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Abstract

In this paper we introduce an autoregressive model with seasonal
dummy variables in which coe¢ cients of seasonal dummies vary smoothly
and deterministically over time. The error variance of the model is
seasonally heteroskedastic and multiplicatively decomposed, the de-
composition being similar to that in well known ARCH and GARCH
models. This variance is also allowed to be smoothly and determin-
istically time-varying. Under regularity conditions, consistency and
asymptotic normality of the maximum likelihood estimators of para-
meters of this model is proved. A test of constancy of the seasonal
coe¢ cients is derived. The test is generalised to specifying the para-
metric structure of the model. A test of constancy over time of the
heteroskedastic error variance is presented. The purpose of building
this model is to use it for describing changing seasonality in the well-
known monthly central England temperature series. More speci�cally,
the idea is to �nd out in which way and by how much the monthly
temperatures are varying over time during the period of more than 240
years, if they do. Misspeci�cation tests are applied to the estimated
model and the �ndings discussed.

Keywords: global warming; nonlinear time series; changing sea-
sonality, smooth transition; testing constancy
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1 Introduction

As a monthly temperature time series, the central England temperature
(CET) series is quite unique because of its length. It extends over three
and a half centuries and thus provides an opportunity to consider possible
changes in the climate on a �micro-level�. The series was originally com-
piled by Manley (1974) and covered the years 1659�1973; for a revised and
extended series see Parker, Legg and Folland (1992). Several authors have
studied properties of the series for various time periods. Harvey and Mills
(2003) aggregated the series from 1723 to 1999 to the annual and seasonal
level and considered deterministic trends using both local cubic trends and
low-pass �lters. Their conclusion was that within this period, no warming
trend can be discerned. The main reason for this is that they found a rather
strong downward movement in both the annual and seasonal series until
around 1775, and the upward movement beginning thereafter only brought
the temperatures to the level where they were in the beginning of the period.
Vogelsang and Franses (2005) analysed the whole CET series from 1659 to
2000 using an autoregressive model augmented by a linear trend and a pos-
sible trend-break. Their conclusion was that there is a positive linear trend
for months from October to April. This excludes the summer months. Re-
cently, Proietti and Hillebrand (2017) used a structural time series model,
separating the series from 1772 to 2013 into permanent and transitory com-
ponents. The permanent component contained both a deterministic (linear)
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and a stochastic trend. They found that the deterministic trend is strongest
for November, December and January, whereas the stochastic trend has the
highest coe¢ cients for April and May, and again for August, September and
October.
This paper has two important purposes. The �rst one to develop a sea-

sonal time series model which can adequately describe changes in seasonality
over time in situations in which no single both observable and quanti�able
cause for the change can be identi�ed. The idea is to generalise the stan-
dard autoregressive model with seasonal dummy variables to the situation in
which the seasonal pattern of the time series may not remain constant over
time. The second purpose is to apply the model, called the Seasonal Shifting
Mean Autoregressive (SSM-AR) model, to quantify potential warming in the
monthly CET series. This implies a more detailed scrutiny of seasonality in
this series than what is reported in hitherto published papers. The months
in which warming, if any, has occurred will be found and its strength for each
month estimated.
The plan of the paper is as follows. The SSM-AR model is introduced in

Section 2. Its properties, such as the log-likelihood, score and the information
matrix are presented in Section 3 and the Hessian in Section 4. Asymptotic
theory for maximum likelihood estimators of parameters of the model is
considered in Section 5. Speci�cation and testing of the SSM-AR model is
the topic of Section 6. Application to the CET series is described in Section 7.
Section 8 contains discussion and �nal remarks. Proofs, estimated equations
and some additional material can be found in Appendices.

2 The model

The number of nonlinear seasonal time series models is not large, but a few
examples exist. Franses and de Bruin (2000) introduced a seasonal smooth
transition autoregressive (SEASTAR) model and �tted it to seasonally un-
adjusted unemployment series. The purpose of the study was to study the
e¤ects of seasonal adjustments on the properties of these series. Ajmi, Ben
Nasr and Boutahar (2008) generalised the model to the case where the vari-
able to be explained is fractionally integrated and �tted the model to a
quarterly US in�ation series. van Dijk, Strikholm and Teräsvirta (2003) con-
sidered the time-varying smooth transition autoregressive (TV-STAR) model
to investigate causes of changing seasonality in industrial output of G7 coun-
tries. Craig and Holt (2008) applied the TV-STAR model to studying e¤ects
of refrigeration on changes in seasonality in the US hog-corn price relation-
ship using long historical time series; see also their study (Craig and Holt,
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2017) of the US egg market, 1890�2011.
As already mentioned, the SSM-AR model is a generalisation of an au-

toregressive model with seasonal dummy variables. In order to de�ne the
model, let S be the length of the seasonal cycle (for example a year), and
j represent the jth unit or �season�(for example a month) within the cycle.
Furthermore, k indicates the kth cycle, and K is the total number of cycles,
k = 0; 1; :::; K � 1. The SSM-AR model for unit s is de�ned as follows:

ySk+s =
SX
j=1

�j(
Sk + j

SK
)D

(j)
Sk+s +

pX
i=1

�iySk+s�i + "Sk+s (1)

where D(j)
Sk+s = 1 when j = s; zero otherwise (D(j)

Sk+s is the sth seasonal
dummy variable), "Sk+s is an error term with mean zero (more of it later)
and the roots of 1 �

Pp
i=1 �iz

i = 0 lie outside the unit circle. The jth
time-varying coe¢ cient �j(

Sk+j
SK

) equals

�j(
Sk + j

SK
) = �j0 +

qjX
i=1

�jigj(
Sk + j

SK
; 
ji; cji) (2)

where

gj(
Sk + j

SK
; 
ji; cji) = (1 + expf�
ji(

Sk + j

SK
� cji)g)�1 (3)

or

gj(
Sk + j

SK
; 
ji; c1ji; c2ji) = (1 + expf�
ji(

Sk + j

SK
� c1ji)(

Sk + j

SK
� c2ji)g)�1

(4)
where 
ji > 0: It follows that (1) at time Sk + s may simply be written as

ySk+s = �s(
Sk + s

SK
) +

pX
i=1

�iySk+s�i + "Sk+s: (5)

To �x notation, let �s = (�0s;

0
s; c

0
s)
0; where �s = (�s0; �s1; :::; �sqs)

0; 
s =
(
s1; :::; 
sqs)

0 and cs = (cs1; :::; csqs)
0 are qs � 1 vectors. The autoregressive

component has the parameter vector � = (�1; :::; �p)
0: Furthermore, �M =

(�01; :::;�
0
s;�

0)0 2 �M is a vector containing all parameters in the mean part of
(1). Let �0M = (�001 ; :::;�

00
s ;�

00)0 be the corresponding true parameter vector.
The error process f"Sk+sg is assumed to have time-varying variance. The

error is decomposed as "Sk+s = zSk+s�s(
Sk+s
SK

); where zSk+s � iidN (0; 1) and
the deterministic time-varying component is de�ned as follows:

�2s(
Sk + j

SK
) =

SX
j=1

�2j(
Sk + j

SK
)D

(j)
Sk+s: (6)
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In (6),

�2j(
Sk + j

SK
) = �2j0 +

rjX
i=1

!jig
(v)
j (

Sk + j

SK
; 


(v)
ji ; c

(v)
ji ) (7)

with

g
(v)
j (

Sk + j

SK
; 


(v)
ji ; c

(v)
ji ) = (1 + expf�


(v)
ji (

Sk + j

SK
� c

(v)
ji )g)�1 (8)

or

g
(v)
j (

Sk + j

SK
; 


(v)
ji ; c

(v)
ji ) = (1 + expf�


(v)
ji (

Sk + j

SK
� c

(v)
1ji)(

Sk + j

SK
� c

(v)
2ji)g)�1

where 
(v)ji > 0; i = 1; :::; rj and j = 1; :::; S. To guarantee positivity of the
variance, �2j0 > 0 and �2j0 +

Pk
i=1 !ji > 0 for k = 1; :::; rj and j = 1; :::; S:

This de�nition imposes restrictions on !ji; i = 1; :::; rj: For the individ-
ual unit s it conforms to the one in Silvennoinen and Teräsvirta (2016).
A di¤erence compared to that de�nition is that is �2Sk+s is seasonal. Let
�(v)s = (�2s0;!

