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Abstract

We consider the fractional cointegrated vector autoregressive (CVAR) model of
Johansen and Nielsen (2012a) and make two distinct contributions. First, in their con-
sistency proof, Johansen and Nielsen (2012a) imposed moment conditions on the errors
that depend on the parameter space, such that when the parameter space is larger,
stronger moment conditions are required. We show that these moment conditions can
be relaxed, and for consistency we require just eight moments regardless of the pa-
rameter space. Second, Johansen and Nielsen (2012a) assumed that the cointegrating
vectors are stationary, and we extend the analysis to include the possibility that the
cointegrating vectors are nonstationary. Both contributions require new analysis and
results for the asymptotic properties of the likelihood function of the fractional CVAR
model, which we provide. Finally, our analysis follows recent research and applies a
parameter space large enough that the usual (non-fractional) CVAR model constitutes
an interior point and hence can be tested against the fractional model using a χ2-test.

Keywords: Cointegration, fractional integration, likelihood inference, vector autore-
gressive model.

JEL Classification: C32.

1 Introduction

For a p-dimensional time series, Xt, the fractional cointegrated vector autoregressive (CVAR)
model of Johansen (2008) and Johansen and Nielsen (2012a), hereafter JN(2012a), is

∆dXt = αβ′∆d−bLbXt +
k∑
i=1

Γi∆
dLibXt + εt, t = 1, . . . , T, (1)
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Council of Canada (SSHRC), and the Center for Research in Econometric Analysis of Time Series (CRE-
ATES, funded by the Danish National Research Foundation, DNRF78) for research support.
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where εt is p-dimensional independent and identically distributed with mean zero and co-
variance matrix Ω and ∆b and Lb = 1 − ∆b are the fractional difference and fractional lag
operators, respectively.

The fractional difference is given by, for a generic p-dimensional time series Zt,

∆dZt =
∞∑
n=0

πn(−d)Zt−n, (2)

provided the sum is convergent, and the fractional coefficients πn(u) are defined in terms of
the binomial expansion (1− z)−u =

∑∞
n=0 πn(u)zn, i.e.,

πn(u) =
u(u+ 1) · · · (u+ n− 1)

n!
.

With the definition of the fractional difference operator in (2), Zt is said to be fractional of
order d, denoted Zt ∈ I(d), if ∆dZt is fractional of order zero, i.e., if ∆dZt ∈ I(0). The latter
property can be defined in the frequency domain as having spectral density matrix that is
finite and non-zero near the origin or in terms of the linear representation coefficients if the
sum of these is non-zero and finite, see, for example, JN(2012a, p. 2672). An example of a
process that is fractional of order zero is the stationary and invertible ARMA model. Finally,
then, if Zt ∈ I(d) and one or more linear combinations are fractional of a lower order, i.e.,
there exists a p × r matrix β such that β′Zt ∈ I(d − b) with b > 0, then Zt is said to be
(fractionally) cointegrated.

In this paper, we make two distinct contributions to the fractional CVAR literature.
First, in their consistency proof, JN(2012a) imposed moment conditions on the errors that
depend on the parameter space, such that when the parameter space is larger, stronger
moment conditions are required. Specifically, with the lower bound for the parameter b
being denoted by η > 0, the moment conditions in JN(2012a) include the requirement that
E|εt|q < ∞ for some q > 3/η, in addition to E|εt|8 < ∞. That is, when the parameter
space for b allows very small values, corresponding to very weak cointegration that would
be difficult to detect in practice, the errors were required to have more moments. We show
that the moment conditions can be relaxed, and we assume just E|εt|8 <∞ regardless of the
parameter space. This requires new results on certain product moments of nonstationary
processes, and specifically requires proving tightness of the inverse of such product moments.

Our second contribution is to extend the analysis of JN(2012a) to include the possibility
that the cointegrating vectors are nonstationary. JN(2012a) assumed that the cointegrating
vectors are stationary, i.e., that d0−b0 < 1/2, and extending the results to allow d0−b0 > 1/2
requires new analysis and results for the asymptotic properties of the likelihood function of
the fractional CVAR model, which we provide. Such nonstationary cointegrating vectors
have been found in many empirical studies; some examples in finance using the fractional
CVAR model are Caporin et al. (2013, Table 2), Barunik and Dvorakova (2015, Table 6),
and Dolatabadi et al. (2016, Tables 5–6).

Finally, following JN(2018), we also allow the parameter space to include the usual CVAR
of Johansen (1996), which is obtained by the restriction d = b = 1, as an interior point in
the parameter space. This, of course, allows testing the usual CVAR model as a restriction
on the fractional CVAR model.
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The remainder of the paper is laid out as follows. In the next section we give the
assumptions and the main results. The results and their proofs rely on a series of bounds
on product moments, which we give in Section 3. These bounds include the important
tightness proof for the inverse of product moments of nonstationary processes, which is given
in Lemma 2. Some concluding remarks are offered in Section 4. The proof of consistency of
the estimators is quite involved, and is given in Section 5.

2 Assumptions and main results

In JN(2012a), asymptotic properties of maximum likelihood estimators and test statistics
were derived for model (1) with the parameter space η ≤ b ≤ d ≤ d1 for some d1 > 0,
which can be arbitrarily large, and some η such that 0 < η ≤ 1/2. The parameter space was
extended by Johansen and Nielsen (2018) to

N = N (η, η1, d1) = {d, b : η ≤ b ≤ d+ η1, d ≤ d1}; (3)

again for an arbitrarily large d1 > 0 and an arbitrarily small η such that 0 < η ≤ 1/2. While
η is exactly the same as in JN(2012a), we have in (3) introduced the new constant η1 > 0,
which is zero in JN(2012a). We note that the parameter space N explicitly includes the line
segment {d, b : η < d = b < d1} in the interior precisely because η1 > 0. Although η > 0
can be arbitrarily small, a smaller η implies a stronger moment condition in both JN(2012a)
and JN(2018). This moment condition is relaxed below.

We will assume that the data for t ≥ 1 is generated by model (1). A standard approach
for autoregressive models, which we follow, is to conduct inference using the conditional
likelihood function of X1, . . . , XT given initial values {X−n}n≥0. That is, we interpret (1)
as a model for Xt, t = 1, . . . , T , given the past, and use the conditional density to build a
conditional likelihood function. Thus, since our entire approach is conditional on the initial
values {X−n}n≥0 we consider these non-random, as is standard for (especially nonstationary)
autoregressive models.

However, it is difficult to imagine a situation where {Xs}Ts=−∞ is available, or perhaps
even exists, so we assume that the data is only observed for t = −N + 1, . . . , T . JN(2016)
argue in favor of the assumption that data was initialized in the finite past using two leading
examples, political opinion poll data and financial volatility data, but we maintain the more
general assumption from JN(2012a), where the data {X−n}∞n=N may or may not exist, but
in any case is not observed. However, although the initial values assumption is based on
that of JN(2012a), our notation for initial values is closer to that of JN(2016) (in particular,
our notation N and M0 follows the notation in JN(2016), and is basically reversed from the
notation in JN(2012a)). That is, given a sample of size T0 = T+N , this is split into N initial
values, {X−n}N−1n=0 , on which the estimation will be conditional, and T sample observations,
{Xt}Tt=1, to which the model is fitted. We summarize this in the following display:

. . . , X−N︸ ︷︷ ︸
Data may or may not exist,

but is not observed

, X1−N , . . . , X0︸ ︷︷ ︸
Data is observed
(initial values)

, X1, . . . , XT︸ ︷︷ ︸
Data is observed

(estimation)

(4)

The inclusion of initial values, i.e. letting N ≥ 1, has the purpose of mitigating the effect
of the unobserved part of the process from time t ≤ −N . Note that the (both observed an
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unobserved) initial values, i.e. {X−n}∞n=0, are not assumed to be generated by the model (1),
but will only be assumed to be bounded, non-random numbers, see Assumption 3 below.
Also note that the statistical and econometric literature has almost universally assumed
N = 0 and, in many cases, also assumed that data did not exist for t ≤ 0 or was equal to
zero for t ≤ 0.

Because we do not observe data prior to time t = 1−N , it is necessary to impose X−n = 0
for n ≥ N in the calculations, even if these (unobserved) initial values are not in fact zero.
To obtain our results we will need different assumptions on the initial values, and we will
discuss these below. Consequently, for calculation of the likelihood function, we will apply
the truncated fractional difference operator defined by

∆d
NXt =

t−1+N∑
n=0

πn(−d)Xt−n,

and keep N fixed, but allow for more non-zero initial values in the data generating process
(DGP); see Assumptions 3 and 5. Note that our ∆0 corresponds to ∆+ in, e.g., JN(2012a),
and we will use the notations ∆0 and ∆+ synonymously. Efficient calculation of truncated
fractional differences is discussed in Jensen and Nielsen (2014).

We therefore fit the model

∆d
NXt = αβ′∆d−b

N LbXt +
k∑
i=1

Γi∆
d
NL

i
bXt + εt, t = 1, . . . , T, (5)

and consider maximum likelihood estimation of the parameters, conditional on only N initial
values, {X−n}1−Nn=0 . Define the residuals

εt(λ) = ∆d
NXt − αβ′∆d−b

N LbXt −
k∑
i=1

Γi∆
d
NL

i
bXt, (6)

where λ is the collection of parameters {d, b, α, β,Γ1, . . . ,Γk,Ω}, which are freely varying;
that is, λ is in a product space. The Gaussian log-likelihood function, conditional on N
initial values, {X−n}1−Nn=0 , is then

logLT (λ) = −T
2

log det(Ω)− T

2
tr(Ω−1T−1

T∑
t=1

εt(λ)εt(λ)′), (7)

and the maximum likelihood estimator, λ̂, is defined as the argmax of (7) with respect to
λ such that (d, b) ∈ N . Specifically, for given values of (d, b), the log-likelihood function
logLT (λ) can be concentrated with respect to {α, β,Γ1, . . . ,Γk,Ω} by reduced rank regres-
sion, and the resulting concentrated log-likelihood function is then optimized numerically
with respect to (d, b) over the parameter space N given in (3). Algorithms for optimiz-
ing the likelihood function (7) are discussed in more detail in JN(2012a, Section 3.1) and
implemented in Nielsen and Popiel (2016); see also Section 5.3 below.

