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Abstract

We study inference for the local innovations of Itô semimartingales. Specifically, we construct
a resampling procedure for the empirical CDF of high-frequency innovations that have been stan-
dardized using a nonparametric estimate of its stochastic scale (volatility) and truncated to rid
the effect of “large” jumps. Our locally dependent wild bootstrap (LDWB) accommodate issues
related to the stochastic scale and jumps as well as account for a special block-wise dependence
structure induced by sampling errors. We show that the LDWB replicates first and second-order
limit theory from the usual empirical process and the stochastic scale estimate, respectively, as well
as an asymptotic bias. Moreover, we design the LDWB sufficiently general to establish asymptotic
equivalence between it and and a nonparametric local block bootstrap, also introduced here, up to
second-order distribution theory. Finally, we introduce LDWB-aided Kolmogorov-Smirnov tests for
local Gaussianity as well as local von-Mises statistics, with and without bootstrap inference, and
establish their asymptotic validity using the second-order distribution theory. The finite sample
performance of CLT and LDWB-aided local Gaussianity tests are assessed in a simulation study as
well as two empirical applications. Whereas the CLT test is oversized, even in large samples, the
size of the LDWB tests are accurate, even in small samples. The empirical analysis verifies this
pattern, in addition to providing new insights about the distributional properties of equity indices,
commodities, exchange rates and popular macro finance variables.
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1 Introduction

Itô semimartingales comprise an important class of continuous time processes that are widely used in

finance and economics, among others, to describe the evolution of financial asset prices, exchange rates,

interest rates, commodities, asset return volatility, derivatives prices, volume of trades, innovations in

aggregate consumption as well as network traffic. This broad class of processes include jump-diffusions

as the, unequivocally, most commonly adopted subclass of models across a variety of applications,

see e.g., Andersen & Benzoni (2012) and many references therein. This subclass, for specificity,

characterizes the innovations to the process of interest as a stochastic differential equation of the form,

dZt = αtdt+ σt−dWt + dYt, (1)

where the drift αt and volatility σt are processes with càdlàg paths, Wt is a standard Brownian

motion and Yt is an Itô semimartingale of the pure-jump type (formal assumptions are given below).

The model in (1) allows Zt to follow a drift, subject to innovations of the mixed Gaussian type (σt

being the stochastic mixing scale) and display larger, and more infrequent, jumps. Moreover, by

allowing for correlation between the increments dσt and dZt to be correlated, the model can capture

leverage or volatility feedback effects, working through either continuous or discontinuous (or jump)

channels. Importantly, despite allowing for general continuous and discontinuous sample paths as well

as correlation between the various components of the model, the specification (1) is consistent with

no arbitrage in financial markets, e.g., Back (1991) and Delbaen & Schachermayer (1994).

Despite the fact that the behavior of (1) may be very complex at longer time horizons, its structure

simplifies considerably at high sampling frequencies. To see this, suppose that t is restricted to the

interval [0, 1], and we consider its (infill) asymptotic behavior for some shrinking time interval from t

to t + sh with h → 0, then the Brownian motion will dominate the drift and the jump components,

provided that the stochastic scale, σt, is non-vanishing. That is, for fixed 0 ≤ t < s ≤ 1,

h−1/2Zt+sh − Zt
σt

d−→W ′t+s −W ′s, as h→ 0, (2)

where W ′t is a standard Brownian motion (again, technical details are given below). Hence, (2) high-

lights that the model in (1) is locally mean-zero and mixed Gaussian with stochastic scale, illustrating

that the model is capable of generating fat-tail returns, even at high-sampling frequencies, through

the mixture-of-distributions effect, e.g., Clark (1973). Moreover, it makes strong predictions about the

local distributional properties of the standardized innovations; namely Gaussianity. This assumption is

fundamental, not only when describing the dynamics of asset and state variables (such as those listed

above) as well as when pricing derivatives, but also for many multivariate problems where correlations

are critical to the analysis, e.g., portfolio allocation. The intricate relation (2) facilitates testing of

this fundamental assumption. This feature is important, especially since local Gaussianity rules out

another class of Itô semimartingales of the pure-jump type, which has recently been demonstated,
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using different nonparametric techniques, to provide an accurate description of the local distributional

properties of various assets at high sampling frequencies, see e.g., Todorov & Tauchen (2011b), Jing,

Kong & Liu (2012), Andersen, Bondarenko, Todorov & Tauchen (2015), and Hounyo & Varneskov

(2017). Such pure-jump semimartingales may be characterized similarly to (1) with, however, the

Brownian increments replaced by a Lévy jump process of infinite variation. Under general conditions,

the latter can be shown to be locally equivalent to a stable process, St, with activity (or tail) index

1 < β < 2, e.g., Todorov & Tauchen (2012). As is illustrated by Figure 1, a stable distribution with

activity index lower than the Gaussian boundary case β = 2 is characterized by having fatter, possibly

asymmetric, tails and larger excess kurtosis than a comparable Gaussian distribution. Hence, the

selection between modeling paradigms – jump-diffusions and pure-jump semimartingales – amounts

to testing whether the local (and standardized) increments at high sampling frequencies are better

described by a Gaussian or stable distribution with 1 < β < 2. If these increments, indeed, are stable,

this alters the way we need to study a plethora of economic phenomena, exemplified by the paramet-

ric, using stable distribution settings, analyses of asset returns, e.g., Mandelbrot (1961, 1963), Fama

(1963), Fama & Roll (1968) and, more recently, Carr, Geman, Madan & Yor (2002) and Kelly & Jiang

(2014); option pricing, e.g., Carr & Wu (2003, 2004) and Andersen, Fusari, Todorov & Varneskov

(2018); volatility modeling, e.g., Barndorff-Nielsen & Shephard (2001), Carr, Geman, Madan & Yor

(2003) and Todorov, Tauchen & Grynkiv (2014); network traffic, e.g., Mikosch, Resnik, Rootzen &

Stegeman (2002); and electricity prices, e.g., Klüppelberg, Meyer-Brandi & Schmidt (2010). Moreover,

Aı̈t-Sahalia & Jacod (2009) and Todorov & Tauchen (2011a), among others, show that the magnitude

of β is essential for the estimation of, and inference on, risk measures such as power variation.

In this paper, we seek to draw inference on the local distributional properties of Zt. This is

particularly challenging in the present setting vis-a-vis (1), since Zt, in addition to exhibiting local

distributional properties that may either be Gaussian or stable, can have a stochastic drift, αt, a

stochastic scale, σt, well as “residual” jumps, Yt. Specifically, we consider bootstrap inference based

on the empirical CDF statistic by Todorov & Tauchen (2014), which, asymptotically, recover the

distribution of the locally leading term, Wt or St, by nonparametrically standardizing and truncating

high-frequency increments of Zt in its construction. While the standardization and truncation alleviate

estimation errors generated by σt and Yt, respectively, to recover information about the locally leading

term, they show that a bias-correction is generally needed and develop asymptotic central limit theory

for the first-order estimation error – its empirical process – as well as the (higher-order) estimation

sampling error that arises from having replaced the unobservable scale, σt, with a nonparametric

estimate. This second-order distribution theory is utilized in designing a Kolmogorov-Smirnov (KS)

test for local Gaussianity. However, despite having strong theoretical appeal, the KS test performs

unstably, and often unsatisfactory, in their finite sample Monte Carlo study, rejecting (wrongfully)

either 10.3% or 32.8% of the times when the nominal size is 1% or 5%, respectively, thus highlighting

the need for improved inference and testing procedures. The bootstrap represents a natural alternative

to inference based on central limit theory. However, in addition to facing the same challenges as
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Todorov & Tauchen (2014), the bootstrap procedures, we seek to develop, will not only need to

replicate the first-order limit theory, but also account for the bias and the second-order distribution.

This combination of issues is unprecedented in the bootstrap literature.

The first contribution of the paper is to provide a locally dependent wild bootstrap (LDWB) pro-

cedure that enables inference on the local distribution of the leading term of Zt. To this end, following

to the discussion above, we accommodate issues related to the stochastic scale and residual jumps as

well as design the bootstrap to account for a special block-wise dependence structure created by the

sampling errors that arise when replacing σt with a nonparametric estimate. By accounting for such

features, we show that the LDWB is not only asymptotically valid for the first-order distributional

properties, the empirical process limit, but also for the second-order distribution and it accommodates

the bias. Second, we show that our LDWB framework is general enough to nest a nonparametric local

block bootstrap (NLBB), also developed in this paper, thereby establishing asymptotic equivalence be-

tween two separate bootstrap paradigms up to a second-order distribution, in a general semimartingale

setting. Third, we utilize the bootstrap in designing new Kolmogorov-Smirnov tests for local Gaus-

sianity and establishes their asymptotic properties. Fourth, we design von-Mises statistics based on

nonparametrically standardized and truncated high-frequency returns, provide a LDWB procedure for

such and establish their asymptotic properties. Both are new to high-frequency financial econometrics

and both rely on the second-order distribution theory for the LDWB.

The theoretical contributions of this paper represent advances for two different literatures; bootstrap

inference for empirical processes and high-frequency econometric inference and hypothesis testing.

First, our bootstrap is related to the dependent wild bootstrap procedures in Shao (2010) and Doukhan,

Lang, Leucht & Neumann (2015), who consider inference on the time series mean of a stationary

dependent process and its empirical process, respectively, as well as the block bootstraps in, among

others, Bickel & Freedman (1981), Bühlmann (1994), and Naik-Nimbalkar & Rajarshi (1994), who

consider inference for empirical processes in either i.i.d. or stationary and dependent settings. In

particular, and relative to previous bootstraps, the LDWB accommodate non-stationarities in the

increments of the observed process through σt and Yt, a special block-wise dependence structure,

arising from nonparametric standardization errors, and, finally, it asymptotically replicates first and

second-order distribution theory. Moreover, we specify the external random variables in the design

sufficiently general to establish asymptotic equivalence of the LDWB and NLBB, up to second-order

distribution theory. Such results are hitherto not available in the bootstrap literature, even under

simplifying assumptions for Zt. In relation to the high-frequency financial econometrics literature,

we provide new (bootstrap) inference techniques for local distributions in infill asymptotic settings,

introduce local von-Mises statistics to the literature (with and without the bootstrap), as well as

provide new nonparametric bootstrap-aided tests for local Gaussianity. The contributions closest to

ours are Todorov & Tauchen (2014), as explained above, and the bootstraps for power variations in

Gonçalves & Meddahi (2009), Hounyo & Varneskov (2017), Hounyo (2018), and Dovonon, Gonçalves,

Hounyo & Meddahi (2018), who consider either local Gaussian or local stable settings. It is important
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to note, however, that direct adaptations of their bootstrap designs will result in inference procedures

that looses all dependence on the original data; see Remark 3 and Appendix B below.1

In addition to the theoretical contributions, we examine the finite sample properties of Kolmogorov-

Smirnov tests for local Gaussianity based on either the central limit theory (CLT) in Todorov &

Tauchen (2014), the LDWB or the NLBB. Consistent with Todorov & Tauchen (2014), we find severe

size distortions for the CLT-based test, even in large samples. In contrast, the LDWB-aided test enjoys

accurate size, even in small samples, as well as good power properties. The NLBB performs similarly

to the LDWB, albeit with slightly worse size properties, showing the benefits of our general bootstrap

framework. To illustrate the usefulness of the test, we consider two empirical application. First,

we test for local Gaussianity in high-frequency futures data on three different asset classes; equity

indices, foreign exchange rates and commodities. Interestingly, we find the high-frequency innovations

to equity indices and commodities are well-described as Gaussian. In contrast, we strongly reject

local Gaussianity for the exchange rate series, which, on the other hand, are better described as

locally stable with tail index in the 1.80 to 1.90 range. Moreover, we verify the size results from the

simulation study; the CLT rejects uniformly more often than the LDWB-aided test for equity indices

and commodities. Second, we demonstrate that the bootstrap procedures are not only applicable to

high-frequency data, but may be used more generally as a nonparametric test for local Gaussianity

that is robust to heteroskedasticity (or stochastic volatility).2 Specifically, we test the distributional

properties of four series that are widely used in the macro finance literature, namely the VIX, TIPS,

default spread and the term spread. Interestingly, we find strikingly different conclusions from the

CLT and LDWB tests. Whereas the former rejects local Gaussianity for all series, the LDWB test

only rejects for the VIX and the term spread. Since the latter is consistent with visual evidence, and

the critical values vis-a-vis test statistics show borderline rejections for the CLT test and the TIPS

and default spread series, we attribute the different results, again, to the finite sample size differences

between the two testing procedures, with the LDWB test being accurate.

The paper proceeds as follows. Section 2 introduces the semimartingale framework, the statistics

of interest and reviews some critical results. Section 3 introduces the locally dependent wild bootstrap

procedure and establishes its asymptotic properties as well as its equivalence to the nonparametric local

block bootstrap. Section 4 provides new bootstrap-aided Kolmogorov-Smirnov tests for local Gaus-

1Our paper is also related to Andersen, Bollerslev & Dobrev (2007), who consider testing for Gaussianity using daily, or
other sufficiently sparse returns, that are standard by realized measures constructed from high-frequency data. Using a
sequential procedure, they accommodate jumps and stochastic volatility in their design. However, their testing framework
is based on a long time span of “standardized” returns over fixed time spans as well as high-frequency observations,
whereas we exclusive rely on the latter. Hence, our time interval is generally shrinking and we utilize local spot volatility
measure. Both are crucial for the feasible limit theory and facilitates testing without a long time span of data. Finally,
and importantly, we carry out testing using bootstrap procedures.

2This represents an alternative to Gaussianity tests based on parametric methods, which are either carried out implicitly
when specifying fully parametric heavy-tailed GARCH or stochastic volatility models for, among others, asset return
dynamics or explicitly when using such parametric specifications for the stochastic volatility part of asset returns only,
in combination with GMM-based tests for the standardized innovations, e.g., Bontemps & Meddahi (2005). These
frameworks both rely on long span time series and asymptotics as well as parametric specifications, whereas our fully
nonparametric test relies on infill asymptotics and high-frequency data.
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sianity and local von-Mises statistics. Section 5 contains the simulation study, and Section 6 provides

the empirical analysis. Finally, Section 7 concludes. Appendices A-C have additional assumptions,

theory, proofs, technical results and implementation details.

2 A General Semimartingale Framework

This section introduces a general class of semimartingales, the formal assumptions for the theoretical

analysis as well as provides examples of such processes in applied work. Moreover, we define the

empirical statistics of interest for the bootstrap analysis in the remainder of the paper.

2.1 Setup and Assumptions

Suppose the process Z is defined on a filtered probability space, (Ω,F , (Ft),P), where the information

filtration (Ft) ⊆ F is an increasing family of σ-fields satisfying P-completeness and right continuity.

Specifically, assume that Z obeys a semimartingale process that generalizes (1) and has the following

dynamics

dZt = αtdt+ σt−dSt + dYt, 0 ≤ t ≤ 1, (3)

where αt and σt are (Ft)-adapted processes with càdlàg paths, Yt is a pure-jump process of finite

activity, and St is a stable process with stability index 1 < β ≤ 2, whose (log-)characteristic function

is defined as

lnE
[
eiuSt

]
= −t|cu|β (1− iγ sign(u) tan(πβ/2)) , (4)

where γ ∈ [−1, 1] controls its skewness. We have depicted the density of St for various choices the

activity index β and skewness γ in Figure 1, illustrating how the two affect the skewness, kurtosis

and, in particular, the tails of the density. Note that for β = 2 and c = 1/2, the semimartingale

process in (3) reduces to the jump-diffusion model in (1). When 1 < β < 2, on the other hand, Zt

is a pure-jump semimartingale of infinite variation for which the innovations to St still dominate the

drift and “residual” jump process, Yt, at fine time scales. That is, under the regularity conditions to

be outlined below, we have h−1/β(Zt+sh − Zt)/σt
d−→ S′t+s − S′t as h → 0 with convergence holding

under the Skorokhod topology on the space of càdlàg functions, where S′t is a Lévy process with a

distribution identical to the one implied by (4). Yet, despite similar scaling properties, the fine scale

behavior generated by (4) allows for much richer dynamics relative to a standard Gaussian.

Before proceeding to the assumptions, let R+ = {x ∈ R : x ≥ 0} and (E, E) denote an auxiliary

measurable space on the original filtered probability space (Ω,F , (Ft),P). Moreover, going forward,

we write St = Wt when β = 2 and c = 1/2 to emphasize that the model is a jump-diffusion.

Assumption 1. Zt satisfies (3) with the following conditions on its components:

(a) The process Yt obeys

Yt =

∫ t

0

∫
E
δY (s, x)µ(ds, dx),
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where µ(ds, dx) is a Poisson measure on the space R+ × E, which is characterized by the Lévy

measure ν(dx), and δY (t, x) is some predictable function on Ω× R+ × E.

(b) |σt|−1 and |σt−|−1 are strictly positive.

(c) σt is a semimartingale process of the form

σt = σ0 +

∫ t

0
α̃udu+

∫ t

0
σ̃udSu +

∫ t

0
σ̃′udW

′
u +

∫ t

0

∫
E
δσ(s, x)µ(ds, dx),

where W ′t is a standard Brownian motion independent St, irrespective of β; the triplet α̃t, σ̃t

and σ̃′t are processes with càdlàg paths; and δσ(t, x) is some predictable function on Ω×R+×E.

