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Abstract

The Generalized Smooth Transition Auto-Regression (GSTAR) parametrizes
the joint asymmetry in the duration and length of cycles in macroeconomic
time series by using particular generalizations of the logistic function. The
symmetric smooth transition and linear auto-regressions are peculiar cases of
the new parametrization. A test for the null hypothesis of dynamic symme-
try is discussed. Two case studies indicate that dynamic asymmetry is a key
feature of the U.S. economy. Our model beats its competitors in point fore-
casting, but this superiority becomes less evident in density forecasting and in
uncertain forecasting environments.
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1 Introduction

The U.S. business cycle is characterized by asymmetric fluctuations, as confirmed

by a consolidated literature (Milas et al. (2006) and references therein). Defining

asymmetry has been an important issue for many years. Sichel (1993) classifies

two types of asymmetry: (i) the “steepness” that arises when contractions in the

levels are steeper than expansions, corresponding to negative skewness in the first

differences of the sample (or, in a graphical perspective, to asymmetry in the level

axis); and (ii) the “deepness” that occurs when the series undergoes at an acceler-

ating pace until a minimum, after which it starts to recover with quickly decreasing

acceleration until it smoothly recovers the peak, corresponding to negative skewness

in the levels (or asymmetry in time axis). Dynamic asymmetry occurs when these

two definitions of asymmetry are combined. McQueen and Thorley (1993) use the

term “sharpness” to refer to the probability that the transitions to and from the two

regimes (expansion and contraction) are not identical. As a logical implication of

these definitions, a dynamically asymmetric process can be identified by asymmetry

in either conditional mean or in conditional density.

The primary focus of the present research is on out-of-sample forecasting for the U.S.

index of industrial production (IIP) and unemployment rate (UN)1. These data are

displayed in Figure 1 and a simple application of Sichel’s test for deepness and steep-

ness is reported in the first panel of Table 1. All of the series under consideration

present at least some type of asymmetry: (i) the type of asymmetry in IIP changes,

as quarterly and monthly growth rates amplify the steepness (the lower p-value is

0.07 for the sample at quarterly frequency and 0.06 for the sample in monthly fre-

quency) with respect to the deepness (0.14 and 0.09, respectively), prevailing in the

series in yearly growth rates (0.07 for quarterly sample and 0.05 in monthly sam-

ple). (ii) The UN is steep and deep, no matter the transform or frequency. A good
1All series, in both quarterly and monthly frequency, are in real time and can be downloaded

by OECD – Main Economic Indicators.
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forecasting model for the U.S. business cycle must incorporate the dynamic asym-

metry in all its possible types previously mentioned. To this aim, which is in most

of this literature – particularly the first generation, such as Neftçi (1984); De Long

and Summers (1984); Rothman (1991) – uses a piecewise linear autoregression with

Markov-Switching mean or variance (MSAR) with a pre-specified number of unob-

served states (usually two). This approach has been appreciated particularly for

its easy implementation and close connections with algorithmic rules for dating; see

Harding and Pagan (2006) for recent developments. The present research adopts an

alternative strategy to treat the process as a continuum of observable states that

oscillate between two extremes and to fit a general, flexible, nonlinear function over

the observables using the smooth transition auto-regressions (STARs) introduced

by Haggan and Ozaki (1981); Chan and Tong (1986) and developed by Teräsvirta

(1994). These piecewise linear models are characterized by a nonlinear function of

the transition variable, where a logistic transition is commonly postulated when the

series is assumed to have asymmetric oscillations from its conditional mean. We

argue that the use of this peculiar transition function is improper in many appli-

cations because the sigmoid of the logistic function is reflexively symmetric. As a

consequence, the logistic STAR model can reproduce steepness but not deepness,

while, as Clements and Krolzig (2003) explain, deepness is the only feature associ-

ated with asymmetry in the (un)conditional density of the process2.

The econometric literature provides two solutions: the first, proposed by Sollis et al.

(1999) (SLN1) and Lundbergh and Teräsvirta (2006) (LT), is to exponentiate the

STAR transition function; the second, suggested by Sollis et al. (2002) (SLN2) is to

add a parameter inside the transition function in such a way as to control for the

asymmetry of both of the transition function’s tails by using a Heaviside indicator.

Unfortunately, as Figure 2’s panel (a) shows, neither of these solutions is free from

idiosyncrasy: in the SLN2 model, the transition function can be non-smooth, while
2See Figure 1 of page 198 of the mentioned article.
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the SLN1 and LT parametrization conveys a smooth transition, but the effect of in-

creasing the asymmetry parameter often translates to no more than a shift effect in

the same transition function if it is not properly restricted. This shift could translate

into an almost symmetric predictive density, as shown in Figures 8 and 10 in LT. In

other words, the available models for time series limit the econometrician’s ability

to answer the question: ‘When the series return to its original regime? ’ Here, our

objective is to answer to another, more challenging question: ‘Does the left tail of

the process’s (un)conditional distribution differ from its right tail and, if so, by how

much? ’ This paper shows that the solution to this methodological question, which

is interesting for its descriptive aims, improves the forecasting ability of the STAR

models family.

In the next section, Section 2, we introduce a generalized version of the STAR

model’s logistic transition function with two parameters that govern the two tails

of the logistic sigmoid and a logarithmic/exponential that can preserve the smooth-

ness of the transition. The resulting Generalized STAR (GSTAR) model encloses

the symmetric STAR – and, thus, linear AR – as special cases. An LM-type test

for the null hypothesis that the two tails of the transition function are reflexively

symmetric is discussed in Section 3. Section 4 illustrates the forecasting properties

of the GSTAR model for the U.S. data, jointly with a discussion on the relevance

of the empirical finding. Finally, Section 5 summarizes and concludes. The Supple-

ment provides details on mathematical derivations and definitions, diagnostics, and

simulations, as well as additional examples.

2 Forecasting Models

This section describes the non-linear and dynamic asymmetric models implemented

in our analysis. For details on statistical inference, model specification, and pa-

rameter estimation, we refer readers to Teräsvirta et al. (2010), and to Canepa and
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Zanetti Chini (2016) for what concerns dynamic asymmetric specification. In what

follows, we adopt ‘ .=’ to mean ‘equal by definition’ and ‘≡’ to indicate an equiva-

lence; bold is used for matrix notation; and yt is a realization of a (univariate) time

series observed at t = 1−p, 1−(p−1), . . . ,−1, 0, 1, . . . , T−1, T . All estimated mod-

els for quarterly (monthly) samples include four (eight) lags, but all of the formulas

written below refer to general autoregressive order p. Finally, all of the transition

variables in our application are assumed to be lags of the dependent variable, so

none of the models treated in this section requires exogenous variables.

2.1 GSTAR Models

The process {yt}Tt follows a GSTAR(p) model if

yt = φ′zt + θ′ztG(ξ) + εt, εt ∼ I.I.D.(0, σ2), (1)

G(ξ) =

(
1 + exp

{
−

K∏
k=1

h
(
ck, st

)})−1

, (2)

where the T × 1 vector yt is a dependent variable; zt = (1, yt−1, . . . , yt−p)
′, φ =

(φ0, φ1, . . . , φp)
′, θ = (θ0, θ1, . . . , θp)

′ are autoregressive parameter vectors; G(ξ)
.
=

G(γ, h(ck, st)) is a transition function of the vector of nonlinear parameters ξ =

[γ, h(ck, st)], which is formed by the vector γ = (γ1, γ2) and a function of the K

location parameter ck; the transition variable st = yt−d, with d > 0 denoting the

delay, and defining ηt ≡ (st − c) for ease of notation,

h(ηt)
.
=


γ−1

1 exp(γ1|ηt| − 1) if γ1 > 0,

0 if γ1 = 0,

−γ−1
1 log(1− γ1|ηt|) if γ1 < 0,

(3)
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for ηt ≥ 0 (µ > 1/2) and

h(ηt)
.
=


−γ−1

2 exp(γ2|ηt| − 1) if γ2 > 0,

0 if γ2 = 0,

γ−1
2 log(1− γ2|ηt|) if γ2 < 0,

(4)

for ηt < 0 (µ < 1/2). The transition function G(·, ·) is continuous in γ. Equa-

tion (3) (equation (4)) models the higher (lower) tail of the transition function, so

it allows for the asymmetric behavior introduced by the slope parameter γ1 (γ2),

which controls the velocity of the transition in each half of the same function. When

γ1, γ2 > 0 (γ1, γ2 < 0), h(ηt) is an exponential (logarithmic) rescaling that increases

more quickly (more slowly) than a standard logistic function does. This parametriza-

tion ensures that the global slope remains unchanged with respect to the traditional

symmetric logistic function. The requirement that h(·) = 0 when the slope param-

eter is zero is necessary for ease of exposition and allows us to build a test for the

null of linearity against of dynamic asymmetry, thereby to nest the results in pre-

vious literature. The associated Supplement discusses the original, slightly different

definition of generalized logistic function introduced by Stukel (1988), according to

which h(·) = ηt when the slope is zero. This definition is adopted in next Section

3 for testing. Moreover, in our applications, we assume K = 1, although other

distributions of exponential family can be achieved easily3.