Before we impose further conditions on the DGP, we introduce the following notation.
For any n×m matrix A, we define the norm |A| = tr(A′A)1/2 and use the notation A⊥ for
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an n × (n − m) matrix of full rank for which A′A⊥ = 0. For symmetric positive definite
matrices A and B we use A > B to denote that A−B is positive definite. We also let

Ψ(y) = (1− y)Ip − αβ′y −
k∑
i=1

Γi(1− y)yi (8)

denote the usual polynomial from the CVAR model. Then model (1) can be written as
Π(L)Xt = ∆d−bΨ(Lb)Xt = εt, so that

Π(z) = (1− z)d−bΨ(1− (1− z)b). (9)

Finally, we let Cb denote the fractional unit circle, which is the image of the unit disk
under the mapping y = 1 − (1 − z)b, see (9) and Johansen (2008, p. 660), and we define
Γ = Ip −

∑k
i=1 Γi.

Assumption 1 For k ≥ 0 and 0 ≤ r ≤ p the process Xt, t = 1, . . . , T , is generated by
model (1) with the parameter value λ0, using non-random initial values {X−n}∞n=0.

Assumption 2 The errors εt are i.i.d.(0,Ω0) with Ω0 > 0 and E|εt|8 <∞.

Assumption 3 The initial values {X−n}∞n=0 are uniformly bounded, i.e. supn≥0 |X−n| <∞.

Assumption 4 The true parameter value λ0 satisfies (d0, b0) ∈ N , d0 − b0 ≥ 0, b0 6= 1/2,
and the identification conditions Γ0k 6= 0 (if k > 0), α0 and β0 are p×r of rank r, α0β

′
0 6= −Ip,

and det(α′0⊥Γ0β0⊥) 6= 0. If r < p, det(Ψ0(y)) = 0 has p − r unit roots and the remaining
roots are outside Cmax{b0,1}. If k = r = 0 only 0 < d0 6= 1/2 is assumed.

The conditions in Assumptions 1–3 are identical to those in JN(2012a), while Assump-
tion 4 is weaker than that in JN(2012a) since it does not impose d0 − b0 < 1/2. First,
Assumption 1 implies that the data is only generated by model (1) starting at time t = 1.
Specifically, the theory will be developed for observations X1, . . . , XT , generated by model
(1) with fixed, bounded initial values, X−n, n ≥ 0, that are not assumed to be generated by
the model. That is, we conduct inference using the conditional likelihood function (7) and
derive properties of estimators and tests using the conditional distribution of X1, . . . , XT

given X−n, n ≥ 0, as developed by JN(2012a) and JN(2016).
Moreover, for ∆aXt, a > 0, to be well-defined as an infinite sum, see (2), we assume

that the initial values, X−n, n ≥ 0, are uniformly bounded, c.f. Assumption 3. Many of the
intermediate results can be proved under just the boundedness assumption in Assumption 3,
but to get the asymptotic distributions we need to impose the stronger Assumption 5 as dis-
cussed below. Assumption 2 importantly does not assume Gaussian errors for the asymptotic
analysis, but only assumes εt is i.i.d. with eight moments, although the moment condition
needs to be strengthened for the asymptotic distribution theory.

The conditions in Assumption 4 guarantee that the lag length is well defined and that
the parameters are identified, see JN(2012a, Section 2.5) and Carlini and Santucci de Mag-
istris (2017), who discuss identification of the parameters when the lag length is not fixed.
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However, Assumption 4 does not impose that the cointegrating relations β′0Xt are (asymptot-
ically) stationary, i.e. satisfy 0 ≤ d0 − b0 < 1/2, as in JN(2012a) and JN(2018), but instead
only imposes d0 − b0 ≥ 0, thus allowing both stationary and nonstationary cointegrating
relations, and also allowing the important special case of d0 = b0(= 1).

We are now ready to state our main results in the following two theorems. The cor-
responding theorems in both JN(2012a) and JN(2018) required some strengthening of the
moment assumptions, and these are avoided here.

Theorem 1 Let Assumptions 1–4 hold and let the parameter space N (η, η1, d1) be given in
(3), where η and η1 are chosen such that 0 < η ≤ 1/2 and 0 < η1 < 1/4. Then, with
probability converging to one, {d̂, b̂, α̂, β̂, Γ̂1, . . . , Γ̂k, Ω̂} exists uniquely for (d, b) ∈ N , and is
consistent.

The proof of Theorem 1 is given in Section 5. As discussed above, we note that Theorem 1
holds without any additional moment conditions beyond that in Assumption 2 and that it
applies both when the cointegrating errors are stationary or nonstationary. In comparison,
the moment conditions required in JN(2012a) and JN(2018) are summarized in Table 1 of
JN(2018) and are much more involved than the simple condition in Assumption 2. For
example, for consistency in the case with b0 > 1/2, they require the additional moment
condition E|εt|q <∞ for some q > 1/min{η/3, (1/2− d0 + b0)/2, b0 − 1/2}.

The next theorem presents the asymptotic distributions of the estimators. For this result
we will need to strengthen the condition in Assumption 3 on the initial values of the process
and impose the following assumption, which was also made in JN(2012a) and JN(2018). The
stochastic terms are not influenced by Assumption 5.

Assumption 5 Either of the following conditions hold:

(i) supn≥0 |X−n| <∞ and the sum
∑∞

n=1 n
−1/2|X−n| is finite,

(ii) supn≥0 |X−n| <∞ and X−n = 0 for all n ≥M0 for some M0 ≥ 0.

The condition in Assumption 5(i) is that the (non-random) initial values satisfy the
summability condition

∑∞
n=1 n

−1/2|X−n| < ∞. This allows the initial values to be non-zero
back to the infinite past, but the summability condition implies that initial values do not
influence the asymptotic distributions. For example, Assumption 5(i) would be satisfied if
|X−n| ≤ cn−1/2−ε for all n ≥ 1 and a fixed ε > 0.

Alternatively, under Assumption 5(ii), the initial values are assumed to be zero before
some time in the past; that is, X−n = 0 for all n ≥ M0, where M0 ≥ 0 is fixed.1 Assump-
tion 5(ii) is illustrated in the following display, see also (4):

. . . , X−M0︸ ︷︷ ︸
Data does not exist

, X1−M0 , . . . , X−N︸ ︷︷ ︸
Data exists

but is not observed

, X1−N , . . . , X0︸ ︷︷ ︸
Data is observed
(initial values)

, X1, . . . , XT︸ ︷︷ ︸
Data is observed

(estimation)

(10)

1JN(2018) argue that M0 could be allowed to diverge without altering the results as long as M0/
√
T → 0,

as in Section 4.2 of JN(2012a). To avoid further notational complexity we do not consider this possibility.
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Note that M0 is a feature of the data generating process and is not related to N , which is
chosen in the analysis of the data. The condition in Assumption 5(ii) was also imposed by
JN(2016), and they provide some motivation for this assumption based on political polling
data and financial volatility data.

Theorem 2 Let Assumptions 1–5 hold with (d0, b0) ∈ int(N ) and let the parameter space
N (η, η1, d1) be given in (3), where η and η1 are chosen such that 0 < η ≤ 1/2 and 0 < η1 <
1/4. Then the following hold.

(i) If b0 < 1/2 the distribution of {d̂, b̂, α̂, β̂, Γ̂1, . . . , Γ̂k} is asymptotically normal.

(ii) If b0 > 1/2 we assume, in addition, that E|εt|q <∞ for some q > (b0 − 1/2)−1. Then
the distribution of {d̂, b̂, α̂, Γ̂1, . . . , Γ̂k} is asymptotically normal and the distribution of
β̂ is asymptotically mixed Gaussian, and the two are independent.

Proof of Theorem 2. This follows from parts (i) and (ii) of Theorem 10 in JN(2012a).
Specifically, the proof of Theorem 10 in JN(2012a) relies on the usual Taylor expansion of
the score function around the true values, and this applies to the current setting as well
without any changes.

Note that the moment condition q > (b0 − 1/2)−1 in part (ii) of Theorem 2 is used
in the proof of Theorem 10 in JN(2012a) to apply the functional CLT for processes that
are fractional of order b0 and obtain convergence to fractional Brownian motion, see also
JN(2012b). This fractional Brownian motion appears in the mixed Gaussian asymptotic
distribution of β̂.

3 Bounds on product moments

We analyze product moments of processes that are either asymptotically stationary, near
critical, or nonstationary, and we first define the corresponding fractional indices and the
relevant class of processes. We use Definition A.1 from JN(2012a):

Definition 1 We define S(κw, κv, κv, κu) as the set where the three fractional indices w, v,
and u are in the intervals

[−w0,−1/2− κw], [−1/2− κv,−1/2 + κv], [−1/2 + κu, u0], (11)

respectively, and where we assume 0 ≤ κv < κv and 0 < κv < min(b0/3, κu/2, κw/2, 1/6).

