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1 Introduction

Many daily or weekly volatility series appear nonstationary. In the Generalised Autore-

gressive Conditional Heteroskedasticity (GARCH) framework this nonstationarity has

been explicitly modelled by Integrated GARCH models (Engle and Bollerslev, 1986)

or using a more general version, the Fractionally Integrated GARCH model (Baillie,

Bollerslev and Mikkelsen, 1996). Another strand of literature, see for example Lam-

oureux and Lastrapes (1990) or Mikosch and Stărică (2004), builds on the assumption

that nonstationarity is due to structural changes in the volatility process. One way

of adjusting the GARCH model to the latter type of nonstationarity is to modify the

observations (typically but not exclusively daily returns of financial assets) to fit a

stationary GARCH model. This is done by augmenting the GARCH model multiplica-

tively by a positive-valued component. van Bellegem and von Sachs (2004) and Feng

(2004) are the first examples of this approach.

A GARCH model may be multiplicatively augmented also because of the desire

to explain and predict variations in volatility by economic variables. GARCH-MIDAS

models, pioneered by Engle, Ghysels and Sohn (2013), are an example of this. In this

review models of both types of multiplicative decomposition are considered. The plan of

the review is as follows. The decomposition is described in Section 2. Section 3 concerns

models with a deterministic multiplicative component and in Section 4 this component

is stochastic. Multivariate generalisations are discussed in Section 5. Section 6 contains

final remarks.

2 Multiplicative decomposition of variance

Most univariate or single-equation models to be considered in this article are of the

following form

yt − µt = εt = zth
1/2
t g

1/2
t (1)

where zt is iid(0,1). In this review it is assumed that µt is known so that εt is observable

(yt is assumed observable). The conditional variance component is assumed to have a

GARCH representation (Bollerslev, 1986, and Taylor, 1986). Thus, when gt ≡ 1,

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjht−j (2)

where α0 > 0, αj ≥ 0, j = 1, ..., q−1, αq > 0, βj ≥ 0, j = 1, ..., p. The process is weakly

stationary if and only if
∑q

j=1 αj +
∑p

j=1 βj < 1.

The positive-valued function gt is either deterministic or stochastic and represents
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the slowly moving component of ε2
t . It follows that σ2

t = Ehtgt is the total time-varying

variance of εt at time t. The role of ht is to chacterise clustering of volatility present

for instance in asset or index return series of sufficiently high frequency, as already

observed by Mandelbrot (1963) and originally parameterised by Engle (1982). When gt

is deterministic and nonconstant, εt is nonstationary. One of the important purposes

of gt is to render φt = εt/g
1/2
t weakly stationary in situations where the return series

appears nonstationary. A standard GARCH model (2) fitted to the data would in

that case be inadequate. From (1) it is seen that φt would then follow a GARCH

process. There exist many variants of (2), but in this article the standard GARCH

structure with p = q = 1 or its asymmetric counterpart, the GJR-GARCH by Glosten,

Jagannathan and Runkle (1993), is mostly sufficient for our purposes. When p = q = 1,

the subscript will be omitted from α1, β1 and κ1 (the coefficient of the asymmetry term

in the GJR-GARCH model).

3 Models with a deterministic long-run component

3.1 Nonparametric deterministic component

One of the first examples of the use of a deterministic component in modelling returns is

the time-modulated (tm) process proposed by van Bellegem and von Sachs (2004) and

further discussed in van Bellegem (2012). The observable return (the conditional mean

is abstracted away) equals εt = ζtg(t/T ), where g(t/T ) is deterministic positive-valued

function of rescaled time and T is the number of observations. The error term ζt is

assumed to be either white noise with zero mean and unit variance, an ARMA process,

or a GARCH process. In the latter case, ζt = zth
1/2
t , where zt ∼ iid(0, 1), so that εt is

defined as in (1) and ht by (2). When ht ≡ 1, the white noise assumption is sufficient

for Eεtεt−j = 0 for j 6= 0, which is a property for many financial time series. The lack

of a GARCH component is (partly) compensated by the assumption that the error ζt

in εt = ζtg(t/T ) has a leptokurtic density.

As already seen, in the tm-process time is rescaled between zero and one. It may

be assumed that g(t/T ) is a smooth function of its argument. More specifically, g(t/T )

is assumed Lipschitz continuous: |g(r1) − g(r0)| < C|r1 − r0| for all 0 < r0, r1 <

1. The reason for rescaling time is that g(t/T ) is estimated nonparametrically. The

observations εt, t = 1, ..., T, are squared, and the sequence {ε2
t} is smoothed using

kernel estimation. The smoothed values are the estimated values of g(t/T ). Using the

terminology of Dahlhaus (1997), the tm-variance process is locally stationary if zt is

stationary.

van Bellegem and von Sachs (2004) also consider the situation in which the process
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contains breaks but is piecewise Lipschitz continuous. The variance for the continuous

segments is estimated by kernel estimation, but finding the break-points then becomes

an essential part of the modelling process. To choose the segments or break-points, the

authors suggest using two tests for detecting breaks in the unconditional variance based

on the cumulative sum of squares. The first one is the post-sample prediction test which

depends on knowing the time point where the time series is split. The second one is

the CUSUM test which does not require splitting the returns into two subsamples but

instead controls changes in the unconditional variance at each time point.

When ζt = zth
1/2
t (the GARCH case), van Bellegem and von Sachs (2004) ex-

plain that the purpose of the deterministic component is to transform the potentially

nonstationary sequence {εt} into a weakly stationary one {φt} by the normalisation

φt = εt/g
1/2(t/T ). They point out that once this has been done, ’standard econometric

techniques’ can be used to build models for φt.

Feng (2004) also considers the multiplicative decomposition of variance (1) such

that ht is a weakly stationary GARCH(p,q) process. The deterministic component

g(t/T ) is assumed at least twice continuously differentiable on [0, 1] and the errors are

iidN (0, 1). The ensuing model is called the Semiparametric GARCH (SEMIGARCH)

model since g(t/T ) is estimated nonparametrically as in the tm-model of van Bellegem

and von Sachs. Even here, the observations εt are squared, and the estimates of ĝ(t/T ),

t = 1, ..., T, are obtained as smoothed values of the sequence {ε2
t} by the Nadaraya-

Watson kernel estimator. The GARCH model is fitted into the normalised observations

φ̂t = εt/ĝ
1/2(t/T ).

Feng (2004) derives the bias and variance of ĝ(t/T ) (or a transformation of it).

Both are functions of the squared bandwidth, and the asymptotic bias is the same as

in the nonparametric regression of iid variables. The results also include the asymp-

totic distribution of ĝ(t/T ). As expected, the rate of convergence is a function of the

bandwidth.

To investigate consequences of two-step estimation, Feng uses the normal log-likelihood

for φt when the model is GARCH(1,1), which he calls approximate because it is con-

ditional on ĝ(t/T ). Under regularity conditions and denoting the GARCH parameter

vector by θ, its maximum likelihood estimator by θ̂ and the true parameter vector by

θ0, the following result emerges:

√
T (θ̂ − βθ − θ0)

d→ N (0,Σ−1
θ0

)

where βθ is the asymptotic bias and Σθ0 the expected Hessian evaluated at θ = θ0.

The bias term is of the order O(b2 + (Tb)−1) and negligible when the bandwidth b in

the estimation of g(t/T ) is sufficiently small, that is, O(T−1/2) < b < O(T−1/4). In
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that case one can confidently base the statistical inference on the standard asymptotic

theory for the stationary GARCH(1,1) model.

Properties of the SEMIGARCH model are studied by simulation. The purpose of

the experiments is twofold: study both the choice of bandwidth and the behaviour of

the GARCH parameter estimates. One of the simulation experiments is highlighted

here, the focus being on GARCH parameter estimates. The GARCH component equals

ht = 0.15 + 0.1ε2
t−1 + 0.75ht−1

so the total variance when g(t/T ) = 1 equals one. The true g(t/T ) is a linear combi-

nation of a linear trend, a cosine function, and a hyperbolic tangent function which is

close to a logistic function. The linear trend means that the amplitude of the clusters

in the data increases over time. The other two components add extra movements to

these changes.

The average estimated GARCH equation based on 2000 realisations and ignoring

g(t/T ) becomes

ĥt = 0.0363 + 0.0540ε2
t−1 + 0.9432ĥt−1

which yields the total variance 12.96. As can be expected, α̂+ β̂ = 0.9972 is very close

to one. When εt is rescaled and the GARCH model fitted to φ̂t, the equation has the

following average form

ĥt = 0.2052 + 0.0937φ̂
2

t−1 + 0.6965ĥt−1.

The coefficient of ht−1 is slightly underestimated while the average estimate of the total

variance of φt equals 0.978, which is not far off the mark. It seems that rescaling is

very important and that it works quite well. It is expected to do so even when there

are several amplitude changes in the data at irregular intervals.

There are two empirical examples in Feng (2004). The SEMIGARCH model is fitted

to daily returns of the New York S&P 500 index and to the Frankfurt DAX 100 index

for the period from 3 January 1994 to 23 August 2000. It may be mentioned that the

aforementioned simulation experiment was fashioned after the observed behaviour of

DAX 100. For S&P 500 returns, the estimated GARCH(1,1) model is

ĥt = 5.684× 10−7 + 0.0674ε2
t−1 + 0.9302ĥt−1 (3)

so α̂+ β̂ = 0.9976, and the estimated total variance equals 2.4× 10−4, which is unreal-

istically low. The SEMIGARCH model yields

ĥt = 0.0649 + 0.0686φ̂
2

t−1 + 0.8676ĥt−1. (4)
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In (4), α̂ + β̂ = 0.9362 and the total variance estimate is 1.018. In comparing (3)

and (4) it is seen that β̂ decreases, whereas α̂ does not change much. This is in fact

typical for many applications in which rescaling is employed. The weight of the lagged

conditional variance in the GARCH model diminishes when the scale change is properly

modelled. This is important in forecasting, because the decay rate of the conditional

variance in the GARCH(1,1) model equals α+β. A rate close to one leads to forecasts in

which volatility remains too high for too long when the starting-value, the most recent

estimated conditional variance, is high. Results for DAX 100 are quite similar to the

ones for S&P500: α̂ + β̂ = 0.9849 for GARCH equals 0.9354 for SEMIGARCH. For

details, see Feng (2004).

Zhang, Feng and Peitz (2017) suggest estimating the scale function from |εt|λ instead

of ε2
t . This is motivated by moment requirements on financial return series in choosing

the bandwidth. The relationship between the resulting scale function gλ(t/T ) and the

one based on smoothing ε2
t is demonstrated. The resulting model is called the Box-Cox

SEMIGARCH model. It may be mentioned that in the paper the rescaled observations

are modelled using several GARCH models, including the Exponential GARCH model

by Nelson (1991). The application is to daily S&P 500 and DAX index returns.

When high-frequency (intradaily) returns rt are being modelled, one also has to

consider diurnal variation patterns due to investors’ average behaviour over the day.

Feng and McNeil (2008) extend SEMIGARCH to this situation. The decomposition

(1) is augmented by a periodic component sk(t), k = 1, ..., K, where K is the length of

the period. For instance, if εt is a five-minute return, K is the number of five-minute

returns included in the ’day’, a subset of the time the exchange is open for trading.

The periodic SEMIGARCH has the form

rt = ztV
1/2

0 h
1/2
t g1/2(t/T )sk(t) (5)

where t = 1, ..., T, zt ∼ iidN (0, 1), V
1/2

0 > 0, (1/K)
∑K

k=1 sk = 1, and
∫ 1

0
g(u)du = 1.