The Generalized Logistic function is plotted in Figure 2’s panel (b). If we interpret

the support of this function as a probability of recession, the resulting sigmoid is

consistent with the Sichel (1993) definition of dynamic asymmetry, where, according

to the values of the two slope parameters, the observables are associated with an
3The Generalized Logistic is the basis for other transition functions, such as the (Generalized)

Double Logistic, which allows the sharpness to be incorporated into a STAR model; see the Sup-
plement. Another other important case is K = 2, corresponding to the generalized exponential
STAR (GESTAR), where parameters φ+θG(γ, c, st) change asymmetrically around the mid-point
(c1 + c2)/2 and where the generalized logistic function attains its minimum, minGG(·) ∈ [0, 1/2].
However, this specification is not used in our application and is not discussed; see Canepa and
Zanetti Chini (2016) and the Supplement for details.
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abrupt (smooth) acceleration in the first half and to a smooth (abrupt) deceleration

in the second half. Deepness occurs when acceleration is abrupt in the first half and

moderate in second half; on the opposite side, steepness occurs when the acceler-

ation in the first half is moderate and abrupt in the second half. The lack of any

identification restrictions in the two slope parameters guarantees that the two types

of asymmetry can coexist.

The one-to-one relationship between the new dynamically asymmetric model and

the unconditional density of the nonlinear part of the process is shown in Figure

3’s first and second rows. Nonlinear models are always associated with a bimodal

distribution; more specifically, in GSTAR parametrization, each γ governs one of

these modes. Three special cases are (i) h(ηt) = ηt, which suggests that the function

nests a one-parameter symmetric logistic STAR model with slope γ1 = γ2 = γ; as

shown in Figure 3’s fourth row, a value of γ = 1 with 1,000 observations is sufficient

to see that density tends to concentrate in the two extremes. (ii) When γ → +∞,

G(·, ·) nests an indicator function I(st>c); in this case (not shown) the distribution of

the process degenerates a rectangle-‘U’. (iii) When γ = 0, G(·, ·) nests a straight line

around 1/2 for each transition variable st and the distribution becomes symmetric

(Figure 3’s third row). Each of these three special cases is described in this section.

An important assumption is that Q(z) = zp − φ1z
p−1 − · · · − φp = 0 has its roots

inside the unit circle if the process is characterized by G(0, h(ηt)), which suggests

that the model is stationary and ergodic under the null hypothesis of linearity4.

Finally, {εt}Tt is assumed to be a martingale difference sequence with respect to

the history of the time series up to time t − 1, denoted as Ωt−1 = [yt−1, . . . , yt−p],

i.e., E[εt|Ωt−1] = 0. This assumption is sufficient to build tests based on artificial

regressions, as demonstrated in Davidson and McKinnon (1990), so an important

consequence of this assumption is that the test discussed in Section 3 and the three

diagnostic tests discussed in the Supplement can still be meaningful if the normality
4This assumption can be relaxed, as in Kapetanios et al. (2003); Vougas (2006).
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hypothesis is rejected.

2.2 STAR Models

When γ1 = γ2 in (1)–(4), the GSTAR model nests a traditional (possibly, Multiple

Regime) STAR model (MRSTAR, henceforth):

yt = φ′zt + θ′zt

M∑
m=1

G(γ, c, st) + εt, εt ∼ i.i.d.(0, σ2), (5)

where yt, zt, φ, θ have been defined previously. The transition function G(γ, c, st)

is a continuous function in the transition variable st, where the parameter vec-

tor γ = (γ1, . . . , γm, . . . γM) controls the velocity of the M transitions, with c =

(c1, . . . , cm, . . . cM) assumed to be a vector of transition parameters

When K = 1, equations (6) and (5) define the first-order (Multiple-Regime) Logistic

STAR (MRLSTAR) model,

G(γ, c, st) =

(
1 + exp

{
−γM

K∏
k=1

(st − cm)

})−1

, (6)

γ1 > 0, . . . , γm > 0, . . . , γM > 0, c1 < · · · < cm < · · · < cM (7)

where conditions on γ and c in equation (6) are identifying restrictions, mak-

ing the symmetric (MR)STAR fundamentally different from GSTAR in (1), where

no additional identification restriction is needed. Under the logistic specification,

φ+ θG(γ, c, st) changes monotonically from φ to φ+ θ as a function of st. For ap-

plications of this model in the U.S. business cycle, Anderson and Teräsvirta (1992);

Rothman (1998), and others.
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2.3 (SE)TAR Models

When γ1 = γ2 → ∞ in (1)–(4) (or, equivalently γm → ∞ the model (5), the

(G)STAR nests a SETAR model (Tong, 1983):

yt =
r+1∑
j=1

(
φ′
jzt

)
I
(
yt−d ≤ cj

)
+

r+1∑
j=1

(
φ′
jzt

)
I
(
yt−d > cj

)
+ εjt εjt ∼ i.i.d.(0, σ2

j ) (8)

where φ and zt are defined as in previous models, st is a continuous switching

random variable, c0, c1, . . . , cr+1 are threshold parameters, c0 = −∞, cr+1 = +∞,

j = 1, . . . , r. The multiple regime hypothesis is investigated via the LM test, and

the most likely number of regimes is obtained by iteration. When γ1 = γ2 = 0 in

model (1)–(4) – or, equivalently, γ = 0 and M = 1 in model (5) – the transition

function is G(γm, c, st) ≡ 1/2 and the equation collapses into a linear autoregression;

see Figure 2’s panel (b) .

3 Testing for Dynamic Symmetry

According to the definition of GSTAR model given in Section 2, the dynamic asym-

metry of the series is modelled by parameters γ1 and γ2. Hence, a test for the

presence of dynamic asymmetry in the process yt requires the following hypothesis

system:

H0 : γ1 = 0 and γ1 = 0 in (3)−−(4),

H1 : γ1 6= 0 and γ1 6= 0 in (3)−−(4).
(9)

Testing for the null hypothesis of dynamic symmetry requires substituting h(ηt) = ηt

in models (3)–(4), as otherwise the null hypothesis becomes linear. In both cases,

the alternative hypothesis remains dynamic asymmetry. The idea of this test is the

same as that of Luukkonen et al. (1988): the model is linearized via Taylor expansion

in order to build an artificial regression whose coefficients incorporate these two
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slopes. Since Luukkonen et al. assume just one slope parameter, their notation

must be modified. Consider (1) with G(γ, h(ηt))|γ=0 and define τ = (τ1, τ2)′, where

τ1 = (φ0,φ
′)′, τ2 = γ. Let τ̂1 the LS estimator of τ1 under H0 : γ = 0, τ̂ = (τ ′1,0

′)′.