Moreover, σ̃t and σ̃′t are both Itô semimartingales with càdlàg paths and whose jumps being

integrals of some predictable functions, δσ̃(t, x) and δσ̃
′
(t, x), with respect to µ(ds, dx).

(d) There exists a sequence of stopping times Tp on the space E, increasing to infinity. Moreover, for

each p, φp(x) is a non-negative function satisfying ν(x : φp(x) 6= 0) <∞ such that, for t ≤ Tp,

|δY (t, x)| ∧ 1 + |δσ(t, x)| ∧ 1 + |δσ̃(t, x)| ∧ 1 + |δσ̃′(t, x)| ∧ 1 ≤ φp(x).

Assumption 1 deserves a few comments. First, the regularity conditions are similar to those imposed

by Todorov & Tauchen (2014, Assumption B). The only two differences are that we refrain from

imposing St = Wt here, but will rather make this restriction later, and we allow increments of St to

enter σt in 1(c). The main reason for these minor departures is that we wish to state a set of unified

conditions under which all subsequent asymptotic results hold, in conjunction with restrictions on β.

Todorov & Tauchen (2014) uses two separate sets of regularity conditions for their consistency and

central limit theory (CLT) analysis. Since we are mainly concerned with inference using bootstrap

methods, we will invoke the stronger of those assumptions from the outset.3

Second, the conditions in Assumption 1 are very mild. The Itô semimartingale condition on the

stochastic scale σt is satisfied in most applications. Moreover, there are no restrictions on the depen-

dence between the residual jumps, Yt, and the triplet (St, αt, σt)
′. This implies that Zt not necessarily

inherits the tail properties of St at all frequencies and may be driven by a tempered stable process,

which can display tail behavior that is very different from that of a stable process.

Third, as examples of jump-diffusion models are plentiful in the literature (see the introduction

for references), we end this subsection by providing examples of models that obeys a subclass of the

models in (3) with 1 < β < 2, and which have been successfully applied to describe processes in

economics and finance, thus providing powerful alternatives to models with local Gaussianity.

Example 1. Barndorff-Nielsen & Shephard (2001) introduce a non-Gaussian OU process for volatility,

and Todorov et al. (2014) considers an exponential version of the model, thus accommodating a broader

3Note that the conditions in Assumption 1 are very similar to those in related work, e.g., Aı̈t-Sahalia & Jacod (2010),
Todorov & Tauchen (2011a), Hounyo & Varneskov (2017) as well as references therein.
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class of leading jump processes. For illustration, let µ and κ be positive constants, then the exponential

version may be written as lnσt = µ + Vt with dVt = −κ + dLt where the driving Lévy process, Lt,

behaves locally (as h→ 0) like a stable process with characteristic function (4).

Example 2. Let St = St(β, γ) be a β-stable random variable with skewness γ. Moreover, let r and q

be the risk-free and dividend rate, respectively, and let µ be a convexity adjustment, then the log stable

option pricing model by Carr & Wu (2003) is defined as dZt = (r − q + µ)dt+ σdSt.

Example 3. The framework in (3) and (4) accommodate a general class of time changed stochastic

processes. Specifically, we can write Zt = Xzt where Xt is a Lévy process and zt is an increasing

process with càdlàg paths. In such a setting, Monroe (1978) shows that all semimartingale processes

may be written as a time-changed Brownian motion, and Sato (1999) that Lévy processes subordinated

by a positive Lévy process yields new Lévy processes. Wu (2008) give several practical examples of such

processes, and Clark (1973) and Ané & Geman (2000), among others, use the time-change framework

to jointly model the number of trades, transaction times and asset returns.

2.2 Empirical Statistics of Interest

First, let Zt be observed at an equidistant time grid ti ∈ [0, 1], for i = 0, . . . , n, and write the high-

frequency increments as ∆n
i Z = Zti − Zti−1 .4 Next, divide the fixed time interval into blocks, each of

which containing kn increments with kn →∞ and kn/n→ 0. For each block, we compute an estimate

of the spot variation σ2
t by means of the local bipower variation statistic,

V̂n,j =
π

2

n

kn − 1

jkn∑
i=(j−1)kn+2

∣∣∆n
i−1Z

∣∣ |∆n
i Z| , j = 1, . . . , bn/knc . (5)

Despite V̂n,j being consistent for σ2
t , we will need to use a modified estimator to scale the high-

frequency increments and forming the empirical CDF. Specifically, as we need independence between

the ith increment ∆n
i Z in the numerator and the denominator, we will exclude said increment as

V̂n,j(i) =



kn−1
kn−3 V̂n,j −

π
2

n
kn−3 |∆

n
i Z|

∣∣∆n
i+1Z

∣∣ for i = (j − 1) kn + 1;

kn−1
kn−3 V̂n,j −

π
2

n
kn−3

(∣∣∆n
i−1Z

∣∣ |∆n
i Z|+ |∆n

i Z|
∣∣∆n

i+1Z
∣∣) ,

for i = (j − 1) kn + 2, . . . , jkn − 1;

kn−1
kn−3 V̂n,j −

π
2

n
kn−3

∣∣∆n
i−1Z

∣∣ |∆n
i Z| , for i = jkn.

(6)

Now, to form the empirical CDF and devise its feasible CLT, Todorov & Tauchen (2014) selects only

the first mn increments on each block and require 1 > mn/kn → 0 as n → ∞. Intuitively, this

is to ensure that the estimation errors from V̂n,j(i), both its finite sample bias and variance, vanish

4The definitions of the high-frequency statistics, including notation, follow Todorov & Tauchen (2014) closely.
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sufficiently fast upon averaging relative to the contribution of each block to the empirical CDF. This

implies that the total number of increments used for estimation is given by

Nn(α,$) =

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1


√
n |∆n

i Z|√
V̂n,j

≤ αn1/2−$

 , (7)

where α > 0 an $ ∈ (0, 1/2), and that the empirical CDF is formed as,

F̂n(τ) =
1

Nn(α,$)

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1


√
n∆n

i Z√
V̂n,j (i)

≤ τ

 1


√
n |∆n

i Z|√
V̂n,j

≤ αn1/2−$

 . (8)

In addition to standardizing the increments by the stochastic scale, the empirical CDF in (8) truncates

the increments of Zt to reduce the impact of larger jumps on F̂n(τ). While the latter is strictly not

needed to obtain consistency and CLT for the latter, the truncation serves to reduce the higher-order

bias in F̂n(τ) due to jumps. Additionally, note that Nn(α,$)/(bn/kncmn)
P−→ 1. Finally, before

stating the asymptotic results due to Todorov & Tauchen (2014), the following assumption collects

rate conditions on the tuning parameters determining the block sizes, kn and mn.

Assumption 2. mn and kn satisfy either of the following two conditions as n→∞,

(a) kn � nq, for some q ∈ (0, 1) and mn →∞;

(b) kn � nq, for some q ∈ (0, 1/2) and mn/kn → 0 such that (nmn)/k3
n → λ ≥ 0.

Lemma 1. If Assumptions 1 and 2(a) hold, then, uniformly in τ over compact subsets of R,

F̂n(τ)
P−→ Fβ(τ),

where Fβ(τ) is the CDF of
√

2/π S1
E(S1) and S1 is the value of the β-stable process St at t = 1. In

particular, F2 (τ) equals the CDF of a standard Gaussian random variable Φ(τ).

Lemma 2. If Assumptions 1 and 2(b) hold, and let St = Wt, i.e., Zt be a jump-diffusion, then, locally

uniformly in τ over compact subsets of R,

F̂n(τ)− Φ(τ) = Ĥn,1(τ) + Ĥn,2(τ) +H3(τ)/kn + op(1/kn)

where
√
bn/kncmn

(
Ĥn,1(τ),

√
kn/mnĤn,2(τ)

) d−→
(
H1(τ), H2(τ)

)
with H1(τ) and H2(τ) being two

mean-zero independent Gaussian processes with covariance functions,

Cov[H1(τ1), H1(τ2)] = Φ(τ1 ∧ τ2)− Φ(τ1)Φ(τ2)

Cov[H2(τ1), H2(τ2)] =

(
τ1Φ′(τ1)

2

τ2Φ′(τ2)

2

)((π
2

)2
+ π − 3

)
,

(9)
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for τ1, τ2 ∈ R. Finally,

H3(τ) =
τ2Φ′′(τ)− τΦ′(τ)

8

((π
2

)2
+ π − 3

)
. (10)

Lemma 1 shows that the CDF of standardized increments ∆n
i Z may be estimated consistently,

as long as their fine scale behavior belongs to the class stable processes described by (4). Lemma 2

improves this result for the jump-diffusion model, showing that a CLT holds with a rate of convergence

that may arbitrarily close to
√
n, depending on mn and kn. The limiting distribution, however, are

affected by the nonparametric standardization of the increments. For specificity, whereas H1(τ) is

well-known from Donsker’s theorem for empirical processes, e.g., van der Vaart (1998), the additional

components H2(τ) and H3(τ) are lower-order estimation errors and an asymptotic bias, respectively,

induced by use of the estimate V̂n,j rather than the latent σt. Importantly, all components of the limit

depends only on τ , not on σt, meaning that this result is amenable to feasible inference.

By utilizing their CLT result in Lemma 2, Todorov & Tauchen (2014) design a Kolmogorov-Smirnov-

type test for local Gaussianity of Zt, i.e., H0 : St = Wt, as

K̂Sn(A) = sup
τ∈A

√
Nn(α,$)

∣∣∣F̂n (τ)− Φ (τ)
∣∣∣ , (11)

where A⊂ R\0 denotes a finite union of compact sets with positive Lebesgue measure. The critical

region of the test is Cn(θ,A) = {K̂Sn(A) > qn (θ,A)}, where θ ∈ (0, 1) , and qn(θ,A) is the (1− θ)th
quantile of

sup
τ∈A

∣∣∣∣H1 (τ) +

√
mn

kn
H2 (τ) +

√
mn

kn

√
n

kn
H3(τ)

∣∣∣∣ .
The test for local Gaussianity, K̂Sn(A), similarly to the empirical CDF, contain two additional terms

compared with standard Kolmogorov-Smirnov distribution testing, H2(τ) and H3(τ), arising from

the use of nonparametric, and noisy, estimates of the stochastic scale, σt, when standardizing the

increments. Whereas the second term is of strictly lower order by mn/kn → 0 as n → ∞, the bias

term has first-order impact since
√

(mnn)/k3
n →

√
λ ≥ 0. Hence, not only does the limit theory in

Lemma 2 aid the correction of systematic testing errors by accounting for H3(τ), the explicit utilization

of higher-order asymptotic theory through H2 (τ) may generate improved testing properties in finite

samples, where the ratio mn/kn can be non-trivial. However, when gauging the size results for their

test in Todorov & Tauchen (2014, Table 1), K̂Sn(A) is seen to be very sensitive to block size kn and

may display large distortions, e.g., rejecting either 10.3% or 32.8% of the times when the nominal size

is 1% or 5%, respectively, highlighting the need for improved testing procedures.

In what follows, we will study inference for the empirical CDF as well as testing for local Gaussianity

using bootstrap methods to restore the size properties of such tests. However, Lemma 2 shows that

this is particularly challenging in the present setting since such bootstrap procedures need not only

to replicate the first-order distribution theory, reflected by H1(τ), asymptotically, but also to account

for the asymptotic bias, H3(τ), as well as to replicate the higher-order limit theory, H2(τ).

9



Remark 1. The central limit theory is provided on compact sets of τ , A⊂ R\0, since the error in

the estimation of the CDF for τ → ±∞ due to large jumps is affected by truncation. As a result, the

bootstrap methods, we develop below, will similarly apply to the set A.

Remark 2. Market microstructure noise is a concern when sampling the observations at very high

frequencies. For example, more frequently than every minute or every 15 ticks, see, e.g., Hansen

& Lunde (2006) and Bandi & Russell (2008). Suppose, in this case, that the observed increments

decompose ∆n
i Z̃ = ∆n

i Z + ∆n
i N where Nti, i = 1, . . . , n are i.i.d. random variables, defined on a

product extension of the original probability space and are independent of the filtration F . Then,

Todorov & Tauchen (2014) shows that the empirical CDF converges to the CDF of standardized noise

increments, which differs from Φ(τ), thus providing a different violation of local Gaussianity.

3 Bootstrapping the Empirical CDF at High Frequency

In this section, we introduce a new and general resampling procedure - the locally dependent wild

bootstrap - to draw inference on the empirical CDF in (8) as well as for testing whether Zt is better

described by a jump-diffusion model (1) against the alternative in (3) with 1 < β < 2, that is, to

test local Gaussianity against distributions with fatter tails and, possibly, skewness. Specifically, the

bootstrap resamples centered, standardized and dependent observations using a (possibly, dependent)

external random variable. We establish the asymptotic properties of the procedure as well as discuss

the similarities and differences between related bootstrap procedures in the classical time series and

empirical process literature, in particular, a nonparametric local block bootstrap.

3.1 Bootstrap Notation

As is standard in the bootstrap literature, P∗, E∗ and V∗ denote the probability measure, expected

value and variance, respectively, induced by the resampling and is, thus, conditional on a realization

of the original time series. For any bootstrap statistic Z∗n ≡ Z∗n ( · , ω) and any (measurable) set A,

we write P∗(Z∗n ∈ A) = P∗(Z∗n ( · , ω) ∈ A) = Pr (Z∗n( · , ω) ∈ A|Xn), where Xn denotes the observed

sample. Moreover, we say Z∗n
P∗→ 0 in probability-P (or Z∗n = o∗p(1) in probability-P) if for any ε > 0,

δ > 0, limn→∞ P[P∗(|Z∗n| > δ) > ε] = 0. Similarly, Z∗n = O∗p(1) in probability-P if for all ε > 0 there

exists an Mε < ∞ such that limn→∞ P[P∗(|Z∗n| > Mε) > ε] = 0. Finally, for a sequence of random

variables (or vectors) Z∗n, a definition of weak convergence (convergence in distribution) in probability-

P is needed. Hence, we write Z∗n
d∗→ Z as n → ∞, if, conditional on the sample, Z∗n converges weakly

to Z under P∗, for all samples contained in a set with probability-P approaching one.

3.2 The Local Dependent Wild Bootstrap for the Empirical CDF

The framework in Section 2 presents several challenges that are unprecedented in the bootstrap liter-

ature, e.g., the combination of the general class processes in (3), the infill asymptotic setting and the
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need for replication of higher-order central limit theory. To overcome such challenges, we design a new

and general resampling procedure - the locally dependent wild bootstrap (LDWB) - which is inspired

by the dependent wild bootstraps (DWBs) in Shao (2010) and Doukhan et al. (2015), but, as will be

detailed below, differs in subtle, yet important ways, to remain valid in the present setting.

First, let us define

X(j−1)kn+i ≡ 1


√
n∆n

(j−1)kn+iZ√
V̂n,j ((j − 1) kn + i)

≤ τ

 1


√
n|∆n

(j−1)kn+iZ|√
V̂n,j

≤ αn1/2−$

 , (12)

for j = 1, . . . , bn/knc and i = 1, . . . ,mn, and use this to write

F̃n (τ) =
Nn (α,$)

bn/kncmn
F̂n (τ) =

1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

X(j−1)kn+i. (13)

The random increments and empirical CDF in (12) and (13), respectively, illustrate the differences

between the present bootstrap setting and the corresponding in Doukhan et al. (2015), who also

consider DWB inference for empirical processes. In our case, the problem is more challenging due to the

distributional properties of (3) may differ at coarse and fine time scales, depending on St and Yt, which

necessitates an infill asymptotic approach to estimation and the identification of the locally dominant

stochastic component, St. Moreover, the process (3) is allowed to have a stochastic scale (volatility,

if Gaussian), time-varying drift and display jumps, in contrast with the stationarity requirement for

the data generating process in Doukhan et al. (2015, Assumption A1). Third, the nonparametric

standardization of the increments in (12) creates a nonlinear mn-dependence within blocks (that is,

across i), which impact the bootstrap design as well as its asymptotic theory. In particular, and as

highlighted by Lemma 2, our local DWB need not only to replicate the first-order asymptotic theory, it

needs to account for an asymptotic bias as well as to replicate the higher-order limit theory, generated

by the nonparametric estimates of the stochastic scale used for the standardization.

Specifically, our LDWB resamples the centered, locally (and nonparametrically) standardized and

truncated increments in (12) as follows

X∗(j−1)kn+i = F̃n(τ) +
Nn(α,$)

bn/kncmn

(
X(j−1)kn+i − F̃n(τ)

)
v∗(j−1)kn+i, (14)

where v∗i , i = 1, . . . , n, is a sequence of external random variables subject to mild regularity conditions,

which are formalized below. The bootstrap variables in (14) may, then, be utilized in designing a new

inference procedure for the empirical CDF at high (i.e., infill) sampling frequencies as

F̂ ∗W,n(τ) =
1

Nn(α,$)

bn/knc∑
j=1

mn∑
i=1

X∗(j−1)kn+i
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= F̂n(τ) +
1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − F̃n(τ)

)
v∗(j−1)kn+i. (15)

The LWDB decomposes into the empirical CDF, F̂n(τ), capturing the“mean”of the bootstrap statistic

and an “innovation” aimed at capturing its distribution. The asymptotic properties of (15), however,

depend crucially on v∗i , and we impose the following, general, conditions:

Assumption DWB. The sequence of random variables v∗i , i = 1, . . . , n, is stationary, independent

of the observed sample path Xn and satisfies the follow regularity conditions:

(a) E[v∗i ] = 0, V[v∗i ]→ 1 and E[|v∗i |4] <∞.