0
s;


(v)0
s ; c

(v)0
s )0; where !s = (!s1; :::; !srs)

0; 

(v)
s = (
s1; :::; 
srs)

0

and c(v)s = (c
(v)
s1 ; :::; c

(v)
srs)

0: Finally, let �V = (�
(v)0
1 ; :::;�

(v)0
S )0 2 �V contain all

parameters of (6) and denote the corresponding true parameter vector by
�0V :
A special case of this SSM-AR model is the one in which �2Sk+s = �2;

that is, the errors themselves are iid(0; �2). When S = 1 and �2Sk+s = �2; the
SSM-AR model collapses into the Shifting Mean Autoregressive (SM-AR)
model by González and Teräsvirta (2008).
The SSM-AR model di¤ers from the SEASTAR model in four respects.

First, all units have a di¤erent transition function. Second, the transition
variable is rescaled time. Third, the autoregressive part has constant coef-
�cients, although this can be generalised. Finally, the error variance is not
constant over time.
In order to de�ne the seasonally shifting mean, let L be the lag operator:

Lxt = xt�1, and write

�(L) = 1�
pX
i=1

�iL
i:

Then (1) can be written as follows:

ySk+s = ��1(L)f
SX
j=1

�j(
Sk + j

SK
)D

(j)
Sk+s + "Sk+sg: (9)
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where ��1(L) =
P1

j=0  jz
j with  0 = 1: For j = s; see (5),

ySk+s = ��1(L)f�s(
Sk + s

SK
)D

(s)
Sk+s + "Sk+sg

=

1X
i=0

 if�s(
Sk + s� i

SK
)D

(s)
Sk+s�i + "Sk+s�ig

=

1X
i=0

 iS�s(
S(k � i) + s

SK
)D

(s)
S(k�i)+s +

1X
i=0

 i"Sk+s�i (10)

where ��1(L) =
P1

j=0  jz
j with  0 = 1; and �s(x) = 0 for x < 0: Further-

more, from (9), the shifting mean for unit s

�
Sk+s

= EySk+s = ��1(1)�s(
Sk + s

SK
) +O(

1

SK
) (11)

assuming that the roots of �(z) = 0 lie outside the unit circle and thatP1
i=0 j ij < 1. Under these conditions, as ySk+s � EySk+s has mean zero,

ySk+s may be called shifting-mean stationary. The last term in (11) that
vanishes asymptotically is due to the fact that the model is nonlinear.1

It can be seen from equations (3) or (4) that the conditional mean compo-
nent of the SSM-AR model is not identi�ed if at least one element �j(

Sk+j
SK

)
is constant over time. Constancy may be achieved for example by setting
or �ji = 0 in (2) or 
ji = 0 in (3) or (4) for i = 1; :::; qj: For this reason,
it is necessary to test constancy of �j(

Sk+j
SK

) for all j = 1; :::; S assuming
heteroskedastic errors before �tting an SSM-AR model to the series. This
testing problem is discussed in Section 6.2. Testing constancy of the error
variance is discussed in Section 6.5, but a model with constant error variance
has to be �tted to the data before the structure of the error variance can be
considered.
If the SSM-AR model is identi�ed and its parameters estimated, plotting

b�
Sk+s

= b��1(1)b�s(Sk + s

SK
)

s = 1; :::; S; for k = 0; 1; :::; K � 1; amounts to plotting the estimated sys-
tematic component (the seasonal mean) of the model unit by unit.

1We are grateful to Peter Phillips for pointing this out to us.
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3 Log-likelihood, score and the information
matrix

Assuming independent errors with mean zero and time-varying variance
�2Sk+s; the quasi log-likelihood function (SK observations) of the model for
the seasonal unit s is de�ned as follows:

LSK(�; ") = const�
1

2

K�1X
k=0

SX
s=1

ln�2Sk+s �
1

2

K�1X
k=0

SX
s=1

"2Sk+s
�2Sk+s

(12)

where, from (1), "Sk+s = ySk+s � �s(
Sk+j
SK

) �
Pp

i=1 �iySk+s�i; and �
2
Sk+s is

de�ned by (6).
For notational simplicity it is in this section assumed that qj = 1 in (2)

and rj = 1 in (6) and that the transition function is de�ned by (3). Gen-
eralisations are straightforward. Consequently, write 
j1 = 
j and cj1 = cj;

and 
(v)j1 = 

(v)
j and c(v)j1 = c

(v)
j : Let now j = s: To further simplify the nota-

tion, write gs(Sk+sSK
) = gs: The partial derivatives of �s(Sk+sSK

) are given in the
following lemma.

Lemma 1 The partial derivatives

@�s(
Sk+s
SK

)

@�s
= (

@�s(
Sk+s
SK

)

@�s0
;
@�s(

Sk+s
SK

)

@�s1
;
@�s(

Sk+s
SK

)

@
s
;
@�s(

Sk+s
SK

)

@cs
)0

are as follows: @�s(Sk+sSK
)=@�s0 = 1; @�s(

Sk+s
SK

)=@�s1 = gs;

@�s(
Sk+s
SK

)

@
s
= ��s1gs(1� gs)(

Sk + s

SK
� cs)

and
@�s(

Sk+s
SK

)

@cs
= �s1
sgs(1� gsg:

Furthermore, @�s(Sk+sSK
)=@�j = 0 for any j 6= s:

Now let �(v)s = (�2s0; !s1; 

(v)
s ; c

(v)
s )0 and write g

(v)
s1 (

Sk+s
SK

) = g
(v)
s1 : The partial

derivatives of �2s(
Sk+s
SK

) are given in the following lemma.

Lemma 2 The partial derivatives

@�2s(
Sk+s
SK

)

@�(v)s
= (

@�2s(
Sk+s
SK

)

@�2s0
;
@�2s(

Sk+s
SK

)

@!s1
;
@�2s(

Sk+s
SK

)

@

(v)
s1

;
@�2s(

Sk+s
SK

)

@c
(v)
s1

)0
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are as follows: @�2s(
Sk+s
SK

)=@�2s0 = 1; @�
2
s(
Sk+s
SK

)=@!s1 = g
(v)
s1 ;

@�2s(
Sk+s
SK

)

@

(v)
s1

= !s1g
(v)
s1 (1� g

(v)
s1 )(

Sk + s

SK
� c

(v)
s1 )

and
@�2s(

Sk+s
SK

)

@c
(v)
s1

= �
(v)s1 !s1g
(v)
s1 (1� g

(v)
s1 ):

See Amado and Teräsvirta (2013, Lemma A.1). As in the mean compo-
nent, @�2s(

Sk+s
SK

)=@�
(v)
j = 0 for j 6= s:

We can now de�ne the average score of the mean parameter block of (12):

Lemma 3 The (4S + p) � 1 average score function (1=SK)@LSK(�; ")=@�
of the mean parameter block of (12) has the following form. The partial
derivatives with respect to �s and � equal

sK(�s) =
1

K

K�1X
k=0

"Sk+s

�2s(
Sk+s
SK

)

@�s(
Sk+s
SK

)

@�s
(13)

for s = 1; :::; S; and

sSK(�) =
1

SK

K�1X
k=0

SX
j=1

"Sk+j

�2s(
Sk+j
SK

)
ySk+j�1 (14)

where ySk+j = (ySk+j;:::; ySk+j�p+1)0: The elements of @�s(Sk+sSK
)=@�s are de-

�ned in Lemma 1.

Likewise, the following lemma postulates the average score of the variance
parameter block of (12).