The positive constant V0 is a consequence of variance targeting: Eht = 1 because the

intercept is defined as

α0 = 1−
q∑
j=1

αj −
p∑
j=1

βj (6)

in (2). Rescaling leads to φt = rt/(V
1/2

0 g1/2(t/T )sk(t)) such that φt has a stationary

GARCH representation with E{φt|Ft−1} = 1, where Ft−1 contains the conditioning

information. Feng and McNeil (2008) discuss nonparametric estimation and asymptotic

properties of the estimators. The authors also suggest a test of the null hypothesis

g(t/T ) = 1, whose empirical null distribution is obtained by simulation. The model

is fitted to 20-minute returns of four German stocks from 28 November 1997 to 30
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December 1999.

3.2 Deterministic splines

Engle and Rangel (2008) introduce another multiplicative decomposition which is based

on exponential quadratic splines. The aim of the authors is to examine links between

return volatility and macroeconomics. To do this they develop the spline-GARCH

model ’to allow the high frequency financial data to be linked with the low-frequency

macro data.’ In this review these links are not considered, and the focus is instead on

the model. The scaling function of the spline-GARCH model is defined as

gt = c exp[w0t+
k∑
i=1

wi{(t− ti)+}2 + γxt] (7)

where (t−ti)+ > 0 for t−ti > 0 and zero otherwise, and xt is a weakly exogenous random

variable. The exponential form (7) is used to make sure that gt > 0 for all t. Here the

decomposition is classified as nonparametric because gt is a spline function, but gt also

contains the parameter vector w = (c, w0, w1, ..., wk, γ)′. To facilitate estimation, the

knots are assumed equidistant, and their number in the spline function, k, is determined

by the data. This is done by estimating the spline-GARCH model with 1, 2, ..., K splines

and choosing the final model as the one for which k ∈ {1, ..., K} minimises BIC of

Rissanen (1978) and Schwarz (1978). Selecting another model selection criterion such as

AIC (Akaike, 1974) which is more generous than BIC in selecting knots may sometimes

lead to substantially larger number of them, see, for example, Amado, Silvennoinen and

Teräsvirta (2017).

Using model selection criteria may cause identification problems. Let the true k =

k0, but suppose that the largest k to be considered exceeds k0. When this is the case,

the search leads to estimating unidentified models. Also, since variance forecasts from

rescaled GARCH models depend on the end-point of the deterministic component (and

also on how this component is extrapolated), the choice of the model selection criterion

may have a large effect on forecasts. Furthermore, the larger the number of knots and

splines, the smaller the sum α̂+ β̂ in the GARCH(1,1) equation. This has an effect on

persistence of a shock, which in turn affects forecasts for several periods ahead.

Unlike the SEMIGARCH model, there is no asymptotic theory available for the

maximum likelihood or other estimators of the parameters of the spline-GARCH model.

Obviously, the reported standard deviation estimates are based on the assumption that

the estimators are consistent and asymptotically normal. Engle and Rangel (2008)

fit the spline-GARCH model to daily return series for 48 stock indexes from stock

exchanges around the world. Variance targeting is used in estimation of spline-GARCH
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models, which means setting α0 = 1−α−β in (2). The same appears not to be true for

the estimated GARCH models because in some cases α̂ + β̂ > 1. The spline-GARCH

results show the same pattern as in the SEMIGARCH applications. First, the sum α̂+β̂

from the spline-GARCH model is generally clearly lower than what is obtained with

the GARCH model. Second, the estimate β̂ decreases, sometimes quite strongly, when

one moves from GARCH to spline-GARCH, whereas changes in α̂ remain relatively

minor. The number of knots varies from one to 15. The extreme case is Russia with

14 knots, one knot for only 167 observations. The estimated models for this dataset do

not contain macroeconomic or other weakly exogenous variables, i.e., γ = 0 in (7).

Brownlees and Gallo (2010) define gt with a different spline function. They consider

the Multiplicative Error Model (MEM) that is similar to GARCH but used for realised

variances (a daily realised variance is denoted as RVt; there are several definitions for

it), but this function can also be used for GARCH specifications. A first-order MEM

has the following form:

ht = α0 + α1RVt−1 + β1ht−1 (8)

where RVt−1 > 0. Brownlees and Gallo (2010) include an asymmetry term as in the

GJR-GARCH model, but for notational simplicity this extension is omitted here. The

spline function is a modification of the so-called B -spline. In the exponential case

gt = c exp{
k∑
i=1

wiBi(t)} (9)

where Bi(t) consists of pieces of polynomials. If Bi(t) is of order q, it means that it

consists of q+1 polynomial pieces of degree q that join at inner knots. The total number

of knots spanning Bi(t) equals q+ 2, and outside the outer knots the spline equals zero.

The sum
∑k

i=1wiBi(t) is a B -spline. For more properties and information, see Eilers

and Marx (1996). One of the advantages of B -splines is that they are easy to compute.

In practice, B -splines may not be used as such. An approach recommended by

Eilers and Marx (1996) and followed by Brownlees and Gallo (2010) is to first select a

large number of (equidistant) knots and reduce the dimension of the problem imposing

a roughness penalty (Good and Gaskins, 1971) on the log-likelihood. There are many

ways of doing that, one of them being to assume the penalty to be a function of the jth

differences of the adjacent spline coefficients wi. If the log-likelihood for T observations

is denoted as LT (θ) where θ ∈ Θ contains the parameters in (8) and (9), their estimates

are obtained as

θ̂ = arg max
θ∈Θ
{LT (θ)− λ

2

k∑
i=j+1

(∆jwi)
2}. (10)

The resulting splines are called penalised B -splines, or P -splines for short. Useful
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properties of P -splines are listed in Eilers and Marx (1996). The idea is that while a B -

spline with a large number of knots is not very smooth, the penalty of type (10) smooths

the spline. Brownlees and Gallo (2010) point out, among other things, that quadratic

splines have poor numerical properties compared to P -splines and that choosing the

knots using a model selection criterion is not an appealing procedure. As already

suggested, it may lead to numerical difficulties if a quadratic spline with ’too many’

knots is estimated. But then λ, the size of the penalty in the P -spline, is determined

by a model selection criterion. Eilers and Marx (1996) prefer AIC; note, however, the

way they define the penalty.

The purpose of Brownlees and Gallo (2010) is to forecast the Value at Risk, and

they are also interested in the performance of various estimators of realised variance.

Since the main interest in this review lies in how well rescaling handles nonstationarity

in the original return or realised variance series, their empirical results are bypassed

here.

3.3 Flexible Fourier Form

Parameterising the scaling function using the Flexible Fourier Form (FFF) by Gallant

(1981, 1984) constitutes an alternative to splines. Mazur and Pipień (2012) introduce

a model consisting of (1) and (2) in which εt is replaced by φt = εt/g
1/2(t/T ) such that

g(t/T ) = exp{
k∑
i=1

{wci cos(
2πi

T
t) + wsi sin(

2πi

T
t)} (11)

where wci and wsi are parameters, k is in practice small and the terms in the exponent of

g(t/T ) are the lowest frequencies of the Fourier decomposition of the unknown scaling

function. This model is called an almost periodically correlated (APC-) GARCH model.

The inference is Bayesian, and the authors consider both normal and t-distributed

errors for zt. The application is to the daily returns of the S&P500 returns from 18

January 1950 to 7 February 2012. First-order APC-GARCH models with k = 0, 1, 2, 3, 4

are fitted to the data. The results show that standard GARCH (k = 0) fits clearly

less well than the APC-GARCH models, and this outcome does not depend on the

error process. Interestingly, but not unexpectedly, when the error are assumed normal

estimated posterior probabilities are largest for models with k ≥ 2, whereas k = 1 or 2

is favoured for models with t-distributed errors. This shows how an error distribution

with thicker tails than the standard normal is able to absorb some of the movements

in the series.

A look at the GARCH coefficients shows that the sum α̂ + β̂ or the corresponding

sum for the GJR-GARCH model hardly changes when one moves from GARCH to APC-
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GARCH. This is different from both SEMIGARCH and spline-GARCH and somewhat

surprising as the purpose of rescaling is to handle long-run movements so that the

GARCH coefficients would only reflect short-run movements (volatility clustering) in

the data. The joint prior distribution for the GARCH parameters α and β is uniform

[0, 1]2, which means that nonstationarity is not excluded even under scaling.

Multiplicative decomposition with FFF as the scaling function is also used in mod-

elling realised variance. The purpose of the deterministic component is to describe the

diurnal variation in high-frequency returns as in Feng and McNeil (2008). Andersen

and Bollerslev (1998) apply this idea as follows. Let Rt,n be an intradaily, in their case

a 5-minute, return and ERt,n the expected return, and set rt,n = Rt,n −R, where ERt,n

is approximated by the sample mean R. The decomposition is

rt,n = zt,nh
1/2
t,n g

1/2
t,n (12)

where zt,n ∼ iid(0, 1), ht,n has a GARCH or stochastic volatility structure, and gt,n rep-

resents diurnal variation and intradaily announcement (’news’) effects. This is different

from the approach of Feng and McNeil (2008) as the focus is solely on the periodic

variation. The authors square (12) and take logarithms, so

xt,n = ln r2
t,n − lnht,n = E ln z2

t,n + ln gt,n + ut,n

where the iid error term ut,n = ln z2
t,n−E ln z2

t,n. This is made operational by estimating

ht,n from the data and assuming that while ln gt,n is stochastic and mean-stationary,

Eln gt,n has an FFF augmented by M news dummies Im(t, n):

E ln gt,n = c0 +
M∑
m=1

λmIm(t, n) +
k∑
i=1

{wci cos(
2πi

N
n) + wsi sin(

2πi

N
n)} (13)

where N is the number of intervals within a day. Apart from the news dummies, (11)

is similar to (13).

Assume now that ĥt,n is an appropriate estimator of ht,n and write

xt,n = ln r2
t,n − ln ĥt,n = ĉ+ E ln gt,n + u∗t,n (14)

where ĉ is an intercept and u∗t,n a stationary error (ut,n is iid). The model is fitted to 5-

minute Deutsche Mark-US Dollar logarithmic bid-ask spot price quotes from 1 October

1992 to 29 September 1993. For details of (14) and empirical results, see Andersen and

Bollerslev (1998).

It may be mentioned that multiplicative decomposition is also used in modelling
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diurnal variation in duration series when the idea is to model the dynamic behaviour

of the length of the interval between adjacent trades (duration). Since in this review

is about volatility models and modelling, multiplicative decomposition of durations

in models of autoregressive conditional duration, see Engle and Russell (1998), is not

discussed here.

3.4 Parametric deterministic component

The models in which gt is defined using splines or FFF already contain parameters,

although they are in this review classified as nonparametric ones. In this section the

focus is on models in which the decomposition is as in (1) but time is rescaled, and the

smooth long-run component gt = g(t/T ) is now fully parametric. The basic model of

this kind is called the Multiplicative Time-Varying GARCH (MTV-GARCH) model. It

is introduced in Amado and Teräsvirta (2008); see also Amado and Teräsvirta (2013,

2017). The purpose of the MTV-GARCH model is the same as before: jointly de-

scribe the short- and long-run movements in nonstationary return series. In (1), {zt} ∼
iid(0, 1) with Ez3

t = 0 and E|z2
t |

2+φ
< ∞, φ > 0. The conditional variance component

is a GARCH process, although the GJR-GARCH is also used, in particular when mod-

elling stock returns and indexes. The positive-valued long-run component gt = g(t/T )

is defined as follows:

g(t/T ) = 1 +
r∑
l=1

δlGl(t/T ; γl, cl) (15)

where δl, l = 1, . . . , r, are parameters and Gl(t/T ; γl, cl) is the generalised logistic tran-

sition function:

Gl(t/T ; γl, cl) = (1 + exp{−γl
kl∏
j=1

(t/T − clj)}−1 (16)

with γl > 0 and cl1 ≤ cl2 ≤ . . . ≤ clk. Positivity imposes restrictions on δl, l = 1, ..., r.

