Epps effect. The overall results are comforting as the bias in the observed

correlation between the two assets becomes significant only for extremely illiquid series when

the previous tick sampling technique is used. Conversely, the realized covariance constructed

using the refresh time procedure demonstrates to provide consistent estimates even when the

trading intensity gets very low. In addition to asynchronicity, lead-lag relationships are a

second statistical feature of the data which is sometimes suggested as a source of bias in

the correlation measurement. In other words, if the correlations between assets are lagged,

working at a sampling frequency lower than this lag would lead to undervalued correlations

estimates. However, this second source of bias is shown to have a marginal effect compared

to the impact of asynchronous observations. Additionally, in our framework we can rule out

any lead-lag relationship between the correlation of the two asset prices (although we cannot

exclude the possibility of lagged correlation between the two noise processes).

12



2.6 Estimation of integrated variance with noise-reduced series

Having obtained a feasible “portfolio”, Zt(α̂), one may proceed with the estimation of the

integrated variance IVt(Z). The same considerations used in the choice of an estimator when

working with a standard price series apply when working with Zt. The most straightforward

estimator is the realized variance RV computed using Zt(α̂), whose signature plot should

be more stable than that of RVt(S). RVt(Z(α̂)) is typically inconsistent, and to achieve

consistency one may refer to more sophisticated estimators, such as the realized kernel or

pre-averaging estimator. Whichever estimator is selected, the ones computed on Zt(α̂) are

expected to outperform the ones computed on St directly. In Section 3 we illustrate the

difference in performance in a simulation study.

3 Simulation Study

We perform a rich simulation study intended to investigate whether the feasible method

proposed in Section 2.3 leads to noise-reduced series and appraise how much gain we can

derive from using such series to estimate IVt(S). To these ends we impose parametric struc-

tures on S and r so that S and F can be simulated with closed-form solutions. In contrast

to what we assume when developing the method, we do not use a deterministic short rate

in the simulation. Instead, we model r as a CIR process (Cox et al., 1985), whose driving

Brownian motion is independent of the Brownian motions generated on S and σ. Under such

setting, a closed-form solution is available for F (see Ramaswamy and Sundaresan (1985) for

details or Munk (2011) for a general discussion in the case of affine models). Table 1 reports

the dynamics assumed for the simulated price process St; a simulation design which allows

for realistic features such as jumps in the price process and stochastic volatility with jumps.

Table 1: The model

dSt = µdt+ σ̃S,tdW1,t + dJS,t
d log σ̃2

S,t = d log σ2
S,t + dJv,t

dσ2
S,t = κ

S

(
θS − σ2

S,t

)
dt+ σvσS,tdW2,t

dJv,t =
∑Nt

i=1 Yv,i
dJS,t =

∑Nt
i=1 YS,i

drt = κr (θr − rt) dt+ σr
√
rdW3,t

We allow W1,t and W2,t to be correlated
and fix ρW1,t,W2,t

= 0.6.

Having simulated both S and F and contaminated them with temporally dependent

13



noises, we apply the feasible method discussed in Section 2.3 to the pair S? and F ?, de-

liberately omitting stochasticity in r. The purpose of such designation is to check whether

our misspecified model is still capable of producing noise-reduced series despite considering

r to be deterministic. Having constructed Z(α̂) by the feasible method, we compute sev-

eral popular estimators of IV with Z(α̂) and investigate whether they outperform estimates

computed directly with S and F .

We assume a standard day-trade time of 6.5 trading hours and simulate equally spaced

observations at one second interval. We proceed with the following simulation design for

R = 1, 000 replications:

• Generate N = 23, 400 observations for the underlying, S, and the futures, F , price

processes.

• Contaminate both simulated paths with two different noise processes (IID and MA(100)).

– For both structures we allow cross-sectional correlation of the noise processes

affecting S and F through the parameter ρε(S),ε(F ) .

• Apply the feasible method to estimate the noise structures and generate the linear

combination series Z(α̂).

– We take advantage of the simulation environment to obtain the optimal linear

combination, Z(α†), using the true noise parameters.

• Compute the panel of realized measures and diagnostic tests.

Following Jacod et al. (2016) the autocorrelated noise processes are generated as MA series

which approximate fractionally differenced processes. This allows the simulation design to

replicate the slow autocorrelation decay empirically evidenced in the aforementioned paper.

Throughout the study we allow several other parameters to vary across a wide range of values

so as to investigate how the method of noise-reduction is affected by these variations. More

specifically, we analyse different trading intensities λ = {23, 400; 7, 800; 1, 560; 390; 78; 39}
and different levels of noise (γ

H
= 5; γ

M
= 2; γ

L
= 0.5).8 Further, as the noise reduction

procedure is heavily influenced by the cross-sectional correlation between the two noise pro-

cesses, we let ρε(S),ε(F ) vary between (−0.9 and 0.9) at 0.1 intervals. Finally, we investigate

the sensitivity to different synchronization methodologies; the naive previous tick interpola-

tion and the more structured refresh time procedure presented in Section 2.5.

As part of our investigation we test the noise reduction performance on a selected group

8Following Christensen et al. (2014) we compute γ =
√

σ2
ε

IV ∗N as a measure of the intensity of the noise

process. The reported γ values represent the average between the noise processes affecting S and F.
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of popular realized measures. Further, our selection aims to cover different classes of in-

tegrated variance estimators. The first estimator we include is the previously discussed

realized variance (RV), our main results will investigate the gain on this well known (and

biased) estimator as it provides a clear information on the precision gain produced by our

cross-sectional noise reduction. The second estimator considered is the optimal sampling

RV (RV ∗) of Bandi and Russell (2008). The third and fourth estimators are the two-

scale realized variance (TSRV) of Zhang et al. (2005) and the multi-scale realized variance

(MSRV) of Zhang (2006). The fifth selected realized measure is the realized kernel (RK)

(Barndorff-Nielsen et al., 2008) and the sixth is the pre-averaged realized variance (PA)

of Jacod et al. (2009).9 Table 2 and 3 respectively show the root mean square error and

normalized integrated variance estimate for different levels of trading intensity and the two

considered synchronization methodologies. From the displayed results we can clearly see

a marked, consistent improvement in the estimation accuracy for both methodologies and

for the different trading intensities considered. Unsurprisingly, the proposed noise reduc-

tion methodology becomes less reliable when the number of observations gets too low i.e.,

λ < 1, 560. Indeed, the construction of Z(α) relies on the cross-sectional correlation between

the noise processes affecting S and F , which will undoubtedly be lost if the observations

of the two series are temporally far away from each other. Additionally, the tables suggest

the refresh time sampling to be more stable across trading intensities and to provide more

precise estimations of the integrated variance despite generally showing a higher root mean

square error (RMSE)

RMSE =

√∑R
i=1(ÎV i − IV )2

R
.