Lemma 4 The sth 4�1 block of the average score function (1=SK)@LSK(�V ; ")=@�V
of the variance part of (12) equals

sK(�
(v)
s ) =

1

2K

K�1X
k=0

(
"2Sk+s

�2s(
Sk+s
SK

)
� 1) 1

�2s(
Sk+s
SK

)

@�2s(
Sk+s
SK

)

@�(v)s

s = 1; :::; S; where the elements of @�2s(
Sk+s
SK

)=@�(v)s are de�ned in Lemma 2.
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Since the mean and variance components do not have common parame-
ters, the information matrix J(�0) of the log-likelihood (12) has two large
diagonal blocks, one for the mean and the other for the variance parameters.
In the following, all partial derivatives are evaluated under � = �0: The mean
block of the information matrix is given in the following lemma:

Lemma 5 The mean block of the information matrix of the log-likelihood
(12) has the form

JM(�0M) = E lim
K!1

sSK(�
0
M)s

0
SK(�

0
M)

=

266664
JM(�01) 0 ::: 0 JM(�01;�

0)
JM(�02) ::: 0 JM(�02;�

0)
::: :::

0 0 ::: JM(�0S) JM(�0S;�
0)

JM(�0;�01) JM(�0;�02) ::: JM(�0;�0S) JM(�0)

377775 :(15)
Its nonzero blocks are

JM(�0s) =

Z 1

0

1

�2s(r)

@�s(r)

@�s

@�s(r)

@�0s
dr (16)

s = 1; :::; S;

JM(�0s;�
0) =

1

�(1)

Z 1

0

1

�2s(r)

@�s(r)

@�s
�0s�1(r)dr (17)

where �s(r) = (�s(r); :::; �s�p+1(r))0; s = 1; :::; S; and JM(�
0)whose diagonal

elements equal

[JM(�0)]nn =
1X
i=0

1X
j=0

 iS jS
1

S

SX
s=1

Z 1

0

�s�n(r)

�2s(r)
dr +

1X
i=0

 2iS (18)

for n = 1; :::; p: In addition, [JM(�0)]mn = 0 for m 6= n: The elements of
@�s(r)=@�s are de�ned in Lemma 1.

Proof. See Appendix A.
The variance block of the information matrix is itself block diagonal, as

the S units of (6) do not share any parameters. The sth diagonal block of
this matrix is given by the lemma below.

Lemma 6 The sth diagonal block of the variance component of the informa-
tion matrix of the log-likelihood (12) has the form

JV (�(v)0s ) =
1

2

Z 1

0

1

�4s(r)

@�2s(r)

@�(v)s

@�2s(r)

@�(v)0s

dr

s = 1; :::; S: The elements of @�2s(r)=@�
(v)
s are de�ned in Lemma 2.

9



The whole information matrix is de�ned as J(�0) = diag(JM(�0M);J
V (�0V )):

4 The Hessian

If the errors are not assumed normal, the Hessian matrix of (12) is needed
for statistical inference. It is block diagonal as the mean and the variance
components do not have common parameters. The next two lemmas specify
the nonzero blocks of this matrix.

Lemma 7 The average Hessian matrix for the mean component of the log-
likelihood (12) equals

HM
SK =

�
HM
�SK HM

��SK

HM
�SK

�
where HM

�sK
= diag(HM

�1K
; :::;HM

�SK
) with

HM
�sK = �

1

K

K�1X
k=0

1

�2Sk+s
f@"Sk+s
@�s

@"Sk+s
@�0s

+ "Sk+s
@2"Sk+s
@�s@�

0
s

g: (19)

In (19),

@2�s(
Sk+s
SK

)

@�s@�
0
s

=

2664
@2�s(

Sk+s
SK

)

@�s@�
0
s

@2�s(
Sk+s
SK

)

@�s@
s

@2�s(
Sk+s
SK

)

@�s@cs
@2�s(

Sk+s
SK

)

@
2s

@2�s(
Sk+s
SK

)

@
s@cs
@2�s(

Sk+s
SK

)

@c2s

3775
where @2�s(Sk+sSK

)=@�s@�
0
s = 0;

@2�s(
Sk+s
SK

)

@�s@
s
= (0; gs(1� gs)(

Sk + s

SK
� cs))

0

@2�s(
Sk+s
SK

)

@�s@cs
= (0;�
sgs(1� gs))

0

@2�s(
Sk+s
SK

)

@
2s
= �s1gs(1� gs)f1� 2gs)(

Sk + s

SK
� cs)

2

@2�s(
Sk+s
SK

)

@
s@cs
= ��s1gs(1� gs)f1 + 
s(1� 2gs)(

Sk + s

SK
� cs)g

and
@2�s(

Sk+s
SK

)

@c2s
= �s1


2
sgs(1� gs)(1� 2gs):
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Furthermore, HM
��SK = (H

M
�1�SK

; :::;HM
�S�SK

)0 where

HM
�s�SK =

1

K

K�1X
k=0

1

�2Sk+s

@�s(
Sk+s
SK

)

@�s
y0Sk+s�1

and

HM
�SK =

1

SK

K�1X
k=0

SX
s=1

ySk+s�1y
0
Sk+s�1:

Lemma 8 The average Hessian matrix for the variance component of the
log-likelihood (12) is diagonal and its sth diagonal block equals

HV

�
(v)
s K

=
1

2K

K�1X
k=0

[
"2t

�6Sk+s

@�2sk+s

@�(v)s

@�2sk+s

@�(v)0s

+ (
"2t

�2Sk+s
� 1)

� 1

�2sk+s
f
@�2Sk+s

@�(v)s

@�2Sk+s

@�(v)0s

+
@2�2Sk+s

@�(v)s @�(v)0s

g]

where

@2�2sk+s

@�(v)s @�(v)0s

=

2666664
@2�2Sk+s
@(�2s0)

2

@2�2Sk+s
@(�2s0)@!s1

@2�2Sk+s
@(�2s0)@
s

@2�2Sk+s
@(�2s0)@cs

@2�2Sk+s
@!2s1

@2�2Sk+s
@!s1@
s

@2�2Sk+s
@!s1@cs

@2�2Sk+s
@
2s

@2�2Sk+s
@
s@cs
@2�2Sk+s
@c2s

3777775
with @2�2Sk+s=@(�

2
S0)

2 = @2�2Sk+s=f@(�2S0)@!s1g = @2�2Sk+s=f@(�2S0)@
sg =
@2�2Sk+s=f@(�2S0)@csg = @2�2Sk+s=@!

2
s1 = 0;

@2�2Sk+s
@!s1@
s

= g
(v)
s1 (1� g

(v)
s1 )(

Sk + s

SK
� c

(v)
s1 )

@2�2Sk+s
@!s1@cs

= �
(v)s1 g
(v)
s1 (1� g

(v)
s1 )

@2�2Sk+s
@
2s

= !s1g(1� g
(v)
s1 )(1� 2g

(v)
s1 )(

Sk + s

SK
� c

(v)
s1 )

2

@2�2Sk+s
@
s@cs

= �!s1g(v)s1 (1� g
(v)
s1 )f1 + 


(v)
s1 (1� 2g

(v)
s1 )(

Sk + s

SK
� c

(v)
s1 )g

and
@2�2Sk+s
@c2s

= (

(v)
s1 )

2!s1g
(v)
s1 (1� g

(v)
s1 )(1� 2g

(v)
s1 ):
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5 Estimation of parameters

5.1 Zig-zag algorithm

It follows from Lemmas 1 and 2 that the log-likelihood function is contin-
uous. In addition, the mean and the variance components of the model do
not have common parameters. Maximisation of the log-likelihood can there-
fore be carried by splitting each iteration into two components as Sargan
(1964) suggested. The parameters in the mean part are estimated �rst, and
parameters in the error variance thereafter, conditionally on the estimates
of the mean parameters. Next the mean parameters are re-estimated condi-
tionally on the estimated time-varying variances, followed by re-estimation
of the variances. Sargan showed that under certain conditions this procedure
of maximising a function with these two sets of parameters converges to a
maximum. Oberhofer and Kmenta (1974) discussed the same algorithm in
the log-likelihood context and called it the zig-zag algorithm. They demon-
strated that the algorithm converges to at least a local maximum of the
log-likelihood.
Both steps of the zig-zag algorithm are nonlinear. Finding initial values

for the conditional mean may appear a di¢ cult problem whenever S > 1:
However, because the dummy variables are orthogonal, the problem can be
broken down to using two- or three-dimensional mini-grids for the slope and
location parameters in the S transition functions, depending the choice be-
tween (3) and (4). The �linear�parameters, including the autoregressive coef-
�cients, are obtained by simple regression conditionally on the relevant grid
point. The combination of estimates minimising the sum of squared residuals
from these regressions provides the starting-point for subsequent numerical
maximisation of the log-likelihood (12). Orthogonality of the dummies also
simpli�es solving the nonlinear optimisation problem that is conveniently
done by nonlinear least squares.
Estimation of the error variance is carried out unit by unit. It is advis-

able to begin each estimation from a set of starting-values to �nd at least a
reasonable local optimum of the log-likelihood. Asymptotic properties of the
maximum likelihood estimators of the parameters of the model are considered
in the next section.