The intercept in (15) is set to equal one for identification reasons: the multiplicative

decomposition can only have one free intercept. When variance targeting is not used,

the intercept in (15) has to be fixed to a known positive value. In parameter estimation

some choices are for numerical reasons better than some others. Alternatively, one can

use variance targeting, see (6), and have a free intercept in (15).

When k = 1, (16) is a monotonic function of rescaled time, whereas it is nonmono-

tonic and symmetric around (cl1 + cl2)/2. When k = 1, the parameter γl controls the

slope of the transition function, i.e., the speed of the transition. When k = 1 and

γl → ∞, (16) becomes a step function. Breaks in returns may not be straightforward

to characterise by splines or FFF but are not difficult to model in the MTV-GARCH

10



framework. In applications, almost invariably k = 1 or k = 2. Depending on the

number of transitions, g(t/T ) can be a very flexible function of its argument.

In model specification there are issues similar to choosing the number of knots in

spline-GARCH. If the number of transitions in (15) is too large, g(t/T ) is not identified.

In order to avoid estimating unidentified models, r is determined by sequential testing.

Constancy of (15) is tested first. If it is rejected, the TV-GARCH model is estimated

and tested against a model with two transitions. Testing and estimation continues until

the first non-rejection. The identification problem is circumvented by approximating

the alternative model following Luukkonen, Saikkonen and Teräsvirta (1988). Details

of the specification technique can be found in Amado and Teräsvirta (2017) and Amado

et al. (2017).

In the SEMIGARCH model, the length of the series does not seem to affect modelling

in any way. This is not quite the case in the MTV-GARCH framework. If the time series

under consideration is very long and the number of transitions potentially large, the

specification strategy outlined in Amado and Teräsvirta (2017) cannot be expected to

work well. The solution is to split the series into subseries and identify the transitions in

them before parameters of the model for the whole series are estimated. See Amado and

Teräsvirta (2014b) and Amado et al. (2017) for examples of how this can be successfully

done.

Maximum likelihood estimates of the parameters are obtained by dividing the max-

imisation problem into two parts; see Song, Fan and Kalbfleisch (2005). Amado and

Teräsvirta (2013) show that under regularity conditions and using the results in Song

et al. (2005), maximum likelihood estimators of the parameters of the MTV-GARCH

(or MTV-GJR-GARCH) model are consistent and asymptotically normal. After the

model has been estimated, its adequacy is examined using misspecification tests; see

Amado and Teräsvirta (2017).

The MTV-GARCH model or its GJR version has been applied to several daily

stock and stock index returns, exchange rate returns and commodity price returns. As

an example, Amado and Teräsvirta (2017) describe the US Dollar/Singapore Dollar

exchange rate returns using the model. The well-specified model has one transition

with k = 2 in (16). The standard GARCH(1,1) model fitted to the series has the

following form:

ĥt = 0.001
(0.001)

+ 0.056
(0.016)

ε2
t−1 + 0.938

(0.019)
ĥt−1

so α̂ + β̂ = 0.994. The figures in parentheses are estimated standard errors. The

corresponding component from the MTV-GARCH model is

ĥt = 0.011
(0.005)

+ 0.065
(0.020)

φ̂
2

t−1 + 0.868
(0.042)

ĥt−1

11



where α̂ + β̂ = 0.933. As expected from Feng (2004), β̂ has changed much more than

α̂. The total variance estimates are 0.167 for GARCH and 0.164 for MTV-GARCH.

The MTV-GARCH model may be modified by assuming that the argument of g(·)
is a random variable. This is discussed in Section 4.2. Other models with a random

long-run component are considered in Section 4.

4 Stochastic multiplicative decomposition

4.1 Nonparametric stochastic component

As discussed in Section 3.1, Feng (2004) constructs a semiparametric GARCH model

with a deterministic nonparametric long-run component. He shows how this helps

remove the ’IGARCH effect’, that is, α̂ + β̂ ≈ 1, often found in the applications of

the first-order GARCH. Han and Kristensen (2017) develop another semiparametric

GARCH model which they call Semiparametric Multiplicative GARCH-X, or SEMIX

for short. It differs from the SEMIGARCH model in that in SEMIX the long-run

component is stochastic. The stated goal of the authors is the same as that of Feng

(2004): to develop a model in which the long-run component alleviates the IGARCH

effect. The decomposition employed by Han and Kristensen (2017) can be written as

εt = zth
1/2
t g1/2(xt−1), where the random variable xt is quite persistent and strongly

exogenous. It is defined as

xt = (1− c

T
)xt−1 + vt (17)

where c ≥ 0. The error term vt has mean zero and is independent of the GARCH error

term zt.

Under the assumption that {vt} is an iid sequence and some moment conditions

it is found that the autocorrelation function of ε2
t of the SEMIX model converges to a

positive random variable. In other words, the autocorrelation function then displays the

’long memory property’ in that the decay of the autocorrelations as a function of the lag

is slower than exponential. Interestingly, Mikosch and Stărică (2004) have shown that

if there is a break in the unconditional variance of the GARCH model, ignoring it when

computing the autocorrelations of ε2
t the sequence of autocorrelations also converges to

a positive value when the lag length approaches infinity. A break can be viewed as a

nonsmooth version of change in the long-run component.

The asymptotic theory becomes nonstandard when xt is nonstationary as in (17).

For details, some of them still open at this moment, the reader is referred to Han and

Kristensen (2017). For the case where xt is stationary, the limiting distribution of the

(quasi) maximum likelihood estimator of the GARCH parameter vector is shown to be

mixed normal.
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Han and Kristensen (2017) fit the SEMIX model to three European daily index

return series. The observation period stretches from 2 January 2004 to 30 December

2013. The indexes are FTSE (London), CAC (Paris) and DAX (Frankfurt). The ran-

dom variable is the Chicago Board Options Exchange volatility index VIX. It represents

implied volatility calculated from the options of the S&P 500 index. Given that the US

stock market is likely to influence European markets, VIX may be used as the random

variable for SEMIX. Furthermore, the index is close to being nonstationary and its

dynamic behaviour agrees with the definition (17). The GARCH model of the authors

is GJR-GARCH(1,1), and in all three cases the sum α̂ + κ̂/2 + β̂ is slightly below but

very close to one. The corresponding sums for GJR-SEMIX are 0.931 (FTSE), 0.937

(CAC) and 0.947 (DAX), so the model works as intended. These results are quite simi-

lar to those of Feng (2004) who applies his SEMIGARCH model to S&P 500 and DAX

returns, as discussed Section 3.1.

Han and Kristensen (2017) also consider the case where g(x′t−1δ), that is, the ar-

gument of g(·) is a linear combination of more than one random variable. In addition,

||δ|| = 1, which makes it possible to compare coefficient estimates with each other.

A GJR-SEMIX model with three variables, VIX, the country’s industrial production

index, and the price of crude oil is fitted to the three return series. The industrial pro-

duction index is interpolated from a monthly to the daily level. The results show that

VIX dominates the linear combination, and the oil price appears the least important

variable as it has the smallest (in absolute value) coefficient estimate.

4.2 Time-varying ambiguity GARCH

Amado and Laakkonen (2013) introduce another model with a stochastic decomposi-

tion called the Time-Varying Ambiguity (TVA-)GARCH model. The word ’ambiguity’

derives from Knight (1921) and is motivated by the application; for a detailed expla-

nation see Amado and Laakkonen (2013). The decomposition is the same as in Han

and Kristensen (2017), but the model is a stochastic variant of the TV-GARCH model

studied in Section 3.4. It is obtained simply by replacing t/T in (15) and (16) by an

exogenous random variable xt−1. The authors discuss the modelling strategy consisting

of specification, estimation and evaluation of the TVA model. At the specification stage

GARCH is tested against TVA-GARCH. Performing the test described in the paper re-

quires xt to be weakly stationary and possess a sufficient amount of higher moments. As

is the case with the TV-GARCH model, maximum likelihood estimation of parameters

in TVA is carried out by estimating the parameters jointly but splitting each iteration

into two parts. Note, however, that the asymptotic theory for maximum likelihood

estimators derived for TV-GARCH has not yet been extended to TVA-GARCH. The
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estimated model is evaluated by misspecification tests.

The TVA model is applied to three daily bond return series. The bonds are US,

German and French 10-year bonds, and the time series cover the period from 3 January

2000 to 30 December 2011. VIX and some of its transformations (∆V IXt, ∆|V IXt|
and (∆V IXt)

2 are used as the stochastic variable in the model. The null hypothesis of

GARCH is rejected for all transformations, and the strongest rejections (the p-values

being really minimal) are obtained for the last two of them. The TVA model with

xt = ∆|V IXt| is fitted to the three series. The estimated transition functions of type

(16) are quite smooth, so the effect of the transformed VIX on volatility is gradual.

Compared to Han and Kristensen (2017), an interesting observation is that the sum of

the GARCH parameters remains very close to one even after accounting for the effect

of VIX. A possible reason for this is there may be other factors which influence the

conditional variance and which Amado and Laakkonen (2013) have not been able to

consider because their model only allows a single stochastic variable in g(xt−1).

4.3 Stochastic splines

Audrino and Bühlmann (2009) consider a model with stochastic B -splines. In fact,

their model can be more general than a GARCH model, but the version discussed in

the paper has the GARCH(1,1) model as the starting-point of iterations. The general

task is to fit a nonparametric model of conditional heteroskedasticity to the data. The

authors also include a conditional mean in their model, but for simplicity it is ignored

here. This means that εt is observable, has mean zero, and εt = ztσt, where zt ∼
iidN (0, 1). The conditional variance σ2

t has the following form:

σ2
t = E{ε2

t |Ft−1} = f(ε2
t−1, σ

2
t−1)

where the unknown f(ε2
t−1, σ

2
t−1) can be quite general and does not have to be smooth.

To indicate that σ2
t contains parameters, denote σ2

t = σ2
t (θ). The model equals

lnσ2
t (θ) = ln f(ε2

t−1, σ
2
t−1) = u0(ε2

t−1, σ
2
t−1)

+

K1∑
k1=1

K2∑
k2=1

βk1,k2Bk1,k2(ε
2
t−1, σ

2
t−1) (18)

where Bk1,k2(ε
2
t−1, σ

2
t−1) is a two-dimensional B -spline, and βk1,k2 its weight. The spline

function Bk1,k2(ε
2
t−1, σ

2
t−1) is defined as follows:

Bk1,k2(ε
2
t−1, σ

2
t−1) =

K1∑
k1=1

K2∑
k2=1

Bk1(ε
2
t−1)Bk2(σ

2
t−1). (19)
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Furthermore,

u0(ε2
t−1, σ

2
t−1) = ln(α0 + αε2

t−1 + βht−1) = lnht (20)

that is, the logarithm of the (weakly stationary) GARCH(1,1) process, and θ = (α0, α1, β1,

βk1,k2 , k1 = 1, ..., K1; k2 = 1, ..., K2). It is assumed that the polynomials in Bk1(ε
2
t−1)

are quadratic, and in Bk2(σ
2
t−1) they are linear. For illustration, graphs of B -splines

of these dimensions can be found in Eilers and Marx (1996, p. 91). Before taking

logarithms, (18) is a multiplicative decomposition (1) with ht defined in (20) and the

positive-valued gt equalling

gt = exp{
K1∑
k1=1

K2∑
k2=1

βk1,k2Bk1,k2(ε
2
t−1, σ

2
t−1)}.

The knots in (19) are determined as quantiles of the arguments ε2
t−1 and σ2

t−1.