In the following we shall in fact always choose κu = κw, and κv = κv, where the last
choice requires an argument, which we give when the results on the asymptotic behaviour of
moments JN(2012a) are applied.

Definition 2 We define the class Zb as the set of multivariate linear stationary processes
Zt, which can be represented as

Zt = ξεt + ∆b

∞∑
n=0

ξ∗nεt−n,

where b > 0 and εt is i.i.d.(0,Ω) and the coefficient matrices satisfy
∑∞

n=0 |ξ∗n| < ∞. We
also define the corresponding truncated process Z+

t = ξεt + ∆b
+

∑t−1
n=0 ξ

∗
nεt−n.
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Definition 2 is a fractional version of the usual Beveridge-Nelson decomposition, where∑∞
n=0 ξnεt−n = (

∑∞
n=0 ξn)εt + ∆

∑∞
n=0 ξ

∗
nεt−n ∈ Z1. The main representation theorem in

JN(2012a) shows that the solution of equation (1) is given in terms of processes in the
classes Zb or Z+

b . Thus for Zt ∈ Zb, b > 0, and indices (w, v, u) ∈ S(κw, κv, κv, κu) as in
Definition 1, ∆w

+Z
+
t is nonstationary, ∆u

+Z
+
t is asymptotically stationary, and ∆v

+Z
+
t is close

to a critical process of the form ξ∆
−1/2
+ εt.

We define product moments of fractional differences of processes in the class Zb0 , see
Definition 2. For m = m1 +m2 we define the product moments

DmMT (a1, a2) = T−1
T∑
t=1

(Dm1∆a1
+ Z

+
1t)(D

m2∆a2
+ Z

+
2t)
′, (12)

MT ((a1, a2), (a1, a2)) = T−1
T∑
t=1

[
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

] [
∆a1

+ Z
+
1t

∆a2
+ Z

+
2t

]′
,

MT (a1, a2|a3) = MT (a1, a2)−MT (a1, a3)MT (a3, a3)
−1MT (a3, a2),

where a1, a2, a3 can be u,w, and v in the intervals in Definition 1.
In the following, we will consider MT (a1, a2) as processes in the space of continuous func-

tions, typically Cp(K), indexed by (a1, a2) ∈ K, whereK is a compact set in R2; see Billingsley
(1968) or Kallenberg (2001) for the general theory. Let NT be a normalizing sequence. We de-
fine MT (a1, a2) = OP (NT ) to mean that N−1T MT (a1, a2) is tight as a process in Cp(K) indexed
by (a1, a2), and hence sup(a1,a2)∈K |N

−1
T MT (a1, a2)| is tight. Similarly MT (a1, a2) = oP (NT )

means that N−1T MT (a1, a2) is tight as a process in Cp(K) indexed by (a1, a2) and that

sup(a1,a2)∈K |N
−1
T MT (a1, a2)|

P→ 0. Finally, =⇒ is used for convergence in distribution as

a process on a function space (Cp or Dp). For example, N−1T MT (a1, a2) =⇒M(a1, a2) means
that N−1T MT (a1, a2) converges in distribution as a process in Cp(K) to the limit M(a1, a2).

When the product moments include nonstationary processes, these need further nor-
malization. Therefore, we introduce the notation M∗∗

T (w1, w2) = Tw1+w2+1MT (w1, w2) and
M∗

T (w1, a) = Tw1+1/2MT (w1, a), where a can be u or v, to indicate that the nonstationary
processes have been normalized by Twi+1/2.

For the asymptotic analysis we sometimes apply the result that, when w < −1/2 and
E|εt|q <∞ for some q > max{2,−1/(w + 1/2)}, then for Zt ∈ Zb, b > 0, we have

Tw+1/2∆w
+Z

+
[Tu] =⇒ ξW−w−1(u) = ξΓ(−w)−1

∫ u

0

(u− s)−w−1(dW ) on Dp([0, 1]), (13)

where Γ(·) is the gamma function and W denotes p-dimensional Brownian motion (BM)
generated by εt. The process W−w−1 is the corresponding fractional Brownian motion (fBM)
of type II. The proof of (13) is given in JN(2010, Lemma D.2) for Zt ∈ Zb, b > 0, see also
Taqqu (1975) for Zt = εt. Note that the moment condition q > max{2, 1/(−w − 1/2)} is in
fact necessary; see JN(2012b).

The next lemma is Lemma A.9 of JN(2012a) and is reproduced here for ease of reference,
although the results are presented in a different order. It contains the key results on the
asymptotic behavior of product moments of processes that can be stationary, nonstationary,
or critical, in the sense of the intervals in Definition 1.
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Lemma 1 (JN(2012a) Lemma A.9) Let Zit = ξiεt + ∆b0
∑∞

n=0 ξ
∗
inεt−n ∈ Zb0 , i = 1, 2,

define MT (a1, a2) in (12), and assume that E|εt|8 <∞. Then it holds jointly that:

(i) Uniformly for (wi, v, uj) ∈ S(κw, κv, κv, κu), i = 1, 2, j = 1, 2,

DmMT (u1, u2) =⇒ DmE(∆u1Z1t)(∆
u2Z2t)

′, (14)

DmM∗∗
T (w1, w2) = OP (1), (15)

DmM∗
T (w, u) = OP ((1 + log T )2+mT−min(κu,κw)), (16)

M∗
T (w, v) = OP ((1 + log T )2T κv), (17)

MT (v, u) = OP (1). (18)

(ii) If we choose N = Tα with 0 < α < 1/4, then for −1/2−κv ≤ vi ≤ −1/2+κv, i = 1, 2,
we find

MT ((v1, v2), (v1, v2)) ≥ c
1−N−2κv

2κv
[ξ′1, ξ

′
2]
′Ω0[ξ

′
1, ξ
′
2] +RT , (19)

where RT = oP (1) uniformly for |vi + 1/2| ≤ κv.

(iii) Assume, in addition, that E|εt|q < ∞ for some q > κ−1w . Then, uniformly for −w0 ≤
wi ≤ −1/2− κw, i = 1, 2,

M∗∗
T (w1, w2) =⇒ ξ1

∫ 1

0

W−w1−1(s)W−w2−1(s)
′dsξ′2. (20)

We note that (19) is proved in JN(2012a) forκv < κv, but the inequality

min
|vi+1/2|≤κv

MT ((v1, v2), (v1, v2)) ≥ min
|vi+1/2|≤κv

MT ((v1, v2), (v1, v2)) (21)

shows that the result also holds for κv = κv.
The main problem in our model, which was not a problem in JN(2012a) because of their

assumption that d0 − b0 < 1/2, is that the moment condition required in (20) becomes
very strong. Indeed, we will require this result for κw arbitrarily small, and so the moment
condition in (20) would require existence of all moments of εt. For example, we will need
(20) with arbitrarily small κw to conclude that

M∗∗
T (w,w)−1 = OP (1) and M∗∗

T (w1, w1|w2)
−1 = OP (1). (22)

Thus, as an alternative to (20), we next prove the result (22) without the additional assump-
tion that E|εt|q <∞ for some q > κ−1w . That is, we apply only the simpler assumption that
E|εt|8 <∞.

3.1 Obtaining the bound (22) without additional moment conditions

The important realization here is that when w < −1/2 is arbitrarily close to −1/2, the
moment condition q > −1/(w + 1/2) required to obtain convergence of Tw+1/2∆w

+εt to
fractional Brownian motion (see JN(2012b)) requires existence of all moments of εt. The
basic idea in proving (22) is to derive a lower bound for M∗∗

T (w1, w2) in which the relevant
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processes have fractional index that is sufficiently far away from the critical point −1/2 that
the moment condition is implied by the existence of q = 8 moments.2

The next lemma provides the required result.

Lemma 2 Let Zit = ξiεt + ∆b0
∑∞

n=0 ξ
∗
inεt−n ∈ Zb0, where ξi is m × p and εt ∈ Rp with

E|εt|8 <∞. Then, as T →∞, it holds uniformly for −w0 ≤ wi ≤ −1/2− κw, i = 1, 2, that

det(M∗∗
T (w1, w1)) ≥ (

π2m

4m
+O(T−1)) det(M∗∗

T (w1 − 1, w1 − 1)), (23)

det(M∗∗
T ((w1, w2), (w1, w2)) ≥ (

π4m

42m
+O(T−1)) det(M∗∗

T ((w1 − 1, w2 − 1), (w1 − 1, w2 − 1)),

(24)

where the O(T−1) terms do not depend on wi.

Proof. Define the T × m matrix Z = [Z1, . . . , ZT ]′ and the T × T fractional integration
matrix

Φ(w) =


1 0 · · · 0

π1(w) 1
. . .

...
...

. . . . . . 0
πT−1(w) · · · π1(w) 1


such that

[
∆w

+Z1, . . . ,∆
w
+ZT

]′
= Φ(−w)Z and M∗∗

T (w,w) = T 2wZ ′Φ(−w)′Φ(−w)Z. We note
the following properties of Φ(w):

det(Φ(w)) = 1, Φ(w1)Φ(w2) = Φ(w1 + w2), and Φ(w)−1 = Φ(−w). (25)

The first property in (25) is trivial, the second follows because ∆w1
+ ∆w2

+ Zt = ∆w1+w2
+ Zt (see

Lemma A.4 in JN(2016)), and the third property is a consequence of the second property
using Φ(0) = IT .