5.2 Consistency and asymptotic normality

In order to study asymptotic properties of the aforementioned maximum
likelihood estimators we make the following assumptions about the model
(1):

12



A1 In the transition function gs(Sk+sSK
; 
si; csi), 
si > 0; i = 1; :::; qs;

cs1 < ::: < csqs . This implies gs(
Sk+s
SK

; 
si; csi) 6= gs(
Sk+s
SK

; 
sj; csj) for
i 6= j: In addition, �si 6= 0; i = 1; :::; qs:

A2 In the transition function g(v)s (Sk+sSK
; 


(v)
si ; c

(v)
si ), 


(v)
si > 0; i = 1; :::; rs;

c
(v)
s1 < ::: < c

(v)
srs . This implies gs(

Sk+s
SK

; 
si; csi) 6= gs(
Sk+s
SK

; 
sj; csj) for
i 6= j: In addition, !si 6= 0; i = 1; :::; rs:

A3 Parameter space � = �M [�V ; �M \�V = ?; is compact, �0 is an
interior point of �:

A4 The density is positive (bounded away from zero) for all � 2 �:
A5 The errors zSk+s = "Sk+s=�s(

Sk+s
SK

) are iidN (0; 1):
A6 The roots of �(z) = 1�

Pp
i=1 �iz

i = 0 lie outside the unit circle, andP1
i=0 j ij <1:

If A1 is relaxed such that csj = cs;j+1 for some j; then gs(Sk+sSK
; 
sj; csj) 6=

gs(
Sk+s
SK

; 
s;j+1; cs;j+1) requires 
sj 6= 
s;j+1: A similar argument is valid for
A2. These assumptions, together with �si 6= 0; i = 1; :::; qs and !si 6= 0;
i = 1; :::; rs; s = 1; :::; S; identify the model. Normality of errors may also be
relaxed and replaced by zSk+s � iid(0; 1):
Consistency of the maximum likelihood estimators of the SSM-AR model

is established by proving the following result:

Theorem 9 Consider the SSM-AR model (1) and suppose that Assumptions
A1-A6 hold. Then the maximum likelihood estimator b� is consistent for �0:
Proof. See Appendix A.
In order to consider asymptotic normality of b� we make another assump-

tion:

A7 Parameter vector �0 is an interior point of �:

Establishing asymptotic normality of the maximum likelihood estimators
of the parameters of the SSM-AR model requires proving the following result:

Theorem 10 Assume that the result of Theorem 9 holds, that is, the maxi-
mum likelihood estimator b� p! �0 as K !1: Assume further that Assump-
tions A1-A7 are valid. Then

p
K(b� � �0) d! N(0;J�1(�0))

as K !1; where the information matrix J(�0) = diag(JM(�0M);J
V (�0V )) is

de�ned in Lemmas 5 and 6.

Proof. See Appendix A.
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6 Building SSM-AR models

6.1 General

As is clear from Section 2, before an SSM-AR model can be estimated its
form has to be speci�ed. The number of transitions has to be determined
from the data because typically there is little or no theory available to help
the model builder to make the correct decision. Overestimating this number
leads to di¢ culties because a model containing too many transitions either
in the mean or the variance or both is not identi�ed. The parameters of such
a model cannot be estimated consistently. This is why one has to proceed
from speci�c to general, which means testing each model against the next
larger alternative. This reduces the risk of estimating unidenti�ed models
which can be big if the number of transitions is determined using model
selection criteria such as AIC or BIC. The form of the mean is determined
�rst, followed by that of the error variance.
After the model has been estimated as discussed in Section 5, it has to

be evaluated. This means that the estimated model has to be subjected to
misspeci�cation tests to �nd out whether or not the model is adequate. Such
tests are considered in Section 6.2.

6.2 Testing constancy of coe¢ cients of seasonal dum-
mies

6.2.1 Joint test for all seasonal coe¢ cients

The �rst step in specifying an SSM-AR model is to test stability of the coe¢ -
cients of its dummy variables. The null model is the standard autoregressive
model with seasonally varying means:

ySk+s =
SX
j=1

�j0D
(j)
Sk+s +

pX
i=1

�iySk+s�i + "Sk+s (20)

whereas the alternative is the SSM-AR model (1). Since the SSM-AR model
is not identi�ed when at least one coe¢ cient �j(

Sk+j
SK

) = �j0; standard as-
ymptotic inference in testing H0: �j(

Sk+j
SK

) = �j0; j = 1; :::; S; is invalid, for
discussion see, for example, Teräsvirta, Tjøstheim and Granger (2010, Chap-
ter 5) and references therein, including Hansen (1996). This problem and
solutions to it were �rst discussed by Davies (1977).
In order to test constancy against (at least) one transition in �j(

Sk+j
SK

);
our null hypothesis is H0: 
j = 0; j = 1; :::; S; so �j1; and cj1 or cj1 and cj2;
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are unidenti�ed nuisance parameters when this hypothesis holds. In order
to circumvent the identi�cation problem we follow Luukkonen, Saikkonen
and Teräsvirta (1988) and expand (1+expf�
j(Sk+jSK

� cj)g)�1 into a Taylor
series around 
j = 0 and reparameterise (3) (or (4)) accordingly. Assuming
�j1 6= 0; j = 1; :::; S; and choosing the third-order polynomial expansion one
obtains

�j(
Sk + j

SK
) = �j0 + �j1

Sk + j

SK
+ �j2(

Sk + j

SK
)2 + �j3(

Sk + j

SK
)3 +R3;Sk+j

where R3;Sk+j is the remainder. Since �ji = 
ij
e�ji; where e�ji 6= 0; i = 1; 2; 3;

the resulting auxiliary SSM-AR model has the following form:

ySk+s =

SX
j=1

f�j0 + �j1
Sk + j

SK
+ �j2(

Sk + j

SK
)2 + �j3(

Sk + j

SK
)3gD(j)

Sk+s

+

pX
i=1

�iySk+s�i + "�Sk+s (21)

where "�Sk+s = "Sk+s + R3;Sk+s; and the new null hypothesis equals H00:
�1 = ::: = �S = 0; where �j = (�j1; �j2; �j3)

0 for j = 1; :::; S: Under
this hypothesis, R3;Sk+s = 0; and because we are considering a Lagrange
multiplier test, the remainder does not a¤ect the inference.
In order to derive the test statistic, it is assumed that �2Sk+s = �2 because

the mean has to be speci�ed before the error variance. The log-likelihood of
(21), assuming normal errors and setting R3;Sk+s = 0; becomes

LASK(�; ") = c� SK

2
ln�2 � 1

2SK

K�1X
k=0

SX
j=1

"2Sk+j
�2

= c� SK

2
ln�2 � 1

2�2S

SX
j=1

1

K

K�1X
k=0

(ySk+j

�f�j0 + �j1
Sk + j

SK
+ �j2(

Sk + j

SK
)2

+�j3(
Sk + j

SK
)3gD(j)

Sk+s �
pX
i=1

�iySk+s�i)
2: (22)

Let � = (�01; :::;�
0
S)
0; �0 = (�10; :::; �S0)

0; and � = (�1; :::; �p)
0 as before.

The blocks of the auxiliary average score

sK(�;�0;�) = (s
0
K(�1); :::; s

0
K(�S); s

0
K(�0); s

0
K(�))

0
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are

sK(�s) =
1

�2K

K�1X
k=0

"Sk+skSk+s (23)

s = 1; :::; S; where kSk+s = (Sk+sSK
; (Sk+s

SK
)2; (Sk+s

SK
)3)0; and

sK(�0) = (sK(�10); :::; sK(�S0))
0

where

sK(�s0) =
1

�2K

K�1X
k=0

"Sk+s

s = 1; :::; S: Finally, sSK(�) is given in (14). We can now formulate the
information matrix of the auxiliary log-likelihood (22).