Let zt(τ ) = ∂εt
∂τ

and ẑt = zt(τ̂ ) = (ẑ1,t, ẑ2,t), where the partition conforms to that

of τ . Then the general form of the LM statistic is:

S(Ξ)LM =
1

σ̂2
û′Ẑ2(Ẑ′2Ẑ2 − Ẑ′2Ẑ1(Ẑ′1Ẑ1)−1Ẑ′1Ẑ2)−1Ẑ′2û, (10)

where û is previously defined, σ̂2 = 1
T

∑T
1 û

2
t and ût = yt−τ̂ ′1zt, Ẑi = (ẑi1, . . . , ẑit, . . . , ẑiT)′,

i = {1, 2}, t = 1, . . . , T . When the model is a GLSTAR,ẑ1,t = −zt = −(1, yt−1, . . . , yt−p)
′

while ẑ2t ≡ ∂2ut
∂γ∂γ′

∣∣
γ=0

= −1
2

{
θ20[yt(yt−d)]−cytθ′zt+θ

′
2ztytyt−d

}
, where d is the delay

parameter. As for symmetric case, the nuisance parameters θ0 and θ̄ = [θ1, . . . , θp]
′

are not identified under the null hypothesis; see Davies (1977). In our framework,

the linearization of GLSTAR model leads to the following auxiliary regression:

ût = ẑ′1tβ̃1 +

p∑
j=1

β2jyt−jyt−d +

p∑
j=1

β3jyt−jy
2
t−d +

p∑
j=1

β4jyt−jy
3
t−d + vt , (11)

where vt is a N.I.D.(0, σ2) process, β̃1 = (β10,β
′
1)′, β10 = φ0 − (c/4)θ0, β1 =

φ − (c/4)θ + (1/4)θ0ed, ed = (0, 0, . . . , 0, 1, 0, . . . , 0)′ with the d-th element equal

to unit and T3(G) = f1G + f3G
3 is the third-order Taylor expansion of G(Ξ) at

γ = 0, f1 = ∂G(Ξ)/∂Ξ
∣∣
γ=0

and f3 = (1/6)∂3G(Ξ)/∂Ξ
∣∣
γ=0

, G(Ξ) being defined in

previous section5. The null hypothesis is

H ′0 : β2j = β3j = β4j = 0 j = 1, . . . , p, (12)

The test statistic:

LM1 = (SSR0 − SSR)/σ̂v
2 , (13)

5Notice the difference from similar expressions in Teräsvirta (1994): here τ2 is a vector and ẑ2t

is the double (it was − 1
4{· · · }). The LM statistic and the terms in the auxiliary regression remain

unchanged.
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with SSR0 and SSR denoting the sum of the squared estimated residuals from the

estimated auxiliary regression (11) and under the null and alternative, respectively,

and σ2
v = (1/T )SSR has an asymptoticχ2

3p distribution under H ′0. A similar ar-

gument with different definitions of ût, β̃1, β1, H ′0, holds for the exponential and

double exponential cases. Alternatively, a Score test for the null hypothesis of dy-

namic asymmetry can be implemented via standard inference; see Stukel (1988) and

the Supplement. Our experience suggests the empirical power of Taylor expansion-

based tests is almost always higher than that of Stukel’s test.

4 Illustrations

4.1 Set-up

In this section the GSTAR model is applied to the U.S. data introduced in Sec-

tion 1. The peculiar logarithmic/exponential rescaling property of the generalized

logistic transition function makes our parametrization particularly useful in fitting

the variables characterized by a high level of regime persistence. Therefore, we

estimate eight models in order to control for the possible dominance of deepness

against sharpness: for each variable (IIP and UN) we consider samples in quarterly

and monthly frequencies, using either yearly or monthly/quarterly growth rates.

The literature on point forecasting and evaluation of individual density forecasts

under linear models is well established; see Timmermann (2006) and Corradi and

Swanson (2006). To evaluate the forecasts, we adopt four measures of point forecast

accuracy: the mean forecast error (MFE), the symmetric mean absolute percentage

error (sMAPE), the median relative absolute error (mRAE), and the root mean

square forecast error (RMSFE). For accuracy in the density forecasts, we use the

logarithmic score (LogS), the quadratic score (QSR), the continuous-ranked proba-
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bility score (CRPS), and the quantile score (qS)6. When the model is nonlinear and

its nonlinear function is known, the one-step forecast is immediately available by

the least-square criterion. The multi-step ahead forecast is not available in closed

form, so it requires numerical integration. Hence, at t + 1, we generate 1, . . . ,M

draws – for example, from model (1)–(4) conditionally on the estimated nonlinear

parameters ξ – and obtain the forecast yt+1 ∼ f(yt+1 + ε
(m)
t+1; ξ|It). This forecast is

collected to draw, at t + 2, the forecast yt+2 ∼ f(yt+2 + ε
(m)
t+2; ξ|It, y(m)

t+1), and so on

until, at t+ h,the forecast yt+h|t = f(yt+h + εt+h|It, y(m)
t+1 , . . . , y

(m)
t+h−1) is obtained and

then evaluated as:

yMC
t+h =

1

M

M∑
m=1

y
(m)
t+h|t. (14)

The Monte-Carlo approach requires making assumptions on the distribution of ran-

dom numbers εt, which, as we will see in this section, might influence density fore-

casts. This problem can be partially avoided by block-bootstrapping the sample:

the series is divided into blocks of magnitude b > 1, which are then sampled with

replacement, and this is done for every possible contiguous element in the original

sample. Thus, the sampled blocks are attached, obtaining the new bootstrap series

(ỹ
(1)
t , . . . , ỹ

(i)
t , . . . , ỹ

(B)
t ) from the same model. Finally, we compute the M b

B forecasts

for ỹt+1, ỹt+2, . . . , ỹt+h as before, to arrive at ỹt+h = g(ỹt+h + ε̃
(i)
t+h|It+h−1) and:

ỹBt+h =
1

M b
B

Mb
B∑

B=1

ỹ
(B)
t+h|t. (15)

In our application we adopt a moving block-bootstrap algorithm with b = 10 and

B = 10, 000 draws, which allows us to avoid making assumptions about the distribu-

tion of estimated residuals and gives us a forecast that is robust to model parameter

uncertainty; see Efron and Tibshirani (1993), Chapter 8. Then we check to see

whether our model performs better than its linear and symmetric competitor(s) us-
6The choice of these measures of predictive performances was made for ease of treatment and

ease of comparison in the literature and implies no preference.
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ing the Diebold and Mariano (1995) test7, the Giacomini and White (2006) test,

and the Amisano and Giacomini (2007) test for equal predictive ability for couples

of forecasts. Under the null hypothesis, there is no evidence of that the GSTAR or

its linear or symmetric equivalent is superior.

4.2 The U.S. Industrial Production

According to the p-values reported in Table 1, the null hypotheses of linearity and

dynamic symmetry are always rejected if the significance threshold is at 0.10. Nev-

ertheless, detecting nonlinearity and dynamic asymmetry is more difficult when

quarterly and monthly growth rates are considered. For example, in the quarterly

series in quarterly growth rates, the p-values are higher (0.07 and 0.04) than those

that correspond to the series in yearly growth rates (which p-value is 0.0037 for

the null of linearity and 0.0005 for the null of symmetry). Monthly data samples

confirm this weak asymmetry. None of the estimated models requires the use of a

second transition function to capture additive dynamic asymmetry or evidence of

time-varying parameters. The p-values of diagnostic tests for the null of serial un-

correlation are often lower than 0.05. Nevertheless, the effects in terms of p-value are

limited, although only by increasing the autoregressive order considerably. Thus, if

the other diagnostic tests are passed, the choice of an order p = 4 appears merely

to preserve parsimony.

In three series (both quarterly samples and the monthly sample in yearly growth

rates), the estimated slopes have opposite signs (γ1 negative and γ2 positive) and

are, in most cases, statistically significant, with the magnitude higher in γ1. On

the other hand, in the series of monthly growth rates, both estimated slopes are

positive, and the p-values of linearity and asymmetry tests are higher than other
7Since the AR(p) and STAR(p) models are nested in the GSTAR(p) specification proposed

here, the inference of this test is severely biased, as shown in West (1996), so equivalent tests, such
as that in Clark and McCracken (2001) , should be employed. Nevertheless, we use the classical
Diebold-Mariano for a preliminary check. As our illustrations will show, the resulting p-values are
often counterintuitive. In any case, the p-values of the Clark-McCracken test do not change our
conclusions, so they are omitted for reasons of space.
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samples. Figures 4 and 5 plot the time path of GSTAR’s and symmetric MRSTAR’s

estimated transition functions for samples in quarterly and monthly frequency, re-

spectively. The sigmoid associated with each transition function in Figures 4 and 5

can be interpreted as a global indicator of the series’ reactiveness in the contraction

phase (that is, 0 is the extreme of contraction and 1 is the maximum of expansion).

The deepness is dominant in the sigmoids that correspond to the series at quarterly

frequency in yearly growth rates, while the symmetric model behaves as a step func-

tion with almost all observations taking the value of 1 and some 0, so it is similar

to a SETAR model.

On the other side, the MRSTAR sigmoid that corresponds to quarterly growth rates

is almost linear, while the GSTAR sigmoid is steep and deep. In monthly frequency

data, deepness is still great when yearly growth rates are considered, while monthly

growth rates are characterized by high steepness and moderate deepness. In both of

the monthly frequency series, the MRSTAR transition function is still a zero-one-

type, with the only exception in the first function in monthly growth rates. Hence,

the symmetric models fail to capture dynamic asymmetry. These results seem com-

patible with Sichel’s conclusion that deepness prevails in the production sector, but

according to our model, such a dominance of deepness is sensitive to the basis of the

growth rates and never annihilates the role of steepness.