9A brief discussion on the differences between these estimators and details for their implementation can
be found in Mirone (2017).
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Figure 4: Minimum residual variance for
σ2

ε(F )

σ2

ε(S)

= 1.27

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The figure shows the minimum residual variance (expressed as a ratio over σ2
ε(S)) for varying values of

ρε(S),ε(F ) . For given noise variance values σ2
ε(S) = 3.3985e−7 and σ2

ε(F ) = 4.3215e−7.

We investigate the sensitivity of the noise reduction procedure for different levels of

correlation between the two noise processes in Table 4 and 5. From a quick look emerges

that the residual bias in the estimated values tends to increase for increasing values of

ρε(S),ε(F ) , reaching its maximum at ρε(S),ε(F ) = 0.9. Similarly, the estimation error variation

tends to get wider as reported in Table 5. Nonetheless, regardless of the correlation value,

the results strikingly show that both Z(α) and Z(α†) provide more precise IV estimates

compared to the values obtained using the same estimators on S and F . Figure 3 helps

to interpret our findings as it shows the asymmetric behaviour of σ2

ε
(Z(α†))
t

for varying noise

correlation values fixing the noise variances to the value selected in our simulation. As the

ratio between σ2

ε
(S)
t

and σ2

ε
(F )
t

is close to the unit value (1.2716) the asymmetry of σ2

ε
(Z(α†))
t

is extremely marked with the function increasing almost linearly in ρε(S),ε(F ) until a sharp

drop after ρε(S),ε(F ) = 0.9. The practical effect of such behaviour can be seen in Figure 5,

which displays the stabilization of the signature plot of the series obtained through noise

reduction. Increasing values of ρε(S),ε(F ) have the effect of reducing the negative downward

slope exhibited by the realized covariance estimate and, consequently, the efficiency of the

noise reduction. This effect can be further apprised from Table 6, where the increase in

the residual noise variance for increasing noise correlation values appears evident. Even

so, these results are of no concern as they show anew that only in the worst case scenario
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considered (ρε(S),ε(F ) = 0.9) the noise reduction fails to be significant. Consequently, the

feasible methodology can be confidently implemented without the risk of worsening the

obtained estimates.

Figure 5: Signature plot for different values of ρε(S),ε(F )
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The figure shows the classic signature plot. We report the realized variance estimates (on the Y axis) for
different sampling frequencies (on the X axis). The reported series are: RVZ(α̂) (©–·©–·©), RVZ(α†)

(•--•--•), RC (×–·×–·×), RVS (+--+--+), RVF (∗–∗–∗) for varying values of ρε(S),ε(F ) .
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Table 4: Normalized IV estimates - Varying ρε(S),ε(F )

PA RK TSRV MSRV RV ∗ RV5

ρε(S),ε(F ) = −0.9

Z(α†) 1.0055 1.0062 0.7945 1.0934 1.0773 0.9870
Z(α̂) 1.0058 1.0064 0.7957 1.0945 1.0735 0.9867

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1127 1.0950 2.1167 1.8608 1.6596 1.1665

ρε(S),ε(F ) = −0.7

Z(α†) 1.0131 1.0130 1.1131 1.2201 1.0713 1.0023
Z(α̂) 1.0133 1.0132 1.1142 1.2211 1.0589 1.0020

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1122 1.0946 2.1143 1.8626 1.6627 1.1664

ρε(S),ε(F ) = −0.5

Z(α†) 1.0210 1.0201 1.2961 1.3122 1.0826 1.0191
Z(α̂) 1.0212 1.0203 1.2980 1.3132 1.0889 1.0187

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1119 1.0943 2.1152 1.8628 1.6672 1.1663

ρε(S),ε(F ) = −0.3

Z(α†) 1.0291 1.0273 1.4334 1.3875 1.1142 1.0367
Z(α̂) 1.0293 1.0275 1.4353 1.3886 1.1133 1.0362

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1117 1.0941 2.1161 1.8608 1.6676 1.1662

ρε(S),ε(F ) = −0.1

Z(α†) 1.0373 1.0345 1.5456 1.4575 1.1736 1.0549
Z(α̂) 1.0375 1.0346 1.5481 1.4587 1.1850 1.0544

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1115 1.0939 2.1160 1.8595 1.6656 1.1660

ρε(S),ε(F ) = 0.1

Z(α†) 1.0455 1.0417 1.6422 1.5256 1.2298 1.0737
Z(α̂) 1.0457 1.0418 1.6439 1.5261 1.2265 1.0732

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1114 1.0938 2.1158 1.8596 1.6653 1.1659

ρε(S),ε(F ) = 0.3

Z(α†) 1.0538 1.0487 1.7273 1.5735 1.3012 1.0930
Z(α̂) 1.0540 1.0489 1.7295 1.5755 1.3004 1.0925

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1113 1.0937 2.1148 1.8595 1.6635 1.1657

ρε(S),ε(F ) = 0.5

Z(α†) 1.0619 1.0556 1.8030 1.6233 1.3557 1.1128
Z(α̂) 1.0622 1.0559 1.8046 1.6252 1.3496 1.1123

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1113 1.0938 2.1150 1.8584 1.6607 1.1656