The final model is obtained by iteratively updating (18). After the mth iteration,

umt(ε
2
t−1, σ

2
t−1) = um,t−1(ε2

t−1, σ
2
t−1) + βmBm(ε2

t−1, exp{um,t−1(ε2
t−1, σ

2
t−1)})

where βm is a scalar weight function (note the change of notation from (k1, k2) to m),

and Bm(ε2
t−1, exp{um,t−1(ε2

t−1, σ
2
t−1)}) is the spline determined for this iteration. For

space reasons is not possible to describe details of how the spline is constructed and

the weight βm obtained. They can be found in the paper. Assuming the estimation

is terminated after M iterations, the final model can be expressed as a function of the

starting-value as follows:

uMt(ε
2
t−1, σ

2
t−1) = u0(ε2

t−1, σ
2
t−1) +

M∑
m=1

βmBm(ε2
t−1, exp{um−1,t−1(ε2

t−1, σ
2
t−1)}).

The stopping rule is determined by out-of-sample considerations. The time series is

divided into two parts. The first 70% of observations are used to estimate the model

and the remaining 30% are for determining M. The fit of the estimated model in the

out-of-sample part determines M. In the multiplicative form (1), the final model has ht

defined as GARCH(1,1), and

gt = exp{
M∑
m=1

βmBm(ε2
t−1, exp{um−1,t−1(ε2

t−1, σ
2
t−1)}).

Audrino and Bühlmann (2009) remark that in practice it would be desirable to

shrink βm towards zero for every iteration. This would mean using βm(κ) = κβm,

0 < κ < 1, instead of βm. The authors report that 0.1 < κ < 0.2 works well in practice.
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The paper contains two empirical examples. The first series is the daily annualised

log-return series of the S&P 500 index and the second is the similarly defined returns

of the 30-year US Treasury bill. Both series run from January 1990 to October 2003,

3376 observations in total. The first 2212 observations are used for estimation and the

remaining 1164 for out-of-sample forecasting. The performance of the spline-GARCH

model is compared with that of GARCH(1,1) and an earlier nonparametric model the

authors have developed (Audrino and Bühlmann, 2003). In order to make comparisons

possible, the true volatility is proxied by realised volatility. The results indicate that

the spline-GARCH model performs better in terms of the mean square errors and mean

absolute deviations both in-sample and out of sample than its two competitors. The

Diebold and Mariano (1995) test shows that many but not all of the out-of-sample

improvements are significant at the 0.1 level.

4.4 GARCH-MIDAS

The SEMIX model in Section 4.1 and the TVA-GARCH model in Section 4.2 are

designed to allow random variables in the long-run component of the model. Engle et al.

(2013) introduce another way of incorporating macroeconomic variables into GARCH

equations. Their aim is to find out how well these variables explain stock market

volatility. The model they develop can be seen as another variant of multiplicative

decomposition such that the ’long-run component’ is stochastic. To emphasise the

different time scales (after abstracting away the conditional mean) the decomposition

of the return εt is written, analogously to (1), as εi,t = zi,th
1/2
i,t g

1/2
t . Now i is the short

scale (for example, εi,t is a daily return), and t is the long or aggregated scale (the

unit is one month or one quarter). The short-run component hi,t is measured in days,

whereas the long-run gt is available on a monthly or maybe a quarterly basis. The

short-run component (conditional variance) is defined as before:

hi,t = (1− α− β) + α
ε2
i−1,t

gt
+ βhi−1,t (21)

where α + β < 1. This implies that Ehi,t = 1. As already discussed, fixing this expec-

tation (to one) is necessary for identification reasons, but in fact any known positive

value would do.

The first example of a model based on this decomposition is one in which gt is

defined as follows:

gt = m+ θ

K∑
k=1

ϕk(ω1, ω2)RVt−k. (22)
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The realized variance RVt is the sum of daily squared returns,

RVt =
Mt∑
i=1

ε2
i,t (23)

In (23), Mt is the number of days in the month t of trading days. The purpose of the

nonnegative function ϕk(ω1, ω2) is to provide a parsimonious representation of a lag

structure when K may be large. The beta-function

ϕk(ω1, ω2) =
( k
K

)ω1−1(1− k
K

)ω2−1∑K
j=1( j

K
)ω1−1(1− j

K
)ω2−1

(24)

is a popular choice. Engle et al. (2013) also consider the case in which the realized

variance is defined by a rolling window:

RVi =
M ′∑
j=1

ε2
i−j (25)

where the realized measure consists of M ′ terms from period i backwards in time.

The purpose of the lag structure is to smooth out erratic fluctuations inRVt,meaning

that (22) is preferred to gt = m′ + θ′RVt−1. Equations (21), (22) and (23) jointly with

the definition of εi,t form the GARCH-MIDAS-RV model.

If a (monthly) macroeconomic variable xt replaces RVt, to guarantee positivity gt

appears in the exponential form:

gt = c exp{θ
K∑
k=1

ϕk(ω1, ω2)xt−k} (26)

where Eεtxt−k = 0, k ≥ 1. The resulting model may be called the GARCH-MIDAS-X

model. Engle et al. (2013) present (26) in the logarithmic form, but to stress similarity

between (7) and (26) the exponential form is preferred here. Parameters of ht and

gt are estimated jointly after the number of equidistant knots has been determined.

Asymptotic properties of the maximum likelihood estimators of these parameters are

not discussed in the paper. However, Wang and Ghysels (2015) prove consistency and

asymptotic normality of maximum likelihood estimators of parameters in the GARCH-

MIDAS-RV model in the rolling window (25) case.

In the application of Engle et al. (2013), the MIDAS function is exponential:

ϕk(ω) =
ωk∑K
j=1 ω

j
.
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Furthermore, xt is a quarterly series, and the variables are the growth rates of industrial

production and the production price index, respectively. These are called ’level’ series,

and their error variance is named ’volatility’. The latter is computed by fitting an

autoregressive model to the level series, taking the residuals, squaring them, and forming

a sum of the squared residuals as in (23). One can of course consider a model in which

only one of the four macro variables is present, but it is also possible to build more

complicated models in which two or all four of them appear simultaneously. The authors

also consider a spline-GARCH model in which gt is defined by (7) but the longer time

scale is retained.

The series to be modelled is long and consists of daily U.S. stock returns over

the period from 16 February 1885 to 31 December 2010. The two macroeconomic

series also start in 1884. They are originally monthly but are temporally aggregated

to the quarterly level. In addition to the complete period, GARCH-MIDAS models are

also fitted to subperiods. The parameter estimates from the logarithmic gt equation

are strongly significant. Estimated GARCH equations are not reported, so it is not

possible to assess the effect of gt on the estimated sum of the GARCH(1,1) parameters

α and β. The results indicate that for GARCH-MIDAS-RV models this sum is generally

well below one, the only notable expectation being the subperiod 1953–1984. For the

GARCH-MIDAS-X models this sum is well below one for the subperiod 1890–1919 and

close to one, generally greater than 0.98 for all models independent of the level/volatility

and the variable or variables included in the model. Results of fitting spline-GARCH

models show that this sum is slightly lower than in corresponding MIDAS models. One

may conclude that including macro variables in the GARCH model does not affect

the amplitude of the volatility clusters in the way it does when gt is deterministic.

This outcome is quite different from what Han and Kristensen (2017) obtain with their

SEMIX model, but the economic variable (VIX) in SEMIX is different from the four

variables used by Engle et al. (2013).

As to the contribution of the macro variables, the authors find that quite a signif-

icant fraction of variation in expected volatility can be ascribed to economic sources.

Variables with the strongest contribution are not the same throughout the whole pe-

riod, but in general terms they seem useful in explaining stock market volatility. It is

not possible here to describe forecasting experiments Engle et al. (2013) conduct with

GARCH-MIDAS-X models but they seem to support this conclusion.

The work of Engle et al. (2013) has generated plenty of interest and applications.

Girardin and Joyeux (2013) employ the GARCH-MIDAS-RV model to estimate the

long-run component gt for daily returns of indexes of A and B stocks in the Shanghai

Stock Exchange. They then study connections between gt and economic fundamentals

as in Engle and Rangel (2008). The long-run time scale is monthly. Ashgarian, Hou
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and Javed (2013) combine the realized variance, the ’level’ and the ’volatility’ into a

single model. A noteworthy detail is that they do not use the exponential form but

rather extend the RV specification (22). Their long-run component has the form

gt = m+ θRV

K∑
k=1

ϕk(ω1, ω2)RVt−k + θL

K∑
k=1

ϕk(ω1, ω2)xL,t−k

+θV

K∑
k=1

ϕk(ω1, ω2)xV,t−k (27)

where xL,t is a ’level’ economic variable and xV,t is the corresponding ’volatility’ variable.

Principal components of economic variables are also used as an economic variable. This

approach requires the level variable to remain positive during the observation period. In

the application the long time scale t is monthly. Unlike Engle et al. (2013), these authors

use squared first differences of economic variables as the measure of their volatility.

The series to be modelled and forecast is the S&P 500 daily return series from Jan-

uary 1991 to June 2008. The out-of-sample forecasting period begins in January 2004.

Results show that adding the first principal component as the economic variable to the

GARCH-MIDAS-RV model as in (27) improves forecasting performance compared to

that of the GARCH-MIDAS-RV model.

Conrad and Loch (2015) employ both one- and two-sided MIDAS filters. The latter

are employed to study lead and lag relationships between stock market volatility and

macroeconomic variables and were already considered by Engle et al. (2013). The

difference between these two is that the two-sided filter of Engle et al. (2013) contains

future values that by definition are not available at t−1. Conrad and Loch (2015) replace

these unknown observations by forecasts available at t − 1, so their two-sided MIDAS

filter can be used for forecasting. The returns are again continuously compounded daily

returns of the S&P 500 index, and the observation period extends from 2 January 1969

to 30 December 2011. The long-run time scale is quarterly. Furthermore, the short-term

GARCH component is a GJR-GARCH one. GJR-GARCH-MIDAS-X equations are

estimated for 11 economic variables. The authors also fit a GJR-GARCH-MIDAS-RV

model with a quarterly RV component to the data and finally, combine these two into

a GJR-GARCH-MIDAS-RV-X model, in which, denoting the relevant macro variable

by xt,

gt = exp{m+ θRV

K∑
k=1

ϕk(1, ω
RV
2 )RVt−k + θx

K∑
k=1

ϕk(ω
x
1 , ω

x
2)xt−k}. (28)

The exponential form is used to make sure that gt remains positive. Forecasting with

GARCH-MIDAS is discussed, and forecasting with models with two-sided filters receives

special attention. The reader is referred to the paper for a rich set of results concerning
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both fitted one-and two-sided filter models and forecasts from them.

4.5 Misspecification testing

When a volatility model such as a GARCH model (2) has been estimated, its ade-

quacy should be tested before using it for forecasting or other purposes. Multiplicative

decomposition may be used for constructing alternative hypotheses to the estimated

specification. As an example, Lundbergh and Teräsvirta (2002) derive a test statistic

for testing the adequacy of the GARCH model. Under H0, εt = zth
1/2
t where zt ∼

iidN (0, 1) and ht follows a GARCH process, whereas under the alternative when the

alternative zt = ζtg
1/2
t , where ζt ∼ iidN (0, 1) and

gt = 1 +
r∑
j=1

δjz
2
t−j. (29)

The null hypothesis is δi = 0, i = 1, ..., r. The idea is that under the alternative there is

’ARCH nested in GARCH’. Under regularity conditions, the resulting statistic follows

a χ2-distribution with r degrees of freedom.

As already indicated, another variant of (29) is one in which GARCH is tested

against (15) with (16). The testing situation is, however, nonstandard because the

alternative model is not identified when the null hypothesis is valid. More discussion

about deriving a test statistic in that situation can be found in Amado and Laakkonen

(2013) and Amado and Teräsvirta (2017).

Conrad and Schienle (2017) construct a Lagrange multiplier misspecification test

for testing GARCH against GARCH-MIDAS, see (26). The null hypothesis is that the

long-run component is constant. This implies θ
∑K

k=1 ϕk(ω1, ω2) = 0. The authors show

that their test statistic has an asymptotic χ2-distribution with K degrees of freedom.