(b) Cov(v∗i , v
∗
j )→ Ci,j for i 6= j where Cj,i ≥ 0 is a nonrandom constant.

(c) v∗i is bn-dependent with
∑bn/kncmn

r=1 Cov(v∗1, v
∗
r ) = O(bn) for some bn/mn → ρ ≥ 0 as n→∞.

Together with the decompositions in (14) and (15), Assumption DWB highlight some important

features of the LDWB. First, the centering of the external random variable in the resampling implies

that E∗[F̂ ∗W,n(τ)] = F̂n(τ), that is, the LDWB implicitly corrects for the asymptotic bias in the

empirical CDF. Second, time series dependence in X(j−1)kn+i plays a different role in our setting

compared with in Shao (2010) and Doukhan et al. (2015). Whereas they seek to replicate a lead-lag

covariance structure of the observations, needing a condition of the form Cov(v∗s , v
∗
r )→ 1 as n→∞,

dependence in the present setting is created by the unwarranted estimation errors in V̂n,j , which are

perfectly dependent within a given block j = 1, . . . , bn/knc, but independent across blocks, generating

a tradeoff between the rate of convergence, the asymptotic bias and the impact from the higher-order

distribution. Third, it is important to note that the leading impact from these estimation errors are

generated by Brownian increments (see Lemmas A.1-A.2 in the appendix), which have trivial lead-lag

dependence. Hence, we accommodate Cov(v∗i , v
∗
j ) → Ci,j where Cj,i ≥ 0 is a generic nonrandom

constant as well as dependence that does not match the blocks, i.e., the case bn/mn → 0. In fact,

in the infill asymptotic limit, since the stochastic scale in (3) is approximately constant over a block,

we allow v∗i ∼ i.i.d.(0, 1), subject to a bounded fourth moment. Fourth, we need to impose an upper

bound the dependence, bn/mn → % > 0, since bn controls the asymptotic order of the “noise” coming

from the nonparametric estimator V̂n,j in the resampling, similarly to mn in the original statistic.

Fifth, despite it strictly not being needed to replicate the distribution theory in Lemma 2, it may be

preferable designing the bootstrap with Cov(v∗i , v
∗
j

)
→ 1 and bn � mn, since, e.g., Lemma A.2(b) in

the appendix shows that this would aid the replication of higher-order covariance from the second-

order distribution term, H2(τ). Finally, whereas Doukhan et al. (2015) require v∗i to be Gaussian, we

avoid parameterizing its distribution. This is critical for the (asymptotic) analysis of the similarities

between the LDWB and a local nonparametric block bootstrap in the next section.

These features of the resampling, in conjunction with the standardization and truncation of the

increments in (12) allow us to accommodate the array of additional challenges in the present setting
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and replicate the asymptotic inference of the bias-corrected empirical process,

Ĝn(τ) =
√
Nn(α,$)

(
F̂n (τ)− Φ (τ)−H3(τ)/kn

)
, i.e. Gn(τ) ≡ H1(τ) +

√
mn

kn
H2(τ), (16)

using the LDWB in (15), hence, up to second order. This formalized in the following theorem.

Theorem 1. Suppose the conditions of Lemma 2 as well as Assumption DWB hold. Then, locally

uniformly in τ over compact subsets of R, it follows that

(a) F̂∗W,n(τ) ≡
√
Nn(α,$)

(
F̂ ∗W,n(τ)− F̂n(τ)

)
d∗−→ Gn(τ), in probability-P,

(b) supx∈R

∣∣∣P∗ (F̂∗W,n(τ) ≤ x
)
− P

(
Ĝn(τ) ≤ x

)∣∣∣ P−→ 0.

Theorem 1 demonstrates that our LWDB for nonparametrically standardized and truncated in-

crements replicates the asymptotic distribution of the bias-corrected empirical CDF statistic up to

second order. Not only is this feature achieved in the general setting (3), allowing for time-varying

drift, stochastic volatility and jumps in the underlying process of interest as well as mild conditions

on the external random variables, the central limit theory goes well-beyond the corresponding results

for the respective DWBs in Shao (2010) and Doukhan et al. (2015), who provide first-order limits,

which, in our setting, is equivalent to establishing F̂∗W,n(τ)
d∗−→ H1(τ), in probability-P. Similar com-

ments apply to classical results in the bootstrap literature for empirical processes, e.g., for the i.i.d

setup in Bickel & Freedman (1981) as well as for block bootstrap methods applied to stationary and

dependent processes in Bühlmann (1994) and Naik-Nimbalkar & Rajarshi (1994). Hence, both the

LDWB procedure as well as its second-order asymptotic theory are new to the bootstrap literature.

Furthermore, we formally analyze the similarities block bootstrap methods and the LDWB in the next

section. Finally, and as indicated in Section 2.2, the replication of second-order limit theory is very

important in the present setting, as it alleviates the inference errors due to the use of a nonparametric

spot volatility estimator V̂n,j , converging at a slower rate n1/4, instead of the latent σt.

Remark 3. Assumption DWB accommodates local Gaussian resampling, that is, v∗i ∼ N(0, 1). How-

ever, it is important to note that this bootstrap, using (14), is distinct from the local Gaussian bootstrap

for power variation statistics in Hounyo (2018), who resamples the increments ∆n
i Z and establishes

third-order refinements in a Brownian semimartingale setting. In fact, in Appendix B, we show that

the use of this “standard” local Gaussian resampling scheme looses all dependence on the original data

in the present setting and, thus, no longer provide bootstrap inference for the empirical CDF, but rather

can be interpreted as a simulation based inference procedure.

Remark 4. In addition to local Gaussian resampling, several locally dependent processes satisfies

Assumption DWB. Two examples, following Shao (2010) and Doukhan et al. (2015), see also the

bootstraps in Leucht & Neumann (2013) and Smeekes & Urbain (2014), are autoregressive (AR) and
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moving average (MA) processes, defined for i = 1, . . . , n as

v∗i = e−1/bnv∗i−1 + ξi and v∗i = ςi + . . . ςi−bn+1,

respectively, with ξi ∼ N(0, 1− e−2/bn) and ςi ∼ N(0, 1/bn) are both i.i.d. The finite sample properties

of both resampling procedures are examined in the simulation study.

3.3 The Local DWB vs The Nonparametric Block Bootstrap

Whereas DWB procedures are relatively new to the resampling literature, starting with Shao (2010),

block bootstrap methods for dependent processes have been actively researched since the seminal

contributions by Carlstein (1986), Kunsch (1989) and Liu & Singh (1992), who study various time series

problems, and by Bühlmann (1994) and Naik-Nimbalkar & Rajarshi (1994), who consider inference

for empirical processes. Hence, as a natural alternative to the LDWB, and inspired by the extant

literature, we propose a nonparametric local block bootstrap (NLBB). Moreover, we will formally

show that our LDWB is general enough to nest the NLBB, thus providing a theoretical link between

the two separate strands of the resampling literature, in a general setting.

First, for the design of the NLBB, we, once again, utilize that the original time series, X(j−1)kn+i

with j = 1, . . . , bn/knc and i = 1, . . . ,mn, has a special nonlinear block-dependence structure across

i for a given j, generated by the standardization with the nonparametric estimate V̂n,j . To this

end, define a sequence of blocks Bj = {X(j−1)kn+i; i = 1, . . . ,mn} for j = 1, . . . , bn/knc, then our

proposed resampling procedure draws bn/knc blocks randomly with replacement and patches them

together to form a bootstrap series, inspired by, e.g., the non-overlapping block bootstrap in Carlstein

(1986). The resampling, thus, preserves the mn-dependence within each block as well as the asymptotic

independence between blocks. To formalize the discussion, let Ij , j = 1, . . . , bn/knc, be i.i.d random

variables distributed uniformly on {1, . . . , bn/knc}, then we may write

X�(j−1)kn+i ≡ X(Ij−1)kn+i, i, . . . ,mn and j = 1, . . . bn/knc, (17)

and use these to define block bootstrap (BB) versions of F̃n(τ) and F̂n(τ) as

F̃ ∗BB,n(τ) =
1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

X�(j−1)kn+i, F̂ ∗BB,n(τ) =
bn/kncmn

Nn(α,$)
F̃ ∗BB,n(τ), (18)

respectively. Next, let pn = bn/knc be the number of blocks, then it is important to note that

representation (18) may equivalently be written using sequence of multinomial random variables with

probability 1/pn and number of trials pn, defined as ζ�pn,j , j = 1, . . . , pn. Specifically,

F̃ ∗BB,n(τ) =
1

bn/kncmn

bn/knc∑
j=1

ζ�pn,j

mn∑
i=1

X(j−1)kn+i (19)
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where ζ�pn,j signify the number of times the jth block, Bj , has been (re-)drawn randomly from the

total set of blocks. By the properties of multinomial random variables, it follows that

E[ζ�pn,j ] = 1, V[ζ�pn,j ] = 1− 1/pn, Cov(ζpn,j , ζpn,i) = −1/pn when i 6= j,

and, importantly, that
∑pn

j=1 ζ
�
pn,j

= pn. Now, by utilizing these properties and defining the external

random variable v�(j−1)kn+i = ζ�pn,j − 1 for i = 1, . . . ,mn across blocks j = 1, . . . , bn/knc, we may

rewrite the representation (19) using addition and subtraction as

F̃ ∗BB,n(τ) = F̃n(τ) +
1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − F̃n(τ)

)
υ�(j−1)kn+i, (20)

thus on the same form as the LWDB in (15). Indeed, the following lemma establishes that the sequence

of random variables v�(j−1)kn+i satisfy the regularity conditions imposed in Assumption DWB.

Lemma 3. Define Mn,j = {(j − 1)kn + i; i = 1, . . . ,mn} for the blocks j = 1, . . . bn/knc, then the

sequence of observations v�(j−1)kn+i, i = 1, . . .mn and j = 1, . . . , bn/knc satisfy,

(a) E[v�i ] = 0, V[v�i ] = 1− 1/pn and E[|v�i |4] <∞.

(b) Cov(v�i , v
�
g) = 1− 1/pn for i, g ∈Mn,j.

(c) Cov(v�i , v
�
g) = −1/pn for i ∈Mn,j, g ∈Mn,j′ and j 6= j′.

(d) v�i is mn-dependent with
∑bn/kncmn

i=1 Cov(υ�1, υ
�
i ) = o(mn).

Hence, Theorem 1 and Lemma 3 may be combined to show:

Corollary 1. Locally uniformly in τ over compact subsets of R, it follows that

(a) F̂∗BB,n(τ) ≡
√
Nn(α,$)

(
F̂ ∗BB,n(τ)− F̂n(τ)

)
d∗−→ Gn(τ), in probability-P,

(b) supx∈R

∣∣∣P∗ (F̂∗BB,n(τ) ≤ x
)
− P

(
Ĝn(τ) ≤ x

)∣∣∣ P−→ 0.

Lemma 3 and Corollary 1 are intriguing, demonstrating that the general class of LDWBs nests

the NLBB and, consequently, that the latter also replicates the second-order distribution theory for

the empirical CDF. The nesting result is related to prior results on the exchangeability of weighted

bootstraps for the empirical process. Specifically, in a setting with i.i.d. observations, Præstgaard &

Wellner (1993) show that the seminal block bootstrap by Efron (1979) is nested within a general class

weighted bootstraps for empirical processes that replicates the asymptotic distribution of a Brownian

bridge (that is, of H1(τ)). Moreover, Shao (2010) establishes that the bias and variance of the DWB

for long-run variance estimation are second-order equivalent to those for the tapered block bootstrap

of Paparoditis & Politis (2001, 2002), whose properties are generally favorable to those of moving
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block bootstraps, e.g., Kunsch (1989) and Liu & Singh (1992). Hence, our result provides additional

insights into the relation between bootstrap paradigms. First, the LWDB can be interpreted as a

generally weighted bootstrap, with Assumption DWB providing sufficient conditions on the weights.

Second, the asymptotic equivalence between DWBs and BBs hold for the general class of processes

(3), hence not confined to i.i.d. observations as assumed by prior studies, and it holds for both first

and second-order central limit theory. Both results significantly generalizes existing discussions in

Præstgaard & Wellner (1993) and Shao (2010). Finally, the second-order replication of the central

limit theory generalizes prior first-order results for BBs in Carlstein (1986) as well as for empirical

processes in Bühlmann (1994) and Naik-Nimbalkar & Rajarshi (1994).

Remark 5. The NLBB is designed using non-overlapping blocks, as in Carlstein (1986), due to

natural block-dependence of the nonparametrically standardized data. It may be feasible to consider

moving blocks as well, if the differential dependence within a (moving) block is accounted for, e.g., by

an additional external variable. The design of such a resampling procedure, including its (asymptotic)

relation to the LDWB, is not straightforward and we leave it for further research.

Remark 6. The representation in NLBB is reminiscent of the blockwise wild bootstrap for spectral

testing of white noise against serial dependence in Shao (2011). Specifically, using a similar block

structure as above, Shao (2011) proposes to use an external i.i.d. variable with E[u∗i ] = 0, V[u∗i ] = 1

as well as E[|u∗i |4] <∞. Hence, by the same arguments provided for the NLBB, one can show that the

blockwise bootstrap is, similarly, nested within the LDWB class in the present, general, setting.

4 Testing for Local Gaussianity at High Frequencies

This section introduces new bootstrap-aided tests for local Gaussianity of (3). First, and similarly

to Todorov & Tauchen (2014), we provide a LDWB Kolmogorov-Smirnov (KS) test. Second, we

propose new Cramér-von Mises (CM) statistics for the empirical CDF at high frequencies and provide

associated tests for local Gaussianity, based on either the limit theory in Lemma 2 or the LDWB.

The introduction of CM-based tests is motivated, in part, by Shapiro & Wilk (1965), Shapiro, Wilk

& Chen (1968) and Stephens (1974), who show that the former enjoys non-trivial power advantages

over KS procedures when testing for Gaussianity in many (albeit, more traditional) settings.

4.1 Bootstrap Kolmogorov-Smirnov Testing

In analogy with the KS test in (11), we define a LWDB version of the test statistic and the corre-

sponding critical region of the bootstrap test by

KS∗n(A) = sup
τ∈A

√
Nn(α,$)

∣∣∣F̂ ∗W,n(τ)− F̂n(τ)
∣∣∣ , C∗n(A) =

{
K̂Sn(A) > q∗n(θ,A)

}
, (21)
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respectively, where, again, θ ∈ (0, 1) , A⊂ R\0 is a finite union of compact sets with positive Lebesgue

measure and q∗n(θ,A) is the (1− θ)th quantile of the LWDB distribution,

sup
τ∈A

∣∣∣∣∣∣
√
Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − F̃n(τ)

)
v∗(j−1)kn+i

∣∣∣∣∣∣ .
The validity of the LDWB-aided KS test follows directly from Lemma 2 and Theorem 1:

Theorem 2. Suppose the regularity conditions for Theorem 1 hold. Moreover, define the quantile

function q∗n(θ,A) = inf{x ∈ A : P∗(KS∗n(A) > x) ≥ θ}. Then, for any compact subset A⊂ R\0 with

positive Lebesgue measure, it follows that P(K̂Sn(A) > q∗n(θ,A))→ θ as n→∞.

4.2 von Mises Statistics and Testing

Let ` : R2 → R denote a measurable function, whose double integral is assumed to exist, then we may

write general von-Mises (V -)statistics for a CDF statistic C =
{
F̂n − H3/kn,Φ

}
, that is, either the

bias-corrected empirical CDF or its limit under the null hypothesis, as

V`(C,A) =

∫
τ1∈A

∫
τ2∈A

`(τ1, τ2)dC(τ1)dC(τ2), (22)

where, unlike standard V -statistics, we restrict integration to the compact set A⊂ R\0, again, to avoid

the truncation of big jumps affecting the central limit theory. Now, let us further impose:

Assumption 3. ` is continuous, bounded and symmetric in its arguments `(τ1, τ2) = `(τ2, τ1). More-

over, let `, `Φ(·) =
∫
τ2∈A `(·, τ2)dΦ(τ2), and `(τ1, ·) have bounded variation.

Let h(τ−) denote the limit from the left of a function h at a point τ , then by Lemma 2 and

Assumption 3, we may invoke Beutner & Zähle (2014, Lemmas 3.4 and 3.6) to decompose

V`(F̂n −H3/kn,A)− V`(Φ,A) = −2

∫
τ1∈A

(
F̂n − Φ−H3/kn

)
(τ1−)d`Φ(τ1)

+

∫
τ1∈A

∫
τ2∈A

(
F̂n − Φ−H3/kn

)
(τ1−)

(
F̂n − Φ−H3/kn

)
(τ2−)d`(τ1, τ2) ≡ V`,N(A) + V`,D(A),

whose parts are typically labeled non-degenerate and degenerate (`Φ(τ1) ≡ 0), respectively. Examples

of non-degenerate V -statistics are Gini’s mean difference and CDF-based variance estimation. Notice,

however, that under H0 : St = Wt, the infill asymptotic limit of standardized increments (2) are

standard Gaussian, subject to estimation errors from the nonparametric stochastic scale, or a mean-

zero stable process with characteristic function (4) under the alternative, making testing of such

features less interesting.5 Hence, we focus on the degenerate part, V`,D(A), for which we can construct

tests of the local (again, infill asymptotic) distributional properties of the increments dZt.