ρε(S),ε(F ) = 0.7

Z(α†) 1.0694 1.0620 1.8649 1.6645 1.4270 1.1327
Z(α̂) 1.0698 1.0623 1.8715 1.6700 1.4230 1.1322

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1114 1.0939 2.1144 1.8590 1.6627 1.1656

ρε(S),ε(F ) = 0.9

Z(α†) 1.0722 1.0643 1.8754 1.6623 1.4865 1.1487
Z(α̂) 1.0732 1.0652 1.8850 1.6718 1.4885 1.1484

S 1.0786 1.0664 1.8817 1.6728 1.4780 1.1276
F 1.1117 1.0942 2.1149 1.8581 1.6567 1.1659

Here {ε(S)t } and {ε(F )
t } are MA(100) processes and we fix: γH = 5, σ2

ε(S)
=

3.3985e−7, σ2
ε(F ) = 4.3215e−7.
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Table 5: RMSE - Varying ρε(S),ε(F )

PA RK TSRV MSRV RV ∗ RV5

ρε(S),ε(F ) = −0.9

Z(α†) 0.0262 0.0264 0.0763 0.0353 0.0705 0.0500
Z(α̂) 0.0263 0.0265 0.0759 0.0356 0.0694 0.0501

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0516 0.0484 0.4053 0.3127 0.2440 0.0889

ρε(S),ε(F ) = −0.7

Z(α†) 0.0265 0.0267 0.0421 0.0806 0.0604 0.0498
Z(α̂) 0.0266 0.0267 0.0425 0.0809 0.0577 0.0499

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0514 0.0482 0.4044 0.3134 0.2452 0.0889

ρε(S),ε(F ) = −0.5

Z(α†) 0.0271 0.0272 0.1075 0.1137 0.0589 0.0504
Z(α̂) 0.0272 0.0272 0.1082 0.1141 0.0587 0.0504

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0513 0.0481 0.4048 0.3136 0.2467 0.0890

ρε(S),ε(F ) = −0.3

Z(α†) 0.0280 0.0279 0.1571 0.1409 0.0608 0.0518
Z(α̂) 0.0280 0.0279 0.1578 0.1413 0.0589 0.0518

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0512 0.0481 0.4050 0.3128 0.2468 0.0891

ρε(S),ε(F ) = −0.1

Z(α†) 0.0291 0.0288 0.1979 0.1663 0.0759 0.0542
Z(α̂) 0.0292 0.0289 0.1988 0.1667 0.0785 0.0541

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0512 0.0480 0.4051 0.3124 0.2460 0.0892

ρε(S),ε(F ) = 0.1

Z(α†) 0.0305 0.0300 0.2331 0.1909 0.0917 0.0574
Z(α̂) 0.0306 0.0300 0.2338 0.1911 0.0913 0.0573

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0512 0.0480 0.4050 0.3124 0.2462 0.0893

ρε(S),ε(F ) = 0.3

Z(α†) 0.0322 0.0313 0.2639 0.2080 0.1187 0.0614
Z(α̂) 0.0322 0.0313 0.2647 0.2088 0.1185 0.0612

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0512 0.0481 0.4047 0.3124 0.2452 0.0894

ρε(S),ε(F ) = 0.5

Z(α†) 0.0340 0.0327 0.2915 0.2265 0.1351 0.0662
Z(α̂) 0.0341 0.0328 0.2920 0.2272 0.1334 0.0660

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0513 0.0481 0.4049 0.3121 0.2448 0.0895

ρε(S),ε(F ) = 0.7

Z(α†) 0.0359 0.0342 0.3138 0.2412 0.1605 0.0718
Z(α̂) 0.0359 0.0343 0.3163 0.2432 0.1599 0.0715

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0515 0.0482 0.4046 0.3123 0.2454 0.0894

ρε(S),ε(F ) = 0.9

Z(α†) 0.0366 0.0347 0.3176 0.2403 0.1803 0.0772
Z(α̂) 0.0369 0.0350 0.3211 0.2437 0.1816 0.0769

S 0.0426 0.0413 0.3203 0.2450 0.1787 0.0787
F 0.0517 0.0485 0.4050 0.3120 0.2429 0.0894

Here {ε(S)t } and {ε(F )
t } are MA(100) processes and we fix: γH = 5, σ2

ε(S)
=

3.3985e−7, σ2
ε(F ) = 4.3215e−7.
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Table 6: Residual noise variance (e−7)

IID MA(100) IID MA(100)

ρε(S),ε(F ) = −0.9
Z(α†) 0.1909 0.1909 2.0911 2.0910 Z(α†)

ρε(S),ε(F ) = 0.1
Z(α̂) 0.1909 0.1918 2.0910 2.0932 Z(α̂)

ρε(S),ε(F ) = −0.8
Z(α†) 0.3817 0.3817 2.2789 2.2788 Z(α†)

ρε(S),ε(F ) = 0.2
Z(α̂) 0.3817 0.3827 2.2788 2.2813 Z(α̂)

ρε(S),ε(F ) = −0.7
Z(α†) 0.5724 0.5724 2.4656 2.4655 Z(α†)

ρε(S),ε(F ) = 0.3
Z(α̂) 0.5724 0.5735 2.4656 2.4683 Z(α̂)

ρε(S),ε(F ) = −0.6
Z(α†) 0.7630 0.7630 2.6507 2.6507 Z(α†)

ρε(S),ε(F ) = 0.4
Z(α̂) 0.7630 0.7642 2.6507 2.6539 Z(α̂)

ρε(S),ε(F ) = −0.5
Z(α†) 0.9535 0.9535 2.8333 2.8333 Z(α†)

ρε(S),ε(F ) = 0.5
Z(α̂) 0.9535 0.9548 2.8332 2.8371 Z(α̂)

ρε(S),ε(F ) = −0.4
Z(α†) 1.1438 1.1438 3.0113 3.0114 Z(α†)

ρε(S),ε(F ) = 0.6
Z(α̂) 1.1438 1.1452 3.0113 3.0160 Z(α̂)