They discuss the choice of K and find in simulations that K = 1 often already suffices

to reject the null hypothesis when the alternative holds.

The multiplicative decomposition may also be used for improving a misspecified

model or, in other words, dividing estimation of the true (unknown) model into two

parts. Following Mishra, Su and Ullah (2010), one first fits a GARCH model to the series

(or residuals if a conditional mean has already been estimated) under consideration to

parametrically remove some of the variation in ε2
t . Then one makes use of the identity

E{ε2
t |Ft−1} = htE{

ε2
t

ht
|Ft−1} = htgt.

If ht is correctly specified, Eε2
t/ht = 1. If it is not, there may be structure left in gt,

and it is assumed that it can be estimated nonparametrically. This looks a bit like
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nonparametric ’ARCH nested in GARCH’. The resulting model is called the Semi-

parametric GARCH (SPGARCH) model. Mishra et al. (2010) assume that gt is locally

linear, describe the subsequent estimation problem in detail and under regularity condi-

tions prove consistency and asymptotic normality of the resulting maximum likelihood

estimator.

To demonstrate the modelling strategy, the authors use the S&P500 daily returns

from 3 January 2002 through 3 January 2007, a total of 1,258 observations. They

fit an ARCH(1), the GARCH(1,1) and the GJR-GARCH(1,1) model to this series.

They report the ARCH or GARCH parameter estimates and the amount of variation

explained by the corresponding parametric model. The results are surprising in that this

ratio is largest in ARCH (88.2%) and lowest in the GJR-GARCH model (81.1%). The

likely explanation is, however, that gt is a function of the variables in ht. Since GARCH

and GJR-GARCH have one variable more than ARCH, this gives the latter model better

possibilities to improve the fit than it does to the former two. Misspecification checks

suggest that the SPARCH model is misspecified, whereas the two GARCH models seem

adequate. The persistence for ht in the GARCH model is high: α̂1 +β̂1 = 0.982, and the

corresponding number for GJR-GARCH equals 0.983. It is very low for ARCH: α̂1 =

0.27. From the plots in the paper Mishra et al. (2010) conclude that the nonparametric

component is higher for negative than for positive shocks, so it contributes to explaining

the asymmetry in the series.

5 Multivariate models

5.1 Stochastic discount factor model

Multiplicative decomposition of variance can be generalised to decomposing the covari-

ance matrix. Section 5 is in its entirety devoted to this generalisation. In this case,

correlations between the return variables or functions of them come into play. To fix

notation, let εt be an N × 1 log-return vector, Eεt = 0, and Eεtε
′
t = Σt. There are

several models in which Σt is multiplicatively decomposed to short and long run com-

ponents. To begin with, Osiewalski (2009) and Osiewalski and Pajor (2009) consider

the following simple multiplicative decomposition:

εt = ztg
1/2
t (30)

where zt ∼ iidN (0,C), and C is positive definite covariance matrix. Furthermore, gt

is a positive-valued stochastic random variable such that

ln gt = φ ln gt−1 + σgηt (31)
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where σg > 0, ηt ∼ iidN (0, 1) and ηt and zt are mutually independent. The ensuing

model is called the Stochastic Discount Factor (SDF) model. The conditional covariance

matrix of εt equals

Ωt = E{εtε′t|Ft−1} = gtC =gt[cij] (32)

where C is a positive definite matrix. Since C is not a correlation matrix, it has to be

transformed into one. This is done by defining P = (IN �C)−1/2C(IN �C)−1/2, where

P is now the constant conditional correlation matrix. Time-variation in (32) is due to

a scalar stochastic component gt. It follows that the SDF model has two independent

sources of noise, which makes estimation numerically demanding. The authors therefore

adopt a Bayesian approach with priors on φ, C−1 and σ−2
g . The model (even one with a

VAR(1) conditional mean) can be analysed using the Gibbs sampler. Osiewalski (2009),

however, points out that the SDF model is too simple for practical purposes because

the time-variation in covariances is controlled by a single stochastic variable.

Consequently, Osiewalski (2009) and Osiewalski and Pajor (2009) study a general-

isation of the SDF model. It consists of making C in (32) time-varying. The ensuing

models are called Hybrid SDF-Scalar BEKK (SDF-SBEKK) models because the time-

varying covariance matrix has a BEKK structure; for the BEKK-GARCH model, see

Engle and Kroner (1995). The first-order scalar BEKK with covariance targeting has

the following form

Ht = (1− α− β)C + αεt−1ε
′
t−1 + βHt−1 (33)

where α and β are positive scalars, α+β < 1, Ht is a conditional covariance matrix, and

C is a symmetric positive definite matrix. The hybrid model combines scalar BEKK

and stochastic volatility. The multiplicative decomposition of εt has the following form:

εt = Ω
1/2
t ztg

1/2
t (34)

where gt is defined as in (31), Ω
1/2
t ∈ Ft−1 is a time-varying positive definite matrix,

ηt ∼ iidN (0, 1), zt ∼ iidN (0, IN), and zt and ηt are mutually independent. The decom-

position (34) implies E{εtε′t|Ft−1} = gtΩt. Two hybrid models emerge. The first one,

called the type I hybrid, has Ωt = Ht, which means that Ωt is defined by (33) and does

not depend on gt. In type II model it is assumed that εt is rescaled: φt = εt/g
1/2
t , and

that φt has the scalar BEKK structure. This is analogous to the rescaling of εt in the

univariate GARCH case in Section 2, where the rescaled returns are assumed to follow

a GARCH process. In the type II model, Ωt = H∗t , where

H∗t = (1− α− β)C + αφt−1φ
′
t−1 + βH∗t−1. (35)

When N = 1, the rescaled BEKK (35) collapses into the rescaled GARCH in (1), where
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now gt is stochastic and follows a stochastic volatility process (31). Up to now, this

’hybrid SDF-GARCH’ may not have been used in applied work.

The Bayesian analysis (estimation) of these two hybrid models by Gibbs sampling is

described in detail in Osiewalski (2009). To alleviate numerical problems, C is estimated

by the sample covariance matrix of φt. This is analogous to how the ’intercept matrix’

is estimated in the DCC-GARCH model of Engle (2002). As discussed in Osiewalski

and Pajor (2009), Ωt in (34) need not be of BEKK type. The DCC-GARCH is deemed

as a promising alternative, although it would be computationally more complicated to

handle than the relatively simple scalar BEKK parameterisation. More information

about this can be found in Osiewalski and Pajor (2007).

Osiewalski and Pajor (2009) apply the SDF-GARCH and a few other models to two

bivariate datasets, of which the first one consists of two daily exchange rate log-returns

for the period 1 February 1996 - 31 December 2001 and the second one of daily log-

returns of WIG, the Warsaw stock exchange index, and the S&P 500 from 8 January

1999 to 1 December 2006. The estimated models are ranked according to their Bayes

factors. In both cases, the SDF-BEKK fares better than the alternatives that include,

among other things, BEKK, scalar BEKK, and DCC, all with t-distributed errors.

Interestingly, type I SDF-BEKK is ranked above the computationally more demanding

type II. SDF-DCC is also ranked ahead of the models without the SDF component. It

may be noted from Tables 5 and 6 in the paper that the persistence calculated from

the posterior means is very high in both bivariate SDF-BEKK models, so the SDF

extension to BEKK does not have much impact on the standard BEKK in this respect.

The authors also present a high-dimensional application in which the dataset consists

of daily log-returns of 23 stocks from the mWIG40 index and another 11 from WIG20.

The period runs from 30 January 2003 to 29 August 2007. (Amado et al. (2017) have

recently modelled daily log-retuns of the latter index using the MTV-GARCH model

discussed in Section 3.4.) In this case the persistence, estimated from both the type

I and type II model, remains below 0.9. Whether or not the persistence generally

decreases when the dimension of the return vector increases is an open (empirical)

question, but further study of this possibility could be interesting. Besides, the estimate

(posterior mean) of φ in (31) is also fairly small, about 0.5 for both the type I and

type II model. Anyway, the analysis shows that is quite possible to describe large (or

medium-sized) return vectors with the SDF-BEKK model.

5.2 Local dynamic conditional correlation model

Feng (2006) presents a multivariate GARCH model in which both the variance and

the correlation component are deterministically time-varying. He calls the model the
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Local Dynamic Conditional Correlation (LDCC-)GARCH model. It is a generalisation

of the SEMIGARCH model considered in Section 3.1. In this review, the fact that Feng

even estimates the conditional mean (nonparametrically) as a part of the modelling

process is ignored, and only modelling and estimating the variance and correlations are

considered. The return or error vector εt is multiplicatively decomposed as follows:

εt = S(t/T )Dtzt, where Dt = diag(h
1/2
1t , ..., h

1/2
Nt ) contains the short-run GARCH com-

ponents and S(t/T ) = diag(g
1/2
1 (t/T ), ..., g

1/2
N (t/T )) the deterministic elements. Fur-

thermore, zt ∼ indep(0,P(t/T )), where P(t/T ) = Eztz
′
t contains the deterministically

time-varying correlations. This implies the following decomposition for the correlation

matrix Σ(t/T ) = E{εtε′t|Ft−1}:

Σ(t/T ) = S(t/T )DtP(t/T )DtS(t/T ) (36)

The covariance matrix (36) is estimated as follows. First estimate the deterministic

components gi(t/T ), i = 1, ..., N, nonparametrically as in Feng (2004). This yields the

residuals φ̂t = Ŝ−1(t/T )εt. The elements of φ̂t are assumed to follow a GARCH process,

so αi and βi are estimated from

hit = (1− αi − βi) + αiφ̂
2

t−1 + βihi,t−1

i = 1, ..., N, where αi + βi < 1 when the standard first-order GARCH process is used.

For identification reasons, Ehit = 1, i = 1, ..., N. This operation gives the residuals

ẑt = D−1
t φ̂t. The correlations will be functions of zt−j, j = 1, ..., p, where the lag length

p is determined by the user. The correlation matrix is estimated nonparametrically.

Curse of dimensionality when N is large is dealt with in the following way. Consider the

random vector yt = (y1t, ..., ypt)
′, where yjt = (1′zt−j)

2. Define two kernels, a univariate

one, K0, for t/T and a multivariate spheric kernel K for yt. The estimator for the

correlation matrix becomes

Q̂(τ ,y) =

n2∑
t=n1

wtẑtẑ
′
t (37)

where

wt =
K0( t/T−τ

b0
)K(y1t−y1

b
, ..., ypt−yp

b
)∑n2

t=n1
K0( t/T−τ

b0
)K(y1t−y1

b
, ..., ypt−yp

b
)
.

The two bandwidths b0 and b are different from each other because t/T and yjt are of

different magnitude. How to select the bandwidths and n1 and n2 in (37) is discussed

in the paper. Theoretical results obtained for biases and variances of the elements of

Q̂(τ ,y) are derived under the assumption that even a nonparametric mean is estimated.

Note that Q(τ ,y) does not automatically become a correlation matrix, so the by now
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familiar adjustment

P̂(τ ,y) = (IN � Q̂(τ ,y))−1/2Q̂(τ ,y)(IN � Q̂(τ ,y))−1/2 (38)

is required. Results on optimal bandwidths are building on the same premises. As

already mentioned, the mean has been ignored in this exposition.

Feng (2006) fits the LDCC-GARCH model to the daily foreign exchange rate series

of the British Pound, Euro, Japanese Yen and Canadian Dollar vis-à-vis the US Dollar

from 4 January 1999 to 30 December 2005. It may be noted that conditional variance

of the Euro returns is modelled as a GARCH(2,2) process, whereas for the other three

series GARCH(1,1) is deemed adequate. The six estimated correlations show a tendency

to increase towards the end of the period. The deterministic component is clearly useful,

and the short-run fluctuations around it are relatively minor in comparison. The short-

run component in correlations is due to D(t/T ). Q(τ ,y) itself does not contain a short-

run component, but Feng (2006) mentions that having one could be worth investigating.