Lemma 11 The information matrix of the auxiliary log-likelihood (22) under
H00: �1 = ::: = �S = 0 equals

JA(�;�0;�) = E lim
K!1

sSK(�;�0;�)s
0
SK(�;�0;�)

=

24 JA(�) JA(�;�0) JA(�;�)
IS JA(�0;�)

JA(�)

35
where the 3S � 3S matrix

JA(�) = diag(JA(�1); :::;JA(�S))

with

JA(�s) =
1

�2

Z 1

0

rr0dr =
1

�2

24 1=3 1=4 1=5
1=5 1=6

1=7

35 (24)

for s = 1; :::; S;

JA(�;�0) =

24 JA(�1; �10)
:::

JA(�S; �S0)

35
where the 3� 1 vector

JA(�s; �s0) =
1

�2

Z 1

0

rdr =
1

�2
(
1

2
;
1

3
;
1

4
)0

for s = 1; :::; S;

JA(�s0;�) =
1

�2�(1)

Z 1

0

�0s�1(r)dr
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and

JA(�;�) =

24 JA(�1;�)
:::

JA(�S;�)

35
where the 3� p matrix

JA(�s;�) =
1

�2�(1)

Z 1

0

r�0s�1(r)dr (25)

for s = 1; :::; S; and, �nally, [JA(�)]mn = [J(�)]mn assuming �2s(r) = �2;
s = 1; :::; S; in (18):

Proof. See Appendix A.
When Theorem 9 is valid, one can construct a test of the auxiliary null

hypothesis H00 and thus also of the original one. The test statistic obtained
by using the Lagrange multiplier or score principle is

LM(�) = Kf 1

�2K

K�1X
k=0

(b"Sk+1k0Sk+1; :::;b"S(k+1)k0S(k+1))0g
�fJA(�)� (JA(�;�0);JA(�;�))

�
�
IS JA(�0;�)

JA(�)

��1 �
JA(�0;�)
JA(�;�)

�
g�1

�f 1

�2K

K�1X
k=0

(b"Sk+1k0Sk+1; :::;b"S(k+1)k0S(k+1))g (26)

where the residuals b"Sk+j come from the estimated null model. The statistic
(26) has an asymptotic �2-distribution with 3S degrees of freedom when the
null hypothesis holds. To make (26) operational, the blocks of the informa-
tion matrix have to be replaced by their consistent estimators.
In our case, the assumption of constant error variance is not valid. As

the conditional mean is speci�ed before the conditional variance, the form
of �2j(

Sk+j
SK

) is at that stage not known. Consequently, the statistic has to
be robusti�ed against heteroskedasticity. Following Wooldridge (1990), the
robust statistic is conveniently computed in the �TR2 form�in three steps:

1. Estimate the null model, the SSM-AR model with constant coe¢ -
cients on the dummy variables, and collect the residuals b"Sk+j; k =
0; 1; :::; K � 1; j = 1; :::; S:

2. Regress 1 on b"Sk+j; b"Sk+jySk+j�1 and b"Sk+jkSk+j; j = 1; :::; S; and
calculate the residual sum of squared errors SSR:
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3. Compute the test statistic (the uncentred coe¢ cient of determination)

LM = SK � SSR: (27)

Under H0; the robust statistic (27) has the same asymptotic null dis-
tribution as the nonrobust statistic (26).

While this test is suitable for our purposes, it may be noted that it is
not an omnibus test. For a relevant omnibus test based on polynomials, see
Baek, Cho and Phillips (2015).

6.3 Testing constancy of subsets of coe¢ cients

If H00 and, consequently, H0 is rejected, it is of interest to know whether
there exist seasonal components for which the seasonal coe¢ cient �j(

Sk+j
SK

) is
nevertheless stable. This possibility can be studied by testing subhypotheses
in (21). For example, it is possible to test H00s : �s = 0 for a single s 2
f1; :::; Sg: The test is a special case of the previous one. The robust test is
carried out as follows:

1. Estimate the null model, the auxiliary SSM-AR model with a constant
(�zero order�) coe¢ cient on the dummy variables except the sth one,
and collect the residuals e"Sk+j; k = 0; 1; :::; K � 1; j = 1; :::; S:

2. Regress 1 on e"Sk+j; e"Sk+jySk+j�1 and e"Sk+jkSk+s and calculate the
residual sum of squared errors SSRs:

3. Compute the test statistic (the uncentred coe¢ cient of determination)

LMs = SK � SSRs: (28)

Under H0; the statistic (28) has an asymptotic �2-distribution with
three degrees of freedom.

6.4 Determining the number of transitions in the time-
varying intercept

If constancy of the coe¢ cient of D(s)
Sk+j is rejected, the next step is to test one

transition against two. More generally, the problem is testing qs transitions
against qs + 1: Here it is assumed that qs = 1: Under the alternative, the
time-varying coe¢ cient of D(s)

Sk+j equals

�s(
Sk + s

SK
) = �s0 + �s1gs(

Sk + s

SK
; 
s1; cs1) + �s2gs(

Sk + s

SK
; 
s2; cs2): (29)
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The null hypothesis is chosen to be 
s2 = 0; so that under H0; g(
Sk+s
SK

; 
q2; cq2) =
1=2: The identi�cation problem is solved as before: expand the transition
function g(Sk+s

SK
; 
s2; cs2) into a Taylor series around 
s2 = 0 and reparame-

terise (29) accordingly. Assuming �s2 6= 0; this gives the following third-order
polynomial expression for (29):

�As (
Sk + j

SK
) = �s0 + �s1g(

Sk + s

SK
; 
s1; cs1) + �s1

Sk + s

SK
+ �s2(

Sk + s

SK
)2

+�s3(
Sk + s

SK
)3 +R3;Sk+s (30)

Under H0; �s = 0; which is the new null hypothesis. In order to de�ne
the test statistic we �rst extend the score de�ned in Lemma 3 by the vector
(23). Assuming R3;Sk+s = 0 for the same reason as before, the corresponding
information matrix is de�ned in the following result:

Lemma 12 The information matrix of the auxiliary log-likelihood of the
SSM-AR model with two transitions in which the coe¢ cient of the sth sea-
sonal dummy variable in the second transition is de�ned by (30), equals

JA(�0s;�
0
s;�

0) = E lim
K!1

sSK(�s;�
0
s;�

0)s0SK(�s;�
0
s;�

0)

=

24 JA(�s) JA(�s;�
0
s) JA(�s;�

0)
JM(�0s) JM(�0s;�

0)
JM(�0)

35 (31)

where JM(�0s); J
M(�0s;�

0) and JM(�0) are de�ned as in (16); (17) and (18),
respectively, with �2(Sk+s

SK
) = �2, JA(�s) is de�ned as in (24) and JA(�s;�

0)
as in (25), and

JA(�s;�
0
s) = lim

K!1
EsK(�s)s

0
K(�s) =

Z 1

0

r
@�s(r)

@�0s
dr: (32)

Proof. See Appendix A.
Let J(�s;�

0
s;�

0) = [J(�s;�
0
s); J(�s;�

0)] and

JMs =

�
JM(�0s) JM(�0s;�

0)
JM(�0)

�
:

Using this notation, the resulting test statistic LMs2 has the following
form:

LMs2 = Kf 1

�2K

K�1X
k=0

b"Sk+sk0Sk+sgfJA(�s)� JA(�s;�0s;�0)(JMs )�1
�JA(�0;�0s;�s)g�1f

1

�2K

K�1X
k=0

b"Sk+skSk+sg: (33)
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The statistic (33) has an asymptotic �2-distribution with three degrees of
freedom when H0 holds. It is conveniently calculated in the TR2 form. As
previously, (33) is made operational by replacing the blocks of the information
matrix by their consistent estimators. It functions as a misspeci�cation test
(as does the constancy test) in model evaluation and should be used in all
applications of the SSM-AR model. As such, it is more useful than a joint
test against one more transition in all seasonal coe¢ cients. The latter test
is therefore not discussed here.
The assumption of independent errors is tested by the Godfrey-Breusch

test of no error autocorrelation adapted to the situation in which the esti-
mated model is an SSM-AR model with constant error variance. Since the
errors are likely to contain heteroskedasticity, the test statistic is robusti�ed
in the same way as the aforementioned tests.