5In fact, we cannot recover the drift of (3) in an infill asymptotic setting, see Jacod (2012).
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Theorem 3. Suppose the conditions of Lemma 2 and Assumption 3 hold. Then, locally uniformly for

indices τ1, τ2 ∈ A,

Nn(α,$)V`,D(A)
d−→
∫
τ1∈A

∫
τ2∈A

Gn(τ1)Gn(τ2)d`(τ1, τ2).

The general result for V -statistics in Theorem 3 goes beyond the asymptotic analysis of the empirical

CDF in Todorov & Tauchen (2014) and facilitates general test statistics of the L2-type to examine

local distributional properties of dZt. In particular, the asymptotic result allows us to introduce a new

class of weighted and bias-corrected Cramér-von Mises tests for H0,

ĈMn(k,A) = Nn(α,$)

∫
τ∈A

k(τ)
(
F̂n(τ)− Φ(τ)−H3(τ)/kn

)2
dΦ(τ), (23)

for any measurable weight function k : R→ R+, nesting the classical Cramér-von Mises and Anderson-

Darling weights with k(τ) = 1 and k(τ) = 1/(Φ(τ)(1−Φ(τ)), respectively. Now, by applying the result

in Theorem 3, ĈMn(k,A)
d−→ CMn(k,A) where CMn(k,A) =

∫
τ∈A k(τ)Gn(τ)2dΦ(τ).6 Similarly to the

definitions for the KS test, let Qn(θ, k,A) be the (1− θ)th quantile of CMn(k,A) for θ ∈ (0, 1), then

Lemma 2 and Theorem 3 establish validity of the class of CM tests in (23):

Corollary 2. Suppose the regularity conditions for Theorem 3 hold. Moreover, define the quantile

function Qn(θ, k,A) = inf{x ∈ A : P(CMn(k,A) > x) ≥ θ}. Then, for any compact subset A⊂ R\0
with positive Lebesgue measure, it follows that P(ĈMn(k,A) > Qn(θ, k,A))→ θ as n→∞.

The class of bias-corrected CM tests in (23) differs, as for the KS test in (11), from standard

CM testing by, among others, the contributions of the terms H2(τ) and H3(τ) arising from the use

nonparametric, and noisy, estimates of the stochastic scale when standardizing the increments as well

as the truncation of large jumps in the increments, impacting the integration range.

Remark 7. Although not pursued here, and as discussed in Arcones & Giné (1992) and Beutner &

Zähle (2014), the statistic Ŝn(A) =
∫
τ∈A(F̂n(−τ) − (1 − F̂n(τ)))2dτ may be used to test symmetry of

the null distribution. If combined with the CM test in (23), Ŝn(A) will reveal whether the alternative

distribution if H0 is rejected, that is, a local stable, has asymmetric tails.

4.3 Bootstrap von Mises Statistics and Testing

The asymptotic distribution in Theorem 3 may be analytically intractable for several choices of kernel

function, `, making inference and testing, e.g., using Corollary 2 hard in practice. However, such

difficulties may readily be circumvented using the LDWB. Specifically, let

V∗`,D(A) =

∫
τ1∈A

∫
τ2∈A

(
F̂ ∗W,n − F̂n

)
(τ1−)

(
F̂ ∗W,n − F̂n

)
(τ2−)d`(τ1, τ2), (24)

6As explained in Beutner & Zähle (2014, Example 3.13), the CM test can be viewed as V -statistic with kernel function
defined by, `(τ1, τ2) =

∫
τ∈A k(τ)(1{τ1 ≤ τ <∞}− Φ(τ)−H3(τ)/kn)(1{τ2 ≤ τ <∞}− Φ(τ)−H3(τ)/kn)dΦ(τ).
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be general bootstrapped V -statistics, and

CM∗n(k,A) = Nn(α,$)

∫
τ∈A

k(τ)
(
F̂ ∗W,n(τ)− F̂n(τ)

)2
dΦ(τ). (25)

the corresponding bootstrap CM test. Moreover, let Q∗n(θ, k,A) be the (1− θ)th quantile of,

∫
τ∈A

k(τ)

√Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − F̃n(τ)

)
v∗(j−1)kn+i

2

dΦ(τ).

The validity of the LWDB statistics in (24) and (25), then, follows by Lemma 2, Theorem 1 in

conjunction with the same arguments provided for Theorem 3 and Corollary 2:

Theorem 4. Suppose the conditions of Theorem 3 hold. Then, locally uniformly for τ1, τ2 ∈ A,

Nn(α,$)V∗`,D(A)
d−→
∫
τ1∈A

∫
τ2∈A

Gn(τ1)Gn(τ2)d`(τ1, τ2), in probability-P.

Corollary 3. Suppose the regularity conditions for Theorem 4 hold. Moreover, define the quantile

function Q∗n(θ, k,A) = inf{x ∈ A : P∗(CM∗n(k,A) > x) ≥ θ}. Then, for any compact subset A⊂ R\0
with positive Lebesgue measure, it follows that P(ĈMn(k,A) > Q∗n(θ, k,A))→ θ as n→∞.

5 Simulation Study

In this section, we assess the relative finite sample properties of the Kolmogorov-Smirnov (KS) tests

for local Gaussianity, H0 : St = Wt, based on the CLT in Todorov & Tauchen (2014) as well as our

bootstrap aided-versions. Specifically, we study whether the LDWB or the NLBB can alleviate the

previously reported (severe) finite sample size distortions that characterizes CLT-based test.

5.1 Simulation Setup

The data is simulated to match a standard 6.5-hour trading day and with the trading window normal-

ized to the unit interval, t ∈ [0, 1], making 1 second correspond to an increment of size 1/23400. In

particular, we consider four different data generating processes (DGPs) in the simulations; two under

H0 and two under the alternative where St is a time-changed tempered stable process (H1), allowing

us to study the size and power properties of the proposed testing procedures. Specifically, for DGPs

under H0, let

dZt = adt+ σtdWt + dYt, dYt =

∫
R
k0xµ (dt, dx) , (26)

where the stochastic scale, σt, is assumed to follow a two-factor model,

σt = sexp(b0 + b1τ̃1,t + b2τ̃2,t) where dτ̃1,t = a1τ̃1,tdt+ dB1,t, (27)
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dτ̃2,t = a2τ̃2,tdt+ (1 + φτ̃2,t)dB2,t, Corr(B1,t,Wt) = ρ1, Corr(B2,t,Wt) = ρ2,

and both B1,t and B2,t are standard Brownian motions, following, e.g., Chernov, Gallant, Ghysels &

Tauchen (2003) and Huang & Tauchen (2005).7 The stochastic scale (or volatility) has two driving

sources of uncertainty, two standard Brownian motions, which are correlated with Wt, thereby accom-

modating leverage effects. We fix the parameters in (26) and (27) as in Huang & Tauchen (2005), that

is, α = 0.03, b0 = −1.2, b1 = 0.04, b2 = 1.5, a1 = −0.00137, a2 = −1.386, φ = 0.25, as well as the cor-

relation coefficients ρ1 = ρ2 = −0.3. Moreover, the two volatility factors are initialized at the onset of

each “trading day” by randomly drawing the most persistent factor from its unconditional distribution,

τ̃1,0 ∼ N(0, 1/(2a1))), and by letting the strongly mean-reverting factor, τ̃2,t, start at zero. The two

DGPs under H0, capturing the size of the tests, differ with respect to the specification of the “residual”

jump process in (26). In particular, Yt, is assumed to obey either a symmetric tempered stable process

(DGP 1) or a compound Poisson process (DGP 2), which have the following decompositions of their

compensators νYt (dx) = dt⊗ νY (dx),

νY (dx) = c0 exp(−λ0|x|)|x|−(β′0+1)dx or νY (dx) = c1
exp(−x2/

(
2σ2

1

)
)

√
2πσ1

dx, (28)

respectively. For the symmetric tempered stable, c0 > 0, λ0 > 0 and β′0 ∈ [0, 1) measures the

degree of jump activity. Moreover, we follow Todorov (2009) and Hounyo & Varneskov (2017) and

let (β′0, k0, c0, λ0) = (0.1, 0.0119, 0.125, 0.015). This model is calibrated such that the variation of Yt

accounts for 10% of the average quadratic variation of Zt, reflecting the empirical results in Huang

& Tauchen (2005). Similarly, (c1, σ1) = (1, 3/2) is fixed for the mean-zero, normally distributed,

compound Poisson jumps (which have activity index β′ = 0).

Under the alternative hypothesis, we let

Zt = STt , with Tt =

∫ t

0
σ2
sds, (29)

where St is a symmetric tempered stable martingale with Levy measure exp(−0.25|x|)|x|−(1.51+1) and

for the stochastic time change, Tt, σt is specified as in (27). The parameters of St are chosen such that

it behaves locally like a stable process with β = 1.51.8 We either add no residual jumps to the model

under the alternative (29) (DGP 3) or compound Poisson jumps as in (28) (DGP 4).

After having simulated Zti , we construct equidistant samples ti = i/n for i = 0, . . . n and generate

returns ∆n
i Z = Zti − Zti−1 . Specifically, we study the performance of the tests for three different

samples sizes: n = {78, 195, 390}, corresponding to sampling every {5, 2, 1} minutes, respectively. The

tests require the selection of tuning parameters, kn, mn, α, $ and, specific to the bootstrap tests, the

7The function “sexp” is, following the literature, defined as an exponential with a linear growth function splined in at high
values of its argument: sexp(x) = exp(x) if x ≤ x0 and sexp(x) = exp(x0)√

x0

√
x0 − x20 + x2 if x > x0 with x0 = ln(1.5).

8Following Todorov et al. (2014), St is generated as the difference between two spectrally positive tempered stable processes,
which are simulated using the acceptance-rejection algorithm of Baeumer & Meerschaert (2009).
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dependence parameter bn. By Assumption 2(b), we have
√
n/kn → ∞. Hence, similarly to Todorov

& Tauchen (2014), we let
√
n/kn = %1, with %1 = {1, 5/4}, mn/kn = 0.7 and, for the truncation of the

increments, α = 3 and $ = 0.49. For the implementation of the LDWB, we determine dependence of

the external random variable through bn/mn = %2 with moderate selections %2 = {1/2, 1/3}. Using

this dependence parameter, we consider four different external random variables:

DWB1: v∗i ∼ i.i.d. N(0, 1).

DWB2: The Rademacher (i.e., the two point) distribution: v∗i ∼ i.i.d. such that

v∗i =

1 with probability P = 1/2,

−1 with probability 1− P.

DWB3: Ornstein-Uhlenbeck process v∗i = e−1/bnv∗i−1 + ξi, with ξi ∼ i.i.d. N(0, 1− e−2/bn).

DWB4: Moving average process v∗i = ςi + · · ·+ ςi−bn+1, where ςi ∼ i.i.d. N(0, 1/bn).

Note that the four choices of v∗i are asymptotically valid, satisfying Assumption DWB, and their

different dependence structures allow us to assess robustness features of the LDWB.9 Moreover, we

implement NLBB as a final alternative, which, as explained in Section 3.3, is nested in our LDWB

procedure. All KS tests for local Gaussianity are implemented over the set,

A = [Q (0.001) : Q (0.499)] ∪ [Q (0.501) : Q (0.999)] ,

where Q (θ) is the (1 − θ)th quantile of the standard normal distribution, and adopts a nominal 5%

rejection level. Finally, the simulation study is carried out using 999 bootstrap samples for each of the

1000 Monte Carlo replications. The rejection rates of H0 : St = Wt are reported in Table 1 for the

DGPs 1 and 2 (size) and Table 2 for the DGPs 3 and 4 (power).10

5.2 Simulation Results

There are several interesting results from Table 1. First, consistent with the evidence in Todorov

& Tauchen (2014), we find that the CLT-based KS test is (severely) oversized, especially when the

local window for spot volatility estimation is %1 = 5/4. Moreover, for DGP 1 in particular, the size

distortions are essentially unaffected by an increase in sample size from n = 78 to n = 360. Second,

the LDWB-aided KS tests have much better size properties for all combinations n, %1, %2, DGP and

external random variables. For example, if considering DGP1, n = 360 and %1 = 5/4, the CLT rejects

21.1% of the time, whereas the LDWB1 is very close to the nominal 5% level with a rejection rate of

9The Rademacher distribution, proposed for bootstraps by Liu (1988), is advocated by Davidson & Flachaire (2008) in
the context of wild bootstrap inference for regression parameters. We assess its prowess in the case of empirical CDF
inference for semimartingales at high sampling frequencies using our LDWB methodology.

10Implementation details are provided in Appendix C.
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6.1%. Third, the NLBB performs slightly worse than the LDWBs, in small samples when %1 = 1 and

more generally when %1 = 5/4, showing the benefits of our general bootstrap framework.

From the results in Table 2, we observe that all tests have power to reject the null hypothesis when

false. Moreover, the rejection properties dramatically improve when the sample size is increased from

n = 78 to n = 195, attaining full power when sampling every minute, i.e., when n = 390. The rejection

rates for the CLT-based test are slightly higher than the corresponding for bootstrap tests, especially

when n = 78 and n = 195. However, as emphasized by Horowitz & Savin (2000) and Davidson &

MacKinnon (2006), these results are misleading since CLT test suffers from severe size distortions for

all sampling frequencies and DGPs considered. Finally, the power properties are very similar across

bootstraps, albeit with the NLBB performing slightly worse than the LDWBs

In general, the simulation results demonstrate the usefulness of our bootstrap framework, restoring

the size properties of tests for local Gaussianity, while maintaining excellent finite sample power.

6 Empirical Analysis

We consider two empirical applications to illustrate the usefulness of our new bootstrap inference and

testing techniques. First, we test for local Gaussianity in high-frequency (HF) futures data on three

different asset classes; equity indices, foreign exchange rates and commodities. Second, we demonstrate

that the bootstrap procedures are not only applicable to HF data, but may be applied more generally

as a nonparametric heteroskedasticity-robust test for local Gaussianity. To this end, we use daily data

to test the distributional properties of four series that are widely used in the macro finance literature,

namely the VIX, TIPS (inflation-linked bonds), default spread, and the term spread. Finally, due to

the similarities between the properties of the LDWB tests in Tables 1 and 2, we focus on the differences

between the CLT test and LDWB1 for simplicity of exposition.11

6.1 High-frequency Application

We study the null hypothesis, H0 : St = Wt, using high-frequency data from 2010-2013 on eight

futures series covering three asset classes. This presents an interesting and diverse sampling period

with substantial market turbulence during the first two years, culminating in April-May 2010 with

the downgrade of Greece’s sovereign deb to junk bond status as well as in August 2011 where stock

prices dropped sharply in fear of contagion of the European sovereign debt crises to Italy and Spain,

and two calmer years during 2012-2013. Specifically, since, e.g., Andersen et al. (2015) and Hounyo

& Varneskov (2017) cannot reject H0 for S&P 500 futures, we extend their evidence to two different

equity indices, namely the DAX and FTSE 100. Moreover, we consider futures contracts on gold and

oil as well as four exchange rates; the Canadian Dollar (CAD), Swiss Franc (CHF), British Pound

(GBP), and the Japanese Yen (JPY), all measured against the U.S. Dollar (USD). The series are

11Not surprisingly, the results for the other bootstrap procedures are similar to those reported for LDWB1. As in the
simulation study, the tests are implemented with %1 = 1, mn/kn = 0.7 and 999 bootstrap samples for each series.
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obtained from Tick Data, include observations from both pit and electronic trading, and are sampled

every minute. We use observations from 9.00 to 18.30 CET on the equity futures, 9.00 to 20.00 CET

on the two commodities, and from 1.00 to 23.00 CET on the exchange rates since the latter is traded

round-the-clock, whereas the trading is sparser in the other contracts outside of regular European and

U.S. market hours.12 Since these futures contracts are very liquid, minimizing concerns about market

microstructure noise effects, we construct series of 1, 2 and 5-minute logarithmic returns. For each

series, we report the rejection rates of H0 by year using a 5% nominal level. The test results are

presented in Table 3 (equity indices and commodities) and 4 (exchange rates).

From Table 3, we see that H0 is rarely rejected for the different combinations of either equity index

or commodity and sampling frequency, suggesting that leading term in these assets is a Brownian

motion. For the DAX and FTSE 100 indices, this evidence corroborates prior findings for the S&P

500. Interestingly, we find very similar results for gold and oil; the tests fail to reject local Gaussianity.

Second, we observe the LDWB1 test to reject uniformly less than the CLT test. For example, for FTSE

futures and a 5-minute sampling frequency, the CLT test has an average reject rate of 11.2%, compared

to 3.2% for LDWB1. The differences in rejection rates are consistent with the simulation study; our

LDWB1 test has an accurate size, whereas the CLT-based test is generally oversized, even in relatively

large samples. Third, the conclusions based on 1, 2, and 5-minute are very similar, suggesting that

there is no issues with market microstructure noise at these sampling frequencies.13

When turning to the results for exchange rates in Table 4, they are markedly different from those in

Table 3, however, similar across currencies. The tests rarely reject for the 5-minute sampling frequency,

but the rejection rates uniformly increase as the sampling frequency increase, rejecting, on average

over the whole sample, 91.6%, 98.3%, 67.4%, and 41.8% of the days for 1-minute observations and the

CAD, CHF, GBP, and JPY, respectively. This strongly suggests that exchange rates are locally driven

by a stable process with β < 2, not a diffusion. Moreover, the rejection rates differ across the sample,

further suggesting that there may be important time-variation in β. To corroborate these findings,

we depict estimates of β in Figure 2 for each sampling frequency using the empirical characteristic

function approach of Todorov (2015).14 The β estimates are remarkably similar across both currencies

and sampling frequencies; being in the 1.75-1.90 range. Moreover, and together with the simulated

power results in Table 2, they help explain the differences in rejection rates across sampling frequencies

in Table 4. For sparsely sampled frequencies, our test simply lacks the power to reject H0. However, as

the power properties improves with sample size, the (bootstrap) tests reject local Gaussianity almost

100% of the days for the CAD and CHF series. One may be concerned that the rejection results

in Table 4 are due to microstructure noise, not the innovations being locally stable. However, the

12We restrict attention to whole trading days in the Europe and the U.S. Moreover, we have experimented with sampling
using different trading hours. The conclusions are qualitatively identical to those presented below.