His suggestion has been followed up later, see Section 5.7.

5.3 Local BEKK model

Hafner and Linton (2010) use the following multiplicative decomposition for εt:

εt = Σ1/2(t/T )H
1/2
t zt (39)

where zt is strictly stationary martingale difference sequence with E{zt|Ft−1} = 0

and E{ztz′t|Ft−1} = IN . The matrix Σ(t/T ) is a nonparametric function of rescaled

time, positive definite and at least twice continuously differentiable. The stochastic

Ht ∈ Ft−1 is also a positive definite matrix but with a parametric representation.

Decomposition (39) is another generalisation of SEMIGARCH to the multivariate case.

Writing φt = Σ−1/2(t/T )εt one obtains φt = H
1/2
t zt. As an example of Ht the authors

use the ’full’ first-order BEKK-GARCH:

Ht = IN −AA′ −BB′ + Aφt−1φ
′
t−1A

′ + BHt−1B
′

where EHt = IN . This condition is needed for identification of the model. The model of

Hafner and Linton (2010) could then, following Feng (2006), be called the Local-BEKK

(LBEKK) model.

Estimation of LBEKK can be carried out in stages by first estimating Σ(t/T ) non-

parametrically from εt = Σ1/2(t/T )zt using kernel estimation as in Feng (2004). How

this is done when Σ(t/T ) is a matrix is discussed in Rodŕıguez-Poo and Linton (2001).
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Analogously to Feng (2006), one then forms rescaled returns φ̃t = Σ̃−1/2(t/T )εt, where

Σ̃(t/T ) is a nonparametric estimate of Σ(t/T ) and estimates the BEKK parameters

from

H∗t = IN −AA′ −BB′ + Aφ̃t−1φ̃
′
t−1A

′ + BH∗t−1B
′. (40)

For a scalar BEKK variant of this, see (35). Since Σ̃(t/T ) is not a function of any of the

BEKK parameters, after assuming zt ∼ iidN (0, IN) maximum likelihood estimation of

A and B in (40) proceeds as in the standard BEKK case. Hafner and Linton (2010)

write that the estimator γ̃ of γ = (vec(A)′,vec(B)′)′ is ’expected to be consistent and

asymptotically normal but not efficient.’ In the univariate case Feng (2004) found an

asymptotic bias which, however, was negligible in large samples. Whether or not the

situation is similar here is not known. Efficiency may nevertheless be improved by re-

estimating Σ(t/T ) from εt = Σ1/2(t/T )ũt, where ũt = (H̃∗t )
1/2zt and then re-estimating

the BEKK parameters. Computational details of the estimation procedure can be found

in Hafner and Linton (2010).

The LBEKK model is fitted to the bivariate series of daily Dow Jones and NASDAQ

index returns decomposition from 2 January 1990 to 7 January 2009, a total of 4795

observations. The autocorrelation of returns is first removed by fitting a VAR(1) model

to the returns. In order to model the residuals from this model when the returns are

stock index returns the BEKK model is augmented by an asymmetry term analogous

to that in the univariate GJR-GARCH model. The results of modelling the residuals

show that persistence of the BEKK-GARCH component declines when the time-varying

component Σ(t/T ) is included in the model. They also strongly support inclusion of the

asymmetry component. The time-varying unconditional correlation between the two

return series generally exceeds 0.5 and lies close to unity at the end of the sample. As

expected, the conditional correlations fluctuate around the unconditional ’trend’. The

paper does not contain higher-dimensional examples, so comparisons with the work of

Osiewalski and Pajor (2009) are not possible.

5.4 Multiplicative DCC model

In modelling dynamics of electricity futures, Bauwens, Hafner and Pierret (2013) ap-

ply the decomposition (36). They call their model a multiplicative DCC (mDCC)

model. The difference between mDCC and LDCC is that the correlation matrix is esti-

mated nonparametrically in LDCC and parametrically in mDCC. (Incidentally, ’DCC’

means different things in these two acronyms.) Estimation of parameters proceeds as in

Feng (2006) and Hafner and Linton (2010). First, estimate the deterministic structure

Σ(t/T ) nonparametrically from εt = Σ1/2(t/T )φt, assuming that the unconditional

expectation Eφtφ
′
t = IN . The vector φt = Σ−1/2(t/T )εt is now free of slowly moving
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variation in the variance of εt characterised by the deterministic component Σ(t/T ).

Next, estimate the conditional variances in ht = (h1t, ..., hNt)
′, represented by the diago-

nal matrix Dt in (36). Bauwens et al. (2013) assume that they follow the GJR-GARCH

model:

hit = αi0 + αi1φ
2
i,t−1 + κiI(φt−1 < 0)φ2

i,t−1 + hi,t−1

This yields the (estimated) error vector ẑt = D−1
t φ̂t. Since Eφtφ

′
t = IN , the uncon-

ditional variance Eztz
′
t = IN as well, while E{ztz′t|Ft−1} = Pt, where Pt follows a

DCC process. Estimating its parameters completes the estimation of the model. A

noteworthy detail of the DCC equation

Qt = (1− a− b)IN + aẑt−1ẑ
′
t−1 + bQt−1

is that the intercept matrix is an identity matrix. This is the case because, as already

noted, Eztz
′
t = IN .

The application consists of jointly modelling dynamics of volatilities and correlations

of three electricity futures contracts written on the index of the European Energy

Exchange (EEX). They correspond to monthly, quarterly, and yearly maturities. In this

case εt is not a daily return vector but a residual vector from an estimated vector error

correction model, see Bauwens et al. (2013) for details. The GJR-GARCH equations

for the conditional variances of φit are in fact GJR-GARCH-X equations because the

GJR-GARCH component is additively completed by a number of exogenous variables.

The sum of the DCC coefficient estimates â and b̂ is remarkably low compared to typical

results, only 0.879. (In many applications this sum exceeds 0.99.) This demonstrates

the importance of the deterministic component Σ(t/T ) in this application. Other,

slightly more general, DCC specifications are considered as well, but discussing them

would be outside the scope of this review.

5.5 Multivariate spline-GARCH models

In the multivariate GARCH model by Rangel and Engle (2013) spline-GARCH equa-

tions are in a central role. The paper differs from the previous ones in that the starting

point is the CAPM model by Sharpe (1964), and the interest lies in deriving correla-

tions between excess returns of assets. Let rit denote the excess return of asset i, and

let rmt be the market excess return. Then for asset i,

rit = αi + βirmt + εit (41)
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In order to work out the correlation between rit and rjt it is assumed that εit =

zith
1/2
it g

1/2
it , where zit ∼ iid(0, 1). Furthermore, rmt = αm + εmt where εmt = zmth

1/2
mt g

1/2
mt .

The GJR-GARCH type conditional variance of εit has the following representation:

hit = 1− αi − κi/2− βi + αi
ε2
i,t−1

gi,t−1

+ κi
ε2
i,t−1

gi,t−1

I(ri,t−1 < 0) + βihit−1

(42)

i = 1, ..., N, where it is assumed that αi + κi/2 + βi < 1 and that git is as in (7)

but with γ = 0 (the exogenous variable xt is excluded). Also note that the argument

in the indicator variable is ri,t−1 and not εi,t−1 as would be the case in the standard

GJR-GARCH model. This implies that Ehit 6= 1. The conditional variance for rmt

equals

hmt = 1− αm − κm/2− βm + αm
ε2
m,t−1

gm,t−1

+ κi
ε2
m,t−1

gm,t−1

I(rm,t−1 < 0) + βmhm,t−1.

Analogously to (42), the argument of I(·) is rm,t−1 < 0, not εt,m−1 < 0, so Ehmt 6= 1,

unless αm = 0. The error vector zt = (zmt, z1t, ..., zNt)
′ has a DCC structure. Conse-

quently, the (conditional) correlation between zit and zjt has a time-varying structure

that involves the market long-run component gmt as well as git and gjt. The conditional

correlation between the two excess returns rit and rjt has the following form:

ρijt = {βiβjhitgit + βih
1/2
mt g

1/2
mt h

1/2
jt g

1/2
jt ρmjt + βjh

1/2
mt g

1/2
mt h

1/2
it g

1/2
it ρmit

+h
1/2
it g

1/2
it h

1/2
jt g

1/2
jt ρijt}

×{β2
ihmtgmt + hitgit + 2βih

1/2
mt g

1/2
mt h

1/2
it g

1/2
it ρmit}−1/2

×{β2
ihmtgmt + hjtgjt + 2βjh

1/2
mt g

1/2
mt h

1/2
jt g

1/2
jt ρmjt}−1/2

where ρmit is the correlation between the market error zmt = εmt/(h
1/2
mt g

1/2
mt ) and zit =

εit/(h
1/2
it g

1/2
it ), and ρijt is the conditional correlation between zit and zjt = εjt/(h

1/2
jt g

1/2
jt ).

The deterministic components git and gjt contribute to zit and zjt, respectively, and this

way, together with gmt, to ρijt.

Rangel and Engle (2013) write that the quasi-maximum likelihood estimators of

the parameters in (41) and the GJR-GARCH type equations are consistent under mild

regularity conditions. Estimating these parameters forms the first stage of estimation.

The second stage consists of estimating the correlation parameters conditionally on

the first stage parameter estimates. The authors point out that misspecification of

the number of knots may lead to inconsistent estimates in stage one. They suggest

minimising the consequences of this by using t-distributed errors instead of the normally
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distributed ones. They also draw attention to biases in the estimates of the correlation

(DCC) component when N is large and suggest alternatives to maximum likelihood.

The authors consider daily returns on Dow Jones Industrial Average (DJIA) stocks

from December 1988 to December 2006 and have a sample of 33 stocks. Daily returns

on the S&P 500 are used as a market factor, and the one-month T-bill rate functions as

the time-varying risk-free rate. The market excess return rm is the difference between

these two returns. A set of models with various degrees of complexity are estimated.

It is found that the models with the spline-GARCH deterministic component dominate

models in which this component is constant (GARCH).

The performance of the SFG-DCC model is compared with that of a selection of

competing approaches including a pure DCC-GARCH model and alternatives based

on estimating large covariance matrices without any GARCH structure. The forecasts

are generated by first estimating the models from December 1988 to June 1995 and

forecasting from 1 to 126 days ahead. These 126 days are then added to the sample,

the models are re-estimated and another set of forecasts up to 126 days are generated.

This produces 22 sets of non-overlapping forecasts. Describing the whole experiment

here would take too much space, but the main conclusion, based on long-run forecasts

(from 87 to 126 days) and various measures is that the SFG-DCC model on the average

performs better than the alternatives.

The research problem of Opschoor, van Dijk and van der Wel (2014) is to assess

the impact of financial conditions on volatility and correlations of returns of bank eq-

uities. They study it in the spline-GARCH framework. In their multivariate model,

the decomposition (50) is defined such that St has a spline-GARCH formulation: St =

diag(g
1/2
1t , ..., g

1/2
N,t) with git = exp{κi0 + κi1xt−1}, i = 1, ..., N, where xt is a stochas-

tic random variable. In the application it is a financial conditions index. In Dt =

diag(h
1/2
1t , ..., h

1/2
Nt ), the diagonal elements hit have a GJR-GARCH representation. Fol-

lowing Connor and Suurlaht (2013), the authors define

Pt = P +mt−1(11′ −P) = (1−mt−1)P +mt−111′ (43)

where the N -vector 1 = (1, ...,1)′, P is the (sample) correlation matrix of zt, and

mt =
exp{xtβ} − 1

exp{xtβ}+ 1
.