The predictive performances of the GSTAR, MRSTAR, and linear AR models are

reported in Tables 2 and 3 for quarterly and monthly data, respectively. Our

parametrization is preferable to both alternatives for three measures of point fore-

casting and two density measures of the total of four measures considered. LogS,

the linear specification, is preferred for short-term forecasts and the nonlinear sym-

metric model is preferred for medium-term forecasts (2 and 4 quarters ahead). On

the other hand, in monthly data, the GSTAR model is preferred in three point mea-

sures of four and just one density measure (the LogS) of four, while the quadratic

and quantile scores support the symmetric nonlinear parametrization, so the linear
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model is preferable under CRPS. Tables 4 and 5 report the predictive accuracy mea-

sures for the same experiment, where forecasts of models for quarterly and monthly

data samples are obtained by the block-bootstrap algorithm.

Parameter uncertainty in estimation reduces the point predictive performances of

asymmetric models. The symmetric MRSTAR performs better than the GSTAR in

one measure (mRAE), and the linear autoregression is preferred in the majority of

horizons in MFE and RMFE. On the other side, the asymmetric specification over-

performs in three density measures of four – that is, one more than the experiment

with no uncertainty. In monthly samples, the GSTAR model is preferable in almost

all leads of MFE and mRAE, and in the others the symmetric model prevails in

other point measures – although in density measures, only under QS.

The hypothesis of no equal predictive ability is investigated in Table 6 for models of

quarterly samples and in Table 7 for models of monthly data samples. The Diebold-

Mariano test does not reject the null hypothesis of no improvement in forecasting

ability for nonlinear and dynamically asymmetric specifications with respect to lin-

ear (and symmetric) ones. This result appears counterintuitive, since the linearity

and asymmetry tests suggest the opposite. Hence, given that the Diabold-Mariano

statistics has been built for non-nested models, we use them as an additional check.

The more general Giacomini-White test allows for improvements in the forecasting

ability of GSTAR model in short-run horizons, although the p-values blow up as

horizons increase, so the evidence of an improvement decays rapidly in the long

run. The Amisano-Giacomini test supports the GSTAR model only under CRPS;

however, if the choice is between a nonlinear symmetric model and linear speciÞ-

cation, the former is also supported by the quantile measure. In monthly samples

the gain in the forecasting ability of asymmetric models is considerably greater for

both asymmetric and nonlinear symmetric specifications; the Amisano-Giacomini

test supports nonlinear specification and restricts the preference for the GSTAR

model to LogS.
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4.3 The U.S. Unemployment Rate

A graphic inspection of the series of UN in Figure 1 is sufficient to reveal that this

variable is strongly countercyclical and, with respect to the industrial production,

its business cycle phases are often exacerbated. This finding is confirmed by the

tests for linearity and dynamic symmetry in Table 1: the series in monthly growth

rates (the p-value of which is 0.04) is near the limit and is high if the high number

of observations is considered8. All of the models pass the diagnostic tests for the

null of no additive asymmetry and parameter constancy. The hypothesis of serial

uncorrelation is rejected only in quarterly samples. Still, we maintain four lags in

the model specification because there is no evidence of satisfactory improvement in

p-values in tests for serial uncorrelation unless the autoregressive order is augmented

up to 89. With the counter-cyclical nature of this variable, the estimated slopes are

opposite in sign with respect to industrial production in all the series: γ1 is positive

and γ2 is negative with higher magnitude in γ1. The only exception is represented

by quarterly series in yearly growth rates, where the parameters become 1 and -1,

respectively.

Figures 5 and 6 depict the transitions of the (G)STAR models for samples at quar-

terly and monthly frequency, respectively. The sigmoids of UN are characterized

by high steepness and moderate deepness, thus confirming Sichel’s conclusion that

Okun’s law is dynamically asymmetric. Moreover, we find that the GSTAR model

allows us to parametrize the natural rate of unemployment, which is shown in the

lower tail of G: in three cases of four, the sigmoid does not begin at 0 but at 0.1 in the
8However, in a previous version of this paper, we considered also the null hypothesis that the

model is a GSTAR with different slopes, a hypothesis that strictly follows Stukel’s original method-
ology. This consideration changes all of the results, which then indicate nonlinear asymmetric
behavior only in the samples of yearly growth rates. Evidence from a Monte Carlo study of these
more restrictive tests lead us to discourage their use because of their considerable conservatism.
See the Supplement for additional details.

9In previous versions of this paper, the unemployment rate was analyzed only in monthly
frequency. We set p = 4, and an error in code in the estimation step led us to reconsider the whole
modelling procedure and the diagnostic test. We thank an anonymous referee for observing this
point.
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series of yearly growth rates, and at 0.3 in the series of quarterly/monthly growth

rates. This important macroeconomic feature is impossible to capture using sym-

metric models, where the sigmoid always begins at 0. According to the comparison

of predictive accuracy reported in Table 2, the GSTAR parametrization allows for a

significant forecasting gain with respect to both AR and MRSTAR models in three

measures of point forecasting and almost every density measure. Such supremacy

of the dynamically asymmetric specification is confirmed by monthly series (Table

3) for point measures, with some exceptions for short-run and very long-run leads.

On the opposite side, in density measures the better performance of GSTAR (in

long-run horizons) is an exception: while the QS supports the symmetric nonlinear

parametrization, in CRPS and qS the linear model is preferred. Parameter uncer-

tainty annihilates all predictive performances of asymmetric models. As shown in

Table 4, the MRSTAR beats GSTAR in two point measures (MFE and mRAE)

and two density measures (QS and qS), and the linear autoregression wins in other

cases. Between the models for monthly samples (Table 5), the GSTAR is the best

performer for almost two leads of MFE and almost all leads of mRAE and in the

quadratic measure for density.

The Giacomini-White test allows for improvements in the MRSTAR model’s fore-

casting ability against the linear model in three horizons of four in quarterly data

(Table 6); the GSTAR model overperforms in short-run and medium-run horizons,

but when the horizons increase, the p-values blow up and the evidence of forecasting

improvement decays rapidly. The results of the Amisano-Giacomini test are equiv-

alent to the results for industrial production: the GSTAR model beats MRSTAR

only under CRPS, while the MRSTAR beats AR in CRPS and qS. In models of

monthly data (Table 7), both the Diebold Mariano test and the Giacomini-White

test reject the null hypothesis considerably more strongly than they do in models of

quarterly data; the Amisano-Giacomini test allows for improvements in forecasting

ability for the case of MRSTAR models against linear models, but only under QS. In
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the same test, GSTAR performances are also better than its competitors in long-run

horizons of LogS, qS and CRPS, while in short-run forecasts, the MRSTAR remains

the benchmark in almost all measures.

4.4 Discussion

What do we learn from this empirical investigation? First, the GSTAR model char-

acterizes the dynamic asymmetry of the U.S. business cycle more accurately than

its nonlinear competitor does because cyclical movements in the data and their

phases are reproduced considerably more precisely than they are in the traditional

parametrization. This result is confirmed by the transition functions’ time paths,

which are consistent with NBER recession dates in most of the cases. Since the

literature is almost completely focused on Markov-Switching and Threshold auto-

regressions (see, e.g., Engel et al. (2005); Chauvet and Piger (2008)), the effect

of the new model on dating algorithms remains unknown. Despite this difference

in methodology, our results support McQueen and Thorley’s main conclusion that

theoretical macroeconomic models should not treat shocks in production and unem-

ployment at the end of a recession as mirror images of the cutbacks at the end of a

phase of expansion.