13Microstructure noise represents a different rejection of H0, see Todorov & Tauchen (2014, Theorem 2). Hence, if noise
affects 1-minute observations, but not sparser sampled ones, we would expect the rejection rates to differ.

14For specificity, for each trading day, we implement the estimator in Todorov (2015, (5.1)) with, in his notation, the tuning
parameter selections p = 0.51, u = 0.25, v = 0.5, and kn = {50, 75, 100} for 5, 2, and 1-minute returns. From these, the
median estimate for a given calendar month is computed and depicted for all three sampling frequencies.
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combination of results in Tables 2 and 4 as well as the similarity of the β estimates across sampling

frequencies in Figure 2 deem the (lack of) power hypothesis for the tests more likely. Of course, to

rigorously dismiss the market microstructure noise hypothesis, it would require a noise-robust version

of the LDWB1 test. We leave this for further research.15

In general, we find that equity indices and commodities (gold and oil) are well-described as locally

Gaussian, whereas exchange rates are better approximated by locally stable innovations with stability

index β in the 1.80-1.90 range. As explained in the introduction, these differences across asset classes

hold important implications for model specification, risk measures and derivatives pricing.

6.2 Macro Finance Application

The empirical macro finance literature often use various financial variables to predict future economic

conditions, cross-sectional asset pricing and to describe the dynamics of consumption growth, among

others. To show that our bootstrap inference and testing procedures apply generally, we test whether

four key variables are described by (locally) Gaussian innovations, possibly in conjunction with a

stochastic scale (volatility), using daily data from 2006 through 2017, amounting to 3130 observations.

Whereas the VIX and TIPS series are obtained straightforwardly, the default spread is constructed as

the difference between logarithmic yields on Moody’s BAA and AAA bonds, and the term spread is

constructed as the difference between the log prices of generic first futures contracts on 10-year and

2-year US Treasury notes. We obtain log-returns for the VIX and TIPS series, and first differences for

the default and term spreads. The series are displayed in Figure 3.

Similar to returns on various assets, for example, as analyzed above, equity indices, commodities,

and exchange rates, the series display stochastic and clustering volatility. Hence, the nonparamet-

ric standardization in the (bootstrap) testing procedure is important for determining whether the

innovations are locally Gaussian. As a second step, we depict the empirical CDFs of the respective

standardized and truncated innovations in Figure 4 against a standard Gaussian CDF. The visual

evidence suggests that CDFs for the VIX and term spread deviate from a standard Gaussian one,

however, that the corresponding for the TIPS and default spread are very close. Indeed, when testing

H0 using the LDWB1-aided test, we reject for the VIX – consistent with Todorov & Tauchen (2011b),

Andersen et al. (2015) and Hounyo & Varneskov (2017) – and for the term spread series, but not

for the remaining two. However, when applying the CLT test, we reject H0 for all four series. If we

compare the critical value for the CLT, 1.28, to the test statistics {3.29, 1.46, 1.38, 2.21}, we observe

that the rejections for the TIPS and default spread (2 and 3) are borderline, whereas local Gaussianity

of the VIX and term spread (1 and 4) are strongly rejected. In contrast, the corresponding LDWB1

15The evidence in Table 4 is consistent with the findings in Todorov & Tauchen (2010) and Cont & Mancini (2011),
who, using 5-minute observations on the DM-USD exchange rate from the 1990s, argue that exchange rates are locally
Gaussian. These test may simply lack the power to reject H0, as for the 5-minute series in Table 4. Moreover, Hounyo &
Varneskov (2017) find rejection rates of β = 2 for currencies to be between 20-56% using a bootstrap-aided realized power
variation test. Our results, using the LDWB1, are much stronger, which speaks directly to power differences between
tests based on either the empirical CDF and power variation measures, see Todorov & Tauchen (2014, Table 2).
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critical values are {1.68, 1.54, 1.85, 1.52}, overturning the conclusions for the TIPS and default spread.

The different results are attributed to the size problems associated with the CLT test, even in large

samples. Our bootstrap test, on the other hand, has excellent size and maintain H0 in the two cases,

which, by Figure 4, is consistent with visual evidence for the respective empirical CDFs.

7 Conclusion

This paper provides a new inference procedure for the local innovation of Itô semimartingales. Specif-

ically, we construct a resampling procedure for the empirical CDF of high-frequency innovations that

have been standardized using a nonparametric estimate of its stochastic scale (volatility) and trun-

cated to rid the effect of “large” and more infrequent jumps. Our locally dependent wild bootstrap

(LDWB) accommodate issues related to the stochastic scale and jumps as well as account for a special

block-wise dependence structure induced by sampling errors arising from having replaced the stochastic

scale with a nonparametric estimate. We show that the LDWB replicates first and second-order limit

theory from the usual empirical process component of the statistic and the stochastic scale estimate,

respectively, in addition to an asymptotic bias. Moreover, we design the LDWB sufficiently general

to establish asymptotic equivalence between it and and a nonparametric local block bootstrap, also

introduced here, up to second-order distribution theory, providing new theoretical insights into the

relation between bootstrap paradigms. Finally, we introduce LDWB-aided Kolmogorov-Smirnov tests

for local Gaussianity as well as local von-Mises statistics, with and without accompanying bootstrap

inference, and establish their asymptotic validity using the second-order distribution theory.

The finite sample performance of CLT and LDWB-aided local Gaussianity tests are assessed in

a simulation study as well as two empirical applications to high-frequency futures data and popular

macro finance variables. Whereas the CLT test is oversized, even in large samples, the size of the

LDWB tests are accurate, even in small samples. Moreover, the gains in size are without loss of

power, even in moderate sample sizes. The empirical analysis verifies this pattern, the CLT tests

rejects uniformly more often the the LDWB test for assets that are well-described as locally Gaussian

such as equity indices and commodities. Moreover, it shows that local Gaussianity is strongly rejected

for exchange rate series, which, in contrast, are better described as locally stable with tail index in

the 1.80 to 1.90 range. Finally, when applying the test to macro finance variables such as the VIX,

TIPS, default spread and term spread, we show that the CLT test erroneously rejects for all four series,

whereas the LDWB rejects for the VIX and term spread series, in line with visual evidence.
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Rejection Rates under H0

%1 = 1

CLT NLBB LDWB1 LDWB2 LDWB31/2 LDWB31/3 LDWB41/2 LDWB41/3

DGP 1

n = 78 17.4 9.6 4.0 4.5 7.2 6.0 5.0 3.7

n = 195 13.6 8.1 3.9 4.5 6.1 5.5 4.5 4.4

n = 390 13.1 6.0 3.2 3.3 5.4 4.8 4.5 3.8

DGP 2

n = 78 16.1 9.2 3.2 4.4 6.9 4.7 4.1 3.2

n = 195 12.0 5.3 2.4 3.0 4.5 4.0 2.9 2.9

n = 390 7.8 4.0 2.0 2.2 3.3 3.1 2.3 2.2

%1 = 5/4

CLT NLBB LDWB1 LDWB2 LDWB31/2 LDWB31/3 LDWB41/2 LDWB41/3

DGP 1

n = 78 24.6 13.6 6.9 9.0 12.8 9.5 8.9 7.4

n = 195 19.7 9.1 3.8 4.9 6.9 5.7 5.2 4.7

n = 390 21.1 10.5 6.1 6.0 9.8 8.1 7.7 6.8

DGP 2

n = 78 24.2 12.1 5.8 7.6 11.4 8.2 7.5 6.3

n = 195 18.4 9.3 5.8 6.9 7.9 6.4 6.2 5.8

n = 390 19.0 8.3 5.3 5.5 7.5 6.6 6.1 5.4

Table 1: Size results. This table provides rejection frequencies of the null hypothesis H0 : St = Wt for DGPs
1 and 2, sample sizes n = {78, 195, 390}, as well as eight different tests; CLT, NLBB, LDWB1, LDWB2, LDWB3,
and LDWB4. In particular, CLT denotes the Kolmogorov-Smirnov (KS) test in (11), see also Todorov & Tauchen
(2014), NLBB is the nonparametric local block bootstrap described in Section 3.3, and LDWB with numbers 1-4
are different implementations of the locally dependent wild bootstrap in Section 3.2, see Theorems 1 and 2 as
well as Section 5. The numbers refer to different external random variables: (1) Gaussian; (2) Rademacher; (3)
Ornstein-Uhlenbeck and (4) Moving average. For LDWB3 and LDWB4, the subscript refers to %2 = {1/2, 1/3},
capturing their dependence structures. The nominal level of the KS tests is 5%. Finally, the exercise is performed
for 999 bootstrap samples for every one of the 1000 Monte Carlo replications.
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Rejection Rates under H1

%1 = 1

CLT NLBB LDWB1 LDWB2 LDWB31/2 LDWB31/3 LDWB41/2 LDWB41/3

DGP 3

n = 78 59.3 36.5 35.8 38.6 41.3 39.0 36.5 36.2

n = 195 95.0 83.1 84.7 85.6 86.2 85.8 84.4 84.3

n = 390 99.7 98.7 99.3 99.3 99.0 99.1 99.0 99.1

DGP 4

n = 78 56.4 36.3 36.5 39.0 41.3 38.4 36.2 36.0

n = 195 94.3 79.9 83.7 84.3 83.6 83.8 82.8 82.4

n = 390 99.9 99.0 99.7 99.7 99.5 99.6 99.7 99.7

%1 = 5/4

CLT NLBB LDWB1 LDWB2 LDWB31/2 LDWB31/3 LDWB41/2 LDWB41/3

DGP 3

n = 78 60.2 39.1 39.2 42.3 44.2 42.5 39.7 39.7

n = 195 92.2 77.1 81.2 81.3 81.3 81.4 79.4 80.4

n = 390 99.8 99.2 99.0 98.9 98.8 98.8 98.8 98.9

DGP 4

n = 78 62.2 40.1 42.0 44.8 47.6 44.5 41.3 42.3

n = 195 91.0 76.5 80.0 80.6 79.8 79.6 79.0 79.5

n = 390 99.7 98.7 99.0 98.8 98.8 98.9 98.8 98.8

Table 2: Power results. This table provides rejection frequencies of the null hypothesis H0 for DGPs 3 and
4, sample sizes n = {78, 195, 390}, as well as eight different tests; CLT, NLBB, LDWB1, LDWB2, LDWB3, and
LDWB4. In particular, CLT denotes the Kolmogorov-Smirnov (KS) test in (11), see also Todorov & Tauchen
(2014), NLBB is the nonparametric local block bootstrap described in Section 3.3, and LDWB with numbers 1-4
are different implementations of the locally dependent wild bootstrap in Section 3.2, see Theorems 1 and 2 as
well as Section 5. The numbers refer to different external random variables: (1) Gaussian; (2) Rademacher; (3)
Ornstein-Uhlenbeck and (4) Moving average. For LDWB3 and LDWB4, the subscript refers to %2 = {1/2, 1/3},
capturing their dependence structures. The nominal level of the KS tests is 5%. Finally, the exercise is performed
for 999 bootstrap samples for every one of the 1000 Monte Carlo replications.
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Rejection Rates for Equity Indices and Commodities

2010 2011 2012 2013

CLT LDWB1 CLT LDWB1 CLT LDWB1 CLT LDWB1

DAX

1-min 4.31 1.18 7.03 1.95 4.74 0.40 3.56 0.00

2-min 5.49 0.39 7.81 1.56 5.14 0.40 2.77 0.00

5-min 7.84 0.00 10.94 1.95 6.32 1.98 7.11 0.79

FTSE

1-min 8.37 2.79 8.43 2.81 5.20 1.60 7.97 1.99

2-min 9.16 1.20 5.62 2.01 8.00 1.60 2.79 0.40

5-min 9.16 3.19 16.06 4.82 7.60 1.20 11.95 3.59

Gold

1-min 6.59 1.16 5.81 2.33 4.65 0.78 5.43 1.16

2-min 3.10 0.39 2.71 0.39 2.71 0.78 6.98 0.39

5-min 6.98 1.16 6.98 1.55 3.49 0.00 4.26 0.78

Oil

1-min 5.14 1.19 7.78 3.50 3.88 1.16 4.65 1.55

2-min 3.95 1.19 3.11 0.00 6.98 0.39 3.49 0.00

5-min 11.07 1.98 7.78 0.39 8.91 1.16 8.53 1.16

Table 3: Empirical rejection rates. This table provides rejection frequencies of the null hypothesis H0 : St = Wt

for the CLT and LDWB1 tests. In particular, CLT denotes the Kolmogorov-Smirnov (KS) test in (11), see also
Todorov & Tauchen (2014), and LDWB1 is the locally dependent wild bootstrap-based test with standard Gaussian
external random variables, see Theorems 1 and 2 as well as Section 5. The tests are implemented on high-frequency
futures data from both pit and electronic trading for the DAX and FTSE 100 equity indices as well as Gold
and Oil futures. Three different sampling frequencies are considered; every 1, 2, and 5 minutes. For the equity
index futures, the trading hours are 9.00-18.30 (CET), amounting to sample sizes n = {570, 285, 114} for the three
sampling frequencies. For the commodity futures, the trading hours are 9.00-20.00 (CET), amounting to sample
sizes n = {660, 330, 132} for the three sampling frequencies. The nominal level of the KS tests is 5%. Finally, we
use 999 replications for the bootstrap resampling, as in the simulation study.
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Rejection Rates for Currencies

2010 2011 2012 2013

CLT LDWB1 CLT LDWB1 CLT LDWB1 CLT LDWB1

CAD-USD

1-min 92.31 85.83 91.09 82.59 100 98.77 99.59 99.59

2-min 32.39 16.19 38.46 21.05 69.67 50.00 91.80 84.02

5-min 7.29 1.62 5.25 1.21 6.97 2.46 32.38 13.52

CHF-USD

1-min 98.79 96.36 99.19 97.57 100 100 99.59 99.18

2-min 61.54 38.87 54.66 31.17 88.93 78.28 86.48 74.59

5-min 6.48 1.21 2.43 1.21 7.79 2.46 10.66 4.51

GBP-USD

1-min 66.40 44.94 69.23 52.23 95.08 86.48 95.49 86.48

2-min 8.50 4.05 8.50 3.64 29.10 15.57 32.79 15.57

5-min 2.02 0.81 2.43 0.40 3.69 0.00 3.28 0.41

JPY-USD

1-min 40.49 21.46 56.68 40.08 84.02 73.36 42.31 32.38

2-min 6.07 2.02 14.17 4.45 22.95 9.43 9.43 4.51

5-min 3.24 0.40 4.45 0.81 3.28 0.41 6.56 1.23

Table 4: Empirical rejection rates for currencies. This table provides rejection frequencies of the null
hypothesis H0 : St = Wt for the CLT and LDWB1 tests. In particular, CLT denotes the Kolmogorov-Smirnov (KS)
test in (11), see also Todorov & Tauchen (2014), and LDWB1 is the locally dependent wild bootstrap-based test with
standard Gaussian external random variables, see Theorems 1 and 2 as well as Section 5. The tests are implemented
on high-frequency futures data from both pit and electronic trading for four exchange rate futures. Three different
sampling frequencies are considered; every 1, 2, and 5 minutes. For the currencies, the trading hours are 1.00-23.00
(CET), amounting to sample sizes n = {1320, 660, 264} for the three sampling frequencies. The nominal level of the
KS tests is 5%. Finally, we use 999 replications for the bootstrap resampling, as in the simulation study.
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Impact of Tails Impact of Skewness

Figure 1: Stable densities. This picture illustrate the density of stable process with different values of their

stability and skewness parameters, β and γ, noting that β = 2 implies a Gaussian variable.
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Activity: CAD/USD Activity: CHF/USD

Activity: GBP/USD Activity: JPY/USD

Figure 2: Activity index estimates. This picture depict daily activity index estimates for the four different

exchange rates using the empirical characteristic function approach by Todorov (2015). The estimates are provided

for three different sampling frequencies; 1-minute (black), 2-minute (purple), and 5-minute (orange). The estimator

in Todorov (2015, (5.1)) is implemented with, in his notation, the tuning parameter selections p = 0.51, u = 0.25,

v = 0.5, and kn = {50, 75, 100} for 5, 2, and 1-minute returns. From these, the median estimate for a given calendar

month in the period 2010-2013 is computed and depicted for all three sampling frequencies.
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Returns: VIX Returns: TIPS

Returns: DS Returns: TS

Figure 3: Return series. This picture shows the (log-)returns on the VIX, TIPS, default spread (DS) and term

spread (TS) for the daily sample spanning from 2006 through 2017, amounting to n = 3130 observations.