ρε(S),ε(F ) = −0.3
Z(α†) 1.3340 1.3340 3.1807 3.1808 Z(α†)

ρε(S),ε(F ) = 0.7
Z(α̂) 1.3340 1.3354 3.1806 3.1867 Z(α̂)

ρε(S),ε(F ) = −0.2
Z(α†) 1.5238 1.5237 3.3285 3.3288 Z(α†)

ρε(S),ε(F ) = 0.8
Z(α̂) 1.5238 1.5254 3.3284 3.3370 Z(α̂)

ρε(S),ε(F ) = −0.1
Z(α†) 1.7134 1.7133 3.3948 3.3953 Z(α†)

ρε(S),ε(F ) = 0.9
Z(α̂) 1.7133 1.7151 3.3947 3.4090 Z(α̂)

Residual noise variance for different values of ρε(S),ε(F ) and noise structures. For the autocorrelated

case {ε(S)t } and {ε(F )
t } are MA(100) processes and we fix: γH = 5, σ2

ε(S)
= 3.3985e−7, σ2

ε(F ) =

4.3215e−7.

Another important factor influencing the estimation behaviour is the noise “intensity”,

which we define through the noise ratio. Following Christensen et al. (2014) we identify

three different levels of noise; a high level γ
H

= 5, a medium level γ
M

= 2.5 and a low level

γ
L

= 0.5. We examine the impact of different γs in Table 7 and 8. The results for both γ
H

and γ
M

are clearly in favour of the noise reduced approach. However, we can notice that

lower levels of noise tend to produce more precise estimates on all series, to the point that

for γ
L

most estimators provide results statistically not significantly different across the four

different series. However, both the feasible and infeasible approaches still present a markedly

lower RMSE and, as shown in Table 8, they still greatly reduce the noise variance affecting

the series.
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Table 7: Varying noise ratio (γ)

PA RK TSRV MSRV RV ∗ RV5

γ
H

= 5

Z(α†)
1.0245 1.0232 1.3698 1.3522 1.1098 1.0273

(0.0275) (0.0275) (0.1343) (0.1282) (0.0581) (0.0511)

Z(α̂)
1.0247 1.0234 1.3716 1.3532 1.1127 1.0269

(0.0276 ) (0.0276 ) (0.1349 ) (0.1286 ) (0.0584 ) (0.0511 )

S
1.0785 1.0678 1.8843 1.6765 1.4736 1.1411

(0.0430 ) (0.0423 ) (0.3215 ) (0.2464 ) (0.1775 ) (0.0850 )

F
1.1142 1.0985 2.1141 1.8583 1.6597 1.1701

(0.0532) (0.0508) (0.4047) (0.3123) (0.2440) (0.0930)

γ
M

= 2.5

Z(α†)
1.0063 1.0068 0.8998 1.1321 1.0437 0.9915

(0.0261) (0.0263) (0.0391) (0.0491) (0.0686) (0.0496)

Z(α̂)
1.0064 1.0068 0.9003 1.1324 1.0490 0.9913

(0.0262) (0.0263) (0.0390) (0.0492) (0.0680) (0.0496)

S
1.0256 1.0226 1.3494 1.3321 1.0892 1.0417

(0.0327) (0.0338) (0.1270) (0.1214) (0.0579) (0.0642)

F
1.0217 1.0194 1.2432 1.2856 1.0599 1.0244

(0.0326) (0.0338) (0.0885) (0.1045) (0.0564) (0.0619)

γ
L

= 0.5

Z(α†)
1.0021 1.0031 0.5118 1.0051 1.0124 0.9827

(0.0259) (0.0261) (0.1761) (0.0091) (0.1030) (0.0501)

Z(α̂)
1.0021 1.0031 0.5118 1.0052 1.0101 0.9826

(0.0259) (0.0261) (0.1761) (0.0091) (0.1031) (0.0501)

S
0.9999 0.9984 0.5208 1.0077 1.0078 0.9841

(0.0300) (0.0310) (0.1732) (0.0096) (0.0918) (0.0556)

F
1.0015 0.9998 0.6273 1.0415 1.0079 0.9867

(0.0300) (0.0309) (0.1375) (0.0179) (0.0824) (0.0557)

Normalized IV estimates and RMSE e−3 in parenthesis. Here {ε(S)t } and {ε(F )
t } are

MA(100) processes and the noise variances are respectively: σ2
ε(S)

= 3.3985e−7, σ2
ε(F ) =

4.3215e−7, σ2
ε(S)

= 1.122e−7, σ2
ε(F ) = 0.841e−7, σ2

ε(S)
= 1.385e−9, σ2

ε(F ) = 7.538e−9.

In order to assess the performance of Equation 20 under a colored noise structure, the

reported results have mainly focused on the autocorrelated noise case. As final step of our

analysis we investigate whether the noise reduction methodology exhibits major differences

in the case of IID noise. Table 6 and Table 8 report our findings and allow for a comparison

between the IID and coloured noise cases. A glance at the tables shows that the difference

between the two noise structures is indeed negligible. Consequently, in empirical applica-

tions, disregarding the autocorrelated structure of the microstructure noise series would not

hinder the noise reduction performance. Therefore, the correct assessment of the actual

noise structure appear to be a minor concern in the adoption of the feasible noise reduction

methodology.
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Table 8: Residual noise variance (e−7) varying γ

γ
H

γ
M

γ
L

MA(100)

σ2

εZ(α†) 1.1438 0.2840 0.0076
σ2
εZ(α̂) 1.1452 0.2843 0.0076
σ2
ε(S)

4.3215 1.1215 0.0138
σ2
ε(F ) 3.3985 0.8138 0.0754

IID

σ2

εZ(α†) 1.1435 0.2839 0.0076
σ2
εZ(α̂) 1.1435 0.2839 0.0076
σ2
ε(S)

4.3215 1.1215 0.0138
σ2
ε(F ) 3.3985 0.8138 0.0754

Residual noise variances for different noise
structures and noise intensities. For the
coloured noise case {ε(S)t } and {ε(F )

t } are
MA(100) processes. We set: γH = 5, σ2

ε(S)
=

3.3985e−7, σ2
ε(F ) = 4.3215e−7.