Proof of (23): With this notation we find, using X = Φ(1 − w1)Z and the properties in
(25), that

Φ(−w1)Z = Φ(−1)Φ(1− w1)Z = Φ(−1)X

and

det(M∗∗
T (w1, w1))

det(M∗∗
T (w1 − 1, w1 − 1))

=
T 2w1m

T 2(w1−1)m
det(Z ′Φ(−w1)

′Φ(−w1)Z)

det(Z ′Φ(1− w1)′Φ(1− w1)Z)

= T 2mdet(X ′Φ(−1)′Φ(−1)X

det(X ′X)

≥ T 2mλmmin (Φ(−1)′Φ(−1)) , (26)

2Hualde and Robinson (2011, eqn. (2.36), p. 3163) faced a similar problem for a univariate process. By
the Cauchy-Schwarz inequality they reduced the problem to showing that, for suitable w1 < w2 < −1/2, the
random variable M = infw1≤w≤w2 W−w(1)2 is positive almost surely. This, however, cannot be correct. The
two-dimensional random variable (W−w1(1),W−w2(1)) has a nonsingular zero-mean Gaussian distribution
and the set A = {W−w1

(1) < 0 < W−w2
(1)} satisfies P (A) > 0. Because W−w(1) is continuous in w for w <

−1/2, there exists on A a w∗ ∈ [w1, w2] for which W−w∗(1) = M = 0, and therefore P (M = 0) ≥ P (A) > 0.
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where the inequality follows from, e.g., Horn and Johnson (2013, p. 258). From Rutherford
(1948), see also Tanaka (1996, eqn. (1.4)), we find the eigenvalues

λt (Φ(−1)′Φ(−1)) = 4 sin2

(
π

2

2t− 1

2T + 1

)
, t = 1, . . . , T,

such that, in particular,

λmin (Φ(−1)′Φ(−1)) = 4 sin2

(
π

2

1

2T + 1

)
=
π2

4
T−2 +O(T−3). (27)

The bound (23) follows by combining (26) and (27).
Proof of (24): Define Zi = [Z1i, . . . , ZT i]

′ for i = 1, 2 and the block matrices Z̃ =
block diag{Z1, Z2}, Φ̃(w1, w2) = block diag{Φ(w1),Φ(w2)}. Then, as in (26), we find

det(M∗∗
T ((w1, w2), (w1, w2)))

det(M∗∗
T ((w1 − 1, w2 − 1), (w1 − 1, w2 − 1)))

= T 4m det(Z̃ ′Φ̃(−w1,−w2)
′Φ̃(−w1,−w2)Z̃)

det(Z̃ ′Φ̃(1− w1, 1− w2)′Φ̃(1− w1, 1− w2)Z̃)
≥ T 4mλ2mmin(Φ̃(−1,−1)),

and the result follows by (27).
The lower bound obtained in Lemma 2 is used in the next lemma to provide a justification

for the tightness of the inverse in (22).

Lemma 3 Let Zit = ξiεt + ∆b0
∑∞

n=0 ξ
∗
inεt−n ∈ Zb0, where ξi, i = 1, 2, is m × p, [ξ′1, ξ

′
2]

has full rank, and εt ∈ Rp with E|εt|8 < ∞. Then, as T → ∞, it holds uniformly for
−w0 ≤ wi ≤ −1/2− κw, i = 1, 2, that

M∗∗
T (w1, w1)

−1 = OP (1), (28)

M∗∗
T (w1, w1|w2)

−1 = OP (1). (29)

Proof. Proof of (28): We want to show that

P ( inf
−w0≤w1≤−1/2−κw

det(M∗∗
T (w1, w1)) = 0)→ 0.

We apply the bound (23) in Lemma 2, so that we have to analyze det(M∗∗
T (w1− 1, w1− 1)).

Because w1− 1 ≤ −3/2−κw, the additional moment condition for weak convergence in (13)
and (20) becomes q > (1 + κw)−1 and is not binding for M∗∗

T (w1 − 1, w1 − 1) since q = 8
moments are assumed. Thus, we can apply Lemma 1(iii) to obtain

inf
−w0≤w1≤−1/2−κw

det(M∗∗
T (w1 − 1, w1 − 1))

D→ inf
−w0≤w1≤−1/2−κw

det(ξ1

∫ 1

0

W−w1(u)W−w1(u)′duξ′1),

(30)
where the right-hand side is positive almost surely. To see this, assume that there were a
point w∗ ∈ [−w0,−1/2− κw], for which

det(ξ1

∫ 1

0

W−w∗(u)W−w∗(u)′duξ′1) = 0,
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which implies that for some non-zero vector λ ∈ Rp,∫ 1

0

λ′W−w∗(u)W−w∗(u)′λdu = 0,

and hence λ′W−w∗(u) = 0 for almost all u ∈ [0, 1]. Using partial integration and the recur-
rence relation for the Gamma function,

λ′W−w∗(u) =
1

Γ(−w∗)

∫ u

0

λ′W (s)(u− s)−w∗−1ds,

so that λ′W−w∗(u) = 0 implies that the Brownian path λ′W (u) is zero (for almost all u),
which clearly has probability zero.

It follows that, because 0 is a continuity point for the limit distribution,

P

(
inf

−w0≤w1≤−1/2−κw
det(M∗∗

T (w1, w1)) = 0

)
≤ P

(
(
π2m

4m
+O(T−1)) inf

−w0≤w1≤−1/2−κw
det(M∗∗

T (w1 − 1, w1 − 1)) = 0

)
→ P

(
π2m

4m
inf

−w0≤w1≤−1/2−κw
det(ξ1

∫ 1

0

W−w1(u)W−w1(u)′duξ′1) = 0

)
= 0.

Proof of (29): For notational simplicity we use MT = M∗∗
T ((w1−1, w2−1), (w1−1, w2−1))

in this proof. From (24) we have, for T sufficiently large,

det(M∗∗
T (w1, w1|w2)) =

det(M∗∗
T ((w1, w2), (w1, w2)))

det(M∗∗
T (w2, w2))

≥ c
det(MT )

det(M∗∗
T (w2, w2))

for some finite constant c > 0.
By (15) of Lemma 1 we find that sup−w0≤w2≤−1/2−κw det(M∗∗

T (w2, w2)) = OP (1), so that

P

(
inf

−w0≤wi≤−1/2−κw
det(M∗∗

T (w1, w1|w2)) = 0

)
≤ P

(
inf

−w0≤wi≤−1/2−κw
det(MT ) = 0

)
. (31)

Again the additional moment condition for weak convergence in (13) and (20) is not binding
for MT because q = 8 is assumed, so by (20) of Lemma 1 we find

inf
−w0≤wi≤−1/2−κw

det(MT )
D→ inf
−w0≤wi≤−1/2−κw

det(

∫ 1

0

X(u)X(u)′du),

where X(u) = diag{ξ1, ξ2} diag{W−w1(u),W−w2(u)} such that the right-hand side is positive
almost surely. Hence,

P

(
inf

−w0≤wi≤−1/2−κw
det(MT ) = 0

)
→ P

(
inf

−w0≤wi≤−1/2−κw
det(

∫ 1

0

X(u)X(u)′du) = 0

)
= 0,

(32)
and the result follows by (31) and (32).

For the proof of existence and consistency of the MLE, we need the product moments
that enter the likelihood function `T,p(ψ), which are analyzed in the following corollary. This
corollary is identical to Corollary A.10 in JN(2012a), and the proof is given there, with
the exception that we apply our Lemma 2 to avoid the additional moment condition in
Lemma 1(iii).
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Corollary 1 (JN(2012a) Corollary A.10) Let the assumptions of Lemma 1 be satisfied.
Then the following hold uniformly in (w, v, u) ∈ S(κw, κv, κv, κu), see (11) of Definition 1:

(i) It holds that

M∗∗
T (w1, w2|w3, u) = M∗∗

T (w1, w2|w3) + oP (1), (33)

MT (u1, u2|w, u3) =⇒ V ar(∆u1Z1t,∆
u2Z2t|∆u3Z3t), (34)

MT (v, u1|w, u2) = OP (1). (35)

(ii) If N = Tα with 0 < α < 1/4, then

MT ((v1, v2), (v1, v2)|w, u) ≥ c
1−N−2κv

2κv
(ξ′1, ξ

′
2)
′Ω0(ξ

′
1, ξ
′
2) +RT , (36)

where RT = OP (1) uniformly for |vi + 1/2| ≤ κv.

Note that the result (36) is valid also for κv = κv, see (21). We apply the results of
Lemmas 1 and 2 and Corollary 1 in the analysis of `T,p(ψ) and `T,r(ψ) to show that they
converge uniformly in ψ, which is the key ingredient in the proof of consistency of the MLE.
The results for m = 0, 1, 2 in Lemmas 1 and 2 are used to show that the information matrix
is tight in a neighborhood of the true value.

4 Conclusions and discussion

In this paper we have analyzed the fractional cointegrated VAR model of Johansen and
Nielsen (2012a) and made two distinct contributions. First, in their consistency proof, Jo-
hansen and Nielsen (2012a) imposed moment conditions on the errors that depend on the
parameter space, such that when the parameter space is larger, stronger moment conditions
are required. We have shown that these moment conditions can be relaxed, and for con-
sistency we require just eight moments regardless of the parameter space. In light of the
complicated moment conditions of Johansen and Nielsen (2012a, 2018) summarized in Table
1 of Johansen and Nielsen (2018), our contribution provides a substantial simplification of
the assumptions.

Second, Johansen and Nielsen (2012a) assumed that the cointegrating vectors are sta-
tionary. However, nonstationary cointegrating relations have been found in much empirical
work; see, e.g., the references cited in the introduction. In this paper, we have therefore ex-
tended the analysis to allow the cointegrating vectors in the fractionally cointegrated VAR
model to also be nonstationary.

Finally, our analysis has followed recent research in Johansen and Nielsen (2018) and
applied a parameter space large enough that the usual (non-fractional) cointegrated VAR
model constitutes an interior point and hence can be tested against the fractional model
using a χ2-test.