Second, such superior descriptive accuracy is usually associated with an improve-

ment in point forecasting ability. Ferrara et al. (2015) investigate the forecasting

properties of a large set of models – they also add MSARs and time-varying ARs –

after the Great Recession using a dataset that is larger than ours. Their conclusions

are that (i) the predictive gain that arises from non-linear models is not systematic

and, when it does exist, is small10. This evidence is explained by Stock and Watson

(2012) hypothesis that the Great Recession can be seen as a sequence of unusually
10“Indeed, the results are rather mixed and depend strongly on the evaluation period. However,

predictive gains that stem from nonlinear models may arise from variables that experienced clear
regime changes over the sample, such as interest rates, for instance. When comparing the perfor-
mances of non-linear models, the TVAR model seems to be very similar to the AR model [· · · ]
and the MSAR model often leads to the poorest results. On the other hand, the TAR and LSTAR
models occasionally perform quite well” (Ferrara et al., 2015, page 678).
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large shocks. (ii) They assert that using exogenous variables in time series models is

globally preferable with respect to auto-regressions. Although, for reasons of space,

we do not consider models with exogenous variables, our evidence supports Ferrara

et al.’s first conclusion about dynamically asymmetric models’ low gain in terms

of forecasting performance only when considering density measures. We confirm

Kascha and Ravazzolo (2010) evidence for the relationship between highest LogS

and lower RMSFE as not one-to-one but as commonly (and implicitly) postulated11.

Unlike Ferrara et al., we observe that the Great Recession provides an important

motivation for the use of dynamic asymmetric models and, in general, for the use

of a smooth-transition autoregressive family. In fact, controlling for the inclusion

of data after 2007 leads to an important increase in test for dynamic asymmetry’

p-value12. However, our forecasting exercise assumes E[ε2t |Ωt−1] = σ2 – that is, that

the conditional variance of the process {εt}Tt is constant. Recent advancements in

this strand of literature allow this restriction to be relaxed in STAR models; see

González-Rivera (1998); Lundbergh et al. (2003); McAleer and Medeiros (2008);

Amado and Teräsvirta (2013); Silvennoinen and Teräsvirta (2013). According to

Clark and Ravazzolo (2015), incorporating stochastic (time-varying) volatility in

simple macroeconometric models improves their forecasting properties substantially.

We emphasize that the role of the dynamic asymmetry, particularly its intersection

with stochastic/time-varying volatility, has never been investigated. Understanding

the role of parameter uncertainty is not easy, and it has limited influence on the

forecasting ability of models for pro-cyclical variables. On the other hand, it down-

grades most dynamic asymmetric models of anti-cyclical proxies. Therefore, STARs’

returns are often preferable when this feature must be taken into consideration.

Finally, our forecast comparisons are based on statistical tests that are originally

developed for linear models. Little is known about the impact on uncertain environ-
11We emphasize that this result is confirmed by our additional examples in the Supplement,

where other (not only economic) datasets have been analyzed.
12We do not show the results because of space limits. Additional results can be provided on

request.
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ments if dynamic asymmetry is assumed. The Giacomini and Rossi (2010)’s fluc-

tuation test was supposed to clarify our findings, but according to our preliminary

results (not shown), the fluctuation test seems to over-reject the null hypothesis, as

they do also when linear autoregression is a reasonable hypothesis. Therefore, we

postpone this important issue for later methodological investigation.

5 Conclusions

The generalized logistic function is applied to the STAR models family as a sim-

ple, statistically feasible way to capture the dynamic asymmetry in the conditional

mean of a time series. Because of its logarithmic (exponential) rescaling, the result-

ing GSTAR model ensures the smoothness of the transition function by construction

without requiring additional effort to determine what concerns identification and es-

timation and allows us to model the two (or, possibly more, if multiple transition

functions are required) modes in the process’s density function. An application of

the new model to two proxies of the U.S. business cycle, each one in four transforma-

tions, allows us to support most of the previous literature’s findings and to improve

the quality of the econometric modelling. A properly specified GSTAR model for

industrial production and the unemployment rate leads to a substantial gain in point

forecasting ability. According to our parametrization, dynamic asymmetry affects

the process’s conditional mean almost exclusively. Its detection in higher conditional

moments and its statistical treatment in unstable forecasting environments remain

unexplored. Moreover, the univariate analysis provided here limits our empirical re-

sults’ relevance in terms of policy implications. Since the GSTAR model’s high level

of flexibility makes it a valid tool with which to model and forecast other prominent,

nonlinearly behaving economic and financial variables, such as monetary aggregates

and risk measures, we encourage further research efforts in this direction.
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Tables and Graphs

Figure 1: The US quarterly data

(a) Data in levels
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(b) Data in growth rates
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NOTE: This figure plots the quarterly data on US index of industrial production (IIP) and unem-
ployment (UN) used to illustrate the performances of GSTAR model in Section 4. In particular,
panel (a) plots the series in levels, while panel (b) plots the same series in quarterly (upper sub-
panel) and yearly growth rates (lower sub-panel), respectively. The bands in yellow are the NBER
recession dates.
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Figure 2: Types of asymmetry in the transition functions

(a) Asymmetric transition functions
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(b) Dynamically asymmetric transition functions
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NOTE: This figure illustrates several different parametrizations of asymmetric transition function
for a STAR model. In particular, panel (a) plots the asymmetric ones currently available in
literature, namely the Sollis et al. (2002) and the Sollis et al. (1999)–Lundbergh and Teräsvirta
(2006) models; panel (b) plots the dynamically asymmetric transition function here proposed.
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Figure 3: Taxonomy of the dynamic asymmetry in business cycle

0 200 400 600 800 1000
−10

0

10

20
G

S
T

A
R

(
0

.5
, 

−
2

)
SIMULATED PROCESS

0 200 400 600 800 1000
0

0.5

1

G
(
.,

.,
.)

TRANSITION FUNCTION

0 20 40 60 80 100
0

1

2

P
D

F
(
X

)

DENSITY

0 200 400 600 800 1000
−10

0

10

20

G
S

T
A

R
(
−

0
.5

,4
)

0 200 400 600 800 1000
0

0.5

1

G
(
.,

.,
.)

0 20 40 60 80 100
0

0.5

1

1.5

P
D

F
(
X

)

0 200 400 600 800 1000
−20

−10

0

10

A
R

0 200 400 600 800 1000
−1

0

1

2

G
(
.,

.,
.)

0 20 40 60 80 100
0

0.2

0.4

P
D

F
(
X

)

0 200 400 600 800 1000
−10

0

10

20

T

S
T

A
R

 (
γ
=

1
)

0 200 400 600 800 1000
0

0.5

1

G
(
.,

.,
.)

T

0 20 40 60 80 100
0

5

10

15

X

P
D

F
(
X

)

NOTE: The figure depicts four stylized business cycles. The first row presents the representation of
a cycle simulated by a GSTAR with γ1 > γ2 corresponding to strong deep and low steep; the second
row a cycle simulated by a GSTAR with γ2 > γ1 , where deepness is moderate and steep is high;
the third row a cycle corresponding to a liner AR; the fourth row a purely steep cycle simulated
by a STAR model. For each row, the first column (denoted “Simulated Process” ) displays the
time path of the time series yt, the second column (denoted “Transition Function”) shows the time
path of the corresponding G(·, ·); finally, the third column (denoted “Density” ) gives the estimated
density of the nonlinear part of the process, here denoted X, where X = θ̂′zt ×G(·, ·).
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Figure 4: Estimated transition functions specifications for quarterly IIP

(a) Yearly growth rate
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(b) Quarterly growth rate
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NOTE: This figures plots the estimated transition functions of MRSTAR and GSTAR models
estimated from quarterly IIP series. The left-had side shows the results for yearly growth rates,
while right-had side the monthly growth rates; upper panels plots data with transition functions
versus time, while in bottom panels the same transitions are shown versus the transition variable.

Figure 5: Estimated transition functions specifications for monthly IIP

(a) Yearly growth rate
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(b) Monthly growth rate
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NOTE: This figures plots the estimated transition functions of MRSTAR and GSTAR models
estimated from monthly IIP series. The left-had side shows the results for yearly growth rates,
while right-had side the monthly growth rates; upper panels plots data with transition functions
versus time, while in bottom panels the same transitions are shown versus the transition variable.
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Figure 6: Estimated transition functions for quarterly UN

(a) Yearly growth rate
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(b) Quarterly growth rate

1950 1960 1970 1980 1990 2000 2010 2020
−20

−10

0

10

20

30

40

10
0*

∆
 lo

g(
y t)

 

 

Data

1950 1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DATE

DATA AND TRANSITION FUNCTION

 

 
G

1

MRSTAR

G
2

MRSTAR

G
GSTAR

−80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
t

G
(s

t, c
, h

(.)
)

TRANSITION FUNCTION vs TRANSITION VARIABLE

 

 

G
1

MRSTAR

G
2

MRSTAR

G
GSTAR

−20 −10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
t

G
(s

t, c
, h

(.)
)

TRANSITION FUNCTION vs TRANSITION VARIABLE

 

 

G
1

MRSTAR

G
2

MRSTAR

G
GSTAR

NOTE: This figures plots the estimated transition functions of MRSTAR and GSTAR models
estimated from quarterly UN series. The left-had side shows the results for yearly growth rates,
while right-had side the monthly growth rates; upper panels plots data with transition functions
versus time, while in bottom panels the same transitions are shown versus the transition variable.