3.1 Investigating the Epps effect

In this section we expand our simulation analysis to investigate the impact of the Epps

effect on the noise reduction methodology. The simulation design closely follows the one

introduced in the previous section but we will modify some key setting to analyse the

behavior in extremely illiquid scenarios. We will simulate a true latent process generat-

ing at unobservable frequencies (often, as in the present paper, the timestamp precision

of empirical datasets is a single second). To this extent we will consider a single trad-

ing day but generate the process with an increasingly shrinking interval between observa-

tions, dt, of one second, 1
10

of a second, 1
100

of a second and one millisecond. This setup

corresponds to a latent process with an increasingly higher number of daily realizations

N = {23, 400; 234, 000; 2, 340, 000; 23, 400, 000}. We will then verify the impact of a rela-

tively lower liquidity on our correlation estimates and, consequently, on our noise reduction

procedure. We will show that, given the series not being too illiquid, the estimated noise

correlation will not be excessively biased and will produce sub-optimal but consistent results.

Taking advantage of the simulation environment, we will verify the overall impact of the Epps

effect by providing correlation and covariance values of the noise free processes for different

trading intensities as well as the average distance between the “observed” realizations of the

two series.

Table 9 presents the estimated realized variance (normalized for the true IV) for different

trade intensities and processes generated at increasingly high frequencies. From a first look

at the table emerges immediately that the previous tick methodology is extremely sensi-
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tive to the amount of available observations and the obtained estimates tend to worsen

dramatically for both higher frequencies (smaller dt) and lower trading intensities (smaller

λ). Nonetheless, we can see that the results are comforting as also in the extreme case

of dt = 1 millisecond, the trivial realized variance computed on Z(α̂) is able to provide

precise estimates for sufficiently liquid time series (λ = 7, 800)10 although its performance

deteriorates quickly. For higher values of dt the estimates obtained using the refresh time

sampling scheme are even more encouraging as they remain very close to the latent IV for

values of λ as low as 1, 560. However, it is important to remark that, as the series approach

critical liquidity levels, the effect of microstructure noise becomes marginal and implement-

ing the simple realized variance on the underlying series will likely provide optimal results.

Further, as already evinced in the previous section, the results obtained via the feasible

noise reduction technique barely differ from the optimal noise reduced series Z(α†). This

finding hints at the fact that at the lowest trading intensities the correlation between the

two series is invariably lost and, even knowing the latent noise structure, it is not possible

to obtain any noise reduction through cross-sectional combination. Indeed, inspecting the

residual noise variances (expressed as a ratio over σ2
ε(S)

) displayed in Table 10 we can see

that after a striking reduction for very high level of λ, both for the optimal and the feasible

noise reduced series, the residual noise variances register a sharp increase; to the point of

becoming larger than the original noise variance. The problem, as expected, is given by the

correlation between the two assets fading away as the observations get more and more asyn-

chronous. This fact can be evinced from Table 11, where we can see that, as the distance

between the observations upon which the correlation gets computed widens, the correlation

(and hence the covariance) quickly fades away. Table 11 also helps explaining the behavior of

the noise reduction methodology under the refresh time synchronization scheme; we can see

that the correlation reaches a soft bound around 0.65. This grants that Z will not deviate

substantially from the true IV, which can then be measured with any appropriate realized

measure.

10It should be noted that λ = 7, 800 corresponds to an incredibly low trading intensity of N
3,000 given a

“latent” process generating at 1ms frequency.
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Table 9: Normalized RV 5min. estimates

All λ = 23400 λ = 7800 λ = 1560 λ = 390 λ = 78 λ = 39

dt = 1

Z(α†)
1.0116 1.0115 1.0442 1.0309 0.9536 0.7182 0.6193

- 1.0240 1.0069 0.9879 0 0 0

Z(α̂)
1.0116 1.0115 1.0442 1.0306 0.9528 0.7108 0.6052

- 1.0242 1.0069 0.9878 0 0 0

S
1.1641 1.1635 1.1652 1.1686 1.1410 1.0738 1.0441

- 1.1635 1.1652 1.1686 1.1410 1.0738 1.0441

F
1.1231 1.1234 1.1350 1.1237 1.1215 1.0486 1.0046

- 1.1234 1.1350 1.1237 1.1215 1.0486 1.0046

dt = 1
10

Z(α†)
1.0459 1.0550 1.0200 0.8516 0.6451 0.5374 0.5129

- 1.0037 1.0272 1.0063 0 0 0

Z(α̂)
1.0460 1.0550 1.0200 0.8503 0.6428 0.5372 0.5215

- 1.0038 1.0273 1.0062 0 0 0

S
1.1814 1.1869 1.1726 1.1438 1.0707 1.0310 0.9923

- 1.1821 1.1726 1.1438 1.0707 1.0310 0.9923

F
1.1447 1.1459 1.1420 1.1267 1.0618 1.0021 1.0066

- 1.1441 1.1420 1.1267 1.0618 1.0021 1.0066

dt = 1
100

Z(α†)
1.0514 0.9192 0.7375 0.5642 0.5162 0.5009 0.4802

- 0.9985 0.9958 0.9788 0 0 0

Z(α̂)
1.0515 0.9186 0.7358 0.5614 0.5140 0.5008 0.4830

- 0.9985 0.9957 0.9692 0 0 0

S
1.1891 1.1775 1.1176 1.0362 1.0055 0.9938 0.9467

- 1.1765 1.1176 1.0362 1.0055 0.9938 0.9467

F
1.1494 1.1407 1.0925 1.0225 0.9994 0.9902 0.9550

- 1.1402 1.0925 1.0225 0.9994 0.9902 0.9550

dt = 1
1000

Z(α†)
1.0561 0.9243 0.5933 0.5422 0.5177 0.4880 0.0617

- 1.0454 0.9967 0.8770 0 0 0

Z(α̂)
1.0562 0.9237 0.5902 0.5376 0.5122 0.4759 0.0549

- 1.0455 0.9966 0.8768 0 0 0

S
1.1928 1.1799 1.0514 1.0294 1.0277 1.0206 0.1700

- 1.1799 1.0514 1.0294 1.0277 1.0206 0.1700

F
1.1541 1.1453 1.0389 1.0361 1.0169 0.9336 0.0890

- 1.1453 1.0389 1.0361 1.0169 0.9336 0.0890

Normalized IV estimates are reported for price processes generated at increasingly high fre-

quencies while the maximum observed frequency is fixed at 1 second. Where {ε(S)t } and