The main technical contribution that has allowed these extensions of the theory is the
proof of a strictly positive lower bound for product moments of nonstationary processes,
assuming only a relatively weak moment condition. This bound is proved in Lemmas 2
and 3.
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5 Proof of Theorem 1

Theorem 4 of JN(2012a) gives, under their assumptions, the properties of the likelihood
function. These are used in Theorem 5(i) of JN(2012a) to show that the maximum likelihood
estimator exists uniquely with large probability for large T , i.e. to prove the result in our
Theorem 1 for the smaller parameter set, with η1 = 0 in (3). Thus, if the results of Theorem 4
of JN(2012a) can be established under our assumptions, which are weaker than those in
JN(2012a) as discussed above, then we can apply the proof of Theorem 5(i) of JN(2012a)
with minor changes to prove our Theorem 1 for the larger parameter set with η1 > 0 in (3).

The strategy of the proof is as follows. First, we discuss the solution of the autoregressive
equations, i.e., the representation theory. Then we show that the contribution of the initial
values {X−n}n≥0 to the likelihood function is negligible, such that we only need to analyze
the stochastic terms. Next, we analyze the likelihood function and discuss the convergence
and divergence of the likelihood on different parts of the parameter space. This establishes
the notation necessary to present a version of Theorem 4 of JN(2012a), stated as Theorem 3,
which we subsequently prove.

5.1 Solution of the equations

The solution, Xt, t ≥ 1, of the equations (1) for the DGP is found in Theorem 2 of JN(2012a)
under Assumptions 1–4 as

Xt = C0∆
−d0
+ εt + ∆

−(d0−b0)
+ Y +

t + µ0t for d0 ≥ 1/2, (37)

Xt = C0∆
−d0εt + ∆−(d0−b0)Yt for d0 < 1/2. (38)

Here, Yt =
∑∞

n=0 τ0nεt−n is a stationary process and Y +
t =

∑t−1
n=0 τ0nεt−n, for some matrix

coefficients τ0n depending only on the true values and satisfying
∑∞

n=0 |τ0n| <∞. The matrix
C0 is given by

C0 = β0⊥(α′0⊥Γ0β0⊥)−1α′0⊥. (39)

Moreover, by a fractional version of the Beveridge-Nelson decomposition, see eqn. (12) of
JN(2012a), the stationary process Yt can be written as Yt = C∗0εt+∆b0

∑∞
n=0 τ

∗
0nεt−n for some

matrix coefficients τ ∗0n depending only on the true values and satisfying
∑∞

n=0 |τ ∗0n| < ∞,
where C∗0 =

∑∞
n=0 τ0n satisfies

β′0C
∗
0α0 = −Ir. (40)

We let I{·} denote the indicator function and define

Ψ+(L)Xt = I{t ≥ 1}
t−1∑
i=0

ΨiXt−i and Ψ−(L)Xt =
∞∑
i=t

ΨiXt−i,

see (8). Then the term µ0t is

µ0t = −Ψ0+(L)−1Ψ0−(L)Xt,

which expresses µ0t as function of the fixed initial values {X−n}∞n=0. It is seen from (6) and
(37), say, that the likelihood function contains terms of the form ∆d+ib

N Xt from which there
are both stochastic and deterministic contributions. The latter arise because the likelihood
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is analyzed conditional on the initial values. Therefore, the terms in the likelihood function
that are generated by the initial values are considered deterministic in the analysis of the
model.

We define X̃t = XtI{1−N ≤ t ≤ 0} as the initial values used in the calculations, see (6)
and (7). We also define the operator ∆− such that, for any Zt and any a ≥ 0 it holds that
∆aZt = ∆a

+Zt + ∆a
−Zt. When d0 ≥ 1/2, the deterministic terms in the likelihood are simple

functions of

Dit(d, b) =


(∆d−b
− −∆d

−)X̃t + (∆d−b
+ −∆d

+)µ0t,

(∆d+ib
− −∆d+kb

− )X̃t + (∆d+ib
+ −∆d+kb

+ )µ0t,

∆d+kb
− X̃t + ∆d+kb

+ µ0t,

i = −1,
i = 0, . . . , k − 1,
i = k,

(41)

see eqn. (14) in JN(2018). When d0 < 1/2, we use a different representation of the solution
and hence leave out the terms involving µ0t in (41), see Theorem 2 in JN(2012a).

5.2 Negligibility of initial values

We now establish that the deterministic terms generated by the initial values are uniformly
negligible. This follows from results in JN(2018), which generalizes JN(2012a) to apply to
the larger parameter space N . In particular, we will apply the results in Lemma 1(i) of
JN(2018) to conclude that deterministic terms from initial values do not influence the limit
behavior of product moments, and hence do not influence the limit behavior of the likelihood
function. For ease of reference, we quote Lemma 1(i) of JN(2018), where the terms Dit(d, b)
are the initial values contributions to the likelihood function given in (41) and Dm denotes
m’th order derivatives with respect to d and/or b.

Lemma 4 (JN(2018) Lemma 1(i)) Let Assumption 3 be satisfied. Choose κ1 and η1
such that 0 < η1 < κ1 < 1/4 and define the intervals S+ = [d0 − 1/2 − κ1,∞[ and S− =
[−η1, d0 − 1/2 − κ1]. Then the functions DmDit(d, b) are continuous in (d, b) ∈ N (η, η1, d1)
and satisfy

sup
d+ib∈S+

|DmDit(d, b)| → 0 as t→∞, (42)

sup
d+ib∈S−

max
1≤t≤T

|DmT d+ib−d0+1/2β′0⊥Dit(d, b)| → 0 as T →∞. (43)

We first note that the result in Lemma 4(i) does not depend on the assumption that
d0− b0 < 1/2, which was made in both JN(2012a) and JN(2018) to deal with the stochastic
terms.

However, the results in eqns. (42) and (43) depend on the parameter κ1 > 0, which
in JN(2018) is the parameter that separates the nonstationary processes (with fractional
index ≤ −1/2 − κ1) from the stationary and near-critical processes (with fractional index
≥ −1/2 − κ1). This is important because the initial values contribution is normalized by
Tw+1/2 = T d+ib−d0+1/2 in the nonstationary case in (43) and not in the stationary and near-
critical case in (42). It is further relevant because, as we will see below, in our case we will
need to choose our version of κ1 arbitrarily small, so because Lemma 4 requires setting κ1
such that η1 < κ1 < 1/4, this suggests that we would need to let η1 be arbitrarily small. To
avoid this, additional arguments are needed, which we now provide.
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In the present notation, the nonstationary processes have fractional index w ≤ −1/2 −
κw, and the stationary and near-critical processes have fractional index ≥ −1/2 − κw, see
Definition 1. Let η1 ∈ (0, 1/4) be fixed and choose any κ1 such that η1 < κ1 < 1/4. Thus,
in the present notation, κw is the parameter that separates the nonstationary processes
from the stationary and near-critical processes, while κ1 will be used for the application of
Lemma 4. Because κw > 0 will be chosen arbitrarily small in the following subsections, we
assume without loss of generality that κw < κ1.

For the stationary and near-critical processes, which have fractional index ≥ −1/2−κw ≥
−1/2 − κ1, we can apply (42) directly to conclude that the initial values contribution is
uniformly negligible. Similarly, for the (normalized) nonstationary processes with fractional
index ≤ −1/2−κ1, we can apply (43) to conclude that the contribution from the initial values
is uniformly negligible. We are then left with the (normalized) nonstationary processes with
fractional index in the interval [−1/2−κ1,−1/2−κw], for some arbitrarily small κw > 0. For
this interval, we can apply the non-normalized result in (42) together with the evaluation
Tw+1/2 ≤ T−κw ≤ 1, which shows that the normalized initial values contribution is smaller
than the non-normalized contribution.

Thus, with these additional arguments, it follows from Lemma 4, that the initial values
do not influence the limit behavior of product moments, and hence do not influence the limit
behavior of the likelihood function. In the subsequent analysis of the likelihood function, we
can therefore assume that the deterministic terms generated by the initial values are zero.

5.3 Convergence of the profile likelihood function

Because the deterministic terms generated by the initial values can be assumed to be zero,
we can rewrite εt(λ) in (6), and hence the likelihood (7), as

εt(λ) = ∆d+kb
+ Xt − αβ′(∆d−b

+ −∆d
+)Xt −

k−1∑
i=0

Ψi+1(∆
d+ib
+ −∆d+kb

+ )Xt

= Xkt − αβ′X−1,t −
k−1∑
i=0

Ψi+1Xit, (44)

where

Xit = (∆d+ib
+ −∆d+kb

+ )Xt, i = 0, . . . , k − 1,

Xkt = ∆d+kb
+ Xt, and X−1t = (∆d−b

+ −∆d
+)Xt.

Moreover, the process Xt can be expressed in terms of the stationary process C0εt + ∆b0Yt,
see (37) and (38), so that Xit is expressed in terms of the differences ∆d+ib−d0

+ (C0εt + ∆b0Yt).
We define δm as the fractional index for β′0⊥Xmt and φn as the fractional index for β′0Xnt,
and find for m,n = −1, . . . , k that

δm = d+mb− d0 and φn = d+ nb− d0 + b0. (45)

For notational reasons we define φ−2 = δ−2 = −∞ and φk+1 = δk+1 = ∞. Then β′0⊥Xmt ∈
I(−δm) and β′0Xnt ∈ I(−φn).
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For fixed ψ, the conditional MLE is found from (7) and (44) by reduced rank regression
of Xk,t on X−1,t corrected for the regressors X0t, . . . , Xk−1,t. We define the corresponding
residuals

R0t(ψ) = (Xkt|X0t, . . . , Xk−1,t) and R1t(ψ) = (X−1t|X0t, . . . , Xk−1,t),

and their sums of squares

Sij(ψ) = T−1
T∑
t=1

Rit(ψ)Rjt(ψ)′ for i, j = 0, 1.