6.5 Testing constancy of unit error variances

Once the mean has been speci�ed and estimated assuming that the error
variance is not time-varying, it is time to specify the structure of the variance.
The error variance of the SSM-AR model is de�ned in Section 2 by (6), (7)
and (8). As the number of transitions in (7) is not known a priori, it has
to be determined from the data. This number may be zero, which is why
the �rst step consists of testing the hypothesis that �2s(

Sk+s
SK

) = �2s0 for each
unit s separately. Separate testing is motivated except for practical reasons
also by the fact that due to orthogonality of the seasonal error variances
the statistic for testing the joint hypothesis of all seasonal error variances
being constant would be the sum of the individual statistics. As in the case
of the time-varying intercept, the testing problem is nonstandard. It has
been already discussed in Silvennoinen and Teräsvirta (2016). Their solution
is to circumvent the identi�cation problem by approximating the transition
function (8) by a Taylor expansion around the null hypothesis 
(v)s1 = 0: The
same solution is applied here, see the Appendix for details. If the Taylor
expansion is of order m, the resulting test statistic has an asymptotic �2-
distribution with m degrees of freedom when the null hypothesis is true.
Analogously to the speci�cation of the mean it would be possible and

rather straightforward to extend the test to the situation in which a unit
error variance with one transition is tested against two. This possibility is,
however, not discussed here.
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Figure 1: Monthly average temperatures in central England, 1772-2016

7 Modelling the Central England tempera-
ture series

7.1 The series

The central England temperature series is one of the longest existing monthly
temperature series. Because of its length and frequency it o¤ers a possibility
to study e¤ects of climate change on temperatures by season. It is updated
and available at http://www.metoffice.gov.uk/hadobs/hadcet/data/download.html.
As mentioned in the Introduction, the series has for varying subperiods been
analysed by several researchers. Following Proietti and Hillebrand (2017),
we disregard the earliest observations because of quality issues and study
the series beginning in 1772. The observations for the years 1772�2016 are
plotted in Figure 1. The individual monthly averages are graphed in Figure
2. The graph shows variation in the monthly range of temperatures. There
is more variation in the winter than in the summer. Here the interest lies in
considering systematic variation in the errors.

7.2 Testing constancy of seasonal mean temperatures

Building an SSM-AR model begins for the CET series begins by determining
the lag structure of the model. In a model with constant coe¢ cient dummy
variables BIC selects two lags, and this lag length is subsequently retained.
Next, the null hypothesis of joint constancy of the coe¢ cients of dummy
variables is strongly rejected. The test results for individual months based
on the robust test, see Section 6.3, appear in Table 1. Constancy is rejected
at the 5% signi�cance level for eight months for all three polynomial orders,
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Figure 2: Temperatures of the CET series month by month, 1772�2016

the only exception being the third-order expansion based test for Decem-
ber. Constancy is not rejected for February, April, May and June, whereas
September, October, November, January and March yield the strongest re-
jections. The high p-value for February may appear strange and will be
returned to later. The conclusion from the tests is that a time-varying coef-
�cient is introduced for eight dummies, February and the three months from
April till June excluded. As discussed in Section 6.3, these coe¢ cients are
now estimated with one transition in each.
Interestingly, the rejections at the 5% level of signi�cance in the tests

coincide with certain test results reported in Proietti and Hillebrand (2017).
The authors test stationarity of monthly temperatures against the alterna-
tive that the temperature has a stochastic trend component using the 5%
level. They use the test by Nyblom and Mäkeläinen (1983) and reject the
null hypothesis for the same eight months as does our stability test. The
SSM-AR model with seasonal dummy variables is nonstationary but stable
if its parameters are constant over time. Rejecting constancy in favour of
deterministic shifts or �trends�seems to bear a clear relationship to rejecting
stationarity against a stochastic trend in the monthly model used by Proietti
and Hillebrand (2017).

7.3 Estimating the seasonal shifting mean autoregres-
sive model

Estimation of the mean begins by obtaining initial values using a two-dimensional
grid (assuming the transition function (3)) for each month, as discussed in
Section 5. The autoregressive terms contribute rather little to the explana-
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1 2 3
Jan 0.0001 0.0006 0.0018
Feb 0.3969 0.5469 0.4568
Mar 0.0010 0.0003 0.0008
Apr 0.6206 0.2929 0.4364
May 0.9197 0.2274 0.3771
Jun 0.2023 0.2047 0.3564
Jul 0.0350 0.0080 0.0178
Aug 0.0407 0.0011 0.0024
Sep 0.0028 0.0024 0.0061
Oct 0.0000 0.0000 0.0001
Nov 0.0000 0.0001 0.0002
Dec 0.0102 0.0254 0.0584

Table 1: p-values of monthly constancy tests for the Central England tem-
perature series, 1772-2016

tion and even when their parameters slightly change from one grid estimation
to the next, this does not pose problems.
Nonlinear estimation is carried out using our R code. The estimated

equations can be found in Appendix C. In estimation, we set an upper bound
for the slope parameter 
 to equal 40. This re�ects our belief that long-run
shifts in temperature are not completely abrupt and helps numerically in
certain situations in which there is joint uncertainty about the speed and
location of the change. In a couple of cases the transition is very smooth,
which causes numerical problems in estimating the location parameter c of
the transition function. Thus, when the estimate of c tends to exceed one, it
is arti�cially restricted to this value. This reduces estimation uncertainty for
both �1; the coe¢ cient of the transition function, and the location parameter

:
The estimated model after the �rst iteration of the zig-zag algorithm

can be found in Table 7. Since they change only minimally after the �rst
iteration, other than �rst iteration estimates are not reported. The main
interest lies in the estimated monthly average temperatures which appear in
Figure 3. Warming may be roughly divided in two categories. One is the
19th century warming of winters that is visible in November, December and
January. For December and January the location parameter is estimated to
lie within the period 1820�1850. For March and the months from July to
October the main part of warming occurs in the 20th century. The shape of
the average for November suggests that this month�s averages are a mixture
of the 19th and the 20th century warming. This agrees with the fact that
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Figure 3: Estimated monthly Central England mean temperatures for the
eight months in which the mean is time-varying, 1772-2016

the averages for the preceding months from July to October are dominated
by the 20th century warming whereas the December and January warming
occurs in the 19th century. This early winter warming coincides with the end
of the so-called Little Ice Age around the mid-nineteenth century, so there
may be a connection, but this is of course far from certain.
Changes in mean temperatures, measured in centigrade, for the whole

period as well as for subperiods 1772-1899 and 1900-2016 can be found in
Table 2. It is seen that July and August have warmed up later and less than
September and October, and March for that matter. The values for March
and September look quite similar. The �no change�result for February may
be explained by the disappearance of the 19th century winter e¤ect, while
20th century warming has not yet appeared as it has in March. Why the
tendency visible in March is not there for April, May and June is not clear.
Warming in these three months has at any rate been too weak to be detected
by our statistical model.
Before drawing more de�nite conclusions we have to perform another

speci�cation test, that is, we have to check whether changes in monthly
averages are adequately described by a model with a single transition. For
this purpose we test one transition against two as discussed in Section 6.4.
The results can be found in Table 3. They suggest that the model with a
single transition for the eight months with time-varying seasonal coe¢ cients
is adequate in the sense that no more transitions are required to describe the
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Month 1772-2016 1772-1899 1900-2016
Jan 1.6682 1.6679 0.0004
Feb 0.0000 0.0000 0.0000
Mar 1.5551 0.1529 1.4021
Apr 0.0000 0.0000 0.0000
May 0.0000 0.0000 0.0000
Jun 0.0000 0.0000 0.0000
Jul 1.0670 0.0000 1.0670
Aug 1.0178 0.0000 1.0178
Sep 1.3315 0.1145 1.2170
Oct 1.5661 0.0214 1.5447
Nov 1.9737 0.6904 1.2833
Dec 1.3079 1.3079 0.0000

Table 2: Estimated monthly mean temperature change for the years 1772-
2016 and subperiods 1772-1899 and 1900-2016

behaviour of the coe¢ cients. This conclusion does not depend on the order
of the Taylor expansion in the test statistic (33).
Adequacy of the mean equation is also checked by testing the null hy-

pothesis of no error autocorrelation. The results in Table 4 are based on the
robust version Godfrey-Breusch test of no error autocorrelation modi�ed for
residuals from the SSM-AR model. It appears that the errors are not auto-
correlated. This test a well as the test of one transition against two suggest
that the mean part of the model is correctly speci�ed.