Figure 7: Estimated transition functions for monthly UN

(a) Yearly growth rate
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(b) Monthly growth rate
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NOTE: This figures plots the estimated transition functions of MRSTAR and GSTAR models
estimated from monthly UN series. The left-had side shows the results for yearly growth rates,
while right-had side the monthly growth rates; upper panels plots data with transition functions
versus time, while in bottom panels the same transitions are shown versus the transition variable.
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Table 2: GSTAR versus linear and nonlinear symmetric models: comparison of predictive
performances in quarterly U.S. data.

Point predictive performances

Forecast Error
Forecast horizon Measure AR (MR)STAR GSTAR

IIP UN IIP UN IIP UN

MFE
1 -0.1823 -0.8710 -0.1417 -0.0456 -0.1070 -0.8698
2 -0.1928 -0.9323 -0.1437 -0.0525 -0.1094 -0.9255
4 -01969 -0.9528 -0.1377 -0.0831 -0.1076 -1.0273
8 -0.1991 -1.1300 -0.1616 -0.1271 -0.1349 -1.1687

sMAE
1 0.0077 0.0669 0.0030 0.0676 0.0032 0.0630
2 0.0079 0.0692 0.0030 0.0745 0.0032 0.0665
4 0.0085 0.0708 0.0031 0.0792 0.0033 0.0626
8 0.0087 0.0732 0.0032 0.0737 0.0034 0.0650

mRAE
1 1.0000 1.0000 1.3433 0.4214 1.2074 0.3063
2 1.0000 1.0000 1.4061 0.3997 1.3400 0.3099
4 1.0000 1.0000 1.6696 0.4139 1.6212 0.3559
8 1.0000 1.0000 2.6900 0.4817 2.5691 0.3879

RMSFE
1 0.1154 1.7223 0.1151 1.5889 0.1136 1.0372
2 0.1159 1.8310 0.1158 1.5991 0.1144 1.0427
4 0.1172 1.8969 0.1171 1.6197 0.1158 1.0542
8 0.1224 1.9344 0.1197 1.6626 0.1285 1.0805

Density predictive performances

LogS
1 0.0104 0.0179 0.0105 0.0176 0.0110 0.0166
2 0.0105 0.0182 0.0105 0.0176 0.0109 0.0166
4 0.0107 0.0182 0.0106 0.0175 0.0112 0.0172
8 0.0107 0.0184 0.0110 0.0175 0.0123 0.0172

QS
1 0.2138 0.0651 0.2202 0.0647 0.2131 0.0637
2 0.2201 0.0654 0.2191 0.0650 0.2111 0.0639
4 0.2252 0.0659 0.2210 0.0650 0.2113 0.0639
8 0.2252 0.0662 0.2219 0.0653 0.2152 0.0642

CRPS
1 7.0738 31.5422 7.0256 31.5500 7.0655 31.5100
2 7.1141 31.7299 7.0750 31.7077 7.1123 31.7377
4 7.2140 32.2400 7.1740 32.0356 7.2132 32.0383
8 7.4200 32.7444 7.3708 32.7216 7.4222 32.7219

qS
1 0.2092 0.0421 0.2088 0.0382 0.2038 0.0376
2 0.2103 0.0489 0.2085 0.0449 0.2036 0.0443
4 0.2118 0.0528 0.2066 0.0524 0.2020 0.0584
8 0.2118 0.0772 0.2048 0.0803 0.2004 0.0803

NOTES: This table reports the point (first panel) and density (second panel) predictive per-
formances of linear (AR) nonlinear symmetric (MRSTAR) and dynamic asymmetric (GSTAR)
models according to different measures and forecasting horizons with testing period from 1982:Q3
to 2013Q1 for IIP and from 1983:Q3 to 2013Q1 for UN. The smallest values for each forecasting
horizon are in bold.
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Table 3: GSTAR versus linear and nonlinear symmetric models: comparison of predictive
performances in monthly U.S. data

Point predictive performances

Forecast Error
Forecast horizon Measure AR (MR)STAR GSTAR

IIP UN IIP UN IIP UN

MFE
1 -0.0011 0.0009 -0.0065 0.0156 -0.0093 0.0095
3 -0.1108 0.0340 -0.0071 0.0168 -0.0098 0.0108
6 -0.3024 0.0607 -0.0072 0.0150 -0.0099 0.0093
12 -1.4908 0.1117 -0.0068 0.0163 -0.0094 0.0107

sMAE
1 0.0011 0.0058 0.0011 0.0061 0.0011 0.0060
3 0.0037 0.0087 0.0011 0.0059 0.0011 0.0058
6 0.0070 0.0128 0.0012 0.0056 0.0012 0.0055
12 0.0124 0.0190 0.0012 0.0050 0.0012 0.0049

mRAE
1 1.0000 1.0000 1.0324 1.0224 1.0290 1.0107
3 1.0000 1.0000 1.1560 1.0552 1.1241 1.0369
6 1.0000 1.0000 1.4886 1.2189 1.4546 1.1693
12 1.0000 1.0000 2.0115 1.4965 2.1142 1.5085

RMSFE
1 0.0698 0.2856 0.0051 0.0178 0.0042 0.0176
3 0.2894 0.4234 0.0052 0.0179 0.0043 0.0177
6 0.7552 0.5915 0.0052 0.0181 0.0046 0.0179
12 0.7638 0.8545 0.0055 0.0184 0.0049 0.0182

Density predictive performances

LogS
1 0.0020 0.0031 0.0017 0.0033 0.0014 0.0036
3 0.0018 0.0034 0.0017 0.0036 0.0014 0.0035
6 0.0021 0.0035 0.0017 0.0036 0.0016 0.0035
12 0.0032 0.0036 0.0017 0.0036 0.0021 0.0035

QS
1 2.1568 0.7986 2.1303 0.8511 2.1689 0.8683
3 2.1644 0.7998 2.1386 0.8537 2.1821 0.8698
6 2.1665 0.8125 2.1391 0.8550 2.1895 0.8698
12 2.2024 0.6741 2.1479 0.6412 2.1921 0.6354

CRPS
1 0.2142 1.6750 0.2170 1.6090 0.2201 1.6094
3 0.2161 1.6850 0.2189 1.6193 0.2224 1.6197
6 0.2188 1.6983 0.2212 1.6317 0.2252 1.6344
12 0.2255 1.7295 0.2279 1.6594 0.2318 1.6617

qS
1 0.0094 -0.0713 0.0089 -0.0727 0.0087 -0.0723
3 0.0093 -0.0706 0.0085 -0.0721 0.0086 -0.0717
6 0.0092 -0.0695 0.0083 -0.0708 0.0085 -0.0705
12 0.0087 -0.0667 0.0071 -0.0682 0.0080 -0.0679

NOTES: This table reports the point (first panel) and density (second panel) predictive per-
formances of linear (AR) nonlinear symmetric (MRSTAR) and dynamic asymmetric (GSTAR)
models according to different measures and forecasting horizons with testing period from 1982:M9
to 2013:M3 for IIP and from 1983:M9 to 2013:M3 for UN. The smallest values for each forecasting
horizon are in bold.
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Table 4: GSTAR versus linear and nonlinear symmetric models under parameter uncer-
tainty: comparison of predictive performances in quarterly U.S. data

Point predictive performances

Forecast Error
Forecast horizon Measure AR (MR)STAR GSTAR

IIP UN IIP UN IIP UN

MFE
1 -2.4600 -1.2362 -2.4670 -1.1701 -2.4685 -1.3015
2 -2.4659 -1.2930 -2.4632 -1.2361 -2.4686 -1.3664
4 -2.4682 -1.4295 -2.4608 -1.3745 -2.4427 -1.5040
8 -2.4682 -1.6072 -2.4586 -1.5868 -2.4391 -1.7101

sMAE
1 0.0204 0.1101 0.0201 0.1266 0.0200 0.1120
2 0.0204 0.1062 0.0202 0.1208 0.0202 0.1074
4 0.0210 0.0975 0.0205 0.1103 0.0205 0.0992
8 0.0217 0.0902 0.0215 0.0992 0.0214 0.0907

mRAE
1 1.0000 1.0000 1.0000 1.0035 1.0001 1.0017
2 1.0000 1.0000 1.0042 1.0011 1.0038 1.0025
4 1.0000 1.0000 1.0069 1.0016 1.0071 1.0025
8 1.0000 1.0000 1.0037 1.0021 1.0039 1.0034