Then we solve the generalized eigenvalue problem

det(ωS11(ψ)− S10(ψ)S00(ψ)−1S01(ψ)) = 0, (46)

which gives eigenvalues 1 ≥ ω̂1(ψ) ≥ · · · ≥ ω̂p(ψ) > 0 that all depend on ψ. The maximized
likelihood (scaled by −2T−1), for fixed ψ, is given by

`T,r(ψ) = log det(S00(ψ)) +
r∑
i=1

log(1− ω̂i(ψ)) = log det(Ω̂(ψ)), (47)

see Johansen (1996) for the details in the I(1) model or JN(2012a) and Nielsen and Popiel
(2016) for details in the fractional CVAR. Finally, the MLE of ψ is found as the argmin of
the profile likelihood in (47).

In the full rank case with r = p, the profile likelihood `T,p(ψ) is found by regression of
Xkt on {Xit}k−1i=−1, i.e.,

`T,p(ψ) = log det(SSRT (ψ)) = log det(T−1
T∑
t=1

Rt(ψ)Rt(ψ)′), (48)

where Rt(ψ) = (Xkt|{Xit}k−1i=−1) denotes the regression residual. Equivalently, this is found
by regressing β′0⊥Xkt and β′0Xkt on the regressors β′0⊥Xmt and β′0Xmt for −1 ≤ n,m ≤ k− 1,
where these can be either asymptotically stationary, near critical or nonstationary. We define
Fstat(ψ) as the set of stationary regressors for a given ψ, and if ∆d+kb

+ Xt is stationary, we let
Ω(ψ) be the variance of ∆d+kb

+ Xt conditional on the variables in Fstat(ψ). That is,

Fstat(ψ) = {∆d+mb
+ β′0⊥Xt: δm > −1/2,m < k} ∪ {∆d+nb

+ β′0Xt: φn > −1/2, n < k}, (49)

Ω(ψ) = V ar(∆d+kb
+ Xt|Fstat(ψ)) if ∆d+kb

+ Xt is stationary. (50)

We next define the probability limit, `p(ψ), of the profile likelihood function `T,p(ψ) in
(48). The limit of log det(SSRT (ψ)) is finite if Xkt is (asymptotically) stationary and infinite
if Xkt is near critical or nonstationary, see Theorem 3. We therefore define the subsets of N ,

Ndiv(κ) = N∩{d, b : d+ kb− d0 ≤ −1/2 + κ}, κ ≥ 0,

Nconv(κ) = N∩{d, b : d+ kb− d0 ≥ −1/2 + κ}, κ > 0,

Nconv(0) = N∩{d, b : d+ kb− d0 > −1/2},
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and note that N = Ndiv(κ) ∪ Nconv(κ) for all κ ≥ 0. The sets Ndiv(κ) decrease as κ→ 0 to
the set Ndiv(0), where Xkt is nonstationary and log det(SSRT (ψ)) diverges. Similarly, the
sets Nconv(κ) increase as κ → 0 to Nconv(0), where Xkt is stationary and log det(SSRT (ψ))
converges in probability uniformly in ψ. We therefore define the limit likelihood function,
`p(ψ), as

`p(ψ) =

{
∞
log det(Ω(ψ))

if ψ ∈ Ndiv(0),
if ψ ∈ Nconv(0).

(51)

We are now ready to state and prove a version of Theorem 4 of JN(2012a). We show that
for all A > 0 and all γ > 0 there exists a κ0 > 0 and T0 > 0 so that with probability larger
than 1− γ, the profile likelihood `T,p(ψ) is uniformly larger than A on Ndiv(κ0) for T ≥ T0.
Thus, the minimum of `T,p(ψ) cannot be attained on Ndiv(κ0). On the rest of N , however,
we show that `T,p(ψ) converges uniformly in probability as T → ∞ to the deterministic
limit `p(ψ) which has a strict minimum, log det(Ω0), at ψ0. We prove this by showing weak
convergence, on a compact set, of the likelihood function `T,p(ψ) as a continuous process in
the parameters.

Theorem 3 Let Assumptions 1-4 hold, so that in particular E|εt|8 <∞ and d0 ≥ b0. Then
the following hold:

(i) The function `p(ψ) has a strict minimum at ψ = ψ0, that is

`p(ψ) ≥ `p(ψ0) = log det(Ω0) for ψ ∈ N , (52)

and equality holds if and only if ψ = ψ0.

(ii) For r = 0, . . . , p it holds that

`T,r(ψ0)
P→ log det(Ω0). (53)

(iii) The likelihood function for Hp satisfies that, for any A > 0 and γ > 0, there exists a
κ0 > 0 and a T0 > 0 such that

P ( inf
ψ∈Ndiv(κ0)

`T,p(ψ) ≥ A) ≥ 1− γ for all T ≥ T0. (54)

It also holds that

`T,p(ψ) =⇒ `p(ψ) on C(Nconv(κ0)) as T →∞. (55)

The remainder of this section is devoted to the proof of Theorem 3, and is divided into
several subsections.

5.4 Proof of Theorem 3(i)

The proof of Theorem 3(i), i.e. of (52), in Appendix B.1 of JN(2012a) applies without change
under our assumptions. In the next two subsections we give the proofs of Theorem 3(ii) and
(iii), respectively.
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5.5 Proof of Theorem 3(ii)

The proof of this result in Appendix B.2 of JN(2012a) applies (20) and the moment condition
E|εt|q < ∞ for some q > (b0 − 1/2)−1. With our new Lemma 3, we now give the proof
without this condition and to the larger parameter set in (3). Throughout this proof all
moment matrices (Sij etc.) are evaluated at the true value ψ = ψ0.

Case 1: b0 > 1/2. For ψ = ψ0, the regressand β′0⊥X−1,t is nonstationary with index
δ0−1 = −b0 < −1/2 and β′0X−1,t = β′0Yt is stationary with index φ0

−1 = 0. Pre- and post-
multiplying by the matrix [T 1/2−b0β0⊥, β0]

′ and its transposed in (46) we get

det

(
ω

[
β′0⊥S

∗∗
11β0⊥ β′0⊥S

∗
11β0

β′0S
∗
11β0⊥ β′0S11β0

]
−
[
β′0⊥S

∗
10

β′0S10

]
S−100

[
β′0⊥S

∗
10

β′0S10

]′)
= 0.

Here, T 1−2b0β′0⊥S11β0⊥ and its inverse are OP (1) by (15) of Lemma 1 and Lemma 3 (for
fixed ψ = ψ0), while β′0⊥S

∗
11β0 and β′0⊥S

∗
10 are OP ((1 + log T )2T−min(1/2,b0−1/2)) by (16) of

Lemma 1. Furthermore, at the true value ψ = ψ0, the following limits exist by the law of
large numbers,

(β′0S11β0, β
′
0S10, S00)

P→ (Σβ0β0 ,Σβ00,Σ00). (56)

Thus, the solutions of the eigenvalue problem (46) are asymptotically equivalent to those
of the eigenvalue problem

det

([
ωβ′0⊥S

∗∗
11β0⊥ 0

0 ωβ′0S11β0 − β′0S10S
−1
00 S01β0

])
= det(ωβ′0⊥S

∗∗
11β0⊥) det(ωβ′0S11β0 − β′0S10S

−1
00 S01β0) = 0.

This equation has p− r zero roots and r positive roots, where the latter are the roots of the
equation det(ωβ′0S11β0 − β′0S10S

−1
00 S01β0) = 0. Moreover, by (56), these roots converge to

the solutions of the equation

det(ωΣβ0β0 − Σβ00Σ
−1
00 Σ0β0) = 0,

which we denote ω0
1, . . . , ω

0
r . Therefore, see (47),

`T,r(ψ0) = log det(S00)+
r∑
i=1

log(1− ω̂i)
P→ log det(Σ00)+

r∑
i=1

log(1−ω0
i ) = log det(Ω0). (57)

Case 2: b0 < 1/2. In this case β′0⊥X−1,t is stationary with index δ0−1 = −b0 > −1/2. The

profile likelihood is still given by (47), but (56) becomes Sij
P→ Σ0

ij = E(Sij), say, and the
limit (57) still holds.

5.6 Proof of Theorem 3(iii)

To analyze the properties of the likelihood function, the parameter space is partitioned as
in Figure 1, using two sets of lines δm = −1/2 and φn = −1/2, where n,m = −1, . . . , k.
These lines may intersect, and close to these intersection points there are two nearly critical
processes. Specifically, we partition the parameter space into “interiors”, “critical points”,
and “boundaries”, which depend on two parameters 0 < κ < κ2.
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Figure 1: Illustration of parameter space with k = 1
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(b) An intersection point: For k ≥ 1 the set
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1,0 covers the intersection between the lines
δ1 = −1/2 and φ0 = −1/2, where Z1t and W0t

are nearly critical. The sets N int
mn = N int

mn(κ) and
N bd

mn = N bd
mn(κ2, κ) are also indicated.