7.4 Specifying and estimating time-varying error vari-
ance

After estimation of the mean the next step is to model the error variance.
Its monthly marginal distributions are plotted in Figure 4. Visual inspection
suggests that there is more unexplained variation in winter months than in
summer ones. The errors are clearly heteroskedastic, which the de�nition
(6) of the error variance takes into account. The question to be investigated
is whether the error variance �2Sk+s considered for each month s separately
varies over time. This is studied by assuming that if it does, the change can
be characterised by the model (6). Results from the test discussed in Section
6.5 appear in Table ?? and show that at the 5% level, constancy is rejected
only for April and May. Next, the e¤ect of outliers on these results is studied
as discussed in Appendix B. The errors deviating from zero by more than
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1 2 3
Jan 0.6582 0.3729 0.2887
Mar 0.8790 0.9391 0.9834
Jul 0.8823 0.7706 0.3389
Aug 0.7637 0.3950 0.1167
Sep 0.9104 0.9262 0.9403
Oct 0.8611 0.8899 0.7974
Nov 0.9814 0.9940 0.8633
Dec 0.5810 0.4561 0.6193

Table 3: p-values of the F test of one transition against two month by month,
using the �rst, second and third order Taylor expansion to approximate the
second transition

Maximum lag p-value
1 0.9188
2 0.8610
3 0.9002
6 0.2300
12 0.2281

Table 4: p-values of the test of no error autocorrelation of selected orders up
to 12

�3 standard deviations are labelled as outliers and the tests repeated. The
only change in results is that the p-values increase weakening the evidence of
nonconstancy of the error variance for May. (April does not have any outliers,
May has one, see Appendix D, Table 8). The �rst-order Taylor expansion
test still yields a p-value slightly below 0.05, whereas the other two values are
above this level. Interestingly, the lowest p-values fall on months for which
stability of the coe¢ cient of seasonal dummy variable is not rejected.
Estimated error variances appear in Table 6. It is seen that the transitions

are very abrupt, and in both cases the variance decreases after the shift or
break. The break dates, the year 1814 for April and 1923 for May, do not
seem to have a clear interpretation. In general, the estimated variances agree
with Figure 4.

8 Final remarks

In this work we develop a �exible nonlinear model capable of describing
changes in the seasonal pattern of a time series over time. It is applied to the
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Figure 4: Histograms of residuals of the estimated SSM-AR model with
constant error variance by month, 1772�2016

CET series using the same time period as Proietti and Hillebrand (2017) did
but extended to the end of 2016. The main result is that with one exception,
temperatures for the months from July to March have increased and that
the warming has been strongest in the winter months. The results also show
that there are di¤erences in the timing of the increases in that temperatures
in November, December and January have risen earlier than the rest. The
end of the Little Ice Age may have played a role there, but we cannot be sure
of that. Nor do we know why February temperatures seem not to have gone
up.
Comparing these results with ones from other studies is not straightfor-

ward. Harvey and Mills (2003) use a di¤erent time periods beginning 1723
and ending 1999 and quarterly series. However, if we exclude the early years
and consider their graphs estimated using local polynomials from 1772 on-
wards, similarities arise. Winter months (December, January, February) have
been warming up already in the 19th century, whereas the others have not.
Warming has been weak in the summer (June, July, August), whereas the
late surge in the spring (March, April, May) is not visible in our results.
The monthly series of Vogelsang and Franses (2005) begins more than 100

years earlier than ours. There is some overlap in conclusions, see their Table
8, but also disagreement. Perhaps the most conspicuous similarity between
our results and the ones in Proietti and Hillebrand (2017) is that in their
structural time series model the deterministic drift component is strongest
in November, December and January, i.e., in months for which we found
early (19th century) warming. Since the structure of their model is rather
di¤erent from ours, comparisons between results are not easy to make. It
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1 2 3
Jan 0.2274 0.4706 0.5328
Feb 0.8532 0.4817 0.6219
Mar 0.2604 0.3469 0.2236
Apr 0.0831 0.0302 0.0703
May 0.0322 0.0902 0.1340
Jun 0.1183 0.2745 0.4152
Jul 0.9711 0.9792 0.9299
Aug 0.7816 0.9410 0.9673
Sep 0.4994 0.6004 0.7963
Oct 0.5983 0.8135 0.7642
Nov 0.7158 0.5079 0.3725
Dec 0.8028 0.8245 0.2504

Table 5: p-values of tests of constancy of error variance by month based on
the �rst, second and third order Taylor expansion

may be repeated, however, that outcomes of stationarity tests in their work
are quite comparable to results of stability tests in this paper.
This analysis concentrates on the monthly CET time series, and the re-

sults from our model can hardly be generalised. Local conditions in the area
have probably had a considerable e¤ect on the outcomes. Hillebrand and
Proietti (2017) are already considering 16 Northern Hemispheric series, and
it would be interesting to do something similar in the present framework.
This would involve considering a multivariate SSM-AR model, which could
among other things make it possible to study correlation dynamics between
di¤erent series. Extensions of this kind will be left for further work.
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as K !1: This completes the proof. �
Proof of Lemma 6. Consider
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for s = 1; :::; S: As before, set k = [rK]; 0 < r � 1: Then the limit of (37)
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Proof of Theorem 9. We prove this result by verifying the conditions of

Theorem 2.5 in Newey and McFadden (1994, p. 2131):

Theorem 2.5 (Newey and McFadden). Suppose that zSk+s (k = 0; :::; K�
1; s = 1; :::; S) are iid with probability distribution function f(zSk+sj�0): If
(i) � 6= �0; then f(zSk+sj�0) 6= f(zSk+sj�);
(ii) �0 2 � which is compact, and the density is positive (bounded away

from zero) for all � 2 �;
(iii) ln f(zSk+sj�) is continuous at each � 2 � with probability one,
(iv) E sup�2� j ln f(zSk+sj�)j <1;

then the maximum likelihood estimator b� p! �0 as K !1:

Assumption (i) is satis�ed due to A1 and A2. Assumption (ii) is valid
due to A3 and A4, and (iii) follows from A5 and Lemma 3. (iv) Applying
the mean value theorem, the triangle inequality and the Cauchy-Schwarz
inequality to j ln f(zSk+sj�)j yields

j ln f(zSk+sj�)j = j ln f(zSk+sj�0) +
@

@�0
ln f(zSk+sj�)(� � �0)j

� j ln f(zSk+sj�0)j+ jj
@

@�0
ln f(zSk+sj�)jj � jj(� � �0)jj

� C1 + C2C3 <1 (38)
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where � is an intermediate value between � and �0; j ln f(zSk+sj�0)j � C1
because of A4, and jj @

@�0 ln f(zSk+sj�)jj � C2 because of Lemma 3. Further-
more, jj���0jj � C3 because � is compact (A3), so the elements of jj���0jj
are bounded for � 2 �. In (38), Ci; i = 1; 2; 3; are generic positive constants.
As j ln f(zSk+sj�)j is �nite for all � 2 �, the expectation of its supremum is
�nite as well. �
Proof of Theorem 10. We prove the theorem by verifying the conditions

of Theorem 3.3 in Newey and McFadden (1994, p. 2146):

Theorem 3.3 (Newey and McFadden). Suppose that hypotheses of The-
orem 2.5 are satis�ed and
(i) �0 is an interior point of �;
(ii) f(zj�) is twice continuously di¤erentiable and f(zj�) > 0 in a neigh-

bourhood N of �0;
(iii)

R
sup�2N jj @@�f(zj�)jjdz <1 and

R
sup�2N jj @2

@�@�0f(zj�)jjdz <1;

(iv) J(�0) = Ef ln @
@�
f(zj�0)gf @

@�0 ln f(zj�
0)g exists and is nonsingular,

(v) E sup�2N jj @2

@�@�0 ln f(zj�)jj <1; where N is a neighbourhood of �0:

Then
p
K(b� � �0) d! N(0;J�1(�0)):