32



VIX TIPS

Default Spread Term Spread

Figure 4: Empirical CDF. This picture shows the empirical CDF of the nonparametrically standardized and

truncated (log-)returns on the VIX, TIPS, default spread (DS) and term spread (TS) for the daily sample spanning

from 2006 through 2017, amounting to n = 3130 observations. Note that when testing for local Gaussianity using

the KS tests (CLT and LDWB1), the mass at x = 0 is excluded from the set A.
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A Technical Results and Proofs

This section contains additional assumptions and definitions as well as the proofs of the main asymp-

totic results in the paper. Before proceeding, however, let us introduce some notation. Denote by K a

generic constant, which may take different values from line to line or from (in)equality to (in)equality.

Moreover, we write x∧y = min(x, y) and x∨y = max(x, y) and adopt the following shorthand conven-

tion for subscript time indices; (j−1)kn
n signifies t (j−1)kn

n

. Let ◦ indicate the hadamard product. Finally,

let us write Eni−1[ · ] = E[ · |F(i−1)/n] and E∗i−1[ · ] = Eni−1(E∗[ · |Xn]) denote conditional expectations

under the physical and bootstrap probability measures, respectively.

A.1 Additional Assumptions

As in Todorov & Tauchen (2014), we shall establish the main Theorem 1 under the following stronger

version of Assumption 1, and then rely on a standard localization argument, cf. Jacod & Protter

(2012, Lemma 4.4.9), to extend the results to the weaker Assumption 1.

Assumption S1. In addition to Assumption 1, the following conditions hold:

(a) αt, α̃t, σt, σ
−1
t , σ̃t, σ̃

′
t and the coefficients of the Itô semimartingale representations of σ̃t and σ̃′t

are all uniformly bounded on t ∈ [0, 1].

(b) For some negative valued function, φ(x) on the auxiliary space E satisfying the regularity condi-

tions
∫
E ν(x : φ(x) 6= 0) <∞ and φ(x) ≤ K,

|δY (t, x)|+ |δσ(t, x)|+ |δσ̃(t, x)|+ |δσ̃′(t, x)| ≤ φ(x). (A.1)

A.2 Additional Definitions

We need to introduce several different quantities for the proof of the main Theorem 1. Hence, to

improve exposition and ease readability of the latter, we have collected them all in this subsection as

well as used the same notation as Todorov & Tauchen (2014) when it is applicable:

• At =
∫ t

0 αsds and Bt =
∫ t

0 σsdWs. Moreover, for for j = 1, . . . , bn/knc, let

Ṽn,j =
n

kn − 1

jkn∑
(j−1)kn+2

|∆n
i−1B||∆n

i B|, V̄n,j = σ2
(j−1)kn

n

πn

2(kn − 1)

jkn∑
i=(j−1)kn+2

|∆n
i−1W ||∆n

iW |.

and define Ṽn,j(i) and V̄n,j(i) analogously, using the same structure as in (6).

• Ṽn,j− V̄n,j =
∑4

g=1R
(g)
j where

∑3
g=1R

(g)
j will not appear explicitly in our derivations below, and

we refer to Todorov & Tauchen (2014, (10.4)) for definitions.

• R(4)
j = 2

kn−1σ (j−1)kn
n

∑jkn
(j−1)kn+2

[∫ i−2
n

(j−1)kn
n

σ̃ (j−1)kn
n

dWu +
∫ i−2

n
(j−1)kn

n

σ̃′(j−1)kn
n

dW ′u

]
.
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• R̃(4)
i,j = R

(4)
j −

2
kn−1σ (j−1)kn

n

(jkn − i− 1)

[∫ i
n
i−1
n

σ̃ (j−1)kn
n

dWu +
∫ i
n
i−1
n

σ̃′(j−1)kn
n

dW ′u

]
is the component

of R
(4)
j that does not contain ∆n

iW and ∆n
iW

′ for i = (j − 1)kn + 1, . . . , jkn − 2.

• R(4)
i,j (i) and R̃

(4)
i,j (i) are the analogous components from Ṽn,j(i)− V̄n,j(i) =

∑4
g=1R

(g)
j (i).

Furthermore, for i = (j − 1)kn + 1, . . . , (j − 1)kn +mn and j = 1, . . . , bn/knc, define

• ξn,j(1) =
V̂n,j(i)−σ2

(j−1)kn
n

2σ2
(j−1)kn

n

and ξn,j(2) =

(
V̂n,j(i)−σ2

(j−1)kn
n

)2

8σ4
(j−1)kn

n

• ξ̃n,i,j(1) =
V̄n,j(i)+R̃

(4)
i,j (i)−σ2

(j−1)kn
n

2σ2
(j−1)kn

n

and ξ̃n,i,j(2) =

(
V̄n,j(i)+R̃

(4)
i,j (i)−σ2

(j−1)kn
n

)2

8σ4
(j−1)kn

n

• ξ̄n,i,j(1) =
V̄n,j(i)+R

(4)
i,j−σ

2
(j−1)kn

n

2σ2
(j−1)kn

n

and ξ̄n,i,j(2) =

(
V̄n,j(i)+R

(4)
i,j−σ

2
(j−1)kn

n

)2

8σ4
(j−1)kn

n

• ξ̂n,j(1) =
V̄n,j(i)−σ2

(j−1)kn
n

2σ2
(j−1)kn

n

and ξ̂n,j(2) =

(
V̄n,j(i)−σ2

(j−1)kn
n

)2

8σ4
(j−1)kn

n

• ξn,i,j(3) =
√
n∆n

i W
σ (j−1)kn

n

[
σ̃ (j−1)kn

n

(
W i−1

n
−W (j−1)kn

n

)
+ σ̃′(j−1)kn

n

(
W ′i−1

n

−W ′(j−1)kn
n

)]
.

• ξn,i,j(4) = 1 + 1
σ (j−1)kn

n

[
σ̃ (j−1)kn

n

(
W i−1

n
−W (j−1)kn

n

)
+ σ̃′(j−1)kn

n

(
W ′i−1

n

−W ′(j−1)kn
n

)]
.

• χn,i,j(1) = −χn,i,j(1, 1) + χn,i,j(1, 2)− χn,i,j(1, 3), where

χn,i,j(1, 1) =
√
n

1

σ (j−1)kn
n

(
∆n
i A+ ∆n

i Y +

∫ i
n

i−1
n

(
σu − σ i−1

n

)
dWu

)
1


√
n|∆n

i Z|√
V̂n,j

≤ αn1/2−$

 ,

χn,i,j(1, 2) =
(√
n∆n

iW + ξn,i,j(3)
)

1


√
n|∆n

i Z|√
V̂n,j

> αn1/2−$

 ,

χn,i,j(1, 3) =

(√
n∆n

iW

σ (j−1)kn
n

(
σ i−1

n
− σ (j−1)kn

n

)
− ξn,i,j(3)

)
1


√
n|∆n

i Z|√
V̂n,j

≤ αn1/2−$

 .

• χn,i,j(2) =

(√
V̂n,j(i)

σ (j−1)kn
n

− 1− ξn,j(1) + ξn,j(2)

)
+
(
ξn,j(1)− ξn,j(2)− ξ̃n,i,j(1) + ξ̃n,i,j(2)

)
.
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A.3 Proof of Theorem 1

The proof to follow can be divided in two main parts, one establishing the central limit theory for the

leading terms and one establishing bounds for lower order terms. The latter follows along the same

line as Todorov & Tauchen (2014) and we refer to Section A.2 for definitions of corresponding terms.

The central limit theory is established through a sequence of auxiliary lemmas in Section A.6. We

shall make the references clear when necessary. Without loss of generality, we shall throughout assume

that τ < 0 as well as kn−mn > 2, which is no restriction since mn � kn. Now, let us start by making

a decomposition

F̂∗W,n ≡
√
Nn(α,$)

(
F̂ ∗W,n(τ)− F̂n(τ)

)
≡ Ĝ∗n(τ)− R̂∗n(τ) (A.2)

where

Ĝ∗n(τ) =

√
Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − Φ(τ)

)
v∗(j−1)kn+i, and

R̂∗n(τ) =
(
F̃n(τ)− Φ(τ)

) √Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

v∗(j−1)kn+i.

Since by Assumption DWB and Lemma 2 it readily follows that

sup
τ∈A

∣∣∣R̂∗n(τ)
∣∣∣ = sup

τ∈A

∣∣∣F̃n(τ)− Φ(τ)
∣∣∣×
∣∣∣∣∣∣
√
Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

v∗(j−1)kn+i

∣∣∣∣∣∣ ≤ O∗p
(√

mn

Nn(α, ω)

bn
mn

)
,

in probability-P, where, again, A⊂ R\0 denotes a finite union of compact sets with positive Lebesgue

measure, we can analyze the properties of Ĝ∗n(τ) rather than those of F̂∗W,n. Next, recall that the

statistics Ĝn(τ) and Gn(τ) denote the bias-corrected empirical process and its asymptotic distribution,

respectively, defined as in (16), then we will show that

sup
x∈R

∣∣∣P∗ (Ĝ∗n(τ) ≤ x
)
− P

(
Ĝn(τ) ≤ x

)∣∣∣ P−→ 0, (A.3)

locally uniformly in τ ∈ A. Under the conditions for Lemma 2, it follows Ĝn(τ)
d−→ Gn(τ), again,

locally uniformly in τ , by applying the central limit theory in the lemma in conjunction with Slutsky’s

Theorem since Nn(α,$)/(bn/kncmn)
P−→ 1. Now, by utilizing this distribution result, we may invoke

Polya’s Theorem, see, e.g., Bhattacharya & Rao (1986), to establish

sup
x∈R

∣∣∣P(Ĝn(τ) ≤ x
)
− P(Gn(τ) ≤ x)

∣∣∣ P−→ 0. (A.4)

Hence, if we can prove that

sup
x∈R

∣∣∣P(Ĝ∗n(τ)
)
− P(Gn(τ) ≤ x)

∣∣∣ P−→ 0, (A.5)
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then (A.3) follows by the triangle inequality. To this end, let us introduce the two quantities

Ĥ∗n,1(τ) ≡ 1

bn/mncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

(
1
{√

n∆n
iW ≤ τ

}
− Φ(τ)

)
v∗i ,

Ĥ∗n,2(τ) ≡ Φ′(τ)τ

bn/knc

bn/knc∑
j=1

ζn,jv
∗
(j−1)kn+1, ζn,j ≡

1

2

 πn

2(kn − 1)

jkn∑
i=(j−1)kn+2

|∆n
i−1W ||∆n

iW | − 1

 ,

and make the decomposition Ĝ∗n(τ) = Ĝ∗n,1(τ) + Ĝ∗n,2(τ) where

Ĝ∗n,1 ≡
√
Nn(α,$)

(
Ĥ∗n,1(τ) + Ĥ∗n,2(τ)

)
Ĝ∗n,2 ≡

√
Nn(α,$)

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

(
X(j−1)kn+i − Φ(τ)

)
v∗(j−1)kn+i − Ĝ

∗
n,1.

The proof now proceeds in two steps:

Step 1: Show Ĝ∗n,1(τ)
d∗−→ G(τ) in probability-P, locally uniformly in τ . Then, we may use the same

arguments as for (A.4) to establish (A.5)

Step 2: Show
∣∣∣Ĝ∗n,2∣∣∣ P∗−→ 0 in probability-P, locally uniformly in τ .

First, for Step 1, define G̃∗n,1 =
√
bn/kncmn/Nn(α,$)Ĝ∗n,1. Then, stated central limit theorem fol-

lows by invoking Lemma A.3 for G̃∗n,1 and applying this with bn/kncmn/Nn(α,$)
P−→ 1, the continuous

mapping theorem and Slutsky’s theorem.

Next, for Step 2, write similarly G̃∗n,2 =
√
bn/kncmn/Nn(α,$)Ĝ∗n,2 and further decompose the

term as G̃∗n,2 = G̃∗n,2,1 − G̃∗n,2,2 − G̃∗n,1, with G̃∗n,1 being defined as in Step 1 and where

T̃ ∗n,1(τ) ≡ 1√
bn/kncmn

G̃∗n,2,1 ≡
1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

X(j−1)kn+iv
∗
(j−1)kn+i,

T̃ ∗n,2(τ) ≡ 1√
bn/kncmn

G̃∗n,2,2 ≡
1

bn/kncmn

bn/knc∑
j=1

mn∑
i=1

Φ(τ)v∗(j−1)kn+i.

Now, let us define

T̂ ∗n(τ) ≡ 1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1

{
√
n

∆n
i Z

σ(j−1)kn

1

 |∆n
i Z|√
V̂n,j

≤ αn−$


≤ τ

√
V̂n,j(i)

σ (j−1)kn
n

− χn,i,j(1) − τχn,i,j(2)

}
v∗i
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=
1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1
{√

n∆n
iW ≤ τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)− ξ̃n,i,j(3)

}
v∗i

by applying the definitions in Section A.2. We now show that kn
(
T̃ ∗n,1(τ) − T̂ ∗n(τ)

)
= o∗p(1), in

probability-P, such that we may work with T̂ ∗n(τ) in the remainder of the proof. To this end, write

E∗
[∣∣∣T̃ ∗n,1(τ)− T̂ ∗n(τ)

∣∣∣] ≤ 1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

E|v∗i | (A.6)

×
∣∣∣Xi − 1

{√
n∆n

iW ≤ τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)− ξ̃n,i,j(3)
}∣∣∣ .

Next, let ηn be a sequence of positive numbers that only depend on n, then we may use the fact that

the probability density of standard normal random variable is uniformly bounded to write

E
∣∣∣Xi − 1

{√
n∆n

iW ≤ τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)− ξ̃n,i,j(3)
}∣∣∣ ≤ P ((|χn,i,j(1)|+ |χn,i,j(2)|) > ηn)

+ E

∣∣∣∣∣Φ
(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2) + ηn(1 + |τ |)

ξ̃n,i,j(4)

)
− Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)− ηn(1 + |τ |)

ξ̃n,i,j(4)

)∣∣∣∣∣
≤ K (P ((|χn,i,j(1)|+ |χn,i,j(2)|) > ηn) + ηn|τ |) ,

similarly to the corresponding term in Todorov & Tauchen (2014, Section 10.4.1). Hence, we may

invoke their bounds in equations (10.14), (10.16)-(10.19), (10.28), (10.29) and (10.31) to show

P ((|χn,i,j(1)|+ |χn,i,j(2)|) > ηn) ≤ K

[
1

nηn

∨ 1

ηpn[np/2 ∧ (n/kn)p ∧ k3p/2
n ]

∨(
kn
n

) 1
1+ι 1

ηιn

]
, (A.7)

for every p ≥ 1 and arbitrarily small ι > 0. Hence, by picking ηn � n−q−ι, ι ∈ (0, 1/2 − q) and

combining (A.6) with Assumption DWB and (A.7), knE∗[|T̃ ∗n,1(τ)− T̂ ∗n(τ)|] ≤ o∗p(1) such that for any

compact subset, A, we have

sup
τ∈A

∣∣∣T̃ ∗n,1(τ)− T̂ ∗n(τ)
∣∣∣ = o∗p(1/kn). (A.8)

Now, let us make the decomposition,

T̂ ∗n(τ)− T̃ ∗n,2(τ) =

6∑
i=1

A∗n,i, (A.9)

where A∗n,1 = Ĥ∗n,1(τ) and the remaining terms are defined as

A∗n,2 =
1

bn/knc

bn/knc∑
j=1

(
Φ
(
τ + τ ξ̄n,j(1)− τ ξ̄n,j(2)

)
− Φ(τ)

)
v∗(j−1)kn+1,
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A∗n,3 =
1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)+1

an,i × v∗i , where

an,i = 1

{
√
n∆n

iW ≤
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

ξn,i,j(4)

}
− 1

{√
n∆n

iW ≤ τ
}

+ Φ(τ)− Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

ξn,i,j(4)

)
,

A∗n,4 =
1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

v∗i

×
[
Φ
(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

)
− Φ

(
τ + τ ξ̄n,j(1)− τ ξ̄n,j(2)

)]
,

A∗n,5 =
1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

v∗i

×

[
Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

ξn,i,j(4)

)
− Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

)]
,

A∗n,6 =
1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)+1

(
Φ
(
τ + τ ξ̄n,j(1)− τ ξ̄n,j(2)

)
− Φ(τ)

)
v∗i −A∗n,2.

Hence, we need to establish bounds for A∗n,2− Ĥ∗n,2(τ), A∗n,3, A∗n,4, A∗n,5 and A∗n,6. For the first of these

terms, apply a second-order Taylor expansion for A∗n,2 to obtain the leading terms,

A∗n,2(1) =
1

bn/knc

bn/knc∑
j=1

Φ′(τ)τ ξ̄n,j(1)v∗(j−1)kn+1,

A∗n,2(2) =
1

bn/knc

bn/knc∑
j=1

(
Φ
′′
(τ)τ2(ξ̄n,j(1))2

2
− Φ′(τ)τ ξ̄n,j(2)

)
v∗(j−1)kn+1.