This is called the DC-X correlation model. The expression (43) resembles the one in

the STCC-GARCH model, see Section 5.7, but the resemblance is superficial. The

time-varying correlation matrix Pt is not a convex combination of P and 11′ because

mt fluctuates between −1 and 1, not between 0 and 1. Besides, P and 11′ are known
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matrices, the former after the spline-GARCH equations have been estimated. When

mt → −1, Pt → 2P− 11′, and when mt → +1, Pt → 11′. The latter limit may appear

a bit strange because 11′ is no longer a positive definite correlation matrix but rather

a matrix of rank one, suggesting that all errors zit are perfectly linearly correlated with

each other. Some conditions on the elements of P are required for Pt to remain positive

definite for mt < 1.

This situation will change if the matrix 11′ in (43) is replaced by a positive definite

correlation matrix P and mt by a function bounded between zero and one. Setting

Pt = (1−Gt)P +GtP (44)

where Gt is defined as in (16) with xt−1 as the transition variable, Pt is, as a con-

vex combination of two positive definite correlation matrices, itself a positive definite

correlation matrix. Compared to (43), definition (44) implies N(N − 1)/2 additional

parameters to be estimated. If, however, one wants both to save the ’spirit’ of con-

verging to 11′ and to save parameters, one could assume that P is an equicorrelation

matrix, see Engle and Kelly (2012). But then, in this parameterisation the correlations

would no longer fluctuate around P.

The results for Morgan Stanley and Citigroup (for space reasons results for other

pairs are not reported) show that the estimated coefficient of xt−1 is significantly dif-

ferent from zero in both spline-GARCH models. Figure 3 indicates, however, that

nonstationarity visible in both return series does not diminish by the introduction of gt

in the GARCH equations. The correlations estimated by DC-X and DCC, respectively,

look different. The former are more stable than the latter. The paper also contains a

portfolio Value at Risk analysis, but discussing it here would be beyond the scope of

this review.

5.6 Multivariate GARCH-MIDAS

The MIDAS approach discussed in Section 4.4 can be generalised into multivariate

GARCH models. Colacito, Engle and Ghysels (2011) consider this possibility. The

GARCH equations contain a multiplicative decomposition as in the GARCH-MIDAS-

RV model of Engle et al. (2013), see (22). Following the notation in (24), the weight

function is defined as ϕk(1, ω2), k = 1, ..., K. In Engle and Rangel (2008), the cor-

relations follow a DCC structure, but Colacito et al. (2011) define them as having a

MIDAS-type representation. This implies modifying the intercept (or sample correla-

tion) matrix in the DCC-GARCH model. This is done in two ways. First, the matrix

is estimated only through a rolling window. Let vit = (
∑t

j=t−nc
z2
ij), i = 1, ..., N, Vt =

diag(v1t, ..., vNt) and Zt =
∑t

j=t−nc
zjz
′
j. Then the rolling matrix Ct = V

−1/2
t ZtV

−1/2
t .
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Second, the matrices are smoothed using a MIDAS type smoother. In the simplest case

the beta function is the same for all elements of Ct, and the correlation matrix becomes

Pt(ω) =
K∑
k=1

ϕk(1, ω)Ct−k. (45)

but more complicated situations are possible as well. Incorporating (45) into the stan-

dard DCC model yields the following short-run dynamic structure:

Qt = (1− a− b)Pt(ω) + azt−1z
′
t−1 + bQt−1.

Colacito et al. (2011) consider more general DCC structures in which a and b are no

longer scalars, but they are not discussed here.

Parameters are estimated in two stages as is the case with all DCC models. The

GARCH equations are estimated first, which gives the estimates of zt. From these one

obtains the rolling matrices Ct, which allows one to compute an estimate of Pt(ω).

Given P̂t(ω), Qt, a and b can be estimated. Asymptotic properties of the maximum

likelihood estimators of these parameters are not known.

The paper contains several examples, of which only one is touched upon here. The

main object of interest is correlations between industry portfolios and a 10-year bond.

The observation period runs from 15 July 1971 to 30 June 2006. As an example,

consider the combination of energy and hi-tech portfolios and the bond. The inclusion

of the MIDAS-RV component in the GARCH has a strong impact on the GARCH(1,1)

coefficient estimates. The sum α̂+ β̂ is now low, for the energy equation even below 0.9.

As to DCC, adding the MIDAS component has a negligible impact on estimates of a

and b. The sum â+ b̂ exceeds 0.995 in both cases. The situation does not change when

the DCC-MIDAS component is more richly parameterised, see Table 2 in Colacito et al.

(2011) for details.

There exist variants of the DCC-MIDAS model. Conrad, Loch and Rittler (2014)

construct a bivariate DCC-MIDAS-X model (’X’ will be explained later) for investigat-

ing the oil–US stock market relationship. Their purpose is to consider macroeconomic

determinants of the long-term correlation between the daily US stock market and crude

oil price returns. The spline-GARCH daily short-run component (conditional variance)

is defined as before:

hji,t = 1− αj − βj + αj
ε2
j,i−1,t

gjt
+ βjhj,i−1,t

where i indicates the day, t the month, and αj + βj < 1, j = 1, 2. The positive-valued
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monthly macroeconomic component gjt is defined as follows:

gjt = exp{mj + θj

Kj∑
k=1

ϕk(1, ω)xt−k}

where xt is a macro variable.

Correlations are defined as follows. Analogously to LDCC and other models, the

conditional covariance matrix has the decomposition Σjt = StDjtPtDjtSt where Djt =

diag(h
1/2
1i,t, h

1/2
2i,t) and St = diag(g

1/2
1t , g

1/2
2t ). The correlation matrix Pt is a two-dimensional

long-term or macroeconomic matrix, and its only time-varying correlation is defined as

ρ12t =
exp{2u12t} − 1

exp{2u12t}+ 1
(46)

where u12t has a spline-GARCH-X structure (hence ’X’ in DCC-MIDAS-X)

u12t = m12 + θ12

K12∑
k=1

ϕk(1, ω)xt−k.

The expression (46) guarantees that ρ12t qualifies as a correlation coefficient because it

fluctuates between −1 and +1. As a result, the short-run DCC correlation fluctuates

around the long-run one driven by lags of xt and defined by (46). Unlike gjt, u12t

does not have to be positive. The parameters of the model are estimated by (quasi)

maximum likelihood. Asymptotic properties of the estimators are still unknown.

The stock market is represented through daily returns on the CRSP value-weighted

portfolio. The oil price returns are constructed from the daily spot price for West Texas

Intermediate (WTI) crude oil for delivery in Cushing, Oklahoma. The observation

period extends from January 1993 to November 2011. Five candidate variables are

considered in the empirical part of the model, and a DCC-MIDAS-X model is estimated

for each of them. Estimates of the pure GARCH model suggest nonstationarity or

near-nonstationarity in stock returns, as α̂+ β̂ = 0.992. Adding the MIDAS component

does have some effect on this sum for the five equations, and the MIDAS parameter

estimates are significant, however. The estimated GARCH equation for the oil returns

has α̂ + β̂ = 1.004, and in this case rescaling by MIDAS pulls this sum safely below

one.

A large number of models with macro variables and correlations are estimated. If

the best model is for variances is selected by BIC, it is GARCH(1,1) for the stock

returns and GARCH-MIDAS-X based on the ’Leading Index’ (LI) in for the oil. For

the definition of LI, see Conrad et al. (2014). As to conditional correlations, there is

little difference between DCC and DCC-MIDAS for each type of GARCH residuals.
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It appears that it is more important to specify GARCH equations correctly than to

extend the DCC model. At least in the case of oil returns this is understandable,

because there the GARCH equation is mildly explosive. Measured by AIC and BIC,

the best models have GARCH-MIDAS-X residuals with LI, but after that there is little

to choose between DCC and DCC-MIDAS-X. As to â + b̂, the sum of the estimated

DCC coefficients, it equals 0.997 in the former and is marginally lower, equal to 0.989

in the latter.

Connor and Suurlaht (2013) apply the GARCH-MIDAS-RV model (21), (22) and

(23) to analysing correlations between daily returns of 11 European stock market in-

dices. They are calculated from daily closing prices from 31 December 1991 to 31

December 31 2010. In the GARCH-MIDAS equations the choice of MIDAS weights is

ϕ(ωi, 1), i = 1, ..., 11, and the correlations are defined using (43). In the application,

the sum of the GARCH parameters is close to one for the 11 GARCH models, and

including the MIDAS component does not change this outcome. There is a discussion

of how to define the variable mt in (43), given a number of economic variables deemed

useful for the purpose, but for space reasons details cannot be considered here.

Chen, Choudhry and Wu (2013) build their analysis on the MEM model of the

observed range of returns rit = µi + εit, where Eεit = 0, which is the difference between

the maximum and minimum logarithmic price within a time interval t. This range, ORit

for asset i, is decomposed as

ORit = zithitgit (47)

where zit ∼ iidGamma(ϕi, 1/ϕi),

hit = 1− αi − κi/2− βi
+ αi

ORi,t−1

gi,t−1

+ κiI(ri,t−1 < 0)
ORi,t−1

gi,t−1

+ βihi,t−1 (48)

and the MIDAS component git equals

git = m+ θ
K∑
k=1

ϕk(ωi1, ωi2)RVMi,t−k (49)

with the Rolling Window Volatility Measure RVMi,t =
∑N ′−1

j=0 ORi,t−j. Note that Ehit 6=
1, because the indicator variable in (48) is ri,t−1 and not εi,t−1 = ri,t−1 − µi. The

equations (47), (48) and (49) define the Conditional Autoregressive Range MIDAS

(CARR-MIDAS) model.

The application concerns the relationship between the oil price and US dollar returns

as those series are expected to move together. The original series are US dollar index

futures and West Texas Intermediate oil futures prices. As the CARR model indicates,
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the observed range of returns is the variable of interest. The dependence between

returns of them is modelled by a copula. For details, see Chen et al. (2013).

5.7 Multivariate Time-Varying GARCH model

The MTV-GARCH model discussed in Section 3.4 can also be generalised to the multi-

variate case. The resulting model, the multivariate MTV-GARCH model, is proposed

and studied by Amado and Teräsvirta (2014a). It is a Conditional Correlation (CC-

) GARCH model with the difference that the GARCH equations are augmented by a

multiplicative component as in the TV-GARCH model. More formally, set εt = StDtzt,

where zt ∼ indep(0,Pt), so the time-varying N × N conditional covariance matrix of

εt becomes, as in (36),

E{εtε′t|Ft−1} = Σt = S(t/T )DtPtDtS(t/T ) (50)

where Dt = diag(h
1/2
1t , ..., h

1/2
Nt ), S(t/T ) = diag(g

1/2
1 (t/T ), ..., g

1/2
N (t/T )) and Pt is a pos-

itive definite time-varying correlation matrix. The positive-valued functions gi(t/T ),

i = 1, ..., N are defined as in (15) and (16). Analogously to the univariate case, φt =

S−1
t εt follows a standard conditional correlation GARCH model. Setting Pt ≡ P yields

the Constant Conditional Correlation (CCC-) GARCH model by Bollerslev (1990). If

Pt ≡ P, Dt = IN and St = g(t/T )IN , one obtains an analogue to the model (32) that

Osiewalski and Pajor (2009) considered but discarded as too simple.

Defining the recursion

Qt = (1− a− b)P + a
n∑
j=1

zt−jz
′
t−j + bQt−1 (51)

where n ≥ N , a+b < 1, and P is the sample correlation matrix of zt, gives the Varying-

Correlation (VC-) GARCH model by Tse and Tsui (2002). Setting n = 1 in (51) leads

to the Dynamic Conditional Correlation (DCC-) GARCH model of Engle (2002). As in

LDCC, since recursions in Qt do not automatically generate correlation matrices, the

adjustment (38) has to be made to obtain a proper correlation matrix for time t.