{ε(F )
t } are MA(100) processes and the noise variances are respectively: σ2

ε(S)
= 3.3985e−7,

σ2
ε(F ) = 4.3215e−7.
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Table 10: Residual noise variance - ratio σ2
ε(Z)
σ2
ε(S)

All λ = 23400 λ = 7800 λ = 1560 λ = 390 λ = 78 λ = 39

dt = 1
Z(α†)

0.1766 0.1773 0.3720 0.7574 1.9768 7.9081 15.7479
- 0.1766 0.2751 0.4276 0.6685 1.8129 3.2190

Z(α̂)
0.1768 0.1776 0.3724 0.7575 1.9741 7.8593 15.5946

- 0.1768 0.2753 0.4279 0.6714 1.9502 3.8969

dt = 1
10

Z(α†)
0.2647 0.6342 1.1863 4.3787 16.4470 78.2039 148.2509

- 0.4154 0.5324 1.0877 3.0521 14.2024 26.4866

Z(α̂)
0.3369 0.8065 1.5084 5.5638 20.8765 99.7276 191.3655

- 0.5282 0.6773 1.3888 3.9369 19.1497 37.2321

dt = 1
100

Z(α†)
0.2647 3.0710 8.4098 40.0425 158.7894 779.3936 1475.2913

- 0.8635 1.7672 7.1023 27.5569 134.5665 254.3645

Z(α̂)
0.2650 3.0682 8.3962 40.0020 776.4605 1469.5368 5300.0884

- 0.8644 1.7634 7.0729 27.8824 153.4087 295.4018

dt = 1
1000

Z(α†)
0.2647 3.0817 27.4384 82.3834 394.8216 1552.2966 4797.0714

- 0.8627 1.8243 13.8977 69.7436 280.9457 619.4104

Z(α̂)
0.2650 3.0780 27.3679 82.6029 391.4762 1552.1506 5300.0884

- 0.8622 1.8743 14.0745 74.8253 390.8942 1217.6001

We report the residual noise variance of the reduced series expressed as a ratio over the noise variance
of the objective series. For each noise reduced series we present the results obtained under the previous
tick and refresh time synchronization schemes respectively in the top and bottom row.

Overall the results presented in this section hint that in a situation of extreme illiquidity

the joint use of the standard noise covariance estimators (as presented in (19) and (20))

and the previous tick synchronization methodology leads to unreliable estimates as the cor-

relation between the two assets irremediably fades away and so does the true relationship

between the two noise processes. Hence, covariance estimators robust to asynchronicity (see,

e.g. Christensen et al., 2010a; Hayashi and Yoshida, 2005) need to be implemented or a

different synchronization scheme (as the refresh time methodology) must be used. However,

as evidenced by the results obtained for Z(α†), even knowing the true noise correlation, if

the asynchronicity becomes too marked the construction of a noise reduced series simply will

not be feasible.
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Table 11: The Epps effect

All λ = 23400 λ = 7800 λ = 1560 λ = 390 λ = 78 λ = 39

dt = 1
ρS,F 1.0000 0.9955 0.2001 0.0344 0.0080 0.0019 8.5490e−4

RT − ρS,F 1.0000 1.0000 0.7705 0.6845 0.6696 0.6569 0.6648
Obs. distance 0 2 71 200 380 904 1.190

dt = 1
10

ρS,F 1.0000 0.0525 0.0171 0.0032 0.0010 2.9154−5 0
RT − ρS,F 1.0000 0.6958 0.6757 0.6675 0.6643 0.6680 0.6570

Obs. distance 0 400 826 2.446 4.179 6.688 15.327

dt = 1
100

ρS,F 1.0000 0.0052 0.0017 2.8290e−4 5.9926e−5 0 0
RT − ρS,F 1.0000 0.6697 0.6674 0.6654 0.6580 0.6649 0.6668

Obs. distance 0 5.066 8.384 19.223 41.115 100.231 135.768

dt = 1
1000

ρS,F 1.0000 5.0875−4 1.1484e−4 2.5329e−6 −1.6759e−7 0 0
RT − ρS,F 1.0000 0.6669 0.6662 0.6677 0.6552 0.6528 0.6543

Obs. distance 0 49,441 69,384 231,372 247,790 847,460 1,075,818

The estimated correlation between the two noise free price processes is reported for different level of trading inten-
sity and for processes generated at increasingly high frequencies together with the average realization’s distance
(before synchronization).

Figure 6: Realized Covariance signature plot for varying trading intensities
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Signature plot for previous tick RCS,F (©–·©–·©) and refresh time RCS,F (×--×--×) with varying
trading intensities (λ).

4 Empirical

The objective of this section is to empirically test the accuracy of our noise reduction

methodology. We will consider a pair of assets; a futures and its underlying stock with

the intention to measure the daily quadratic variation of the underlying as accurately as
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possible. We will adopt the noise reduction methodology introduced in Section 2.3 to show

the efficiency gain of the realized measures employed on the noise reduced series Z. The

empirical performance of the procedure is then assessed through visual inspection of the

stabilized signature plot and the proximity of the simple realized variance computed at very

high frequencies to different noise robust estimators.