Then, by using the bounds
E
∣∣∣∣V̄n,j − σ2

(j−1)kn
n

∣∣∣∣p ≤ Kk−p/2n ,

En(j−1)kn

[
R

(4)
j

]
= 0, E

∣∣∣R(4)
j

∣∣∣p ≤ K(kn/n)p/2, ∀p ≥ 2,

E
[∣∣∣R(4)

j − R̃
(4)
i,j

∣∣∣p +
∣∣∣R̃(4)

i,j − R̃
(4)
i,j (i)

∣∣∣p] ≤ K ( 1√
n

)p
, ∀p > 0,

(A.10)

cf. Todorov & Tauchen (2014, Equations (10.25)-(10.26)), in conjunction with Assumption DWB an

the fact the probability density of a standard normal density and Φ
′′

are uniformly bounded, we have

E
[
E∗
∣∣A∗n,2 −A∗n,2(1)−A∗n,2(2)

∣∣] ≤ K (|τ |3 ∨ |τ |2) [(kn
n

)3/2∨(
1

kn

)3/2
]
, (A.11)
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and, as a result, supτ∈A |A∗n,2 −A∗n,2(1)−A∗n,2(2)| = o∗p(1/kn) in probability-P, similarly to (A.8). For

the first of the two Taylor expansion terms, write

E∗
∣∣∣A∗n,2(1)− Ĥ∗n,2(τ)

∣∣∣ ≤ 1

bn/knc

bn/knc∑
j=1

∣∣Φ′(τ)τ
∣∣× ∣∣ξ̄n,j(1)− ζn,j

∣∣× E|v∗(j−1)kn+1|.

Hence, by Assumption DWB and the bounds in (A.10), we have

E
∣∣ξ̄n,j(1)− ζn,j

∣∣ ≤ K|τ |( 1√
n

∨ kn
n

)
, (A.12)

and, consequently, it follows that |A∗n,2(1) − Ĥ∗n,2(τ)| ≤ o∗p(1/kn), in probability-P, locally uniformly

in the argument τ . For the second Taylor expansion term, A∗n,2(2), make the decomposition

A∗n,2(2) = A∗n,2(2, 1) +A∗n,2(2, 2), A∗n,2(2, 1) =
H3(τ)

bn/knckn

bn/knc∑
j=1

v∗(j−1)kn+1,

A∗n,2(2, 2) =
1

bn/knc

bn/knc∑
j=1

(
Φ
′′
(τ)τ2(ξ̄n,j(1))2

2
− Φ′(τ)τ ξ̄n,j(2)−H3(τ)/kn

)
v∗(j−1)kn+1.

For the first of these terms, we have

|A∗n,2(2, 1)| ≤ K
(
|τ | ∨ τ2

)
×Op

(√
bn/mn/

(√
knn

))
≤ K

(
|τ | ∨ τ2

)
×Op

(
1/
(√

knn
))

by computing the mean and variance using Assumption DWB.16 For the second term,

E∗
∣∣A∗n,2(2, 2)

∣∣ ≤ 1

bn/knc

bn/knc∑
j=1

∣∣∣∣∣Φ
′′
(τ)τ2(ξ̄n,j(1))2

2
− Φ′(τ)τ ξ̄n,j(2)−H3(τ)/kn

∣∣∣∣∣× E
∣∣∣v∗(j−1)kn+1

∣∣∣ .
As in (A.12), we may apply (A.10) to show E|ξ̄n,j(2)− ξ̂n,j(2)| ≤ K(|τ |∨τ2)(n−1/2∨(kn/n)). Moreover,

since we have (ξ̄n,j(1))2/2 = ξ̄n,j(2) as well as

En(j−1)kn

[
ξ̂n,j(2)

]
=

1

8kn

((π
2

)2
+ π − 3

)
+ o(1/kn), (A.13)

we may collect bounds, Assumption DWB and successive conditioning to show

∣∣A∗n,2(2, 2)
∣∣ ≤ K (|τ | ∨ τ2

)
O∗p

(
1√
n

∨ kn
n

)
+ o∗p(1/kn),

16Too see this, note that E[A∗n,2(2, 1)] = 0 and Cov(v∗r , v
∗
s ) = Op(bn/(mnbn/knc)) for integers r and s by Assumption DWB.

Moreover, since the scale is 1/(bn/knckn)2 for the second moment and mn/kn → 0, the bound follows immediately.
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in probability-P, locally uniformly in τ . Hence, by combining results,∣∣∣A∗n,2 − Ĥ∗n,2(τ)
∣∣∣ = o∗p(1/kn) (A.14)

in probability-P, locally uniformly in τ .17

For the next term, A∗n,3, we readily have E∗[A∗n,3] = 0 by E∗[an,iv∗i ] = an,iE[v∗i ] = 0. Moreover,

we have E[an,i] = 0, E[a2
n,i] ≤ K|τ |((kn/n)1/2 ∨ k−1/2

n ), and E[an,ian,g] = 0 for |i − g| > kn due to

independence of the Brownian increments ∆n
iW , ∆n

gW , ∆n
iW

′ and ∆n
gW

′. When |i−g| ≤ kn, we follow

Todorov & Tauchen (2014) and use the fact that ξn,i,j(4) is adapted to Fti−1 as well as decompose

the an,g component into a part with the ith increment removed from ξ̃n,g,j(1) and ξ̃n,g,j(2), denoted

by ān,g, and a residual ãn,g = an,g − ān,g. For these terms, we have E[an,gān,g] = 0 and, by their

arguments (cf. pp. 1880-1881), the triangle inequality and Chebyshev’s inequality,

E |an,gãn,g| ≤ K(|τ | ∨ τ2)

((
kn
n

)1−2ι∨ 1

k1−2ι
n

)

for some arbitrarily small ι > 0 and sufficiently large n. We apply these results in conjunction with

the convergence part of Assumption DWB, Cov(v∗i , v
∗
g)→ Ci,g for all (i, g) ∈ 1, . . . n where Ci,g ≥ 0 is

a nonrandom constant, the triangle inequality as well as the Cauchy-Schwarz inequality to show

E∗
[
(A∗n,3)2

]
=

1

(bn/kncmn)2

bn/knc∑
j=1

(j−1)+mn∑
i=(j−1)kn+1

bn/knc∑
h=1

(j−1)+mn∑
g=(j−1)kn+1

an,ian,gCov(v∗i , v
∗
g)

≤ K(|τ | ∨ τ2)

(bn/kncmn)2

bn/knc∑
j=1

Op

(
mn

(√
kn
n

∨ 1√
kn

)
+m2

n

((
kn
n

)1−2ι∨ 1

k1−2ι
n

))

= K(|τ | ∨ τ2)×Op

(
1

bn/kncmn

(
1

kn

)1/2∨ k2ι
n

n

)
,

which, consequently, provides the bound |A∗n,3| ≤ o∗p(1/kn) in probability-P, locally uniformly in τ .

Next, for A∗n,4, write

E∗
[
|A∗n,4|

]
≤ 1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
(j−1)kn+1

∣∣∣Ân,4,i∣∣∣× E|v∗i |, where

Ân,4,i ≡ Φ
(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

)
− Φ

(
τ + τ ξ̄n,j(1)− τ ξ̄n,j(2)

)
.

Then, we make a Taylor expansion, similarly to the one for A∗n,2, and use the same arguments as in

(A.11), (A.12) and for A∗n,2 to show |Ân,4,i| ≤ K(|τ |∨τ2)Op(n
−1/2∨ (kn/n))+op(1/kn). By combining

this with Assumption DWB, we have |A∗n,4| ≤ o∗p(1/kn) in probability-P, locally uniformly in τ .

17This shows that the remaining asymptotic bias is negligible for the local DWB, that is, the statistic is bias-corrected.
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For A∗n,5, we make a decomposition similarly to Todorov & Tauchen (2014, pp. 1881-1882). Hence,

by the triangle inequality, ∀ι > 0 and n sufficiently high, write

E∗
[
|A∗n,5|

]
≤ 1

bn/kncmn

bn/knc∑
j=1

(j−1)kn+mn∑
(j−1)kn+1

|bn,i(1) + bn,i(2) + bn,i(3)| × E|v∗i |, (A.15)

where bn,i(1), bn,i(2), and bn,i(3) are defined as

bn,i(1) ≡

[
Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

ξn,i,j(4)

)
− Φ

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(2)

)]
× 1

{
|ξn,i,j(4)− 1| ≥ (kn/n)1/2−ι

}
bn,i(2) ≡ Φ′

(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(1)

)(
τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(1)

)
(ξn,i,j(4)− 1)

× 1
{
|ξn,i,j(4)− 1| < (kn/n)1/2−ι

}
,

bn,i(3) ≤ K

∣∣∣τ + τ ξ̃n,i,j(1)− τ ξ̃n,i,j(1)
∣∣∣2

(1− (kn/n)1/2−ι)3
|ξn,i,j(4)− 1|2,

for an arbitrarily small ι > 0. Moreover, we may readily invoke the following inequalities,

E [|bn,i(1)|+ |bn,i(3)|] ≤ K(τ2 ∨ 1)
kn
n
,

E
∣∣∣bn,i(2)− Φ′(τ)τ(ξn,i,j(4)− 1)1

{
|ξn,i,j(4)− 1| < (kn/n)1/2−ι

}∣∣∣ ≤ K|τ | 1√
n
.

By combining these with Assumption DWB and the uniform boundedness of probability density of a

standard normal distribution and its derivative, E∗
[
|A∗n,5|

]
≤ K(|τ | ∨ τ2)Op((kn/n)∨n−1/2) such that

it follows that |A∗n,5| ≤ o∗p(1/kn) in probability-P, locally uniformly in τ .

For the last term, A∗n,6, define Bj(τ) ≡ Φ(τ + τ ξ̄n,j(1)− τ ξ̄n,j(2))− Φ(τ) and rewrite the term as

A∗n,6 =
1

bn/knc

bn/knc∑
j=1

Bj(τ)z∗(j−1)kn+1, where z∗(j−1)kn+1 =
1

mn

(j−1)kn+mn∑
i=(j−1)kn+2

v∗i .

Hence, A∗n,6 has the same form as A∗n,2 with z∗(j−1)kn+1 in place of v∗(j−1)kn+1 and may be treated in a

similar manner. As a result, and analogously to the leading term Ĥ∗n,2(τ), define

H̃∗n,2(τ) ≡ Φ′(τ)τ

bn/knc

bn/knc∑
j=1

ζn,jz
∗
(j−1)kn+1, (A.16)

then it follows by the same arguments provided for (A.14) that |A∗n,6 − H̃∗n,2(τ)| = op(1/kn), in

probability-P, locally uniformly in τ . Next, E∗[H̃∗n,2(τ)] = 0 follows by Assumption DWB and, by
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additionally using boundedness of the probability density of a standard normal density as well inde-

pendence of the Brownian increments, we have

E
(
E∗
[(
H̃∗n,2(τ)

)2]) ≤ K2τ2

(bn/knc)2

bn/knc∑
j=1

E
[
ζ2
n,j

]
× E

[(
z∗(j−1)kn+1

)2]
, (A.17)

for which E[ζ2
n,j ] ≤ K by Lemma A.1(a) and with

E
[(
z∗(j−1)kn+1

)2]
=

1

m2
n

(j−1)kn+mn∑
i=(j−1)kn+2

(j−1)kn+mn∑
h=(j−1)kn+2

Cov(v∗i , v
∗
h) ≤ O

(
bn

bn/kncmn

)
. (A.18)

Hence, by combining results, |H̃∗n,2(τ)| ≤ Op((kn/n)
√
bn/mn) = o∗p(1/kn), in probability P, locally

uniformly in τ , which, together with the triangle inequality, establishes that |A∗n,6| = o∗p(1/kn). Now,

by collecting asymptotic bounds for the sequence
∑6

i=1A
∗
n,i and using them in conjunction with (A.8),

this shows |G̃∗n,2| ≤ o∗p(
√

(nmn)/k3
n) = o∗p(1), in probability-P, locally uniformly in τ . Then, since

we have Nn(α,$)/(bn/kncmn)
P−→ 1, the final asymptotic bound for Ĝ∗n,2 in Step 2 follows by an

application of the continuous mapping theorem.

A.4 Proof of Lemma 3

Apart from the fourth moment result, then (a)-(c) follows by the properties of multinomial random

variables and by v�(j−1)kn+i being constant across i = 1, . . . ,mn for a given j = 1, . . . , bn/knc. For the

fourth moment bound, we may use the cr-inequality to deduce

E
[
|v�i |4

]
≤ K1E

[
|ζ�i |4

]
+K2 < K, (A.19)

for constants K1 < ∞ and K2 < ∞, using also the bound E
[
|ζ�i |4

]
< 15, see, e.g., Præstgaard &

Wellner (1993, Example 3.2), for the last inequality. Finally, for (d), write

bn/kncmn∑
i=1

Cov(u�1, u
�
i ) =

mn∑
i=1

Cov(u�1, u
�
i ) +

bn/kncmn∑
i=mn+1

Cov(u�1, u
�
i )

= mn(1− 1/pn)−mn(pn − 1)/pn = o(mn),

using the variance-covariance properties (a)-(c), thus concluding the proof.

A.5 Proof of Theorem 3

The result, similarly to Doukhan et al. (2015, Theorem 4.4), follows by Beutner & Zähle (2014,

Theorem 3.14(ii)), if we can verify conditions (a)-(c) for the latter. First, for (a), we need to verify
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the conditions for their Lemmas 3.4 and 3.6.18 Specifically, conditions (a)-(c) of Lemmas 3.4 and

3.6 is satisfied since F̂n(τ) is the empirical CDF, Φ(τ) is Gaussian, τ1, τ2 ∈ A and by the regularity

conditions on the kernel function in Assumption 3. Next, for condition (b) of Beutner & Zähle (2014,

Theorem 3.14(ii)), this follows by Lemma 2, Assumption 3 and Beutner & Zähle (2014, Remark 3.16).

Finally, condition (c) follows by the locally uniform central limit theorem for the empirical process at

high frequencies in Lemma 2, and since the limiting distribution, Gn(τ), has continuous paths.

A.6 Technical Results

Lemma A.1 (Todorov & Tauchen (2014), central limit theory for leading terms.). Suppose that the

regularity conditions of Lemma 2 hold. Moreover, let(√
bn/kncmnĤn,1(τ)√
bn/kncknĤn,2(τ)

)
≡
bn/knckn∑

i=1

(
Zi(1)

Φ′(τ)τ
2 (Zi(2) + Zi(3))

)
+

(
0

Φ′(τ)τ
2 Z̃

)
, (A.20)

where, with In ≡ {i = (j − 1)kn + 1, . . . , (j − 1)kn + mn; j = 1, . . . , bn/knc}, the elements of Zi are

defined as

Z i =


1√

bn/kncmn
[1{
√
n∆n

iW ≤ τ} − Φ(τ)]

1√
bn/knckn

π
2 |
√
n∆n

i−1W |
(
|
√
n∆n

iW | −
√

2/π
)

1√
bn/knckn

√
π
2

(
|
√
n∆n

iW | −
√

2/π
)

 , i ∈ In, (A.21)

and, for i = 1, . . . , n \ In, Zi is defined as above, but with the first element replaced by zero. Finally,

the residual term, Z̃, is defined with ∆n
0W = 0 as

Z̃ =
−(π/2)√
bn/knckn

bn/knc∑
j=1

Z̃j , where

Z̃j =

[
|
√
n∆n

(j−1)kn
W |

(
|
√
n∆n

(j−1)kn+1W | −
√

2

π

)
+

√
2

π

(
|
√
n∆n

jknW | −
√

2

π

)]
. (A.22)

Then, locally uniformly in τ over compact subsets of R, it follows that

(a) Eni−1[Z i] = 0,
∑bn/knckn

i=1 Eni−1[‖Z i‖2+ι]→ 0, ∀ι > 0 and

bn/knckn∑
i=1

Eni−1[Z iZ ′i]→ CZ(τ), CZ(τ) ≡

Φ(τ)(1− Φ(τ)) 0 0

0 (π/2)2(1− 2π) (π/2)(1− 2π)

0 (π/2)(1− 2π) (π/2)(1− 2π)

 .

18This simplifies slightly since we restrict the integration range of the arguments to a compact subsetA ⊂ R\0. In particular,
conditions (d) of both Lemmas 3.4 and 3.6 requires the integral to be well-behaved as the arguments τ1, τ2 → ±∞. Hence,
as the integration is carried out over τ1, τ2 ∈ A, such conditions are avoided here.
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(b) Let H1(τ) and H2(τ) be defined as in Lemma 2, then E[Z̃2] ≤ K/kn and

bn/knckn∑
i=1

(
Zi(1)

Φ′(τ)τ
2 (Zi(2) + Zi(3))

)
d−→

(
H1(τ)

H2(τ)

)
.

Proof. This follows by the arguments on Todorov & Tauchen (2014, pp. 1883-1884).

Lemma A.2 (Block Moments and CLT). For i = 1 . . . , bn/knckn, we let v̄∗i = v∗(j−1)kn+1 when

i ∈ (j − 1)kn + 1, . . . , jkn with j ∈ 1, . . . , bn/knc, and write Z∗i (1) = Zi(1)v∗i , Z∗i (2) = Zi(2)v̄∗i and

Z∗i (3) = Zi(3)v̄∗i , and for which the triplet Zi(1), Zi(2) and Zi(3) are defined as in (A.21). Moreover,

these are collected in the vector Z∗i = (Z∗i (1),Z∗i (2),Z∗i (3))′. Finally, let Kn be a sequence of integers

that satisfies 1/Kn +Kn/n→ 0 and kn/Kn → %k ≥ 0 as n→∞, then

(a) bn/kncknKn

∑Kn
i=1 Eni−1[Z iZ ′i]→ CZ(τ) and, for i 6= j, bn/kncknKn

∑Kn
i,j=1 Z iZ ′j = op(1).