RMSFE
1 0.3707 1.1720 0.3756 1.2322 0.3751 1.2337
2 0.3723 1.1786 0.3775 1.2387 0.3771 1.2403
4 0.3761 1.1908 0.3805 1.2518 0.3800 1.2535
8 0.3835 1.2201 0.3888 1.2820 0.3882 1.2841

Density predictive performances

LogS
1 0.0136 0.0169 0.0135 0.0176 0.0130 0.0181
2 0.0135 0.0169 0.0134 0.0176 0.0130 0.0181
4 0.0135 0.0168 0.0133 0.0175 0.0129 0.0180
8 0.0133 0.0167 0.0131 0.0175 0.0128 0.0180

QS
1 0.2244 0.0635 0.2242 0.0634 0.2240 0.0639
2 0.2243 0.0638 0.2240 0.0637 0.2238 0.0639
4 0.2243 0.0640 0.2244 0.0637 0.2239 0.0647
8 0.2245 0.0652 0.2245 0.0652 0.2244 0.0647

CRPS
1 6.2854 30.1794 6.0036 31.5500 5.9310 30.4696
2 6.3291 30.3430 6.0443 31.7077 5.9689 30.6087
4 6.4230 30.6666 6.1338 32.0356 6.0561 30.9277
8 6.6149 31.3386 6.3109 32.7216 6.2307 31.6032

qS
1 0.0440 0.0093 0.0463 0.0075 0.2330 0.0509
2 0.0440 0.0105 0.0463 0.0089 0.2327 0.0576
4 0.0437 0.0133 0.0460 0.0117 0.2311 0.0716
8 0.0432 0.0170 0.0456 0.0161 0.2291 0.0928

NOTES: This table reports the point (first panel) and density (second panel) predictive perfor-
mances of linear (AR) nonlinear symmetric (MRSTAR) and dynamic asymmetric (GSTAR) models
accounting for uncertainty via block-boostrap algorithm according to different measures and fore-
casting horizons with testing period from 1982:Q3 to 2013Q1 for IIP and from 1983:Q3 to 2013Q1
for UN. The smallest values for each forecasting horizon are in bold.
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Table 5: GSTAR versus linear and nonlinear symmetric models under parameter uncer-
tainty: comparison of predictive performances in monthly U.S. data

Point predictive performances

Forecast Error
Forecast horizon Measure AR (MR)STAR GSTAR

IIP UN I5P UN IIP UN

MFE
1 0.7134 -0.0309 0.5894 -0.0308 0.5781 0.0008
3 0.8400 -0.0006 0.7628 -0.0205 0.5657 0.0465
6 0.5048 -0.0020 0.7489 -0.0166 0.6159 -0.0074
12 0.8711 -0.0530 0.8340 -0.0129 0.7099 -0.0090

sMAE
1 0.0057 0.0308 0.0020 0.0144 0.0058 0.0272
3 0.0056 0.0271 0.0020 0.0137 0.0056 0.0318
6 0.0056 0.0253 0.0021 0.0131 0.0061 0.0258
12 0.0059 0.0261 0.0022 0.0124 0.0056 0.0231

mRAE
1 1.0000 1.0000 0.6814 0.0063 0.6143 0.0173
3 1.0000 1.0000 1.1191 0.1223 0.9089 0.1175
6 1.0000 1.0000 3.0881 0.1245 0.9029 0.1701
12 1.0000 1.0000 5.1183 0.1421 0.9937 0.2119

RMSFE
1 0.0641 0.0780 0.0368 0.0603 0.0598 0.0774
3 0.0662 0.0789 0.0329 0.0604 0.0543 0.0781
6 0.0489 0.0784 0.0425 0.0606 0.0510 0.0786
12 0.0706 0.0797 0.0483 0.0612 0.0625 0.0800

Density predictive performances

LogS
1 0.0019 0.0036 -0.0001 0.0034 0.0020 0.0037
3 0.0018 0.0035 -0.0001 0.0034 0.0023 0.0039
6 0.0018 0.0035 -0.0001 -0.0166 0.0029 0.0040
12 0.0018 0.0037 -0.0001 0.0034 0.0038 0.0044

QS
1 2.2142 0.8870 2.5261 1.0937 2.2040 0.8763
3 2.2146 0.8879 2.4917 1.0995 2.2086 0.8769
6 2.2234 0.8876 2.1880 1.0929 2.2100 0.8773
12 2.2250 0.8920 2.2437 1.0095 2.2195 0.8819

CRPS
1 -0.4926 1.6349 0.1968 0.8900 0.2219 1.6349
3 0.2241 1.6431 0.1974 0.8922 0.2241 1.6431
6 0.2273 1.6579 0.1982 0.8954 0.2273 1.6579
12 0.2337 1.6865 0.1999 0.9018 0.2337 1.6865

qS
1 0.0017 -0.0157 -0.0030 -0.0142 0.0019 -0.0145
3 0.0017 -0.0155 -0.0030 -0.0141 0.0019 -0.0144
6 0.0019 -0.0153 -0.0030 -0.0140 0.0020 -0.0141
12 0.0021 -0.0146 -0.0031 -0.0138 0.0025 -0.0136

NOTES: This table reports the point (first panel) and density (second panel) predictive per-
formances of linear (AR) nonlinear symmetric (MRSTAR) and dynamic asymmetric (GSTAR)
models accounting for uncertainty via block-boostrap algorithm according to different measures
and forecasting horizons with testing period from 1982:M9 to 2013:M3 for IIP and from 1983:M9
to 2013:M3 for UN. The smallest values for each forecasting horizon are in bold.
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Table 6: Comparison of predictive ability tests of GSTAR versus linear and symmetric
models in quarterly U.S. data

MR-STAR vs AR GSTAR vs MR-STAR

SERIES IIP UN IIP UN

h Diebold-Mariano

1 0.1196 0.1668 0.1165 0.2260
2 0.0890 0.2550 0.1170 0.2259
4 0.1011 0.2540 0.1978 0.2841
8 0.2104 0.3054 0.2080 0.3270

h Giacomini-Whight

1 0.0610 0.0568 0.0327 0.0167
2 0.0890 0.0761 0.1366 0.0411
4 0.1244 0.0034 0.2028 0.2914
8 0.3351 0.2804 0.3965 0.5199

Scoring Rule Amisano-Giacomini

h IP UN IP UN

QSR t-statistic p-val t-statistic p-val t-statistic p-val t-statistic p-val

1 1.9ee−5 0.4600 0.0015 0.4994 2.9e4 0.5567 6.0e−4 0.4999
2 1.9e−5 0.4975 0.0015 0.4994 2.9e4 0.5553 6.0e−4 0.4999
4 2.9e−7 0.5120 0.0016 0.4993 2.9e4 0.5312 4.1e−5 0.5998
8 2.9e−9 0.5169 0.0016 0.4993 2.3e4 0.5622 9.2e−5 1.0000

LogS

1 -16.2383 1.0000 -2017.1657 1.0000 -0.3535 0.6380 -3.9e3 1.0000
2 -16.3005 1.0000 -2025.0146 1.0000 -0.3548 0.6385 -2.2e4 1.0000
4 -16.4249 1.0000 -2040.7124 1.0000 -0.3576 0.6395 -5.1e5 1.0000
8 -16.6738 1.0000 -2072.1083 1.0000 -0.3630 0.6415 -6.2e6 1.0000

CRPS

1 2.2 e4 <0.001 1.4 e07 <0.001 2.4 e4 <0.001 2.4 e5 <0.001
2 2.1 e4 <0.001 2.2e06 <0.001 2.0 e5 <0.001 2.4 e4 <0.001
4 2.4 e4 <0.001 2.2 e06 <0.001 2.0 e5 <0.001 2.4 e4 <0.001
8 2.5 e4 <0.001 2.4 e06 <0.001 2.0 e6 <0.001 2.4 e4 <0.001

QuantS

1 3.5e5 <0.001 3.2e4 <0.001 -7e5 1.0000 -3.5e6 1.0000
2 5.2e6 <0.001 4.9e4 <0.001 -2e5 1.0000 -8.3e6 1.0000
4 5.7e6 <0.001 4.9e4 <0.001 -1.4e5 1.0000 -9.0e7 1.0000
8 3.8e6 <0.001 4.9e4 <0.001 -2e7 1.0000 -6.4e7 1.0000