Condition (i) follows from A3 and (ii) from A4 and Lemma 7. Condition
(iii) is a standard regularity condition and is satis�ed. In order to verify (iv),
we consider blocks of (15). First note that JK(�

0
M) = EsSK(�

0
M)s

0
SK(�

0
M) is

nonsingular for SK > 3
PS

j=1 qj + p + S; so J�1K (�
0
M) exists. Lemma 5 pro-

vides the blocks of limK!1 JK(�
0
M). Likewise, Lemma 6 de�nes the diagonal

blocks of the variance component JV (�0V ) = diag(J
V (�

(v)0
1 ); :::;JV (�

(v)0
S )) which

are also positive de�nite. Putting these together de�nes J(�0) = diag(JM(�
0
M);

JV (�
0
V )):
(v) E sup�2N jj @2

@�@�0 ln f(zj�)jj < 1: Lemmas 7 and 8 show that the de-
terministic components in the matrix @2

@�@�0 ln f("j�) are bounded for � 2N .
Then the expectation of the supremum is bounded as well.
Finally, since matrix inversion is a continuous transformation, it follows

from the continuous mapping theorem that when JK(�
0) ! J(�0); then

J�1K (�
0)! J�1(�0): This concludes the proof. �

Proof of Lemma 11. First consider

JAK(�s) = EsK(�s)s
0
K(�s) =

1

�2K

K�1X
k=0

ksk+sk
0
sk+s: (39)
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Letting k = [rK] in (39) yields

JAK(�s) =
1

�2

K�1X
k=0

Z S(k+1)+s
SK

Sk+s
SK

ks[rK]+sk
0
s[rK]+sdr

=
1

�2

Z SK+s
SK

s
SK

ks[rK]+sk
0
s[rK]+sdr

! 1

�2

Z 1

0

rr0dr =
1

�2

24 1=3 1=4 1=5
1=5 1=6

1=7

35 = JA(�s)
for s = 1; :::; S: Next, using the same arguments,

JAK(�s; �s0) =
1

�2K

K�1X
k=0

ksk+s !
1

�2

Z 1

0

rdr

=
1

�2
(
1

2
;
1

3
;
1

4
)0 = JA(�s; �s0)

asK !1: Following the same line of reasoning and assuming that A5 holds,

JASK(�s0;�
0) =

1

�2K

K�1X
k=0

Ey0Sk+s�1

=
1

�2�(1)K

K�1X
k=0

f�s�1(
Sk + s� 1

SK
); :::; �s�p(

Sk + s� p

SK
))

! 1

�2�(1)

Z 1

0

�0s�1(r)dr = J
A(�s0;�

0) (40)

and

JASK(�s;�) =
1

�2K

K�1X
k=0

�sEy
0
Sk+s�1 !

1

�2�(1)

Z 1

0

r�0s�1(r)dr = J
A(�s;�)

as K !1: �
Proof of Lemma 12. We only have to prove (32). We have

Esk(�s)s
0
k(�

0
s) =

1

�2K

K�1X
k=0

kSk+s
@�s(

Sk+s
SK

)

@�0s
:
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Setting k = [rK] in (40) yields

Esk(�s)s
0
k(�

0
s) =

1

�2

K�1X
k=0

Z S(k+1)+s
SK

Sk+s
SK

kS[rK]+s
@�s(

S[rK]+s
SK

)

@�0s
dr

=
1

�2

Z SK+s
SK

s
SK

kS[rK]+s
@�s(

S[rK]+s
SK

)

@�0s
dr

! 1

�2

Z 1

0

r
@�s(r)

@�0s
dr = JA(�s;�

0
s)

which is the desired result. �

B Testing the constancy of error variance month
by month

Constancy of error variances is tested as in Silvennoinen and Teräsvirta
(2016). The di¤erence is that because of seasonal heteroskedasticity, the
test is conducted separately for each month. It has been argued, see for ex-
ample van Dijk, Franses and Lucas (1999), that additive outliers may bias
the test of no ARCH towards rejection. Since this may also be the case here,
we augment the test statistic by impulse dummy variables D

(tq)

Sk+s: D
(tq)

Sk+s = 1
for Sk + s = tq; zero otherwise. The test in the TR2 form is conducted as
follows:

1. Form the log-likelihood of the auxiliary model for season s (s is �xed,
there are K observations). It equals

L
(s)
K = c� 1

2

K�1X
k=0

ln�2Sk+s �
1

2

K�1X
k=0

b"2Sk+s
�2Sk+s

(41)

where the observations are s; 2s; :::; (K � 1)s. For each season s =
1; :::; S; there is a separate error variance

�2Sk+s = �s0 +

QsX
q=1

�Di D
(tq)

Sk+s + �s1
k + 1

K
+ �s2(

k + 1

K
)2 + �s3(

k + 1

K
)3

for k = 0; 1; :::; K � 1: Estimate the auxiliary variance model by max-
imising L(s)K under H0: �s1 = �s2 = �s3 = 0: Save the standardised
squared residuals

b�2k+s = b"2Sk+sb�2s0 +PQ
q=1 b�Di D(tq)

Sk+s

38



and compute the �residual sum of squares�SSR0 =
PK�1

k=0 (
b�2Sk+s� 1)2:

2. Regress (�2Sk+s � 1)2 on 1; D
(tq)

Sk+s; q = 1; :::; Qs;
k+1
K
; (k+1

K
)2 and (k+1

K
)3

and form the sum of squared residuals SSR1:

3. Calculate the test statistic

LMs = K
SSR0 � SSR1

SSR0
:

It has an asymptotic �2-distribution with three degrees of freedomwhen
H0 holds. As already mentioned, the test is carried out for each s
separately, because the seasonal error variables are orthogonal.
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C Estimated equations

Estimate Std. Error t value
�1 0.235 0.018 12.8
�2 0.057 0.018 3.08
�1;0 1.29 0.204 6.31
�1;1 1.18 0.202 5.84
c1 0.315 0.031
�2;0 3.02 0.122 24.8
�3;0 4.09 0.166 24.6
�3;1 1.19 0.758 1.57

3 10.1 11.1
c3 0.751 0.155
�4;0 6.56 0.139 47.3
�5;0 9.10 0.178 51.1
�6;0 11.2 0.236 47.6
�7;0 11.9 0.304 39.2
�7;1 0.758 0.296 2.56
c7 0.845 0.053
�8;0 11.0 0.351 31.3
�8;1 0.725 0.398 1.82

8 35.0 68.0
c8 0.848 0.067
�9;0 8.60 0.381 22.6
�9;1 1.89 0.679 2.79

9 6.45 4.25
�10;0 5.54 0.340 16.3
�10;1 1.11 0.295 3.77

10 21.6 21.3
c10 0.722 0.053
�11;0 2.36 0.684 3.46
�11;1 3.19 1.083 2.94

11 2.73 2.03
�12;0 1.48 0.291 5.09
�12;1 0.927 0.250 3.70
c12 0.203 0.042
SSR 5302
log.Lik -5036 (df=34)

The cases (January, July, December) in which 
 = 40 (�xed), this value is not shown in the table. The

same is true for cases (September, November) in which c = 1.

No t-values are reported for the estimates of 
 and c: For bc, signi�cant deviations from zero are of no

interest. As to b
, due to the identi�cation problem the asymptotic distribution of the t-statistic is unknown,

and reporting a t-value is therefore misleading.

Table 7: Estimates of the mean component of the SSM-AR model for the
monthly CET series, 1772-2016
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D Additional tables

1 2 3
Jan 0.4584 0.7407 0.6706
Feb 0.8951 0.6911 0.7777
Mar 0.2604 0.3469 0.2236
Apr 0.0831 0.0302 0.0703
May 0.0486 0.1331 0.2433
Jun 0.1586 0.3681 0.5723
Jul 0.9711 0.9792 0.9299
Aug 0.7816 0.9410 0.9673
Sep 0.9340 0.5550 0.6793
Oct 0.5983 0.8135 0.7642
Nov 0.9494 0.4363 0.4173
Dec 0.8028 0.8245 0.2504

Table 8: p-values of tests of constancy of the error variance based on the �rst,
second and third order error variance. The errors outside the �3 standard
error band are treated as outliers and dummied out
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