(b) bn/kncknKn

∑Kn
i=1 E∗[Z

∗
i (Z∗i )′]

P−→ CZ(τ) and, for i 6= j, bn/kncknKn

∑Kn
i,j=1 E∗[Z

∗
i (Z∗j )′] = o∗p(1).

(c) Locally uniformly in τ over compact subsets of R,√
bn/knckn

Kn

Kn∑
i=1

Z∗i
d−→ N(0,CZ(τ)).

Proof. The first part of (a) follows by changing the scale of Z i and using Lemma A.1(a). The second

part follows by using the Markov inequality for the martingale difference sequence, Z i, i = 1, . . . , n,

and subsequently the (2 + ι)-moment result in Lemma A.1(a).

Next, for (b), utilize the decomposition E∗[Z∗i (Z∗j )′] = Z iZ ′j Cov(v∗i , v
∗
j ) for all i, j = 1, . . . ,Kn,

which, in conjunction with (a) and Assumption DWB, delivers the results.

Last, for (c), and similarly to Todorov & Tauchen (2014, pp. 1883-1884), Eni−1(E∗[Z∗i ]) = 0,

bn/knckn
Kn

Kn∑
i=1

Eni−1(E∗[Z∗i (Z∗i )′])→ CZ(τ), and

(
bn/knckn

Kn

)2 Kn∑
i=1

Eni−1(E∗[‖Z∗i ‖4]) ≤ K
(
bn/knckn

Kn

)2 Kn∑
i=1

Eni−1(‖Z i‖4)E∗[‖v̄∗i ‖4])→ 0,

with v̄∗i = (v∗i , v̄
∗
i , v̄
∗
i )
′, using the same arguments as for (a) and (b), Lemma A.1(a) as well as

Assumption DWB(a). Together independence of the Brownian increments and successive conditioning

under the P∗ and P measures, we may invoke the central limit theorem for martingale difference

sequences, e.g., Hall & Heyde (1980, Chapter 3), to establish the limit result point-wise in τ . An

application of Billingsley (1968, Theorem 12.3) delivers the locally uniform result.
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Lemma A.3 (DWB central limit theory). Under the conditions of Theorem 1, then, locally uniformly

in τ over compact subsets of R,(√
bn/kncmnĤ

∗
n,1(τ)√

bn/kncknĤ∗n,2(τ)

)
d∗−→

(
H1(τ)

H2(τ)

)
,

in probability-P, where H1(τ) and H2(τ) are defined as in Lemma 2.

Proof. First, make a decomposition similarly to (A.20),(√
bn/kncmnĤ

∗
n,1(τ)√

bn/kncknĤ∗n,2(τ)

)
≡
bn/knckn∑

i=1

(
Z∗i (1)

Φ′(τ)τ
2 (Z∗i (2) + Z∗i (3))

)
+

(
0

Φ′(τ)τ
2 Z̃∗

)
, (A.23)

where the vector Z∗i = (Z∗i (1),Z∗i (2),Z∗i (3))′, i = 1, . . . , n, are defined as in Lemma A.2 and

Z̃∗ =
−(π/2)√
bn/knckn

bn/knc∑
j=1

Z̃jv∗(j−1)kn+1

As the residual term has E(E∗[Z̃2]) ≤ K/kn by Lemma A.1(b) together with Assumption DWB,

we may focus on the first right-hand-side term in (A.23). Here, since v∗i in Z∗i (1) is bn-dependent by

Assumption DWB, and v̄∗i in Z∗i (2) and Z∗i (3) is kn-dependent, we can adopt a large-block-small-block

argument in conjunction with a modified Cramér-Wold device to show

bn/knckn∑
i=1

λ′Z i
d∗−→ λ′Z∞, in probability− P, (A.24)

where λ is contained in a countable dense subset of the unit circle D = {λk : k ∈ N}, and the

asymptotic distribution Z∞ ∼ N(0,CZ(τ)) with CZ(τ) defined as in Lemma A.1(a).19 Hence, define

a sequence of integers Kn such that Kn → ∞ and Kn/n → 0 as n → ∞, capturing the “large” block

size. Moreover, let `n = bn/(Kn + kn)c → ∞ be the number of blocks, then we may define blocks:

Lr = {i ∈ N : (r − 1)(Kn + kn) + 1 ≤ i ≤ r(Kn + kn)− kn} , r = 1, . . . , `n, and

Sr = {i ∈ N : r(Kn + kn)− kn + 1 ≤ i ≤ r(Kn + kn)} , r = 1, . . . , `n − 1,

as well as S`n {i ∈ N : `n(Kn + kn)− kn + 1 ≤ i ≤ n}. Now, conditional on the sample path Xn, we

have that U∗r =
∑

i∈Lr λ
′Z i and V∗r =

∑
i∈Sr λ

′Z i are independent across r = 1, . . . , `n and r =

1, . . . , `n − 1 for U∗r and V∗r , respectively. The proof, thus, proceeds by showing existence of sequences

Kn and `n such that the following conditions hold:

(i)
∑`n

r=1 V∗r = o∗p(1), in probability-P,

19A similar strategy is adopted for the proof on Shao (2010, Theorem 3.1), albeit with subtle and important differences.
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(ii) E∗[
∑`n

r=1 U
∗
r ] = 0 and E∗[(

∑`n
r=1 U

∗
r )2]

P−→ CZ(τ).

(iii) I∗n(ε) ≡
∑`n

r=1 E∗[(U∗r )21{|U∗r | > ε}] P−→ 0, for some ε > 0.

since, in conjunction with U∗r , r = 1, . . . , `n, this suffices to show (A.24) point-wise in τ over compact

subsets of R. The stated central limit theorem in the lemma for locally uniform intervals of τ , then,

follows by the Cramér-Wold theorem in conjunction with Billingsley (1968, Theorem 12.3).

First, for (i), we have E∗[V ∗r ] = 0 by Assumption DWB. Moreover, for r = 1, . . . , `n − 1, it follows

that E∗[(V ∗r )2] =
∑

i,j∈Sr λ
′Z iZ ′iλCov(v∗i , v

∗
j ) = Op(kn/n) by Lemma A.2(a) and Cov(v∗i , v

∗
j ) →

Ci,j ≥ 0 by Assumption DWB. By the same argument, we have E∗[(V ∗`n)2] = Op(Kn/n). Hence,

utilizing independence between the blocks, V ∗r , this provides the bound

E∗
[(

`n∑
r=1

V ∗r

)2]
= Op

(
`nkn
n

+
Kn

n

)
,

for which (`nkn)/n � kn/Kn → 0 and Kn/n→ 0 as n→∞, thereby showing (i).

Next, (ii) follows by Assumption DWB, Lemma A.2(b) and independence between the blocks in

the sequence U∗r , r = 1, . . . , `n, under the bootstrap measure.

Last, for the Lindeberg condition in (iii), it suffices to show E[I∗n(ε)]→ 0. Now, by stationarity of

the bootstrap variables and independence of the Brownian increments in Z i,

E[I∗n(ε)] ≤ K`nE
(
E∗
[
(U∗1 )21 {|U∗1 | > ε}

])
= KE

(
E∗
[
(
√
`nU

∗
1 )21

{
|
√
`nU

∗
1 | >

√
`nε
}])

. (A.25)

Hence, it suffices to analyze the properties of
√
`nU

∗
1 when expectations are taken under both random

measures. Indeed, since `n/(bn/knckn/Kn)→ 1 as n→∞, the use of the continuous mapping theorem

and Slutsky’s theorem in combination with Lemma A.2(b)-(c) establish that
√
`nU

∗
1

d−→ λ′Z∞ as well

as E(E∗[`n(U∗1 )2]) → λ′CZ(τ)λ as n → ∞, locally uniformly in τ over compact subsets of R. Hence,

these results imply uniform integrability of (
√
`nU

∗
1 )2, providing

E
(
E∗
[
(
√
`nU

∗
1 )21

{
|
√
`nU

∗
1 | >

√
`nε
}])

→ E
(
E∗
[
(λ′Z∞)21

{
|λ′Z∞| >

√
`nε
}])

→ 0 (A.26)

since
√
`nε→∞ when n→∞. This shows (iii), thereby concluding the proof.

B Standard Local Gaussian Resampling

To elaborate on Remark 3, we follow Hounyo (2018) and generate the high-frequency innovations as,

∆n
(j−1)kn+iZ

∗ =

√
V̂n,j
n
u∗i+(j−1)kn

, i = 1, . . . , kn, j = 1, . . . , bn/knc , (B.1)
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where u∗i+(j−1)kn
∼ i.i.d.N(0, 1) across the (i, j) indices. Using these, the analogous bootstrap spot

variation estimator may be decomposed as V̂ ∗n,j = V̂n,jU
∗
n,j , where

V̂ ∗n,j =
π

2

n

kn − 1

jkn∑
i=(j−1)kn+2

∣∣∆n
i−1Z

∗∣∣ |∆n
i Z
∗| , U∗n,j =

π

2 (kn − 1)

jkn∑
i=(j−1)kn+2

|u∗i−1||u∗i |, (B.2)

utilizing that V̂n,j is constant over i for a given j. Moreover, by first defining V̂ ∗n,j(i) similarly to (6),

that is, replacing ∆n
i Z with ∆n

i Z
∗, and using the definition of V̂ ∗n,j , the former reduces to

V̂ ∗n,j (i) = V̂n,jU
∗
n,i,j(i),

where, by expanding and rewriting the analogue of (6), we have

U∗n,i,j(i) =



π
2

1
kn−3

(
jkn∑

l=(j−1)kn+2

|u∗l−1||u∗l | − |u∗i ||u∗i+1|

)
for i = (j − 1) kn + 1;

π
2

1
kn−3

(
jkn∑

l=(j−1)kn+2

|u∗l−1| |u∗l | −
(
|u∗i−1||u∗i |+ |u∗i ||u∗i+1|

))
,

for i = (j − 1) kn + 2, . . . , jkn − 1;

π
2

1
kn−3

(
jkn∑

l=(j−1)kn+2

|u∗l−1||u∗l | − |u∗i−1||u∗i |

)
, for i = jkn.

(B.3)

Now, it is important to note that both bootstrap spot variation estimators, V̂ ∗n,j and V̂ ∗n,j(i), both

decompose into V̂n,j as well as additional terms that consist exclusively of the resampled data. This

implies that when forming the bootstrap empirical CDF, the key ratios reduce to

R∗n,i,j =

√
n∆n

i Z
∗√

V̂ ∗n,j

=
u∗i√
U∗n,i,j

, R∗n,i,j(i) =

√
n∆n

i Z
∗√

V̂ ∗n,j(i)
=

u∗i√
U∗n,i,j(i)

(B.4)

with i = (j − 1)kn + 1, . . . , (j − 1)kn + mn. In other words, R∗n,i,j and R∗n,i,j(i) no longer depend on

the original data. However, since the two ratios preserve the exact dependence structure of the corre-

sponding ratios in empirical CDF, F̂n(τ), the relations in (B.4) can be used to simulate the asymptotic

distribution of F̂n(τ) under the null hypothesis H0 : St = Wt, which may generate improvements of

the finite sample inference. Hence, if one considers the resampled empirical CDF,

F̂ ∗R,n(τ) =
1

N∗R,n(α,$)

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1
{
R∗n,i,j(i) ≤ τ

}
1
{
|R∗n,i,j | ≤ αn1/2−$

}
, (B.5)

where

N∗R,n (α,$) =

bn/knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

1
{
|R∗n,i,j | ≤ αn1/2−$

}
, (B.6)
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and we redefine ũ∗i = u∗i /
√
n

d
= N(0,∆n

i ), then this process (and CDF statistic) belong to the general

class (3) as a special case with σt = 1, αt = 0, Yt = 0 and St = Wt for all 0 ≤ t ≤ 1. Hence, the CLT

for the Gaussian resampled CDF, F̂ ∗R,n(τ), may be obtained as a corollary to Lemma 2:

Corollary 4. Suppose that (B.1) holds, then, locally uniformly in τ over any compact subset A ⊂
R 6= 0,

F̂ ∗R,n(τ)− Φ (τ) = Ĥ∗R,n,1(τ) + Ĥ∗R,n,2(τ) +H3(τ)/kn + op(1/kn)

where
√
bn/kncmn

(
Ĥ∗R,n,1(τ),

√
kn/mnĤ

∗
R,n,2(τ)

) d−→
(
H∗R,1(τ), H∗R,2

)
with H∗R,1 and H∗R,2(τ) being

two independent Gaussian processes with covariances similar to those for H1(τ) and H2(τ), respec-

tively, in (9). Finally, H3(τ) is defined in (10).

Since the local Gaussian CDF statistic, F̂ ∗R,n(τ), is a special case of the empirical CDF without

impact from drift, residual jumps, and stochastic volatility, while exactly capturing its dependence

structure, one could base inference for F̂n(τ) and its Kolmogorov-Smirnov test, Tn, on the resample

distributions F̂ ∗R,n(τ) − Φ (τ) and supτ∈A

√
N∗R,n(α,$)|F̂ ∗R,n(τ) − Φ (τ) |. However, as this inference

procedure has lost all dependence on the original data, it likely suffers from finite sample distortions

similarly to those affecting the asymptotic distribution when the underlying process indeed exhibits

drift, jumps and stochastic volatility. Hence, we prefer, and recommend, the use of the LDWB inference

procedure in Section 3.2, which not only preserves dependence on the original data, it also replicates

the second-order asymptotic theory induced by the nonparametric standardization.

C Implementation Details

In this section, we detail how one can implement the proposed bootstrap tests. Let B denote the

number of bootstrap replications for each of the M Monte Carlo replications. Then, for a given

equidistant partition of the normalized time window [0, 1] with step length 1/n do the following:

Algorithm 1: The LDWB and/or the NLBB procedure for hypothesis testing

Step 1. Simulate n+ 1 ∈ N points of the process Zt under investigation (a pure-jump semimartingale

or a jump diffusion, or a jump diffusion contaminated by noise).

Step 2. Compute n intraday returns at an equidistant time grid ti ≡ i/n ∈ [0, 1], for i = 0, . . . , n, as

the innovation ∆n
i Z = Zti − Zti−1 .

Step 3. Compute the Kolmogorov-Smirnov statistic,

K̂Sn(A) = sup
τ∈A

√
Nn(α,$)

∣∣∣F̂n (τ)− Φ (τ)
∣∣∣ ,
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where Nn (α,$) and F̂n (τ) are defined as in (7) and (8), respectively. For the compact set A,

one may, e.g., choose (as in Section 5),

A = [Q (0.001) : Q (0.499)] ∪ [Q (0.501) : Q (0.999)] , (C.1)

where Q (θ) is the θ-quantile of the standard normal distribution.

Step 4. Generate an mn bn/knc sequence of external random random variables v∗(j−1)kn+i, for running

indices i = 1, . . . ,mn, j = 1, . . . , bn/knc, which are independent of the observations generated

in Step 1 as well as satisfy the conditions of Assumption DWB. As advocated in Section 5.1, one

may use the random variables underlying DWB1, DWB2, DWB3 or DWB4.20

Step 5. Generate the locally dependent wild bootstrap observations as in (14).

Step 6. Compute the bootstrap Kolmogorov-Smirnov statistic KS∗n(A) as in (21). In particular,

KS∗n(A) = sup
τ∈A

√
Nn(α,$)

∣∣∣F̂ ∗W,n(τ)− F̂n(τ)
∣∣∣ ,

where Nn (α,$) , F̂ ∗W,n(τ), F̂n(τ) and A are defined as in (7), (15), (8) and (C.1), respectively.

Step 7. Repeat Steps 4-6 B times and keep the values of KS
∗(j)
n (A), j = 1, . . . , B, where KS

∗(j)
n (A)

is given as in Step 6. Then, sort KS
∗(1)
n (A), . . . ,KS

∗(B)
n (A) ascendingly from the smallest to the

largest as KS
∗(1)
n (A), . . . ,KS

∗(B)
n (A) such that KS

∗(i)
n (A) < KS

∗(j)
n (A) for all 1 ≤ i < j ≤ B.

Step 8. Reject H0 : St = Wt when K̂Sn(A) > q∗n (α,A) where q∗n (α,A) is the α quantile of the

bootstrap distribution of KS∗n(A). For example, if we let B = 999, then the 0.05-th quantile of

KS∗n(A) is estimated by KS
∗(a)
n (A) with a = 0.05× (999 + 1) = 50.

Step 9. Repeat Steps 1-8 M times to get the size or power of the bootstrap test. In particular, if Zt

is simulated as a jump diffusion, then the size is given by M−1
(
#
{

K̂Sn(A) > q∗n (α,A)
})

.

20For the NLBB, note that observations can be obtained equivalently by resampling, as in equation (17), or by generating
external random variable as follows: v∗(j−1)kn+i = ζ∗pn,j − 1 for i = 1, . . . ,mn across blocks j = 1, . . . , bn/knc, where
we let pn = bn/knc and ζ∗pn,j , j = 1, . . . , pn be a sequence of multinomial random variables with probability 1/pn and
number of trials pn, see Section 3.3 for further details.
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