The multivariate MTV-GARCH or MTV-CC-GARCH model thus consists of N

univariate TV-GARCH components and a (possibly) time-varying correlation matrix

Pt. Maximum likelihood estimation of parameters can be carried out in two stages: by

first jointly estimating S(t/T ) and Dt and then, given the estimates ẑt, the correlations.

From Amado and Teräsvirta (2013) it follows that maximum likelihood estimators of

the parameters S(t/T ) and Dt are consistent and asymptotically normal under the

assumption Pt = IN . No asymptotic theory is available for the model when Pt (or Qt)
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is time-varying as in (51).

The conditional correlations are defined as the ones in Pt, so they are correlations

between the elements of zt = S−1(t/T )D−1
t εt. Similarly to the LDCC, it follows that the

deterministic components (diagonal elements of S(t/T )) affect the correlations. This

may be useful in cases where the correlations are changing systematically over time and

do not fluctuate around a constant level as in, say, the VC- or DCC-GARCH models.

The functions gi(t/T ), i = 1, ..., N, may also be defined using other than TV-

GARCH specifications. Asymptotic properties of maximum likelihood estimators of

GARCH parameters in SEMIGARCH are known from Feng (2004), whereas the expo-

nential quadratic spline- or P -spline GARCH models they are unknown.

Amado and Teräsvirta (2014a) apply the MTV-CC-GARCH model to daily returns

of seven frequently traded stocks belonging to the S&P 500 index. The modelling

period extends from 29 September 1998 to 7 October 2008. The observations from

8 October 2008 to 31 December 2009 are saved for forecasting. Because the returns

are stock returns, GJR-GARCH equations are used instead of standard GARCH. The

aforementioned asymptotic results obtained for the GARCH equations remain valid in

the GJR-GARCH case; see Amado and Teräsvirta (2013) for discussion.

Persistence estimates from the seven TV-GJR-GARCH models vary from 0.97 to

0.78. The estimated gi(t/T ) have a rather similar shape: values of the function decrease

around 2002-2004 and increase again around 2008. The authors fit a model with a CCC,

VC and DCC structure to the estimated residuals ẑt. Judging from the maximised

log-likelihood, MTV-GJR-VC-GARCH fits the data best and, as may be expected,

CCC-GARCH has the lowest maximum. For comparison, the performance of CC-

spline-GJR-GARCH is studied as well. It has the best fit overall, whereas, again as

expected, GJR-CCC-GARCH with S(t/T ) = IN is worst in this respect.

The covariance matrix Σt is being forecast one day ahead. Since the true Σt is

unknown, following Andersen, Bollerslev, Diebold and Labys (2003) it was proxied by

the realised covariance matrix based on 5-minute returns. The main forecast error loss

function is the Frobenius distance

LF,T+i = (1/N2)vec(ΣT+i − Σ̂T+i)
′vec(ΣT+i − Σ̂T+i) (52)

where Σ̂T+i is the one-step-ahead forecast of ΣT+i. The Root Mean Square Error

(RMSE) over the forecasting period is computed from the Frobenius distance (52).

The mean Absolute Deviation and Median Squared Error were also used but not dis-

cussed here. Since the estimated splines of the spline-GARCH model by Engle and

Rangel (2008) all point strongly upwards at the end of the estimation period, there is

the question of how to extrapolate them when forecasting. This is not an important
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issue if one is only forecasting one day ahead but becomes one when the forecast hori-

zon is long. Amado and Teräsvirta (2014a) assume that when the starting-point for

forecasting is T, gi(1 + 1/T ) = g(1) for i = 1, ..., N..

The results indicate that the models with MTV-GJR-GARCH equations gener-

ate better forecasts than the ones with Spline-GJR-GARCH or GJR-GARCH. This is

true for both CCC, VC and DCC specifications. The best model overall is the MTV-

GJR-VC-GARCH model. The Model Confidence Set obtained from this set of models,

see Hansen, Lunde and Nason (2011), consists of the three models (CCC, VC and

DCC) in which the GARCH equations are MTV-GJR-GARCH equations of Amado

and Teräsvirta (2013). It seems that at least in this seven-dimensional example getting

the levels, i.e., giT , i = 1, ..., 7, ’right’ is more important than choosing between the

three correlation structures.

Due to the correlation structure (51) of VC and DCC, the correlations are restricted

to fluctuate around P. Besides, the structure is aimed at capturing ’correlation cluster-

ing’. If the correlations in reality for example move monotonically in one direction over

time, this translates into â+ b̂ being very close to one (because of correlation targeting,

the restriction a + b < 1 has to be maintained). This problem is avoided by applying

the multiplicative Time-Varying Smooth Transition Conditional Correlation GARCH

(TVC) model by Silvennoinen and Teräsvirta (2017). In this model, the correlation

matrix Pt = P(t/T ) is changing deterministically:

P(t/T ) = Gcorr(t/T, γ, c)P(1) + {1−Gcorr(t/T, γ, c)}P(2) (53)

where P(1) and P(2), P(1) 6= P(2), are positive definite correlation matrices, and

Gcorr(t/T, γ, c) = (1 + exp{−γ
K∏
k=1

(t/T − ck)})−1, γ > 0 (54)

and c1 ≤ ... ≤ cK . As a convex combination of P(1) and P(2), P(t/T ) is positive definite.

The definition of P(t/T ) in (53) is analogous to that in the Smooth Transition Con-

ditional Correlation (STCC-) GARCH, see Silvennoinen and Teräsvirta (2005, 2015).

The difference is that the transition variable in (53) is deterministic, not stochastic.

Silvennoinen and Teräsvirta (2017) show that maximum likelihood estimators of

the parameters of the TVC model, parameters in the correlation component included,

are consistent and asymptotically normal. This paves way for misspecification testing

which should be an essential part of any model building exercise.

With the exception of Silvennoinen and Teräsvirta (2017), correlations become de-

terministically time-varying through deterministic components in GARCH equations,

see (50). Preceding these developments Silvennoinen and Teräsvirta (2009a), assuming
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that St = IN in (50), have proposed the following correlation matrix:

Pt = (1−G2t){(1−G1t)P(11) +G1tP(21)}

+G2t{(1−G1t)P(21) +G1tP(22)} (55)

where G1t and G2t are logistic transition functions defined in (16) for ki = 1, i = 1, 2,

and P(ij), i, j = 1, 2, are positive definite correlation matrices. The ensuing model

is called the Double Smooth Transition Conditional Correlation (DSTCC-)GARCH

model. Suppose that the argument of G2t is rescaled time t/T whereas G1t controls

rapid movements in correlations. Then (55) allows for long-run changes in the dynamics

of correlations. The correlations may gradually as a function of time move to fluctuate

around a new level. In the standard Smooth Transition Conditional Correlation model

(Silvennoinen and Teräsvirta 2005, 2015) where G2t = 0, the correlations fluctuate

between two positive definite correlation matrices and do not experience systematic

changes unless of course G1t is a function of t/T. This special case has been first studied

in the bivariate setting by Berben and Jansen (2005).

As already mentioned, Silvennoinen and Teräsvirta (2017) reintroduce S(t/T ) with

Pt = P(t/T ) in Σ(t/T ) and prove consistency and asymptotic normality of maximum

likelihood estimators for all parameters of the model, provided G1t is a function of

t/T, while still assuming G2t = 0. The TVC model can be generalised to the DSTCC

case, but the asymptotic properties of maximum likelihood estimators for parameters

of that model are not known. (The parameters are estimated jointly, unless G2t is a

function of lagged zit.) However, given the available asymptotic theory, TVC can be

tested against DSTCC. Silvennoinen and Teräsvirta (2009a) have developed an LM

test for this purpose with just assuming that the maximum likelihood estimators of the

parameters of the null model are consistent. Despite the lack of asymptotic theory, it

may argued that DSTCC offers an alternative to the LDCC model by Feng (2006) and

the FSG-DCC model by Rangel and Engle (2013) when the number of assets in the

model remains reasonably small.

The paper contains a bivariate application to daily log-returns of the S&P 500

index and the 30-year US Treasury bill from 3 January 2000 to 6 July 2015, 4046

observations. The amplitude of clusters in both return series varies strongly over time,

and after testing and rejecting constancy of gi(t/T ), i = 1, 2, TV-GARCH equations

are specified for both series. Constancy of the correlation between zSt (S for stock) and

zBt (B for bond) is also tested and rejected. (The relevant test will be discussed in a

forthcoming working paper.) Joint modelling of GARCH parameters and time-varying

correlations, that is, a complete TVC model, gives a correlation function with two sharp

changes, one from about −0.3 to close to zero around 2004 and another back to −0.3
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around 2007.

5.8 Misspecification testing

There do not seem to be many misspecification tests available for testing the adequacy

of multivariate GARCH models with multiplicative decomposition of the (conditional)

covariance matrix. Catani, Teräsvirta and Yin (2017) develop a Lagrange multiplier

test of the model

εt = Dtzt

where Dt = (h
1/2
1t , ..., h

1/2
Nt ) contains the GARCH equations, so zt = D−1

t εt. Under the

alternative it is assumed that zt is not iid but contains dynamic structure such that zt =

Gtζt, where ζt ∼ iidN (0,P). Under H0,Gt = IN , so the null model is the CCC-GARCH

model. The diagonal matrix Gt = (g
1/2
1t , ..., g

1/2
Nt ) is a multivariate generalisation of (29)

in that git = 1 +
∑r

j=1 δijz
2
i,t−j, i = 1, ..., N. Letting δ = (δ′1, ..., δ

′
N)′ be an Nr-vector

whose r × 1 vector blocks are δi = (δi1, ..., δir)
′, the null hypothesis can be expressed

as δ = 0. The authors develop a Lagrange multiplier test for testing this hypothesis

and show that the resulting test statistic has an asymptotic χ2-distribution with Nr

degrees of freedom. The Lagrange multiplier statistic by Lin and Li (1997) turns out

to be a parsimonious special case of the statistic by Catani et al. (2017).

Generalising the test to the situation in which the null model is a DCC or VC

model, say, is hindered by the fact that the asymptotic properties of the maximum

likelihood estimators of parameters in these models are not known. For an illuminating

discussion, see Engle and Kelly (2012). For the same reason, testing for example DCC

against DCC-MIDAS does not seem possible.

6 Final remarks

This survey only concerns a small subset of GARCH models. It consists of models in

which the usual conditional variance component is multiplicatively augmented by an-

other time-varying component that can be either deterministic or stochastic. For read-

ers who want more background information about GARCH there is a modern overview

by Francq and Zaköıan (2010) that also covers the statistical inference, and a more

compact exposition by Gouriéroux (1997). Many econometrics or financial economet-

rics texbooks contain chapters on ARCH and GARCH; see for example Tsay (2010),

Teräsvirta, Tjøstheim and Granger (2010) or Box, Jenkins, Reinsel and Ljung (2015).

Engle (1995) contains the most important early contributions reprinted in a single vol-

ume. Surveys of univariate GARCH models published over the years include Bollerslev,

Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), Palm (1996), Teräsvirta
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(2009) and Zivot (2009). Li, Zhang, Zhu and Ling (2018) develop a nonstationary

GARCH model (Zero-Drift GARCH). It describes volatility series that generate clus-

ters with varying amplitudes but does it without multiplicative decomposition. Multi-

variate GARCH models are surveyed by Bauwens, Laurent and Rombouts (2006) and

Silvennoinen and Teräsvirta (2009b). de Almeida, Hotta and Ruiz (2018) provide a

useful discussion of popular BEKK- and DCC-GARCH type of models and compare

their performance in forecasting in cases where the data are generated by a more general

model than either of the two. Finally, in addition to articles already mentioned, the

two volumes, Andersen, Davis, Kreiss and Mikosch (2009) and Bauwens, Hafner and

Laurent (2012), contain several useful articles on various aspects of GARCH models.
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