4.1 Dataset

Our dataset consists of transaction data recorded over 13 years; from January 2001 to

December 2013 for a total of 3, 226 trading days. The assets examined are the Spyder

(SPY), an ETF tracking the S&P 500 index, and the E-mini S&P 500 futures (ES). E-mini

futures contracts represent a fraction of a standard futures contract with their price reflecting

this proportion. The small size and low price together with the low margin rates of these

contracts, make them extremely appealing to investors and hedgers. As a consequence, the

dataset is exceptionally liquid; a particularly desirable characteristic given the purpose of

our study and the discussion of Section 2.5.

However, futures contracts present some peculiar features that require a further discussion on

how to handle the data. Unlike normal stocks, futures contracts are active and can be traded

only for a specific amount of time as they have a predefined maturity (or expiration) date

after which the instrument cannot be traded anymore. Further, several futures written on

the same underlying but with different maturities are simultaneously traded. Generally, the

futures closer to maturity (FT1) is more actively traded than futures with longer maturities

(say, FT2 and FT3). This is true until we approach the maturity date (T1); at that point a

swift drop in the number of transactions for contract (FT1) and an opposite, sharp, increase in

the liquidity of the following contract in order of maturity (FT2) is simultaneously recorded.

This is known as rollover period as investors tend to move their positions from one contract

to the other. We define an ensamble of rules (referred to as “rollover scheme”) in order to

create a continuous time series of prices. The main idea is to consider, at each point in

time, the contract with highest liquidity (as previously said, this is generally the futures

with closest maturity, T1). Hence, our time series will always consider the contract closest

to expiration up until two weeks to the maturity date. The two weeks (10 working days)

preceding T1 are our “rollover window”. Within this window we measure the daily liquidity

of the two contracts with closest maturity (FT1 and FT2) and, as soon as the liquidity of the

contract expiring at T2 exceeds that of the contract with maturity T1, we rollover to the

former.

Both time series have further been filtered for outliers. After removing all the transactions
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recorded outside of normal market hours (09:30 - 16:00, New York local time) and obviously

incorrect transactions11 we implemented a statistical filter to verify the likelihood that each

observation has to be an outlier. The filtering is closely based on the methodology proposed

by Brownlees and Gallo (2006) and we refer readers to the aforementioned article for details.

Table 12: Summary statistics

Tick Transaction
ES SPY ES SPY

Avg. σ̂2
ε (e−5) 11.5674 8.7108 13.1047 7.4317

Avg. γ̂ 1.5302 1.1176 1.4508 1.1727

Avg. λ̂ (e−3) 0.1119 0.0848 0.1179 0.0667
Max. # of obs. 145,021 535,510 404,392 2,245,367
Min. # of obs. 1,619 1,034 780 1,299
Avg. # of obs. 13,355 46,922 35,934 259,073

Time between trades (sec.) 1.7522 0.4987 0.6512 0.0903

The reported noise variances have been computed using percentage re-
turns and without further subsampling (i.e. using unequally spaced ob-
servations).

We will conduct our analysis using two different sampling schemes; namely tick time

and transaction time. When working in transaction time all the available observations for

a given asset on a given trading day are considered while in the tick sampling scheme stale

prices are disregarded and only if a price change is registered the observation is retained.

Table 12 reports basic summary statistics for the assets considered in both sampling schemes.

Following Hansen and Lunde (2006) we report the average noise-to-signal (λ̂) constructed as

λ̂ = σ̄2
ε/

¯IV with σ̄2
ε = n−1

∑n
t=1 σ

2
ε,t and ¯IV = n−1

∑n
t=1 IVt being the sample averages of the

noise variance and the estimated integrated variance. Both the noise-to-signal and the noise

ratio (γ) hint to a low noise intensity in both series with the E-mini futures being slightly

noisier than the SPY. A relevant difference in liquidity can easily be evinced by looking at

the average and the max number of observations (which, in turn, reflects into different time

between trades). While significant, this difference is not problematic as the overall liquidity

of each asset is still extremely high with the less liquid case enjoying, on average, more than

one observation every two seconds.

4.2 Empirical Results

Following the format implemented in our simulation, we investigate the results for dif-

ferent realized measures and we focus particularly on the signature plot of the simple RV to

11For example observations with a recorded bid, ask or price equal to zero. A detailed step-by-step
procedure can be found in Barndorff-Nielsen et al. (2009).
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highlight the stabilization performance obtained via cross-sectional noise reduction.

Table 13 presents a summary of the key noise-reduction parameters employed for some of

the sampling frequencies considered. We can see that for each different frequency, α̂ adapts

to the different correlation and noise variance estimates. However, it should be noted that,

as we decrease the sampling frequency, the noise estimates become less reliable as the mi-

crostructure bias tends to disappear quite fast.12 For this reason we construct the noise

reduced series Z(α̂hf ) obtained estimating the characteristics of the noise, and thus α̂ at the

highest possible frequency and keeping the obtained value fixed also when sampling at lower

frequencies. The idea is that at the highest frequency we expect, in principle, to obtain a

more reliable estimate of the noise component which, in turn, should produce values of α̂

closer to the optimal α† and positively affect the construction of the noise reduced series.

Table 13: Noise Reduction key figures

1 5 10 30 60 300 600 1800 Ref.Time

Tick

α̂ 0.6155 0.6510 0.6937 0.7662 0.7777 0.7692 0.8696 1.2936 0.6926
ρ̂εS ,εF 0.1416 0.4387 0.5765 0.7530 0.8168 0.9442 0.9590 0.9488 0.2008

R̂CS,F 0.3799 0.7200 0.7996 0.9020 0.9497 1.0297 1.0177 0.9591 0.4440
σ̂2
εS (e−3) 0.0601 0.1832 0.2990 0.7610 1.4924 6.9495 13.4631 38.6353 0.2259
σ̂2
εF (e−3) 0.0547 0.1678 0.2937 0.7748 1.4889 7.0319 13.7478 39.1300 0.3043
σ̂2
εZ (e−3) 0.0261 0.1140 0.2200 0.6529 1.3246 6.5859 12.5954 33.3346 0.2719

Transaction

α̂ 0.6155 0.6511 0.6942 0.7688 0.7853 0.8441 1.0205 1.6808 0.6265
ρ̂εS ,εF 0.1053 0.3782 0.5183 0.7230 0.8098 0.9430 0.9565 0.9427 0.1271

R̂CS,F 0.3800 0.7201 0.8000 0.9028 0.9509 1.0341 1.0257 0.9897 0.3309
σ̂2
εS (e−3) 0.0601 0.1832 0.2990 0.7610 1.4924 6.9495 13.4631 38.6353 0.1628
σ̂2
εF (e−3) 0.0547 0.1679 0.2938 0.7756 1.4911 7.0724 13.8920 40.6640 0.1721
σ̂2
εZ (e−3) 0.0261 0.1140 0.2200 0.6530 1.3249 6.5757 12.5460 33.4583 0.2141

All the reported values represent averages over the considered period. The estimated realized covariance has been
computed on the two series synchronized with the previous tick methodology.