NOTES: This table reports the results of equal predictive ability tests for GSTAR versus AR and MRSTAR models
in quarterly US data in growth rates for the testing period from 1982:Q3 to 2013:Q1. All the tests consider density
forecasts generated from real data, according to the model estimated in Table 1. In the Amisano-Giacomini test,
the GSTAR has the role of S̄f and the benchmark (MR-ST)AR density forecast the role of S̄g . Since here LogS has
positive orientation, if t-statistic is positive, f is preferred; the weight is assumed 1.
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Table 7: Comparison of predictive ability tests of GSTAR versus linear and symmetric
models in monthly U.S. data

MR-STAR vs AR GSTAR vs MR-STAR

SERIES IIP UN IIP UN

h Diebold-Mariano

1 0.0000 0.0000 0.0000 0.0000
2 0.0003 0.0005 0.0000 0.0000
4 0.0012 0.0019 0.0000 0.0000

12 0.0026 0.0038 0.0000 0.0002

h Giacomini-Whight

1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0018 0.0000 0.0000
4 0.0066 0.0072 0.0040 0.0215

12 0.0106 0.0133 0.0170 0.0420

Scoring Rule Amisano-Giacomini

h IIP UN IIP UN

QSR t-statistic p-val t-statistic p-val t-statistic p-val t-statistic p-val

1 5.1057 <0.001 4.8320 <0.001 -5.1057 1.0000 4.2904 <0.001
2 0.3733 0.7067 4.9038 <0.001 0.3733 0.3545 4.5631 <0.001
4 -0.5440 0.2150 5.1023 0.0083 0.5440 0.2932 4.6200 0.0250

12 5.0349 <0.001 5.7302 0.0152 -5.0349 1.0000 -1.0039 0.9231
LogS

1 650.28 1.0000 602.34 1.0000 649.281 <0.001 43.764 0.6773
2 -192.36 0.8899 -132.48 0.7530 -192.364 1.0000 30.450 0.3502
4 -3.7e3 1.0000 -2.2e03 1.0000 3.7e03 <0.001 12.304 0.1339

12 -641.28 1.0000 -459.23 1.0000 641.2803 <0.001 12.439 0.1010
CRPS

1 -0.41249 0.6599 -0.2995 0.3028 0.41249 0.3400 -0.3702 0.5265
2 -1.2273 0.1100 -0.4102 0.2504 -1.2273 0.8899 -0.7894 0.2028
4 2.2718 0.0116 -0.1501 0.2050 -2.2718 0.9883 -1.1490 0.0922

12 -0.4067 0.6578 -0.9501 0.5699 0.4067 0.3421 -1.4670 0.0579
QuantS

1 7.3000 1.0000 5.7031 0.9940 -7.3029 1.0000 4.2499 0.3401
2 7.0429 1.0000 5.2301 0.9024 7.0429 1.0000 3.2993 0.2370
4 8.7815 <0.001 2.1027 0.4501 -8.7815 1.0000 2.3409 0.1502

12 7.1988 <0.001 1.8235 0.3501 -7.1988 1.0000 2.9302 0.0829

NOTES: This table reports the results of equal predictive ability tests for GSTAR versus AR and MRSTAR models
in monthly US data in growth rates for the testing period from 1982:Q3 to 2013:Q1. All the tests consider density
forecasts generated from real data, according to the model estimated in Table 1. In the Amisano-Giacomini test,
the GSTAR has the role of S̄f and the benchmark (MR-ST)AR density forecast the role of S̄g . Since here LogS has
positive orientation, if t-statistic is positive, f is preferred; the weight is assumed 1.
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A Appendix

A.1 Estimation

Following Leybourne et al. (1998), estimation is done by concentrating the Sum of

Square Residuals function with respect to θ and φ, that is minimizing:

SSR =
T∑
t=1

(
yt − ψ̂′x′t

)2

, (16)

where:

ψ̂ = [φ̂, θ̂] =

( T∑
t=1

x′t(γ, c)xt(γ, c)

)−1( T∑
t=1

x′t(γ, c)yt

)
, (17)

and

xt(γ̂, ĉ) =
[
z, z′tG(γ̂, h(ĉ, st)

]
. (18)

This is possible because if γ and c are known and fixed, the GSTAR model is linear

in θ and φ, which can be easy computed via Conditional OLS (COLS). In a such

a way, the nonlinear least square minimization problem, otherwise necessary, more

demanding in terms of parameters to estimate and not available in closed-form,

reduces to a minimization on three parameters, and is solved via a grid search over

γ1, γ2, c. In our illustrations, both γ1 and γ2 are generally chosen between a minimum

value of -10 and a maximum of 10 with rate 0.25 in the first three examples the grid

for parameter c1is the set of values computed between the 10th and 90th percentile

of st with rate computed as the difference of the two and divided for an arbitrarily

high number (here, 200). Anyway, this is a only gross rule of thumb and does not

pretend to constitute a general indication for application to other data.

A.2 Measures of Predictive Accuracy

The out-of-sample predictive properties of the estimated models are investigated

via rolling forecast experiment, according to which the series yt is divided in a “pre-
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forecast” period (going from time {1 . . . t}) from which the model is estimated and

the h-step-ahead forecasts are computed and compared with the “test” period, going

from time {T s . . . T} where T s = t+h; this allows to measure T −T s−h+ 1 out-of-

sample forecasts. Let denote the corresponding realization of the series as yt, ysT and

yT , as well as the corresponding density forecasts as ft, f sT and fT . Since our interest

lies in short-run forecasting we consider h = {1, 3, 6, 12}. The point predictive

performances of the model j are investigated by four different measures: the mean

forecast error (MFE), the symmetric mean absolute percentage error (sMAPE), the

median relative absolute error (mRAE) and the root mean square forecast error

(RMSFE)13:

MFEj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
yt+h − ŷjt+h|t

)
(19)

sMAPEj,h =
100|yt+h − ŷjt+h|
0.5(yt+h − ŷjt+h|t)

(20)

mRAEj,h =
|yt+h − ŷjt+h|
|yt+h − ŷ(1)

t+h|
, with (1) indexing the benchmark model; (21)

RMSFEj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
yt+h − ŷjt+h|t

)2

(22)

Differently, the literature on aggregation of density forecasts is instead in a develop-

ment phase, and focuses on the so called scoring rules (or opinion pools), peculiar

functions enabling the forecaster to properly aggregate the set of conditional pre-

dictive density as well as more common measures as Mean Square Forecast Error et

similia do for point forecasts. Despite their dated origins in statistics, as documented

by Gneiting and Raftery (2007), scoring rules are becoming increasingly applied by

contemporaneous econometric literature only recently; see, inter alia, Geweke and
13In particular, sMAPE and mRAE are recommended when the series is known to present

volatility effects or skewness, two features often associated to nonlinearity; see the discussion in
Tashman (2000).
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Amisano (2011). In a similar fashion, concerning about density forecasting, four

different scoring rules are used for aggregate the T − T s− h+ 1 predictive densities

produced by the same forecasting exercise:

• the logarithmic score (LogS):

LogSj,h =
1

T − h− T s + 1

T−h∑
t=T s

logf̂ jt+h|t (23)

corresponding to a Kullback-Liebler distance from the true density; models

with higher LogS are preferred.

• The quadratic score, somehow the equivalent of the MSFE in point forecasting,

is defined as:

QSRj,h =
1

T − h− T s + 1

T−h∑
t=T s

K∑
k=i

(f jt+h|t − dkt)
2, (24)

where dkt = 1 if k = t and 0 otherwise; models with lower QSR are preferred.

• The (aggregate) continuous-ranked probability (CRPS) score, equivalent to

the sMAPE, is defined as:

CRPSj,h =
1

T − h− T s + 1

T−h∑
t=T s

(
|ft+h − f̂ jt+h|t| − 0.5|ft+h − f ′t+h|

)
, (25)

where f and f ′ are independent random draws from the predictive density and

ft+h|t the observed value; models with lower CRPS are preferred.

• Finally, the quantile score (qS) can be obtained if f jt+h|t is replaced in (23) by a

predictive α-level quantile qαt+h|t (and the logarithmic function removed); this

score is used in risk analysis because it provides information about deviations

from the true tail of the distribution.
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