Definition 3 We define for −1 ≤ n ≤ m ≤ k + 1 a covering of the parameter set N =
∪−1≤n≤m≤k+1Nmn where

Nmn = {ψ ∈ N : max(δm−1, φn−1) ≤ −1/2 < min(δm, φn)},

as well as the corresponding interiors

N int
mn(κ) = {ψ ∈ N : max(δm−1, φn−1) ≤ −1/2− κ and − 1/2 + κ ≤ min(δm, φn)}. (58)

We next define for −1 ≤ n < m ≤ k and each pair of near critical indices δm = φn =
−1/2, the critical sets around the point where δm = φn = −1/2 :

N cr
mn(κ2) = {ψ : |φn + 1/2| ≤ κ2, and |δm + 1/2| ≤ κ2}, (59)

Similarly we define for −1 ≤ n ≤ m ≤ k around each line where δn = −1/2, the boundary
sets

N bd
mn(κ2, κ) = {ψ : |δm + 1/2| ≤ κ, and φn−1 ≤ −1/2− κ2 and − 1/2 + κ2 ≤ φn}, (60)

and for −1 ≤ m < n ≤ k + 1 around the line where φm = −1/2, the boundary sets

N bd
mn(κ2, κ) = {ψ : |φm + 1/2| ≤ κ, and δn−1 ≤ −1/2− κ2 and − 1/2 + κ2 ≤ δn}. (61)

The interpretation of the sets Nmn is that, for ψ ∈ Nmn, the processes β′0⊥∆d+mb
+ Xt and

β′0∆
d+nb
+ Xt are asymptotically stationary, whereas β′0⊥∆

d+(m−1)b
+ Xt and β′0∆

d+(n−1)b
+ Xt are



Nonstationary cointegration in the fractionally cointegrated VAR model 21

either nonstationary or (nearly) critical. The true value ψ0 is contained in N0,−1 if b0 > 1/2
and in N−1,−1 if b0 < 1/2.

Note that φm = δm + b0, so that φm > δm, see (45). Hence, if β′0⊥∆d+mbXt of index δm
is asymptotically stationary then β′0∆

d+mbXt of index φm is also asymptotically stationary.
Likewise, if β′0∆

d+mbXt is nonstationary then β′0⊥∆d+mbXt is also nonstationary. Further-
more, note that if η1 < 1/2− d0 + b0, there are no crossing points and the sets N cr

mn(κ2) are
empty, in which case the proof is easily simplified accordingly.

The set N cr
mn(κ2) contains the crossing point between the lines given by δm = −1/2 and

φn = −1/2, where β′0⊥Xmt and β′0Xnt are both critical. To the left they are nonstationary
and to the right stationary. The set N bd

mn(κ2, κ) covers the line segment φn = −1/2 be-
tween N cr

m,n−1(κ2) and N cr
mn(κ2), and N bd

nm(κ2, κ) covers the line segment δm = −1/2 between
N cr
mn(κ2) and N cr

m+1,n(κ2). In these sets either β′0⊥Xmt and β′0Xnt is nearly critical, but not
both. See Figure 1 for illustrations in the case k = 1.

The following theorem proves (54) and (55) of Theorem 3. Here we use the notation
`T,p(ψ) =⇒∞ on C(N cr

kn(κ2)), for example, as shorthand for the more precise statement in
(54) on the space N cr

kn(κ2).

Theorem 4 Let Assumptions 1–4 hold, so that in particular E|εt|8 <∞ and d0 ≥ b0.

(i) For (κ2, T )→ (0,∞) it holds that

`T,p(ψ)=⇒ `p(ψ) on C(N cr
mn(κ2)) for − 1 ≤ n < m ≤ k − 1, (62)

`T,p(ψ)=⇒∞ on C(N cr
kn(κ2)) for − 1 ≤ n < k. (63)

(ii) For fixed κ2 and (κ, T )→ (0,∞) it holds that

`T,p(ψ)=⇒ `p(ψ) on C(N bd
mn(κ2, κ)) for n ≤ m < k, (64)

`T,p(ψ)=⇒∞ on C(N bd
mn(κ2, κ)) for n ≤ m = k, (65)

`T,p(ψ)=⇒∞ on C(N bd
k,k+1(κ2, κ)), (66)

`T,p(ψ)=⇒ `p(ψ) on C(N bd
mn(κ2, κ)) for m < n ≤ k, (67)

`T,p(ψ)=⇒∞ on C(N bd
m,k+1(κ2, κ)) for m < k. (68)

(iii) For fixed κ and T →∞ it holds that

`T,p(ψ)=⇒ `p(ψ) on C(N int
mn(κ)) for − 1 ≤ n ≤ m ≤ k, (69)

`T,p(ψ)=⇒∞ on C(N int
k+1,n(κ)) for − 1 ≤ n ≤ k, (70)

`T,p(ψ)=⇒∞ on C(N int
k+1,k+1(κ)). (71)

In the proof of Theorem 4, given in the next three subsections, we apply the following
notation. We use u1, v1, or w1 to indicate the index of β′0⊥Xkt, depending on whether it is
asymptotically stationary, critical, or nonstationary, and similarly we use u2, v2, or w2 to
indicate the index of β′0Xkt. We collect all asymptotically stationary regressors in a vector
with indices greater than or equal to u, and the nonstationary regressors are collected in a
vector with indices smaller than or equal to w. Finally, we use the notation κu, κw, κv, κv as
in Definition 1 to describe the intervals for the indices in order to apply Corollary 1.
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5.7 Proof of Theorem 4(i): the critical sets N cr
mn(κ2)

We assume κ2 < η and let (κ2, T )→ (0,∞). The set N cr
mn(κ2) is defined by the inequalities

|φn + 1/2| ≤ κ2 and |δm + 1/2| ≤ κ2

for −1 ≤ n < m ≤ k. We note that v1 = δm and v2 = φn are the near critical indices
and let κv = κv = κ2, see (21). The nonstationary regressors are given by the indices
φ−1, . . . , φn−1, δ−1, . . . , δm−1 and the maximal index is

w = max(φn−1, δm−1) = max(φn, δm)− b ≤ −1/2 + κ2 − η.

The stationary regressors are defined by the indices φn+1, . . . , φk−1, δm+1, . . . , δk−1, and the
minimal index is

u = min(φn+1, δm+1) = min(φn, δm) + b ≥ −1/2− κ2 + η.

Thus we can take κu = κw = η − κ2.
The notation (u, v, w) for the indices for the regressands β′0⊥Xkt and β′0Xkt differ depend-

ing on the values of m,n. We consider two cases: n < m < k and n < m = k.
Proof of (62) on the sets N cr

mn(κ2) for n < m < k: When m < k both β′0⊥Xkt and β′0Xkt

are asymptotically stationary with indices u1 = δk and u2 = φk, such that SSRT (ψ) =
B0MT ((u1, u2), (u1, u2)|v1, v2, w, u)B′0. We decompose the matrix as follows

MT ((u1, u2), (u1, u2)|w, u) (72)

−MT ((u1, u2), (v1, v2)|w, u)MT ((v1, v2), (v1, v2)|w, u)−1MT ((v1, v2), (u1, u2)|w, u),

and we apply Corollary 1. From (34) we see that, for T →∞,

log det(B0MT ((u1, u2), (u1, u2)|w, u)B′0) =⇒ log det(Ω(ψ)) = `p(ψ), (73)

see (50) and (51). We next show that the second term of (72) is oP (1).
The critical processes are ∆d+mb

+ β′0⊥Xt and ∆d+nb
+ β′0Xt with indices v1, v2 and stochastic

components

∆d+mb
+ β′0⊥Xt : ∆v1

+ (ξ1εt + ∆b0
+β
′
0⊥Y

+
t ), (74)

∆d+nb
+ β′0Xt : ∆v2

+ β
′
0Y

+
t = ∆v2

+ (ξ2εt + ∆b0β′0

∞∑
n=0

τ0nεt−n), (75)

see (37)–(40). These are fractional differences of processes in Zb0 with leading coefficients
ξ1 = β′0⊥C0 and ξ2 = β′0C

∗
0 . Here, [ξ′1, ξ

′
2] has full column rank because

[α0⊥, α0]
′[ξ′1, ξ

′
2] =

[
α′0⊥C

′
0β0⊥ α′0⊥C

∗′
0 β0

0 α′0C
∗′
0 β0

]
=

[
α′0⊥C

′
0β0⊥ α′0⊥C

∗′
0 β0

0 −Ir

]
(76)

has full rank, see (39), (40), and Assumption 1. It follows from (35) and (36) that, for
(κ2, T )→ (0,∞),

MT ((v1, v2), (v1, v2)|w, u)−1 = oP (1),

MT ((u1, u2), (v1, v2)|w, u) = OP (1),
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and from (73) we find log det(SSRT (ψ)) =⇒ `p(ψ).
Proof of (63) on the sets N cr

kn(κ2) for n < m = k: In this case β′0⊥Xkt is near critical
with index v1 = δk ∈ [−1/2 − κ2,−1/2 + κ2], setting κv = κv = κ2, and β′0Xkt with index
u2 = φk ≥ −1/2 + κu is stationary. The other near critical process is the regressor β′0Xnt

with v = φn, n < k. The determinant det(SSRT (ψ)) has, apart from the factor (detB0)
2,

the form

det (MT ((v1, u2), (v1, u2)|v, w, u)) = det(MT (u2, u2|v1, v, w, u)) det(MT (v1, v1|u2, v, w, u)).

The first factor satisfies det(MT (u2, u2|v1, w, u)) =⇒ det(E(MT (u2, u2|u)) > 0 as (κ2, T ) →
(0,∞), see Corollary 1.