Table 14 presents the average estimates of each realized measure and each series. Here,

Z(α̂)RT identifies the noise reduced series constructed using refresh time synchronization

while the remaining series have been sampled at one second frequency using previous tick

interpolation. For each series, the last column reports the estimated noise variance at one

second frequency as ratio over the noise variance of the SPY (σ2
ε(S)).13 As previously men-

tioned, Z(α̂hf ), refers to the noise reduced series obtained estimating the characteristics of

the noise process at the highest possible frequency (i.e., the noise variance of S and F is

computed before synchronizing the two series).

Unfortunately, as the integrated variance is a latent variable, its true value remains unobserv-

12Indeed, for low sampling frequencies we obtain (scaled) consistent estimates of the realization of the true
process rather than the microstructure noise characteristics.

13Since we defined IV of the underlying stock to be our object of interest.
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Table 14: QV Estimates
PA RK TSRV MSRV RV ∗ RV5 RV σ2

ε

Tick

Z(α̂)RT 1.0814 1.0818 0.5118 1.0640 1.0725 1.0561 0.9755 0.5738
Z(α̂) 1.0855 1.0908 0.5733 1.0280 1.0684 1.0274 1.2211 0.4343
Z(α̂hf ) 1.0710 1.0771 0.5577 1.0031 1.0560 1.0156 1.1867 0.4073

S 1.1106 1.1143 0.9731 1.2334 1.1168 1.0841 2.8119 1
F 1.1098 1.1118 0.8579 1.2300 1.0967 1.0970 2.5605 0.9106

Transaction

Z(α̂)RT 1.0836 1.0852 0.5244 1.0553 1.0734 1.0592 1.0408 0.5756
Z(α̂) 1.0856 1.0909 0.5733 1.0280 1.0677 1.0258 1.2212 0.4342
Z(α̂hf ) 1.0713 1.0774 0.5579 1.0033 1.0555 1.0580 1.1871 0.4074

S 1.1106 1.1143 0.9731 1.2334 1.1168 1.0841 2.8119 1
F 1.1098 1.1118 0.8584 1.2300 1.0957 1.1033 2.5611 0.9580

All the reported values represent averages over the considered period. The two price series S
and F have been equally spaced at one second interval using previous tick interpolation. Z(α̂)RT
reports the values for the noise reduced series constructed using refresh time synchronization.
The Noise variance is expressed as ratio over the ETF (subsampled at 1 second frequency) noise
variance. The realized measures are constructed using percentage returns.

able even ex-post; thus making a performance comparison a non-trivial task. Nonetheless,

we can get an idea of the good performance of the noise reduction methodology by jointly

looking at the proximity of the estimates to realized measures known to be asymptotically

robust and inspecting the stable behaviour of RV constructed at ever increasing sampling

frequencies. Figure 7 displays the signature plots obtained with tick and transaction time.

Very little difference can be seen between the two plots and the remarkable stabilization

obtained appear to be indisputable; hinting to a very good performance of the noise reduc-

tion methodology. As expected, the stabilization is further improved by Z(α̂hf ); estimating

the noise characteristics and “portfolio” weights (α̂hf ) at the highest frequency grants an

increase in performance. Undoubtedly, however, the noise is not completely eliminated and

sampling at the highest frequency still provides biased estimates. Nonetheless, it appears

that very high sampling frequencies as ten or even five seconds can be considered virtually

noise free allowing practitioner to obtain robust estimates of IV using the trivial RV esti-

mator while retaining an incredible amount of data compared to the commonly used five

minutes frequency.
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Figure 7: Stabilization of the signature plot
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Signature plot for RVZ(α̂) (©–·©–·©),RVZ(α̂hf ) (•--•--•), RC (×–·×–·×),RVS (+--+--+),RVF (∗–∗–∗)
with varying values of ρε(S),ε(F ) .

5 Conclusion

In the present paper, a new procedure to reduce the microstructure noise of a series

while preserving its quadratic variation is proposed. Being subject to a lower microstructure

noise, implementation of any realized measure on the resulting series (Z) grants more precise
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estimates of the quadratic variation. This allows to obtain consistent QV estimates using

the trivial realized variance estimator at frequencies as high as five seconds. The proposed

methodology is based on cross-sectional combination of different price series with the same

variance (as a futures and its underlying or an asset traded on different markets). There-

fore, due to the nature of the technique, two main factors influence the quality of the noise

reduction: the correlation between the noise processes affecting the different time series and

the asynchronicity of the assets’ realizations. Fortunately, as shown in Section 3, provided

that the price series are not excessively illiquid the procedure will only fail to produce any

significant noise reduction but will not negatively affect the estimators performance. We

investigate the behavior of the noise reduction methodology on a dataset spanning over 13

years and document exceptionally good results, evidenced both by the proximity of the re-

alized measures computed on the noise-reduced series Z to noise-robust estimators (as the

realized kernel or the pre-averaged realized variance) and by the remarkable stabilization

displayed by the volatility signature plot of the noise reduced series. This novel approach

opens to extensions in several directions; for instance, more refined synchronization proce-

dures might increase the robustness to asynchronicity of the proposed methodology, making

it less susceptible to problem caused by illiquid series.
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