The second factor is analyzed as follows. Let M = MT ((v1, v), (v1, v)|w, u). For ξ1 =
β′0⊥C0 and ξ2 = β′0C

∗
0 , the matrix [ξ′1, ξ

′
2] has full rank, see (76), such that the two critical

processes are given in (74) and (75). From (36) we have for κv = κv = κ2 and N = Tα, that
uniformly in (v1, v, w, u) ∈ S(κw, κu, κv, κv) it holds that

M−1 =

[
M11 M12

M21 M22

]
≤
(
c
1− T−2ακ2

2κ2

[
ξ1Ω0ξ

′
1 ξ1Ω0ξ

′
2

ξ2Ω0ξ
′
1 ξ2Ω0ξ

′
2

]
+RT

)−1
,

where RT = OP (1). Because (1 − T−2ακ2)/(2κ2) → ∞ as (κ2, T ) → (0,∞), it follows that
the factor MT (v1, v1|u2, v, w, u) = M11 −M12M

−1
22 M21 = M11.2 satisfies

MT (v1, v1|u2, v, w, u)−1 = M−1
11.2 = M11 =⇒ 0 as (κ2, T )→ (0,∞),

and therefore log det(SSRT (ψ)) =⇒∞ if m = k.

5.8 Proof of Theorem 4(ii): the boundary sets N bd
mn(κ2, κ) for n ≤ m

We fix κ2 < η, assume κ < η − κ2, and let (κ, T ) → (0,∞). The set N bd
mn(κ2, κ) with

−1 ≤ n ≤ m ≤ k is defined by the inequalities

|δm + 1/2| ≤ κ, φn−1 ≤ −1/2− κ2, and − 1/2 + κ2 ≤ φn.

There is only one near critical process with index v = δm so we let κv = κv = κ. The
stationary regressors are given by the indices δm+1, . . . , δk−1 and φn, . . . , φk−1 with minimal
value

u = min(φn, δm+1) = min(φn, δm + b) ≥ min(−1/2 + κ2,−1/2− κ+ η) = −1/2 + κ2,

and the nonstationary processes given by indices δ−1, . . . , δm−1, φ−1, . . . , φn−1 with a maximal
value

w = max(δm−1, φn−1) ≤ max(δm−b,−1/2−κ2) ≤ max(−1/2+κ−η,−1/2+κ2) = −1/2−κ2,

so we let κu = κw = κ2. We consider two cases defined by n ≤ m < k and n ≤ m = k.
Proof of (64) on the sets N bd

mn(κ2, κ) for n ≤ m < k: In this case β′0⊥Xkt is stationary with
index u1 = δk > δm and β′0Xkt is stationary with index u2 = φk > φn. Then det(SSRT (ψ))
is, apart from the factor (detB0)

2, the determinant of a matrix of the form

MT ((u1, u2), (u1, u2)|v, w, u) = MT ((u1, u2), (u1, u2)|w, u) (77)

−MT ((u1, u2), v|w, u)MT (v, v|w, u)−1MT (v, (u1, u2)|w, u)
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Here log det(B′0MT ((u1, u2), (u1, u2)|w, u)B0) =⇒ `p(ψ) by (34); see also (73).
Next, MT ((u1, u2), v|w, u) = OP (1) by (35) and MT (v, v|w, u)−1 =⇒ 0 by (36). Thus,

the decomposition (77) shows that

`T,p(ψ) = log det(SSRT (ψ)) =⇒ `p(ψ).

Proof of (65) on the sets N bd
mn(κ2, κ) for n ≤ m = k: Here β′0⊥Xkt is near critical with

index v1 = δk and β′0Xkt is stationary with index u2 = φk > φn, such that, apart from a
factor (detB0)

2, det(SSRT (ψ)) is of the form

det(MT ((v1, u2), (v1, u2)|w, u)) = det(MT (v1, v1|w, u)) det(MT (u2, u2|v1, w, u)),

The first factor diverges due to (36) and the second satisfies

det(MT (u2, u2|v1, w, u)) =⇒ det(E(MT (u2, u2|u))) > 0

by Corollary 1. Thus, log det(SSRT (ψ)) =⇒∞.

5.9 Proof of Theorem 4(ii): the boundary sets N bd
mn(κ2, κ) for m < n

Again, we fix κ2 < η, assume κ < η − κ2, and let (κ, T )→ (0,∞). The set N bd
mn(κ2, κ) with

−1 ≤ m < n ≤ k + 1 is given by

|φm + 1/2| ≤ κ, δn−1 ≤ −1/2− κ2, and − 1/2 + κ2 ≤ δn.

There is one near critical process with index v = φm and we let κv = κv = κ. The
nonstationary regressors have indices φ−1, . . . , φm−1, δ−1, . . . , δn−1 with maximal index

w = max(φm−1, δn−1) = max(φm−b,−1/2−κ2) ≤ max(−1/2+κ−η,−1/2−κ2) = −1/2−κ2,

and the stationary processes have indices φm+1, . . . , φk−1, δn, . . . , δk−1 with minimal index

u = min(φm+1, δn) ≥ min(φm + b,−1/2 + κ2) ≥ min(−1/2− κ+ η,−1/2 + κ2) = −1/2 + κ2,

so κu = κw = κ2. We consider the three cases: (m,n) = (k, k + 1), m < n ≤ k, and
n = k + 1,m < k.

Proof of (66) on the set N bd
k,k+1(κ2, κ): In this case β′0⊥Xkt is nonstationary with index

w1 = δk and β′0Xkt is near critical with index v2 = φk. There are no stationary processes.
Then det(SSRT (ψ)) is, apart from the factor (detB0)

2,

det(MT ((w1, v2), (w1, v2)|w)) = det(MT (v2, v2|w1, w)) det(MT (w1, w1|w)).

The first factor diverges to infinity as (κ, T ) → (0,∞) by (36). Because 2w1 + 1 ≤ −2κ2,
the second factor satisfies det(MT (w1, w1|w)) ≥ det(T 2κ2M∗∗

T (w1, w1|w)), which diverges to
infinity by (29) of Lemma 3.

Proof of (67) on the sets N bd
mn(κ2, κ) for m < n ≤ k: In this case both β′0⊥Xkt and β′0Xkt

are stationary, and the proof is identical to that of (64), see (77).
Proof of (68) on the sets N bd

m,k+1(κ2, κ) for m < k: Here β′0⊥Xkt is nonstationary with
index w1 = δk, while β′0Xkt is stationary with index u2 = φk. Therefore SSRT (ψ) =
B0MT ((w1, u2), (w1, u2)|v, w, u)B′0 and

MT ((w1, u2), (w1, u2)|v, w, u) = A22 − A21A
−1
11 A12 = A22.1,
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where we use the notation

A11 = MT (v, v|w, u), A12 = MT (v, (w1, u2)|w, u), A22 = MT ((w1, u2), (w1, u2)|w, u).

The Woodbury matrix identity, see Magnus and Neudecker (1999, p. 11, eqn. (7)), then gives

A−122.1 = A−122 [A22 + A21A
−1
11.2A12]A

−1
22 .

We find from Lemmas 1 and 3 and Corollary 1 that

A∗∗22 = M∗∗
T ((w1, u2), (w1, u2)|w, u) = OP (1),

A∗∗−122 = OP (1),

A∗12 = M∗
T (v, (w1, u2)|w, u) = OP ((1 + log T )2T κ),

A−111.2 = OP (
2κ

1−N−2κ
) for N = Tα.

Because 2w + 1 ≤ −2κ2, we then find that

A−122.1 = T 2w+1A∗∗−122.1 = OP (T−2κ2(1+
2κ

1−N−2κ
(1+log T )4T 2κ)) = oP (1) as (κ, T )→ (0,∞).

This implies that det(SSRT (ψ)−1) =⇒ 0, and hence `T,p(ψ) = log det(SSRT (ψ)) =⇒ ∞ as
(κ, T )→ (0,∞).

5.10 Proof of Theorem 4(iii): the interior sets N int
mn(κ)

We now fix κ and κ2 and let T →∞. The set N int
mn(κ) is defined by

max(δm−1, φn−1) ≤ −1/2− κ and − 1/2 + κ ≤ min(δm, φn).

The nonstationary regressors (indices δ−1, . . . , δm−1, φ−1, . . . , φn−1) have maximal index
w = max(δm−1, φn−1) ≤ −1/2−κ, and the stationary regressors (indices δm, . . . , δk−1, φn, . . . , φk−1)
have smallest index u = min(δm, φn) ≥ −1/2 + κ. Thus, κu = κw = κ and there are no near
critical processes.

We consider three cases: n ≤ m ≤ k, n < m = k + 1, and n = m = k + 1.
Proof of (69) on the sets N int

mn(κ) for n ≤ m ≤ k: In this case β′0⊥Xkt and β′0Xkt are
both stationary with indices u1 = δk and u2 = φk. Therefore

det(SSRT (ψ)) = det(B0MT ((u1, u2), (u1, u2)|w, u)B′0) =⇒ `p(ψ)

as T →∞, see (34).
Proof of (70) on the sets N int

k+1,n(κ) for n < k + 1: Here β′0⊥Xkt is nonstationary with
index w1 = δk and β′0Xkt is stationary with index u2 = φk. Then, apart from (detB0)

2,
det(SSRT (ψ)) is given by

det(MT ((w1, u2), (w1, u2)|w, u)) = det(MT (u2, u2)|w, u)) det(MT ((w1, w1)|w, u2)).

The first factor converges to `p(ψ), see (34), and the last one diverges due to lack of normal-
ization, see (29) of Lemma 3. Thus, log det(SSRT (ψ)) =⇒∞ as T →∞.

Proof of (71) on the set N int
k+1,k+1(κ): In this case all variables are nonstationary, so that

log det(SSRT (ψ)) = log det(B0MT ((w1, w2), (w1, w2)|w)B′0) =⇒∞

as T →∞, due to lack of normalization, see Lemma 3.
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